WO2017210907A1 - 多链接配置方法、基站及用户设备 - Google Patents

多链接配置方法、基站及用户设备 Download PDF

Info

Publication number
WO2017210907A1
WO2017210907A1 PCT/CN2016/085350 CN2016085350W WO2017210907A1 WO 2017210907 A1 WO2017210907 A1 WO 2017210907A1 CN 2016085350 W CN2016085350 W CN 2016085350W WO 2017210907 A1 WO2017210907 A1 WO 2017210907A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cell
threshold
transmission point
uplink
Prior art date
Application number
PCT/CN2016/085350
Other languages
English (en)
French (fr)
Inventor
张莉莉
徐凯
李晓翠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020217000196A priority Critical patent/KR102323236B1/ko
Priority to EP16904359.3A priority patent/EP3448088B1/en
Priority to CN201680084358.4A priority patent/CN108886727B/zh
Priority to KR1020187037606A priority patent/KR102201656B1/ko
Priority to PCT/CN2016/085350 priority patent/WO2017210907A1/zh
Priority to US16/308,321 priority patent/US20190191476A1/en
Priority to JP2018564275A priority patent/JP6998893B2/ja
Publication of WO2017210907A1 publication Critical patent/WO2017210907A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0027Control or signalling for completing the hand-off for data sessions of end-to-end connection for a plurality of data sessions of end-to-end connections, e.g. multi-call or multi-bearer end-to-end data connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/18Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/13Cell handover without a predetermined boundary, e.g. virtual cells

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a multi-link configuration method, a base station, and a user equipment.
  • Ultra-Dense Network is an important technology of the 5th Generation Mobile Communication (5G).
  • UDN refers to the ultra-dense networking in the hotspot area (such as sports stadiums, train station waiting rooms, office places, etc.) with large data demand and large number of data connections during network deployment.
  • Small cell base stations are deployed on a large scale in the area, and adjacent small cell base stations may be only a few tens of meters apart.
  • the coverage of the small cell base station is small, and even if the user equipment (User Equipment, UE) moves at a medium and low speed, frequent handover is caused.
  • the user equipment User Equipment, UE
  • switching increases the signaling overhead of the air interface, and the other party causes data interruption. Therefore, how to solve the problem that the UE frequently switches in the UDN network is an urgent problem to be solved in the industry.
  • the embodiments of the present invention provide a multi-link configuration method, a base station, and a user equipment, which are configured to solve the problem that the UE frequently switches in the UDN network by configuring multiple links for the user equipment.
  • the embodiment of the present invention provides a multi-link configuration method, which is described from the perspective of a base station.
  • the base station receives the uplink information generated and sent by the UE, and configures the first set and the UE according to the uplink information.
  • a second set when configuring the first set or the second set, each transmission point included in the first set or the second set establishes a multi-link with the UE; when configuring the first set and the second set, the first The collection contains at least two transmission points, and the second collection is a subset of the first collection.
  • the transmission point included in the first set is an alternate transmission point
  • the transmission point included in the second set establishes a multi-link with the user, which is a transmission point for actually transmitting data between the UE, and when the transmission is included in the second set.
  • the good quality transmission point is selected from the first set and added to the second set, thereby reducing the number of link interruptions and service interruptions, thereby solving the UE in the UDN network. The problem of frequent switching in the network.
  • the transmission point in the first set is a transmission point whose measured signal strength is greater than or equal to a first threshold
  • the transmission point in the second set is the measured signal strength.
  • each transmission point included in the second set may be activated or deactivated from the first set.
  • the uplink information is a downlink measurement result that is greater than the first threshold or the second threshold, and the at least one downlink measurement result is the UE pair.
  • the downlink signal of at least one transmission point is measured.
  • the at least one downlink measurement result is obtained by performing RRM measurement on a downlink signal of the at least one transmission point by the UE.
  • the uplink information is at least one transmission point identifier
  • the at least one transmission point identifier is that the UE measures the downlink signal of the at least one transmission point to obtain at least one downlink measurement result, which is greater than The transmission point identifier corresponding to the downlink measurement result of the first threshold or the second threshold.
  • the uplink information is obtained by the UE performing an ascending or descending order of transmission point identifiers that are greater than the second preset threshold.
  • the uplink information is specifically an uplink signal sent by the UE, and the uplink signal is at least one of the following signals: an uplink sounding signal, an uplink sounding reference signal, an uplink sequence code, or Preamble.
  • the method before the receiving, by the base station, the uplink information sent by the user equipment UE, the method further includes:
  • the base station notifies the uplink transmission subframe or the uplink transmission subframe set of the uplink signal by using radio resource control RRC signaling.
  • the method before the base station notifies the uplink transmission subframe or the uplink transmission subframe set of the uplink signal by using RRC signaling, the method further includes:
  • the base station coordinates or pre-configures the uplink transmission subframe or the uplink transmission subframe set through an inter-base station interface.
  • the transmission point included in the first set forms a first cell, where the first cell is a first cluster, a first virtual cell, or a first super cell.
  • the primary transmission point included in the first cell is fixed or variable.
  • the first cell has a corresponding cell identifier, and when the first cell is the first cluster, the first virtual cell, or the first super cell, respectively,
  • the cell identifiers corresponding to the first cell are respectively a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the second set includes a transmission point to form a second cell, where the second cell is a second cluster, a second virtual cell, or a second super cell.
  • the primary transmission point included in the second cell changes with the movement of the UE.
  • the second cell has a corresponding cell identifier, and when the second cell is the second cluster, the second virtual cell, or the second super cell, respectively,
  • the cell identifiers corresponding to the second cell are respectively a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the second set is a multi-RRC link mode, and at least two transmission points in the second set establish an RRC link with the UE; or, the second set is a single In the RRC link mode, one of the second set of points establishes an RRC link with the UE; or the second set is a semi-static mode, and the transmission point in the second set is in a semi-static manner
  • the first set changes.
  • the method before the receiving, by the base station, the uplink information sent by the user equipment UE, the method further includes:
  • the base station sends the first threshold or the second threshold to the UE by using configuration signaling.
  • the receiving, by the base station, the uplink information sent by the user equipment includes:
  • the base station receives uplink information of a transmission point that is sent by the user equipment UE that meets the first threshold or the second threshold.
  • the method further includes:
  • the base station sends the second set of activation or deactivation information to the UE by using medium access control MAC signaling.
  • the base station sends the multi-link configuration information to the UE by using RRC signaling to notify the UE to perform multi-link cooperation.
  • the multi-link cooperation includes at least one of the following: power cooperation, random access cooperation, and power headroom cooperation.
  • the base station when the inactive link is activated, the base station triggers the activated link to perform uplink by using medium access control MAC signaling on the activated link.
  • Transmission the uplink transmission includes at least one of the following transmissions: random access transmission, scheduling demand transmission, sounding reference signal transmission, and buffer status report transmission.
  • the base station is specifically a macro base station marco eNB or a master node master node
  • the transmission point is a small cell base station.
  • the embodiment of the present invention provides a multi-link configuration method, which is described from the perspective of a user equipment.
  • the UE generates uplink information and sends it to the base station, and the base station configures the first set for the UE according to the uplink information.
  • the second set when the first set or the second set is configured, each transmission point included in the first set or the second set establishes a multi-link with the UE; when configuring the first set and the second set, A set contains at least two transmission points, and a second set is a subset of the first set.
  • the transmission point included in the first set is an alternate transmission point
  • the transmission point included in the second set establishes a multi-link with the user, which is a transmission point for actually transmitting data between the UE, and when the transmission is included in the second set.
  • the good quality transmission point is selected from the first set and added to the second set, thereby reducing the number of link interruptions and service interruptions, thereby solving the problem that the UE frequently switches in the UDN network.
  • the transmission point in the first set is a transmission point whose measured signal strength is greater than or equal to a first threshold
  • the transmission point in the second set is the measured signal strength.
  • each transmission point included in the second set may be activated or deactivated from the first set.
  • the uplink information includes a downlink measurement result that is greater than the first threshold or the second threshold;
  • the user equipment UE generates uplink information, including:
  • the UE measures the downlink signal of the at least one transmission point to obtain at least one downlink measurement result
  • the UE measures the downlink signal of the at least one transmission point to obtain at least one downlink measurement result, including:
  • the UE performs RRM measurement on the downlink reference information of the at least one transmission point to obtain at least one downlink measurement result.
  • the uplink information includes a transmission point identifier corresponding to a downlink measurement result that is greater than the first threshold or the second threshold.
  • the user equipment UE generates uplink information, including:
  • the UE measures the downlink signal of the at least one transmission point to obtain at least one downlink measurement result
  • the UE determines, from the at least one downlink measurement result, a transmission point identifier corresponding to a downlink measurement result that is greater than the first threshold or the second threshold.
  • the uplink information is obtained by the UE performing an ascending or descending order of the transmission point identifier corresponding to the downlink measurement result that is greater than the first threshold or the second threshold.
  • the uplink information is specifically an uplink signal sent by the UE, and the uplink signal is at least one of the following signals: an uplink sounding signal, an uplink sounding reference signal, an uplink sequence code, or Preamble.
  • the method before the sending, by the UE, the uplink information to the base station, the method further includes:
  • the uplink signal that is notified by the base station by using radio resource control RRC signaling Uplink transmission subframe or uplink transmission subframe set.
  • the uplink transmission subframe or the uplink transmission subframe set is coordinated or pre-configured by the base station by using an inter-base station interface.
  • the coverage of the transmission point included in the first set forms a first cell, where the first cell is a first cluster, a first virtual cell, or a first super cell.
  • the primary transmission point included in the first cell is fixed or variable.
  • the first cell has a corresponding cell identifier, and when the first cell is the first cluster, the first virtual cell, or the first super cell, respectively,
  • the cell identifiers corresponding to the first cell are respectively a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the coverage of the transmission point included in the second set forms a second cell, where the second cell is a second cluster, a second virtual cell, or a second super cell.
  • the primary transmission point included in the second cell changes with the movement of the UE.
  • the second cell has a corresponding cell identifier, and when the second cell is the second cluster, the second virtual cell, or the second super cell, respectively,
  • the cell identifiers corresponding to the second cell are respectively a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the second set is a multi-RRC link mode, and at least two transmission points in the second set establish an RRC link with the UE.
  • the second set is a single RRC link mode, and one of the second set establishes an RRC link with the UE;
  • the second set is a semi-static mode, and the transmission points in the second set are changed in the first set in a semi-static manner.
  • the method before the user equipment UE sends the uplink information to the base station, the method further includes:
  • the UE receives the first threshold or the second threshold that is sent by the base station by using configuration signaling.
  • the sending, by the user equipment, the uplink information to the base station includes:
  • the method further includes:
  • the UE receives activation or deactivation information of the second set sent by the base station to the UE by using medium access control MAC signaling.
  • the UE receives configuration information of multiple links sent by the base station by using RRC signaling to perform multi-link cooperation.
  • the multi-link cooperation includes at least one of the following: power cooperation, random access cooperation, and power headroom cooperation.
  • an embodiment of the present invention provides a base station, including:
  • a transceiver module configured to receive uplink information sent by the user equipment UE;
  • a processing module configured to configure, according to the uplink information, a first set and/or a second set for the UE; when configuring the first set or the second set, each transmission point included in the first set or the second set Establishing a multi-link with the UE; when configuring the first set and the second set, the first set includes at least two transmission points, and the second set is a subset of the first set.
  • the transmission point in the first set is a transmission point whose measured signal strength is greater than or equal to a first threshold
  • the transmission point in the second set is the measured signal strength.
  • each transmission point included in the second set may be activated or deactivated from the first set.
  • the processing module is further configured to: when the transmission point included in the second set does not meet the second threshold, A transmission point that satisfies the second threshold is added to the second set.
  • the uplink information is a downlink measurement result that is greater than the first threshold or the second threshold, and the at least one downlink measurement, in the at least one downlink measurement result.
  • the result is obtained by the UE measuring the downlink signal of the at least one transmission point.
  • the at least one downlink measurement result is obtained by performing RRM measurement on a downlink signal of the at least one transmission point by the UE.
  • the uplink information is at least one transmission point identifier
  • the at least one transmission point identifier is that the UE measures the downlink signal of the at least one transmission point to obtain at least one downlink measurement result, which is greater than The transmission point identifier corresponding to the downlink measurement result of the first threshold or the second threshold.
  • the uplink information is obtained by the UE performing an ascending or descending order of transmission point identifiers that are greater than the second preset threshold.
  • the uplink information is specifically an uplink signal sent by the UE, and the uplink signal is at least one of the following signals: an uplink sounding signal, an uplink sounding reference signal, an uplink sequence code, or Preamble.
  • the transceiver module before receiving the uplink information sent by the user equipment UE, is further configured to notify the uplink transmission subframe or the uplink transmission subframe of the uplink signal by using radio resource control RRC signaling. set.
  • the transceiver module is further configured to coordinate or pre-configure the inter-base station interface before notifying the uplink transmission subframe or the uplink transmission subframe set of the uplink signal by using RRC signaling.
  • RRC signaling An uplink transmission subframe or the uplink transmission subframe set.
  • the transmission point included in the first set forms a first cell, where the first cell is a first cluster, a first virtual cell, or a first super cell.
  • the primary transmission point included in the first cell is fixed or variable.
  • the first cell has a corresponding cell identifier, and when the first cell is the first cluster, the first virtual cell, or the first super cell, respectively,
  • the cell identifiers corresponding to the first cell are respectively a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the second set includes a transmission point to form a second cell, where the second cell is a second cluster, a second virtual cell, or a second super cell.
  • the primary transmission point included in the second cell changes with the movement of the UE.
  • the second cell has a corresponding cell identifier, and when the second cell is the second cluster, the second virtual cell, or the second super cell, respectively,
  • the cell identifiers corresponding to the second cell are respectively a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the second set is a multi-RRC link mode, and at least two transmission points in the second set establish an RRC link with the UE; or, the second set is a single In the RRC link mode, one of the second set of points establishes an RRC link with the UE; or the second set is a semi-static mode, and the transmission point in the second set is in a semi-static manner
  • the first set changes.
  • the transceiver module is further configured to send the first threshold or the second threshold to the UE by using configuration signaling before receiving the uplink information sent by the user equipment UE.
  • the transceiver module is configured to receive uplink information that is sent by the user equipment UE and that meets the first threshold or the second threshold.
  • the transceiver module is further configured to control RRC signaling by using a radio resource after the processing module configures the first set and/or the second set for the UE according to the uplink information. Transmitting, to the UE, information of the first set and/or the second set; and/or transmitting, by the medium access control MAC signaling, the second set of activation or deactivation information to the UE.
  • the transceiver module is further configured to send, by using RRC signaling, configuration information of the multi-link to the UE, to notify the UE to perform multi-link cooperation.
  • the multi-link cooperation includes at least one of the following: power cooperation, random access cooperation, and power headroom cooperation.
  • the processing module is further configured to: when the inactive link is activated in the multiple link, triggering by using a media access control MAC signaling on the activated link
  • the activated link performs uplink transmission, and the uplink transmission includes at least one of the following: a random access transmission, a scheduling demand transmission, a sounding reference signal transmission, and a buffer status report transmission.
  • the base station is specifically a macro base station marco eNB or a master node master node
  • the transmission point is a small cell base station.
  • an embodiment of the present invention provides a user equipment UE, including:
  • a processing module configured to generate uplink information
  • the transceiver module is configured to send the uplink information to the base station, so that the base station configures the first set and/or the second set for the UE according to the uplink information, when configuring the first set or the second set, Establishing a multi-link between each transmission point included in the first set or the second set and the UE;
  • the first set includes at least two transmission points, and the second set is a subset of the first set.
  • the transmission point in the first set is a transmission point whose measured signal strength is greater than or equal to a first threshold
  • the transmission point in the second set is the measured signal strength.
  • each transmission point included in the second set may be activated or deactivated from the first set.
  • the uplink information includes a downlink measurement result that is greater than the first threshold or the second threshold;
  • the processing module is configured to measure a downlink signal of the at least one transmission point to obtain at least one downlink measurement result, and determine, from the at least one downlink measurement result, that the value is greater than the first threshold or the second threshold Downstream measurement results.
  • the processing module is configured to perform RRM measurement on downlink reference information of the at least one transmission point to obtain at least one downlink measurement result.
  • the uplink information includes a transmission point identifier corresponding to a downlink measurement result that is greater than the first threshold or the second threshold.
  • the processing module is configured to: measure, by using the downlink signal of the at least one transmission point, at least one downlink measurement result; and determine, from the at least one downlink measurement result, that the value is greater than the first threshold or the second threshold The transmission point identifier corresponding to the downlink measurement result.
  • the processing module is further configured to perform an ascending or descending order on the transmission point identifier corresponding to the downlink measurement result that is greater than the first threshold or the second threshold to obtain the uplink. information.
  • the uplink information is specifically an uplink signal sent by the UE, and the uplink signal is at least one of the following signals: an uplink sounding signal, an uplink sounding reference signal, an uplink sequence code, or Preamble.
  • the transceiver module sends the uplink information to a base station. Previously, it is further configured to receive an uplink transmission subframe or an uplink transmission subframe set of the uplink signal that is notified by the base station by using a radio resource control RRC signaling.
  • the uplink transmission subframe or the uplink transmission subframe set is coordinated or pre-configured by the base station by using an inter-base station interface.
  • the coverage of the transmission point included in the first set forms a first cell, where the first cell is a first cluster, a first virtual cell, or a first super cell.
  • the primary transmission point included in the first cell is fixed or variable.
  • the first cell has a corresponding cell identifier, and when the first cell is the first cluster, the first virtual cell, or the first super cell, respectively,
  • the cell identifiers corresponding to the first cell are respectively a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the coverage of the transmission point included in the second set forms a second cell, where the second cell is a second cluster, a second virtual cell, or a second super cell.
  • the primary transmission point included in the second cell changes with the movement of the UE.
  • the second cell has a corresponding cell identifier, and when the second cell is the second cluster, the second virtual cell, or the second super cell, respectively,
  • the cell identifiers corresponding to the second cell are respectively a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the second set is a multi-RRC link mode, and at least two transmission points in the second set establish an RRC link with the UE; or, the second set is a single In the RRC link mode, one of the second set of points establishes an RRC link with the UE; or the second set is a semi-static mode, and the transmission point in the second set is in a semi-static manner
  • the first set changes.
  • the transceiver module is further configured to receive the first threshold or the second threshold that is sent by the base station by using configuration signaling before sending the uplink information to the base station.
  • the transceiver module is specifically configured to send, to the base station, uplink information that meets the first threshold or the second threshold.
  • the transceiver module is further configured to: after receiving the uplink information to a base station, receive the first set and/or the sending, by the base station, by using radio resource control RRC signaling Information of the second set; and/or receiving the base station to control the MAC through media access Signaling activation or deactivation information for the second set sent to the UE.
  • the transceiver module is further configured to receive configuration information of multiple links sent by the base station by using RRC signaling to perform multi-link cooperation.
  • the multi-link cooperation includes at least one of the following: power cooperation, random access cooperation, and power headroom cooperation.
  • an embodiment of the present invention provides a base station, including: a processor, a memory, a communication interface, and a system bus, where the memory and the communication interface are connected to the processor through the system bus and complete each other. Communication, the memory for storing computer execution instructions, the communication interface for communicating with other devices, the processor for operating the computer to execute instructions for causing the base station to perform various steps of a method as applied to a base station as above .
  • an embodiment of the present invention provides a user equipment, including: a processor, a memory, a communication interface, and a system bus, where the memory and the communication interface are connected to the processor through the system bus and complete each other.
  • Communication for storing computer execution instructions for communicating with other devices, the processor for running the computer to execute instructions, causing the user equipment to perform the method as applied to the user equipment as above.
  • an embodiment of the present invention provides a base station, where the base station has a function of implementing behavior of a first base station in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the structure of the base station includes a processor and a transmitter configured to support the first base station to perform a corresponding function in the above method.
  • the transmitter is configured to support communication between the base station and the terminal, and send information or instructions involved in the foregoing method to the terminal.
  • the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a user equipment, where the user equipment has a function of implementing user equipment behavior in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the module can be software and/or hardware
  • the structure of the user equipment includes a receiver and a processor, where The processor is configured to support the user equipment to perform the corresponding functions in the above methods.
  • the transmitter is configured to support communication between the user equipment and the base station, and receive information or instructions involved in the foregoing method sent by the base station.
  • the user equipment may also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a communication system, where the system includes the base station and user equipment in the foregoing aspect.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the base station, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use by the user equipment, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a chip system, including: at least one processor, a memory, an input/output portion, and a bus; and the at least one processor acquires an instruction in the memory through the bus to use The implementation function of the base station involved in implementing the above method is implemented.
  • an embodiment of the present invention provides a chip system, including: at least one processor, a memory, an input/output portion, and a bus; and the at least one processor acquires an instruction in the memory through the bus to use The design function of the user equipment involved in implementing the above method is implemented.
  • the embodiment of the present invention provides a multi-link configuration method, a base station, and a user equipment.
  • the UE generates uplink information and sends the uplink information to the base station.
  • the base station configures the first set and/or the second set according to the uplink information, and configures the first set or the second.
  • the first set or the second set includes a plurality of links between the transmission points and the UE; when configuring the first set and the second set, the first set includes at least two transmission points, and the second set is the first A subset of the collection.
  • the transmission point included in the first set is an alternate transmission point
  • the transmission point included in the second set establishes a multi-link with the user, which is a transmission point for actually transmitting data between the UE, and when the transmission is included in the second set.
  • the good quality transmission point is selected from the first set and added to the second set, thereby reducing the number of link interruptions and service interruptions, thereby solving the problem that the UE frequently switches in the UDN network.
  • FIG. 1 is a schematic structural diagram of a UDN to which the multi-link configuration method of the present invention is applied;
  • Embodiment 1 of a multi-link configuration method according to the present invention
  • FIG. 3 is a multi-RRC link mode for deploying a macro base station in Embodiment 2 of the multi-link configuration method of the present invention; Schematic diagram of a single RRC link mode;
  • FIG. 4 is a schematic diagram of a multi-RRC link mode and a single RRC link mode in which a macro base station is not deployed in Embodiment 3 of the multi-link configuration method according to the present invention
  • FIG. 5 is a schematic diagram of semi-static switching of a transmission point included in a second set in Embodiment 4 of the multi-link configuration method of the present invention.
  • FIG. 6 is a schematic structural diagram of Embodiment 5 of a multi-link configuration method according to the present invention.
  • Embodiment 7 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • Embodiment 9 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • the deployed small cell base stations are particularly large, the coverage of the small cell base station is small, and even if the user equipment (User Equipment, UE) moves at a medium and low speed, frequent handovers are caused. Therefore, when deploying a UDN, how to solve the problem that the UE frequently switches in the UDN network is an urgent problem to be solved in the industry.
  • User Equipment User Equipment
  • the embodiments of the present invention provide a multi-link configuration method, a base station, and a user equipment, which are configured to solve the problem that the UE frequently switches in the UDN network by configuring multiple links for the user equipment.
  • GSM Global System for Mobile communications
  • Code Division Multiple Access Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • FDMA Frequency Division Multiple Addressing
  • OFDMA orthogonal frequency Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the user equipment involved in the present application may be a wireless terminal, which may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connection function, or even Receive other processing devices from the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal. Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the small cell base station that is, the transmission point, referred to in the present application may refer to a device in the access network that communicates with the wireless terminal through one or more sectors on the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the invention is not limited to low frequency systems and may be high frequency millimeter wave systems, so the correlation measurements and all associated configurations may be beamforming, i.e., based on beam beam.
  • FIG. 1 is a schematic structural diagram of a UDN to which the multi-link configuration method of the present invention is applied.
  • the architecture includes a macro base station and five transmission points, that is, small cell base stations 1 to 5, wherein the small cell base stations 1, 2, 3, and 5 are adjacent to three small cell base stations in the UDN, and are small.
  • the cell base station 4 is a small cell base station that is not adjacent to the small cell base stations 1, 2, 3, and 5.
  • the first set configured for the UE includes transmission points that are small cell base stations 1, 2, 3, and 5. Since the second set is a subset of the first set, the second set may include transmission points of 1, 3, Alternatively, the second set may include transmission points of 2, 3, and the like.
  • multiple transmission points around the UE form a virtual cell to provide services for users.
  • the resource composition and setting of the virtual cell can be used according to Dynamic configuration and change of the user's mobile, business requirements, etc., can also coordinate the sleep and signaling of the transit node.
  • one transmission node is selected as the primary transmission node.
  • FIG. 2 the multi-link configuration method of the present invention will be described in detail based on FIG. 1, and specifically, FIG. 2 can be referred to.
  • FIG. 2 is a signaling diagram of Embodiment 1 of a multi-link configuration method according to the present invention.
  • the base station user equipment interacts, and is applicable to a scenario that requires multiple link configurations.
  • the embodiment includes the following steps:
  • the user equipment UE generates uplink information.
  • the UE In this step, the UE generates uplink information according to the downlink signal or the uplink signal.
  • the UE can generate uplink information by:
  • the uplink information is specifically a downlink measurement result that is greater than the first threshold or the second threshold.
  • the UE measures the downlink signal of the at least one transmission point, for example, performs RRM measurement to obtain at least one downlink measurement.
  • the downlink measurement result that is greater than the first threshold or the second threshold is determined, and a downlink measurement that is greater than the first threshold or the second threshold is determined The result is used as the uplink information.
  • the line information is specifically a transmission point identifier corresponding to the downlink measurement result that is greater than the first threshold or the second threshold.
  • the UE measures the downlink signal of the at least one transmission point to obtain at least one downlink measurement result, and determines, from the at least one downlink measurement result, the downlink measurement result that is greater than the first threshold or the second threshold.
  • the transmission point identifier For example, the UE performs an ascending or descending order on the transmission point identifier corresponding to the downlink measurement result that is greater than the first threshold or the second threshold, thereby obtaining uplink information.
  • the third method is that the uplink information is specifically an uplink signal sent by the UE, and the uplink signal is at least one of the following: an uplink sounding signal, an uplink sounding reference signal, an uplink sequence code, or a preamble.
  • the uplink information is at least one uplink signal, such as an uplink sounding signal, an uplink sequence code, or a preamble, sent by the UE.
  • the user equipment UE sends the uplink information to a base station.
  • the UE sends the uplink information in 101 to the base station.
  • the UE first receives the uplink transmission subframe or the uplink transmission subframe set of the uplink signal that is notified by the base station by using the radio resource control RRC signaling, and then, in the uplink transmission subframe or The uplink information is sent to the base station in the subframe included in the uplink transmission subframe set.
  • the uplink transmission subframe or the uplink transmission subframe set is coordinated or pre-configured by the base station through an inter-base station interface.
  • the base station configures a first set and/or a second set for the UE according to the uplink information.
  • each transmission point included in the first set or the second set establishes a multi-link with the UE; when configuring the first set and the second set, The first set includes at least two transmission points, and the second set is a subset of the first set.
  • the base station is, for example, a macro base station or a marco eNB or a master node (not shown).
  • the transmission point in the first set is a transmission point whose measured signal strength is greater than or equal to a first threshold
  • the transmission point in the second set is a measured signal strength greater than or equal to the first a transmission point of the second threshold, the second threshold being higher than the first threshold.
  • Each transmission point included in the second set can be activated or deactivated from the first set.
  • the measured signal strength is a radio resource management RRM measurement, and may include a reference signal receiving power (RSRP), a reference signal receiving quality (RSRQ), and a received signal strength indicating RSSI (Received Signal Strength). Indication) or at least one of any beam-based measurement parameters.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • RSSI Receiveived Signal Strength
  • the UE In the multi-connection configuration method provided by the embodiment of the present invention, the UE generates uplink information and sends the uplink information to the base station, where the base station configures the first set and/or the second set according to the uplink information, and when configuring the first set or the second set, the first Each of the transmission points included in the set or the second set establishes a multi-link with the UE; when configuring the first set and the second set, the first set includes at least two transmission points, and the second set is a subset of the first set.
  • the transmission point included in the first set is an alternate transmission point
  • the transmission point included in the second set establishes a multi-link with the user, which is a transmission point for actually transmitting data between the UE, and when the transmission is included in the second set.
  • the good quality transmission point is selected from the first set and added to the second set, thereby reducing the number of link interruptions and service interruptions, thereby solving the problem that the UE frequently switches in the UDN network.
  • the transmission point included in the first set forms a first cell, and the first small
  • the primary transmission point contained in the zone is fixed or variable.
  • the first cell is a first cluster, a first virtual cell, or a first super cell.
  • the first cluster has a corresponding cluster identifier
  • the first virtual cell has a corresponding virtual cell identifier
  • the first super cell has a corresponding super cell identifier.
  • the transmission point included in the second set forms a second cell
  • the primary transmission point included in the second cell changes according to the movement of the UE.
  • the second cell is a second cluster, a second virtual cell, or a second super cell.
  • the second cluster has a corresponding cluster identifier
  • the second virtual cell has a corresponding virtual cell identifier
  • the second super cell has a corresponding super cell identifier.
  • the second set is a multiple RRC link mode, and at least two transmission points in the second set establish an RRC link with the UE.
  • the second set is a single RRC link mode, and one of the second set establishes an RRC link with the UE; or the second set is a semi-static mode, where the second set is The transmission points are changed in the first set in a semi-static manner.
  • FIG. 3 is a schematic diagram of a multi-RRC link mode and a single RRC link mode in which a macro base station is deployed in Embodiment 2 of the multi-link configuration method of the present invention.
  • the second set includes a small cell base station D, a small cell base station E, and a small cell base station F. If the UE works in the multi-RRC link mode, the UE The RRC link to the macro base station and the transmission point small cell D may be reserved, as indicated by the solid arrow in the multi-RRC link mode (the dotted arrow indicates that the RRC link is not established); it is assumed that the second set includes a transmission point that is small.
  • the cell base station A, the small cell base station B, and the small cell base station C if operating in the single RRC link mode, the UE only reserves the RRC link to the macro base station, as shown in the single RRC link mode, the UE reserves with the macro base station.
  • the RRC link, and the RRC connection of the UE described by the dotted line with the small cell base station A, the small cell base station B, and the small cell base station C is not reserved.
  • FIG. 4 is a schematic diagram of a multi-RRC link mode and a single RRC link mode in which a macro base station is not deployed in Embodiment 3 of the multi-link configuration method of the present invention.
  • the second set includes transmission points of a small cell base station D, a small cell base station E, and a small cell base station F.
  • the UE may reserve.
  • the RRC link to the transmission point small cell D and F, as indicated by the solid arrow in the multi-RRC link mode in the figure, that is, the RRC link of all the transmission points in the second transmission point activation with the UE may be reserved.
  • the RRC link may also be included in the second transmission point set, and if the RRC link is in the single RRC link mode, the second set includes the transmission point: the small cell base station A, the small cell base station B, and the small cell.
  • Base station C UE Only the RRC link to the transmission point small cell A is reserved, that is, only one transmission point in the second set is reserved for the RRC link with the UE.
  • the semi-static conversion may be performed between the transmission points satisfying the transmission requirements, in which the transmission is satisfied, in the above-mentioned multiple RRC link mode or single RRC link mode.
  • the requirement is that the measured signal strength is greater than or equal to a predetermined threshold. Specifically, please refer to FIG. 5.
  • FIG. 5 is a schematic diagram of a semi-static handover of a transmission point included in a second set in Embodiment 4 of the multi-link configuration method of the present invention.
  • the transmission point included in the second set may be the small cell base station A and the small cell base station B, and the second period, the second period
  • the transmission point included in the set may be changed to the small cell base station B and the small cell base station C.
  • the transmission point included in the second set may be changed to the small cell base station C and the small cell base station A.
  • at least one transmission point is required in any semi-statically converted transmission point to maintain a link with the UE.
  • the base station sends the first threshold to the UE in the configuration signaling, so that the UE sends the uplink information of the transmission point that meets the first threshold to the base station, so as to prevent the UE from performing uplink information on all the transmission points.
  • the base station after the base station configures the first set and/or the second set for the UE according to the uplink information, the base station sends the configuration information of the first and/or the second set to the UE or the transmission point.
  • the base station sends the first set and the second set of information to the UE by using the radio resource control RRC signaling; for example, the base station sends the second set of activation or deactivation information to the UE by using the medium access control MAC signaling.
  • the base station after configuring the first set and the second set for the user, the base station sends the multi-link configuration information to the UE by using RRC signaling to notify the UE to perform multi-link cooperation.
  • the multi-link cooperation includes at least one of the following cooperation: power cooperation, random access cooperation, and power headroom cooperation.
  • the base station when the inactive link is activated, the base station triggers the activated link to perform uplink transmission by using the medium access control MAC signaling on the activated link.
  • the uplink transmission includes at least one of the following: a random access transmission, a scheduling demand transmission, a sounding reference signal transmission, and a buffer status report transmission.
  • the base station is specifically a macro base station marco eNB or a master node master.
  • the transmission point is a small cell base station.
  • FIG. 6 is a schematic structural diagram of Embodiment 5 of a multi-link configuration method according to the present invention.
  • the area covered by the macro base station includes a small cell base station A and a small cell base station B, and the small cell base station A and the small cell base station B form a virtual cell, where the small cell base station A is in the virtual cell.
  • the primary node or the primary cell, and the small cell base station B is a secondary node or a secondary cell in the virtual cell.
  • the UE is first connected to the small cell base station A. As the UE gradually approaches the small cell base station B, as an embodiment, the UE may report the information to the macro base station.
  • the macro base station performs some coordination on the X2 interface with the small cell base station A and the small cell base station B, determines that the UE can be configured in the "MC" mode, and notifies the UE of the "MC" mode by signaling, at this time, the UE will A link is established with the small cell base station A and the small cell base station B.
  • Part of the system information of the small cell base station in the virtual cell can be sent by the small cell base station A, for example, the virtual cell ID and the system bandwidth.
  • the remaining system information and the UE-specific configuration may be delivered by the secondary cell, such as the small cell base station B.
  • the macro base station may further send the multi-link configuration information to the small cell base station A, the small cell base station B, and the UE by using RRC signaling. Thereafter, the UE performs multi-link cooperation, such as power cooperation, random access cooperation, and power headroom cooperation.
  • multi-link cooperation such as power cooperation, random access cooperation, and power headroom cooperation.
  • the UE may report the information to the small cell base station A. Then, the small cell base station A performs some coordination on the X2 interface with the small cell base station B, determines that the UE can be configured in the "MC" mode, and notifies the UE of the "MC" mode by signaling, at this time, the UE will The small cell base station A establishes a link with the small cell base station B. Part of the system information of the small cell base station in the virtual cell can be sent by the small cell base station A, for example, the virtual cell ID and the system bandwidth. The remaining system information and the UE-specific configuration may be delivered by the secondary cell, such as the small cell base station B. The small cell base station A can further transmit the multi-link configuration information to the small cell base station B and the UE through RRC signaling. Thereafter, the UE performs multi-link cooperation, such as power cooperation, random access cooperation, and power headroom cooperation.
  • multi-link cooperation such as power cooperation, random access cooperation, and power headroom cooperation.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention.
  • the base station provided in this embodiment can implement various steps of the method applied to the base station provided by any embodiment of the present invention.
  • the base station provided in this embodiment includes:
  • the transceiver module 11 is configured to receive uplink information sent by the user equipment UE.
  • the processing module 12 is configured to configure, according to the uplink information, a first set and/or a second set for the UE; when configuring the first set or the second set, each transmission included in the first set or the second set Establishing a multi-link between the point and the UE; when configuring the first set and the second set, the first The set includes at least two transmission points, and the second set is a subset of the first set.
  • the base station receives the uplink information generated and sent by the UE, and configures the first set and/or the second set for the UE according to the uplink information.
  • the first set or the second set When the first set or the second set is configured, the first set or the first set Each of the transmission points included in the two sets establishes a multi-link with the UE; when configuring the first set and the second set, the first set includes at least two transmission points, and the second set is a subset of the first set.
  • the transmission point included in the first set is an alternate transmission point
  • the transmission point included in the second set establishes a multi-link with the user, which is a transmission point for actually transmitting data between the UE, and when the transmission is included in the second set.
  • the good quality transmission point is selected from the first set and added to the second set, thereby reducing the number of link interruptions and service interruptions, thereby solving the problem that the UE frequently switches in the UDN network.
  • the transmission point in the first set is a transmission point whose measured signal strength is greater than or equal to a first threshold, and the transmission point in the second set is measured.
  • the signal strength is greater than or greater than a transmission point of the second threshold, the second threshold being higher than the first threshold.
  • each transmission point included in the second set may be activated or deactivated from the first set.
  • the processing module 12 is further configured to: when the transmission point included in the second set does not meet the second threshold, A transmission point that satisfies the second threshold outside the second set is added to the second set.
  • the uplink information is a downlink measurement result that is greater than the first threshold or the second threshold in at least one downlink measurement result, where the at least one downlink measurement result is The UE measures the downlink signal of at least one transmission point.
  • the at least one downlink measurement result is obtained by performing RRM measurement on a downlink signal of the at least one transmission point by the UE.
  • the uplink information is at least one transmission point identifier
  • the at least one transmission point identifier is that the UE measures downlink signals of the at least one transmission point to obtain at least one downlink measurement result.
  • the transmission point identifier corresponding to the downlink measurement result that is greater than the first threshold or the second threshold.
  • the uplink information is obtained by the UE performing an ascending or descending order on a transmission point identifier that is greater than the second preset threshold.
  • the uplink information is specifically an uplink signal sent by the UE, and the uplink signal is at least one of the following signals: an uplink sounding signal, an uplink sounding reference signal, and an uplink. Sequence code or preamble.
  • the transceiver module 11 before receiving the uplink information sent by the user equipment UE, is further configured to notify, by using radio resource control RRC signaling, an uplink transmission subframe of the uplink signal or Uplink transmission subframe set.
  • the transceiver module 11 is further configured to coordinate through an inter-base station interface before notifying an uplink transmission subframe or an uplink transmission subframe set of the uplink signal by using RRC signaling. Pre-configuring the uplink transmission subframe or the uplink transmission subframe set.
  • the transmission point included in the first set forms a first cell, where the first cell is a first cluster, a first virtual cell, or a first super cell.
  • the primary transmission point included in the first cell is fixed or variable.
  • the first cell has a corresponding cell identifier, where the first cell is the first cluster, the first virtual cell, or the first super cell
  • the cell identifiers corresponding to the first cell are respectively a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the transmission point included in the second set forms a second cell, where the second cell is a second cluster, a second virtual cell, or a second super cell.
  • the primary transmission point included in the second cell changes with the movement of the UE.
  • the second cell has a corresponding cell identifier, where the second cell is the second cluster, the second virtual cell, or the second super cell
  • the cell identifier corresponding to the second cell is a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the second set is a multi-RRC link mode, and at least two transmission points in the second set establish an RRC link with the UE; or, the second Collecting into a single RRC link mode, one of the second set establishes an RRC link with the UE; or the second set is a semi-static mode, and the transmission point in the second set is semi-static The way to change in the first set.
  • the transceiver module 11 is configured to send the first threshold or the first to the UE by using configuration signaling before receiving the uplink information sent by the user equipment UE. Two thresholds.
  • the transceiver module 11 is configured to receive uplink information that is sent by the user equipment UE and that meets the first threshold or the second threshold.
  • the transceiver module 11 is further configured to use wireless after the processing module 12 configures the first set and/or the second set for the UE according to the uplink information.
  • the resource control RRC signaling sends the information of the first set and/or the second set to the UE; and/or sends the activation of the second set to the UE by using medium access control MAC signaling Or deactivate the information.
  • the transceiver module 11 is further configured to send, by using RRC signaling, configuration information of the multi-link to the UE, to notify the UE to perform multi-link cooperation.
  • the multi-link cooperation includes at least one of the following: power cooperation, random access cooperation, and power headroom cooperation.
  • the processing module 12 is further configured to: when the inactive link is activated in the multilink, control the MAC through the media access on the activated link.
  • the signaling triggers the activated link for uplink transmission, and the uplink transmission includes at least one of the following transmissions: random access transmission, scheduling demand transmission, sounding reference signal transmission, and buffer status report transmission.
  • the base station is specifically a macro base station marco eNB or a master node master node
  • the transmission point is a small cell base station.
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • the user equipment provided in this embodiment can implement various steps of the method applied to the user equipment provided by any embodiment of the present invention.
  • the user equipment provided in this embodiment includes:
  • the processing module 21 is configured to generate uplink information.
  • the transceiver module 22 is configured to send the uplink information to the base station, so that the base station configures the first set and/or the second set for the UE according to the uplink information, when configuring the first set or the second set, Establishing a multi-link between each transmission point included in the first set or the second set and the UE; when configuring the first set and the second set, the first set includes at least two transmission points, where The two sets are a subset of the first set.
  • the UE provided by the embodiment of the present invention generates the uplink information and sends the information to the base station, and the base station configures the first set and/or the second set for the UE according to the uplink information.
  • the first set or the second set When the first set or the second set is configured, the first set or the first set Each of the transmission points included in the two sets establishes a multi-link with the UE; when configuring the first set and the second set, the first set includes at least two transmission points, and the second set is a subset of the first set.
  • the transmission point included in the first set is an alternate transmission point
  • the transmission point included in the second set establishes a multi-link with the user, which is a transmission point for actually transmitting data between the UE, and when the transmission is included in the second set.
  • the good quality transmission point is selected from the first set and added to the second set, thereby reducing the number of link interruptions and service interruptions, thereby solving the problem that the UE frequently switches in the UDN network.
  • the transmission point in the first set is a transmission point whose measured signal strength is greater than or equal to a first threshold, and the transmission point in the second set is measured.
  • the signal strength is greater than or greater than a transmission point of the second threshold, the second threshold being higher than the first threshold.
  • each transmission point included in the second set may be activated or deactivated from the first set.
  • the second set and the second set meet the second A transmission point of the threshold is added to the second set.
  • the uplink information includes a downlink measurement result that is greater than the first threshold or the second threshold;
  • the processing module 21 is configured to measure downlink signals of at least one transmission point to obtain at least one downlink measurement result, and determine, from the at least one downlink measurement result, that the value is greater than the first threshold or the second Downstream measurement of the threshold.
  • the processing module 21 is configured to perform RRM measurement on the downlink reference information of the at least one transmission point to obtain at least one downlink measurement result.
  • the uplink information includes a transmission point identifier corresponding to a downlink measurement result that is greater than the first threshold or the second threshold.
  • the processing module 21 is configured to: measure, by using the downlink signal of the at least one transmission point, at least one downlink measurement result; and determine, from the at least one downlink measurement result, that the value is greater than the first threshold or the second threshold
  • the downlink measurement result corresponds to the transmission point identifier.
  • the processing module 21 is further configured to perform an ascending or descending order on the transmission point identifier corresponding to the downlink measurement result that is greater than the first threshold or the second threshold.
  • the uplink information is obtained.
  • the uplink information is specifically an uplink signal sent by the UE, and the uplink signal is at least one of the following signals: an uplink sounding signal, an uplink sounding reference signal, and an uplink. Sequence code or preamble.
  • the transceiver module 22 is further configured to receive, by the base station, the uplink of the uplink signal that is notified by the radio resource control RRC signaling before sending the uplink information to the base station.
  • the uplink transmission subframe or the uplink transmission subframe set is coordinated or pre-configured by the base station by using an inter-base station interface.
  • the coverage of the transmission point included in the first set forms a first cell, where the first cell is a first cluster, a first virtual cell, or a first super cell.
  • the primary transmission point included in the first cell is fixed or variable.
  • the first cell has a corresponding cell identifier, where the first cell is the first cluster, the first virtual cell, or the first super cell
  • the cell identifiers corresponding to the first cell are respectively a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the coverage of the transmission point included in the second set forms a second cell, where the second cell is a second cluster, a second virtual cell, or a second super cell.
  • the primary transmission point included in the second cell changes with the movement of the UE.
  • the second cell has a corresponding cell identifier, where the second cell is the second cluster, the second virtual cell, or the second super cell
  • the cell identifier corresponding to the second cell is a cluster identifier, a virtual cell identifier, or a super cell identifier.
  • the second set is a multi-RRC link mode, and at least two transmission points in the second set establish an RRC link with the UE;
  • the second set is a single RRC link mode, and one of the second set establishes an RRC link with the UE;
  • the second set is a semi-static mode, and the transmission points in the second set are changed in the first set in a semi-static manner.
  • the transceiver module 22 is further configured to receive the first threshold or the first sent by the base station by using configuration signaling before sending the uplink information to a base station. Two thresholds.
  • the transceiver module 22 is specifically configured to send, to the base station, uplink information that meets the first threshold or the second threshold.
  • the transceiver module 22 after transmitting the uplink information to the base station, is further configured to receive the first set and the base station sends the radio resource control RRC signaling And/or information of the second set; and/or receiving activation or deactivation information of the second set sent by the base station to the UE by using medium access control MAC signaling.
  • the transceiver module 22 is further configured to receive configuration information of the multi-link sent by the base station by using RRC signaling, to perform multi-link cooperation.
  • the multi-link cooperation includes at least one of the following: power cooperation, random access cooperation, and power headroom cooperation.
  • FIG. 9 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • the base station 300 provided in this example includes a processor 31, a memory 32, a communication interface 33, and a system bus 34.
  • the memory 32 and the communication interface 33 are connected to the processor 31 through the system bus 34 and complete each other. Communication, the memory 32 is used to store computer execution instructions, the communication interface 33 is used to communicate with other devices, and the processor 31 is configured to execute the computer to execute instructions to cause the base station 300 to perform the above application.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • the user equipment 400 provided by the present example includes a processor 41, a memory 42, a communication interface 43, and a system bus 44, and the memory 42 and the communication interface 43 are connected to the processor 41 through the system bus 44 and complete each other.
  • the memory 42 is used to store computer execution instructions
  • the communication interface 43 is used to communicate with other devices
  • the processor 41 is configured to execute the computer to execute instructions to cause the user equipment 400 to perform the above The various steps of the method applied to the user device.
  • the system bus mentioned in FIG. 9 and FIG. 10 above may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the system bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used to implement communication between the database access device and other devices such as clients, read-write libraries, and read-only libraries.
  • the memory may include random access memory (RAM), and may also include non-volatile memory, such as at least one disk storage.
  • the above processor may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; or may be a digital signal processing (DSP), dedicated integration.
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种多链接配置方法、基站及用户设备,UE生成上行信息并发送给基站,基站根据上行信息为UE配置第一集合和/或第二集合,当配置第一集合或第二集合时,第一集合或第二集合包含的各传输点与UE之间建立多链接;当配置第一集合和第二集合时,第一集合包含至少两个传输点,第二集合为第一集合的子集。该过程中,第一集合包含的传输点为备选的传输点,第二集合包含的传输点与用户建立多链接,为实际与UE之间传输数据的传输点,当第二集合包含的传输点的信号差或者中断时,从第一集合中选取出质量好的传输点并加入到第二集合,减少链路中断、服务中断的次数,从而解决UE在UDN网络中频繁切换的问题。

Description

多链接配置方法、基站及用户设备 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种多链接配置方法、基站及用户设备。
背景技术
超密集网络(Ultra-DenseNetwork,UDN)是第五代移动通信(the 5th Generation Mobile Communication,5G)的一项重要技术。UDN是指在网络部署时,针对某些数据需求量大、数据连接数多的热点区域(例如体育赛场、火车站候车厅、办公场所等),进行超密集的组网,即在该些热点区域大规模地部署小小区基站,相邻的小小区基站之间可能只距离数十米。
UDN中,小小区基站的覆盖范围小,即使用户设备(User Equipment,UE)以中低速移动,也会引发频繁的切换。切换一方面增加了空口的信令开销,另一方又会引发数据中断。因此,如何解决UE在UDN网络中频繁切换的问题,实为业界亟待解决的问题。
发明内容
本发明实施例提供一种多链接配置方法、基站及用户设备,通过为用户设备配置多链接,以解决UE在UDN网络中频繁切换的问题。
一方面,本发明实施例提供一种多链接配置方法,所述方法是从基站的角度描述,该方法中,基站通过接收UE生成并发送的上行信息,根据上行信息为UE配置第一集合和/或第二集合,当配置第一集合或第二集合时,第一集合或第二集合包含的各传输点与UE之间建立多链接;当配置第一集合和第二集合时,第一集合包含至少两个传输点,第二集合为第一集合的子集。该过程中,第一集合包含的传输点为备选的传输点,第二集合包含的传输点与用户建立多链接,为实际与UE之间传输数据的传输点,当第二集合包含的传输点的信号差或者中断时,从第一集合中选取出质量好的传输点并加入到第二集合,减少链路中断、服务中断的次数,从而解决UE在UDN网 络中频繁切换的问题。
在一种可能的实现方式中,所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。
在一种可能的实现方式中,所述第二集合包含的各传输点可从所述第一集合中激活或去激活。
在一种可能的实现方式中,当所述第二集合包含的传输点不满足所述第二阈值时,将所述第一集合中、所述第二集合外满足所述第二阈值的传输点加入所述第二集合中。
在一种可能的实现方式中,所述上行信息为至少一个下行测量结果中,大于所述第一阈值或所述第二阈值的下行测量结果,所述至少一个下行测量结果为所述UE对至少一个传输点的下行信号进行测量得到的。
在一种可能的实现方式中,所述至少一个下行测量结果为所述UE对至少一个传输点的下行信号进行RRM测量得到的。
在一种可能的实现方式中,所述上行信息为至少一个传输点标识,所述至少一个传输点标识为所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果中,大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。
在一种可能的实现方式中,所述上行信息为所述UE对大于所述第二预设门限值的传输点标识进行升序或降序排列得到的。
在一种可能的实现方式中,所述上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
在一种可能的实现方式中,所述基站接收用户设备UE发送的上行信息之前,还包括:
所述基站通过无线资源控制RRC信令通知所述上行信号的上行传输子帧或上行传输子帧集合。
在一种可能的实现方式中,所述基站通过RRC信令通知所述上行信号的上行传输子帧或上行传输子帧集合之前,还包括:
所述基站通过基站间接口协调或预配置所述上行传输子帧或所述上行传输子帧集合。
在一种可能的实现方式中,所述第一集合包含的传输点形成第一小区,所述第一小区为第一簇、第一虚拟小区或第一超级小区。
在一种可能的实现方式中,所述第一小区包含的主传输点固定或可变。
在一种可能的实现方式中,所述第一小区具有对应的小区标识,当所述第一小区分别为所述第一簇、所述第一虚拟小区或所述第一超级小区时,所述第一小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
在一种可能的实现方式中,所述第二集合包含的传输点形成第二小区,所述第二小区为第二簇、第二虚拟小区或第二超级小区。
在一种可能的实现方式中,所述第二小区包含的主传输点随所述UE的移动发生变化。
在一种可能的实现方式中,所述第二小区具有对应的小区标识,当所述第二小区分别为所述第二簇、所述第二虚拟小区或所述第二超级小区时,所述第二小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
在一种可能的实现方式中,所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接;或者,所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;或者,所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。
在一种可能的实现方式中,所述基站接收用户设备UE发送的上行信息之前,还包括:
所述基站通过配置信令向所述UE发送所述第一阈值或所述第二阈值。
在一种可能的实现方式中,所述基站接收用户设备UE发送的上行信息,包括:
所述基站接收所述用户设备UE发送的满足所述第一阈值或所述第二阈值的传输点的上行信息。
在一种可能的实现方式中,所述基站根据所述上行信息为所述UE配置第一集合和/或第二集合之后,还包括:
所述基站通过无线资源控制RRC信令向所述UE发送所述第一集合和/ 或所述第二集合的信息;
和/或,
所述基站通过媒体接入控制MAC信令向所述UE发送所述第二集合的激活或去激活信息。
在一种可能的实现方式中,所述基站通过RRC信令向所述UE发送多链接的配置信息,以通知所述UE进行多链路协作。
在一种可能的实现方式中,所述多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
在一种可能的实现方式中,所述多链路中,未激活的链路被激活时,所述基站通过已激活链路上的媒体接入控制MAC信令触发被激活的链路进行上行传输,所述上行传输包括下述传输中的至少一种:随机接入传输、调度需求传输、探测参考信号传输、缓存状态报告传输。
在一种可能的实现方式中,所述基站具体为宏基站marco eNB或主节点master node,传输点为小小区基站。
一方面,本发明实施例提供一种多链接配置方法,所述方法是从用户设备的角度描述,该方法中,UE通过生成上行信息并发送给基站,基站根据上行信息为UE配置第一集合和/或第二集合,当配置第一集合或第二集合时,第一集合或第二集合包含的各传输点与UE之间建立多链接;当配置第一集合和第二集合时,第一集合包含至少两个传输点,第二集合为第一集合的子集。该过程中,第一集合包含的传输点为备选的传输点,第二集合包含的传输点与用户建立多链接,为实际与UE之间传输数据的传输点,当第二集合包含的传输点的信号差或者中断时,从第一集合中选取出质量好的传输点并加入到第二集合,减少链路中断、服务中断的次数,从而解决UE在UDN网络中频繁切换的问题。
在一种可能的实现方式中,所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。
在一种可能的实现方式中,所述第二集合包含的各传输点可从所述第一集合中激活或去激活。
在一种可能的实现方式中,当所述第二集合包含的传输点不满足所述第二阈值时,将所述第一集合中、所述第二集合外满足所述第二阈值的传输点加入所述第二集合中。
在一种可能的实现方式中,所述上行信息包括大于所述第一阈值或所述第二阈值的下行测量结果;
所述用户设备UE生成上行信息,包括:
所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;
所述UE从所述至少一个下行测量结果中,确定出所述大于所述第一阈值或所述第二阈值的下行测量结果。
在一种可能的实现方式中,所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果,包括:
所述UE对至少一个传输点的下行参考信息进行RRM测量得到至少一个下行测量结果。
在一种可能的实现方式中,所述上行信息包括大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识;
所述用户设备UE生成上行信息,包括:
所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;
所述UE从所述至少一个下行测量结果中,确定出大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。
在一种可能的实现方式中,所述上行信息为所述UE对所述大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识进行升序或降序排列得到的。
在一种可能的实现方式中,所述上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
在一种可能的实现方式中,所述UE向基站发送所述上行信息之前,还包括:
所述UE接收所述基站通过无线资源控制RRC信令通知的所述上行信号 的上行传输子帧或上行传输子帧集合。
在一种可能的实现方式中,所述上行传输子帧或所述上行传输子帧集合为所述基站通过基站间接口协调或预配置的。
在一种可能的实现方式中,所述第一集合包含的传输点的覆盖范围形成第一小区,所述第一小区为第一簇、第一虚拟小区或第一超级小区。
在一种可能的实现方式中,所述第一小区包含的主传输点固定或可变。
在一种可能的实现方式中,所述第一小区具有对应的小区标识,当所述第一小区分别为所述第一簇、所述第一虚拟小区或所述第一超级小区时,所述第一小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
在一种可能的实现方式中,所述第二集合包含的传输点的覆盖范围形成第二小区,所述第二小区为第二簇、第二虚拟小区或第二超级小区。
在一种可能的实现方式中,所述第二小区包含的主传输点随所述UE的移动发生变化。
在一种可能的实现方式中,所述第二小区具有对应的小区标识,当所述第二小区分别为所述第二簇、所述第二虚拟小区或所述第二超级小区时,所述第二小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
在一种可能的实现方式中,所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接。
或者,
所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;
或者,
所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。
在一种可能的实现方式中,所述用户设备UE向基站发送所述上行信息之前,还包括:
所述UE接收所述基站通过配置信令发送的所述第一阈值或所述第二阈值。
在一种可能的实现方式中,所述用户设备UE向基站发送所述上行信息,包括:
所述UE向基站发送满足所述第一阈值或所述第二阈值的传输点的上行信息。
在一种可能的实现方式中,所述用户设备UE向基站发送所述上行信息之后,还包括:
所述UE接收所述基站通过无线资源控制RRC信令发送的所述第一集合和/或所述第二集合的信息;
和/或,
所述UE接收所述基站通过媒体接入控制MAC信令向所述UE发送的所述第二集合的激活或去激活信息。
在一种可能的实现方式中,所述UE接收所述基站通过RRC信令发送的多链接的配置信息,以进行多链路协作。
在一种可能的实现方式中,所述多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
另一方面,本发明实施例提供一种基站,包括:
收发模块,用于接收用户设备UE发送的上行信息;
处理模块,用于根据所述上行信息为所述UE配置第一集合和/或第二集合;当配置第一集合或第二集合时,所述第一集合或第二集合包含的各传输点与所述UE之间建立多链接;当配置第一集合和第二集合时,所述第一集合包含至少两个传输点,所述第二集合为所述第一集合的子集。
在一种可能的实现方式中,所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。
在一种可能的实现方式中,所述第二集合包含的各传输点可从所述第一集合中激活或去激活。
在一种可能的实现方式中,所述处理模块,还用于当所述第二集合包含的传输点不满足所述第二阈值时,将所述第一集合中、所述第二集合外满足所述第二阈值的传输点加入所述第二集合中。
在一种可能的实现方式中,所述上行信息为至少一个下行测量结果中,大于所述第一阈值或所述第二阈值的下行测量结果,所述至少一个下行测量 结果为所述UE对至少一个传输点的下行信号进行测量得到的。
在一种可能的实现方式中,所述至少一个下行测量结果为所述UE对至少一个传输点的下行信号进行RRM测量得到的。
在一种可能的实现方式中,所述上行信息为至少一个传输点标识,所述至少一个传输点标识为所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果中,大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。
在一种可能的实现方式中,所述上行信息为所述UE对大于所述第二预设门限值的传输点标识进行升序或降序排列得到的。
在一种可能的实现方式中,所述上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
在一种可能的实现方式中,所述收发模块,在接收用户设备UE发送的上行信息之前,还用于通过无线资源控制RRC信令通知所述上行信号的上行传输子帧或上行传输子帧集合。
在一种可能的实现方式中,所述收发模块,在通过RRC信令通知所述上行信号的上行传输子帧或上行传输子帧集合之前,还用于通过基站间接口协调或预配置所述上行传输子帧或所述上行传输子帧集合。
在一种可能的实现方式中,所述第一集合包含的传输点形成第一小区,所述第一小区为第一簇、第一虚拟小区或第一超级小区。
在一种可能的实现方式中,所述第一小区包含的主传输点固定或可变。
在一种可能的实现方式中,所述第一小区具有对应的小区标识,当所述第一小区分别为所述第一簇、所述第一虚拟小区或所述第一超级小区时,所述第一小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
在一种可能的实现方式中,所述第二集合包含的传输点形成第二小区,所述第二小区为第二簇、第二虚拟小区或第二超级小区。
在一种可能的实现方式中,所述第二小区包含的主传输点随所述UE的移动发生变化。
在一种可能的实现方式中,所述第二小区具有对应的小区标识,当所述第二小区分别为所述第二簇、所述第二虚拟小区或所述第二超级小区时,所 述第二小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
在一种可能的实现方式中,所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接;或者,所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;或者,所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。
所述收发模块,在接收用户设备UE发送的上行信息之前,还用于通过配置信令向所述UE发送所述第一阈值或所述第二阈值。
在一种可能的实现方式中,所述收发模块,具体用于接收所述用户设备UE发送的满足所述第一阈值或所述第二阈值的传输点的上行信息。
在一种可能的实现方式中,所述收发模块,在所述处理模块根据所述上行信息为所述UE配置第一集合和/或第二集合之后,还用于通过无线资源控制RRC信令向所述UE发送所述第一集合和/或所述第二集合的信息;和/或,通过媒体接入控制MAC信令向所述UE发送所述第二集合的激活或去激活信息。
在一种可能的实现方式中,所述收发模块,还用于通过RRC信令向所述UE发送多链接的配置信息,以通知所述UE进行多链路协作。
在一种可能的实现方式中,所述多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
在一种可能的实现方式中,所述处理模块,还用于当所述多链路中,未激活的链路被激活时,通过已激活链路上的媒体接入控制MAC信令触发被激活的链路进行上行传输,所述上行传输包括下述传输中的至少一种:随机接入传输、调度需求传输、探测参考信号传输、缓存状态报告传输。
在一种可能的实现方式中,所述基站具体为宏基站marco eNB或主节点master node,传输点为小小区基站。
另一方面,本发明实施例提供一种用户设备UE,包括:
处理模块,用于生成上行信息;
收发模块,用于向基站发送所述上行信息,以使得所述基站根据所述上行信息为所述UE配置第一集合和/或第二集合,当配置第一集合或第二集合时,所述第一集合或第二集合包含的各传输点与所述UE之间建立多链接; 当配置第一集合和第二集合时,所述第一集合包含至少两个传输点,所述第二集合为所述第一集合的子集。
在一种可能的实现方式中,所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。
在一种可能的实现方式中,所述第二集合包含的各传输点可从所述第一集合中激活或去激活。
在一种可能的实现方式中,当所述第二集合包含的传输点不满足所述第二阈值时,将所述第一集合中、所述第二集合外满足所述第二阈值的传输点加入所述第二集合中。
在一种可能的实现方式中,所述上行信息包括大于所述第一阈值或所述第二阈值的下行测量结果;
所述处理模块,用于对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;从所述至少一个下行测量结果中,确定出所述大于所述第一阈值或所述第二阈值的下行测量结果。
在一种可能的实现方式中,所述处理模块,具体用于对至少一个传输点的下行参考信息进行RRM测量得到至少一个下行测量结果。
在一种可能的实现方式中,所述上行信息包括大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识;
所述处理模块,具体用于对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;从所述至少一个下行测量结果中,确定出大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。
在一种可能的实现方式中,所述处理模块,还用于对所述大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识进行升序或降序排列得到所述上行信息。
在一种可能的实现方式中,所述上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
在一种可能的实现方式中,所述收发模块,在向基站发送所述上行信息 之前,还用于接收所述基站通过无线资源控制RRC信令通知的所述上行信号的上行传输子帧或上行传输子帧集合。
在一种可能的实现方式中,所述上行传输子帧或所述上行传输子帧集合为所述基站通过基站间接口协调或预配置的。
在一种可能的实现方式中,所述第一集合包含的传输点的覆盖范围形成第一小区,所述第一小区为第一簇、第一虚拟小区或第一超级小区。
在一种可能的实现方式中,所述第一小区包含的主传输点固定或可变。
在一种可能的实现方式中,所述第一小区具有对应的小区标识,当所述第一小区分别为所述第一簇、所述第一虚拟小区或所述第一超级小区时,所述第一小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
在一种可能的实现方式中,所述第二集合包含的传输点的覆盖范围形成第二小区,所述第二小区为第二簇、第二虚拟小区或第二超级小区。
在一种可能的实现方式中,所述第二小区包含的主传输点随所述UE的移动发生变化。
在一种可能的实现方式中,所述第二小区具有对应的小区标识,当所述第二小区分别为所述第二簇、所述第二虚拟小区或所述第二超级小区时,所述第二小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
在一种可能的实现方式中,所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接;或者,所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;或者,所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。
在一种可能的实现方式中,所述收发模块,在向基站发送所述上行信息之前,还用于接收所述基站通过配置信令发送的所述第一阈值或所述第二阈值。
在一种可能的实现方式中,所述收发模块,具体用于向基站发送满足所述第一阈值或所述第二阈值的传输点的上行信息。
在一种可能的实现方式中,所述收发模块,在向基站发送所述上行信息之后,还用于接收所述基站通过无线资源控制RRC信令发送的所述第一集合和/或所述第二集合的信息;和/或,接收所述基站通过媒体接入控制MAC 信令向所述UE发送的所述第二集合的激活或去激活信息。
在一种可能的实现方式中,所述收发模块,还用于接收所述基站通过RRC信令发送的多链接的配置信息,以进行多链路协作。
在一种可能的实现方式中,所述多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
又一方面,本发明实施例提供一种基站,包括:处理器、存储器、通信接口和系统总线,所述存储器和所述通信接口通过所述系统总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令,所述通信接口用于和其他设备进行通信,所述处理器用于运行所述计算机执行指令,使所述基站执行如上应用于基站的方法的各个步骤。
又一方面,本发明实施例提供一种用户设备,包括:处理器、存储器、通信接口和系统总线,所述存储器和所述通信接口通过所述系统总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令,所述通信接口用于和其他设备进行通信,所述处理器用于运行所述计算机执行指令,使所述用户设备执行如上应用于用户设备的方法的各个步骤。
又一方面,本发明实施例提供了一种基站,该基站具有实现上述方法设计中第一基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,基站的结构中包括处理器和发射器,所述处理器被配置为支持第一基站执行上述方法中相应的功能。所述发射器用于支持基站与终端之间的通信,向终端发送上述方法中所涉及的信息或者指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种用户设备,该用户设备具有实现上述方法设计中用户设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。所述模块可以是软件和/或硬件
在一种可能的设计中,用户设备的结构中包括接收器和处理器,所述处 理器被配置为支持用户设备执行上述方法中相应的功能。所述发射器用于支持用户设备与基站之间的通信,接收基站发送的上述方法中所涉及的信息或者指令。所述用户设备还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的基站和用户设备。
又一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
又一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
又一方面,本发明实施例提供了一种芯片系统,包括:至少一个处理器,存储器,输入输出部分和总线;所述至少一个处理器通过所述总线获取所述存储器中的指令,以用于实现上述方法涉及中基站的设计功能。
又一方面,本发明实施例提供了一种芯片系统,包括:至少一个处理器,存储器,输入输出部分和总线;所述至少一个处理器通过所述总线获取所述存储器中的指令,以用于实现上述方法涉及中用户设备的设计功能。
本发明实施例提供种多链接配置方法、基站及用户设备,UE生成上行信息并发送给基站,基站根据上行信息为UE配置第一集合和/或第二集合,当配置第一集合或第二集合时,第一集合或第二集合包含的各传输点与UE之间建立多链接;当配置第一集合和第二集合时,第一集合包含至少两个传输点,第二集合为第一集合的子集。该过程中,第一集合包含的传输点为备选的传输点,第二集合包含的传输点与用户建立多链接,为实际与UE之间传输数据的传输点,当第二集合包含的传输点的信号差或者中断时,从第一集合中选取出质量好的传输点并加入到第二集合,减少链路中断、服务中断的次数,从而解决UE在UDN网络中频繁切换的问题。
附图说明
图1为本发明多链接配置方法所适用的UDN的架构示意图;
图2为本发明多链接配置方法实施例一的信令图;
图3为本发明多链接配置方法实施例二中部署宏基站的多RRC链路模式 和单RRC链路模式的示意图;
图4为本发明多链接配置方法实施例三中未部署宏基站的多RRC链路模式和单RRC链路模式的示意图;
图5为本发明多链接配置方法实施例四中第二集合包含的传输点半静态切换的示意图;
图6为本发明多链路配置方法实施例五的配置示意图;
图7为本发明基站实施例一的结构示意图;
图8为本发明用户设备实施例一的结构示意图;
图9为本发明基站实施例二的结构示意图;
图10为本发明用户设备实施例二的结构示意图。
具体实施方式
目前,UDN中,由于部署的小小区基站特别多,小小区基站的覆盖范围小,即使用户设备(User Equipment,UE)以中低速移动,也会引发频繁的切换。因此,部署UDN时,如何解决UE在UDN网络中频繁切换的问题,实为为业界亟待解决的问题。
有鉴于此,本发明实施例提供一种多链接配置方法、基站及用户设备,通过为用户设备配置多链接,以解决UE在UDN网络中频繁切换的问题。
本文中描述的技术可用于各种通信系统,例如当前2G,3G通信系统和下一代通信系统,例如全球移动通信系统(Global System for Mobile communications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统,UDN系统、E-UTRA系统以及其他此类通信系统。
本申请中涉及的用户设备,可以是无线终端,该无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连 接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
本申请中涉及的小小区基站,即传输点,可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。
另外,本发明不受限于低频系统,可以是高频毫米波系统,因此所述相关测量及所有相关配置都可以是针对波束赋形(beamforming)的,即基于波束beam的。
下面,为描述方便、清楚起见,以系统架构具体为UDN系统为例对本发明技术方案进行详细描述。具体的,请参见图1。
图1为本发明多链接配置方法所适用的UDN的架构示意图。如图1所示,本架构包括宏基站和五个传输点,即小小区基站1~5,其中,小小区基站1、2、3、5为UDN中相邻的三个小小区基站,小小区基站4为与小小区基站1、2、3、5不相邻的小小区基站。假设为UE配置的第一集合包括的传输点为小小区基站1、2、3、5,由于第二集合为第一集合的子集,因此第二集合包含的传输点可以为1、3,或者,第二集合包含的传输点可以为2、3等。
需要说明的是,小区虚拟化技术中,UE周围的多个传输点组成一个虚拟小区,来为用户提供服务。虚拟小区的资源构成和设置可以根据用 户的移动、业务需求等动态配置和更改,也可以协调传输节点的休眠和信号发送。在这些传输节点中,一个传输节点被选为主传输节点。
下面,在图1的基础上,对本发明多链接配置方法进行详细说明,具体的,可参见图2。
图2为本发明多链接配置方法实施例一的信令图。本实施例中,基站用户设备交互,适用于需要多链接配置的场景。具体的,本实施例包括如下步骤:
101、用户设备UE生成上行信息。
本步骤中,UE根据下行信号或上行信号生成上行信息。例如,UE可通过如下方式生成上行信息:
方式一、上行信息具体为大于所述第一阈值或所述第二阈值的下行测量结果,此时,UE对至少一个传输点的下行信号进行测量,例如,进行RRM测量,得到至少一个下行测量结果,从所述至少一个下行测量结果中,确定出所述大于所述第一阈值或所述第二阈值的下行测量结果,并将大于所述第一阈值或所述第二阈值的下行测量结果作为上行信息。
方式二、行信息具体为大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。此时,UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;从所述至少一个下行测量结果中,确定出大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。例如,UE对所述大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识进行升序或降序排列,从而得到上行信息。
方式三、上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
该种方式下,上行信息就是UE发送的上行探测信号、上行序列码或前导码等至少一种上行信号。
102、用户设备UE向基站发送所述上行信息。
本步骤中,UE将101中的上行信息发送给基站。当上行信息采用上述方式三生成时,UE先接收所述基站通过无线资源控制RRC信令通知的所述上行信号的上行传输子帧或上行传输子帧集合,然后,在该上行传输子帧或 上行传输子帧集合包含的子帧上向基站发送上行信息。该过程中,上行传输子帧或所述上行传输子帧集合为所述基站通过基站间接口协调或预配置的。
103、所述基站根据所述上行信息为所述UE配置第一集合和/或第二集合;
其中,当配置第一集合或第二集合时,所述第一集合或第二集合包含的各传输点与所述UE之间建立多链接;当配置第一集合和第二集合时,所述第一集合包含至少两个传输点,所述第二集合为所述第一集合的子集。
请参照图1,本发明实施例中,基站例如为宏基站或marco eNB或主节点master node(图中未示出)。本步骤中,所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。所述第二集合包含的各传输点可从所述第一集合中激活或去激活。UE移动时,当所述第二集合包含的传输点不满足所述第二阈值时,例如,第二集合中的传输点的信号差或者中断时,将所述第一集合中、第二集合外满足所述第二阈值的传输点加入所述第二集合中。其中,所测量的信号强度为无线资源管理RRM测量,可以包括参考信号接收功率RSRP(reference signal receiving power),参考信号接收质量RSRQ(reference signal receiving quality),接收的信号强度指示RSSI(Received Signal Strength Indication)或任何基于beam的测量参数中的至少一种。
本发明实施例提供的多连接配置方法,UE生成上行信息并发送给基站,基站根据上行信息为UE配置第一集合和/或第二集合,当配置第一集合或第二集合时,第一集合或第二集合包含的各传输点与UE之间建立多链接;当配置第一集合和第二集合时,第一集合包含至少两个传输点,第二集合为第一集合的子集。该过程中,第一集合包含的传输点为备选的传输点,第二集合包含的传输点与用户建立多链接,为实际与UE之间传输数据的传输点,当第二集合包含的传输点的信号差或者中断时,从第一集合中选取出质量好的传输点并加入到第二集合,减少链路中断、服务中断的次数,从而解决UE在UDN网络中频繁切换的问题。
可选的,上述实施例中,第一集合包含的传输点形成第一小区,第一小 区包含的主传输点固定或可变。该第一小区为第一簇、第一虚拟小区或第一超级小区。并且,第一簇具有对应的簇标识,第一虚拟小区具有对应的虚拟小区标识,第一超级小区具有对应的超级小区标识。
可选的,上述实施例中,第二集合包含的传输点形成第二小区,第二小区包含的主传输点随UE的移动发生变化。第二小区为第二簇、第二虚拟小区或第二超级小区。第二簇具有对应的簇标识,第二虚拟小区具有对应的虚拟小区标识,第二超级小区具有对应的超级小区标识。
可选的,上述实施例中,所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接。或者,所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;或者,所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。具体的,可参见图3,图3为本发明多链接配置方法实施例二中部署宏基站的多RRC链路模式和单RRC链路模式的示意图。
请参照图3,有宏基站(overlay)的场景中,假设第二集合包括的传输点为小小区基站D、小小区基站E和小小区基站F,如果工作于多RRC链路模式下,UE可以保留到宏基站和传输点small cell D的RRC链接,如图中多RRC链路模式下的实线箭头所示(虚线箭头表示未建立RRC链接);假设第二集合包括的传输点为小小区基站A、小小区基站B和小小区基站C,如果工作于单RRC链路模式下,UE只保留到宏基站的RRC链接,如图中单RRC链路模式下,UE保留与宏基站的RRC链接,而虚线所述的UE与小小区基站A、小小区基站B以及小小区基站C的RRC连接未保留。
图4为本发明多链接配置方法实施例三中未部署宏基站的多RRC链路模式和单RRC链路模式的示意图。请参照图4,独立(stand alone)场景中,假设第二集合包括的传输点为小小区基站D、小小区基站E和小小区基站F,如果工作于多RRC链路模式下,UE可以保留到传输点small cell D和F的RRC链接,如图中多RRC链路模式下的实线箭头所示,也就是说,可以保留第二传输点激活中的所有传输点与UE的RRC链接,也可以包括第二传输点集合中的部分传输点与UE的RRC链接;如果工作于单RRC链路模式下,假设第二集合包括的传输点为小小区基站A、小小区基站B和小小区基站C,UE 只保留到传输点small cell A的RRC链接,也就是说,只保留第二集合中的一个传输点与UE的RRC链接。
上述图3与图4中,无论上述多RRC链路模式或者单RRC链路模式,为了保证传输点的能量均衡,可以在各个满足传输要求的传输点之间进行半静态转换,其中,满足传输要求指测量信号强度大于或大于等于预定的门限值。具体的,可请参照图5。
图5为本发明多链接配置方法实施例四中第二集合包含的传输点半静态切换的示意图。请参照图5,随着时间的推移,即子帧的推移,第一个周期内,第二集合包含的传输点可以为小小区基站A与小小区基站B,第二个周期内,第二集合包含的传输点可以变更为小小区基站B与小小区基站C,第三个周期内,第二集合包含的传输点可以变更为小小区基站C与小小区基站A。如果是多RRC链路模式,任何半静态转换的传输点中需要有至少一个传输点能保持与UE的链接。
可选的,上述实施例中,基站预先通过配置信令向UE发送第一阈值,使得UE向基站发送满足第一阈值的传输点的上行信息,避免UE对所有的传输点的上行信息都进行发送带来的信息量大、占用资源多的弊端。
可选的,上述实施例中,基站根据上行信息为UE配置第一集合和/或第二集合之后,基站向UE或传输点发送第一和/或第二集合的配置信息。例如,基站通过无线资源控制RRC信令向UE发送第一集合和第二集合的信息;再如,基站通过媒体接入控制MAC信令向UE发送第二集合的激活或去激活信息。
可选的,上述实施例中,基站在为用户配置好第一集合和第二集合后,通过RRC信令向所述UE发送多链接的配置信息,以通知所述UE进行多链路协作。其中,多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
可选的,上述实施例中,多链路中,未激活的链路被激活时,所述基站通过已激活链路上的媒体接入控制MAC信令触发被激活的链路进行上行传输,所述上行传输包括下述传输中的至少一种:随机接入传输、调度需求传输、探测参考信号传输、缓存状态报告传输。
可选的,上述实施例中,基站具体为宏基站marco eNB或主节点master  node,传输点为小小区基站。
图6为本发明多链路配置方法实施例五的配置示意图。请参照图6,本实施例中,宏基站覆盖的区域内包括小小区基站A与小小区基站B,小小区基站A与小小区基站B形成虚拟小区,其中小小区基站A是该虚拟小区中的主节点或主小区,小小区基站B是该虚拟小区中的辅节点或辅小区。UE首先被连接到小小区基站A上。当UE逐渐靠近小小区基站B时,作为一种实施例,UE可以向宏基站汇报该信息。接着,宏基站在与小小区基站A及小小区基站B的X2接口上做一些协调,决定UE可以被配置“MC”模式,并且通过信令通知UE该“MC”模式,此时,UE将与小小区基站A与小小区基站B建立链接。虚拟小区中小小区基站的部分系统信息可以通过小小区基站A下发,例如,虚拟小区ID及系统带宽等。其余系统信息及UE特定的配置可以通过辅小区如小小区基站B下发。宏基站可以进一步通过RRC信令将多链接的配置信息发送给小小区基站A、小小区基站B与UE。之后,UE进行多链路协作,如功率协作、随机接入协作与功率余量协作等。
作为上述的另一种实施例,UE可以向小小区基站A汇报该信息。接着,小小区基站A在与小小区基站B的X2接口上做一些协调,决定UE可以被配置“MC”模式,并且通过信令通知所述UE该“MC”模式,此时,UE将与小小区基站A与小小区基站B建立链接。虚拟小区中小小区基站的部分系统信息可以通过小小区基站A下发,例如,虚拟小区ID及系统带宽等。其余系统信息及UE特定的配置可以通过辅小区如小小区基站B下发。小小区基站A可以进一步通过RRC信令将多链接的配置信息发送给小小区基站B与UE。之后,UE进行多链路协作,如功率协作、随机接入协作与功率余量协作等。
图7为本发明基站实施例一的结构示意图。本实施例提供的基站,其可实现本发明任意实施例提供的应用于基站的方法的各个步骤。具体的,本实施例提供的基站包括:
收发模块11,用于接收用户设备UE发送的上行信息;
处理模块12,用于根据所述上行信息为所述UE配置第一集合和/或第二集合;当配置第一集合或第二集合时,所述第一集合或第二集合包含的各传输点与所述UE之间建立多链接;当配置第一集合和第二集合时,所述第一 集合包含至少两个传输点,所述第二集合为所述第一集合的子集。
本发明实施例提供的基站,通过接收UE生成并发送的上行信息,根据上行信息为UE配置第一集合和/或第二集合,当配置第一集合或第二集合时,第一集合或第二集合包含的各传输点与UE之间建立多链接;当配置第一集合和第二集合时,第一集合包含至少两个传输点,第二集合为第一集合的子集。该过程中,第一集合包含的传输点为备选的传输点,第二集合包含的传输点与用户建立多链接,为实际与UE之间传输数据的传输点,当第二集合包含的传输点的信号差或者中断时,从第一集合中选取出质量好的传输点并加入到第二集合,减少链路中断、服务中断的次数,从而解决UE在UDN网络中频繁切换的问题。
可选的,在本发明一实施例中,所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。
可选的,在本发明一实施例中,所述第二集合包含的各传输点可从所述第一集合中激活或去激活。
可选的,在本发明一实施例中,所述处理模块12,还用于当所述第二集合包含的传输点不满足所述第二阈值时,将所述第一集合中、所述第二集合外满足所述第二阈值的传输点加入所述第二集合中。
可选的,在本发明一实施例中,所述上行信息为至少一个下行测量结果中,大于所述第一阈值或所述第二阈值的下行测量结果,所述至少一个下行测量结果为所述UE对至少一个传输点的下行信号进行测量得到的。
可选的,在本发明一实施例中,所述至少一个下行测量结果为所述UE对至少一个传输点的下行信号进行RRM测量得到的。
可选的,在本发明一实施例中,所述上行信息为至少一个传输点标识,所述至少一个传输点标识为所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果中,大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。
可选的,在本发明一实施例中,所述上行信息为所述UE对大于所述第二预设门限值的传输点标识进行升序或降序排列得到的。
可选的,在本发明一实施例中,所述上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
可选的,在本发明一实施例中,所述收发模块11,在接收用户设备UE发送的上行信息之前,还用于通过无线资源控制RRC信令通知所述上行信号的上行传输子帧或上行传输子帧集合。
可选的,在本发明一实施例中,所述收发模块11,在通过RRC信令通知所述上行信号的上行传输子帧或上行传输子帧集合之前,还用于通过基站间接口协调或预配置所述上行传输子帧或所述上行传输子帧集合。
可选的,在本发明一实施例中,所述第一集合包含的传输点形成第一小区,所述第一小区为第一簇、第一虚拟小区或第一超级小区。
可选的,在本发明一实施例中,所述第一小区包含的主传输点固定或可变。
可选的,在本发明一实施例中,所述第一小区具有对应的小区标识,当所述第一小区分别为所述第一簇、所述第一虚拟小区或所述第一超级小区时,所述第一小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
可选的,在本发明一实施例中,所述第二集合包含的传输点形成第二小区,所述第二小区为第二簇、第二虚拟小区或第二超级小区。
可选的,在本发明一实施例中,所述第二小区包含的主传输点随所述UE的移动发生变化。
可选的,在本发明一实施例中,所述第二小区具有对应的小区标识,当所述第二小区分别为所述第二簇、所述第二虚拟小区或所述第二超级小区时,所述第二小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
可选的,在本发明一实施例中,所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接;或者,所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;或者,所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。
可选的,在本发明一实施例中,所述收发模块11,在接收用户设备UE发送的上行信息之前,还用于通过配置信令向所述UE发送所述第一阈值或所述第二阈值。
可选的,在本发明一实施例中,所述收发模块11,具体用于接收所述用户设备UE发送的满足所述第一阈值或所述第二阈值的传输点的上行信息。
可选的,在本发明一实施例中,所述收发模块11,在所述处理模块12根据所述上行信息为所述UE配置第一集合和/或第二集合之后,还用于通过无线资源控制RRC信令向所述UE发送所述第一集合和/或所述第二集合的信息;和/或,通过媒体接入控制MAC信令向所述UE发送所述第二集合的激活或去激活信息。
可选的,在本发明一实施例中,所述收发模块11,还用于通过RRC信令向所述UE发送多链接的配置信息,以通知所述UE进行多链路协作。
可选的,在本发明一实施例中,所述多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
可选的,在本发明一实施例中,所述处理模块12,还用于当所述多链路中,未激活的链路被激活时,通过已激活链路上的媒体接入控制MAC信令触发被激活的链路进行上行传输,所述上行传输包括下述传输中的至少一种:随机接入传输、调度需求传输、探测参考信号传输、缓存状态报告传输。
可选的,在本发明一实施例中,所述基站具体为宏基站marco eNB或主节点master node,传输点为小小区基站。
图8为本发明用户设备实施例一的结构示意图。本实施例提供的用户设备,其可实现本发明任意实施例提供的应用于用户设备的方法的各个步骤。具体的,本实施例提供的用户设备包括:
处理模块21,用于生成上行信息;
收发模块22,用于向基站发送所述上行信息,以使得所述基站根据所述上行信息为所述UE配置第一集合和/或第二集合,当配置第一集合或第二集合时,所述第一集合或第二集合包含的各传输点与所述UE之间建立多链接;当配置第一集合和第二集合时,所述第一集合包含至少两个传输点,所述第二集合为所述第一集合的子集。
本发明实施例提供的UE,通过生成上行信息并发送给基站,基站根据上行信息为UE配置第一集合和/或第二集合,当配置第一集合或第二集合时,第一集合或第二集合包含的各传输点与UE之间建立多链接;当配置第一集合和第二集合时,第一集合包含至少两个传输点,第二集合为第一集合的子集。该过程中,第一集合包含的传输点为备选的传输点,第二集合包含的传输点与用户建立多链接,为实际与UE之间传输数据的传输点,当第二集合包含的传输点的信号差或者中断时,从第一集合中选取出质量好的传输点并加入到第二集合,减少链路中断、服务中断的次数,从而解决UE在UDN网络中频繁切换的问题。
可选的,在本发明一实施例中,所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。
可选的,在本发明一实施例中,所述第二集合包含的各传输点可从所述第一集合中激活或去激活。
可选的,在本发明一实施例中,当所述第二集合包含的传输点不满足所述第二阈值时,将所述第一集合中、所述第二集合外满足所述第二阈值的传输点加入所述第二集合中。
可选的,在本发明一实施例中,所述上行信息包括大于所述第一阈值或所述第二阈值的下行测量结果;
所述处理模块21,用于对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;从所述至少一个下行测量结果中,确定出所述大于所述第一阈值或所述第二阈值的下行测量结果。
可选的,在本发明一实施例中,所述处理模块21,具体用于对至少一个传输点的下行参考信息进行RRM测量得到至少一个下行测量结果。
可选的,在本发明一实施例中,所述上行信息包括大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识;
所述处理模块21,具体用于对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;从所述至少一个下行测量结果中,确定出大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。
可选的,在本发明一实施例中,所述处理模块21,还用于对所述大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识进行升序或降序排列得到所述上行信息。
可选的,在本发明一实施例中,所述上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
可选的,在本发明一实施例中,所述收发模块22,在向基站发送所述上行信息之前,还用于接收所述基站通过无线资源控制RRC信令通知的所述上行信号的上行传输子帧或上行传输子帧集合。
可选的,在本发明一实施例中,所述上行传输子帧或所述上行传输子帧集合为所述基站通过基站间接口协调或预配置的。
可选的,在本发明一实施例中,所述第一集合包含的传输点的覆盖范围形成第一小区,所述第一小区为第一簇、第一虚拟小区或第一超级小区。
可选的,在本发明一实施例中,所述第一小区包含的主传输点固定或可变。
可选的,在本发明一实施例中,所述第一小区具有对应的小区标识,当所述第一小区分别为所述第一簇、所述第一虚拟小区或所述第一超级小区时,所述第一小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
可选的,在本发明一实施例中,所述第二集合包含的传输点的覆盖范围形成第二小区,所述第二小区为第二簇、第二虚拟小区或第二超级小区。
可选的,在本发明一实施例中,所述第二小区包含的主传输点随所述UE的移动发生变化。
可选的,在本发明一实施例中,所述第二小区具有对应的小区标识,当所述第二小区分别为所述第二簇、所述第二虚拟小区或所述第二超级小区时,所述第二小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
可选的,在本发明一实施例中,所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接;
或者,
所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;
或者,
所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。
可选的,在本发明一实施例中,所述收发模块22,在向基站发送所述上行信息之前,还用于接收所述基站通过配置信令发送的所述第一阈值或所述第二阈值。
可选的,在本发明一实施例中,所述收发模块22,具体用于向基站发送满足所述第一阈值或所述第二阈值的传输点的上行信息。
可选的,在本发明一实施例中,所述收发模块22,在向基站发送所述上行信息之后,还用于接收所述基站通过无线资源控制RRC信令发送的所述第一集合和/或所述第二集合的信息;和/或,接收所述基站通过媒体接入控制MAC信令向所述UE发送的所述第二集合的激活或去激活信息。
可选的,在本发明一实施例中,所述收发模块22,还用于接收所述基站通过RRC信令发送的多链接的配置信息,以进行多链路协作。
可选的,在本发明一实施例中,所述多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
图9为本发明基站实施例二的结构示意图。本实例提供的基站300包括:处理器31、存储器32、通信接口33和系统总线34,所述存储器32和所述通信接口33通过所述系统总线34与所述处理器31连接并完成相互间的通信,所述存储器32用于存储计算机执行指令,所述通信接口33用于和其他设备进行通信,所述处理器31用于运行所述计算机执行指令,使所述基站300执行如上应用于基站的方法的各个步骤。
图10为本发明用户设备实施例二的结构示意图。本实例提供的用户设备400包括:处理器41、存储器42、通信接口43和系统总线44,所述存储器42和所述通信接口43通过所述系统总线44与所述处理器41连接并完成相互间的通信,所述存储器42用于存储计算机执行指令,所述通信接口43用于和其他设备进行通信,所述处理器41用于运行所述计算机执行指令,使所述用户设备400执行如上应用于用户设备的方法的各个步骤。
上述图9、图10中提到的系统总线可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述系统总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信接口用于实现数据库访问装置与其他设备(例如客户端、读写库和只读库)之间的通信。存储器可能包含随机存取存储器(random access memory,RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (98)

  1. 一种多链接配置方法,其特征在于,包括:
    基站接收用户设备UE发送的上行信息;
    所述基站根据所述上行信息为所述UE配置第一集合和/或第二集合;
    当配置第一集合或第二集合时,所述第一集合或第二集合包含的各传输点与所述UE之间建立多链接;
    当配置第一集合和第二集合时,所述第一集合包含至少两个传输点,所述第二集合为所述第一集合的子集。
  2. 根据权利要求1所述的方法,其特征在于,所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二集合包含的各传输点可从所述第一集合中激活或去激活。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,
    当所述第二集合包含的传输点不满足所述第二阈值时,将所述第一集合中、所述第二集合外满足所述第二阈值的传输点加入所述第二集合中。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,
    所述上行信息为至少一个下行测量结果中,大于所述第一阈值或所述第二阈值的下行测量结果,所述至少一个下行测量结果为所述UE对至少一个传输点的下行信号进行测量得到的。
  6. 根据权利要求5所述的方法,其特征在于,所述至少一个下行测量结果为所述UE对至少一个传输点的下行信号进行RRM测量得到的。
  7. 根据权利要求1~4任一项所述的方法,其特征在于,
    所述上行信息为至少一个传输点标识,所述至少一个传输点标识为所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果中,大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。
  8. 根据权利要求7所述的方法,其特征在于,所述上行信息为所述UE对大于所述第二预设门限值的传输点标识进行升序或降序排列得到的。
  9. 根据权利要求1~4任一项所述的方法,其特征在于,
    所述上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
  10. 根据权利要求9所述的方法,其特征在于,
    所述基站接收用户设备UE发送的上行信息之前,还包括:
    所述基站通过无线资源控制RRC信令通知所述上行信号的上行传输子帧或上行传输子帧集合。
  11. 根据权利要求10所述的方法,其特征在于,
    所述基站通过RRC信令通知所述上行信号的上行传输子帧或上行传输子帧集合之前,还包括:
    所述基站通过基站间接口协调或预配置所述上行传输子帧或所述上行传输子帧集合。
  12. 根据权利要求1~11任一项所述的方法,其特征在于,
    所述第一集合包含的传输点形成第一小区,所述第一小区为第一簇、第一虚拟小区或第一超级小区。
  13. 根据权利要求12所述的方法,其特征在于,
    所述第一小区包含的主传输点固定或可变。
  14. 根据权利要求12所述的方法,其特征在于,
    所述第一小区具有对应的小区标识,当所述第一小区分别为所述第一簇、所述第一虚拟小区或所述第一超级小区时,所述第一小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
  15. 根据权利要求1~14任一项所述的方法,其特征在于,
    所述第二集合包含的传输点形成第二小区,所述第二小区为第二簇、第二虚拟小区或第二超级小区。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第二小区包含的主传输点随所述UE的移动发生变化。
  17. 根据权利要求15所述的方法,其特征在于,
    所述第二小区具有对应的小区标识,当所述第二小区分别为所述第二簇、所述第二虚拟小区或所述第二超级小区时,所述第二小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
  18. 根据权利要求1~17任一项所述的方法,其特征在于,
    所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接;
    或者,
    所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;
    或者,
    所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。
  19. 根据权利要求1~18任一项所述的方法,其特征在于,
    所述基站接收用户设备UE发送的上行信息之前,还包括:
    所述基站通过配置信令向所述UE发送所述第一阈值或所述第二阈值。
  20. 根据权利要求19所述的方法,其特征在于,
    所述基站接收用户设备UE发送的上行信息,包括:
    所述基站接收所述用户设备UE发送的满足所述第一阈值或所述第二阈值的传输点的上行信息。
  21. 根据权利要求1~20任一项所述的方法,其特征在于,
    所述基站根据所述上行信息为所述UE配置第一集合和/或第二集合之后,还包括:
    所述基站通过无线资源控制RRC信令向所述UE发送所述第一集合和/或所述第二集合的信息;
    和/或,
    所述基站通过媒体接入控制MAC信令向所述UE发送所述第二集合的激活或去激活信息。
  22. 根据权利要求1~21任一项所述的方法,其特征在于,还包括:
    所述基站通过RRC信令向所述UE发送多链接的配置信息,以通知所述UE进行多链路协作。
  23. 根据权利要求22所述的方法,其特征在于,
    所述多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
  24. 根据权利要求1~23任一项所述的方法,其特征在于,还包括:
    所述多链路中,未激活的链路被激活时,所述基站通过已激活链路上的媒体接入控制MAC信令触发被激活的链路进行上行传输,所述上行传输包括下述传输中的至少一种:随机接入传输、调度需求传输、探测参考信号传输、缓存状态报告传输。
  25. 根据权利要求1~24任一项所述的方法,其特征在于,所述基站具体为宏基站或主节点,传输点为小小区基站。
  26. 一种多链接配置方法,其特征在于,包括:
    用户设备UE生成上行信息;
    所述用户设备UE向基站发送所述上行信息,以使得所述基站根据所述上行信息为所述UE配置第一集合和/或第二集合,
    当配置第一集合或第二集合时,所述第一集合或第二集合包含的各传输点与所述UE之间建立多链接;
    当配置第一集合和第二集合时,所述第一集合包含至少两个传输点,所述第二集合为所述第一集合的子集。
  27. 根据权利要求26所述的方法,其特征在于,所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第二集合包含的各传输点可从所述第一集合中激活或去激活。
  29. 根据权利要求26~28任一项所述的方法,其特征在于,当所述第二集合包含的传输点不满足所述第二阈值时,将所述第一集合中、所述第二集合外满足所述第二阈值的传输点加入所述第二集合中。
  30. 根据权利要求26~29任一项所述的方法,其特征在于,所述上行信息包括大于所述第一阈值或所述第二阈值的下行测量结果;
    所述用户设备UE生成上行信息,包括:
    所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;
    所述UE从所述至少一个下行测量结果中,确定出所述大于所述第一阈 值或所述第二阈值的下行测量结果。
  31. 根据权利要求30所述的方法,其特征在于,所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果,包括:
    所述UE对至少一个传输点的下行信号进行RRM测量得到至少一个下行测量结果。
  32. 根据权利要求26~29任一项所述的方法,其特征在于,所述上行信息包括大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识;
    所述用户设备UE生成上行信息,包括:
    所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;
    所述UE从所述至少一个下行测量结果中,确定出大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。
  33. 根据权利要求32所述的方法,其特征在于,
    所述上行信息为所述UE对所述大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识进行升序或降序排列得到的。
  34. 根据权利要求26~29任一项所述的方法,其特征在于,
    所述上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
  35. 根据权利要求34所述的方法,其特征在于,
    所述UE向基站发送所述上行信息之前,还包括:
    所述UE接收所述基站通过无线资源控制RRC信令通知的所述上行信号的上行传输子帧或上行传输子帧集合。
  36. 根据权利要求35所述的方法,其特征在于,
    所述上行传输子帧或所述上行传输子帧集合为所述基站通过基站间接口协调或预配置的。
  37. 根据权利要求26~36任一项所述的方法,其特征在于,
    所述第一集合包含的传输点的覆盖范围形成第一小区,所述第一小区为第一簇、第一虚拟小区或第一超级小区。
  38. 根据权利要求37所述的方法,其特征在于,
    所述第一小区包含的主传输点固定或可变。
  39. 根据权利要求37所述的方法,其特征在于,
    所述第一小区具有对应的小区标识,当所述第一小区分别为所述第一簇、所述第一虚拟小区或所述第一超级小区时,所述第一小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
  40. 根据权利要求26~39任一项所述的方法,其特征在于,
    所述第二集合包含的传输点的覆盖范围形成第二小区,所述第二小区为第二簇、第二虚拟小区或第二超级小区。
  41. 根据权利要求40所述的方法,其特征在于,
    所述第二小区包含的主传输点随所述UE的移动发生变化。
  42. 根据权利要求41所述的方法,其特征在于,
    所述第二小区具有对应的小区标识,当所述第二小区分别为所述第二簇、所述第二虚拟小区或所述第二超级小区时,所述第二小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
  43. 根据权利要求26~42任一项所述的方法,其特征在于,
    所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接;
    或者,
    所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;
    或者,
    所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。
  44. 根据权利要求26~43任一项所述的方法,其特征在于,
    所述用户设备UE向基站发送所述上行信息之前,还包括:
    所述UE接收所述基站通过配置信令发送的所述第一阈值或所述第二阈值。
  45. 根据权利要求44所述的方法,其特征在于,
    所述用户设备UE向基站发送所述上行信息,包括:
    所述UE向基站发送满足所述第一阈值或所述第二阈值的传输点的上行信息。
  46. 根据权利要求26~45任一项所述的方法,其特征在于,
    所述用户设备UE向基站发送所述上行信息之后,还包括:
    所述UE接收所述基站通过无线资源控制RRC信令发送的所述第一集合和/或所述第二集合的信息;
    和/或,
    所述UE接收所述基站通过媒体接入控制MAC信令向所述UE发送的所述第二集合的激活或去激活信息。
  47. 根据权利要求26~46任一项所述的方法,其特征在于,还包括:
    所述UE接收所述基站通过RRC信令发送的多链接的配置信息,以进行多链路协作。
  48. 根据权利要求47所述的方法,其特征在于,
    所述多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
  49. 一种基站,其特征在于,包括:
    收发模块,用于接收用户设备UE发送的上行信息;
    处理模块,用于根据所述上行信息为所述UE配置第一集合和/或第二集合;当配置第一集合或第二集合时,所述第一集合或第二集合包含的各传输点与所述UE之间建立多链接;当配置第一集合和第二集合时,所述第一集合包含至少两个传输点,所述第二集合为所述第一集合的子集。
  50. 根据权利要求49所述的基站,其特征在于,
    所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。
  51. 根据权利要求49或50所述的基站,其特征在于,
    所述第二集合包含的各传输点可从所述第一集合中激活或去激活。
  52. 根据权利要求49~51任一项所述的基站,其特征在于,
    所述处理模块,还用于当所述第二集合包含的传输点不满足所述第二阈值时,将所述第一集合中、所述第二集合外满足所述第二阈值的传输点加入 所述第二集合中。
  53. 根据权利要求49~51任一项所述的基站,其特征在于,
    所述上行信息为至少一个下行测量结果中,大于所述第一阈值或所述第二阈值的下行测量结果,所述至少一个下行测量结果为所述UE对至少一个传输点的下行信号进行测量得到的。
  54. 根据权利要求53所述的基站,其特征在于,所述至少一个下行测量结果为所述UE对至少一个传输点的下行信号进行RRM测量得到的。
  55. 根据权利要求49~52任一项所述的基站,其特征在于,
    所述上行信息为至少一个传输点标识,所述至少一个传输点标识为所述UE对至少一个传输点的下行信号进行测量得到至少一个下行测量结果中,大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。
  56. 根据权利要求55所述的基站,其特征在于,所述上行信息为所述UE对大于所述第二预设门限值的传输点标识进行升序或降序排列得到的。
  57. 根据权利要求49~52任一项所述的基站,其特征在于,
    所述上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
  58. 根据权利要求57所述的基站,其特征在于,
    所述收发模块,在接收用户设备UE发送的上行信息之前,还用于通过无线资源控制RRC信令通知所述上行信号的上行传输子帧或上行传输子帧集合。
  59. 根据权利要求58所述的基站,其特征在于,
    所述收发模块,在通过RRC信令通知所述上行信号的上行传输子帧或上行传输子帧集合之前,还用于通过基站间接口协调或预配置所述上行传输子帧或所述上行传输子帧集合。
  60. 根据权利要求49~59任一项所述的基站,其特征在于,
    所述第一集合包含的传输点形成第一小区,所述第一小区为第一簇、第一虚拟小区或第一超级小区。
  61. 根据权利要求60所述的基站,其特征在于,所述第一小区包含的主传输点固定或可变。
  62. 根据权利要求60所述的基站,其特征在于,所述第一小区具有对应的小区标识,当所述第一小区分别为所述第一簇、所述第一虚拟小区或所述第一超级小区时,所述第一小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
  63. 根据权利要求49~62任一项所述的基站,其特征在于,
    所述第二集合包含的传输点形成第二小区,所述第二小区为第二簇、第二虚拟小区或第二超级小区。
  64. 根据权利要求63所述的基站,其特征在于,所述第二小区包含的主传输点随所述UE的移动发生变化。
  65. 根据权利要求63所述的基站,其特征在于,
    所述第二小区具有对应的小区标识,当所述第二小区分别为所述第二簇、所述第二虚拟小区或所述第二超级小区时,所述第二小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
  66. 根据权利要求49~65任一项所述的基站,其特征在于,
    所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接;
    或者,
    所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;
    或者,
    所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。
  67. 根据权利要求49~66任一项所述的基站,其特征在于,
    所述收发模块,在接收用户设备UE发送的上行信息之前,还用于通过配置信令向所述UE发送所述第一阈值或所述第二阈值。
  68. 根据权利要求67所述的基站,其特征在于,
    所述收发模块,具体用于接收所述用户设备UE发送的满足所述第一阈值或所述第二阈值的传输点的上行信息。
  69. 根据权利要求49~68任一项所述的基站,其特征在于,
    所述收发模块,在所述处理模块根据所述上行信息为所述UE配置第一 集合和/或第二集合之后,还用于通过无线资源控制RRC信令向所述UE发送所述第一集合和/或所述第二集合的信息;和/或,通过媒体接入控制MAC信令向所述UE发送所述第二集合的激活或去激活信息。
  70. 根据权利要求49~69任一项所述的基站,其特征在于,
    所述收发模块,还用于通过RRC信令向所述UE发送多链接的配置信息,以通知所述UE进行多链路协作。
  71. 根据权利要求70所述的基站,其特征在于,所述多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
  72. 根据权利要求49~71任一项所述的基站,其特征在于,
    所述处理模块,还用于当所述多链路中,未激活的链路被激活时,通过已激活链路上的媒体接入控制MAC信令触发被激活的链路进行上行传输,所述上行传输包括下述传输中的至少一种:随机接入传输、调度需求传输、探测参考信号传输、缓存状态报告传输。
  73. 根据权利要求49~72任一项所述的基站,其特征在于,所述基站具体为宏基站或主节点,传输点为小小区基站。
  74. 一种用户设备UE,其特征在于,包括:
    处理模块,用于生成上行信息;
    收发模块,用于向基站发送所述上行信息,以使得所述基站根据所述上行信息为所述UE配置第一集合和/或第二集合,当配置第一集合或第二集合时,所述第一集合或第二集合包含的各传输点与所述UE之间建立多链接;当配置第一集合和第二集合时,所述第一集合包含至少两个传输点,所述第二集合为所述第一集合的子集。
  75. 根据权利要求74所述的UE,其特征在于,所述第一集合中的传输点为所测量的信号强度大于或大于等于第一阈值的传输点,所述第二集合中的传输点为所测量的信号强度大于或大于等于第二阈值的传输点,所述第二阈值高于所述第一阈值。
  76. 根据权利要求74或75所述的UE,其特征在于,所述第二集合包含的各传输点可从所述第一集合中激活或去激活。
  77. 根据权利要求74~76任一项所述的UE,其特征在于,当所述第二集合包含的传输点不满足所述第二阈值时,将所述第一集合中、所述第二 集合外满足所述第二阈值的传输点加入所述第二集合中。
  78. 根据权利要求74~77任一项所述的UE,其特征在于,所述上行信息包括大于所述第一阈值或所述第二阈值的下行测量结果;
    所述处理模块,用于对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;从所述至少一个下行测量结果中,确定出所述大于所述第一阈值或所述第二阈值的下行测量结果。
  79. 根据权利要求78所述的UE,其特征在于,
    所述处理模块,具体用于对至少一个传输点的下行参考信息进行RRM测量得到至少一个下行测量结果。
  80. 根据权利要求74~77任一项所述的UE,其特征在于,所述上行信息包括大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识;
    所述处理模块,具体用于对至少一个传输点的下行信号进行测量得到至少一个下行测量结果;从所述至少一个下行测量结果中,确定出大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识。
  81. 根据权利要求80所述的UE,其特征在于,
    所述处理模块,还用于对所述大于所述第一阈值或所述第二阈值的下行测量结果对应的传输点标识进行升序或降序排列得到所述上行信息。
  82. 根据权利要求74~77任一项所述的UE,其特征在于,所述上行信息具体为所述UE发送的上行信号,所述上行信号为下述信号中的至少一种:上行探测信号、上行探测参考信号、上行序列码或前导码。
  83. 根据权利要求81所述的UE,其特征在于,
    所述收发模块,在向基站发送所述上行信息之前,还用于接收所述基站通过无线资源控制RRC信令通知的所述上行信号的上行传输子帧或上行传输子帧集合。
  84. 根据权利要求83所述的UE,其特征在于,
    所述上行传输子帧或所述上行传输子帧集合为所述基站通过基站间接口协调或预配置的。
  85. 根据权利要求74~84任一项所述的UE,其特征在于,
    所述第一集合包含的传输点的覆盖范围形成第一小区,所述第一小区为 第一簇、第一虚拟小区或第一超级小区。
  86. 根据权利要求85所述的UE,其特征在于,所述第一小区包含的主传输点固定或可变。
  87. 根据权利要求85所述的UE,其特征在于,所述第一小区具有对应的小区标识,当所述第一小区分别为所述第一簇、所述第一虚拟小区或所述第一超级小区时,所述第一小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
  88. 根据权利要求74~87任一项所述的UE,其特征在于,所述第二集合包含的传输点的覆盖范围形成第二小区,所述第二小区为第二簇、第二虚拟小区或第二超级小区。
  89. 根据权利要求88所述的UE,其特征在于,
    所述第二小区包含的主传输点随所述UE的移动发生变化。
  90. 根据权利要求88所述的UE,其特征在于,
    所述第二小区具有对应的小区标识,当所述第二小区分别为所述第二簇、所述第二虚拟小区或所述第二超级小区时,所述第二小区对应的小区标识分别为簇标识,虚拟小区标识或超级小区标识。
  91. 根据权利要求74~90任一项所述的UE,其特征在于,
    所述第二集合为多RRC链路模式,所述第二集合中的至少两个传输点与所述UE建立RRC链接;
    或者,
    所述第二集合为单RRC链路模式,所述第二集合中的一个传输点与所述UE建立RRC链接;
    或者,
    所述第二集合为半静态模式,所述第二集合中的传输点以半静态的方式在所述第一集合中改变。
  92. 根据权利要求74~91任一项所述的UE,其特征在于,
    所述收发模块,在向基站发送所述上行信息之前,还用于接收所述基站通过配置信令发送的所述第一阈值或所述第二阈值。
  93. 根据权利要求92所述的UE,其特征在于,
    所述收发模块,具体用于向基站发送满足所述第一阈值或所述第二阈值 的传输点的上行信息。
  94. 根据权利要求74~93任一项所述的UE,其特征在于,
    所述收发模块,在向基站发送所述上行信息之后,还用于接收所述基站通过无线资源控制RRC信令发送的所述第一集合和/或所述第二集合的信息;和/或,接收所述基站通过媒体接入控制MAC信令向所述UE发送的所述第二集合的激活或去激活信息。
  95. 根据权利要求74~94任一项所述的UE,其特征在于,
    所述收发模块,还用于接收所述基站通过RRC信令发送的多链接的配置信息,以进行多链路协作。
  96. 根据权利要求95所述的UE,其特征在于,所述多链接协作包括下述协作中的至少一种:功率协作、随机接入协作与功率余量协作。
  97. 一种基站,其特征在于,包括:处理器、存储器、通信接口和系统总线,所述存储器和所述通信接口通过所述系统总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令,所述通信接口用于和其他设备进行通信,所述处理器用于运行所述计算机执行指令,使所述基站执行如权利要求1-25任一项所述的方法。
  98. 一种用户设备,其特征在于,包括:处理器、存储器、通信接口和系统总线,所述存储器和所述通信接口通过所述系统总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令,所述通信接口用于和其他设备进行通信,所述处理器用于运行所述计算机执行指令,使所述用户设备执行如权利要求26-48任一项所述的方法。
PCT/CN2016/085350 2016-06-08 2016-06-08 多链接配置方法、基站及用户设备 WO2017210907A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217000196A KR102323236B1 (ko) 2016-06-08 2016-06-08 멀티-링크 구성 방법, 기지국, 및 사용자 장비
EP16904359.3A EP3448088B1 (en) 2016-06-08 2016-06-08 Multilink configuration method and base station
CN201680084358.4A CN108886727B (zh) 2016-06-08 2016-06-08 多链接配置方法、基站及用户设备
KR1020187037606A KR102201656B1 (ko) 2016-06-08 2016-06-08 멀티-링크 구성 방법, 기지국, 및 사용자 장비
PCT/CN2016/085350 WO2017210907A1 (zh) 2016-06-08 2016-06-08 多链接配置方法、基站及用户设备
US16/308,321 US20190191476A1 (en) 2016-06-08 2016-06-08 Multi-Link Configuration Method, Base Station, and User Equipment
JP2018564275A JP6998893B2 (ja) 2016-06-08 2016-06-08 マルチリンク構成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/085350 WO2017210907A1 (zh) 2016-06-08 2016-06-08 多链接配置方法、基站及用户设备

Publications (1)

Publication Number Publication Date
WO2017210907A1 true WO2017210907A1 (zh) 2017-12-14

Family

ID=60577523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085350 WO2017210907A1 (zh) 2016-06-08 2016-06-08 多链接配置方法、基站及用户设备

Country Status (6)

Country Link
US (1) US20190191476A1 (zh)
EP (1) EP3448088B1 (zh)
JP (1) JP6998893B2 (zh)
KR (2) KR102323236B1 (zh)
CN (1) CN108886727B (zh)
WO (1) WO2017210907A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022110067A1 (zh) * 2020-11-27 2022-06-02 北京小米移动软件有限公司 测量发送方法和测量接收方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114223310B (zh) * 2019-07-12 2024-01-30 Lg电子株式会社 多链路中的能力协商
WO2021054964A1 (en) * 2019-09-19 2021-03-25 Google Llc User-equipment-coordination-set selective participation
WO2021085995A1 (ko) * 2019-10-29 2021-05-06 엘지전자 주식회사 멀티링크에서 링크 비활성화
CN115211161A (zh) * 2020-03-09 2022-10-18 三菱电机株式会社 通信装置、控制电路以及存储介质
US11737018B2 (en) * 2020-06-02 2023-08-22 Apple Inc. Multi-link hibernation mode for WLAN

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638297A (zh) * 2011-04-22 2012-08-15 北京邮电大学 协作传输节点和配对用户的选择方法
WO2012151063A2 (en) * 2011-05-02 2012-11-08 Research In Motion Limted Methods and systems of wireless communication with remote radio heads
WO2013020497A1 (zh) * 2011-08-09 2013-02-14 电信科学技术研究院 一种主传输点的确定方法和设备
CN104053240A (zh) * 2014-06-27 2014-09-17 电信科学技术研究院 一种协作多点系统中的资源分配方法及装置
CN105376748A (zh) * 2014-08-27 2016-03-02 中兴通讯股份有限公司 虚拟小区的构建、协作节点的选择方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101562855B (zh) * 2008-04-14 2011-04-06 华为技术有限公司 一种处理无线链路增加流程的方法、设备及系统
CN101594632B (zh) * 2009-06-29 2011-04-13 华为终端有限公司 小区切换的方法、装置和系统
US9246558B2 (en) * 2011-09-26 2016-01-26 Samsung Electronics Co., Ltd. CoMP measurement system and method
CN103220079B (zh) * 2012-01-20 2018-05-25 索尼公司 用于确定传输集合的方法、基站、用户设备以及通信系统
CN103326837A (zh) * 2012-03-19 2013-09-25 上海贝尔股份有限公司 用于管理多点协作的方法与装置
US9025550B2 (en) * 2012-05-21 2015-05-05 Fujitsu Limited Coordinated multipoint resource management
EP3751910A1 (en) * 2013-11-21 2020-12-16 Huawei Technologies Co., Ltd. Systems and methods for non-cellular wireless access
CN103825839B (zh) * 2014-03-17 2017-12-29 新华三技术有限公司 一种基于聚合链路的报文传输方法和设备
CN105407474B (zh) * 2014-09-04 2021-01-12 北京三星通信技术研究有限公司 一种资源管理方法及基站
CN107148791B (zh) 2014-11-06 2023-03-10 株式会社Ntt都科摩 终端、无线基站以及无线通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638297A (zh) * 2011-04-22 2012-08-15 北京邮电大学 协作传输节点和配对用户的选择方法
WO2012151063A2 (en) * 2011-05-02 2012-11-08 Research In Motion Limted Methods and systems of wireless communication with remote radio heads
WO2013020497A1 (zh) * 2011-08-09 2013-02-14 电信科学技术研究院 一种主传输点的确定方法和设备
CN104053240A (zh) * 2014-06-27 2014-09-17 电信科学技术研究院 一种协作多点系统中的资源分配方法及装置
CN105376748A (zh) * 2014-08-27 2016-03-02 中兴通讯股份有限公司 虚拟小区的构建、协作节点的选择方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022110067A1 (zh) * 2020-11-27 2022-06-02 北京小米移动软件有限公司 测量发送方法和测量接收方法
CN114830819A (zh) * 2020-11-27 2022-07-29 北京小米移动软件有限公司 测量发送方法和测量接收方法
CN114830819B (zh) * 2020-11-27 2024-01-23 北京小米移动软件有限公司 测量发送方法和测量接收方法

Also Published As

Publication number Publication date
CN108886727B (zh) 2021-01-08
EP3448088A1 (en) 2019-02-27
KR20210006001A (ko) 2021-01-15
EP3448088A4 (en) 2019-03-06
CN108886727A (zh) 2018-11-23
KR102201656B1 (ko) 2021-01-12
JP2019524022A (ja) 2019-08-29
EP3448088B1 (en) 2020-04-22
US20190191476A1 (en) 2019-06-20
JP6998893B2 (ja) 2022-01-18
KR102323236B1 (ko) 2021-11-08
KR20190011775A (ko) 2019-02-07

Similar Documents

Publication Publication Date Title
TWI822969B (zh) 信號傳輸、信號測量上報、定位方法及裝置、電腦存儲介質
WO2017210907A1 (zh) 多链接配置方法、基站及用户设备
US20190053094A1 (en) Signal transmission method and device
KR20210063394A (ko) 간섭 측정 방법 및 장치
WO2020221223A1 (zh) 通信方法、装置和系统
WO2020078318A1 (zh) 通信方法及装置
WO2018059151A1 (zh) 资源管理指示方法及装置
JP2023536671A (ja) 測位用の測定方法、装置及び記憶媒体
CN114390634A (zh) 一种中继终端的选择方法、终端及存储介质
WO2017193276A1 (zh) 通信方法和通信装置
JP7133024B2 (ja) 無線デバイスからネットワークへデータを送信する方法および装置
WO2021088770A1 (zh) 一种测量配置方法及设备
WO2020164455A1 (zh) 一种测量信息上报方法以及相关装置
WO2019228459A1 (zh) 通信方法、装置及存储介质
WO2024007878A1 (zh) 通信方法及装置
WO2014205678A1 (zh) 测量控制方法、测量方法及设备
WO2023202323A1 (zh) 一种信息处理方法、装置及设备
CN105611977B (zh) 一种信息上报、接收方法、ue及网络设备
JP7313475B2 (ja) 緩和されたインター周波数測定
WO2023207744A1 (zh) 资源调度方法、设备、装置及存储介质
WO2021243614A1 (zh) 信息处理方法及装置
WO2023011265A1 (zh) 一种通信方法和通信装置
TW202410714A (zh) 信號傳輸、信號測量上報、定位方法及裝置
KR20230161500A (ko) 정보 전송 방법 및 장치
EP3841834A1 (en) Cellular telecommunications network

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2016904359

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016904359

Country of ref document: EP

Effective date: 20181121

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187037606

Country of ref document: KR

Kind code of ref document: A