WO2023208211A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023208211A1
WO2023208211A1 PCT/CN2023/091696 CN2023091696W WO2023208211A1 WO 2023208211 A1 WO2023208211 A1 WO 2023208211A1 CN 2023091696 W CN2023091696 W CN 2023091696W WO 2023208211 A1 WO2023208211 A1 WO 2023208211A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
indication information
information
index
Prior art date
Application number
PCT/CN2023/091696
Other languages
English (en)
French (fr)
Inventor
董昶钊
刘显达
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023208211A1 publication Critical patent/WO2023208211A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters

Definitions

  • the present application relates to the field of mobile communication technology, and in particular, to a communication method and device.
  • the fifth generation mobile communication system uses high-frequency communication, that is, using ultra-high frequency band (such as a frequency band greater than 6 gigahertz (GHz)) signals to transmit data.
  • ultra-high frequency band such as a frequency band greater than 6 gigahertz (GHz)
  • GHz gigahertz
  • a major problem with high-frequency communications is that signal energy drops sharply with transmission distance, resulting in short signal transmission distances.
  • high-frequency communications use analog beam technology, which is weighted through a large-scale antenna array to concentrate the signal energy in a smaller range to form a beam, thereby improving the transmission distance.
  • Network equipment can generate different beams, pointing in different transmission directions.
  • network equipment can use multiple transmitter receiver points (TRP) to transmit data to terminal equipment.
  • TRP transmitter receiver points
  • unified TCI transmission configuration indicator
  • This application provides a communication method and device to accurately determine the spatial parameters used in signals/channels and improve communication reliability.
  • the first aspect is to provide a communication method, which can be applied in a scenario where multiple signals/channels indicate spatial parameters through TCI.
  • the TCI can be called unified TCI.
  • the method may be implemented by a terminal device or a component in the terminal device, such as at least one of a processor, a transceiver, a processing module or a transceiver module.
  • the method includes: the terminal device receives first indication information, the first indication information is used to indicate a first spatial parameter, and the first spatial parameter is used to transmit a first type of signal/ Channel, the first type of signal/channel includes sounding reference signal (SRS), channel state information reference signal (CSI-RS), physical uplink control channel, PUCCH), physical downlink control channel (PDCCH), physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH), phase tracking signal (phase tracking reference signal , PTRS), demodulation reference signal (demodulation reference signal, DMRS), tracking reference signal (tracking reference signal, TRS), or synchronization signal block (synchronization signal block, SSB) at least two.
  • SRS sounding reference signal
  • CSI-RS channel state information reference signal
  • PUCCH physical downlink control channel
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • phase tracking signal phase tracking reference signal
  • PTRS demodulation reference signal
  • the terminal device may also transmit a first signal/channel according to the first spatial parameter, the type of the first signal/channel belongs to the first type, and the first index corresponding to the first signal/channel is the same as the first signal/channel.
  • the first index corresponding to the indication information is the same.
  • the terminal device when the first index of the first signal is the same as the first index corresponding to the first indication information, the terminal device can transmit the first signal according to the first spatial parameter indicated by the first indication information.
  • the first spatial parameter may be used to transmit at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB.
  • the first indication information may be unified TCI. Therefore, this method can accurately determine the spatial parameters used by the signal/channel to be sent in a scenario where unified TCI indicates the spatial parameters of the signal/channel, and can improve communication reliability.
  • the terminal device may also receive second indication information, where the second indication information is used to indicate the second spatial parameter.
  • a second signal/channel is transmitted according to the second spatial parameter.
  • the second signal/channel belongs to a second type.
  • the second type of signal/channel includes SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, At least two of PTRS, DMRS, TRS, or SSB, the second index corresponding to the second signal is the same as the second index corresponding to the second indication information.
  • the second indication information may be the same as the first indication information, so the second indication information may refer to the description of the first indication information in this application.
  • the second spatial parameter please refer to the description of the first spatial parameter in this application.
  • the second signal/channel please refer to the description of the first signal/channel in this application.
  • the second type please refer to the description of the first signal/channel in this application. Description of the type.
  • the terminal device can determine the first spatial parameter or the second index according to the first index or the second index corresponding to the signal/channel to be sent.
  • the second space parameter transmits the signal/channel to be sent to further improve communication reliability.
  • the terminal device may also receive first information, and the first information may be used to indicate that the first indication information is effective for the first signal/channel.
  • the terminal device can accurately determine the spatial parameters suitable for determining (periodic or aperiodic) SRS and/or (periodic or aperiodic) CSI-RS based on the first indication information, further improving communication reliability.
  • the terminal device may also receive second information, where the second information is used to indicate obtaining the first indication information.
  • the second information may indicate multiple TCI states as a unified TCI state pool and/or an activated unified TCI state.
  • the first indication information may be used to indicate a unified TCI in the pool of unified TCI states and/or activated unified TCI states.
  • the second information can be used to indicate the optional range of the first indication information, thereby realizing flexible indication of the first indication information.
  • the second aspect provides a communication method, which can be applied in a scenario where multiple signals/channels indicate spatial parameters through TCI.
  • the TCI can be called unified TCI.
  • the method may be implemented by a network device or a component in the network device, such as at least one of a processor, a transceiver, a processing module or a transceiver module.
  • the method includes: the network device sends first indication information, the first indication information is used to indicate a first spatial parameter, and the first spatial parameter is used to transmit a first type of signal/ Channel, the first type of signal/channel includes at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS or SSB.
  • the network device may also transmit a first signal/channel according to the first spatial parameter, the type of the first signal/channel belongs to the first type, and the first index corresponding to the first signal/channel is the same as the first signal/channel.
  • the first index corresponding to the indication information is the same.
  • the network device can transmit the first signal according to the first spatial parameter indicated by the first indication information.
  • the first spatial parameter may be used to transmit at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB.
  • the first indication information may be unified TCI. Therefore, this method can accurately determine the spatial parameters used by the signal/channel to be sent in a scenario where unified TCI indicates the spatial parameters of the signal/channel, and can improve communication reliability.
  • the network device may also send second indication information, where the second indication information is used to indicate the second spatial parameter.
  • a second signal/channel is transmitted according to the second spatial parameter.
  • the second signal/channel belongs to a second type.
  • the second type of signal/channel includes SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, At least two of PTRS, DMRS, TRS, or SSB, the second index corresponding to the second signal/channel is the same as the second index corresponding to the second indication information.
  • the terminal device may also send first information, and the first information may be used to indicate that the first indication information is effective for the first signal/channel.
  • the network device may also send second information, where the second information is used to indicate obtaining the first indication information.
  • the second information may indicate multiple TCI states as a unified TCI state pool and/or an activated unified TCI state.
  • the first indication information may be used to indicate a unified TCI in the pool of unified TCI states and/or activated unified TCI states.
  • the second information can be used to indicate the optional range of the first indication information, thereby realizing flexible indication of the first indication information.
  • the effective time of the first indication information is located at the hybrid automatic repeat request (Hybrid Automatic Repeat Request) indicated by the first downlink control information (DCI).
  • DCI downlink control information
  • HARQ-ACK hybrid automatic repeat request acknowledgment
  • the sending time of the first signal/channel is located after the effective time of the first indication information.
  • the terminal device and the network device can accurately determine the effective time of the first indication information and/or the first spatial parameter, and thereby pass the first spatial parameter according to the correct first indication information and/or the effective time of the first spatial parameter. Transmit signals/channels to further improve communication reliability.
  • the first spatial parameter and the second spatial parameter correspond to different TRPs.
  • Terminal equipment and network equipment can accurately determine the spatial parameters used for the signal/channel to be transmitted between any TRP according to the above method, further improving communication reliability. sex.
  • the first indication information is included in the first DCI
  • the feedback mode of the HARQ-ACK indicated by the first DCI is independent feedback
  • the first type Or the type of the first signal/channel includes PUCCH.
  • the first type or the type of the first signal/channel includes PUCCH, therefore Terminal equipment and network equipment can accurately determine the spatial parameters used by PUCCH.
  • the first indication information is included in the first DCI, and the first type includes aperiodic SRS or aperiodic CSI-RS.
  • the terminal device and the network device can implement Accurate determination of spatial parameters used for aperiodic SRS or aperiodic CSI-RS.
  • the type of the first signal and/or the first type includes periodic SRS or periodic CSI-RS, and the first signal corresponds to the first
  • the index is a control resource set (CORESET) group index (CORESET pool index).
  • the control resource set group index is based on the reference signal resource information (or reference signal/channel resource information) corresponding to the first signal. ) is determined by the instructions in ). Or it can also be said that the first index is a reference signal resource index, and the reference signal resource may be a control resource set group.
  • the terminal device can determine that the terminal device has the same control resource set according to the control resource set group index in the reference signal resource information of the first signal/channel.
  • the first indication information of the group index is transmitted, and the first signal/channel is transmitted according to the first spatial parameter indicated by the first indication information, thereby further improving communication reliability.
  • the first index corresponding to the first signal/channel may be the control resource set group index corresponding to the first signal/channel
  • the first index corresponding to the first indication information may be The index includes a control resource set group index corresponding to the first indication information.
  • the control resource set group index corresponding to the first signal/channel may be included in the reference signal resource information of the first signal/channel.
  • the reference signal resource information in this application can be used to indicate or configure the reference signal/channel.
  • the reference signal resource information is a periodic SRS or periodicity in a radio resource control (radio resource control, RRC) message or a media access control (media access control, MAC) control element (control element, CE) (MAC CE).
  • CSI-RS configuration information may include the control resource set group index or the indication information of the control resource set group index. If the indication information is the same as the control resource set group index of the first indication information, the terminal device may control the resource set group index according to the first indication information.
  • the first spatial parameter transmits the first signal/channel, thereby improving communication reliability.
  • the first index corresponding to the first indication information includes an index of the control resource set group corresponding to the first DCI, and the first DCI includes the first DCI.
  • the terminal device can transmit the first signal/channel according to the first spatial parameter indicated by the first indication information, thereby improving communication reliability.
  • the first indication information is included in the transmission configuration indication TCI field of the first DCI. And/or, the first indication information carries a target field in the first DCI, and the target field is a transmission configuration indication TCI domain.
  • the first indication information is carried in RRC signaling or MAC CE signaling. And/or, any one of the at least two types of signals/channels included in the first type is indicated by RRC signaling or MAC CE signaling.
  • the first spatial parameter information is type D (type D) quasi-colocation (or quasi-collocation, QCL) information.
  • a communication method is provided, which can be applied in a scenario where multiple signals/channels indicate spatial parameters through TCI.
  • the TCI can be called unified TCI.
  • the method may be implemented by a terminal device or a component in the terminal device, such as at least one of a processor, a transceiver, a processing module or a transceiver module.
  • the execution subject as a terminal device as an example, the method includes: the terminal device receiving indication information for indicating the third spatial parameter and the fourth spatial parameter; or, the third indication information and the fourth indication information, the third indication information It is used to indicate the third spatial parameter, and the fourth indication information is used to indicate the fourth spatial parameter.
  • the third spatial parameter is used to transmit a third type of signal/channel
  • the fourth spatial parameter is used to transmit a fourth type of signal/channel
  • the fourth type of signal/channel includes at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB.
  • the terminal device may also transmit a third signal/channel through a third spatial parameter, the port of the third signal/channel or the CDM group in which the port is located corresponds to the third indication information, and the type of the third signal/channel belongs to The third type.
  • the terminal device may receive the indication information for indicating the third spatial parameter and the fourth spatial parameter, or receive the third indication information for indicating the third spatial parameter and the third indication information for indicating the fourth spatial parameter.
  • the fourth indication information and when the port of the third signal/channel or the CDM group where the port is located corresponds to the third indication information, transmit the third signal/channel through the third spatial parameter.
  • the third spatial parameter and/or the fourth spatial parameter may be used to transmit at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB, for example, the third indication
  • the information can be unified TCI. Therefore, this method can accurately determine the spatial parameters used by the signal/channel to be sent in a scenario where unified TCI indicates the spatial parameters of the signal/channel, and can improve communication reliability.
  • the corresponding relationship between the port of the third signal/channel, or the CDM group in which the port is located, and the third indication information may be indicated by the network device, or may be protocol defined, preconfigured, or predefined, and is not required.
  • the terminal device may also receive a time-frequency resource group and/or a correspondence between a port corresponding to the time-frequency resource group and the first indication information.
  • the time-frequency resource The corresponding set of ports includes the ports of the first signal/channel.
  • the terminal device may also determine the transmission mode of the first signal according to the correspondence between the time-frequency resource group to which the port belongs and the transmission mode. Including SDM, FDM, TDM or single TCI transmission mode.
  • the terminal device may also receive information indicating that the third spatial parameter and/or the fourth spatial parameter corresponds to at least two types of signals/channels. .
  • the terminal device may also send transmission capability information, where the transmission capability information is used to indicate that the terminal device supports uplink signal transmission using N beams, where N is a positive integer.
  • the terminal device if the terminal device supports the uplink signal transmission of multiple beams, that is, N is greater than or equal to 2, the terminal device can transmit multiple PUCCHs through multiple unified TCIs. Otherwise, the terminal device only transmits multiple PUCCHs through one unified TCI.
  • any PUCCH can be regarded as a third signal/channel in the third aspect. Therefore, the spatial parameters used to transmit the PUCCH can be determined in the manner shown in the third aspect.
  • the fourth aspect provides a communication method, which can be applied in a scenario where multiple signals/channels indicate spatial parameters through TCI.
  • the TCI can be called unified TCI.
  • the method may be implemented by a network device or a component in the network device, such as at least one of a processor, a transceiver, a processing module or a transceiver module. Taking the execution subject as a terminal device as an example, the method includes: the network device sends third indication information and fourth indication information, the third indication information is used to indicate the third spatial parameter, and the fourth indication information is used to indicate the third spatial parameter.
  • the third spatial parameter is used to transmit a third type of signal/channel
  • the fourth spatial parameter is used to transmit a fourth type of signal/channel
  • the fourth type of signal/channel includes at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB.
  • the network device may also transmit a third signal/channel through a third spatial parameter, the port of the third signal/channel or the CDM group in which the port is located corresponds to the third indication information, and the type of the third signal/channel belongs to The third type.
  • the network device may send the third indication information used to indicate the third spatial parameter and the fourth indication information used to indicate the fourth spatial parameter, and use the port of the third signal/channel or the port to When the CDM group it belongs to corresponds to the third indication information, the third signal/channel is transmitted through the third spatial parameter.
  • the third spatial parameter and/or the fourth spatial parameter may be used to transmit at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB, for example, the third indication
  • the information can be unified TCI. Therefore, this method can accurately determine the spatial parameters used by the signal/channel to be sent in a scenario where unified TCI indicates the spatial parameters of the signal/channel, and can improve communication reliability.
  • the network device can also receive transmission capability information, where the transmission capability information is used to indicate that the terminal device supports uplink signal transmission using N beams, where N is a positive integer.
  • the network device can transmit multiple PUCCHs through multiple unified TCIs or the spatial parameters indicated by multiple unified TCIs. Otherwise, the network device can only transmit multiple PUCCHs through The spatial parameters indicated by a unified TCI receive multiple PUCCHs.
  • any PUCCH can be regarded as a fourth signal/channel in the fourth aspect.
  • the third indication information and the fourth indication information are included in the same DCI.
  • the third indication information and the fourth indication information are included in a third DCI, and the validity time of the third indication information and the third indication information are included in the third DCI.
  • the effective time of the fourth indication information is located after the hybrid automatic repeat request affirmative response HARQ-ACK indicated by the third DCI, and the sending time of the third signal/channel is located after the effective time of the third indication information.
  • the fifth aspect provides a communication method, which can be applied in a scenario where multiple signals/channels indicate spatial parameters through TCI.
  • the TCI can be called unified TCI.
  • the method may be implemented by a terminal device or a component in the terminal device, such as at least one of a processor, a transceiver, a processing module or a transceiver module. Taking the execution subject as a terminal device as an example, the method includes: the terminal device receives fifth indication information and sixth indication information, the fifth indication information is used to indicate the fifth spatial parameter, and the sixth indication information is used to indicate the fifth spatial parameter.
  • the fifth indication information is included in the fifth DCI
  • the sixth indication information is included in the sixth DCI
  • the terminal equipment transmits the PUCCH through the fifth spatial parameter, the sixth spatial parameter or the set spatial parameter, and the PUCCH is used to carry the HARQ-ACK indicated by the fifth DCI and the HARQ indicated by the sixth DCI. -ACK.
  • the terminal device can receive the fifth indication information carried in the fifth DCI and the sixth indication information carried in the sixth DCI, and perform the HARQ-ACK indicated by the fifth DCI and the sixth DCI indicated.
  • the PUCCH is transmitted through the fifth spatial parameter, the sixth spatial parameter or the set spatial parameter.
  • the PUCCH is used to carry the HARQ-ACK of the jointly coded fifth DCI indication and the HARQ of the sixth DCI indication.
  • -ACK wherein the fifth indication information is used to indicate the fifth spatial parameter, and the sixth indication information is used to indicate the sixth spatial parameter. Therefore, the terminal equipment can accurately determine the spatial parameters used in the PUCCH transmission, thereby improving communication reliability.
  • a communication method is provided, which can be applied to scenarios in which spatial parameters are indicated through unified TCI.
  • the method may be implemented by a network device or a component in the network device, such as at least one of a processor, a transceiver, a processing module or a transceiver module.
  • the method includes: the network device sends and receives fifth indication information and sixth indication information, the fifth indication information is used to indicate the fifth spatial parameter, and the sixth indication information is used to indicate The sixth spatial parameter, the fifth indication information is included in the fifth DCI, the sixth indication information is included in the sixth DCI, the HARQ-ACK indicated by the fifth DCI and the HARQ indicated by the sixth DCI -ACK joint encoding.
  • the terminal equipment transmits the PUCCH through the fifth spatial parameter, the sixth spatial parameter or the set spatial parameter, and the PUCCH is used to carry the HARQ-ACK indicated by the fifth DCI and the HARQ indicated by the sixth DCI. -ACK.
  • the network device can send the fifth indication information carried in the fifth DCI and the sixth indication information carried in the sixth DCI, and between the HARQ-ACK indicated by the fifth DCI and the HARQ-ACK indicated by the sixth DCI,
  • the PUCCH is transmitted through the fifth spatial parameter, the sixth spatial parameter or the set spatial parameter.
  • the PUCCH is used to carry the HARQ-ACK of the jointly coded fifth DCI indication and the HARQ of the sixth DCI indication.
  • -ACK wherein the fifth indication information is used to indicate the fifth spatial parameter, and the sixth indication information is used to indicate the sixth spatial parameter. Therefore, the network device can accurately determine the spatial parameters used in the PUCCH transmission, thereby improving communication reliability.
  • the transmission time of the PUCCH is located after the effective time of the fifth spatial parameter, the sixth spatial parameter or the set spatial parameter.
  • embodiments of the present application provide a communication device, which has the function of implementing the terminal equipment in the above-mentioned first aspect, third aspect, fifth aspect or any possible implementation manner thereof, or the second aspect, Functions of the network device in the fourth aspect, the sixth aspect or any possible implementation thereof.
  • the communication device may be a terminal device, a component in the terminal device, a network device, or a component in the network device.
  • the functions of the above communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units or means corresponding to the above functions.
  • the structure of the device includes a processing module and a transceiver module, wherein the processing module is configured to support the device to perform the above-mentioned first aspect, third aspect, fifth aspect, or any possibility thereof.
  • the function of the terminal device in the implementation manner; and/or, configured to support the device to perform the function of the network device in the second aspect, the fourth aspect, the sixth aspect, or any possible implementation manner thereof.
  • the transceiver module is used to support communication between the device and other communication devices. For example, when the device is a terminal device, the transceiver module is used to receive information from network equipment. For another example, when the device is a network device, the transceiver module is used to receive information from terminal equipment, etc.
  • the communication device may also include a storage module, which is coupled to the processing module and stores necessary program instructions and data for the device.
  • the processing module can be a processor
  • the communication module can be a transceiver
  • the storage module can be a memory.
  • the memory can be integrated with the processor, or can be provided separately from the processor.
  • the structure of the device includes a processor and may also include a memory.
  • the processor is coupled to the memory and can be used to execute computer program instructions stored in the memory, so that the device executes the method in the above-mentioned first aspect, third aspect, fifth aspect or any possible implementation manner thereof, or executes the above-mentioned third aspect. Methods in the second aspect, the fourth aspect, the sixth aspect or any possible implementation manner thereof.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver or an input/output interface; when the device is a chip included in the terminal device or network device, the communication interface may be an input/output interface of the chip.
  • the transceiver may be a transceiver circuit, and the input/output interface may be an input/output circuit.
  • embodiments of the present application provide a communication system, which may include a communication device for implementing any one or more aspects of the above-mentioned first to sixth aspects and the methods shown in each possible implementation manner thereof.
  • the communication system may include one or more of a terminal device and a network device.
  • the terminal device can be used to implement the method in the above-mentioned first aspect, third aspect, fifth aspect or any possible implementation manner thereof, and the network device can be used to implement the above-mentioned second aspect, fourth aspect, sixth aspect or method in any of its possible implementations.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores program instructions. When the program instructions are run on a computer, they cause the computer to execute the first to third aspects of the embodiments of the present application.
  • computer-readable storage media can be any available media that can be accessed by a computer.
  • computer-readable media may include non-transitory computer-readable media, random-access memory (random-access memory, RAM), read-only memory (read-only memory, ROM), electrically erasable memory Except electrically electrically programmable read-only memory (EEPROM), CD-ROM or other optical disk storage, magnetic disk storage media or other magnetic storage devices, or can be used to carry or store expectations in the form of instructions or data structures any other medium that contains program code and can be accessed by a computer.
  • RAM random-access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EEPROM electrically electrically programmable read-only memory
  • CD-ROM or other optical disk storage magnetic disk storage media or other magnetic storage devices, or can be used to carry or store expectations in the form of instructions or data structures any other medium that contains program code and can be accessed by a computer.
  • embodiments of the present application provide a computer program product that includes computer program code or instructions.
  • the computer program code or instructions are run on a computer, the above first to sixth aspects or any one of them is possible.
  • the methods described in Implementation are executed.
  • the present application also provides a chip, including a processor, the processor being coupled to a memory and configured to read and execute program instructions stored in the memory, so that the chip implements the above-mentioned first
  • a chip including a processor, the processor being coupled to a memory and configured to read and execute program instructions stored in the memory, so that the chip implements the above-mentioned first
  • Figure 1 is a schematic diagram of the architecture of a wireless communication system provided by this application.
  • FIG. 2 is a schematic diagram of beam training provided by this application.
  • Figure 3 is a signal flow diagram indicating beam information of PDSCH provided by this application.
  • FIG. 4 is a schematic diagram of the format of MAC CE signaling provided by this application.
  • Figure 5 is a schematic flow chart of a communication method provided by this application.
  • FIG. 6 is a schematic diagram of signal interaction provided by this application.
  • Figure 7 is a schematic flow chart of another communication method provided by this application.
  • FIG. 8 is another signal interaction diagram provided by this application.
  • Figure 9 is a schematic flow chart of another communication method provided by this application.
  • Figure 10 is a schematic structural diagram of a communication device provided by this application.
  • Figure 11 is a schematic structural diagram of another communication device provided by this application.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • words such as “first” and “second” are used to distinguish identical or similar items with basically the same functions and effects. Those skilled in the art can understand that words such as “first” and “second” do not limit the number and execution order, and words such as "first” and “second” do not limit the number and execution order.
  • FIG. 1 shows the architecture of a possible communication system suitable for the method provided by the embodiment of the present application.
  • the architecture of the communication system includes a network device and at least one terminal device, wherein: the network device can pass through different directions.
  • the beam establishes a communication link with at least one terminal device (such as terminal device 1 and terminal device 2 shown in the figure).
  • the network device may provide wireless access-related services for the at least one terminal device, and implement one or more of the following functions: wireless physical layer function, resource scheduling and wireless resource management, quality of service , Qos) management, wireless access control and mobility management functions.
  • the at least one terminal device may also form a beam for data transmission with the network device. In this embodiment, the network device and at least one terminal device may communicate through beams.
  • the network device involved in the embodiment of this application can be any device with wireless transceiver function or a chip that can be disposed on the device.
  • the device includes but is not limited to: evolved node B (eNB) , wireless network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (e.g., home Evolved NodeB (home evolved NodeB, or home node B (HNB)), baseband unit (baseband unit, BBU), access point (access) in a wireless fidelity (wireless fidelity, WIFI) system point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP/TP) or remote radio head (remote radio head, RRH), etc.
  • It can also be a base station (gNB) in 5G, such
  • Point network nodes such as baseband units, or distributed units (DU), etc.
  • the network device can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, and access point in future 5G networks.
  • CRAN cloud radio access network
  • the embodiments of this application are not limited to network access equipment (such as gNB) or access network equipment in future evolved PLMN networks.
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the network device may serve as a scheduling device.
  • the network device may include but is not limited to: LTE base station eNB, NR base station gNB, operator, etc., and its functions may include, for example: configuring uplink and downlink resources;
  • DCI downlink control information
  • the network device may also serve as a sending device.
  • the network device may include but is not limited to: TRP and RRH, and its functions may include, for example: transmitting downlink signals and receiving uplink signals.
  • the terminal equipment involved in the embodiments of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, Terminal, wireless communication equipment, user agent or user device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a device with wireless communications Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or future evolved public land mobile communications networks (PLMN) Terminal equipment, etc., the embodiments of this application are not limited to this.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), tablet computer (pad), computer with wireless transceiver function, wearable device, virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality) , AR terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, and wireless terminals in smart grids , wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of this application do not limit application scenarios.
  • the foregoing terminal equipment and the chip that can be installed on the foregoing terminal equipment are collectively referred to as terminal equipment.
  • the functions of the terminal device may include, for example, but are not limited to: receiving downlink/sidelink signals and/or transmitting uplink/sidelink signals.
  • the network device and the terminal device may include: an RRC signaling interaction module, a MAC signaling interaction module, and a PHY signaling interaction module.
  • the RRC signaling interaction module may be: a module used by network equipment and terminal equipment to send and receive RRC signaling.
  • the MAC signaling interaction module can be: a module used by network equipment and terminal equipment to send and receive MAC control elements (control elements, CE).
  • PHY signaling and data can be: modules used by network equipment and terminal equipment to send and receive uplink control signaling or downlink control signaling, uplink and downlink data or downlink data.
  • the UE can obtain the channel state information CSI based on the channel quality measurement of the channel state information reference signal (channel state information reference signal, CSI-RS).
  • the CSI includes a rank indicator (rank indicator, RI) and a precoding matrix indicator (precoding matrix indicator). , PMI), at least one of channel quality indicator (channel quality indicator, CQI), etc.
  • the wireless communication systems mentioned in the embodiments of this application include, but are not limited to: global system of mobile communication (GSM) system, code division multiple access (code division multiple access, CDMA) system, wideband code division multiple access (wideband) code division multiple access (WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, advanced long term evolution (LTE-advanced, LTE-A) system, LTE frequency Frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), global interoperability for microwave access (WiMAX) ) communication system, 5G, integrated system of multiple access systems, or evolution system, three major application scenarios of 5G mobile communication system: enhanced mobile broadband (eMBB), ultra-reliable and low-latency communication (ultra reliable and low -latency communication (URLLC) and enhanced machine type communication (eMTC) or new communication systems that will appear in the future.
  • GSM global system of mobile communication
  • CDMA code division multiple
  • Reference signal resources In this embodiment of the present application, the resources used by network devices to send reference signals may be called reference signal resources.
  • the reference signals may be any of the following signals: synchronization signals, broadcast channels, and synchronization signal broadcasts.
  • Channel block synchronization signal/physical broadcast channel block, SS/PBCH block
  • broadcast signal demodulation signal channel state information reference signal (CSI-RS), cell specific reference signal, CS-RS), user equipment specific reference signal (US-RS), downlink control channel demodulation reference signal, downlink data channel demodulation reference signal, downlink phase noise tracking signal, sounding reference signal , SRS) etc.
  • SS/PBCH block can be referred to as synchronization signal block (SSB).
  • Beam is a communication resource.
  • the beam can be a wide beam, a narrow beam, or other types of beams.
  • the technology for forming beams may be beam forming technology or other technical means.
  • Beamforming technology can be specifically: digital beamforming technology, analog beamforming technology, hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One beam corresponds to one or more antenna ports and is used to transmit data channels, control channels, detection signals, etc.
  • One or more antenna ports corresponding to a beam can also be regarded as an antenna port set.
  • the beam used to send signals can be called a transmission beam (transmission beam, Tx beam), a spatial domain transmission filter (spatial domain transmission filter) or a spatial transmission parameter (spatial transmission parameter);
  • the beam used to receive signals can be called a It is the receive beam (reception beam, Rx beam), which can be called the spatial domain receive filter (spatial domain receive filter) or spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is emitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • Beams can be divided into: transmitting beams and receiving beams of network equipment, and transmitting beams and receiving beams of terminal equipment.
  • the transmit beam of the network device is used to describe the beamforming information on the transmit side of the network device
  • the receive beam of the network device is used to describe the beamforming information on the receive side of the network device.
  • the transmit beam of the terminal device is used to describe the beamforming information on the transmit side of the terminal device
  • the receive beam of the terminal device is used to describe the beamforming information on the receive side of the terminal device. That is, beams can be used to describe beamforming information.
  • Beams generally correspond to resources, and beams can correspond to: time resources, space resources, and frequency domain resources.
  • the beam may also correspond to a reference signal resource (for example, a beamforming reference signal resource) or beamforming information.
  • a reference signal resource for example, a beamforming reference signal resource
  • beamforming information for example, beamforming information
  • the beam may also correspond to information associated with the reference signal resource of the network device.
  • the reference signal may be, for example: CSI-RS, SSB, DMRS, phase tracking signal (PTRS), or TRS, etc.
  • the information associated with the reference signal resource may be the reference signal resource index (or identification), or QCL information (such as type D QCL), etc.
  • the reference signal resource index corresponds to a transceiver beam pair previously established during measurement based on the reference signal resource. Through the reference signal resource index, the terminal device can infer beam information.
  • the beam can also correspond to a spatial filter (spatial filter or spatial domain filter) or a spatial domain transmission filter (spatial domain transmission filter).
  • a spatial filter spatial filter or spatial domain filter
  • a spatial domain transmission filter spatial domain transmission filter
  • the receiving beam can be equivalent to the spatial transmission filter, the spatial transmission filter, the spatial receiving filter, and the spatial receiving filter; the transmitting beam can be equivalent to the spatial filter, the spatial transmission filter, the spatial transmit filter, and the spatial transmit filter.
  • the information of spatially related parameters can be equivalent to spatial domain transmission/receive filter.
  • the spatial filter generally includes a spatial transmit filter and/or a spatial receive filter.
  • the spatial filter can also be called a spatial transmit filter, a spatial receive filter, a spatial transmission filter, a spatial transmission filter, etc.
  • the receiving beam on the terminal equipment side and the transmitting beam on the network equipment side may be downlink spatial filters, and the transmitting beam on the terminal equipment side and the receiving beam on the network equipment side may be uplink spatial filters.
  • the beamforming signals may include broadcast signals, synchronization signals, channel state information reference signals, etc.
  • signals are transmitted based on beamforming technology, once the user moves, the direction of the shaped beam corresponding to the transmitted signal may no longer match the position of the moved user, resulting in frequent interruptions in the received signal.
  • a channel quality measurement and result reporting based on beam forming technology is introduced. The measurement of the channel quality may be based on the beamformed synchronization signal or the channel state information reference signal.
  • the report of the channel quality result of the shaped beam reference signal may also be sent by the user equipment to the base station through the PUCCH or PUSCH.
  • the UE selects the better N beams by measuring multiple beams sent by the base station, and reports the measurement information of the better N beams to the base station.
  • the beam measurement information mainly includes at least one of reference signal resource index, reference signal received power (RSRP), and signal to interference plus noise ratio (SINR).
  • RSRP reference signal received power
  • SINR signal to interference plus noise ratio
  • the beam on the transmitting side of the base station is represented by the reference signal resource, such as beam index 1, which is described in the standard as reference signal resource index 1.
  • the receiving beam on the terminal side is represented by spatial Rx in the QCL. parameter indicates that beam status information is described in the standard as L1-RSRP related information (related information) or L1-SINR related information.
  • the beam training process between the base station and the UE may include the following steps:
  • BPL beam pair link
  • a BPL includes a base station transmitting beam and a UE receiving beam
  • a BPL includes a UE transmitting beam and a base station receiving beam
  • the UE device implements selection of the base station transmitting beam and/or the UE receiving beam based on the beam scanning of the network device
  • the network device implements the selection of the UE transmitting beam and/or the base station receiving beam based on the beam scanning of the UE device. As shown in the numbered part a and the numbered part b in Figure 2.
  • the transmit beam which can be a beam transmitted by the base station or a beam transmitted by the UE.
  • the transmit beam is the base station transmit beam, as shown in part e in Figure 2
  • the base station sends the reference signal to the UE through different transmit beams, and the UE receives the reference signal sent by the base station through different transmit beams through the same receive beam. signal, and determines the optimal transmit beam of the base station based on the received signal, and then feeds back the optimal transmit beam of the base station to the base station so that the base station can update the transmit beam.
  • the UE When the transmit beam is a UE transmit beam, as shown in part d in Figure 2, the UE sends reference signals to the base station through different transmit beams, and the base station receives the reference signals sent by the UE through different transmit beams through the same receive beam. signal, and determines the optimal transmit beam of the UE based on the received signal, and then feeds back the optimal transmit beam of the UE to the UE so that the UE can update the transmit beam.
  • the above-mentioned process of sending reference signals through different transmit beams can be called beam scanning, and the process of determining the optimal transmit beam based on the received signal can be called beam matching.
  • Update of the receiving beam which can be a base station receiving beam or a UE receiving beam.
  • the receiving beam is the receiving beam of the base station, as shown as number f in Figure 2
  • the UE sends the reference signal to the base station through the same transmit beam.
  • the base station uses different receiving beams to receive the reference signal sent by the UE, and then determines based on the received signal
  • the optimal receiving beam of the base station to update the receiving beam of the base station.
  • the receiving beam is the receiving beam of the UE, as shown as number c in Figure 2
  • the base station sends the reference signal to the UE through the same transmit beam.
  • the UE uses different receiving beams to receive the reference signal sent by the base station, and then based on the received signal Determine the optimal receiving beam of the UE to update the receiving beam of the UE.
  • both the base station transmitting beam and the UE receiving beam may change dynamically.
  • the optimal receiving beam determined by the UE based on the received signal may include multiple.
  • the UE may combine multiple receiving beams.
  • the beam information is fed back to the network device, and the base station can instruct the UE to receive the beam by sending beam indication information to the UE.
  • the UE can accurately determine the UE receiving beam based on the beam indication information sent by the base station, thereby saving the UE's beam scanning time and achieving power saving effects.
  • the spatially related parameter information may include quasi-collocation (QCL) information and may also include spatial relationship information.
  • QCL quasi-collocation
  • QCL information is used to indicate the spatial correlation parameters of downlink signals/channels (can also be called spatial correlation characteristics), and spatial relation information is used to indicate the spatial correlation parameters of uplink signals/channels (can also be called spatial correlation characteristics).
  • Uplink signals/channels may include but are not limited to: physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH), sounding reference signal (sounding reference signal, SRS), phase tracking reference Signal (phase-tracking reference signal, PTRS) and demodulation reference signal (demodulation reference signal, DMRS).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • SRS sounding reference signal
  • phase tracking reference Signal phase-tracking reference signal
  • PTRS phase-tracking reference signal
  • demodulation reference signal demodulation reference signal
  • Downlink signals/channels may include but are not limited to: physical downlink control channel (PDCCH), physical downlink shared channel (PDSCH), tracking reference signal (TRS), channel status information Reference signal (channel state information reference signal, CSI-RS), phase-tracking reference signal (PTRS), demodulation reference signal (demodulation reference signal, DMRS) and SSB.
  • SSB includes one or more of the following: primary synchronization signal (primary synchronization signal, PSS), secondary synchronization signal (secondary synchronization signal, SSS), and PBCH. Mainly used for cell search, cell synchronization, and signals carrying broadcast information.
  • the spatial relation information is used to assist in describing the beamforming information and transmission process on the transmitting side of the terminal device.
  • the target reference signal is generally a downlink signal, such as DMRS or SRS.
  • the reference signal or source reference signal generally can be: CSI-RS, SRS, or SSB, etc.
  • Quasi-co-location can also be called quasi-co-site or co-location.
  • QCL information may also be called QCL hypothesis information.
  • QCL information is used to assist in describing the terminal device's reception of beamforming information and reception process.
  • the QCL information can be used to indicate the QCL relationship between two reference signals.
  • the target reference signal is generally a downlink signal, such as DMRS or CSI-RS.
  • the referenced reference signal or source reference signal can generally be: CSI-RS, SSB, or TRS, etc.
  • TRS is also a type of CSI-RS.
  • the QCL information configuration method of PDCCH can be as follows:
  • the K candidate QCL information may include, for example, K transmission configuration indicator (transmission configuration indicator, TCI) states (TCI state), where, K is an integer greater than or equal to 1;
  • QCL information of the PDCCH such as indicating the QCL information of the PDCCH through the media access control (media access control, MAC) control element (control element, CE) (MAC CE) (optional, when K is an integer greater than 1) .
  • media access control media access control, MAC
  • CE control element
  • K is an integer greater than 1
  • the terminal equipment assumes that the DMRS of PDCCH and PDSCH and the SSB determined during initial access are QCL (or have a QCL relationship).
  • the signals corresponding to the antenna ports with QCL relationship can have the same or similar spatial characteristic parameters (or parameters), or the spatial characteristic parameters (or parameters) of an antenna port can be used to determine the spatial characteristics of the antenna.
  • the port has the spatial characteristic parameter (or parameter) of another antenna port with a QCL relationship, or the two antenna ports have the same or similar spatial characteristic parameter (or parameter), or the difference between the two antenna ports The difference in spatial characteristic parameters (or parameters) is less than a certain threshold.
  • the spatial characteristic parameters of two reference signals or channels that satisfy the QCL relationship are the same (or close, or similar), so that the spatial characteristic parameters of the target reference signal can be inferred based on the source reference signal resource index.
  • the spatial characteristic parameters of the two reference signals or channels that satisfy the spatial relationship information are the same (or close, or similar), so that the spatial characteristic parameters of the target reference signal can be inferred based on the source reference signal resource index. .
  • the spatial characteristic parameters may include one or more of the following parameters:
  • Angle of incidence angle of arrival, AoA
  • dominant angle of incidence AoA
  • average angle of incidence power angular spectrum (PAS) of the angle of incidence
  • angle of departure angle of departure, AoD
  • dominant angle of incidence Average exit angle, power angle spectrum of exit angle
  • terminal equipment transmit beamforming terminal equipment receive beamforming, spatial channel correlation, network equipment transmit beamforming, network equipment receive beamforming, average channel gain, average channel delay (average delay), delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (doppler shift), or spatial Rx parameters (spatial Rx parameters), etc.
  • the above angles may be: decomposition values of different dimensions, or a combination of decomposition values of different dimensions.
  • the antenna ports may be antenna ports with different antenna port numbers.
  • the antenna ports can also be: antenna ports with the same antenna port number or different antenna port numbers that transmit or receive information at different times.
  • the antenna ports can also be: antenna ports with the same antenna port number or different antenna port numbers that transmit or receive information in different frequencies.
  • the antenna ports may also be antenna ports that have the same antenna port number or different antenna port numbers and transmit or receive information in different code domain resources.
  • These spatial characteristic parameters describe the spatial channel characteristics between the antenna ports of the source reference signal and the target reference signal, which help the terminal equipment complete the receiving side beam forming or receiving processing process based on the QCL information.
  • the terminal device may receive the target reference signal according to the receiving beam information of the source reference signal indicated by the QCL information.
  • These spatial characteristic parameters also help the terminal equipment complete the transmitting side beam forming or transmitting processing process based on the spatial related information.
  • the terminal device may transmit the target reference signal according to the transmission beam information of the source reference signal indicated by the spatial correlation information.
  • the network device may indicate the demodulation reference signal of the PDCCH or PDSCH and one of the multiple reference signal resources previously reported by the terminal device. or more satisfy the QCL relationship.
  • the reference signal may be CSI-RS.
  • Each reported CSI-RS resource index corresponds to a transceiver beam pair previously established based on the CSI-RS resource measurement. It should be understood that the receiving beam information of the two reference signals or channels that satisfy the QCL relationship is the same, and the terminal device can infer the receiving beam information of the PDCCH or PDSCH according to the reference signal resource index.
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A QCL relationship (or type A QCL information): Doppler shift (Doppler shift), Doppler spread (Doppler spread), average delay (average delay), delay spread (delay spread) ;
  • Type B QCL relationship (or type B QCL information): Doppler frequency shift, Doppler spread;
  • Type C type C QCL relationship (or type C QCL information): Doppler frequency shift, average delay; and
  • Type D type D QCL relationship (or type D QCL information): spatial Rx parameter.
  • Network equipment can configure one or more types of QCL for terminal equipment at the same time, such as QCL type A+type DQCL relationship, type C+type DQCL relationship, etc.
  • a QCL relationship refers to a QCL relationship of type D
  • it can be considered an airspace QCL.
  • the antenna port satisfies the spatial QCL relationship
  • it can be the QCL relationship between the port for the downlink signal and the port for the downlink signal, or the QCL relationship between the port for the uplink signal and the port for the uplink signal (called spatial relation above).
  • the two signals can have the same AOA or AOD, which is used to indicate that they have the same receive beam or transmit beam.
  • the AOA and AOD of the two signals may have a corresponding relationship, or the AOD and AOA of the two signals may have a corresponding relationship.
  • Relationship that is, beam reciprocity can be used to determine the uplink transmit beam based on the downlink receive beam, or to determine the downlink receive beam based on the uplink transmit beam.
  • Signals transmitted on ports with spatial QCL relationships can also have corresponding beams.
  • the corresponding beams can include one or more of the following: the same receive beam, the same transmit beam, and the transmit beam corresponding to the receive beam (such as For scenarios with reciprocity), receive beams corresponding to transmit beams (for example, can correspond to scenarios with reciprocity).
  • Signals transmitted on a port with a spatial QCL relationship can also be understood as receiving or transmitting signals using the same spatial filter.
  • the spatial filter can be one or more of the following: precoding, antenna port weights, antenna port phase deflection, or antenna port amplitude gain.
  • Signals transmitted on ports with airspace QCL relationships can also be understood as having corresponding beam pair links (BPL).
  • the corresponding BPL includes one or more of the following: the same downlink BPL, the same uplink BPL, and The uplink BPL corresponding to the downlink BPL, or the downlink BPL corresponding to the uplink BPL.
  • the spatial reception parameter (ie, QCL of type D) can be understood as a parameter indicating the direction information of the reception beam.
  • scenario applicable to the QCL assumption in this application may also be two reference signals, or it may also be an association relationship between transmission objects.
  • Control resource set It is a set of resources used to transmit downlink control information. It can also be called a control resource area, or a set of physical downlink control channel resources.
  • the network device may configure one or more control resource sets for the terminal device for sending PDCCH.
  • the network device can send a control channel to the terminal device on any control resource set corresponding to the terminal device.
  • the network device also needs to notify the terminal device of other configurations associated with the control resource set, such as a search space set, etc.
  • There are differences in the configuration information of each control resource set such as differences in frequency domain width, time domain length, etc.
  • control resource set in this application can be any of the following: CORESET, control region (control region) defined by the 5G mobile communication system, or enhanced-physical downlink control channel (ePDCCH) set (set).
  • CORESET control region
  • control region control region
  • ePDCCH enhanced-physical downlink control channel
  • the time-frequency position occupied by the PDCCH can be called the downlink control area.
  • the PDCCH is always located in the first m orthogonal frequency division multiplexing (OFDM) symbols (referred to as symbols in this application) of a subframe, where the possible value of m is 1 , 2, 3, or 4.
  • OFDM orthogonal frequency division multiplexing
  • the downlink control area can be flexibly configured through control resource set and search space set through RRC signaling.
  • the control resource set can configure the frequency domain position of the PDCCH or control channel element (CCE), the number of sustained symbols in the time domain, and other information.
  • the search space set can configure the PDCCH detection period and offset, the starting symbol in a time slot and other information.
  • the search space set can be configured with a PDCCH cycle of 1 time slot and a time domain starting symbol of symbol 0. Then the terminal device can detect the PDCCH at the starting position of each time slot.
  • TCI status QCL information that can be used to indicate a signal or channel.
  • the channel may be, for example, PDCCH, CORESET, or PDSCH.
  • the signal may be, for example: CSI-RS, DMRS, or TRS, etc.
  • TCI information can refer to the reference signal included in the TCI and the channel satisfying the QCL relationship. It is mainly used to indicate that when receiving the channel, its spatial characteristic parameters and other information are the same, similar, or similar to the spatial characteristic parameters and other information of the reference signal included in the TCI. .
  • TCI information can also refer to the reference signal included in the TCI and the signal satisfying the QCL relationship. It is mainly used to indicate that when the signal is received, its spatial characteristic parameters and other information are the same, similar, or other information as the spatial characteristic parameters and other information of the reference signal included in the TCI. similar.
  • a TCI state can configure one or more reference signals and the associated QCL type.
  • the configuration information of a TCI state can include the identification of one or two reference signal resources, and the The associated QCL type.
  • QCL types can be divided into four categories: type A, type B, type C, and type D, which are different combinations or selections of ⁇ Doppler shift, Doppler spread, average delay, delay spread, spatial Rx parameter ⁇ .
  • the TCI status includes QCL information, or the TCI status is used to indicate QCL information.
  • the TCI status is configured by the network device to each terminal device.
  • the following is an exemplary TCI status format:
  • TCI status can be configured globally.
  • TCI states configured for different cells and different bandwidth parts (BWP) if the index of the TCI state is the same, the configuration of the corresponding TCI state is also the same.
  • the beam indication method for PDSCH, PDCCH, CSI-RS, PUCCH, SRS and PUSCH is implemented based on TCI status.
  • the beam information of PDSCH (or QCL message) can be indicated through the three-level signaling of RRC message, MAC CE and DCI, as shown in Figure 3.
  • the beam information of the PDSCH can also be indicated through two levels of RRC and DCI signaling.
  • RRC messages can be used to configure N TCI states for PDSCH
  • the indication field of the RRC message can be configured as follows:
  • MAC CE is used to activate K TCI states from N TCI states (a subset of N TCI states, K is less than or equal to N).
  • the MAC CE can be configured as shown in Figure 4.
  • the serving cell ID field can be used to indicate the ID of the serving cell to which the TCI status indicated by the MAC CE belongs.
  • the BWP identification field may include a BWP identification (identity, ID), which is used to indicate the downlink bandwidth area applied by the MAC CE.
  • the Ti field is set to "0" to indicate that the TCI state with the TCI state identifier i is deactivated and will not be mapped to the TCI field of the DCI.
  • the code points mapped from the TCI state to DCI are mapped in the order of the TCI state in which all Ti subfields are set to "1". For example, the TCI state with the first Ti field set to "1" is mapped to codepoint value (value) 0; the TCI state with the second Ti field set to "1" is mapped to codepoint value 1 and so on.
  • the maximum number of active TCI states is 8.
  • MAC CE can also map up to two TCI states to one code point in the TCI domain of DCI. (Mainly used in multi-TPR transmission scenarios).
  • the TCI field in DCI has X bits (bits) used to indicate that at least one TCI state among K TCI states is used for PDSCH reception.
  • the TCI field of the DCI can be used to indicate one of the TCI states shown in Table 2.
  • whether the TCI domain exists in the DCI can be indicated by high-level signaling such as an RRC message.
  • high-level signaling such as an RRC message.
  • RRC TCI-Present InDCI TCI domain presence indication
  • the indication of the PDCCH beam information can be achieved through the RRC message and the secondary signaling of MAC CE.
  • the RRC message can be used to configure M TCI states, which are a subset of the N TCI states of the PDSCH configured by the RRC message shown in Figure 2.
  • the MAC CE can be used to activate one TCI state among M TCI states, and the activated TCI state is used for the reception of PDCCH.
  • the beam information of the CSI-RS can also be indicated through an RRC message.
  • the TCI state of the CSI-RS is configured through the RRC message, and the TCI state is a subset of the N TCI states of the PDSCH configured in the RRC message shown in Figure 2.
  • the indication of the PUCCH beam information can also be achieved through the RRC message and the secondary signaling of MAC CE.
  • the RRC message can be used to configure N spatial relationships
  • the MAC CE can be used to activate one of the N spatial relationships. This spatial relationship is used for sending PUCCH.
  • the beam information of the PUCCH can also be indicated through an RRC message.
  • the indication of the beam information (or spatial relationship information) of the SRS can be achieved through the RRC message and the secondary signaling of MAC CE, or the beam information of the SRS can be indicated through the RRC message.
  • SRS can be divided into periodic SRS, semi-periodic SRS and aperiodic SRS.
  • RRC messages can be used to configure a spatial relationship.
  • RRC messages or MAC CE can be used to indicate the configuration of a spatial relationship.
  • RRC messages or MAC CE can be used to indicate the configuration of a spatial relationship.
  • spatial parameters can be indicated through the SRI domain in DCI to achieve indication of PUSCH beam information (or spatial relationship information).
  • Unit carrier (component carrier, CC):
  • Unit carriers can also be called component carriers, component carriers, or member carriers.
  • Each carrier in multi-carrier aggregation may be referred to as a "CC".
  • End devices can receive data on multiple CCs.
  • Each carrier is composed of one or more physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • Each carrier can have its own corresponding PDCCH and schedule the PDSCH of its respective CC; or, some carriers do not have PDCCH, in which case the carriers can Perform cross-carrier scheduling.
  • Cross-carrier scheduling The network device sends PDCCH on one CC to schedule data transmission on another CC, that is, transmits PDSCH on another CC, or transmits PUSCH on another CC. More specifically, the network device may send the PDCCH on the BWP of one CC to schedule the transmission of the PDSCH or PUSCH of the BWP on another CC. That is, the control channel is transmitted on one CC, and the corresponding data channel is transmitted on another CC.
  • Antenna ports may also be referred to as ports.
  • a transmitting antenna that is recognized by the receiving device, or that is spatially distinguishable.
  • An antenna port can be configured for each virtual antenna.
  • Each virtual antenna can be a weighted combination of multiple physical antennas.
  • Each antenna port can correspond to a reference signal port.
  • CDM group Code division multiplexing
  • Antenna port groups distinguished by code division multiplexing, that is, different antenna ports occupy the same time-frequency resources, but have different corresponding sequences (time-frequency masks).
  • a BWP can be a set of continuous frequency domain resources on the carrier, such as a physical resource block (PRB).
  • PRB physical resource block
  • the frequency domain resources that different BWPs can occupy may partially overlap or not overlap with each other.
  • the bandwidths of frequency domain resources occupied by different BWPs may be the same or different, and this application does not limit this.
  • the minimum granularity of BWP in the frequency domain can be 1 PRB.
  • a terminal device can have only one active BWP at the same time.
  • the terminal device only receives data/reference signals or sends data/reference signals on the active BWP (active BWP).
  • a specific BWP can also be a bandwidth set on a specific frequency, or a set composed of multiple resource blocks (RBs), etc., and this is not done. limited.
  • Multi-site collaboration (10) Multi-site collaboration (multi-TRP, M-TRP):
  • the base station uses multiple TCI indication methods included in a single DCI to include space division multiplexing (SDM), frequency division multiplexing (frequency division multiplexing, FDM) or time division multiplexing ( timedivision multiplexing (TDM), that is to say, any transmission mode among SDM, FDM or TDM can be used for transmission between PDSCHs transmitted by M-TRP.
  • SDM space division multiplexing
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • each TCI can correspond to a PDSCH scheduled by a TRP.
  • HARQ-ACK includes HARQ ACK or HARQ non-acknowledgement (NACK) sent by the UE according to the DCI of the base station.
  • DCI can be used to indicate HARQ ACK or HARQ NACK (such as indicating time-frequency resources), and HARQ-ACK can be carried on PUCCH.
  • M-TRP transmission is scheduled through two DCIs.
  • the two DCIs may respectively carry different TCIs, respectively corresponding to different TRP scheduled PDSCHs.
  • each PDSCH corresponds to a HARQ-ACK, and multiple HARQ-ACK feedbacks can be jointly or independently coded.
  • unified TCI indication method in order to solve the problems of high beam indication signaling overhead and slow beam switching in mobility scenarios, the unified TCI indication method is standardized.
  • the main difference between unified TCI and TCI is the effective scope and/or effective time.
  • the different effective ranges of unified TCI and TCI mean that each unified TCI (or TCI state corresponding to unified TCI) is used to (simultaneously) indicate the spatial parameters of at least two types of signals/channels; on the other hand, unified TCI takes effect within a certain time range, and there is an effective time.
  • unified TCI can also be one or a newly defined TCI type, whose effective range and/or effective time are different from TCI.
  • Step 1 The higher layer indicates the unified TCI configuration: the base station configures multiple TCI states through the RRC message as the unified TCI state pool, and/or the base station can indicate through the RRC message that at least one current TCI state is used for If spatial parameters of at least two types of signals/channels are simultaneously indicated, the at least one TCI state includes unified TCI.
  • Step 2 Activate N TCI states in the unified TCI state pool through MAC CE.
  • Step 3 Use the n bit in the DCI to indicate one of the N unified TCIs, where n and N are positive integers.
  • Step 4 The terminal device determines the effective range and effective time of the TCI status.
  • the effective range includes multiple signals/channels, such as PDSCH, and the effective time refers to the effective time of the unified TCI corresponding to the above effective range.
  • the UE or the base station can transmit the spatial parameters indicated by the unified TCI within the effective range within the effective time.
  • unified TCI can be used to indicate the spatial parameters used by multiple signal/channel types, and for a type of signal/channel, there may be multiple spatial parameters indicated by unified TCI that can be applied, so it is difficult for the UE and the base station to accurately determine the signal to be transmitted. /The spatial parameters adopted by the channel lead to reduced communication reliability.
  • embodiments of the present application provide a communication method.
  • the method can be implemented by a terminal device (such as a UE) and a network device (such as a base station and other access network equipment).
  • a terminal device such as a UE
  • a network device such as a base station and other access network equipment.
  • the following uses the UE and the base station as examples to introduce the communication method provided by the embodiments of this application.
  • a communication method provided by an embodiment of the present application may include the following steps:
  • the network device sends first indication information.
  • the first indication information may be used to indicate the first spatial parameter, or the first indication information may include the first spatial parameter.
  • the terminal device receives the first indication information.
  • the first indication information may include unified TCI.
  • the first spatial parameter which may also be referred to as first spatial parameter information, may include QCL information and/or spatial relationship information used for the transmission signal/channel. The meanings of QCL information and spatial relationship information can be found in the description in this application and will not be described again here.
  • the spatial parameter may also be TCI status and/or TCI status identifier, etc.
  • the first spatial parameter may include at least one of Type A QCL information, Type B QCL information, Type C QCL information, or Type D QCL information.
  • the first indication information may be included in DCI, RRC message or MAC CE.
  • the MAC CE may include the structure shown in Figure 4.
  • the first indication information may be (or be included or carried in) a target field in the DCI (hereinafter referred to as the first DCI).
  • the target field may be, for example, a TCI field, or may be other fields.
  • the TCI domain can be used to determine the TCI status.
  • the TCI state may include a TCI state from a pool of TCI states. It should be understood that the TCI state may be a unified TCI state, that is, at least one TCI state in the TCI state is unified TCI, and the TCI state pool may also be called a unified TCI state pool.
  • each TCI state in the TCI state pool may correspond to a spatial parameter.
  • TCI status is represented by TCI status ID
  • the TCI status pool may include TCI statuses whose TCI status IDs are TCI status ID#1, TCI status ID#2, ... and TCI status ID#N, where N is a positive number not less than 2.
  • the TCI state ID is TCI state ID#1, TCI state ID#2,...and the spatial parameters corresponding to the TCI state with TCI state ID#N are represented as space parameter #1, space parameter #2,... and spatial parameter #N.
  • the spatial parameter as QCL information as an example, any one of spatial parameter #1, spatial parameter #2, ...
  • spatial parameter #N can include type A QCL information, type B QCL information, type C QCL information or type D QCL information. It should be understood that the types of any two spatial parameters among spatial parameter #1, spatial parameter #2, ... and spatial parameter #N can be the same or different.
  • spatial parameter #1 includes type A QCL information
  • spatial parameter #2 , spatial parameter #3 and spatial parameter #4 include type D QCL information.
  • the network device may send second information to the terminal device, and the second information may be used to indicate multiple TCI states as a unified TCI state pool and/or an activated unified TCI state.
  • the activated unified TCI state can be one or more unified TCI states from the unified TCI state pool.
  • the first indication information may be used to indicate a unified TCI in the pool of unified TCI states and/or activated unified TCI states.
  • the network device may indicate multiple TCI states as a unified TCI state pool through a higher layer, and then the second information may include the higher layer indication.
  • the second information may include the RRC message or MAC CE.
  • the RRC message or MAC CE can be used to configure N unified TCI states (or N TCI states, where at least one TCI state is a unified TCI state), for example, a configuration including N unified TCI states, unified TCI The configuration of the state such as the corresponding spatial parameter information or applicable signals/channels of the unified TCI state, etc.
  • the set of N unified TCI states is a unified TCI state pool.
  • the way in which the network device configures the unified TCI status pool through RRC messages or MAC CE can be found in the description of the network device configuring N TCI states through RRC messages in this application in Figure 3.
  • the difference is that the effective range of each unified TCI state here is Includes multiple signals/channels, and the TCI status in Figure 3 applies to one channel, PDSCH.
  • the first indication information may be carried in the DCI and used to indicate a unified TCI in the unified TCI state pool and/or the activated unified TCI state.
  • the network device can further indicate through MAC CE Among the activated K unified TCI states (or K TCI states, at least one TCI state is a unified TCI state) among the N unified TCI states, the second information may include the MAC CE, and K is less than or equal to N. Positive integer.
  • the way in which the network device configures the unified TCI status pool through the RRC message can be found in the description of the network device in Figure 3 configuring N TCI status through the RRC message in this application.
  • each unified TCI status here includes multiple signal/channel, while the TCI status in Figure 3 applies to PDSCH, a channel.
  • the way in which the network device indicates activated K unified TCI states among N unified TCI states through MAC CE can be found in Figure 3 for the description of the network device activating K TCI states from N TCI states through MAC CE.
  • the first indication information may be carried in the DCI and used to indicate a unified TCI in the unified TCI state pool and/or the activated unified TCI state.
  • the effective range of each unified TCI in the resource pool includes at least two signals/channels, an identifier (or index) that each unified TCI can have, and/or, indication information with the effective range; and/or, the network
  • the device may indicate through the RRC message that the current TCI status is used to indicate spatial parameters of at least two types of signals/channels, and the second information may include information used to indicate N unified TCIs in the RRC message.
  • the network device can also activate N unified TCIs in the unified TCI status pool through the MAC CE, and the second information can include information in the MAC CE indicating the N unified TCIs.
  • the network device carries an indication of unified TCI through the TCI field in the DCI, which is used to indicate one of N unified TCIs.
  • the first indication information includes n bits, and the value of n bits is used to indicate N unified TCIs.
  • the identifier of a unified TCI in TCI to indicate the unified TCI.
  • the TCI status in the unified TCI status pool may be different from the TCI status shown in Table 2.
  • the TCI status in the unified TCI status pool may be another TCI status defined by the protocol.
  • the TCI status can be configured for each TRP, that is, the unified TCI status pool corresponding to different TRPs can be different. Therefore, in the M-TRP scenario, the value of a DCI domain can correspond to different unified TCI status pools. Different TCI status. Therefore, the spatial parameters of multiple TRPs can be implicitly indicated through TCI status configuration to solve the problem of beam configuration and indication under multiple TRPs and improve communication reliability in multiple TRP scenarios.
  • unified TCI status pool #1 and unified TCI status pool #2 can be configured for TRP#1 and TRP#2 respectively, and the indication information can be used to indicate a unified TCI status pool #1 and unified TCI status pool #2 respectively.
  • the TCI state enables the terminal device to communicate at TRP#1 and TRP#2 respectively according to the spatial parameters corresponding to the multiple unified TCI states.
  • the terminal device can transmit (including send and/or receive) the first type of signal/channel according to the first spatial parameter, or in other words, the first spatial parameter can be used to transmit the first type of signal/channel.
  • the channel, or in other words, the effective range of the first spatial parameter includes the first type.
  • the effective range of the first spatial parameter refers to the type of signal/channel that can be transmitted through the first spatial parameter. It should be understood that in various embodiments of the present application, the effective range of the spatial parameter can be replaced by the effective range of the indication information of the spatial parameter. For example, the effective range of the first spatial parameter can be replaced by the effective range of the first indication information.
  • signal/channel in this application refers to a signal and/or channel, for example, signal/channel includes a signal or a channel.
  • sending a channel refers to sending information, data, signaling or messages carried on the channel; receiving a channel refers to receiving information, data, signaling or messages carried on the channel. content.
  • the sending channel can also be replaced by sending through the channel; the receiving channel can also be replaced by receiving through the channel.
  • the first type of signal may include at least one signal among SRS, CSI-RS, PTRS, DMRS, TRS, or SSB.
  • the first type of channel may include at least one channel among PUSCH, PDSCH, PDCCH and PUCCH.
  • the first type of signal/channel may include at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB.
  • the first type of signal/channel includes at least two signals such as SRS and CSI-RS.
  • the first type of signal/channel includes at least two channels, such as PDSCH and PDCCH.
  • the first type of signal/channel includes at least one signal and at least one channel, such as SRS and PDSCH.
  • the first spatial parameter can be used to transmit at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB between the terminal equipment and the network equipment, or it can That is, the effective range of the first spatial parameter or the first indication information includes at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB, for example, includes at least two signals ( Such as SRS and CSI-RS), at least two channels (such as PDSCH and PDCCH), or including at least one signal and at least one channel (such as SRS and PDSCH).
  • the effective range of the first spatial parameter or the first indication information includes at least two of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB, for example, includes at least two signals ( Such as SRS and
  • the terminal equipment and/or the network equipment can transmit the first type of signal according to the first spatial parameter, or that the terminal equipment and/or the network equipment can transmit SRS, CSI-RS, PDSCH, At least two of PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB.
  • the first type of signals/channels should not be understood as different signals/channels of the same type. Taking SRS as an example, different signals/channels of the same type refer to two different SRSs. In other words, the first type of signals/channels Signals/channels are not.
  • the above first type of signal/channel may be protocol predefined or preset or preconfigured in the terminal device or network device.
  • the network device may also indicate to the terminal device through RRC messages or MAC CE messages.
  • the network device may send first information to the terminal device, and the first information may be used to indicate that the first indication information (or unified TCI) is effective for the first type of signal/channel, that is, the first information is used to indicate the first Information indicating that the information is valid for the first type of signal/channel.
  • the first information may carry information such as an index or identification of the signal/channel type, and may also carry an indication indicating whether the first indication information is valid for the signal/channel, such as 1-bit indication information.
  • the index or identification of the signal/channel type may indicate at least two signals/channels among SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB.
  • An indication used to indicate whether the first indication information is effective for the signal/channel can indicate whether the first indication information is effective for at least two signals/channels, such as, each The index or identification of a signal/channel type corresponds to 1-bit indication information.
  • the value of the 1-bit indication corresponding to a signal/channel is "1" (it may also be “0"), it indicates that the first indication information is effective for the signal/channel, or it may indicate that the first indication information is valid for the signal/channel.
  • the type of signal/channel includes this signal/channel; if the value of this indication is "0" (it can also be “1"), it means that the first indication information is not effective for this signal/channel, or it can mean that the first indication information is not effective for this signal/channel.
  • the signal/channel does not include this signal/channel.
  • the network device may indicate to the terminal device through one or more of high-level signaling such as RRC message, MAC CE or DCI.
  • the first indication information is effective for the first type of signal/channel, so the first information may include one or more of the RRC message, MAC CE or DCI, or in other words, the first information may be carried in the RRC message, MAC CE or DCI one or more of.
  • the first information may include configuration information of at least two signals/channels among SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB for indicating whether unified TCI Valid identification or switch, the configuration information of these two signals/channels can be carried in RRC messages, MAC CE or DCI.
  • the configuration information of the periodic SRS may be included in the RRC message or MAC CE.
  • the first information may include a 1-bit switch in the configuration information.
  • the 1-bit switch When the 1-bit switch is When the value is "1" (it can also be “0"), it indicates that the first indication information is valid for the periodic SRS, or it may indicate that the first type of signal/channel includes the periodic SRS or includes the SRS; if the indication If the value is "0" (it may also be “1"), it indicates that the first indication information is not effective for periodic SRS, or it may indicate that the first type of signal/channel does not include periodic SRS or does not include SRS.
  • the configuration information may be carried in the DCI.
  • the method of using the first information to indicate whether the first indication information is valid for the aperiodic SRS may be implemented with reference to the example of periodic SRS, which will not be described again.
  • the method of indicating whether the first indication information is valid for other signals/channels through the first information can also be implemented with reference to the above example.
  • the terminal device receives the first information, the first type is determined based on the information, or the terminal device executes the communication method shown in this application after receiving the information. Otherwise, if the terminal device does not receive the third If there is a piece of information, the terminal device may not perform the communication method shown in this application, or in other words, the terminal device does not support determining the spatial parameters of the first type of signal/channel according to the first indication information.
  • the network device may send to the terminal device a message indicating that unified TCI is suitable for SRS (including periodic SRS or aperiodic SRS) or CSI-RS (including periodic CSI-RS or aperiodic SRS).
  • SRS including periodic SRS or aperiodic SRS
  • CSI-RS including periodic CSI-RS or aperiodic SRS
  • the first type may include SRS and/or CSI-RS.
  • the indication information may be carried in an RRC message or MAC CE used to configure SRS and/or CSI-RS.
  • the terminal equipment still needs to be based on the information in this application.
  • the validity time of the first indication information after the validity time of the first indication information arrives, SRS and/or CSI-RS are transmitted according to the first spatial parameter indicated by the first indication information.
  • the reference signal resource information of the first signal may be used to indicate or configure the first signal.
  • the reference signal resource information of the first signal may include indication information of spatial parameters effective for the first signal. (including the first indication information), please refer to the description of the first index in S102 for details. The effective time of the first instruction information will be further explained later in this application.
  • the first type or the type of the first signal/channel may include aperiodic SRS and/or aperiodic CSI-RS.
  • a condition that the first type includes certain types of signals/channels may be preset, and when the condition is met, the first type includes the type of signals/channels.
  • the first indication information is included in the DCI (for convenience of explanation in this application, the DCI carrying the first indication information may be referred to as the first DCI)
  • the feedback mode of the HARQ-ACK indicated by the first DCI or called When the HARQ feedback mode, feedback method, etc.
  • the first type includes PUCCH. Otherwise, if the HARQ-ACK feedback mode indicated by the first DCI is not independent feedback, such as joint feedback, the first type does not include PUCCH.
  • independent feedback means that the HARQ-ACK indicated by the first DCI does not use the same time-frequency resource as the HARQ-ACK indicated by other DCIs.
  • the terminal equipment receives multiple DCIs, including the first DCI, and the terminal equipment responds to Each DCI sends HARQ-ACK indicated by different DCIs in different time-frequency resources.
  • Joint feedback means that the HARQ-ACK indicated by the first DCI and the HARQ-ACK indicated by other DCIs use the same time-frequency resource.
  • the first indication information in this application can be carried in the RRC message, MAC CE or DCI.
  • any one of the at least two types of signals/channels included in the first type is indicated by RRC signaling or MAC CE signaling.
  • the RRC message and/or MAC CE may include indication information (which may include one or more spatial parameters) used by any one of the at least two types of signals/channels included in the first type.
  • indication information of a spatial parameter which may include first indication information
  • a first index corresponding to the indication information such as CORESET resource pool index
  • periodic SRS or periodic CSI-RS if the RRC message or MAC CE used to configure periodic SRS or periodic CSI-RS indicates the CORESET resource pool index corresponding to the first indication information, optionally,
  • the terminal device receives the first indication information and determines that the CORESET resource pool index of the first DCI used to carry the first indication information is the same as the CORESET resource pool index corresponding to the first indication information indicated by the RRC message or MAC CE, then The terminal equipment may transmit periodic SRS or periodic CSI-RS according to the first spatial parameter indicated by the first indication information.
  • the first indication information may be carried in DCI, so the validity time of the first indication information may be determined according to the HARQ-ACK indicated by the DCI.
  • the type of the first signal/channel may include at least one of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS or SSB.
  • the first indication information may be carried in the TCI domain of the DCI.
  • S102 The terminal device and/or network device transmits the first signal/channel according to the first spatial parameter.
  • the first index of the first signal/channel is the same as or associated with the first index of the first indication information. That is to say, when the first index of the first signal/channel is the same as or associated with the first index of the first indication information, When associated, the first signal/channel is transmitted between the terminal device and the network device according to the first spatial parameter.
  • the type of the first signal/channel belongs to the first type.
  • the type of the first signal/channel may be included in the effective range of the first spatial parameter, or it can be understood that the type of the first signal/channel is the type of signal/channel included in the effective range of the first spatial parameter.
  • the types of signals/channels included in the effective range of the first spatial parameter can be found in the introduction in S101 and will not be described again here.
  • the first signal/channel includes at least one of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS or SSB.
  • the terminal device and the network device may transmit the first signal/channel according to the first spatial parameter.
  • the first index may include a CORESET resource pool (CORESET pool) index.
  • CORESET pool index may be included in the first signal resource indication information, or the CORESET resource pool index may be determined according to the indication information included in the resource indication information.
  • the first indication information if the first indication information is carried in the DCI, the first index corresponding to the first indication information is the CORESET resource pool index of the DCI.
  • the terminal device and/or the network device can determine whether to use the first spatial parameter to transmit the first signal/channel according to the CORESET resource pool index corresponding to the first signal and the CORESET resource pool index corresponding to the first indication information.
  • the index of the resource indication information may include an index of the control resource collection group, such as a CORESET resource pool (CORESET pool) index.
  • the first signal/channel is scheduled (or indicated) through a DCI (hereinafter referred to as the second DCI), and the first indication information is included in the first DCI.
  • the second DCI The CORESET resource pool index is the same as the CORESET resource pool index of the first DCI, then in S102, the terminal device and the network device transmit the first signal/channel according to the first spatial parameter; or if the CORESET resource pool index of the second DCI is the same as the CORESET resource pool index of the second DCI.
  • the CORESET resource pool index of the first DCI is associated. For example, although the two CORESET resource pool indexes are different, but the indicated CORESET resource pools are the same, then in S102, the terminal device and the network device transmit the first signal according to the first spatial parameter. /channel.
  • the first type may include at least one of SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS or SSB, or in other words, the first signal/channel may include SRS, CSI- At least one of RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS or SSB.
  • the first index if the first signal includes periodic SRS or periodic CSI-RS, the first signal may be indicated (or configured) through an RRC message or MAC CE, then the reference signal of the first signal Resource information may be included in RRC messages or MAC CEs. Taking periodic SRS as an example, the reference signal resource information may be the configuration information of periodic SRS in the RRC message or MAC CE.
  • the first index corresponding to the first signal may include the CORESET resource pool index in the reference signal resource information of the first signal, or include the CORESET resource pool index determined according to the indication information in the reference signal resource information.
  • the indication information in the reference signal resource information may have a corresponding relationship with the CORESET resource pool index.
  • the indication information when the indication information is "0", it means that the CORESET resource pool index is index #1, etc., which is not specifically limited in this application.
  • the correspondence between the indication information and the CORESET resource pool index may be protocol definition, predefined or preconfigured in the terminal device and network device, or may be indicated by the network device to the terminal device, or may be indicated by other network devices. .
  • the terminal device can transmit the first signal according to the first spatial parameter indicated by the first indication information.
  • the RRC message includes the configuration information of the periodic SRS, that is to say, the first signal is the periodic SRS, and the configuration information of the periodic SRS can be regarded as corresponding to the first signal.
  • Reference signal resource information When the CORESET resource pool index included in the configuration information of the periodic SRS is index #1, and the CORESET resource pool index of the DCI used to carry the first indication information in S101 is index #1, then the first signal The corresponding first index is the same as the first index corresponding to the first indication information, and the periodic SRS can be transmitted between the terminal device and the network device through the first spatial parameter indicated by the first indication information.
  • the identifier included in the configuration information of the periodic SRS corresponds to CORESET resource pool index #1
  • the CORESET resource pool index of the DCI used to carry the first indication information in S101 is index #1
  • the first index corresponding to the first signal is the same as the CORESET resource pool corresponding to the first indication information.
  • the terminal device and the network device can transmit the first spatial parameter through the first space parameter. Periodic SRS.
  • the first indication information may be transmitted through the QCL information corresponding to the first indication information. signal/channel.
  • the terminal device can receive the first indication information, and when the first index corresponding to the first indication information and the first index corresponding to the first signal are the same, the terminal device can determine the first spatial parameter according to the first indication information. Transmit the first signal.
  • the first spatial parameter can be used for the transmission of at least two signals/channels. This method can accurately determine the spatial parameters used by the signals/channels to be sent when the first spatial parameters can be used for the transmission of at least two signals/channels, and can improve communication reliability.
  • the terminal device and the network device may transmit the first signal/channel according to the first spatial parameter or the first signal/channel after the first spatial parameter or the effective time of the first indication information.
  • the time is located after the effective time of the first indication information or the first spatial parameter.
  • the terminal device executes S103 after the validity time of the first indication information or the first spatial parameter.
  • the terminal device can transmit the first sequence number/channel according to the first spatial parameter after the validity time of the first spatial parameter arrives.
  • the effective time of the spatial parameter can be replaced by the effective time of the indication information of the spatial parameter.
  • the effective time of the first spatial parameter can be replaced by the effective time of the first indication information.
  • the effective time of the first spatial parameter is the time when the first spatial parameter starts to take effect, or the beam application time.
  • the terminal device and/or the network device may transmit the first type of signal/channel (including but not limited to the first signal/channel) according to the first spatial parameter.
  • the first indication information includes unified TCI1 (represented by unified TCI1 in Figure 6), where T1 is the effective time of unified TCI1. If the terminal device needs to receive PDSCH1.1 before time T1, the terminal device may not receive PDSCH1.1 according to the QCL information indicated by unified TCI1.
  • the sending time of PDCCH1.2 is after T1, and the terminal device can receive PDSCH1.2 according to the QCL information indicated by unified TCI1.
  • the effective time of the first indication information or the effective time of the first spatial parameter is located after the HARQ-ACK of the first DCI indication carrying the first indication information, that is, the T1 time is located on the HARQ -After the ACK, or in other words, the T1 time is not earlier than the sending time of the HARQ-ACK.
  • the network device can also learn about the terminal device after receiving the HARQ-ACK from the terminal device. After sending the HARQ-ACK, signal/channel transmission may be performed through the spatial parameters indicated by the first indication information.
  • the validity time of the first indication information is determined based on the sending time of HARQ-ACK indicated by the first DCI.
  • the effective time of the first indication information is located k time units after the sending time of the HARQ-ACK indicated by the first DCI, and k is a positive integer.
  • a time unit may include a time slot, a symbol, multiple time slots, multiple symbols, or a combination of at least one time slot and at least one symbol.
  • the effective time of the first indication information is located after the set time period after the time when the terminal device sends the HARQ-ACK indicated by the first DCI.
  • the set time period can be determined by the QCL duration (time duration). for QCL) or other information element (IE) indication.
  • the QCL duration may be included in the terminal device capability information reported by the terminal device to the network device. Therefore, the terminal device can report the set duration, enabling the terminal device and the network device to negotiate and determine the set duration.
  • the effective time of the first indication is T1
  • T1 is located k time units or after the set time length after the HARQ-ACK sending time (ACK1 shown in Figure 6) indicated by DCI1.1.
  • the k time units or set duration may be indicated by the network device through RRC messages, MAC CE or DCI, or may be predefined by the protocol or preset or preconfigured, and are not specifically limited in this application.
  • S102 may include the following S103-S104:
  • S103 The terminal device sends the first signal/channel according to the first spatial parameter.
  • the first spatial parameter may include QCL information, and the QCL information may be used to indicate a spatial correlation parameter of the uplink signal (or called spatial correlation properties).
  • the first spatial parameter may include TCI information.
  • the first spatial parameter may include TCI status information.
  • the first spatial parameter information is type D QCL information.
  • the uplink signal/channel may include at least one of PUCCH, PUSCH, SRS, PTRS or DMRS.
  • the spatial parameter information is type D QCL information.
  • Type D QCL information can be found in the introduction in this application and will not be repeated here.
  • the terminal device may perform S103 after the validity time of the first indication information or the first spatial parameter.
  • the terminal device sending the first signal/channel according to the first spatial parameter may mean that the terminal device uses the first spatial parameter to send the first signal/channel.
  • S104 The network device receives the first signal/channel according to the first spatial parameter.
  • the network device may perform S104 after the validity time of the first indication information or the first spatial parameter.
  • the network device receives the first signal/channel according to the first spatial parameter, which may mean that the network device uses the first spatial parameter to receive the first signal/channel.
  • S102 may include the following S105-S106:
  • the network device sends the first signal/channel according to the first spatial parameter.
  • the first spatial parameter may include QCL information, and the QCL information may be used to indicate spatial correlation parameters of the downlink signal (or called spatial correlation properties).
  • the first spatial parameter may include TCI information.
  • the first spatial parameter may include TCI status information.
  • the downlink signal/channel may include at least one of PDCCH, PDSCH, TRS, CSI-RS, PTRS, DMRS or SSB, etc.
  • the network device may perform S105 after the validity time of the first indication information or the first spatial parameter.
  • the network device sending the first signal/channel according to the first spatial parameter may mean that the terminal device uses the first spatial parameter to send the first signal/channel.
  • S106 The terminal device receives the first signal/channel according to the first spatial parameter.
  • the network device may perform S106 after the validity time of the first indication information or the first spatial parameter.
  • the network device receives the first signal/channel according to the first spatial parameter, which may mean that the network device uses the first spatial parameter to receive the first signal/channel.
  • the terminal device in addition to receiving the first indication information shown in S101, can also receive the second indication information, and transmit the second signal/channel according to the second indication information, where the second The second index corresponding to the signal/channel is the same as or associated with the second index corresponding to the second indication information.
  • the second indication information may be used to indicate the second spatial parameter. Similar to the first indication information, the second indication information may be unified TCI, and the second spatial parameter may include QCL information and/or spatial relationship information used for the transmission signal/channel.
  • the second spatial parameter may be used to transmit a second type of signal/channel
  • the second type of signal/channel (or the second spatial parameter or the effective range of the second indication information) may include SRS, CSI-RS, PDSCH, At least two of PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS or SSB.
  • the second type of signal/channel may comprise a type of second signal/channel.
  • the second indication information, the second spatial parameter, the second type and the second signal/channel please refer to the description of the first indication information, the second spatial parameter, the second type and the second signal/channel in this application respectively.
  • the way in which the second indication information indicates the second spatial parameter is similar or the same as the way in which the first indication information indicates the first spatial parameter.
  • the effective range or effective time of the second indication information may be determined in the same way as the first indication information. The method of determining the effective range or effective time is similar or the same, the second index of the second indication information is similar or the same as the first index of the first indication information, the second index of the second signal/channel is the same as the first index of the first signal/channel The first index is the same or similar.
  • the first type of signal/channel may be the same as or different from the second type of signal/channel.
  • the first type of signal/channel may overlap with the second type of signal/channel.
  • the first type of signal/channel may overlap with the second type of signal/channel. There may also be no intersection with the second type of signal/channel, and this application does not make specific requirements.
  • the first indication information and the second indication information may be carried in different DCIs.
  • the first indication information may be used to indicate a unified TCI in the unified TCI status pool and/or the activated unified TCI status
  • the second indication information may indicate the same unified TCI status pool and/or the same Another unified TCI in the activated unified TCI state.
  • the two unified TCIs can correspond to different spatial parameters.
  • the way in which the second indication information indicates unified TCI in the unified TCI status pool and/or the activated unified TCI status can be found in S101 for the first indication information indicating one of the unified TCI status pool and/or the activated unified TCI status. Description of unified TCI.
  • the first spatial parameter and the second spatial parameter may correspond to different TRPs, or the first signal/channel and the second signal/channel are respectively signals/channels transmitted between the UE and different TRPs, In other words, the first indication information and the second indication information respectively come from different TRPs. Therefore, this solution can accurately determine the spatial parameters used to transmit signals/channels between the UE and each TRP in the M-TRP scenario.
  • the terminal device and the network device may respectively use the first spatial parameter and the second spatial parameter to transmit this type of signal/channel, resulting in transmission failure.
  • the terminal device and/or network device in this application can obtain the first indication information and the second indication information (or similar, based on the first index corresponding to the signal/channel to be transmitted). It may also include more indication information whose effective range includes the type of the signal/channel (not specifically limited), and transmit the signal/channel according to the spatial parameters indicated by the indication information to avoid terminal equipment and network The equipment uses different spatial parameters to transmit the signal/channel to improve communication reliability.
  • the terminal device receives DCI1.1 and DCI2.1, where DCI1.1 includes unified TCI1 and DCI2.1 includes unified TCI2 (represented by unified TCI2 in Figure 6).
  • the CORESET resource pool corresponding to DCI1.1 is CORESET resource pool 1, or in other words, the CORESET resource pool index corresponding to DCI1.1 is 1.
  • the CORESET resource pool corresponding to DCI2.1 is CORESET resource pool 2, or in other words, the CORESET resource pool index corresponding to DCI2.1 is 2.
  • the first indication information is unified TCI1 and the second indication information is unified TCI2
  • the terminal equipment needs to transmit any one of PDCCH1.2, PDSCH1.2, PUCCH2.1 or PUSCH2.1 shown in Figure 6
  • the spatial parameters indicated by unified TCI1 or unified TCI2 can be used for transmission according to the CORESET resource pool index of the signal/channel that needs to be sent.
  • the terminal equipment when it needs to receive PDCCH1.2 and/or PDSCH1.2, it can determine based on the CORESET resource pool index of the DCI (that is, the second DCI) that schedules PDCCH1.2 and/or PDSCH1.2, based on unified TCI1 and/or PDSCH1.2. Or unified TCI2 receives PUCCH2.1 and/or PUSCH2.1.
  • the terminal device can receive PDCCH1.2 based on unified TCI1. Specifically, the terminal device can receive PDCCH1.2 based on the QCL information corresponding to unified TCI1.
  • the terminal device can receive PDSCH1.2 according to unified TCI1. Specifically, the terminal device can receive PDSCH1.2 based on the QCL information corresponding to unified TCI1.
  • the terminal device can send PUCCH2.1 according to unified TCI2. Specifically, the terminal device can send PUCCH2.1 based on the QCL information corresponding to unified TCI2.
  • the terminal device can send PUSCH2.1 according to unified TCI2. Specifically, the terminal device can send PUSCH2.1 based on the QCL information corresponding to unified TCI2.
  • the transmission time of PUCCH2.1 and PUSCH2.1 in Figure 6 is located after the effective time of unified TCI2 (i.e., T2 shown in Figure 6).
  • the determination method of T2 can be found in the effective time of the first indication information in this application. description of.
  • T2 is located after ACK2 shown in Figure 6, and ACK2 is the HARQ-ACK indicated by DCI2.1.
  • PDSCH2.1 shown in Figure 6 is located before T2. Therefore, the transmission of PDSCH2.1 can use other spatial parameters other than the second spatial parameter, and this application does not make specific requirements.
  • this embodiment of the present application provides another communication method.
  • the difference between the method shown in Figure 7 and the method shown in Figure 5 is that in the method shown in Figure 7, the indication information of multiple spatial parameters can be indicated in the same DCI, wherein at least one of the indication information of the multiple spatial parameters
  • the indication information of spatial parameters is unified TCI.
  • multiple spatial parameter indication information can correspond to different CDM groups.
  • a terminal device and/or a network device transmits a signal/channel through a port in one of the CDM groups, the port to which the port belongs is used.
  • the spatial parameters indicated by the spatial parameter indication information corresponding to the CDM group.
  • the method may include the following steps:
  • S201 The network device sends indication information of the third spatial parameter and the fourth spatial parameter to the terminal device.
  • S201 may be replaced by: the network device sends third indication information and fourth indication information to the terminal device.
  • the third indication information may be used to indicate the third spatial parameter, or the third indication information may include the third spatial parameter, the fourth indication information may be used to indicate the fourth spatial parameter, or the fourth indication information may include the fourth spatial parameter. parameter.
  • the indication information of the third spatial parameter and the fourth spatial parameter includes the indication information of the third spatial parameter and the indication information of the third spatial parameter.
  • the above third spatial parameter is used to transmit the third type of signal/channel
  • the fourth spatial parameter is used to transmit the fourth type of signal/channel
  • the third type of signal/channel and/or the fourth type of signal/channel includes SRS , at least two types of signals/channels in CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB.
  • the third type of signal/channel may be the same as or different from the fourth type of signal/channel.
  • the third type of signal/channel may overlap with the fourth type of signal/channel.
  • the third type of signal/channel may overlap with the fourth type of signal/channel. There may also be no intersection with the fourth type of signal/channel, and this application does not make specific requirements.
  • the terminal device receives the third indication information and the third indication information.
  • the third indication information and the fourth indication information are included in the third DCI, or the indication information of the third spatial parameter and the fourth spatial parameter is included in the third DCI, that is to say, the third indication information and the fourth indication information may be included in the same DCI.
  • the third indication information can be used to indicate unified TCI #A in the unified TCI status pool and/or the activated unified TCI status
  • the fourth indication information can indicate the same unified TCI status pool and/or the same unified TCI#B, unified TCI#A and unified TCI#B in the activated unified TCI state may correspond to the same or different spatial parameters.
  • the third indication information and the fourth indication information indicate the unified TCI state pool and/or the unified TCI in the activated unified TCI state. Please refer to S101 for the first indication information indicating the unified TCI state pool and/or the activated unified TCI state. Description of a unified TCI in TCI status.
  • the third indication information and/or the fourth indication information is unified TCI.
  • the third indication information is the index of unified TCI#A in the unified TCI status pool and/or the activated unified TCI status
  • the fourth indication information is the index of unified TCI#B in the unified TCI status pool and/or the activated unified TCI status. index.
  • the network device sends the indication information of the third spatial parameter and the fourth spatial parameter to the terminal device, that is, the third spatial parameter and the fourth spatial parameter are indicated by the same indication information
  • the indication information may be used to indicate the third spatial parameter and the fourth spatial parameter from different pools of unified TCI states or different activated unified TCI states.
  • the network device can configure multiple unified TCI status pools to the terminal device through RRC messages, MAC CE or DCI, including unified TCI status pool #1 and unified TCI status pool #2.
  • the network device can also send messages to the terminal device through DCI.
  • Indication information of the third spatial parameter and the fourth spatial parameter wherein the indication information can be used to indicate unified TCI#A (corresponding to the third spatial parameter) from the unified TCI status pool #1, and can be used to indicate from the unified TCI status pool #1 #2 indicates unified TCI#B (corresponding to the fourth spatial parameter).
  • the indication information is a unified TCI index
  • the unified TCI index is the index of unified TCI#A in unified TCI status pool #1 and the index of unified TCI#B in unified TCI status pool #2.
  • the indication information of the third spatial parameter and the fourth spatial parameter is a unified TCI index or a unified TCI indication.
  • unified TCI#A may also be used as the third indication information
  • unified TCI#B may be used as the fourth indication information.
  • the first DCI configures the third spatial parameter and the fourth spatial parameter to the terminal device through a field (such as the TCI domain).
  • S201 can be replaced with: the network device sends the terminal device to the terminal device. Send indication information of the third spatial parameter and/or the fourth spatial parameter.
  • the descriptions of the third spatial parameter and the fourth spatial parameter are the same as those in S201.
  • network devices can configure different unified TCI status pools for different TRPs, that is, the unified TCI status pools corresponding to different TRPs can be different. Therefore, in the M-TRP scenario, the value of a DCI domain in different unified TCI The status pool can correspond to different TCI statuses. Therefore, in the example of the process shown in Figure 7, the network device can respectively indicate the third spatial parameter and the fourth spatial parameter from the unified TCI status pool corresponding to different TRPs through the value of the TCI domain in the DCI.
  • the network device may configure at least two unified TCI status pools to the terminal device through an RRC message or MAC CE.
  • the at least two unified TCI status pools may each include multiple unified TCI state, each unified TCI can correspond to one (or a group of) spatial parameters, and each unified TCI state can be represented by an index.
  • the first DCI can carry a unified TCI index, and the unified TCI index corresponds to different unified TCIs in the previously configured unified TCI state pools. That is, the unified TCI index can indicate multiple spatial parameters. These include the third spatial parameter and the fourth spatial parameter.
  • S101 can also be replaced by: the network device sends spatial parameter indication information to the terminal device, and the spatial parameter indication information is used to indicate the third spatial parameter and the fourth spatial parameter, or, the indication of the spatial parameter
  • the information may include third spatial parameters and fourth spatial parameters.
  • the indication information of the spatial parameters can be carried in the DCI.
  • S202 The terminal device and/or the network device transmit a third signal/channel according to the third spatial parameter, wherein the port of the third signal/channel corresponds to the third indication information, and the type of the third signal/channel belongs to the third signal/channel. Three types.
  • the third indication information, the third spatial parameter, the third type and the third type of signal/channel can be referred to the first indication information, the first spatial parameter, the third type of signal/channel in this application respectively.
  • Description of a type and a first type of signal/channel for example, the way in which the third indication information indicates the third spatial parameter is similar or the same as the way in which the first indication information indicates the first spatial parameter, and the effective range of the third indication information
  • the determination method is the same as the determination method of the effective range of the first indication information.
  • the first index of the third indication information is similar or identical to the first index of the first indication information, which will not be described again.
  • the fourth indication information, the fourth spatial parameter, the fourth type and the fourth type of signal/channel please refer to the first indication information, the first spatial parameter, the first type and the first type in this application respectively.
  • Description of the signal/channel for example, the way in which the fourth indication information indicates the fourth spatial parameter is similar or the same as the way in which the first indication information indicates the first spatial parameter, and the way in which the effective range of the fourth indication information is determined is the same as the way in which the first indication information indicates the first spatial parameter.
  • the effective range is determined in the same way, and the first index of the fourth indication information is similar or identical to the first index of the first indication information, which will not be described again.
  • the validity time of the third indication information and the fourth indication information may be determined according to the HARQ-ACK indicated by the third DCI, for example , the validity time is after the HARQ-ACK of the third DCI indication, that is, the validity time of the third indication information at this time is the same as the validity time of the fourth indication information.
  • the method of determining the effective time may refer to the description of the method of determining the effective time of the first indication information in this application.
  • the third indication information includes unified TCI3 (represented as unified TCI3 in Figure 8)
  • the fourth indication information includes unified TCI4 in Figure 8 (represented as unified TCI4 in Figure 8)
  • T3 is unified TCI3 and the effective time of unified TCI4, which is later than ACK3 shown in Figure 8.
  • This ACK3 represents the time domain resource of HARQ-ACK indicated by DCI3 (ie, the third DCI).
  • the terminal device and the network device can determine the indication information of the spatial parameters (including the third indication information) and the CDM group (including the port of the third signal/channel) through protocol predefinition or preset or preconfiguration.
  • the corresponding relationship between the CDM group in which the network device is located), or the network device can indicate the corresponding relationship between the spatial parameter indication information and the CDM group to the terminal device through an RRC message or MAC CE, etc. Therefore, when the third signal/channel is transmitted between the network device and the terminal device through the third spatial parameter, the network device can determine the CDM group corresponding to the third spatial parameter through the correspondence between the indication information of the spatial parameter and the CDM group. , and allocate ports to terminal devices from this CDM group.
  • the network device can indicate the port to the terminal device through port indication information.
  • the terminal device determines that the indication information of the spatial parameter corresponding to the CDM group where the port is located is the third indication information based on the correspondence between the indication information of the spatial parameter and the CDM group, so that the The third signal/channel of the port is transmitted through the third spatial parameter indicated by the third indication information.
  • the port indication information may be included in the fourth DCI.
  • unified TCI3 and unified TCI3 can be indicated in DCI3 (ie, the third DCI).
  • T3 is the effective time of unified TCI1 and unified TCI2.
  • the terminal device can determine to receive PDSCH2 based on unified TCI3 or unified TCI4 based on the port indication information carried by DCI4.
  • the port indication information also indicates to the terminal device the transmission mode when transmitting the signal/channel through the port X, where there is a corresponding relationship between the port X or the time-frequency resource group to which the port X belongs and the transmission mode.
  • the terminal device can also determine the transmission mode of the signal/channel based on the correspondence between port X or the time-frequency resource group to which port X belongs and the transmission mode.
  • the signal/channel transmission mode includes any one of SDM, FDM, TDM or single TCI (single TCI, S-TCI) transmission mode.
  • S-TCI transmission mode means that only one of multiple TRPs is used for signal/channel transmission between network equipment and terminal equipment. It is understandable that in S-TCI transmission mode, the terminal device receives 1 TCI code point.
  • the correspondence between the time-frequency resource group to which port X belongs and the transmission mode is shown in Table 3. It should be understood that the number of ports X here may be one or more.
  • CDM group 1, CDM group 2 and CDM group 3 respectively indicate that port ports and ports in CDM group 3.
  • CDM group A+CDM group B means that port X indicates ports in CDM group A and CDM group 2 at the same time.
  • the spatial parameters used by each port in port X to transmit signals/channels can be determined through the process shown in Figure 7 of this application. For example, based on the communication method shown in Figure 7, when port X includes multiple ports belonging to different CDM groups, the multiple ports may adopt different spatial parameters.
  • the CDM group includes CDM group 1 and CDM group 2. If the DMRS type configured on the network device is DMRS type 2, the CDM group It can include CDM Group 1, CDM Group 2 and CDM Group 3.
  • DMRS type 2 option 1 and DMRS type 2 option 2 in Table 3 respectively represent the correspondence between the time-frequency resource group to which port X belongs and the transmission mode when the DMRS type configured by the network device is DMRS type 2. Different examples.
  • the terminal device can transmit signals/channels through the multiple ports through space division multiplexing.
  • the terminal equipment when port When the port is in, the terminal equipment can transmit signals/channels through this port X through space division multiplexing.
  • Case 3 is the same as Case 2.
  • port X includes ports in CDM group 1 and CDM group 2, or includes ports in CDM group 1 and CDM group 3, the terminal device can Signal/channel transmission is carried out through this port X.
  • the terminal device can also transmit via S-TCI.
  • the transmission mode corresponding to the CDM group is the S-TCI transmission mode, where S-TCI1 means that only the TRP corresponding to S-TCI1 is used for signal/channel transmission, and S-TCI2 means that only the TRP corresponding to S-TCI2 is used.
  • the TRP performs signal/channel transmission.
  • the corresponding relationship between S-TCI1/S-TCI2 and TRP can be predefined by the protocol or preset or preconfigured in the terminal device or network device, or it can be indicated by the network device to the terminal device through an RRC message or MAC CE of.
  • port X includes ports in CDM group 1, CDM group 2 and CDM group 3, the terminal device can transmit signals/channels through port X through the S-TCI transmission mode.
  • the terminal device can also send transmission capability information, and accordingly, the network device receives the transmission capability information.
  • the transmission capability information may be used to indicate that the terminal equipment supports uplink signal transmission using N beams, where N is a positive integer.
  • the terminal device if the terminal device supports the uplink signal transmission of multiple beams, that is, N is greater than or equal to 2, the terminal device can transmit multiple PUCCHs through multiple unified TCIs. Otherwise, the terminal device only transmits multiple PUCCHs through one unified TCI.
  • any PUCCH can be regarded as a third signal/channel in the third aspect. Therefore, the spatial parameters used to transmit the PUCCH can be determined in the manner shown in the third aspect.
  • the network device may instruct the terminal device to transmit the PUCCH through two spatial parameters. For example, the network device schedules the terminal device to transmit two PUCCHs respectively through port #0 and port #2. For example, using case 1 shown in Table 3, the terminal device transmits two PUCCHs respectively through SDM.
  • the terminal device can transmit PUCCH on port #0 through the space parameter corresponding to port #0 (or the CDM group where port #0 is located), and the terminal device can transmit PUCCH through port #2 (or the CDM group where port #2 is located)
  • the corresponding spatial parameters are used to transmit PUCCH on port #2 to realize spatial division multiplexing transmission of PUCCH.
  • S202 may include the following S203-S204:
  • S203 The terminal device sends the third signal/channel according to the third spatial parameter.
  • the third spatial parameter please refer to the description of the first spatial parameter in this application.
  • the third spatial parameter may include QCL information, and the QCL information may be used to indicate spatial correlation parameters of the downlink signal (or called spatial correlation properties).
  • the third spatial parameter may include TCI information.
  • the third spatial parameter may include TCI status information.
  • the third spatial parameter information is type D QCL information.
  • the uplink signal/channel may include at least one of PUCCH, PUSCH, SRS, PTRS or DMRS, etc.
  • the spatial parameter information is type D QCL information.
  • Type D QCL information can be found in the introduction in this application and will not be repeated here.
  • the terminal device may perform S203 after the validity time of the third indication information or the third space parameter.
  • the terminal device sending the third signal/channel according to the third spatial parameter may mean that the terminal device uses the third spatial parameter to send the third signal/channel.
  • S204 The network device receives the third signal/channel according to the third spatial parameter.
  • the network device may perform S204 after the validity time of the third indication information or the third space parameter.
  • the network device receives the third signal/channel according to the third spatial parameter, which may mean that the network device uses the third spatial parameter to receive the third signal/channel.
  • S202 may include the following S205-S206:
  • S205 The network device sends the third signal/channel according to the third spatial parameter.
  • the third spatial parameter please refer to the description of the first spatial parameter in this application.
  • the third spatial parameter may include QCL information, and the QCL information may be used to indicate spatial correlation parameters of the downlink signal (or called spatial correlation properties).
  • the third spatial parameter may include TCI information.
  • the third spatial parameter may include TCI status information.
  • the downlink signal/channel may include at least one of PDCCH, PDSCH, TRS, CSI-RS, PTRS, DMRS or SSB, etc.
  • the network device may perform S205 after the validity time of the third indication information or the third space parameter.
  • the network device sending the third signal/channel according to the third spatial parameter may mean that the terminal device uses the third spatial parameter to send the third signal/channel.
  • S206 The terminal device receives the third signal/channel according to the third spatial parameter.
  • the network device may perform S206 after the validity time of the third indication information or the third space parameter.
  • the network device receives the third signal/channel according to the third spatial parameter, which may mean that the network device uses the third spatial parameter to receive the third signal/channel.
  • the network device indicates multiple spatial parameters to the terminal device through different DCIs, and the HARQ-ACKs indicated by the multiple DCIs respectively adopt joint coding, then
  • the PUCCH carrying the jointly coded HARQ-ACK can be transmitted between the network device and the terminal device through any one of the plurality of spatial parameters, or through default or set spatial parameters.
  • the communication method may include the following steps:
  • S301 The network device sends the fifth instruction information and the sixth instruction information to the terminal device.
  • the terminal device receives the fifth indication information and the sixth indication information.
  • the fifth indication information is included in the fifth DCI and is used to indicate the fifth spatial parameter.
  • the sixth indication information is included in the sixth DCI and is used to indicate the sixth spatial parameter.
  • the network device may also indicate to the terminal device through an RRC message or MAC-CE or DCI that the HARQ-ACK indicated by the fifth DCI and the HARQ-ACK indicated by the sixth DCI adopt joint coding.
  • the fifth indication information and the fifth spatial parameter please refer to the description of the first indication information and the first spatial parameter in this application respectively
  • the sixth indication information and the sixth spatial parameter respectively, please refer to the description of the first indication in this application.
  • the description of the information and first spatial parameters will not be repeated here.
  • the fifth type of signal/channel and/or the sixth type of signal/channel includes at least two types of signals in SRS, CSI-RS, PDSCH, PDCCH, PUSCH, PUCCH, PTRS, DMRS, TRS, or SSB /channel.
  • the fifth indication information and the sixth indication information are included in the same DCI.
  • the fifth spatial parameter and/or the sixth spatial parameter may include QCL information and/or spatial relationship information for the transmission signal/channel.
  • the first DCI configures the third space parameter and the sixth space parameter to the terminal device through a field (such as the TCI domain).
  • S301 can be replaced by: the network device sends the fifth space parameter to the terminal device. parameter and/or indication information of the sixth spatial parameter.
  • the descriptions of the fifth spatial parameter and the sixth spatial parameter are the same as those in S201.
  • network devices can configure different unified TCI status pools for different TRPs, that is, the unified TCI status pools corresponding to different TRPs can be different. Therefore, in the M-TRP scenario, the value of a DCI domain in different unified TCI The status pool can correspond to different TCI statuses. Therefore, in the example of the process shown in Figure 9, the network device can respectively indicate the fifth spatial parameter and the sixth spatial parameter from the unified TCI status pool corresponding to different TRPs through the value of the TCI domain in the DCI.
  • PUCCH is transmitted between the terminal device and the network device through the fifth spatial parameter, the sixth spatial parameter or the set spatial parameter.
  • the PUCCH can be used to carry the HARQ-ACK of the fifth DCI indication and the HARQ-ACK of the sixth DCI indication. .
  • the terminal device and the network device may, after the effective time of the fifth space parameter, the sixth space parameter or the set space parameter, based on the effective fifth space parameter, the sixth space parameter or the set space parameter.
  • the spatial parameters are transmitted on the PUCCH.
  • the method for determining the effective time of the fifth spatial parameter and/or the sixth spatial parameter may refer to the description of the effective time of the first spatial parameter in this application.
  • the effective time of the set spatial parameters may be predefined by the protocol, preset or preconfigured, or may be determined through negotiation between the network device and the terminal device. This application does not make specific requirements.
  • S302 may include the following S303-S304:
  • S303 The terminal device sends PUCCH according to the fifth space parameter.
  • the fifth spatial parameter please refer to the description of the first spatial parameter in this application.
  • the fifth spatial parameter may include QCL information, and the QCL information may be used to indicate a spatial correlation parameter of the downlink signal (or called spatial correlation properties).
  • the fifth spatial parameter may include TCI information.
  • the fifth spatial parameter may include TCI status information.
  • the fifth spatial parameter information is type D QCL information.
  • the terminal device may perform S303 after the validity time of the fifth indication information or the fifth spatial parameter.
  • the terminal device sending the PUCCH according to the fifth spatial parameter may mean that the terminal device uses the fifth spatial parameter to send the PUCCH.
  • S304 The network device receives the PUCCH according to the fifth spatial parameter.
  • the network device may perform S304 after the validity time of the fifth indication information or the fifth spatial parameter.
  • the network device receives the PUCCH according to the fifth spatial parameter, which may mean that the network device uses the fifth spatial parameter to receive the PUCCH.
  • any one of the multiple spatial parameters can be used between the terminal device and the network device, Or transmitting the PUCCH used to carry the jointly coded HARQ-ACK through default or set spatial parameters can improve transmission reliability.
  • the effective range of the spatial parameters may include PUCCH.
  • the terminal device can also report capability information to the network device.
  • the capability information is used to indicate that the terminal device supports uplink signal/channel transmission using M beams, where M is a positive integer.
  • the network device can also send instruction information to the terminal device, so that the terminal device executes any of the communication methods in Figure 5, Figure 7 or Figure 9 provided by this application.
  • This indication information can be used to activate the terminal device to perform the communication method provided by the embodiment of the present application. Therefore, the terminal device can execute any one or more communication methods in Figure 5, Figure 7 or Figure 9 after receiving the indication information.
  • the terminal device does not perform the communication methods shown in Figure 5, Figure 7 and Figure 9.
  • the indication information may be a unified TCI switch carried in the RRC message or MAC CE.
  • the signal/channel for which unified TCI takes effect is configured through an RRC message or MAC CE, then the signal/channel transmitted by the terminal device on the current BWP, or if the signal/channel includes SRS or CSI-RS, excluding the SRS used for beam management (BM) or the signal/channel other than the CSI-RS used for beam management, as the first type of signal/channel, or it can also be passed
  • the first type of signal/channel is determined from the signals/channels excluding SRS for beam management or CSI-RS for beam management.
  • the network device can also send indication information to the terminal device through an RRC message, MAC CE or DCI, so that the terminal device learns the first indication information, the second information, and the third information in the present application.
  • the spatial parameter indicated by at least one of the three indication information, the third indication information, the fifth indication information or the sixth indication information is used to transmit at least two signals/channels, or in other words, used to indicate the first indication information, the second indication information, and the second indication information.
  • At least one of the information, the third indication information, the third indication information, the fifth indication information or the sixth indication information is unified TCI.
  • the interaction between a terminal device and a network device is taken as an example for explanation.
  • the method provided in the embodiment of this application can also be applied to the interaction between other execution subjects, such as a terminal device chip or module, and
  • For the interaction between chips or modules in the network device when the execution subject is a chip or module, you can refer to the description in the embodiments of this application, and will not be described again here.
  • FIG. 10 and FIG. 11 are schematic structural diagrams of possible communication devices provided by the present application. These communication devices can be used to implement the functions of the terminal equipment or network equipment in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device can be any one of the terminal equipment and network equipment shown in Figure 1, and there are no specific requirements.
  • the communication device 1000 includes a processing module 1001 and a transceiver module 1002.
  • the processing module 1001 in the communication device 1000 can be used to implement the functions of any one of the terminal equipment and the network equipment in the method embodiment shown in Figure 5, Figure 7 or Figure 9, for example, execute Figure 5, Figure 7 or Figure Actions represented by rectangular boxes in the flow chart shown in 9.
  • the transceiver module 1002 can be used to support communication between the communication device 1000 and other communication devices. For example, when the communication device 1000 is a terminal device, the transceiver module 1002 can be used to communicate between the terminal device and the network device. For example, execute FIG. 5 and FIG. 7 Or the actions represented by arrow connecting lines in the flow chart shown in Figure 9.
  • Figure 11 shows a device 1100 provided by an embodiment of the present application.
  • the device shown in Figure 11 can be a hardware circuit implementation of the device shown in Figure 10.
  • This device can be adapted to the flow chart shown above to perform the function of any one of the terminal device and the network device in the above method embodiment.
  • Figure 11 shows only the main components of the device.
  • the device 1100 shown in Figure 11 includes a communication interface 1110, a processor 1120 and a memory 1130, where the memory 1130 is used to store program instructions and/or data.
  • the processor 1120 may cooperate with the memory 1130.
  • Processor 1120 may execute program instructions stored in memory 1130 . When the instructions or programs stored in the memory 1130 are executed, the processor 1120 is used to perform the operations performed by the processing module 1001 in the above embodiment, and the communication interface 1110 is used to perform the operations performed by the transceiver module 1002 in the above embodiment.
  • Memory 1130 and processor 1120 are coupled.
  • the coupling in the embodiment of this application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information interaction between devices, units or modules.
  • At least one of the memories 1130 may be included in the processor 1120 .
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver or an independent transmitter; it may also be a transceiver with integrated transceiver functions or a communication interface.
  • Device 1100 may also include communication lines 1140.
  • the communication interface 1110, the processor 1120 and the memory 1130 can be connected to each other through a communication line 1140;
  • the communication line 1140 can be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA) bus, etc.
  • the communication line 1140 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only one thick line is used in Figure 11, but it does not mean that there is only one bus or one type of bus.
  • An embodiment of the present application also provides a computer-readable storage medium, which includes instructions that, when run on a computer, cause the computer to execute any of the terminal devices and network devices in the embodiments shown in Figure 5, Figure 7, or Figure 9. A method of execution.
  • An embodiment of the present application also provides a computer program product, which includes computer instructions. When run on a computer, it causes the computer to execute any one of the terminal equipment and the network equipment in the embodiments shown in Figure 5, Figure 7 or Figure 9. The method of item execution.
  • An embodiment of the present application also provides a chip system, including: a processor, the processor is coupled to a memory, and the memory is used to store programs or instructions.
  • the program or instructions are executed by the processor, the The chip system executes the method executed by any one of the terminal device and the network device in the embodiment shown in FIG. 5, FIG. 7 or FIG. 9.
  • An embodiment of the present application also provides a communication system, including: any one or more of the terminal device and the network device in the embodiment shown in Figure 5, Figure 7 or Figure 9.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by a general-purpose processor, a digital signal processor, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, Discrete gate or transistor logic, discrete hardware components, or any combination of the foregoing are designed to implement or operate the functions described.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented as a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the above functions described in this application may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer-readable medium, or transmitted on a computer-readable medium in the form of one or more instructions or code.
  • Computer-readable media includes computer storage media and communications media that facilitate transfer of a computer program from one place to another. Storage media can be any available media that can be accessed by a general purpose or special purpose computer.
  • Such computer-readable media may include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other device that may be used to carry or store instructions or data structures and Other media containing program code in a form readable by a general-purpose or special-purpose computer, or by a general-purpose or special-purpose processor.
  • any connection may be properly defined as a computer-readable medium, for example, if the software is transferred from a website, server, or other remote source to a computer over a coaxial cable, fiber optic cable, twisted pair cable, or digital subscriber line (DSL) Or transmitted by wireless means such as infrared, wireless and microwave are also included in the definition of computer-readable media.
  • DSL digital subscriber line
  • the discs and discs include compressed discs, laser discs, optical discs, digital versatile discs (DVD), floppy disks and Blu-ray discs. Disks usually copy data magnetically, and discs usually use Lasers optically copy data. Combinations of the above can also be contained in a computer-readable medium.
  • Computer-readable media includes computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • Storage media can be any available media that can be accessed by a general purpose or special purpose computer.

Abstract

一种通信方法及装置,用以提高通信可靠性。该方法包括:终端设备可以在第一信号的第一索引与第一指示信息对应的第一索引相同时,根据第一指示信息所指示的第一空间参数传输第一信号。其中,该第一空间参数可用于传输至少两种信号/信道,例如,第一指示信息可以是统一TCI。因此,该方法可以在通过统一TCI指示信号/信道的空间参数的场景中,准确确定待发送的信号/信道采用的空间参数,能够提高通信可靠性。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年04月29日提交中华人民共和国知识产权局、申请号为202210475047.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法及装置。
背景技术
第五代移动通信系统(5th generation,5G)采用高频通信,即采用超高频段(例如大于6吉赫兹(GHz)的频段)信号传输数据。高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过大规模天线阵列进行加权处理,将信号能量集中在一个较小的范围内,形成一个波束,从而提高传输距离。
网络设备可以生成不同的波束,指向不同的传输方向。在下行数据传输中,网络设备可以采用多个发送接收节点(transmitter receiver point,TRP)向终端设备传输数据。
目前,支持网络设备通过统一传输配置指示(transmission configuration indicator,TCI)(unified TCI)指示UE传输信号/信道时采用的空间参数,然而,仅根据unified TCI难以准确确定待传输的信号/信道采用的空间参数,导致通信可靠性降低。
发明内容
本申请提供一种通信方法及装置,用以准确确定信号/信道采用的空间参数,提高通信可靠性。
第一方面,提供一种通信方法,该方法可以应用在通过TCI指示多个信号/信道指示空间参数的场景,该TCI可称为统一TCI。具体的,该方法可由终端设备或终端设备中的组件实施,组件例如处理器、收发器、处理模块或收发模块中的至少一种。以执行主体是终端设备为例,该方法包括:终端设备接收第一指示信息,所述第一指示信息用于指示第一空间参数,所述第一空间参数用于传输第一类型的信号/信道,所述第一类型的信号/信道包括探测参考信号(sounding reference signal,SRS)、信道状态信息下行信号(channel state information reference signal,CSI-RS)、物理上行控制信道(physical uplink control channel,PUCCH)、物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、相位跟踪信号(phase tracking reference signal,PTRS)、解调参考信号(demodulation reference signal,DMRS)、追踪参考信号(tracking reference signal,TRS)、或同步信号块(synchronization signal block,SSB)中的至少两种。终端设备还可根据所述第一空间参数传输第一信号/信道,所述第一信号/信道的类型属于所述第一类型,所述第一信号/信道对应的第一索引与所述第一指示信息对应的第一索引相同。
根据第一方面所示方法,终端设备可以在第一信号的第一索引与第一指示信息对应的第一索引相同时,根据第一指示信息所指示的第一空间参数传输第一信号。其中,该第一空间参数可用于传输SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,例如,第一指示信息可以是unified TCI。因此,该方法可以在通过unified TCI指示信号/信道的空间参数的场景中,准确确定待发送的信号/信道采用的空间参数,能够提高通信可靠性。
在一种可能的实现方式中,终端设备还可接收第二指示信息,所述第二指示信息用于指示第二空间参数。根据所述第二空间参数传输第二信号/信道,所述第二信号/信道属于第二类型,所述第二类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,所述第二信号对应的第二索引与所述第二指示信息对应的第二索引相同。应理解,第二指示信息可以与第一指示信息相同,因此第二指示信息可参见本申请中对于第一指示信息的描述。同理,第二空间参数可参见本申请中对于第一空间参数的描述,第二信号/信道可参见本申请中对于第一信号/信道的描述,第二类型可参见本申请中对于第一类型的描述。
基于该实现方式,以第一指示信息和第二指示信息都是unified TCI为例,终端设备可根据待发送的信号/信道对应的第一索引或第二索引,确定通过第一空间参数或第二空间参数传输待发送的信号/信道,以进一步提高通信可靠性。
在一种可能的实现方式中,终端设备还可接收第一信息,该第一信息可用于指示所述第一指示信息对于所述第一信号/信道生效。
基于该实现方式,终端设备可准确确定合适根据第一指示信息确定(周期性或非周期性)SRS和/或(周期性或非周期性)CSI-RS的空间参数,进一步提高通信可靠性。
在一种可能的实现方式中,终端设备还可接收第二信息,所述第二信息用于指示获取所述第一指示信息。示例性的,该第二信息可指示多个TCI状态作为unified TCI状态池和/或激活的unified TCI状态。第一指示信息可用于指示unified TCI状态池和/或激活的unified TCI状态中的一个unified TCI。基于该实现方式,可通过第二信息指示第一指示信息的可选范围,实现第一指示信息的灵活指示。
第二方面,提供一种通信方法,方法可以应用在通过TCI指示多个信号/信道指示空间参数的场景,该TCI可称为统一TCI。具体的,该方法可由网络设备或网络设备中的组件实施,组件例如处理器、收发器、处理模块或收发模块中的至少一种。以执行主体是网络设备为例,该方法包括:网络设备发送第一指示信息,所述第一指示信息用于指示第一空间参数,所述第一空间参数用于传输第一类型的信号/信道,所述第一类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS或SSB中的至少两种。网络设备还可根据所述第一空间参数传输第一信号/信道,所述第一信号/信道的类型属于所述第一类型,所述第一信号/信道对应的第一索引与所述第一指示信息对应的第一索引相同。
根据第二方面所示方法,网络设备可以在第一信号的第一索引与第一指示信息对应的第一索引相同时,根据第一指示信息所指示的第一空间参数传输第一信号。其中,该第一空间参数可用于传输SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,例如,第一指示信息可以是unified TCI。因此,该方法可以在通过unified TCI指示信号/信道的空间参数的场景中,准确确定待发送的信号/信道采用的空间参数,能够提高通信可靠性。
在一种可能的实现方式中,网络设备还可发送第二指示信息,所述第二指示信息用于指示第二空间参数。根据所述第二空间参数传输第二信号/信道,所述第二信号/信道属于第二类型,所述第二类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,所述第二信号/信道对应的第二索引与所述第二指示信息对应的第二索引相同。
在一种可能的实现方式中,终端设备还可发送第一信息,该第一信息可用于指示所述第一指示信息对于所述第一信号/信道生效。
在一种可能的实现方式中,网络设备还可发送第二信息,所述第二信息用于指示获取所述第一指示信息。
示例性的,该第二信息可指示多个TCI状态作为unified TCI状态池和/或激活的unified TCI状态。第一指示信息可用于指示unified TCI状态池和/或激活的unified TCI状态中的一个unified TCI。基于该实现方式,可通过第二信息指示第一指示信息的可选范围,实现第一指示信息的灵活指示。
在第一方面和第二方面的一种可能的实现方式中,所述第一指示信息的生效时间位于所述第一下行控制信息(downlink control information,DCI)指示的混合自动重传请求(hybrid automatic repeat request,HARQ)肯定应答(acknowledgement,ACK)(HARQ-ACK)之后,所述第一信号/信道的发送时间位于所述第一指示信息的生效时间之后。
基于该实现方式,终端设备和网络设备可以准确确定第一指示信息和/或第一空间参数的生效时间,从而根据正确第一指示信息和/或第一空间参数的生效时间通过第一空间参数进行信号/信道的传输,以进一步提高通信可靠性。
在第一方面和第二方面的一种可能的实现方式中,所述第一空间参数和所述第二空间参数对应于不同的TRP。
因此,在多TRP场景中实现unified TCI指示空间参数的方案,终端设备和网络设备可根据以上方法准确确定与任意一个TRP之间的待传输的信号/信道所采用的空间参数,进一步提高通信可靠性。
在第一方面和第二方面的一种可能的实现方式中,第一指示信息包括在第一DCI中,所述第一DCI指示的HARQ-ACK的反馈模式为独立反馈,所述第一类型或者第一信号/信道的类型包括PUCCH。
基于该实现方式,当第一指示信息包括在第一DCI中,且第一DCI所指示的HARQ-ACK的反馈模式为独立反馈时,第一类型或者第一信号/信道的类型包括PUCCH,因此终端设备和网络设备可实现对于PUCCH采用的空间参数的准确确定。
在第一方面和第二方面的一种可能的实现方式中,所述第一指示信息包括在第一DCI中,所述第一类型包括非周期性SRS或非周期性CSI-RS。
基于该实现方式,当第一指示信息包括在第一DCI中时,第一类型或者第一信号/信道的类型包括非周期性SRS或非周期性CSI-RS,因此终端设备和网络设备可实现对于非周期性SRS或非周期性CSI-RS采用的空间参数的准确确定。
在第一方面和第二方面的一种可能的实现方式中,第一信号的类型和/或第一类型包括周期性SRS或周期性CSI-RS,所述第一信号对应的所述第一索引为控制资源集合(control resource set,CORESET)组索引(CORESET pool index),所述控制资源集合组索引是根据所述第一信号对应的参考信号资源信息(或称为参考信号/信道资源信息)中的指示信息确定的。或者也可以说,第一索引是参考信号资源索引,参考信号资源可以是控制资源集合组。
基于该实现方式,如果第一信号/信道是周期性SRS或周期性CSI-RS,终端设备可以根据第一信号/信道的参考信号资源信息中的控制资源集合组索引,确定具有相同控制资源集合组索引的第一指示信息,并根据该第一指示信息所指示的第一空间参数传输第一信号/信道,进一步提高通信可靠性。
在第一方面和第二方面的一种可能的实现方式中,第一信号/信道对应的第一索引可以是第一信号/信道对应的控制资源集合组索引,第一指示信息对应的第一索引包括第一指示信息对应的控制资源集合组索引。可选的,第一信号/信道对应的控制资源集合组索引可包括在第一信号/信道的参考信号资源信息中。
应理解,本申请中的参考信号资源信息可用于指示或配置参考信号/信道。例如,参考信号资源信息是无线资源控制(radio resource control,RRC)消息或媒体接入控制(media access control,MAC)控制元素(control element,CE)(MAC CE)中的周期性SRS或周期性CSI-RS的配置信息。该配置信息中可包括控制资源集合组索引或控制资源集合组索引的指示信息,如果该指示信息与第一指示信息的控制资源集合组索引相同,则终端设备可根据第一指示信息所指示的第一空间参数传输第一信号/信道,从而提高通信可靠性。
在第一方面和第二方面的一种可能的实现方式中,所述第一指示信息对应的第一索引包括第一DCI对应的控制资源集合组的索引,所述第一DCI包括所述第一指示信息,所述第一信号/信道对应的第一索引包括第二DCI对应的控制资源集合组的索引,所述第二DCI用于调度所述第一信号/信道。
基于该实现方式,如果用于调度或指示第一信号/信道的第二DCI的控制资源集合组的索引,与用于承载第一指示信息的第一DCI的控制资源集合组的索引相同,则终端设备可根据第一指示信息所指示的第一空间参数传输第一信号/信道,从而提高通信可靠性。
在第一方面和第二方面的一种可能的实现方式中,第一指示信息包括在所述第一DCI的传输配置指示TCI域中。和/或,所述第一指示信息携带在第一DCI中的目标字段,所述目标字段为传输配置指示TCI域。
在第一方面和第二方面的一种可能的实现方式中,所述第一指示信息携带在RRC信令或MAC CE信令中。和/或,所述第一类型包括的至少两种类型的信号/信道中的任一种类型的信号/信道是通过RRC信令或MAC CE信令指示的。
在第一方面和第二方面的一种可能的实现方式中,当第一类型包括的两种类型的信号/信道包括上行信号/信道(如PUCCH、PUSCH、SRS、PTRS或DMRS中的至少一个)时,所述第一空间参数信息为类型D(type D)准共址准共址(或准同位)(quasi-collocation,QCL)信息。
第三方面,提供一种通信方法,方法可以应用在通过TCI指示多个信号/信道指示空间参数的场景,该TCI可称为统一TCI。具体的,该方法可由终端设备或终端设备中的组件实施,组件例如处理器、收发器、处理模块或收发模块中的至少一种。以执行主体是终端设备为例,该方法包括:终端设备接收用于指示第三空间参数和第四空间参数的指示信息;或者,第三指示信息和第四指示信息,所述第三指示信息用于指示第三空间参数,所述第四指示信息用于指示第四空间参数。其中,所述第三空间参数用于传输第三类型的信号/信道,所述第四空间参数用于传输第四类型的信号/信道,所述第三类型的信号/信道和/或所述第四类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种。终端设备还可通过第三空间参数传输第三信号/信道,所述第三信号/信道的端口或端口所在的CDM组对应于所述第三指示信息,所述第三信号/信道的类型属于所述第三类型。
根据第三方面所示方法,终端设备可以接收用于指示第三空间参数和第四空间参数的指示信息,或接收用于指示第三空间参数的第三指示信息和用于指示第四空间参数的第四指示信息,并在第三信号/信道的端口或该端口所在的CDM组对应于第三指示信息时,通过第三空间参数传输第三信号/信道。其中,该第三空间参数和/或第四空间参数可用于传输SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,例如,第三指示信息可以是unified TCI。因此,该方法可以在通过unified TCI指示信号/信道的空间参数的场景中,准确确定待发送的信号/信道采用的空间参数,能够提高通信可靠性。
示例性的,第三信号/信道的端口,或该端口所在的CDM组与第三指示信息的对应关系可由网络设备指示,或者可以是协议定义的、预配置或预定义的,不做要求。
在第三方面的一种可能的实现方式中,终端设备还可接收时频资源组和/或时频资源组对应的端口与所述第一指示信息之间的对应关系,所述时频资源组对应的端口包括所述第一信号/信道的端口。
在第三方面的一种可能的实现方式中,终端设备还可根据所述端口所属的时频资源组与传输方式之间的对应关系,确定所述第一信号的传输模式,所述传输模式包括SDM、FDM、TDM或单TCI传输模式。
在第三方面的一种可能的实现方式中,终端设备还可接收用于指示所述第三空间参数和/或所述第四空间参数中的对应于至少两种类型的信号/信道的信息。
在第三方面的一种可能的实现方式中,终端设备还可发送传输能力信息,传输能力信息用于指示终端设备支持采用N个波束的上行信号传输,N为正整数。其中,如果终端设备支持多个波束的上行信号传输,即N大于或等于2,则终端设备可通过多个unified TCI传输多个PUCCH,否则,终端设备只通过一个unified TCI传输多个PUCCH。其中,任一PUCCH可视为第三方面中的一个第三信号/信道,因此,传输该PUCCH所采用的空间参数可通过第三方面所示方式确定。
第四方面,提供一种通信方法,方法可以应用在通过TCI指示多个信号/信道指示空间参数的场景,该TCI可称为统一TCI。具体的,该方法可由网络设备或网络设备中的组件实施,组件例如处理器、收发器、处理模块或收发模块中的至少一种。以执行主体是终端设备为例,该方法包括:网络设备发送第三指示信息和第四指示信息,所述第三指示信息用于指示第三空间参数,所述第四指示信息用于指示第四空间参数,所述第三空间参数用于传输第三类型的信号/信道,所述第四空间参数用于传输第四类型的信号/信道,所述第三类型的信号/信道和/或所述第四类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种。网络设备还可通过第三空间参数传输第三信号/信道,所述第三信号/信道的端口或端口所在的CDM组对应于所述第三指示信息,所述第三信号/信道的类型属于所述第三类型。
根据第三方面所示方法,网络设备可以发送用于指示第三空间参数的第三指示信息和用于指示第四空间参数的第四指示信息,并在第三信号/信道的端口或该端口所在的CDM组对应于第三指示信息时,通过第三空间参数传输第三信号/信道。其中,该第三空间参数和/或第四空间参数可用于传输SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,例如,第三指示信息可以是unified TCI。因此,该方法可以在通过unified TCI指示信号/信道的空间参数的场景中,准确确定待发送的信号/信道采用的空间参数,能够提高通信可靠性。
在第四方面的一种可能的实现方式中,网络设备还可接收传输能力信息,传输能力信息用于指示终端设备支持采用N个波束的上行信号传输,N为正整数。其中,如果终端设备支持多个波束的上行信号传输,即N大于或等于2,则网络设备可通过多个unified TCI或多个unified TCI指示的空间参数传输多个PUCCH,否则,网络设备只通过一个unified TCI指示的空间参数接收多个PUCCH。其中,任一PUCCH可视为第四方面中的一个第四信号/信道。
在第三方面和第四方面的一种可能的实现方式中,所述第三指示信息和第四指示信息包括在同一个DCI中。
在第三方面和第四方面的一种可能的实现方式中,所述第三指示信息和所述第四指示信息包括在第三DCI中,所述第三指示信息的生效时间和所述第四指示信息的生效时间位于所述第三DCI指示的混合自动重传请求肯定应答HARQ-ACK之后,所述第三信号/信道的发送时间位于所述第三指示信息的生效时间之后。
第五方面,提供一种通信方法,方法可以应用在通过TCI指示多个信号/信道指示空间参数的场景,该TCI可称为统一TCI。具体的,该方法可由终端设备或终端设备中的组件实施,组件例如处理器、收发器、处理模块或收发模块中的至少一种。以执行主体是终端设备为例,该方法包括:终端设备接收第五指示信息和第六指示信息,所述第五指示信息用于指示第五空间参数,所述第六指示信息用于指示第六空间参数,所述第五指示信息包括在第五DCI中,所述第六指示信息包括在第六DCI中,所述第五DCI指示的HARQ-ACK与所述第六DCI指示的HARQ-ACK联合编码。终端设备通过所述第五空间参数、所述第六空间参数或设定的空间参数传输PUCCH,所述PUCCH用于承载所述第五DCI指示的HARQ-ACK与所述第六DCI指示的HARQ-ACK。
根据第五方面所示方法,终端设备可接收承载于第五DCI的第五指示信息和承载于第六DCI的第六指示信息,并在第五DCI指示的HARQ-ACK与第六DCI指示的HARQ-ACK采用联合编码时,通过第五空间参数、第六空间参数或设定的空间参数传输PUCCH,该PUCCH用于承载联合编码的第五DCI指示的HARQ-ACK与第六DCI指示的HARQ-ACK,其中,第五指示信息用于指示该第五空间参数,第六指示信息用于指示该第六空间参数。因此,终端设备能够准确确定该PUCCH传输时采用的空间参数,提高通信可靠性。
第六方面,提供一种通信方法,该方法可以应用在通过统一TCI指示空间参数的场景。具体的,该方法可由网络设备或网络设备中的组件实施,组件例如处理器、收发器、处理模块或收发模块中的至少一种。以执行主体是终端设备为例,该方法包括:网络设备发送接收第五指示信息和第六指示信息,所述第五指示信息用于指示第五空间参数,所述第六指示信息用于指示第六空间参数,所述第五指示信息包括在第五DCI中,所述第六指示信息包括在第六DCI中,所述第五DCI指示的HARQ-ACK与所述第六DCI指示的HARQ-ACK联合编码。终端设备通过所述第五空间参数、所述第六空间参数或设定的空间参数传输PUCCH,所述PUCCH用于承载所述第五DCI指示的HARQ-ACK与所述第六DCI指示的HARQ-ACK。
根据第五方面所示方法,网络设备可发送承载于第五DCI的第五指示信息和承载于第六DCI的第六指示信息,并在第五DCI指示的HARQ-ACK与第六DCI指示的HARQ-ACK采用联合编码时,通过第五空间参数、第六空间参数或设定的空间参数传输PUCCH,该PUCCH用于承载联合编码的第五DCI指示的HARQ-ACK与第六DCI指示的HARQ-ACK,其中,第五指示信息用于指示该第五空间参数,第六指示信息用于指示该第六空间参数。因此,网络设备能够准确确定该PUCCH传输时采用的空间参数,提高通信可靠性。
在第五方面和第六方面的一种可能的实现方式中,所述PUCCH的传输时间位于所述第五空间参数、所述第六空间参数或所述设定的空间参数的生效时间之后。
第七方面,本申请实施例提供一种通信装置,该装置具有实现上述第一方面、第三方面、第五方面或其任一种可能的实现方式中终端设备的功能,或者第二方面、第四方面、第六方面或其任一种可能的实现方式中网络设备的功能。该通信装置具体可以是终端设备、终端设备中的组件、网络设备或网络设备中的组件。
上述通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,硬件或软件包括一个或多个与上述功能相对应的模块或单元或手段(means)。
在一种可能的实现方式中,该装置的结构中包括处理模块和收发模块,其中,处理模块被配置为支持该装置执行上述第一方面、第三方面、第五方面或其任一种可能的实现方式中终端设备的功能;和/或,被配置为支持该装置执行第二方面、第四方面、第六方面或其任一种可能的实现方式中网络设备的功能。收发模块用于支持该装置与其他通信设备之间的通信,例如该装置为终端设备时,收发模块用于接收来自网络设备等的信息。又如该装置为网络设备时,收发模块用于接收来自终端设备等的信息。该通信装置还可以包括存储模块,存储模块与处理模块耦合,其保存有装置必要的程序指令和数据。作为一种示例,处理模块可以为处理器,通信模块可以为收发器,存储模块可以为存储器,存储器可以和处理器集成在一起,也可以和处理器分离设置。
在另一种可能的实现方式中,该装置的结构中包括处理器,还可以包括存储器。处理器与存储器耦合,可用于执行存储器中存储的计算机程序指令,以使装置执行上述第一方面、第三方面、第五方面或其任一种可能的实现方式中的方法,或者执行上述第二方面、第四方面、第六方面或其任一种可能的实现方式中的方法。可选地,该装置还包括通信接口,处理器与通信接口耦合。当装置为终端设备或网络设备时,该通信接口可以是收发器或输入/输出接口;当该装置为终端设备或网络设备中包含的芯片时,该通信接口可以是芯片的输入/输出接口。可选地,收发器可以为收发电路,输入/输出接口可以是输入/输出电路。
第八方面,本申请实施例提供了一种通信系统,可以包括如用于实现上述第一方面至第六方面中任意一个或多个方面及其各个可能的实现方式中所示方法的通信装置。或者,该通信系统可包括终端设备和网络设备中的一项或多项。该终端设备可用于实现上述第一方面、第三方面、第五方面或其任一种可能的实现方式中的方法,该网络设备可用于实现上述第二方面、第四方面、第六方面或其任一种可能的实现方式中的方法。
第九方面,本申请实施例提供的一种计算机可读存储介质,该计算机可读存储介质存储有程序指令,当程序指令在计算机上运行时,使得计算机执行本申请实施例第一方面至第六方面及其任一可能的实现方式中所述的方法。示例性的,计算机可读存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括非瞬态计算机可读介质、随机存取存储器(random-access memory,RAM)、只读存储器(read-only memory,ROM)、电可擦除可编程只读存储器(electrically electrically programmable read-only memory,EEPROM)、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。
第十方面,本申请实施例提供一种计算机程序产品,包括计算机程序代码或指令的,当计算机程序代码或指令在计算机上运行时,使得上述第一方面至第六方面或其中任一可能的实现方式中所述的方法被执行。
第十一方面,本申请还提供了一种芯片,包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以使所述芯片实现上述第一方面至第六方面或其中任一种可能的实现方式中所述的方法。
上述第七方面至第十一方面中的各个方面以及各个方面可能达到的技术效果请参照上述针对第一方面至第六方面及其任一可能的实现方式中所述的方法的有益效果说明,这里不再重复赘述。
附图说明
图1为本申请提供的一种无线通信系统的架构示意图;
图2为本申请提供的一种波束训练的示意图;
图3为本申请提供的一种指示PDSCH的波束信息的信号流程图;
图4为本申请提供的一种MAC CE信令的格式示意图;
图5为本申请提供的一种通信方法的流程示意图;
图6为本申请提供的一种信号交互示意图;
图7为本申请提供的另一种通信方法的流程示意图;
图8为本申请提供的另一种信号交互示意图;
图9为本申请提供的另一种通信方法的流程示意图;
图10为本申请提供的一种通信装置的结构示意图;
图11为本申请提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
此外,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图1中示出的通信系统为例说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例提供的方法的一种可能的通信系统的架构,所述通信系统的架构中包括网络设备和至少一个终端设备,其中:所述网络设备可以通过不同方向的波束建立与至少一个终端设备(例如图中示出的终端设备1和终端设备2)之间的通信链路。所述网络设备可以为所述至少一个终端设备提供无线接入有关的服务,实现下述功能中的一个或多个功能:无线物理层功能、资源调度和无线资源管理、服务质量(quality of service,Qos)管理、无线接入控制以及移动性管理功能。所述至少一个终端设备也可以形成波束进行与所述网络设备之间的数据传输。在本实施例中,所述网络设备与至少一个终端设备之间可以通过波束进行通信。
应理解,本申请实施例中涉及的网络设备可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,家庭演进型节点B(home evolved NodeB),或家庭节点B(home node B,HNB))、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP/TP)或者远程射频头(remote radio head,RRH)等,还可以为5G,如,NR系统中的基站(gNB),或,传输点,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元,或,分布式单元(distributed unit,DU)等。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的接入网设备(例如gNB)或者未来演进的PLMN网络中的接入网设备等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
示例地,网络设备可以作为调度设备,在该情况下,网络设备例如可以包含但不限于:LTE基站eNB、NR基站gNB、运营商等等,其功能例如可以包含:进行上下行资源的配置、在基站调度模式、发送下行控制信息(downlink control information,DCI)。示例地,网络设备还可以作为发送设备,在该情况下,网络设备例如可以包含但不限于:TRP、RRH,其功能例如可以包含:进行下行信号发送和上行信号接收。
本申请实施例中涉及的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、可穿戴设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
其中,终端设备的功能例如可以包括但不限于:进行下行/侧行信号的接收,和/或,上行/侧行信号的发送。
示例性地,网络设备和终端设备中可以包括:RRC信令交互模块、MAC信令交互模块、以及PHY信令交互模块。其中,RRC信令交互模块可以为:网络设备和终端设备用于发送及接收RRC信令的模块。MAC信令交互模块可以为:网络设备和终端设备用于发送及接收MAC控制元素(control element,CE)的模块。PHY信令及数据可以为:网络设备和终端设备用于发送及接收上行控制信令或下行控制信令、上下行数据或下行数据的模块。
在传输中,通信系统通常使用不同种类的参考信号:一类参考信号用于估计信道,从而可以对含有控制信息或者数据的接收信号进行相干解调;另一类用于信道状态或信道质量的测量,从而实现对UE的调度。UE可基于对信道状态信息参考信号(channel state information reference signal,CSI-RS)的信道质量测量得到信道状态信息CSI,所述CSI包括秩指示(rank indicator,RI),预编码指示(precoding matrix indicator,PMI),信道质量指示(channel quality indicator,CQI)等中的至少一种。这些CSI信息可由用户设备通过物理上行控制信道或物理上行共享信道发送给基站。
本申请实施例提及的无线通信系统包括但不限于:全球移动通信(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、先进的长期演进(LTE-advanced,LTE-A)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G、多种接入系统的融合系统,或演进系统、5G移动通信系统的三大应用场景增强移动宽带(enhanced mobile broadband,eMBB),超可靠低时延通信(ultra reliable and low-latency communication,URLLC)和增强机器类通信(enhanced machine type communication,eMTC)或者将来出现的新的通信系统。
需要说明的是,图1所示的通信系统的架构不限于仅包含图中所示的设备,还可以包含其它未在图中表示的设备,具体本申请在此处不再一一列举。
下面先给出本申请实施例可能出现的技术术语的定义。
(1)参考信号的资源,本申请实施例中,网络设备发送参考信号的资源可以称为参考信号资源,参考信号可以为以下信号中的任一种信号:同步信号、广播信道、同步信号广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)、广播信号解调信号、信道状态信息下行信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、终端专用参考信号(user equipment specific reference signal,US-RS)、下行控制信道解调参考信号、下行数据信道解调参考信号、下行相位噪声跟踪信号,探测参考信号(sounding reference signal,SRS)等。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
(2)波束(beam):波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术手段。波束赋形技术可以具体为:数字波束赋形技术、模拟波束赋形技术、混合数字/模拟波束赋形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
可选地,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束对应一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。一个波束对应的一个或多个天线端口也可以看作是一个天线端口集。
用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
波束可以分为:网络设备的发送波束和接收波束、终端设备的发送波束和接收波束。网络设备的发送波束用于描述网络设备发送侧波束赋形信息,网络设备的接收波束用于描述网络设备接收侧波束赋形信息。终端设备的发送波束用于描述终端设备发送侧波束赋形信息,终端设备的接收波束用于描述终端设备接收侧波束赋形信息。也即波束可以用于描述波束赋形信息。
波束一般和资源对应,波束可以对应:时间资源、空间资源、频域资源。
可选地,波束还可以与参考信号资源(例如,波束赋形的参考信号资源),或者波束赋形信息对应。
可选地,波束还可以与网络设备的参考信号资源关联的信息对应。其中参考信号例如可以为:CSI-RS、SSB,DMRS、相位跟踪信号(phase tracking reference signal,PTRS)、或TRS等。参考信号资源关联的信息可以是参考信号资源索引(或标识),或者QCL信息(如type D的QCL)等。其中,参考信号资源索引对应了之前基于该参考信号资源测量时建立的一个收发波束对,通过该参考信号资源索引,终端设备可推断波束信息。
可选地,波束还可以与空域滤波器(spatial filter或spatial domain filter)、空域传输滤波器(spatial domain transmission filter)对应。
其中,接收波束可以等价于空间传输滤波器,空域传输滤波器,空域接收滤波器,空间接收滤波器;发送波束可以等价于空域滤波器,空域传输滤波器,空域发送滤波器,空间发送滤波器。空间相关参数的信息可以等价于空间滤波器(spatial domain transmission/receive filter)。可选地,空间滤波器一般包括空间发送滤波器和/或空间接收滤波器。该空间滤波器还可以称之为空域发送滤波器,空域接收滤波器,空间传输滤波器,空域传输滤波器等。其中,终端设备侧的接收波束和网络设备侧的发送波束可以为下行空间滤波器,终端设备侧的发送波束和网络设备侧的接收波束可以为上行空间滤波器。
一种基于波束赋形技术的信号传输机制被采用,以通过较大的天线增益来补偿信号传播过程中的上述损耗。其中,波束赋形的信号可包括广播信号,同步信号,以及信道状态信息参考信号等。当信号基于波束赋形技术进行传输时,一旦用户发生移动,可能出现传输信号对应的赋形波束的方向不再匹配移动后的用户位置,从而接收信号频繁中断的问题。为跟踪所述信号传输过程中的赋形波束变化,一种基于波束赋形技术的信道质量测量及结果上报被引入。所述信道质量的测量可以基于波束赋形后的同步信号或信道状态信息参考信号。相比小区切换,用户在不同赋形波束间的切换更加动态和频繁,因此需要一种动态的测量上报机制。可选地,所述赋形波束参考信号的信道质量结果的上报也可由用户设备通过PUCCH或PUSCH发送给基站。
UE通过对基站发送的多个波束进行测量选择其较优的N个波束,并将较优的N个波束测量信息上报给基站。波束测量信息主要包括参考信号资源索引、参考信号接收功率(reference signal received power,RSRP)、信号干扰噪声比(signal to interference plus noise ratio,SINR)中的至少一种。如图2所示的编号e部分为基站发送的波束的训练过程。反之如图2中的编号d部分所示,UE发送多个波束,基站对UE发送的多个波束进行测量,并且将UE发送的多个波束中较优的波束通知给UE。此外,在标准中不使用“波束”这个词,基站发射侧的波束通过参考信号资源表示,如波束索引1,标准中描述为参考信号资源索引1,终端侧的接收波束通过QCL中的spatial Rx parameter指示,波束状态信息在标准中描述为L1-RSRP相关信息(related information)或L1-SINR related information。
如图2所示,基站和UE之间的波束训练过程可包括以下步骤:
1)最优的N个波束对(beam pair link,BPL)(一个BPL包括一个基站发射波束和一个UE接收波束,或者,一个BPL包括一个UE发射波束和一个基站接收波束)的选择。用于UE设备基于网络设备的波束扫描实现对基站发射波束和/或UE接收波束的选择,以及,网络设备基于UE设备的波束扫描实现对UE发射波束和/或基站接收波束的选择。如图2中的编号a部分和编号b部分所示。
2)发射波束的更新,该发射波束可以为基站发射波束,也可以为UE发射波束。当该发射波束为基站发射波束时,如图2中的编号e部分所示,基站通过不同的发射波束向UE发送参考信号,UE通过同一个接收波束来接收基站通过不同的发射波束发送的参考信号,并基于接收信号确定基站的最优发射波束,然后将基站的最优发射波束反馈给基站,以便于基站对发射波束进行更新。当该发射波束为UE发射波束时,如图2中的编号d部分所示,UE通过不同的发射波束向基站发送参考信号,基站通过同一个接收波束来接收UE通过不同的发射波束发送的参考信号,并基于接收信号确定UE的最优发射波束,然后将UE的最优发射波束反馈给UE,以便于UE对发射波束进行更新。其中,上述通过不同的发射波束发送参考信号的过程可以称为波束扫描,基于接收信号确定最优发射波束的过程可以称为波束匹配。
3)接收波束的更新,该接收波束可以为基站接收波束,也可以为UE接收波束。当该接收波束为基站接收波束时,如图2中的编号f所示,UE通过同一个发射波束向基站发送参考信号,基站采用不同的接收波束接收UE发送的参考信号,然后基于接收信号确定基站的最优接收波束,以对基站的接收波束进行更新。当该接收波束为UE的接收波束时,如图2中的编号c所示,基站通过同一个发射波束向UE发送参考信号,UE采用不同的接收波束接收基站发送的参考信号,然后基于接收信号确定UE的最优接收波束,以对UE的接收波束进行更新。
在下行信号的传输中,基站发射波束和UE接收波束均可能发生动态变化,UE基于接收信号确定的最优接收波束可能包括多个,为了使UE确定自身的接收波束,UE可以将多个接收波束的信息反馈给网络设备,基站可以通过向UE发送波束指示信息来向UE指示UE接收波束。当UE采用模拟域的波束赋形时,UE可以基于基站发送的波束指示信息来精确的确定UE接收波束,从而可以节省UE的波束扫描时间,达到省电的效果。
(3)空间相关参数信息:
空间相关参数信息(或称为空间参数)可以包括准共址(或准同位)(quasi-collocation,QCL)信息,还可以包括空间关系(spatial relation)信息。
一般来说,QCL信息用于指示下行信号/信道的空间相关参数(还可以称为空间相关特性),spatial relation信息用于指示上行信号/信道的空间相关参数(还可以称为空间相关特性)。
上行信号/信道可以包括但不限于:物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、探测参考信号(sounding reference signal,SRS)、相位追踪参考信号(phase-tracking reference signal,PTRS)与解调参考信号(demodulation reference signal,DMRS)。
下行信号/信道可以包括但不限于:物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH)、追踪参考信号(tracking reference signal,TRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、相位追踪参考信号(phase-tracking reference signal,PTRS)、解调参考信号(demodulation reference signal,DMRS)以及SSB。SSB包括以下一项或多项:主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和PBCH。主要用于小区搜索、小区同步、承载广播信息的信号。
spatial relation信息用于辅助描述终端设备发射侧波束赋形信息以及发射流程。
spatial relation信息用于指示两个参考信号之间的空间发送参数关系。目标参考信号一般为下行信号,例如可以是DMRS或SRS等。被引用的参考信号或者源参考信号一般可以是:CSI-RS、SRS、或SSB等。
准共址,也可以称为准共站或同位置。QCL信息也可以称为QCL假设信息。QCL信息用于辅助描述终端设备接收波束赋形信息以及接收流程。
QCL信息可以用于指示两个参考信号之间的QCL关系。目标参考信号一般为下行信号,例如可以是DMRS或CSI-RS等。被引用的参考信号或者源参考信号一般可以是:CSI-RS、SSB、或TRS等。TRS也是CSI-RS的一种。
以PDCCH的QCL信息为例,PDCCH的QCL信息配置方法可以如下:
配置PDCCH的K个候选QCL信息,如通过RRC配置PDCCH的K个候选QCL信息,K个候选QCL信息例如可以包括K个传输配置指示(transmission configuration indicator,TCI)状态(TCI state),其中,K为大于1或等于1的整数;
指示PDCCH的QCL信息,如通过媒体接入控制(media access control,MAC)控制元素(control element,CE)(MAC CE)指示PDCCH的QCL信息(可选的,在K为大于1的整数时)。
可以规定在初始无线资源控制(radio resource control,RRC)和MAC CE阶段,终端设备假设PDCCH、PDSCH的DMRS与初始接入时确定的SSB是QCL的(或称,是具有QCL关系的)。
具有QCL关系的天线端口对应的信号中可以具有相同的或相近的空间特性参数(或称为参数),或者,一个天线端口的空间特性参数(或称为参数),可以用于确定与该天线端口具有QCL关系的另一个天线端口的空间特性参数(或称为参数),或者,两个天线端口具有相同的或相似的空间特性参数(或称为参数),或者,两个天线端口间的空间特性参数(或称为参数)差小于某阈值。
应理解,满足QCL关系的两个参考信号或信道的空间特性参数是相同的(或相近的,或相似的),从而基于该源参考信号资源索引可推断出目标参考信号的空间特性参数。
还应理解,满足空间关系信息的两个参考信号或信道的空间特性参数是相同的(或相近的,或相似的),从而基于该源参考信号资源索引可推断出目标参考信号的空间特性参数。
其中,空间特性参数可以包括以下参数中的一种或多种:
入射角(angle of arrival,AoA)、主(dominant)入射角AoA、平均入射角、入射角的功率角度谱(power angular spectrum,PAS)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端设备发送波束成型、终端设备接收波束成型、空间信道相关性、网络设备发送波束成型、网络设备接收波束成型、平均信道增益、平均信道时延(average delay)、时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(doppler shift)、或空间接收参数(spatial Rx parameters)等。
其中,上述角度可以为:不同维度的分解值,或,不同维度分解值的组合。天线端口可以为具有不同天线端口编号的天线端口。天线端口还可以为:具有相同天线端口号或不同天线端口号,在不同时间内进行信息发送或接收的天线端口。天线端口还可以为:具有相同天线端口号或不同天线端口号,在不同频率内进行信息发送或接收的天线端口。天线端口还可以为:具有相同天线端口号或不同天线端口号,在不同码域资源内进行信息发送或接收的天线端口。
这些空间特性参数描述了源参考信号与目标参考信号的天线端口间的空间信道特性,有助于终端设备根据该QCL信息完成接收侧波束赋形或接收处理过程。例如终端设备可以根据QCL信息指示的源参考信号的接收波束信息,接收目标参考信号。这些空间特性参数还有助于终端设备根据该空间相关信息完成发射侧波束赋形或者发射处理过程。例如终端设备可以根据空间相关信息指示的源参考信号的发射波束信息,发射目标参考信号。
其中,为了节省网络设备对终端设备的QCL信息指示开销,作为一种可选的实施方式,网络设备可以指示PDCCH或PDSCH的解调参考信号与终端设备之前上报的多个参考信号资源中的一个或多个是满足QCL关系的。例如,该参考信号可以是CSI-RS。每一个上报的CSI-RS资源索引对应了一个之前基于该CSI-RS资源测量时建立的一个收发波束对。应理解,满足QCL关系的两个参考信号或信道的接收波束信息是相同的,该终端设备可以根据该参考信号资源索引推断出接收PDCCH或PDSCH的接收波束信息。
在现有协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A)QCL关系(或类型A QCL信息):多普勒频移(Doppler shift)、多普勒扩展(Doppler spread)、平均时延(average delay)、时延扩展(delay spread);
类型B(type B)QCL关系(或称为类型B QCL信息):多普勒频移、多普勒扩展;
类型C(type C)QCL关系(或称为类型C QCL信息):多普勒频移、平均时延;以及
类型D(type D)QCL关系(或称为类型D QCL信息):空间接收参数(spatial Rx parameter)。
网络设备可以同时给终端设备配置一个或多种类型的QCL,如QCL type A+type DQCL关系,type C+type DQCL关系等。
当QCL关系指类型D的QCL关系时,可以认为是空域QCL。当天线端口满足空域QCL关系时,可以是下行信号的端口和下行信号的端口之间,或上行信号的端口和上行信号的端口之间的QCL关系(如上文中称为spatial relation)。例如,对于下行信号和上行信号间的QCL关系,或上行信号与下行信号的端口间的QCL关系,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发射波束。又如,对于下行信号和上行信号间的QCL关系,或上行信号与下行信号的端口间的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束互易性,根据下行接收波束确定上行发射波束,或根据上行发射波束确定下行接收波束。
从发送端来看,如果说两个天线端口是空域QCL的,则可以是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域QCL的,则可以是指接收端能够在同一波束方向上接收到这两个天线端口发送的信号。
具有空域QCL关系的端口上传输的信号还可以具有对应的波束,对应的波束可以包括以下一项或多项:相同的接收波束、相同的发射波束、与接收波束对应的发射波束(如可以对应于有互易的场景)、与发射波束对应的接收波束(如可以对应于有互易的场景)。
具有空域QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送信号。空间滤波器可以为以下一项或多项:预编码、天线端口的权值、天线端口的相位偏转、或天线端口的幅度增益。
具有空域QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(beam pair link,BPL),对应的BPL包括以下一项或多项:相同的下行BPL、相同的上行BPL、与下行BPL对应的上行BPL、或与上行BPL对应的下行BPL。
因此,空间接收参数(即,类型D的QCL)可以理解为用于指示接收波束的方向信息的参数。
在本申请的举例中,某些参数的对应关系也可以应用于QCL描述下的场景。
应理解,本申请中适用于QCL假设的场景,也可以是两个参考信号,或者也可以是传输对象间的关联关系。
(4)控制资源集合(control resource set,CORESET):是用于传输下行控制信息的资源集合,也可以称为控制资源区域,或物理下行控制信道资源集合。
网络设备可为终端设备配置一个或多个控制资源集合,用于发送PDCCH。网络设备可以在终端设备对应的任一控制资源集合上,向终端设备发送控制信道。此外,网络设备还需要通知终端设备所述控制资源集合相关联的其他配置,例如搜索空间集合(search space set)等。每个控制资源集合的配置信息存在差异,例如频域宽度差异、时域长度差异等。
可选地,本申请中的控制资源集合可以为以下任意一项:5G移动通信系统定义的CORESET、控制区域(control region)、或增强物理下行控制信道(enhanced-physical downlink control channel,ePDCCH)集合(set)。
PDCCH所占用的时频位置可以称之为下行控制区域。一种可能的情况,PDCCH始终位于一个子帧的前m个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(本申请中可简称为符号),其中,m可能的取值为1、2、3、或4。ePDCCH和中继物理下行控制信道(relay-physical downlink control channel,R-PDCCH)的位置未处于前m个符号。
下行控制区域可以由RRC信令通过控制资源集合和搜索空间集合灵活配置。控制资源集合可以配置PDCCH或控制信道单元(control channel element,CCE)的频域位置,时域的持续符号数等信息。搜索空间集合可配置PDCCH的检测周期以及偏移量,在一个时隙内的起始符号等信息。
例如,搜索空间集合可配置PDCCH周期为1个时隙,时域起始符号为符号0,则终端设备可以在每个时隙的起始位置检测PDCCH。
(5)TCI状态:可用于指示信号或信道的QCL信息。其中,信道例如可以是:PDCCH、CORESET、或PDSCH等。信号例如可以是:CSI-RS、DMRS、或TRS等。TCI信息可以指TCI中包括的参考信号与该信道满足QCL关系,主要用于指示接收信道时,其空间特性参数等信息与TCI中包括的参考信号的空间特性参数等信息相同、相似、或相近。TCI信息还可以指TCI中包括的参考信号与该信号满足QCL关系,主要用于指示接收信号时,其空间特性参数等信息与TCI中包括的参考信号的空间特性参数等信息相同、相似、或相近。
一个TCI状态可以配置一个或多个被引用的参考信号,及所关联的QCL类型(QCL type),换句话说,一个TCI状态的配置信息可以包括一个或两个参考信号资源的标识,以及所关联的QCL类型。QCL类型又可以分为:类型A、类型B、类型C、类型D,四个类别,分别是{Doppler shift,Doppler spread,average delay,delay spread,spatial Rx parameter}的不同组合或选择。TCI状态包括QCL信息,或者TCI状态用于指示QCL信息。
TCI状态是由网络设备配置给各个终端设备的,下列是一种示例性的TCI状态的格式:
此外,TCI状态可以是全局配置的。在为不同的小区、不同的带宽部分(bandwidth part,BWP)配置的TCI状态中,若TCI状态的索引相同,则所对应的TCI状态的配置也相同。
如表1所示,为基于TCI状态实现PDSCH、PDCCH、CSI-RS、PUCCH、SRS和PUSCH的波束指示方法。
表1
其中,如表1所示,可以通过RRC消息、MAC CE和DCI这三级信令指示PDSCH的波束信息(或QCL消息),如图3所示。此外,还可以通过RRC、DCI这两级信令指示PDSCH的波束信息。
下面结合图3进行说明:
1、RRC消息可用于为PDSCH配置N个TCI状态;
例如协议中,RRC消息的该指示字段可配置为如下所示:
2、MAC CE用于从N个TCI状态中激活K个TCI状态(N个TCI状态的子集,K小于或等于N)。
示例性的,该MAC CE可配置为图4所示。其中,服务小区标识(serving cell ID)域可用于指示该MAC CE所指示的TCI状态所属的服务小区的ID。BWP标识域可包括BWP标识(identity,ID),用于指示该MAC CE所应用的下行带宽区域。Ti用于指示TCI状态标识为i的TCI状态的激活/去激活状态,i=0、1、2……。例如,Ti字域置为"1",表示TCI状态标识为i的TCI状态被激活了,并映射到DCI中的TCI字域。Ti字域置为"0"表示TCI状态标识为i的TCI状态被去激活了且不会映射到DCI的TCI字域。
其中,TCI状态映射到DCI的码点按照其所有Ti字域置为"1"的TCI状态顺序映射。例如,第一个Ti字域置为"1"的TCI状态映射到codepoint值(value)0;第二个Ti域置为"1"的TCI状态映射到codepoint value 1等等。激活的TCI状态的最大个数为8。
再例如,MAC CE也可以将至多两个TCI状态映射至DCI的TCI域的一个码点上。(主要用于多TPR传输场景)。
3、DCI中的TCI域有X比特(bit)用于指示K个TCI状态中的至少一个TCI状态用于PDSCH的接收。
例如,X=3,DCI的TCI域可以用于指示表2所示的TCI状态中的一个。
表2
其中,DCI中是否存在TCI域,可以通过高层信令如RRC消息指示,例如,可通过RRC消息中的高层参数DCI中的TCI域存在指示(RRC TCI-Present InDCI)指示的。
表1中,又如图4所示,可通过RRC消息和MAC CE这二级信令实现PDCCH的波束信息(或QCL消息)的指示。
其中,RRC消息可用于配置M个TCI状态,该M个TCI状态为图2所示RRC消息配置的PDSCH的N个TCI状态的子集。该MAC CE可用于激活M个TCI状态中的一个TCI状态,该激活的TCI状态用于PDCCH的接收。
如表1所示,还可通过RRC消息指示CSI-RS的波束信息(或QCL消息)。例如,通过RRC消息配置CSI-RS的TCI状态,该TCI状态为图2所示RRC消息配置的PDSCH的N个TCI状态的子集。
又如,表1中,还可通过RRC消息和MAC CE这二级信令实现PUCCH的波束信息(或空间关系信息)的指示。其中,RRC消息可用于配置N个空间关系,MAC CE可用于激活N个空间关系中的一个空间关系,该空间关系用于PUCCH的发送。
此外,还可通过RRC消息指示PUCCH的波束信息。
又如表1所示,可以通过RRC消息和MAC CE这二级信令实现SRS的波束信息(或空间关系信息)的指示,或者可通过RRC消息指示SRS的波束信息。
其中,SRS可分为周期性SRS、半周期性SRS和非周期性SRS。
对于周期性SRS,RRC消息可用于配置一个空间关系。
对于半周期性SRS,RRC消息或MAC CE可用于指示配置一个空间关系。
对于非周期性SRS,RRC消息或MAC CE可用于指示配置一个空间关系。
此外,如表1所示,可以通过DCI中的SRI域指示空间参数,以实现PUSCH的波束信息(或空间关系信息)的指示。
(6)单元载波(component carrier,CC):
单元载波又可以称为分量载波,组成载波,或成员载波等。多载波聚合中的每个载波都可以称为“CC”。终端设备可以在多个CC上接收数据。每个载波由一个或多个物理资源块(physical resource block,PRB)组成,每个载波上可以有各自对应的PDCCH,调度各自CC的PDSCH;或者,有些载波没有PDCCH,此时所述载波可以进行跨载波调度(cross-carrier scheduling)。
跨载波调度:网络设备在一个CC上发送PDCCH来调度另一个CC上的数据传输,即,在另一个CC上传输PDSCH,或者,在另一个CC上传输PUSCH。更具体地,网络设备可以在一个CC的BWP上发送PDCCH来调度另一个CC上的BWP的PDSCH或PUSCH的传输。即,控制信道在一个CC上传输,而对应的数据信道在另一个CC上传输。
(7)天线端口(antenna port):
天线端口也可以简称端口。被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号端口对应。
(8)码分复用组(code division multiplexing,CDM group):
通过码分复用方式区分的天线端口组,即不同的天线端口占用相同的时频资源,但对应的序列(时频掩码)不同。
(9)带宽部分:
由于5G新无线(new radio,NR)中同一小区中不同终端设备的发射或者接收能力可能是不同的,系统可以为每个终端设备配置相应的带宽,这一部分配置给终端设备的带宽称为BWP,终端设备在自己的BWP上传输。BWP可以是载波上一组连续的频域资源,如物理资源块(physical resource block,PRB),不同的BWP可以占用的频域资源可以部分重叠(overlap),也可以互不重叠。不同的BWP占用的频域资源的带宽可以相同,也可以不同,本申请对此不作限定。BWP在频域上的最小粒度可以为1个PRB。
在单载波场景下,一个终端设备在同一时刻可以只有一个激活的BWP,终端设备只在激活的BWP(active BWP)上接收数据/参考信号,或者发送数据/参考信号。
在本申请中,适用于BWP场景的情况中,特定的BWP也可以是一个特定的频率上的带宽集合,或者是多个资源块(resource block,RB)组成的集合等等,对此不做限定。
(10)多站协同(multi-TRP,M-TRP):
[根据细则91更正 22.05.2023]
是指通过多个站点(如TRP)为UE提供服务,以提升小区边缘速率和覆盖能力。NR版本(release)16标准中,定义了两种M-TRP(多站协同)传输模式,分别为单DCI调度的M-TRP和双DCI调度的M-TRP。
[根据细则91更正 22.05.2023]
单DCI调度的M-TRP模式中,基站通过单个DCI中包含的多TCI指示方式有空分复用(space division multiplexing,SDM)、频分复用(frequency division multiplexing,FDM)或时分复用(timedivision multiplexing,TDM)三种,也就是说,M-TRP传输的PDSCH之间可以采用SDM、FDM或TDM中的任一传输模式进行传输。通过多个TCI对应不同的TRP指示,每个TCI可以对应于一个TRP调度的PDSCH。但DCI调度方式中,由于多个TCI包含在一个DCI中,故多个TCI只对应一个混合自动重传请求(hybrid automatic repeat request,HARQ)肯定应答(acknowledgement,ACK)(HARQ-ACK)。应理解,在本申请中,HARQ-ACK包括UE根据基站的DCI发送的HARQ ACK或HARQ否定应答(non-acknowledgement,NACK)。其中,DCI可用于指示HARQ ACK或HARQ NACK(如指示时频资源),HARQ-ACK可承载于PUCCH。
[根据细则91更正 22.05.2023]
双DCI调度的M-TRP模式中,通过两个DCI调度M-TRP传输。其中,这两个DCI可分别携带不同的TCI,分别对应于不同的TRP调度的PDSCH。此外,双DCI模式中,每个PDSCH对应于一个HARQ-ACK,多个HARQ-ACK反馈可以是联合编码的也可以是独立编码的。
[根据细则91更正 22.05.2023]
(11)统一TCI(unified TCI):
[根据细则91更正 22.05.2023]
NR R17标准中,为了解决波束指示信令开销较大和移动性场景下的波束切换较慢等问题,标准化了unified TCI指示方式。unified TCI与TCI的主要区别在于生效范围和/或生效时间。一方面,unified TCI与TCI的生效范围不同是指,每个unified TCI(或unified TCI对应的TCI状态)用于(同时)指示至少两种类型的信号/信道的空间参数;另一方面,unified TCI在一定时间范围内生效,存在生效时间。作为一个扩展方案,统一TCI也可以是一种或一类新定义的TCI类型,其生效范围和/或生效时间与TCI不同。
[根据细则91更正 22.05.2023]
以PDSCH的指示流程为例,当通过unified TCI指示PDSCH的波束信息时,一种可能的实现方式包括如下步骤:
[根据细则91更正 22.05.2023]
步骤1、高层指示unified TCI配置:基站通过RRC消息配置的多个TCI状态作为unified TCI状态池(unified TCI state pool),和/或,基站可通过RRC消息指示,当前的至少一个TCI状态用于同时指示至少两种类型的信号/信道的空间参数,则该至少一个TCI状态包括unified TCI。
[根据细则91更正 22.05.2023]
步骤2、通过MAC CE激活unified TCI状态池中的N个TCI状态。
[根据细则91更正 22.05.2023]
步骤3、通过DCI中的n bit指示N个unified TCI中的一个,n、N为正整数。
[根据细则91更正 22.05.2023]
步骤4、终端设备确定该TCI状态的生效范围和生效时间。
[根据细则91更正 22.05.2023]
其中,生效范围包括多个信号/信道,如包括PDSCH,生效时间是指该unified TCI对应上述生效范围的生效时间,UE或基站可以在该生效时间内通过unified TCI指示的空间参数传输生效范围内的信号/信道,如传输PDSCH。
[根据细则91更正 22.05.2023]
目前,unified TCI可用于指示多种信号/信道类型采用的空间参数,并且对于一类信号/信道,可能存在多个unified TCI指示的空间参数可以适用,因此UE与基站难以准确确定待传输的信号/信道采用的空间参数,导致通信可靠性降低。
为了在通过unified TCI指示TCI状态时,合理确定信号/信道采用的空间参数,以提高通信可靠性,本申请实施例提供一种通信方法。该方法可由终端装置终端设备(如UE)和网络设备(如基站等接入网设备)实施。下面以UE和基站为例,对本申请实施例提供的通信方法进行介绍。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如图5所示,以执行主体是终端设备和网络设备为例,本申请实施例提供的一种通信方法可包括以下步骤:
S101:网络设备发送第一指示信息,该第一指示信息可用于指示第一空间参数,或者,第一指示信息可包括第一空间参数。
相应的,终端设备接收该第一指示信息。
其中,第一指示信息可包括unified TCI。第一空间参数或者可称为第一空间参数信息,可包括用于传输信号/信道的QCL信息和/或空间关系信息。QCL信息和空间关系信息的含义可参见本申请中的说明,这里不再赘述。本申请中,空间参数还可以是TCI状态和/或TCI状态标识等。例如,第一空间参数可包括类型A QCL信息、类型B QCL信息、类型C QCL信息或类型D QCL信息中的至少一项。
应理解,该第一指示信息可包括在DCI、RRC消息或MAC CE中。以第一指示信息包括在MAC CE为例,该MAC CE可以包括图4所示结构。
示例性的,第一指示信息可以是(或包括或携带在)DCI(以下可称为第一DCI)中的目标字段中,目标字段例如可以是TCI域,或者,也可以是其他字段。以目标字段是TCI域字段为例该TCI域可用于确定TCI状态。该TCI状态可包括TCI状态池中的一个TCI状态。应理解,该TCI状态可以是unified TCI状态,也就是说,该TCI状态中的至少一个TCI状态为unified TCI,该TCI状态池也可称为unified TCI状态池。
还应理解,该TCI状态池中的每一个TCI状态可对应于一个空间参数。例如,TCI状态通过TCI状态ID表示,TCI状态池可包括TCI状态ID为TCI状态ID#1、TCI状态ID#2,……以及TCI状态ID#N的TCI状态,N为不小于2的正整数,其中,TCI状态ID为TCI状态ID#1、TCI状态ID#2,……以及TCI状态ID#N的TCI状态分别对应的空间参数表示为空间参数#1、空间参数#2,……以及空间参数#N。以空间参数是QCL信息为例,空间参数#1、空间参数#2,……以及空间参数#N中的任意一个可包括类型A QCL信息、类型B QCL信息、类型C QCL信息或类型D QCL信息。应理解,空间参数#1、空间参数#2,……以及空间参数#N中的任意两个空间参数的类型可以相同或不同,比如,空间参数#1包括类型A QCL信息,空间参数#2、空间参数#3和空间参数#4包括类型D QCL信息。
下面,以第一指示信息是unified TCI为例说明第一指示信息指示第一空间参数的指示方式。具体的,网络设备可以向终端设备发送第二信息,该第二信息可用于指示多个TCI状态作为unified TCI状态池和/或激活的unified TCI状态。激活的unified TCI状态可以是unified TCI状态池中的一个或多个unified TCI状态。第一指示信息可用于指示unified TCI状态池和/或激活的unified TCI状态中的一个unified TCI。示例性的,网络设备可通过高层指示多个TCI状态作为unified TCI状态池,则第二信息可包括该高层指示。
例如,网络设备通过RRC消息或MAC CE向终端设备指示unified TCI状态池,则第二信息可包括该RRC消息或MAC CE。作为一种示例,该RRC消息或MAC CE可用于配置N个unified TCI状态(或N个TCI状态,其中,至少一个TCI状态为unified TCI状态),例如包括N个unified TCI状态的配置,unified TCI状态的配置例如unified TCI状态的对应的空间参数信息或适用的信号/信道等。该N个unified TCI状态的集合为unified TCI状态池。其中,网络设备通过RRC消息或MAC CE配置unified TCI状态池的方式可参见本申请对于图3中网络设备通过RRC消息配置N个TCI状态的说明,区别在于,这里每一个unified TCI状态的生效范围包括多个信号/信道,而图3中的TCI状态适用于PDSCH一种信道。该示例中,第一指示信息可承载于DCI中,用于指示unified TCI状态池和/或激活的unified TCI状态中的一个unified TCI。
又如,在网络设备通过RRC消息配置N个unified TCI状态(或N个TCI状态,其中,至少一个TCI状态为unified TCI状态)作为unified TCI状态池的基础上,网络设备可进一步通过MAC CE指示N个unified TCI状态中的激活的K个unified TCI状态(或K个TCI状态,其中,至少一个TCI状态为unified TCI状态),则第二信息可包括该MAC CE,K为小于或等于N的正整数。其中,网络设备通过RRC消息配置unified TCI状态池的方式可参见本申请对于图3中网络设备通过RRC消息配置N个TCI状态的说明,区别在于,这里每一个unified TCI状态的生效范围包括多个信号/信道,而图3中的TCI状态适用于PDSCH一种信道。网络设备通过MAC CE指示N个unified TCI状态中的激活的K个unified TCI状态的方式,可参见图3中网络设备通过MAC CE从N个TCI状态中激活K个TCI状态的说明。该示例中,第一指示信息可承载于DCI中,用于指示unified TCI状态池和/或激活的unified TCI状态中的一个unified TCI。
其中,资源池中的每个unified TCI的生效范围包括至少两种信号/信道,每个unified TCI可具有的标识(或索引),和/或,具有生效范围的指示信息;和/或,网络设备可通过RRC消息指示当前的TCI状态用于指示至少两种类型的信号/信道的空间参数,则第二信息可包括该RRC消息中用于指示N个unified TCI的信息。此外,网络设备还可通过MAC CE激活unified TCI状态池中的N个unified TCI,则第二信息可包括该MAC CE中用于指示N个unified TCI的信息。进而在S101中,网络设备通过DCI中的TCI域携带unified TCI的指示,用于指示N个unified TCI中的一个,如第一指示信息包括n比特,n比特的取值用于指示N个unified TCI中的一个unified TCI的标识,以指示该unified TCI。
应理解,可以不同于表2所示的TCI状态,unified TCI状态池中的TCI状态可以是协议定义的另外的TCI状态。例如,TCI状态可以针对每个TRP配置,即不同的TRP所对应的unified TCI状态池可以不同,因此,在M-TRP场景中,一个DCI域的值在不同的unified TCI状态池中可对应于不同的TCI状态。因此,可以通过TCI状态配置隐式指示多TRP分别的空间参数,以解决多TRP下的波束配置和指示问题,提高多TRP场景下的通信可靠性。比如,可针对TRP#1和TRP#2分别配置unified TCI状态池#1和unified TCI状态池#2,并通过指示信息从unified TCI状态池#1和unified TCI状态池#2中分别指示一个unified TCI状态,使得终端设备根据该多个unified TCI状态分别对应的空间参数分别在TRP#1和TRP#2进行通信。
基于S101中的第一指示信息,终端设备可根据第一空间参数传输(包括发送和/或接收)第一类型的信号/信道,或者说,第一空间参数可用于传输第一类型的信号/信道,或者说,第一空间参数的生效范围包括第一类型。本申请中,第一空间参数的生效范围是指能够通过该第一空间参数传输的信号/信道的类型。应理解,本申请的各个实施例中,空间参数的生效范围可替换为空间参数的指示信息的生效范围,例如,第一空间参数的生效范围可替换为第一指示信息的生效范围。
应理解,本申请中的信号/信道是指信号和/或信道,例如,信号/信道包括信号或信道。还应理解,本申请中,发送信道是指,发送承载于该信道的信息、数据、信令或消息等内容;接收信道是指,接收承载于该信道的信息、数据、信令或消息等内容。发送信道也可替换为通过信道发送;接收信道也可替换为通过信道接收。
本申请的各个实施例中,第一类型的信号可包括SRS、CSI-RS、PTRS、DMRS、TRS、或SSB中的至少一种信号。和/或,第一类型的信道可包括PUSCH、PDSCH、PDCCH和PUCCH中的至少一种信道。或者可以说,第一类型的信号/信道可包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种。例如,第一类型的信号/信道包括至少两种信号如包括SRS和CSI-RS。又如,第一类型的信号/信道包括至少两种信道如包括PDSCH和PDCCH。又如,第一类型的信号/信道包括至少一种信号和至少一种信道,例如包括SRS和PDSCH。
或者也可以说,第一空间参数可用于在终端设备与网络设备之间传输SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,也可以说,第一空间参数或第一指示信息的生效范围包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,例如包括至少两种信号(如SRS和CSI-RS)、至少两种信道(如PDSCH和PDCCH),或者,包括至少一种信号和至少一种信道(例如SRS和PDSCH)。可以理解的是,终端设备和/或网络设备可根据第一空间参数传输第一类型的信号,或者说,终端设备和/或网络设备可根据第一空间参数传输SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种。此外,第一类型的信号/信道,不应理解为类型相同的不同信号/信道,以SRS为例,类型相同的不同信号/信道是指不同的两个SRS,也就是说,第一类型的信号/信道不是。
应理解,以上第一类型的信号/信道可以是协议预定义或者是预设置或预配置在终端设备或网络设备中的。此外,也可以是网络设备通过RRC消息或MAC CE等消息向终端设备指示的。例如,网络设备可以向终端设备发送第一信息,第一信息可用于指示第一指示信息(或unified TCI)对于第一类型的信号/信道生效,即第一信息是用于指示所述第一指示信息对于第一类型的信号/信道生效的信息。作为一种示例,第一信息中可携带信号/信道类型的索引或标识等信息,还可携带用于指示第一指示信息对于该信号/信道是否生效的指示,如1比特的指示信息。例如,该信号/信道类型的索引或标识可指示SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种信号/信道。用于指示第一指示信息对于该信号/信道是否生效的指示(如用于指示unified TCI是否生效的标识或开关),可表示第一指示信息对于至少两种信号/信道是否生效,比如,每个信号/信道类型的索引或标识对应于1比特的指示信息。举例来说,当一个信号/信道对应的1比特的指示的取值为"1"(也可以是“0”)时,表示第一指示信息对于该信号/信道生效,或者,可表示第一类型的信号/信道包括该信号/信道;如果该指示的取值为"0"(也可以是“1”),则表示第一指示信息对于该信号/信道不生效,或者,可表示第一类型的信号/信道不包括该信号/信道。
在通过第一信息指示第一指示信息对于信号/信道是否生效的一种可能的示例中,网络设备可通过高层信令如RRC消息、MAC CE或DCI中的一个或多个,向终端设备指示第一指示信息对于第一类型的信号/信道生效,因此第一信息可包括RRC消息、MAC CE或DCI中的一个或多个,或者说,第一信息可承载于RRC消息、MAC CE或DCI中的一个或多个。具体来说,第一信息可包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种信号/信道的配置信息中的用于指示unified TCI是否生效的标识或开关,该两种信号/信道的配置信息可以承载于RRC消息、MAC CE或DCI中。以信号/信道包括周期性SRS为例,周期性SRS的配置信息可包括在RRC消息或MAC CE中,第一信息可包括该配置信息中的1比特的开关,当该1比特的开关的取值为"1"(也可以是“0”)时,表示第一指示信息对于周期性SRS生效,或者,可表示第一类型的信号/信道包括该周期性SRS或包括SRS;如果该指示的取值为"0"(也可以是“1”),则表示第一指示信息对于周期性SRS不生效,或者,可表示第一类型的信号/信道不包括周期性SRS或不包括SRS。此外,对于非周期SRS,配置信息可携带在DCI中,通过第一信息指示第一指示信息对于非周期SRS是否生效的方式可参照周期SRS的示例实现,不再赘述。此外,通过第一信息指示第一指示信息对于其他信号/信道是否生效的方式也可参照上面的示例实施。
相应的,如果终端设备接收到该第一信息,则根据该信息确定第一类型,或者,终端设备在接收到该信息后执行本申请所示通信方法,否则,如果终端设备未接收到该第一信息,则终端设备可不执行本申请所示通信方法,或者说,终端设备不支持根据第一指示信息确定第一类型的信号/信道的空间参数。
以第一指示信息是unified TCI为例,网络设备可向终端设备发送用于指示unified TCI对于SRS(包括周期性SRS或非周期性SRS)或CSI-RS(包括周期性CSI-RS或非周期性CSI-RS)生效的指示信息,则第一类型可包括SRS和/或CSI-RS。其中,该指示信息可携带在用于配置SRS和/或CSI-RS的RRC消息或MAC CE中。应理解,即便用于指示unified TCI对于SRS或CSI-RS生效的指示信息,和/或,第一信号的参考信号资源信息,携带在RRC消息或MAC CE中,终端设备仍然需要根据本申请中关于第一指示信息的生效时间的描述,在该第一指示信息的生效时间到达之后,根据该第一指示信息指示的第一空间参数传输SRS和/或CSI-RS。其中,如本申请中的说明,第一信号的参考信号资源信息可用于指示或配置第一信号,例如,该第一信号的参考信号资源信息可包括对于第一信号生效的空间参数的指示信息(包括第一指示信息)所对应的第一索引,详见S102中对于第一索引的描述。本申请后续将对第一指示信息的生效时间进行进一步说明。
应理解,当以上第一指示信息包括在DCI中时,第一类型或第一信号/信道的类型可包括非周期SRS和/或非周期CSI-RS。
作为另一种确定第一空间参数的生效范围的示例,可预先设置第一类型包括某些信号/信道的类型的条件,当满足该条件时,第一类型包括该信号/信道的类型。例如,当第一指示信息包括在DCI(本申请中为方便说明,可将携带第一指示信息的DCI称为第一DCI)中,且第一DCI指示的HARQ-ACK的反馈模式(或称HARQ反馈模式、反馈方式等)为独立反馈时,第一类型包括PUCCH,否则,如果第一DCI指示的HARQ-ACK反馈模式非为独立反馈,例如是联合反馈,则第一类型不包括PUCCH。其中,独立反馈是指,第一DCI指示的HARQ-ACK不与其他DCI指示的HARQ-ACK采用同一个时频资源,比如,终端设备接收到多个DCI,其中包括第一DCI,终端设备针对每一个DCI在不同的时频资源分别发送不同DCI所指示的HARQ-ACK。联合反馈则是指第一DCI指示的HARQ-ACK与其他DCI指示的HARQ-ACK采用同一个时频资源。
可选的,本申请中的第一指示信息可以携带在RRC消息、MAC CE或DCI中。或者说,第一类型包括的至少两种类型的信号/信道中的任一种类型的信号/信道是通过RRC信令或MAC CE信令指示的。
示例性的,RRC消息和/或MAC CE中可包括第一类型包括的至少两种类型的信号/信道中的任一种类型的信号/信道使用的空间参数的指示信息(可包括一个或多个空间参数的指示信息,其中可包括第一指示信息)和/或指示信息对应的第一索引(如CORESET资源池索引)。以周期性SRS或周期性CSI-RS为例,如果用于配置周期性SRS或周期性CSI-RS的RRC消息或MAC CE中指示了第一指示信息对应的CORESET资源池索引,可选的,当终端设备接收到第一指示信息,且确定用于携带该第一指示信息的第一DCI的CORESET资源池索引与RRC消息或MAC CE指示的第一指示信息对应的CORESET资源池索引相同,则终端设备可根据该第一指示信息所指示的第一空间参数传输周期性SRS或周期性CSI-RS。其中,该第一指示信息可以是携带在DCI中的,因此该第一指示信息的生效时间可根据该DCI指示的HARQ-ACK确定。
作为一种示例,当第一指示信息携带在第一DCI中,第一信号/信道的类型可包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS或SSB中的至少一种。可选的,第一指示信息可携带在DCI的TCI域中。
S102:终端设备和/或网络设备根据第一空间参数传输第一信号/信道。
其中,第一信号/信道的第一索引与第一指示信息的第一索引相同或相关联,也就是说,当第一信号/信道的第一索引与第一指示信息的第一索引相同或相关联时,终端设备与网络设备之间根据第一空间参数传输第一信号/信道。
可选的,第一信号/信道的类型属于第一类型。
本申请中,第一信号/信道的类型可包括在第一空间参数的生效范围中,或者可以理解,第一信号/信道的类型为第一空间参数的生效范围所包括的信号/信道的类型。第一空间参数的生效范围所包括的信号/信道的类型可参见S101中的介绍,这里不再赘述。例如,第一信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS或SSB中的至少一种。
因此,当第一信号/信道的类型包括在第一空间参数的生效范围中时,终端设备和网络设备可根据第一空间参数传输第一信号/信道。
作为一种示例,S102中,第一索引可以包括CORESET资源池(CORESET pool)索引。其中,对于第一信号来说,该CORESET资源池索引可包括在第一信号资源指示信息中,或者,该CORESET资源池索引可根据资源指示信息中包括的指示信息确定等。对于第一指示信息来说,如果第一指示信息携带在DCI中,则第一指示信息对应的第一索引为该DCI的CORESET资源池索引。
也就是说,本申请中,终端设备和/或网络设备可根据第一信号对应的CORESET资源池索引以及第一指示信息对应的CORESET资源池索引确定是否采用第一空间参数传输第一信号/信道。其中,资源指示信息的索引可包括控制资源集合组的索引,如CORESET资源池(CORESET pool)索引。
在第一索引的一种示例中,第一信号/信道是通过DCI(以下称为第二DCI)调度(或指示)的,且第一指示信息包括在第一DCI中,如果第二DCI的CORESET资源池索引与第一DCI的CORESET资源池索引相同,则在S102中,终端设备与网络设备根据第一空间参数传输该第一信号/信道;或者,如果第二DCI的CORESET资源池索引与第一DCI的CORESET资源池索引相关联,例如,两个CORESET资源池索引虽然不同,但指示的CORESET资源池相同,则在S102中,终端设备与网络设备根据第一空间参数传输该第一信号/信道。
该示例中,第一类型可包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS或SSB中的至少一种,或者说,第一信号/信道可包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS或SSB中的至少一种。
在第一索引的另一种示例中,如果第一信号包括周期性SRS或周期性CSI-RS,则第一信号可通过RRC消息或MAC CE指示(或配置),则第一信号的参考信号资源信息可包括在RRC消息或MAC CE中。以周期性SRS为例,参考信号资源信息可以是RRC消息或MAC CE中的周期性SRS的配置信息。可选的,此时,第一信号对应的第一索引可包括第一信号的参考信号资源信息中的CORESET资源池索引,或包括根据参考信号资源信息中的指示信息确定的CORESET资源池索引。其中,参考信号资源信息中的指示信息可以与CORESET资源池索引存在对应关系,例如,指示信息为“0”时,表示CORESET资源池索引为索引#1,等等,本申请不具体限定。该指示信息与CORESET资源池索引之间的对应关系可以是协议定义、预定义或者预配置在终端设备和网络设备中的,也可以是网络设备向终端设备指示的,或者是其他网络设备指示的。
在该示例中,如果第一信号的参考信号资源信息中包括的CORESET资源池索引或根据第一信号参考信号的资源信息包括的指示信息所确定的CORESET资源池索引,与第一指示信息对应的CORESET资源池索引相同,则终端设备可根据第一指示信息所指示的第一空间参数传输该第一信号。
举例来说,如果终端设备接收到RRC消息,该RRC消息包括周期性SRS的配置信息,也就是说,第一信号为周期性SRS,该周期性SRS的配置信息可视为第一信号对应的参考信号资源信息。当该周期性SRS的配置信息中包括的CORESET资源池索引为索引#1,并且,用于承载S101中的第一指示信息的DCI的CORESET资源池索引为索引#1,则此时第一信号对应的第一索引与第一指示信息对应的第一索引相同,终端设备与网络设备之间可通过第一指示信息指示的第一空间参数传输周期性SRS。
又如,当该周期性SRS的配置信息中包括的标识对应于CORESET资源池索引#1,且用于承载S101中的第一指示信息的DCI的CORESET资源池索引为索引#1,即第一指示信息对应的CORESET资源池索引为索引#1,则此时第一信号对应的第一索引与第一指示信息对应的CORESET资源池相同,终端设备可与网络设备通过该第一空间参数传输该周期性SRS。
当终端设备确定第一信号/信道的参考信号资源信息包括该标识或字段,且第一指示信息的参考信号资源信息包括该标识或字段,则可通过第一指示信息对应的QCL信息传输第一信号/信道。
基于图5所示流程,终端设备可以接收第一指示信息,并在第一指示信息对应的第一索引和第一信号对应的第一索引相同时,根据第一指示信息指示的第一空间参数传输第一信号。其中,第一空间参数可用于至少两种信号/信道的传输。该方法可以在第一空间参数可用于至少两种信号/信道的传输的情况下,准确确定待发送的信号/信道采用的空间参数,能够提高通信可靠性。
可选的,S102中,终端设备和网络设备可以在第一空间参数或第一指示信息的生效时间之后,根据第一空间参数传输第一信号/信道,或者说,第一信号/信道的发送时间位于第一指示信息或第一空间参数的生效时间之后。例如,终端设备在第一指示信息或第一空间参数的生效时间之后,执行S103。或者说,终端设备可以在第一空间参数的生效时间到达之后,根据第一空间参数传输第一序号/信道。应理解,本申请的各个实施例中,空间参数的生效时间可替换为空间参数的指示信息的生效时间,例如,第一空间参数的生效时间可替换为第一指示信息的生效时间。
本申请中,第一空间参数的生效时间为第一空间参数开始生效的时间,或是波束生效时间(beam application time)。在该生效时间之后,终端设备和/或网络设备可根据第一空间参数进行第一类型的信号/信道(包括但不限于第一信号/信道)的传输。
以图6为例,第一指示信息包括unified TCI1(图6中通过统一TCI1表示),其中,T1为unified TCI1的生效时间。如果终端设备需要在T1时刻之前接收PDSCH1.1,则终端设备可以不根据unified TCI1指示的QCL信息接收PDSCH1.1。另外如图6所示,PDCCH1.2的发送时间位于T1之后,终端设备可根据unified TCI1指示的QCL信息接收PDSCH1.2。
可选的,本申请的各个实施例中,第一指示信息的生效时间或第一空间参数的生效时间位于携带第一指示信息的第一DCI指示的HARQ-ACK之后,即T1时刻位于该HARQ-ACK之后,或者说,T1时刻不早于该HARQ-ACK的发送时间。采用该设计,可以确保终端设备在完成第一指示信息的解析后根据第一指示信息进行信号/信道传输,此外,网络设备也能够在接收到来自于终端设备的该HARQ-ACK后获知终端设备在发送HARQ-ACK之后可能通过第一指示信息所指示的空间参数进行信号/信道传输。
可选的,第一指示信息的生效时间根据第一DCI指示的HARQ-ACK的发送时间确定。
在一种可能的示例中,第一指示信息的生效时间位于第一DCI指示的HARQ-ACK的发送时间之后的k个时间单元之后,k为正整数。本申请中,时间单元可包括时隙、符号、多个时隙、多个符号或者,或者至少一个时隙与至少一个符号的组合。
在另一种可能的示例中,第一指示信息的生效时间位于据终端设备发送第一DCI指示的HARQ-ACK的时间之后的设定时长之后,比如,设定时长可以通过QCL时长(time duration for QCL)或其他信息元素(information element,IE)指示。QCL时长可包括在终端设备向网络设备上报的终端设备能力信息中,因此,能够由终端设备上报该设定时长,实现终端设备与网络设备对于该设定时长的协商确定。
仍以图6为例,第一指示的生效时间即T1,T1位于DCI1.1指示的HARQ-ACK的发送时间(图6所示的ACK1)之后的k个时间单元或设定时长之后。其中,k个时间单元或设定时长可以是网络设备通过RRC消息、MAC CE或DCI指示的,也可以是协议预定义或者是预设置或预配置的,本申请不具体限定。
可以理解的是,当第一类型包括的至少两种信号/信道或第一信号/信道包括上行信号/信道时,S102可包括以下S103-S104:
S103:终端设备根据第一空间参数发送第一信号/信道。
其中,第一空间参数可参见S101中的描述。例如,当第一类型包括的至少两种信号/信道或第一信号/信道包括上行信号/信道时,第一空间参数可包括QCL信息,QCL信息可以用于指示上行信号的空间相关参数(或者称为空间相关特性)。或者,当至少两种类型的信号包括下行信号时,第一空间参数可以包括TCI信息。或者,当至少两种类型的信号包括下行信号时,第一空间参数可以包括TCI状态信息。
作为一种可能的示例,当第一类型包括的两种类型的信号/信道或第一信号/信道包括上行信号/信道时,该第一空间参数信息为类型D QCL信息。其中,上行信号/信道可包括PUCCH、PUSCH、SRS、PTRS或DMRS等中的至少一个。例如,当上行信号为SRS时,空间参数信息为类型D QCL信息。类型D QCL信息可参见本申请中的介绍,这里不再赘述。
可选的,终端设备可以在第一指示信息或第一空间参数的生效时间之后,执行S103。
可以理解的是,终端设备根据第一空间参数发送第一信号/信道,可以是指,终端设备使用第一空间参数发送第一信号/信道。
S104:网络设备根据第一空间参数接收第一信号/信道。
可选的,网络设备可以在第一指示信息或第一空间参数的生效时间之后,执行S104。
可以理解的是网络设备根据第一空间参数接收第一信号/信道,可以是指,网络设备使用第一空间参数接收第一信号/信道。
另外,可以理解的是,当第一信号/信道包括下行信号/信道时,S102可包括以下S105-S106:
S105:网络设备根据第一空间参数发送第一信号/信道。
其中,第一空间参数可参见S101中的描述。例如,当第一类型包括的至少两种信号/信道或第一信号/信道包括上行信号/信道时,第一空间参数可包括QCL信息,QCL信息可以用于指示下行信号的空间相关参数(或者称为空间相关特性)。或者,当至少两种类型的信号包括下行信号时,第一空间参数可以包括TCI信息。或者,当至少两种类型的信号包括下行信号时,第一空间参数可以包括TCI状态信息。
应理解,下行信号/信道可包括PDCCH、PDSCH、TRS、CSI-RS、PTRS、DMRS或SSB等中的至少一个。
可选的,网络设备可以在第一指示信息或第一空间参数的生效时间之后,执行S105。
可以理解的是,网络设备根据第一空间参数发送第一信号/信道,可以是指,终端设备使用第一空间参数发送第一信号/信道。
S106:终端设备根据第一空间参数接收第一信号/信道。
可选的,网络设备可以在第一指示信息或第一空间参数的生效时间之后,执行S106。
可以理解的是网络设备根据第一空间参数接收第一信号/信道,可以是指,网络设备使用第一空间参数接收第一信号/信道。
可选的,基于图6所示流程,终端设备除接收S101所示的第一指示信息以外,还可以接收第二指示信息,并根据第二指示信息传输第二信号/信道,其中,第二信号/信道对应的第二索引与第二指示信息对应的第二索引相同或相关联。其中,第二指示信息可用于指示第二空间参数。与第一指示信息类似,第二指示信息可以是unified TCI,第二空间参数可包括用于传输信号/信道的QCL信息和/或空间关系信息。其中,第二空间参数可用于传输第二类型的信号/信道,第二类型的信号/信道(或称第二空间参数或第二指示信息的生效范围)可包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS或SSB中的至少两种。第二类型的信号/信道可包括第二信号/信道的类型。
应理解,这里第二指示信息、第二空间参数、第二类型以及第二信号/信道分别可参见本申请中对于第一指示信息、第二空间参数、第二类型和第二信号/信道的说明,例如,第二指示信息指示第二空间参数的方式与第一指示信息指示第一空间参数的方式相似或相同,第二指示信息的生效范围或生效时间的确定方式可以与第一指示信息的生效范围或生效时间的确定方式相似或相同,第二指示信息的第二索引与第一指示信息的第一索引相似或相同,第二信号/信道的第二索引与第一信号/信道的第一索引相同或相似,因此第二指示信息的第二索引可参见本申请中对于第一指示信息的第二索引的描述,第二信号/信道的第二索引可参见本申请中对于第一信号/信道的第一索引的介绍,不再赘述。其中,第一类型的信号/信道可以与第二类型的信号/信道相同或不同,例如,第一类型的信号/信道可以与第二类型的信号/信道存在交集,第一类型的信号/信道也可以与第二类型的信号/信道不存在交集,本申请不作具体要求。
应理解,该第一指示信息与第二指示信息可携带在不同的DCI中。作为一种可能的实现方式,第一指示信息可用于指示unified TCI状态池和/或激活的unified TCI状态中的一个unified TCI,第二指示信息可以指示同一个unified TCI状态池和/或相同的激活的unified TCI状态中的另一个unified TCI,这两个unified TCI可对应于不同的空间参数。其中,第二指示信息指示unified TCI状态池和/或激活的unified TCI状态中的unified TCI的方式可参见S101中对于第一指示信息指示unified TCI状态池和/或激活的unified TCI状态中的一个unified TCI的说明。
可选的,该第一空间参数和第二空间参数可对应于不同的TRP,或者说,第一信号/信道与第二信号/信道分别是UE与不同的TRP之间传输的信号/信道,或者说,第一指示信息和第二指示信息分别是来自于不同的TRP的。因此,该方案可以在M-TRP场景下准确确定UE与每个TRP之间传输信号/信道所采用的空间参数。
当终端设备分别接收到第一指示信息与第二指示信息,并且,第一指示信息对应的第一类型与第二指示信息对应的第二类型的交集包括至少一种类型的信号/信道,则终端设备与网络设备可能分别采用第一空间参数和第二空间参数传输该类型的信号/信道,导致传输失败。为提高该场景下的通信可靠性,本申请中的终端设备和/或网络设备可根据待传输的信号/信道对应的第一索引,从第一指示信息和第二指示信息(或类似的,还可能包括更多的生效范围包括该信号/信道的类型的指示信息,不具体限定)中确定一个指示信息,并根据该指示信息所指示的空间参数传输该信号/信道,避免终端设备和网络设备采用不同的空间参数进行该信号/信道的传输,提高通信可靠性。
仍以图6为例,终端设备接收到DCI1.1和DCI2.1,其中,DCI1.1包括unified TCI1,DCI2.1包括unified TCI2(图6中通过统一TCI2表示)。其中,DCI1.1对应的CORESET资源池为CORESET资源池1,或者说,DCI1.1对应的CORESET资源池索引为1。DCI2.1对应的CORESET资源池为CORESET资源池2,或者说,DCI2.1对应的CORESET资源池索引为2。其中,假设第一指示信息为unified TCI1,第二指示信息为unified TCI2,当终端设备需要传输图6所示的PDCCH1.2、PDSCH1.2、PUCCH2.1或PUSCH2.1中的任意一个时,可根据需要发送的信号/信道的CORESET资源池索引确定采用unified TCI1或unified TCI2指示的空间参数进行传输。
例如,当终端设备需要接收PDCCH1.2和/或PDSCH1.2时,可根据调度PDCCH1.2和/或PDSCH1.2的DCI(即第二DCI)的CORESET资源池索引,确定根据unified TCI1和/或unified TCI2接收PUCCH2.1和/或PUSCH2.1。
其中,如果用于调度PDCCH1.2的第二DCI的CORESET资源池为CORESET资源池1,或者说,该第二DCI对应的CORESET资源池索引为1,也就是该第二DCI的资源池索引与DCI1.1的资源池索引相同,则终端设备可根据unified TCI1接收PDCCH1.2。具体来说,终端设备可根据unified TCI1对应的QCL信息接收PDCCH1.2。
同理,如果用于调度PDSCH1.2的第二DCI的CORESET资源池为CORESET资源池1,或者说,该第二DCI对应的CORESET资源池索引为1,也就是该第二DCI的资源池索引与DCI1.1的资源池索引相同,则终端设备可根据unified TCI1接收PDSCH1.2。具体来说,终端设备可根据unified TCI1对应的QCL信息接收PDSCH1.2。
此外,如果用于调度PUCCH2.1的第二DCI的CORESET资源池为CORESET资源池2,或者说,该第二DCI对应的CORESET资源池索引为2,也就是该第二DCI的资源池索引与DCI2.1的资源池索引相同,则终端设备可根据unified TCI2发送PUCCH2.1。具体来说,终端设备可根据unified TCI2对应的QCL信息发送PUCCH2.1。
同理,如果用于调度PUSCH2.1的第二DCI的CORESET资源池为CORESET资源池2,或者说,该第二DCI对应的CORESET资源池索引为2,也就是该第二DCI的资源池索引与DCI2.1的资源池索引相同,则终端设备可根据unified TCI2发送PUSCH2.1。具体来说,终端设备可根据unified TCI2对应的QCL信息发送PUSCH2.1。
应理解,图6中的PUCCH2.1与PUSCH2.1的传输时间位于unified TCI2的生效时间(即图6所示T2)之后,T2的确定方式可参见本申请中对于第一指示信息的生效时间的描述。如,T2位于图6所示ACK2之后,ACK2为DCI2.1指示的HARQ-ACK。此外,图6所示的PDSCH2.1位于T2之前,因此,该PDSCH2.1的传输可采用第二空间参数以外的其他空间参数,本申请不做具体要求。
如图7所示,本申请实施例提供另一种通信方法。图7所示方法与图5所示方法的区别在于,图7所示方法中,在同一个DCI中可指示多个空间参数的指示信息,其中,多个空间参数的指示信息中,至少一个空间参数的指示信息为unified TCI。在图7所示方法中,多个空间参数指示信息可对应于不同的CDM组,当终端设备和/或网络设备通过其中一个CDM组中的端口进行信号/信道的传输时,采用该端口所属CDM组对应的空间参数指示信息指示的空间参数。
如图7所示,该方法可包括以下步骤:
S201:网络设备向终端设备发送第三空间参数和第四空间参数的指示信息。
或者,S201可替换为:网络设备向终端设备发送第三指示信息和第四指示信息。
其中,第三指示信息可用于指示第三空间参数,或者,第三指示信息可包括第三空间参数,第四指示信息可用于指示第四空间参数,或者,第四指示信息可包括第四空间参数。
或者也可以说,第三空间参数和第四空间参数的指示信息包括第三空间参数的指示信息和第三空间参数的指示信息。
以上第三空间参数用于传输第三类型的信号/信道,第四空间参数用于传输第四类型的信号/信道,第三类型的信号/信道和/或第四类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种类型的信号/信道。其中,第三类型的信号/信道可以与第四类型的信号/信道相同或不同,例如,第三类型的信号/信道可以与第四类型的信号/信道存在交集,第三类型的信号/信道也可以与第四类型的信号/信道不存在交集,本申请不作具体要求。
相应的,终端设备接收第三指示信息和第三指示信息。
可选的,第三指示信息和第四指示信息包括在第三DCI中,或者,该第三空间参数和第四空间参数的指示信息包括在第三DCI中,也就是说,第三指示信息和第四指示信息可包括在同一个DCI中。
作为一种可能的实现方式,第三指示信息可用于指示unified TCI状态池和/或激活的unified TCI状态中的unified TCI#A,第四指示信息可以指示同一个unified TCI状态池和/或相同的激活的unified TCI状态中的unified TCI#B,unified TCI#A和unified TCI#B可对应于相同或不同的空间参数。其中,第三指示信息和第四指示信息指示unified TCI状态池和/或激活的unified TCI状态中的unified TCI的方式可参见S101中对于第一指示信息指示unified TCI状态池和/或激活的unified TCI状态中的一个unified TCI的说明。其中可选的,第三指示信息和/或第四指示信息为unified TCI。例如,第三指示信息为unified TCI状态池和/或激活的unified TCI状态中unified TCI#A的索引,第四指示信息为unified TCI状态池和/或激活的unified TCI状态中unified TCI#B的索引。
作为另一种可能的实现方式,如果网络设备向终端设备发送的第三空间参数和第四空间参数的指示信息,也就是,通过同一个指示信息指示第三空间参数和第四空间参数,则该指示信息可用于从不同的unified TCI状态池或不同的激活的unified TCI状态中指示第三空间参数和第四空间参数。例如,网络设备可通过RRC消息、MAC CE或DCI向终端设备配置多个unified TCI状态池,其中包括unified TCI状态池#1和unified TCI状态池#2,网络设备还可通过DCI向终端设备发送第三空间参数和第四空间参数的指示信息,其中,该指示信息可用于从unified TCI状态池#1中指示unified TCI#A(对应于第三空间参数),以及可用于从unified TCI状态池#2中指示unified TCI#B(对应于第四空间参数)。比如,该指示信息为unified TCI索引,该unified TCI索引是unified TCI#A在unified TCI状态池#1中的索引以及是unified TCI#B在unified TCI状态池#2中的索引。示例性的,该第三空间参数和第四空间参数的指示信息为unified TCI索引或unified TCI指示。在该示例中,也可将unified TCI#A作为第三指示信息,以及,将unified TCI#B作为第四指示信息。
另外,图7所示流程中,也不排除第一DCI中通过一个字段(如TCI域)向终端设备配置第三空间参数和第四空间参数,此时S201可替换为,网络设备向终端设备发送第三空间参数和/或第四空间参数的指示信息。其中,第三空间参数和第四空间参数的说明同S201中的描述。例如,网络设备可以向不同的TRP配置不同的unified TCI状态池,即不同的TRP所对应的unified TCI状态池可以不同,因此,在M-TRP场景中,一个DCI域的值在不同的unified TCI状态池中可对应于不同的TCI状态。因此,在图7所示流程的示例中,网络设备可通过DCI中的TCI域的取值,分别从不同的TRP对应的unified TCI状态池中指示出第三空间参数和第四空间参数。
[根据细则91更正 22.05.2023]
当通过unified TCI指示第三空间参数和第四空间参数时,网络设备可以通过RRC消息或MAC CE向终端设备配置至少两个unified TCI状态池,至少两个unified TCI状态池可分别包括多个unified TCI状态,每个unified TCI可对应于一个(或一组)空间参数,每个unified TCI状态可通过索引表示。该示例中,第一DCI中可携带一个unified TCI索引,且该unified TCI索引在先前配置不同的unified TCI状态池中分别对应于不同的unified TCI,即该unified TCI索引可指示多个空间参数,其中包括第三空间参数和第四空间参数。因此在本申请中,S101也可替换为:网络设备向终端设备发送空间参数的指示信息,该空间参数的指示信息用于指示第三空间参数和第四空间参数,或者,该空间参数的指示信息可包括第三空间参数和第四空间参数。可选的,空间参数的指示信息可携带在DCI中。
[根据细则91更正 22.05.2023]
S202:终端设备和/或网络设备根据第三空间参数传输第三信号/信道,其中,第三信号/信道的端口对应于所述第三指示信息,所述第三信号/信道的类型属于第三类型。
[根据细则91更正 22.05.2023]
应理解,图7所示流程中,这里第三指示信息、第三空间参数、第三类型以及第三类型的信号/信道分别可参见本申请中对于第一指示信息、第一空间参数、第一类型和第一类型的信号/信道的说明,例如,第三指示信息指示第三空间参数的方式与第一指示信息指示第一空间参数的方式相似或相同,第三指示信息的生效范围的确定方式与第一指示信息的生效范围的确定方式相同,第三指示信息的第一索引与第一指示信息的第一索引相似或相同,不再赘述。
[根据细则91更正 22.05.2023]
同理,这里第四指示信息、第四空间参数、第四类型以及第四类型的信号/信道分别可参见本申请中对于第一指示信息、第一空间参数、第一类型和第一类型的信号/信道的说明,例如,第四指示信息指示第四空间参数的方式与第一指示信息指示第一空间参数的方式相似或相同,第四指示信息的生效范围的确定方式与第一指示信息的生效范围的确定方式相同,第四指示信息的第一索引与第一指示信息的第一索引相似或相同,不再赘述。
[根据细则91更正 22.05.2023]
还应理解,在S201中,如果第三指示信息与第四指示信息均为unified TCI,则该第三指示信息与第四指示信息的生效时间可根据第三DCI指示的HARQ-ACK确定,例如,该生效时间为与第三DCI指示的HARQ-ACK之后,也就是说,此时第三指示信息的生效时间与第四指示信息的生效时间相同。该生效时间的确定方式可参见本申请中对于第一指示信息的生效时间的确定方式的说明。例如图8所示,第三指示信息包括unified TCI3(在图8中表示为统一TCI3),第四指示信息包括图8中的unified TCI4(在图8中表示为统一TCI4),T3为unified TCI3和unified TCI4的生效时间,该生效时间晚于图8所示的ACK3,该ACK3表示DCI3(即第三DCI)指示的HARQ-ACK的时域资源。
本申请中,可以通过协议预定义或者是预设置或预配置等方式,使得终端设备和网络设备确定空间参数的指示信息(包括第三指示信息)与CDM组(包括第三信号/信道的端口所在的CDM组)之间的对应关系,或者,可由网络设备通过RRC消息或MAC CE等向终端设备指示空间参数的指示信息与CDM组之间的对应关系。因此,当网络设备与终端设备之间通过第三空间参数传输第三信号/信道时,网络设备可通过空间参数的指示信息与CDM组之间的对应关系,确定第三空间参数对应的CDM组,并从该CDM组中为终端设备分配端口。可选的,网络设备可通过端口指示信息向终端设备指示该端口。相应的,终端设备在接收到端口指示信息后,根据空间参数的指示信息与CDM组之间的对应关系,确定该端口所在的CDM组对应的空间参数的指示信息为第三指示信息,从而可通过该第三指示信息指示的第三空间参数进行该端口的第三信号/信道的传输。
示例性的,端口指示信息可包括在第四DCI中。
如图8所示,DCI3(即第三DCI)中可指示unified TCI3和unified TCI3。其中,T3为unified TCI1和unified TCI2的生效时间。当网络设备通过DCI4(即第四DCI)调度终端设备接收PDSCH2时,终端设备可根据DCI4携带的端口指示信息确定根据unified TCI3或unified TCI4接收PDSCH2。
具体来说,当DCI4指示的端口X属于unified TCI3对应的CDM组时,终端设备可确定根据unified TCI3指示的QCL接收PDSCH2,此时unified TCI3为第三指示信息。和/或,当DCI2指示的端口X属于unified TCI4对应的CDM组时,终端设备可确定根据unified TCI4指示的QCL接收PDSCH2,此时unified TCI4为第三指示信息。
可选的,端口指示信息还向终端设备指示通过该端口X传输信号/信道时的传输模式,其中,端口X或端口X所属的时频资源组与传输模式之间具有对应关系。相应的,终端设备还可根据端口X或端口X所属的时频资源组与传输模式之间的对应关系,确定信号/信道的传输模式。其中,信号/信道的传输模式包括SDM、FDM、TDM或单TCI(single TCI,S-TCI)传输模式中的任意一种。S-TCI传输模式是指,网络设备与终端设备之间进行信号/信道传输时只通过多个TRP中的一个。可以理解的是,S-TCI传输模式下终端设备收到1个TCI码点。
应理解,端口X或端口X所属的时频资源组与传输模式之间的对应关系可以是协议预定义或者是预设置或预配置等方式确定的,或者,可以是网络设备通过RRC消息或MAC CE等向终端设备指示的。
例如,端口X所属的时频资源组与传输模式之间的对应关系如表3所示。应理解,这里的端口X的数量可以是一个或多个。
以网络设备通过图8所示DCI4指示的至少一个端口X为例,在表3中,CDM组1、CDM组2和CDM组3分别表示端口X包括CDM组1中的端口、CDM组2中的端口和CDM组3中的端口。表3中,CDM组A+CDM组B,表示端口X同时指示了CDM组A和CDM组2中的端口。其中可选的,可选的,端口X中的每个端口传输信号/信道所采用的空间参数可通过本申请图7所示流程确定。例如,基于图7所示通信方法,当端口X包括多个属于不同CDM组的端口时,该多个端口可采用不同的空间参数。
其中,如果网络设备配置的DMRS类型为DMRS类型1(DMRS type 1),则CDM组包括CDM组1和CDM组2,如果网络设备配置的DMRS类型为DMRS类型2(DMRS type2),则CDM组可包括CDM组1、CDM组2和CDM组3。
表3
应理解,表3中的DMRS类型2选项1和DMRS类型2选项2,分别表示网络设备配置的DMRS类型为DMRS类型2时,端口X所属的时频资源组与传输模式之间的对应关系的不同示例。
如表3所示,在情况1中,如果DCI2指示至少两个端口,该至少两个端口分别属于unified TCI1对应的CDM组和unified TCI2对应的CDM组,或者说,至少一个端口属于unified TCI1对应的CDM组且至少一个端口属于unified TCI2对应的CDM组,则终端设备可通过空分复用方式通过该多个端口进行信号/信道传输。
又如,在表3所示的情况2中,当端口X包括CDM组1中的端口和CDM组2中的端口,或包括CDM组1中的端口、CDM组2中的端口和CDM组3中的端口时,终端设备可通过空分复用方式通过该端口X进行信号/信道传输。
情况3与情况2同理,当端口X包括CDM组1中的端口和CDM组2中的端口,或包括CDM组1中的端口和CDM组3中的端口时,终端设备可通过空分复用方式通过该端口X进行信号/信道传输。
也就是说,在情况1、情况2和情况3中,如果端口X包括属于多个CDM组的多个端口,则对应的传输模式为SDM。
在表3所示的情况4、情况5和情况6中,当端口X包括同一个CDM组(如CDM组1或CDM组2)中的至少一个端口,则终端设备可以通过FDM或TDM方式通过端口X进行信号/信道传输。也就是说,该CDM对应的传输模式为FDM或TDM。
又如,在表3所示的情况7、情况8、情况10和情况11中,当端口X包括CDM组(如情况7和情况8中的CDM组2,或情况10和情况11中的CDM组3)中的至少一个端口时,终端设备也可通过S-TCI的方式进行传输。此时,该CDM组对应的传输模式为S-TCI传输模式,其中,S-TCI1表示,只采用S-TCI1对应的TRP进行信号/信道的传输,S-TCI2表示,只采用S-TCI2对应的TRP进行信号/信道的传输。S-TCI1/S-TCI2与TRP之间的对应关系可以是协议预定义或者是预设置或预配置在终端设备或网络设备中的,或者可以是网络设备通过RRC消息或MAC CE向终端设备指示的。
在表3所示的情况9中,如果端口X包括CDM组1、CDM组2和CDM组3中的端口,则终端设备可通过S-TCI传输模式通过端口X进行信号/信道的传输。
可选的,终端设备还可发送传输能力信息,相应的,网络设备接收该传输能力信息。其中,传输能力信息可用于指示终端设备支持采用N个波束的上行信号传输,该N为正整数。
其中,如果终端设备支持多个波束的上行信号传输,即N大于或等于2,则终端设备可通过多个unified TCI传输多个PUCCH,否则,终端设备只通过一个unified TCI传输多个PUCCH。其中,任一PUCCH可视为第三方面中的一个第三信号/信道,因此,传输该PUCCH所采用的空间参数可通过第三方面所示方式确定。
示例性的,如果网络设备接收终端设备的传输能力信息,且该传输能力信息指示终端设备支持2个波束的上行信号传输,则网络设备可指示终端设备通过两个空间参数传输PUCCH。例如,网络设备调度终端设备通过端口#0和端口#2分别传输两个PUCCH,例如采用表3所示的情况1,终端设备通过SDM方式分别传输两个PUCCH。其中,终端设备可通过端口#0(或端口#0所在的CDM组)对应的空间参数,在端口#0传输PUCCH,以及,终端设备可通过端口#2(或端口#2所在的CDM组)对应的空间参数,在端口#2传输PUCCH,实现PUCCH的空分复用传输。
可以理解的是,参照S103至S106,当第二类型包括的至少两种信号/信道或第一信号/信道包括上行信号/信道时,S202可包括以下S203-S204:
S203:终端设备根据第三空间参数发送第三信号/信道。
其中,第三空间参数可参见本申请中对于第一空间参数的描述。例如,当第三类型包括的至少两种信号/信道或第一信号/信道包括上行信号/信道时,第三空间参数可包括QCL信息,QCL信息可以用于指示下行信号的空间相关参数(或者称为空间相关特性)。或者,当至少两种类型的信号包括下行信号时,第三空间参数可以包括TCI信息。或者,当至少两种类型的信号包括下行信号时,第三空间参数可以包括TCI状态信息。
作为一种可能的示例,当第三类型包括的两种类型的信号/信道或第一信号/信道包括上行信号/信道时,该第三空间参数信息为类型D QCL信息。上行信号/信道可包括PUCCH、PUSCH、SRS、PTRS或DMRS等中的至少一个。例如,当上行信号为SRS时,空间参数信息为类型D QCL信息。类型D QCL信息可参见本申请中的介绍,这里不再赘述。
可选的,终端设备可以在第三指示信息或第三空间参数的生效时间之后,执行S203。
可以理解的是,终端设备根据第三空间参数发送第三信号/信道,可以是指,终端设备使用第三空间参数发送第三信号/信道。
S204:网络设备根据第三空间参数接收第三信号/信道。
可选的,网络设备可以在第三指示信息或第三空间参数的生效时间之后,执行S204。
可以理解的是网络设备根据第三空间参数接收第三信号/信道,可以是指,网络设备使用第三空间参数接收第三信号/信道。
另外,可以理解的是,当第三信号/信道包括下行信号/信道时,S202可包括以下S205-S206:
S205:网络设备根据第三空间参数发送第三信号/信道。
其中,第三空间参数可参见本申请中对于第一空间参数的描述。例如,当第三类型包括的至少两种信号/信道或第一信号/信道包括上行信号/信道时,第三空间参数可包括QCL信息,QCL信息可以用于指示下行信号的空间相关参数(或者称为空间相关特性)。或者,当至少两种类型的信号包括下行信号时,第三空间参数可以包括TCI信息。或者,当至少两种类型的信号包括下行信号时,第三空间参数可以包括TCI状态信息。
应理解,下行信号/信道可包括PDCCH、PDSCH、TRS、CSI-RS、PTRS、DMRS或SSB等中的至少一个。
可选的,网络设备可以在第三指示信息或第三空间参数的生效时间之后,执行S205。
可以理解的是,网络设备根据第三空间参数发送第三信号/信道,可以是指,终端设备使用第三空间参数发送第三信号/信道。
S206:终端设备根据第三空间参数接收第三信号/信道。
可选的,网络设备可以在第三指示信息或第三空间参数的生效时间之后,执行S206。
可以理解的是网络设备根据第三空间参数接收第三信号/信道,可以是指,网络设备使用第三空间参数接收第三信号/信道。
如图9所示,在本申请实施例的另一种通信方法中,如果网络设备通过不同DCI向终端设备指示多个空间参数,并且,多个DCI分别指示的HARQ-ACK采用联合编码,则网络设备与终端设备之间可通过该多个空间参数中的任意一个,或通过默认或设定的空间参数,传输承载该联合编码的HARQ-ACK的PUCCH。
如图9所示,该通信方法可包括以下步骤:
S301:网络设备向终端设备发送第五指示信息和第六指示信息。
相应的,终端设备接收第五指示信息和第六指示信息。
其中,第五指示信息包括在第五DCI中,用于指示第五空间参数。第六指示信息包括在第六DCI中,用于指示第六空间参数。可选的,网络设备还可通过RRC消息或MAC-CE或DCI向终端设备指示,该第五DCI指示的HARQ-ACK与该第六DCI指示的HARQ-ACK采用联合编码。
应理解,第五指示信息以及第五空间参数分别可参见本申请中对于第一指示信息和第一空间参数的说明,第六指示信息以及第六空间参数分别可参见本申请中对于第一指示信息和第一空间参数的说明,这里不再赘述。例如,第五类型的信号/信道和/或第六类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种类型的信号/信道。第五指示信息和第六指示信息包括在同一个DCI中。第五空间参数和/或第六空间参数可包括用于传输信号/信道的QCL信息和/或空间关系信息。
此外,S301中,也不排除第一DCI中通过一个字段(如TCI域)向终端设备配置第三空间参数和第六空间参数,此时S301可替换为,网络设备向终端设备发送第五空间参数和/或第六空间参数的指示信息。其中,第五空间参数和第六空间参数的说明同S201中的描述。例如,网络设备可以向不同的TRP配置不同的unified TCI状态池,即不同的TRP所对应的unified TCI状态池可以不同,因此,在M-TRP场景中,一个DCI域的值在不同的unified TCI状态池中可对应于不同的TCI状态。因此,在图9所示流程的示例中,网络设备可通过DCI中的TCI域的取值,分别从不同的TRP对应的unified TCI状态池中指示出第五空间参数和第六空间参数。
S302:终端设备与网络设备之间通过第五空间参数、第六空间参数或设定的空间参数传输PUCCH,该PUCCH可用于承载第五DCI指示的HARQ-ACK与第六DCI指示的HARQ-ACK。
可选的,S302中,终端设备与网络设备可以在第五空间参数、第六空间参数或设定的空间参数的生效时间之后,根据生效的第五空间参数、第六空间参数或设定的空间参数传输该PUCCH。
其中,第五空间参数和/或第六空间参数的生效时间的确定方式可参照本申请中对于第一空间参数的生效时间的方式的说明。设定的空间参数的生效时间可以是协议预定义或者是预设置或预配置的,或者可以是网络设备与终端设备之间协商确定的,本申请不做具体要求。
可以理解的是,参照S103至S106,以S302中终端设备与网络设备之间通过第五空间参数传输PUCCH为例,S302可包括以下S303-S304:
S303:终端设备根据第五空间参数发送PUCCH。
其中,第五空间参数可参见本申请中对于第一空间参数的描述。例如,当第五类型包括的至少两种信号/信道或第一信号/信道包括上行信号/信道时,第五空间参数可包括QCL信息,QCL信息可以用于指示下行信号的空间相关参数(或者称为空间相关特性)。或者,当至少两种类型的信号包括下行信号时,第五空间参数可以包括TCI信息。或者,当至少两种类型的信号包括下行信号时,第五空间参数可以包括TCI状态信息。
作为一种可能的示例,当第五类型包括的两种类型的信号/信道或第一信号/信道包括上行信号/信道时,该第五空间参数信息为类型D QCL信息。
可选的,终端设备可以在第五指示信息或第五空间参数的生效时间之后,执行S303。
可以理解的是,终端设备根据第五空间参数发送PUCCH,可以是指,终端设备使用第五空间参数发送PUCCH。
S304:网络设备根据第五空间参数接收PUCCH。
可选的,网络设备可以在第五指示信息或第五空间参数的生效时间之后,执行S304。
可以理解的是网络设备根据第五空间参数接收PUCCH,可以是指,网络设备使用第五空间参数接收PUCCH。
基于图9所示流程,当网络设备通过HARQ-ACK联合编码的DCI向终端设备指示多个空间参数的指示信息时,终端设备与网络设备之间可通过该多个空间参数中的任意一个,或通过默认或设定的空间参数,传输用于承载该联合编码的HARQ-ACK的PUCCH,可提高传输可靠性。此时,对于该多个空间参数来说,空间参数的生效范围可包括PUCCH。
可选的,在图9所示流程中,终端设备还可向网络设备上报能力信息,该能力信息用于指示终端设备支持采用M个波束的上行信号/信道传输,M为正整数。
可选的,在本申请的各个实施例中,还可由网络设备向终端设备发送指示信息,使得终端设备执行本申请提供的图5、图7或图9中任意的通信方法。该指示信息可用于激活终端设备执行本申请实施例提供的通信方法,因此,终端设备可以在接收到该指示信息后执行图5、图7或图9中任意一个或多个通信方法,当终端设备未接收到该指示信息时,终端设备不执行图5、图7和图9中所示的通信方法。示例性的,如果第一指示信息包括unified TCI,则该指示信息可以是携带在RRC消息或MAC CE中的unified TCI开关。
以第一指示信息是unified TCI为例,如果通过RRC消息或MAC CE配置unified TCI生效的信号/信道,则终端设备在当前BWP上传输的该信号/信道,或如果该信号/信道包括SRS或CSI-RS,则排除用于波束管理(beam management,BM)的SRS或用于波束管理的CSI-RS以外的该信号/信道,均作为第一类型的信号/信道,或者,还可再通过本申请所示其他方式,从排除用于波束管理的SRS或用于波束管理的CSI-RS以外的该信号/信道中确定第一类型的信号/信道。
此外,在本申请的各个实施例中,还可由网络设备通过RRC消息、MAC CE或DCI向终端设备发送指示信息,使得终端设备获知本申请中的第一指示信息、第二中的信息、第三指示信息、第三指示信息、第五指示信息或第六指示信息中的至少一个指示的空间参数用于传输至少两种信号/信道,或者说,用于指示第一指示信息、第二中的信息、第三指示信息、第三指示信息、第五指示信息或第六指示信息中的至少一个为unified TCI。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中,以终端设备和网络设备之间的交互为例进行说明,本申请实施例提供的方法还可以适用于其他执行主体之间的交互,例如可以是终端设备芯片或模块,与网络设备中的芯片或模块之间的交互,当执行主体为芯片或模块时,可以参考本申请实施例中的描述,在此不再赘述。
基于上述内容和相同构思,图10和图11为本申请的提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。
在本申请中,该通信装置可以是如图1所示的终端设备和网络设备中的任意一项,不具体要求。
如图10所示,该通信装置1000包括处理模块1001和收发模块1002。
该通信装置1000中处理模块1001可用于实现上述图5、图7或图9中所示的方法实施例中终端设备和网络设备中任意一项的功能,例如,执行图5、图7或图9所示流程图中通过矩形框表示的动作。收发模块1002可用于支持该通信装置1000与其他通信设备之间的通信,例如该通信装置1000为终端设备时,收发模块1002可用于终端设备与网络设备进行通信,例如,执行图5、图7或图9所示流程图中通过箭头连接线表示的动作。
如图11所示为本申请实施例提供的装置1100,图11所示的装置可以为图10所示的装置的一种硬件电路的实现方式。该装置可适用于前面所示出的流程图中,执行上述方法实施例中终端设备和网络设备中的任意一项的功能。
为了便于说明,图11仅示出了该装置的主要部件。
图11所示的装置1100包括通信接口1110、处理器1120和存储器1130,其中存储器1130用于存储程序指令和/或数据。处理器1120可能和存储器1130协同操作。处理器1120可能执行存储器1130中存储的程序指令。存储器1130中存储的指令或程序被执行时,该处理器1120用于执行上述实施例中处理模块1001执行的操作,通信接口1110用于执行上述实施例中收发模块1002执行的操作。
存储器1130和处理器1120耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。所述存储器1130中的至少一个可以包括于处理器1120中。
在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是通信接口。
装置1100还可以包括通信线路1140。其中,通信接口1110、处理器1120以及存储器1130可以通过通信线路1140相互连接;通信线路1140可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述通信线路1140可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图5、图7或图9所示实施例中终端设备和网络设备中的任意一项执行的方法。
本申请实施例中还提供一种计算机程序产品,包括计算机指令,当其在计算机上运行时,使得计算机执行图5、图7或图9所示实施例中终端设备和网络设备中的任意一项执行的方法。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统执行图5、图7或图9所示实施例中终端设备和网络设备中的任意一项执行的方法。
本申请实施例还提供一种通信系统,包括:图5、图7或图9所示实施例中终端设备和网络设备中的任意一项或多项。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
在一个或多个示例性的设计中,本申请所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、数字通用光盘(digital versatile disc,DVD)、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (39)

  1. 一种通信方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示第一空间参数,所述第一空间参数用于传输第一类型的信号/信道,所述第一类型的信号/信道包括探测参考信号SRS、信道状态信息参考信号CSI-RS、物理上行控制信道PUCCH、物理下行共享信道PDSCH、物理下行控制信道PDCCH、物理上行共享信道PUSCH、相位追踪参考信号PTRS、解调参考信号DMRS、追踪参考信号TRS、或同步信号块SSB中的至少两种;
    根据所述第一空间参数传输第一信号/信道,所述第一信号/信道的类型属于所述第一类型,所述第一信号/信道对应的第一索引与所述第一指示信息对应的第一索引相同。
  2. 如权利要求1所述的方法,其特征在于,所述第一指示信息的生效时间位于所述第一下行控制信息DCI指示的混合自动重传请求肯定应答HARQ-ACK之后,所述第一信号/信道的发送时间位于所述第一指示信息的生效时间之后。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    接收第二指示信息,所述第二指示信息用于指示第二空间参数;
    根据所述第二空间参数传输第二信号/信道,所述第二信号/信道属于第二类型,所述第二类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,所述第二信号/信道对应的第二索引与所述第二指示信息对应的第二索引相同。
  4. 如权利要求1-3中任一所述的方法,其特征在于,所述第一信号/信道的类型包括周期性SRS或周期性CSI-RS,所述第一信号/信道对应的所述第一索引为控制资源集合组索引,所述控制资源集合组索引是根据所述第一信号/信道对应的参考信号资源信息中的指示信息确定的。
  5. 如权利要求1-3中任一所述的方法,其特征在于,
    所述第一指示信息对应的第一索引包括第一DCI对应的控制资源集合组的索引,所述第一DCI包括所述第一指示信息;
    所述第一信号/信道对应的第一索引包括第二DCI对应的控制资源集合组的索引,所述第二DCI用于调度所述第一信号/信道。
  6. 如权利要求1-5中任一所述的方法,其特征在于,所述方法还包括:
    接收第一信息,所述第一信息用于指示所述第一指示信息对于所述第一信号/信道生效。
  7. 如权利要求1-6中任一所述的方法,其特征在于,所述第一指示信息携带在第一DCI中的目标字段,所述目标字段为传输配置指示TCI域。
  8. 如权利要求1或3所述的方法,其特征在于,
    所述第一指示信息携带在无线资源控制RRC信令或媒体接入控制层控制单元MAC CE信令中;和/或,
    所述至少两种类型的信号/信道中的任一种类型的信号/信道是通过RRC信令或MAC CE信令指示的。
  9. 一种通信方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示第一空间参数,所述第一空间参数用于传输第一类型的信号/信道,所述第一类型的信号/信道包括探测参考信号SRS、信道状 态信息参考信号CSI-RS、物理上行控制信道PUCCH、物理下行共享信道PDSCH、物理下行控制信道PDCCH、物理上行共享信道PUSCH、相位追踪参考信号PTRS、解调参考信号DMRS、追踪参考信号TRS、或同步信号块SSB中的至少两种;
    根据所述第一空间参数传输第一信号/信道,所述第一信号/信道的类型属于所述第一类型,所述第一信号/信道对应的第一索引与所述第一指示信息对应的第一索引相同。
  10. 如权利要求9所述的方法,其特征在于,所述第一指示信息的生效时间位于所述第一下行控制信息DCI指示的混合自动重传请求肯定应答HARQ-ACK之后,所述第一信号/信道的发送时间位于所述第一指示信息的生效时间之后。
  11. 如权利要求9或10所述的方法,其特征在于,还包括:
    发送第二指示信息,所述第二指示信息用于指示第二空间参数;
    根据所述第二空间参数传输第二信号/信道,所述第二信号/信道属于第二类型,所述第二类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,所述第二信号/信道对应的第二索引与所述第二指示信息对应的第二索引相同。
  12. 如权利要求9-11中任一所述的方法,其特征在于,所述第一信号/信道的类型包括周期性SRS或周期性CSI-RS,所述第一信号/信道对应的所述第一索引为控制资源集合组索引,所述控制资源集合组索引是根据所述第一信号/信道对应的参考信号资源信息中的指示信息确定的。
  13. 如权利要求9-11中任一所述的方法,其特征在于,
    所述第一指示信息对应的第一索引包括第一DCI对应的控制资源集合组的索引,所述第一DCI包括所述第一指示信息;
    所述第一信号/信道对应的第一索引包括第二DCI对应的控制资源集合组的索引,所述第二DCI用于调度所述第一信号/信道。
  14. 如权利要求9-13中任一所述的方法,其特征在于,所述方法还包括:
    接收第一信息,所述第一信息用于指示所述第一指示信息对于所述第一信号/信道生效。
  15. 如权利要求9-14中任一所述的方法,其特征在于,所述第一指示信息携带在第一DCI中的目标字段,所述目标字段为传输配置指示TCI域。
  16. 如权利要求9或11所述的方法,其特征在于,
    所述第一指示信息携带在无线资源控制RRC信令或媒体接入控制层控制单元MAC CE信令中;和/或,
    所述至少两种类型的信号/信道中的任一种类型的信号/信道是通过RRC信令或MAC CE信令指示的。
  17. 一种通信装置,其特征在于,包括收发模块和处理模块:
    所述收发模块,用于接收第一指示信息,所述第一指示信息用于指示第一空间参数,所述第一空间参数用于传输第一类型的信号/信道,所述第一类型的信号/信道包括探测参考信号SRS、信道状态信息参考信号CSI-RS、物理上行控制信道PUCCH、物理下行共享信道PDSCH、物理下行控制信道PDCCH、物理上行共享信道PUSCH、相位追踪参考信号PTRS、解调参考信号DMRS、追踪参考信号TRS、或同步信号块SSB中的至少两种;
    所述处理模块,用于根据所述第一空间参数传输第一信号/信道,所述第一信号/信道的类型属于所述第一类型,所述第一信号/信道对应的第一索引与所述第一指示信息对应的 第一索引相同。
  18. 如权利要求17所述的装置,其特征在于,所述第一指示信息的生效时间位于所述第一下行控制信息DCI指示的混合自动重传请求肯定应答HARQ-ACK之后,所述第一信号/信道的发送时间位于所述第一指示信息的生效时间之后。
  19. 如权利要求17或18所述的装置,其特征在于,所述收发模块还用于:
    接收第二指示信息,所述第二指示信息用于指示第二空间参数;
    根据所述第二空间参数传输第二信号/信道,所述第二信号/信道属于第二类型,所述第二类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,所述第二信号/信道对应的第二索引与所述第二指示信息对应的第二索引相同。
  20. 如权利要求17-19中任一所述的装置,其特征在于,所述第一信号/信道的类型包括周期性SRS或周期性CSI-RS,所述第一信号/信道对应的所述第一索引为控制资源集合组索引,所述控制资源集合组索引是根据所述第一信号/信道对应的参考信号资源信息中的指示信息确定的。
  21. 如权利要求17-20中任一所述的装置,其特征在于,
    所述第一指示信息对应的第一索引包括第一DCI对应的控制资源集合组的索引,所述第一DCI包括所述第一指示信息;
    所述第一信号/信道对应的第一索引包括第二DCI对应的控制资源集合组的索引,所述第二DCI用于调度所述第一信号/信道。
  22. 如权利要求17-21中任一所述的装置,其特征在于,所述收发模块还用于:
    接收第一信息,所述第一信息用于指示所述第一指示信息对于所述第一信号/信道生效。
  23. 如权利要求17-22中任一所述的装置,其特征在于,所述第一指示信息携带在第一DCI中的目标字段,所述目标字段为传输配置指示TCI域。
  24. 如权利要求17或19所述的装置,其特征在于,
    所述第一指示信息携带在无线资源控制RRC信令或媒体接入控制层控制单元MAC CE信令中;和/或,
    所述至少两种类型的信号/信道中的任一种类型的信号/信道是通过RRC信令或MAC CE信令指示的。
  25. 一种通信装置,其特征在于,包括收发模块和处理模块:
    所述收发模块,用于发送第一指示信息,所述第一指示信息用于指示第一空间参数,所述第一空间参数用于传输第一类型的信号/信道,所述第一类型的信号/信道包括探测参考信号SRS、信道状态信息参考信号CSI-RS、物理上行控制信道PUCCH、物理下行共享信道PDSCH、物理下行控制信道PDCCH、物理上行共享信道PUSCH、相位追踪参考信号PTRS、解调参考信号DMRS、追踪参考信号TRS、或同步信号块SSB中的至少两种;
    所述处理模块,用于根据所述第一空间参数传输第一信号/信道,所述第一信号/信道的类型属于所述第一类型,所述第一信号/信道对应的第一索引与所述第一指示信息对应的第一索引相同。
  26. 如权利要求25所述的装置,其特征在于,所述第一指示信息的生效时间位于所述第一下行控制信息DCI指示的混合自动重传请求肯定应答HARQ-ACK之后,所述第一信号/信道的发送时间位于所述第一指示信息的生效时间之后。
  27. 如权利要求25或26所述的装置,其特征在于,所述收发模块还用于:
    发送第二指示信息,所述第二指示信息用于指示第二空间参数;
    根据所述第二空间参数传输第二信号/信道,所述第二信号/信道属于第二类型,所述第二类型的信号/信道包括SRS、CSI-RS、PDSCH、PDCCH、PUSCH、PUCCH、PTRS、DMRS、TRS、或SSB中的至少两种,所述第二信号/信道对应的第二索引与所述第二指示信息对应的第二索引相同。
  28. 如权利要求25-27中任一所述的装置,其特征在于,所述第一信号/信道的类型包括周期性SRS或周期性CSI-RS,所述第一信号/信道对应的所述第一索引为控制资源集合组索引,所述控制资源集合组索引是根据所述第一信号/信道对应的参考信号资源信息中的指示信息确定的。
  29. 如权利要求25-28中任一所述的装置,其特征在于,
    所述第一指示信息对应的第一索引包括第一DCI对应的控制资源集合组的索引,所述第一DCI包括所述第一指示信息;
    所述第一信号/信道对应的第一索引包括第二DCI对应的控制资源集合组的索引,所述第二DCI用于调度所述第一信号/信道。
  30. 如权利要求25-29中任一所述的装置,其特征在于,所述收发模块还用于:
    接收第一信息,所述第一信息用于指示所述第一指示信息对于所述第一信号/信道生效。
  31. 如权利要求25-30中任一所述的装置,其特征在于,所述第一指示信息携带在第一DCI中的目标字段,所述目标字段为传输配置指示TCI域。
  32. 如权利要求25或27所述的装置,其特征在于,
    所述第一指示信息携带在无线资源控制RRC信令或媒体接入控制层控制单元MAC CE信令中;和/或,
    所述至少两种类型的信号/信道中的任一种类型的信号/信道是通过RRC信令或MAC CE信令指示的。
  33. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,如权利要求1-8中任一项所述的方法被实现,或如权利要求9-16中任一项所述的方法被实现。
  34. 一种通信系统,其特征在于,包括终端设备和网络设备,所述终端设备用于执行如权利要求1-8中任一项所述的方法,所述网络设备用于执行如权利要求9-16中任一项所述的方法。
  35. 一种芯片,其特征在于,所述芯片与存储器耦合,所述芯片读取所述存储器中存储的计算机程序,执行权利要求1-8中任一项所述的方法,或执行权利要求9-16中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,包括计算机程序或指令,当所述计算机程序或指令被计算机执行时,使得所述计算机实现如权利要求1-8中任一项所述的方法,或实现如权利要求9-16中任一项所述的方法。
  37. 一种通信装置,其特征在于,包括处理器,所述处理器,用于执行存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-8中任一所述的方法,或执行如权利要求9-16中任一所述的方法。
  38. 如权利要求37所述的通信装置,其特征在于,还包括所述存储器和/或收发器,所 述收发器用于所述通信装置进行通信。
  39. 一种通信装置,其特征在于,用于执行如权利要求1-16中任一所述的方法。
PCT/CN2023/091696 2022-04-29 2023-04-28 一种通信方法及装置 WO2023208211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210475047.8 2022-04-29
CN202210475047.8A CN117042035A (zh) 2022-04-29 2022-04-29 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023208211A1 true WO2023208211A1 (zh) 2023-11-02

Family

ID=88517961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091696 WO2023208211A1 (zh) 2022-04-29 2023-04-28 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN117042035A (zh)
WO (1) WO2023208211A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248101A1 (zh) * 2019-06-10 2020-12-17 Oppo广东移动通信有限公司 上报csi的方法和终端设备
CN113412584A (zh) * 2018-12-06 2021-09-17 株式会社Ntt都科摩 用户终端
CN113517965A (zh) * 2020-04-10 2021-10-19 维沃移动通信有限公司 信道状态信息报告的获取方法及终端
EP3986059A1 (en) * 2019-07-26 2022-04-20 Huawei Technologies Co., Ltd. Communication method and communication device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113412584A (zh) * 2018-12-06 2021-09-17 株式会社Ntt都科摩 用户终端
WO2020248101A1 (zh) * 2019-06-10 2020-12-17 Oppo广东移动通信有限公司 上报csi的方法和终端设备
EP3986059A1 (en) * 2019-07-26 2022-04-20 Huawei Technologies Co., Ltd. Communication method and communication device
CN113517965A (zh) * 2020-04-10 2021-10-19 维沃移动通信有限公司 信道状态信息报告的获取方法及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Further Discussion on Multi-TRP Transmission", 3GPP DRAFT; R1-1905610_FURTHER DISCUSSION ON MULTI TRP TRANSMISSION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 5 April 2019 (2019-04-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 14, XP051707668 *

Also Published As

Publication number Publication date
CN117042035A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
CN112154619B (zh) 用于混合自动重复请求(harq)的方法和装置
US20210184803A1 (en) Method for Sending Hybrid Automatic Repeat Request Acknowledgment Information, Method for Receiving Hybrid Automatic Repeat Request Acknowledgment Information, and Communications Apparatus
US10735072B2 (en) Method and apparatus for transmitting data in wireless communication system
US20210067979A1 (en) Method and apparatus for multi-beam operations
US11109406B2 (en) Scheduling method and device in wireless communication system providing broadband service
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
US11005631B2 (en) Terminal, base station and radio communication method for separately encoding uplink control information
US10686501B2 (en) Precoding information signaling method and apparatus for uplink transmission in mobile communication system using a plurality of array antennas
US11611412B2 (en) Base station and radio communication method
WO2018054381A1 (zh) 传输反馈信息的方法和装置
US11968675B2 (en) Uplink control information sending and receiving method and communications apparatus
US20180294927A1 (en) User terminal, radio base station and radio communication method
KR20210002035A (ko) 무선 통신 시스템에서 하향 링크 및 상향 링크 다중 빔 동작을 위한 방법 및 장치
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
CN109391445B (zh) 一种pdsch接收信息的指示方法、数据接收方法及装置
KR20220113394A (ko) 무선 통신 시스템에서 그룹 기반 다중 빔 동작을 위한 방법 및 장치
WO2020199856A1 (zh) 信息传输的方法和通信装置
US11432192B2 (en) Terminal and radio communication method
WO2021027518A1 (zh) 处理数据的方法和通信装置
WO2020098685A1 (zh) 接收数据的方法和通信装置
WO2020244551A1 (zh) 用于激活辅小区的方法和装置
CN116076136A (zh) 用于物理层波束指示的方法和装置
US20200389277A1 (en) Indication method, network device, and user equipment
US11677521B2 (en) User terminal, radio base station and radio communication method
JPWO2017078032A1 (ja) ユーザ端末、無線基地局及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795643

Country of ref document: EP

Kind code of ref document: A1