WO2021159528A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2021159528A1
WO2021159528A1 PCT/CN2020/075424 CN2020075424W WO2021159528A1 WO 2021159528 A1 WO2021159528 A1 WO 2021159528A1 CN 2020075424 W CN2020075424 W CN 2020075424W WO 2021159528 A1 WO2021159528 A1 WO 2021159528A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
types
information
communication method
spatial parameter
Prior art date
Application number
PCT/CN2020/075424
Other languages
English (en)
French (fr)
Inventor
张荻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20919235.0A priority Critical patent/EP4096321A4/en
Priority to PCT/CN2020/075424 priority patent/WO2021159528A1/zh
Priority to CN202080096558.8A priority patent/CN115088343A/zh
Publication of WO2021159528A1 publication Critical patent/WO2021159528A1/zh
Priority to US17/887,265 priority patent/US20220394701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • This application relates to the field of communication, and in particular to a communication method and device.
  • Beamforming technology is a technology in which communication equipment generates directional beams by adjusting the weighting coefficients of antennas in an antenna array. Through beamforming technology, larger antenna gains can be obtained to compensate for signal loss during signal transmission.
  • both the transmitting beam (transmitting beam) of the network device and the receiving beam of the terminal device may change dynamically, and the network device needs to pass Multiple signalings respectively update beams corresponding to different signals/channels, and the signaling overhead is large and the update speed is slow.
  • the embodiments of the present application provide a communication method and device, which can solve the problems of high signaling overhead and slow update speed when updating beams corresponding to different signals/channels.
  • an embodiment of the present application provides a communication method, including: receiving first indication information, where the first indication information is used to indicate spatial parameter information of at least two types of signals; receiving and/or sending at least Two types of signals.
  • an embodiment of the present application provides a communication method, including: receiving first indication information, where the first indication information is used to indicate spatial parameter information of one of at least two types of signals; Information receives and/or sends at least two types of signals.
  • the terminal device may receive the first indication information, and receive and/or send at least two types of signals according to the spatial parameter information indicated by the first indication information.
  • the base station needs to update the beams corresponding to different signals/channels through multiple signaling, which has a large signaling overhead and a slow update speed.
  • This application can enable the terminal device to receive and/or send at least two types of signals according to the first indication information, so that the terminal device can quickly complete beam switching of multiple types of signals in a mobile scenario, effectively avoiding link interruption, and Save signaling.
  • At least two types of signals include physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH), and probe Reference signal (sounding reference signal, SRS), phase tracking reference signal (phase tracking reference signal, PTRS), demodulation reference signal (demodulation reference signal, DMRS), physical downlink control channel (physical downlink control channel, PDCCH), physical downlink Shared channel (physical downlink shared channel, PDSCH), tracking reference signal (tracking reference signal, TRS), channel state information reference signal (channel state information-reference signal, CSI-RS) or synchronization signal block (synchronization signal block, SSB) At least two of them.
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • probe Reference signal sounding reference signal, SRS
  • phase tracking reference signal phase tracking reference signal
  • demodulation reference signal demodulation reference signal
  • DMRS demodulation reference signal
  • physical downlink control channel physical downlink control channel
  • PDCCH physical downlink control channel
  • PDSCH physical downlink Shared channel
  • the at least two types of signals may include any two types of signals among PUCCH, PUSCH, SRS, PTRS, DMRS, PDCCH, PDSCH, TRS, CSI-RS, or SSB, or any three types of signals , Or any four types of signals, or any five types of signals, etc., this application is not limited.
  • the first indication information is carried in a target field in downlink control information (DCI).
  • DCI downlink control information
  • a target field may be added to the DCI of the format 1-1 in the version 16 (release-16, Rel-16) standard protocol 38.212 to carry the first indication information.
  • other fields may be multiplexed in the DCI of format 1-1 in the Rel-16 standard protocol 38.212 to carry the first indication information.
  • the target field is a transmission configuration indicator (transmission configuration indicator, TCI) field.
  • the first indication information is carried in radio resource control (radio resource control, RRC) signaling or media access control control element (MAC). CE) signaling.
  • RRC radio resource control
  • MAC media access control control element
  • the spatial parameter information becomes effective after the target time period, and the target time period is related to the capability of the terminal device.
  • the method further includes: reporting capability information, where the capability information is used to indicate the target time period.
  • the length of the target time period is based on the minimum of the number of time units in the target time period and the subcarrier spacing (SCS) of at least two types of signals.
  • SCS subcarrier spacing
  • receiving and/or sending the at least two types of signals according to the spatial parameter information includes : Receive at least one downlink signal according to the spatial parameter information, the length of the target time period is determined according to the number of time units in the target time period and the minimum value of the SCS of at least one downlink signal; send at least one uplink signal according to the spatial parameter information, and the target The length of the time period is determined according to the number of time units in the target time period and the minimum value of the SCS of at least one uplink signal.
  • receiving and/or sending the at least two types of signals according to the spatial parameter information includes: receiving according to the spatial parameter information Or send the first signal, and the length of the target time period is determined according to the number of time units in the target time period and the SCS of the first signal.
  • receiving and/or sending the at least two types of signals according to the spatial parameter information includes: receiving according to the spatial parameter information And/or send at least two types of signals, and the length of the target time period is determined according to the number of time units in the target time period and the SCS of the first signal.
  • any one of the at least two types of signals is indicated by RRC signaling or MAC CE signaling, or is predefined.
  • the first indication information indicates multiple pieces of spatial parameter information
  • at least one of the at least two types of signals corresponds to the pieces of spatial parameter information The first spatial parameter information.
  • the spatial parameter information of the uplink signals is type D quasi co-located QCL information (type D QCL information).
  • the method further includes: receiving second indication information, where the second indication information is used to instruct to obtain the first indication information.
  • an embodiment of the present application provides a communication method, including: sending first indication information, where the first indication information is used to indicate spatial parameter information of at least two types of signals; receiving and/or sending at least Two types of signals.
  • an embodiment of the present application provides a communication method, including: sending first indication information, where the first indication information is used to indicate spatial parameter information of one of at least two types of signals; Information receives and/or sends at least two types of signals.
  • the network device may send the first indication information to the terminal device, so that the terminal device receives and/or sends at least two types of signals according to the spatial parameter information indicated by the first indication information.
  • the base station needs to update the beams corresponding to different signals/channels through multiple signaling, which has a large signaling overhead and a slow update speed.
  • the network device sends the first instruction information to the terminal device, so that the terminal device can receive and/or send at least two types of signals according to the first instruction information, so that the terminal device can quickly complete multiple types in a mobile scenario
  • the beam switching of the signal can effectively avoid link interruption and save signaling.
  • the at least two types of signals include at least two of PUCCH, PUSCH, SRS, PTRS, DMRS, PDCCH, PDSCH, TRS, CSI-RS, or SSB.
  • the first indication information is carried in the target field in the DCI.
  • the target field is a TCI field.
  • the first indication information is carried in RRC signaling or MAC CE signaling.
  • the spatial parameter information becomes effective after the target time period, and the target time period is related to the capability of the terminal device.
  • the method further includes: receiving capability information, where the capability information is used to indicate the target time period.
  • the length of the target time period is determined according to the number of time units in the target time period and the minimum value of the subcarrier spacing SCS of the at least two types of signals.
  • receiving and/or sending the at least two types of signals according to the spatial parameter information includes : Send at least one downlink signal according to the spatial parameter information, the length of the target time period is determined according to the number of time units in the target time period and the minimum value of the SCS of at least one downlink signal; receive at least one uplink signal according to the spatial parameter information, and the target The length of the time period is determined according to the number of time units in the target time period and the minimum value of the SCS of at least one uplink signal.
  • receiving and/or sending the at least two types of signals according to the spatial parameter information includes: receiving according to the spatial parameter information Or send the first signal, and the length of the target time period is determined according to the number of time units in the target time period and the SCS of the first signal.
  • receiving and/or sending the at least two types of signals according to the spatial parameter information includes: receiving according to the spatial parameter information And/or send at least two types of signals, and the length of the target time period is determined according to the number of time units in the target time period and the SCS of the first signal.
  • any one of the at least two types of signals is indicated by RRC signaling or MAC CE signaling, or is predefined.
  • the first indication information indicates multiple pieces of spatial parameter information
  • at least one of the at least two types of signals corresponds to the pieces of spatial parameter information The first spatial parameter information.
  • the spatial parameter information of the uplink signals is type D quasi co-located QCL information.
  • the method further includes: sending second indication information, where the second indication information is used to instruct to send the first indication information.
  • an embodiment of the present application provides a communication device, including: a transceiving unit, configured to receive first indication information, the first indication information being used to indicate spatial parameter information of at least two types of signals; For receiving and/or transmitting at least two types of signals according to the spatial parameter information.
  • an embodiment of the present application provides a communication device, including: a transceiver unit, configured to receive first indication information, where the first indication information is used to indicate a spatial parameter of one of at least two types of signals Information;
  • the transceiver unit is also used to receive and/or send at least two types of signals according to the spatial parameter information.
  • the at least two types of signals include at least two of PUCCH, PUSCH, SRS, PTRS, DMRS, PDCCH, PDSCH, TRS, CSI-RS, or SSB.
  • the first indication information is carried in the target field in the DCI.
  • the target field is a TCI field.
  • the first indication information is carried in RRC signaling or MAC CE signaling.
  • the spatial parameter information becomes effective after the target time period, and the target time period is related to the capability of the terminal device.
  • the transceiver unit is further configured to report capability information, and the capability information is used to indicate the target time period.
  • the length of the target time period is determined according to the number of time units in the target time period and the minimum value of the SCS of the at least two types of signals.
  • the transceiver unit is configured to: receive at least one downlink signal according to the spatial parameter information, The length of the target time period is determined according to the number of time units in the target time period and the minimum value of the SCS of at least one downlink signal; at least one uplink signal is sent according to the spatial parameter information, and the length of the target time period is based on the time of the target time period The number of units and the minimum value of the SCS of at least one uplink signal are determined.
  • the transceiver unit is configured to: receive or send the first signal according to the spatial parameter information, and the length of the target time period It is determined based on the number of time units in the target time period and the SCS of the first signal.
  • the transceiver unit is configured to: receive and/or send the at least two types of signals according to the spatial parameter information, The length of the target time period is determined according to the number of time units in the target time period and the SCS of the first signal.
  • any one of the at least two types of signals is indicated by RRC signaling or MAC CE signaling, or is predefined.
  • the first indication information indicates multiple pieces of spatial parameter information
  • at least one of the at least two types of signals corresponds to the pieces of spatial parameter information The first spatial parameter information.
  • the spatial parameter information of the uplink signals is type D quasi co-located QCL information.
  • the transceiver unit is further configured to receive second indication information, and the second indication information is used to instruct to acquire the first indication information.
  • an embodiment of the present application provides a communication device, including: a transceiving unit, configured to send first indication information, the first indication information being used to indicate spatial parameter information of at least two types of signals; For receiving and/or transmitting at least two types of signals according to the spatial parameter information.
  • an embodiment of the present application provides a communication device, including: a transceiving unit, configured to send first indication information, where the first indication information is used to indicate a spatial parameter of one of at least two types of signals Information;
  • the transceiver unit is also used to receive and/or send at least two types of signals according to the spatial parameter information.
  • the at least two types of signals include at least two of PUCCH, PUSCH, SRS, PTRS, DMRS, PDCCH, PDSCH, TRS, CSI-RS, or SSB.
  • the first indication information is carried in a target field in the downlink control information DCI.
  • the target field is a transmission configuration indication TCI field.
  • the first indication information is carried in radio resource control RRC signaling or medium access control layer control unit MAC CE signaling.
  • the spatial parameter information becomes effective after the target time period, and the target time period is related to the capability of the terminal device.
  • the transceiver unit is further configured to receive capability information, and the capability information is used to indicate the target time period.
  • the length of the target time period is determined according to the number of time units in the target time period and the minimum value of the subcarrier spacing SCS of the at least two types of signals.
  • the transceiver unit is configured to: send at least one downlink signal according to the spatial parameter information, The length of the target time period is determined according to the number of time units in the target time period and the minimum value of the SCS of at least one downlink signal; at least one uplink signal is received according to the spatial parameter information, and the length of the target time period is based on the time of the target time period The number of units and the minimum value of the SCS of at least one uplink signal are determined.
  • the transceiver unit is configured to receive or send the first signal according to the spatial parameter information, and the length of the target time period is Determined according to the number of time units in the target time period and the SCS of the first signal.
  • the transceiver unit is configured to receive and/or send the at least two types of signals according to the spatial parameter information, and the target The length of the time period is determined according to the number of time units in the target time period and the SCS of the first signal.
  • any one of the at least two types of signals is indicated by RRC signaling or MAC CE signaling, or is predefined.
  • the first indication information indicates multiple pieces of spatial parameter information
  • at least one of the at least two types of signals corresponds to the pieces of spatial parameter information The first spatial parameter information.
  • the spatial parameter information of the uplink signals is type D quasi co-located QCL information.
  • the transceiver unit is further configured to send second indication information, and the second indication information is used to instruct to send the first indication information.
  • an embodiment of the present application also provides a communication device, which may be a terminal device or a chip.
  • the communication device includes a processor, configured to implement any one of the communication methods provided in the first aspect or the second aspect.
  • the communication device may further include a memory for storing program instructions and data.
  • the memory may be a memory integrated in the communication device or an off-chip memory provided outside the communication device.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement any one of the communication methods provided in the first aspect or the second aspect.
  • the communication device may further include a communication interface for the communication device to communicate with other devices (for example, network devices).
  • an embodiment of the present application also provides a communication device, which may be a network device or a chip.
  • the communication device includes a processor, configured to implement any one of the communication methods provided in the third aspect or the fourth aspect.
  • the communication device may further include a memory for storing program instructions and data.
  • the memory may be a memory integrated in the communication device or an off-chip memory provided outside the communication device.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement any one of the communication methods provided in the third aspect or the fourth aspect.
  • the communication device may also include a communication interface for the communication device to communicate with other devices (for example, terminal devices).
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to perform any communication provided in any one of the first to fourth aspects. method.
  • the embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute any communication method provided in any one of the first to fourth aspects above .
  • an embodiment of the present application provides a chip system that includes a processor and may also include a memory for implementing any communication method provided in any one of the first to fourth aspects.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • embodiments of the present application provide a communication system, which includes the communication devices in the fifth aspect and the seventh aspect, or the system includes the communication devices in the sixth aspect and the eighth aspect.
  • FIG. 1 is a schematic diagram of a beam training provided by an embodiment of this application.
  • FIG. 2 is a signal flow chart for indicating PDSCH beam information according to an embodiment of the application
  • FIG. 3 is a schematic diagram of a format of MAC CE signaling provided by an embodiment of this application.
  • FIG. 4 is a signal flow chart for indicating PDCCH beam information according to an embodiment of this application.
  • FIG. 5 is a schematic diagram of a communication system architecture provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another communication system architecture provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of signal interaction provided by an embodiment of this application.
  • FIG. 10 is another schematic diagram of signal interaction provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • Spatial parameter information It can also be called spatial related parameter information or spatial information, which can include quasi-collocation/QCL (quasi-collocation, QCL) information (info) and/or spatial relationship (spatial) relation) information.
  • QCL information is used to indicate spatial correlation parameters of downlink signals (also referred to as spatial correlation characteristics/spatial characteristic parameters)
  • spatial relation information is used to indicate spatial correlation parameters of uplink signals.
  • the spatial relation information is used to assist in describing the beamforming information on the transmitting (transmitting) side of the terminal device and the transmitting process.
  • the spatial relation information may indicate the spatial transmission parameter relationship between the two reference signals.
  • the two reference signals may include a source reference signal (reference signal being quoted) and a target reference signal.
  • the target reference signal is usually a downlink signal, such as DMRS or SRS.
  • the reference signal or source reference signal cited may include CSI-RS, SRS, SSB, and so on.
  • QCL information may also be referred to as QCL hypothesis information.
  • the QCL information can be used to assist in describing the terminal equipment receiving beamforming information and the receiving process.
  • the QCL information may indicate the QCL relationship between two reference signals (that is, the source reference signal and the target reference signal).
  • the target reference signal is generally a downlink signal, such as DMRS or CSI-RS.
  • the source reference signal may be CSI-RS (for example, tracking reference signal (TRS)) or SSB.
  • the spatial characteristic parameters of the two reference signals that is, the source reference signal and the target reference signal
  • the resource index based on the source reference signal can be Infer the spatial characteristic parameters of the target reference signal.
  • the DMRS (target reference signal) used to transmit the PDCCH and PDSCH can be predefined to have a QCL relationship with the SSB (source reference signal) determined during the initial access of the terminal device, that is, the DMRS can be inferred based on the resource index of the SSB. Spatial characteristic parameters.
  • the spatial characteristic parameters may include one or more of the following parameters: angle of incidence (angle of arrival, AoA), dominant (dominant) incidence angle AoA, average angle of incidence, power angular spectrum of incidence angle, PAS), angle of departure (AoD), main exit angle, average exit angle, power angle spectrum of exit angle, terminal device transmit beamforming, terminal device receive beamforming, spatial channel correlation, network device transmit beamforming , Network equipment receiving beamforming, average channel gain, average channel delay/average delay (average delay), delay spread (delay spread), Doppler spread (doppler spread), Doppler shift (doppler shift) Or spatial reception parameters (spatial Rx parameters), etc.
  • any of the above-mentioned angles may include decomposition values of different dimensions or a combination of decomposition values of different dimensions.
  • the spatial characteristic parameter describes the characteristics of the spatial channel between the antenna ports of the source reference signal and the target reference signal, and helps the terminal device to complete the receiving side beamforming or receiving process.
  • the terminal device may receive the target reference signal according to the receiving beam information of the source reference signal indicated by the QCL information.
  • the spatial characteristic parameters also help the terminal equipment to complete the beamforming or transmission process at the transmitting side.
  • the terminal device may transmit the target reference signal according to the transmit beam information of the source reference signal indicated by the spatial characteristic parameter.
  • the network device may indicate the demodulation reference signal of the PDCCH or PDSCH and multiple reference signals previously reported by the terminal device (for example, CSI- One or more of RS) satisfy the QCL relationship.
  • Each reported CSI-RS resource index corresponds to a transceiver beam pair established during the measurement of the CSI-RS resource.
  • the QCL relationship can be divided into four types: Type A, Type B, Type C, and Type D based on different parameters. in:
  • Type A (type A): It can include Doppler frequency shift, Doppler spread, average delay and delay spread;
  • Type B (type B): It can include Doppler frequency shift and Doppler spread;
  • Type C (type C): It can include Doppler frequency shift and average delay;
  • Type D may include spatial reception parameters, which may be understood as parameters used to indicate the direction information of the received beam.
  • the QCL information or type D QCL information in each embodiment of the present application may include SRS.
  • the network device can configure one or more types of QCL information for the terminal device at the same time, such as QCL type A+D or QCL type C+D.
  • the QCL relationship is a QCL relationship of type D
  • the QCL relationship is a spatial QCL.
  • the antenna port satisfies the spatial QCL relationship, it may be that the QCL relationship is satisfied between the port of the downlink signal and the port of the downlink signal, or the spatial relation between the port of the uplink signal and the port of the uplink signal is satisfied.
  • the two signals may have the same AOA or AOD, which is used to indicate that they have the same receiving beam or transmitting beam.
  • the AOA and AOD of the two signals have a corresponding relationship
  • the AOD and AOA of the two signals have a corresponding relationship
  • the relationship that is, the beam reciprocity can be used to determine the uplink transmit beam based on the downlink receive beam, or the downlink receive beam can be determined based on the uplink transmit beam.
  • the two antenna ports are spatial QCL, it may mean that the beam directions corresponding to the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are spatial QCL, it can mean that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the signal transmitted on the port with the spatial QCL relationship may also have corresponding beams, and the corresponding beams may include one or more of the following: the same receiving beam, the same transmitting beam, and the transmitting beam corresponding to the receiving beam in the reciprocity scenario , The receiving beam corresponding to the transmitting beam in the reciprocity scenario.
  • the signal transmitted on the port with the spatial QCL relationship can also be understood as the signal received or transmitted using the same spatial filter.
  • the spatial filter may include one or more of the following: precoding, weights of antenna ports, phase deflection of antenna ports, or amplitude gain of antenna ports.
  • the signal transmitted on the port with the spatial QCL relationship can also be understood as a signal with a corresponding beam pair link (BPL).
  • the corresponding BPL includes one or more of the following: the same downlink BPL, the same uplink BPL , The uplink BPL corresponding to the downlink BPL or the downlink BPL corresponding to the uplink BPL.
  • TCI-state It can also be referred to as TCI information, which is configured by a network device to each terminal device and is used to indicate QCL information of a signal/channel.
  • the channel may be, for example, PDCCH, CORESET, or PDSCH.
  • the signal may be, for example, CSI-RS, DMRS, TRS, or the like.
  • a TCI-state can be configured with one or more source reference signals and the associated QCL type.
  • the configuration information of a TCI-state may include the identification of one or two reference signals (source reference signals) and the associated QCL type.
  • the TCI-state can indicate that the source reference signal and the target reference signal included in the TCI-state satisfy the QCL relationship, that is, the spatial characteristic parameters of the target reference signal and the spatial characteristic parameters of the source reference signal included in the TCI are the same, similar, Or similar. In this way, the terminal device can receive the target reference signal according to the spatial characteristic parameter of the source reference signal.
  • TCI-state The following is a possible format of TCI-state:
  • TCI-state can be configured globally. In TCI-states configured for different cells or different bandwidth parts (BWP), if the index of the TCI-state is the same, the configuration of the TCI-state is also the same.
  • BWP bandwidth parts
  • Antenna port It can be referred to as a port for short.
  • One antenna port may be configured for each virtual antenna, each virtual antenna may include a weighted combination of multiple physical antennas, and each antenna port may correspond to a reference signal port.
  • the antenna ports may be antenna ports with different antenna port numbers.
  • the antenna ports can also be antenna ports that have the same antenna port number or different antenna port numbers, and transmit or receive information at different times.
  • the antenna ports may also be antenna ports that have the same antenna port number or different antenna port numbers, and transmit or receive information in different frequencies.
  • the antenna ports may also be antenna ports that have the same antenna port number or different antenna port numbers, and transmit or receive information in different code domain resources.
  • the signals corresponding to the antenna ports with the QCL relationship may have the same or similar spatial characteristic parameters (or called parameters), or the spatial characteristic parameters of one antenna port may be used to determine another antenna port that has a QCL relationship with the antenna port Or, two antenna ports with a QCL relationship have the same or similar spatial characteristic parameters, or the difference between two antenna ports with a QCL relationship is less than a certain threshold.
  • CC Component carrier
  • the terminal device can receive data on multiple CCs.
  • Each carrier is composed of one or more physical resource blocks (PRB).
  • PRB physical resource blocks
  • Each carrier can have its own corresponding PDCCH to schedule the PDSCH of its respective CC; or, if some carriers do not have PDCCH, these carriers can perform Cross-carrier scheduling.
  • cross-carrier scheduling refers to that the network device schedules data transmission on one CC by sending a PDCCH on another CC (that is, transmitting PDSCH on another CC, or transmitting PUSCH on another CC).
  • the network device may send the PDCCH on the BWP of one CC to schedule the transmission of the PDSCH or PUSCH of the BWP on the other CC. That is, the control channel is transmitted on one CC, and the corresponding data channel is transmitted on another CC.
  • BWP Since the transmitting or receiving capabilities of different terminal devices in the same cell in NR may be different, the system can configure the corresponding bandwidth for each terminal device. This part of the bandwidth configured for the terminal device is called BWP.
  • the device transmits on its corresponding BWP.
  • the BWP may be a group of continuous frequency domain resources on the carrier, such as a physical resource block (PRB).
  • PRB physical resource block
  • the minimum granularity of the BWP in the frequency domain can be 1 PRB.
  • the frequency domain resources occupied by different BWPs may partially overlap (overlap), or may not overlap each other.
  • the bandwidth of the frequency domain resources occupied by different BWPs may be the same or different, which is not limited in this application.
  • a terminal device may have only one active BWP (active BWP) at a time, and the terminal device only receives data/reference signals or sends data/reference signals on the activated BWP.
  • active BWP active BWP
  • the BWP may also be a collection of bandwidths on a specific frequency, or a collection of multiple resource blocks (resource blocks, RB), etc. This application does not Make a limit.
  • Control resource set A resource set used to transmit downlink control information, which may also be referred to as a control resource area or a physical downlink control channel resource set.
  • the network device may configure one or more control resource sets for the terminal device for sending the physical downlink control channel.
  • the network device can send a control channel to the terminal device on any control resource set corresponding to the terminal device.
  • the network device also needs to notify the terminal device of other configurations associated with the control resource set, such as a search space set.
  • There are differences in the configuration information of each control resource set such as a frequency-domain width difference and/or a time-domain length difference.
  • control resource set in this application can be any of the following: CORESET, control region, or enhanced physical downlink control channel (enhanced) defined by the future 5th generation (5G) mobile communication system -physical downlink control channel, ePDCCH) set.
  • 5G 5th generation
  • ePDCCH enhanced physical downlink control channel
  • the time-frequency position occupied by the PDCCH can be referred to as the downlink control region.
  • the PDCCH is always located in the first m symbols of a subframe, where the possible values of m are 1, 2, 3, or 4.
  • the PDCCH may be located in any symbol or multiple symbols in a subframe.
  • the downlink control area can be flexibly configured by RRC signaling through CORESET and search space set.
  • CORESET can configure PDCCH or control channel element (control channel element, CCE) frequency domain position and time domain continuous symbol number and other information.
  • the search space set can be configured with PDCCH detection period, offset, and start symbol in a time slot and other information.
  • the search space set can be configured with a PDCCH period as 1 slot, and the time domain start symbol is symbol 0, then the terminal device can detect the PDCCH at the start position of each slot.
  • Reference signals Communication systems usually include two types of reference signals. One type of reference signal is used to estimate the channel, so that the received signal containing control information or data can be coherently demodulated; the other type is used for channel status. Or the measurement of channel quality, so as to realize the scheduling of terminal equipment.
  • the terminal device may obtain channel state information CSI based on the channel quality measurement of the CSI-RS.
  • the CSI includes rank indicator (rank indicator, RI), precoding indicator (precoding matrix indicator, PMI), or channel quality indicator (channel quality indicator). at least one of indicator, CQI) and the like.
  • the CSI information can be sent to the network device by the terminal equipment device through the physical uplink control channel or the physical uplink shared channel.
  • the beam can include a wide beam, a narrow beam or other types of beams. Different beams can be considered as different communication resources. The same information or different information can be sent through different beams. Optionally, multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One beam corresponds to one or more antenna ports, which are used to transmit data channels, control channels, or sounding signals.
  • One or more antenna ports corresponding to a beam can also be regarded as an antenna port set.
  • the beam may also be called or equivalently referred to as a spatial filter (spatial filter or spatial domain filter), a spatial transmission filter or a spatial domain transmission filter (spatial domain transmission filter).
  • the beam used to transmit the signal can be called the transmission beam (Tx beam), or the spatial domain transmission filter or the spatial transmission parameter; the beam used to receive the signal can be called To receive the beam (reception beam, Rx beam), it can be called a spatial domain receive filter or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna, and the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the receiving beam on the terminal device side and the transmitting beam on the network device side may be downlink spatial filters, and the transmitting beam on the terminal device side and the receiving beam on the network device side may be uplink spatial filters.
  • the beam may include the transmission beam and the reception beam of the network device and the transmission beam and the reception beam of the terminal device.
  • the transmitting beam of the network device is used to describe the beamforming information on the transmitting side of the network device
  • the receiving beam of the network device is used to describe the beamforming information on the receiving side of the network device.
  • the transmitting beam of the terminal device is used to describe the beamforming information on the transmitting side of the terminal device
  • the receiving beam of the terminal device is used to describe the beamforming information on the receiving side of the terminal device. That is, beams can be used to describe beamforming information.
  • the term "beam" is not used in the standard.
  • the transmission beam of the network device can be represented by reference signal resources, such as beam index 1, which can be described as reference signal resource index 1 in the standard, and the receiving beam of the terminal device can pass QCL
  • the Spatial Rx parameter indicates that the beam status information can be described as L1-RSRP related information or L1-SINR related information in the standard.
  • the beam may correspond to a resource, for example, the beam may correspond to a time resource, a space resource, or a frequency domain resource.
  • the beam may also correspond to a reference signal resource (for example, a reference signal resource for beamforming) or beamforming information.
  • the beam may also correspond to information associated with the reference signal resource of the network device.
  • the reference signal may include, for example, CSI-RS, SSB, DMRS, PTRS, or TRS.
  • the information associated with the reference signal resource may be a reference signal resource identifier or QCL information (such as QCL of type D).
  • the reference signal resource identifier corresponds to a transceiver beam pair established during the previous measurement based on the reference signal resource.
  • the terminal device can infer the beam information of the target reference signal.
  • Beamforming The technology of forming beams can be called beamforming technology.
  • Beamforming technology may include digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology.
  • the beamformed signals may include broadcast signals, synchronization signals, and channel state information reference signals.
  • a channel quality measurement and result reporting process based on beamforming technology can be introduced. The measurement of the channel quality may be based on a synchronization signal or a channel state information reference signal after beamforming.
  • the user equipment can use the physical uplink control channel or the physical uplink shared channel to change the channel of the shaped beam reference signal. The quality results are reported to the network equipment.
  • Beam training It can mean that a terminal device (for example, user equipment (UE)) selects the better N beams by measuring multiple beams sent by a network device (for example, a base station), and The process of reporting the better N beam measurement information to the base station.
  • the beam measurement information mainly includes at least one of a reference signal resource index, a reference signal received power (RSRP), and a reference signal signal to interference plus noise ratio (SINR).
  • the beam training process may include the following processes:
  • a BPL may include a base station transmitting beam and a terminal receiving beam, or a BPL may include a terminal transmitting beam and a base station receiving beam) selection.
  • the UE can realize the selection of base station transmission beams and/or terminal reception beams based on the beam scanning of the base station. The selection of the base station receiving beam.
  • the transmit beam can be a base station transmit beam or a terminal transmit beam.
  • the transmit beam is a base station transmit beam, as shown in Figure 1 (e)
  • the base station transmits reference signals to the UE through different transmit beams, and the UE uses the same receive beam to receive the reference sent by the base station through different transmit beams.
  • the UE transmits multiple beams, and the base station measures the multiple beams sent by the UE, and selects the best of the multiple beams sent by the UE The beam is notified to the UE.
  • the UE sends reference signals to the base station through different transmit beams.
  • the base station receives the reference signals sent by the UE through different transmit beams through the same receive beam, determines the UE's optimal transmit beam based on the received signal, and then transmits the UE's optimal transmit beam The beam is fed back to the UE so that the UE can update the transmit beam.
  • the foregoing process of transmitting reference signals through different transmit beams may be referred to as beam scanning, and the process of determining the optimal transmit beam based on the received signal may be referred to as beam matching.
  • the receiving beam can be a base station receiving beam or a terminal receiving beam.
  • the receiving beam is a base station receiving beam, as shown in Figure 1(f)
  • the UE can send a reference signal to the base station through the same transmitting beam, and the base station uses different receiving beams to receive the reference signal sent by the UE, and then based on the receiving The signal determines the optimal receiving beam of the base station to update the receiving beam of the base station.
  • the base station sends the reference signal to the UE through the same transmitting beam, and the UE uses different receiving beams to receive the reference signal sent by the base station, and then based on the receiving The signal determines the optimal receiving beam of the UE to update the receiving beam of the UE.
  • both the base station transmitting beam and the terminal receiving beam may change dynamically, and the optimal receiving beam determined by the terminal device based on the received signal may include multiple
  • the terminal device can feed back information of multiple receiving beams to the network device, and the network device can instruct the terminal device to receive the beam by sending beam indication information to the terminal device.
  • the terminal device can accurately determine the receiving beam of the terminal based on the beam indication information sent by the network device, thereby saving the beam scanning time of the terminal device and achieving the effect of power saving.
  • the beam indication methods for PDSCH, PDCCH, CSI-RS, PUCCH, SRS, and PUSCH are as follows:
  • the network device can indicate PDSCH beam information (or QCL information) to the terminal device through three levels of signaling such as RRC, MAC CE, and DCI.
  • the network device can configure N TCI states for the PDSCH through the indication field of the RRC.
  • the indication field of RRC can be PDSCH-Config, and its format can be as follows:
  • the network device can activate K TCI states from the N TCI states through the MAC-CE, and the K TCI states are a subset of the N TCI states.
  • the format of the MAC CE in the protocol can be as shown in Figure 3.
  • the description of each field of the MAC CE is as follows:
  • Serving cell (serving cell) identity This field is used to indicate the ID of the serving cell to which the TCI state indicated by the MAC CE belongs.
  • BWP ID This field includes BWP ID, which is used to indicate the downlink bandwidth area to which the MAC CE applies.
  • This field indicates the activation/deactivation state of the TCI state of TCI-StateID i.
  • the Ti field is set to "1" it means that the TCI state of TCI-StateID i is activated and is mapped to the TCI field in DCI; when the Ti field is set to "0", it means TCI -The TCI state of StateID i is deactivated and will not be mapped to the TCI field of DCI.
  • whether there is a TCI field in the DCI may be indicated by high-layer signaling (RRC TCI-Present InDCI).
  • the code points (codepoints) mapped from TCI State to DCI are mapped in the order of TCI states with all Ti fields set to "1". For example, TCI State with the first Ti field set to "1" maps to codepoint value0; TCI State with the second Ti field set to "1" maps to codepoint value 1, etc., the maximum number of activated TCI states Can be 8.
  • the MAC CE can also map at most two TCI states to one code point in the TCI domain of the DCI.
  • the network device can update the TCI-StateID of the PDSCH of multiple CC/BWP at the same time through one MAC CE.
  • the network device can indicate that at least one TCI state of the K TCI states is used for PDSCH reception through the TCI field in the DCI (or TCI field for short).
  • PDSCH beam information (or QCL information) can also be indicated by RRC and DCI and other two-level signaling, that is, at least one of the N TCI states can be indicated by the TCI field in DCI
  • the TCI state is used for PDSCH reception.
  • the network equipment can indicate the PDCCH beam information (or QCL information) to the terminal equipment through secondary signaling such as RRC and MAC CE.
  • M TCI states can be configured for the PDCCH through the RRC, and the M TCI states are a subset of the N TCI states of the PDSCH.
  • one TCI state of the M TCI states can be activated through the MAC CE, and the one TCI state is used for PDCCH reception.
  • a MAC CE can be used to simultaneously update the TCI states with the same CORESET ID in multiple CCs/BWPs.
  • the beam information of the PDCCH may also be indicated only through RRC signaling, that is, one TCI state of the M TCI states is activated through RRC signaling, and the one TCI state is used for PDCCH reception.
  • the CSI-RS beam information (or QCL information) can be indicated by RRC, that is, one TCI state can be configured for the CSI-RS through RRC, and the one TCI state is one of the N TCI states of the PDSCH .
  • the beam information of PUCCH (or called spatial relation information) can be indicated through secondary signaling such as RRC and MAC CE.
  • N spatial relations can be configured for PUCCH through RRC, and then one spatial relation among the N spatial relations is activated through MAC CE, and the one spatial relation is used for PUCCH transmission.
  • a MAC CE can update the spatial relation of a PUCCH resource group at the same time.
  • the beam information of the SRS can be indicated by secondary signaling such as RRC and MAC CE, or indicated by RRC signaling only, or indicated by MAC CE signaling only.
  • SRS can be divided into periodic SRS, semi-periodic SRS and aperiodic SRS.
  • periodic SRS one spatial relation can be configured through RRC
  • semi-periodic SRS one spatial relation can be configured through RRC
  • one spatial relation can be indicated through MAC CE
  • non-periodic SRS one spatial relation can be configured through RRC relation, or, indicate 1 spatial relation through MAC CE.
  • the spatial relation of the same SRS resource ID (half-periodic/aperiodic SRS) on multiple CCs/BWPs can be updated simultaneously through one MAC CE.
  • the beam information of the PUSCH (or called spatial relation information) can be indicated by the SRI field in the DCI.
  • the spatial relation information of PUSCH is the same as the spatial relation information of SRS indicated by the SRI field.
  • the network device needs to update the beam information of different signals/channels through multiple signaling and multi-level signaling, which results in large signaling overhead and slow update speed.
  • the embodiment of the present application provides a communication method that can update the spatial parameter information (beam information) of multiple types of channels/signals at the same time through a single signaling, so that terminal equipment can quickly complete beam switching, avoid link interruption, and save money. Signaling overhead.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G mobile communication system described in this application includes a non-standalone (NSA) 5G mobile communication system and/or a standalone (SA) 5G mobile communication system.
  • SA standalone 5G mobile communication system.
  • the technical solution provided in this application can also be applied to future communication systems, such as the sixth-generation mobile communication system.
  • the communication system can also be a public land mobile network (PLMN) network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, and an evolving public land mobile network (PLMN) network in the future.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT Internet of things
  • Fig. 5 is a communication system 100 applicable to the present application.
  • the communication system 100 is in a single carrier scenario or a carrier aggregation (CA) scenario.
  • the communication system 100 includes a network device 110 and a terminal device 120, and the network device 110 and the terminal device 120 communicate through a wireless network.
  • the network device 110 in FIG. 5 may include one or more cells.
  • the transmission direction of the communication system 100 is uplink transmission
  • the terminal device 120 is the sending end and the network device 110 is the receiving end.
  • the transmission direction of the communication system 100 is downlink transmission
  • the network device 110 is the sending end and the terminal device 120 is the receiving end. end.
  • FIG. 6 is another communication system 200 applicable to the present application.
  • the communication system 200 is in a scenario of dual connectivity (DC) or coordinated multipoint transmission/reception (CoMP), and the communication system 200 includes a network device 210, a network device 220, and a terminal device 230
  • the network device 210 is the network device when the terminal device 230 initially accesses, and is responsible for the RRC communication with the terminal device 230.
  • the network device 220 is added during RRC reconfiguration to provide additional wireless resources.
  • the terminal device 230 configured with CA is connected to the network device 210 and the network device 220.
  • the link between the network device 210 and the terminal device 230 may be called the first link, and the link between the network device 220 and the terminal device 230
  • the road can be called the second link.
  • the above-mentioned communication system to which this application is applied is only an example, and the communication system to which this application is applied is not limited to this.
  • the number of network devices and terminal devices included in the communication system may also be other numbers.
  • the technical solutions in the embodiments of the present application may be applicable to whether the primary cell/primary serving cell (primary cell/primary serving cell, Pcell) is high frequency or low frequency, and the secondary cell/secondary serving cell (secondary cell/secondary serving cell, Scell) is the case of high frequency or low frequency.
  • Pcell primary cell/primary serving cell
  • Scell secondary cell/secondary serving cell
  • Pcell primary cell/primary serving cell
  • Scell secondary cell/secondary serving cell
  • the technical solutions of the embodiments of the present application can also be applied to beam indications in coordinated multipoint transmission/reception (CoMP) scenarios.
  • the CoMP can be one or more scenarios of non-coherent joint transmission (NCJT), coherent joint transmission (CJT), or joint transmission (JT).
  • NCJT non-coherent joint transmission
  • CJT coherent joint transmission
  • JT joint transmission
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminals, user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the terminal equipment can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or terminal devices in PLMN, etc., which are not limited in the embodiments of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. It is a general term for the use of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device can also be a terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology to realize man-machine Interconnection, an intelligent network of interconnection of things.
  • the IoT technology can achieve massive connections, deep coverage, and power saving of the terminal through, for example, narrowband (NB) technology.
  • NB narrowband
  • the terminal equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves. , To transmit uplink data to network equipment.
  • the network equipment in the embodiments of the present application may be equipment used to communicate with terminal equipment.
  • the network equipment may be a base transceiver station (BTS) in a GSM system or a CDMA system, or a base station (NodeB) in a WCDMA system.
  • BTS base transceiver station
  • NodeB base station
  • NB can also be an evolved NodeB (eNB or eNodeB) in the LTE system, it can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network equipment It may be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network, etc., which are not limited in the embodiment of the present application.
  • eNB or eNodeB evolved NodeB
  • CRAN cloud radio access network
  • the network equipment It may be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network, etc., which are not limited in the embodiment of the present application.
  • the network device in the embodiment of the present application may be a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal to the wireless network.
  • RAN nodes are: base station, next-generation base station gNB, TRP, evolved Node B (eNB), home base station, baseband unit (BBU), or access point in WiFi system (access point, AP), etc.
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the terminal device or network device in FIG. 5 or FIG. 6 in the embodiment of the present application may be implemented by one device, or may be a functional module in one device, which is not specifically limited in the embodiment of the present application. It is understandable that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on platforms (for example, cloud platforms), or chip systems . In the embodiments of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 7 is a schematic diagram of the hardware structure of an apparatus 700 provided by an embodiment of the application.
  • the apparatus 700 includes at least one processor 701, configured to implement the functions of the terminal device provided in the embodiment of the present application.
  • the apparatus 700 may further include a bus 702 and at least one communication interface 704.
  • the device 700 may further include a memory 703.
  • the processor may be a central processing unit (CPU), a general-purpose processor, a network processor (NP), a digital signal processing (DSP), or a micro processing unit.
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing
  • PLD programmable logic devices
  • the processor can also be any other device with processing functions, such as application-specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices , Hardware components, software modules or any combination thereof.
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the bus 702 can be used to transfer information between the aforementioned components.
  • the communication interface 704 is used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), and so on.
  • the communication interface 704 may be an interface, a circuit, a transceiver or other devices capable of realizing communication, which is not limited in this application.
  • the communication interface 704 may be coupled with the processor 701.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or storage
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired commands or data structures
  • Program code and any other medium that can be accessed by the computer but not limited to this.
  • the memory may exist independently, or may be coupled with the processor, for example, through the bus 702.
  • the memory can also be integrated with the processor.
  • the memory 703 is used to store program instructions, and the processor 701 can control the execution, so as to implement the communication method provided in the following embodiments of the present application.
  • the processor 701 is configured to call and execute instructions stored in the memory 703, so as to implement the communication method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the memory 703 may be included in the processor 701.
  • the processor 701 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 7.
  • the apparatus 700 may include multiple processors, such as the processor 701 and the processor 707 in FIG. 7.
  • processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the apparatus 700 may further include an output device 705 and an input device 706.
  • the output device 705 is coupled with the processor 701, and can display information in a variety of ways.
  • the output device 705 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 706 is coupled to the processor 701, and can receive user input in a variety of ways.
  • the input device 706 may be a touch screen device, a sensor device, or the like.
  • the above-mentioned apparatus 700 may be a general-purpose device or a special-purpose device.
  • the terminal device 700 may be a vehicle-mounted terminal or a transportation device with a built-in computer (processor) or a device with a similar structure in FIG. 7.
  • the embodiment of the present application does not limit the type of the apparatus 700.
  • FIG. 8 is a schematic diagram of the hardware structure of an apparatus 800 provided by an embodiment of the application.
  • the apparatus 800 includes at least one processor 801, configured to implement the functions of the terminal device provided in the embodiments of the present application.
  • the device 800 may further include a bus 802 and at least one communication interface 804.
  • the device 800 may further include a memory 803.
  • the bus 802 can be used to transfer information between the aforementioned components.
  • the communication interface 804 is used to communicate with other devices or communication networks, such as Ethernet, RAN, and WLAN.
  • the communication interface 804 may be an interface, a circuit, a transceiver or other devices capable of realizing communication, which is not limited in this application.
  • the communication interface 804 may be coupled with the processor 801.
  • the memory 803 is used to store program instructions, and the processor 801 can control the execution, so as to implement the communication method provided in the following embodiments of the present application.
  • the processor 801 is configured to call and execute instructions stored in the memory 803, so as to implement the communication method provided in the following embodiments of the present application.
  • the memory 803 may be included in the processor 801.
  • the processor 801 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 8.
  • the apparatus 800 may include multiple processors, such as the processor 801 and the processor 805 in FIG. 8. Each of these processors can be a single-core processor or a multi-core processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the above-mentioned apparatus 800 may be a general-purpose device or a special-purpose device.
  • the apparatus 800 may be a vehicle-mounted terminal or a transportation device with a built-in computer (processor) or a device with a similar structure in FIG. 8.
  • the embodiment of the present application does not limit the type of the device 800.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as CPU, memory management unit (MMU), and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks or tapes, etc.), optical disks (for example, CDs, digital versatile discs (digital versatile disc, DVD), etc.), smart cards and flash memory devices (For example, EPROM, card, stick or key drive, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • signal can also refer to “channel” or “signal resource”, and sometimes the three can be replaced with each other, which is not limited in this application.
  • an embodiment of the present application provides a communication method, including:
  • a network device sends first indication information, where the first indication information is used to indicate spatial parameter information of at least two types of signals.
  • the at least two types of signals may include at least two of PUCCH, PUSCH, SRS, PTRS, DMRS, PDCCH, PDSCH, TRS, CSI-RS, or SSB.
  • the SSB may include one or more of the following: primary synchronization signal (primary synchronization signal, PSS), secondary synchronization signal (secondary synchronization signal, SSS), and physical broadcast channel (physical broadcast channel, PBCH).
  • the at least two types of signals may include any two types of signals among PUCCH, PUSCH, SRS, PTRS, DMRS, PDCCH, PDSCH, TRS, CSI-RS, or SSB, or any three types of signals , Or any four types of signals, or any five types of signals, this application is not limited.
  • the at least two types of signals may include PDSCH and PDCCH.
  • at least two types of signals may include PDSCH and PUCCH.
  • at least two types of signals may include PDSCH and CSI-RS.
  • at least two types of signals may include PDSCH and SRS.
  • at least two types of signals may include PDSCH and PUSCH.
  • at least two types of signals may include PDCCH and PUCCH.
  • the at least two types of signals may include PDSCH, PDCCH, PUCCH, and PUSCH.
  • the at least two types of signals may include PDSCH, PDCCH, and PUCCH.
  • the at least two types of signals may include PDSCH, PDCCH, and CSI-RS.
  • at least two types of signals may include PUSCH and PUCCH.
  • at least two types of signals may include PUSCH, PUCCH, and SRS.
  • at least two types of signals may include PUCCH and SRS.
  • any one of the at least two types of signals may be indicated by RRC signaling or MAC CE signaling (it may be a display indication, for example, RRC signaling or MAC CE signaling carries a certain type of signal
  • the identifier of may also be an implicit indication, for example, a certain type of signal is indicated by the position of a field in RRC signaling or MAC CE signaling).
  • any one of the at least two types of signals may be predefined (protocol). It can be that at least two types of signals are predefined. For example, at least two types of signals may be predefined to include all signals on the BWP/CC where the first indication information is located (SRS/CSI-RS used for beam training or beam management may be excluded).
  • the predefined PDSCH is indicated by the TCI field in the DCI
  • the MAC CE indicates that the TCI field in the DCI is also used to indicate other signals (such as TRS, CSI-RS, etc.).
  • the first indication information is used to indicate the spatial parameter information of at least two types of signals, that is, the spatial parameter information indicated by the first indication information may be applied to the transmission of at least two types of signals.
  • the spatial parameter information indicated by the first indication information can be used for PDSCH and PDCCH transmission.
  • the terminal device may receive the PDSCH and the PDCCH according to the spatial parameter information indicated by the first indication information.
  • the spatial parameter information in this application can be TCI state (TCI state), TCI state identifier, spatial relation, QCL information, or QCL information of type D.
  • TCI state TCI state
  • TCI state identifier TCI state identifier
  • spatial relation QCL information
  • QCL information QCL information of type D.
  • the application is not limited.
  • the spatial parameter information indicated by the first indication information is used for the transmission of at least two types of signals. It can be understood that the reference signal resource or resource identifier corresponding to the spatial parameter information satisfies the QCL relationship with the at least two types of signals.
  • the reference signal resource or resource identifier corresponding to the spatial parameter information uses the same/similar spatial filter as the at least two types of signals, or the reference signal resource or resource identifier corresponding to the spatial parameter information and the at least two types of signals
  • the signal uses the same QCL information, or the reference signal resource or resource identifier corresponding to the spatial parameter information uses the same TCI state as the at least two types of signals, or the reference signal resource or resource identifier corresponding to the spatial parameter information and the at least two types of signals use the same TCI state.
  • the types of signals have the same/similar spatial correlation parameters, which are not limited in this application.
  • the first indication information may be carried in the target field in the DCI.
  • the target field may be the TCI field in DCI.
  • a target field may be added to the DCI.
  • a target field (field) may be added to the DCI of format 1-1 in the Rel-16 standard protocol 38.212 to carry the first indication information.
  • other fields may be multiplexed in the DCI of format 1-1 in the Rel-16 standard protocol 38.212 to carry the first indication information.
  • the first indication information may be carried in RRC signaling or MAC CE signaling. That is, the first indication information may be carried by RRC signaling or MAC CE signaling.
  • the spatial parameter information indicated by the first indication information may take effect after the target time period, and the target time period is related to the capability of the terminal device.
  • the terminal device can report the target time period to the network device through the capability information, and the capability information is used to indicate the target time period.
  • the capability information may be used to indicate the number of time units in the target time period (including) and/or the length of the target time period (absolute time).
  • the time unit may be a symbol, a slot, a subframe, or a radio frame.
  • the start time of the target time period may be the time when the terminal device receives the first indication information.
  • the target time period may be timeDurationForQCL.
  • the length of the target time period is determined according to the number of time units in the target time period and the minimum value of the SCS of at least two types of signals.
  • the spatial parameter information indicated by the first indication information may be applied to transmit PDCCH and PUCCH. That is, after 14 symbols at 60 kHz, the terminal device can receive the PDCCH and send the PUCCH according to the spatial parameter information indicated by the first indication information.
  • the terminal device may receive at least one downlink signal according to the spatial parameter information after the target time period, where the target time period The length of is determined according to the number of time units in the target time period and the minimum value of the SCS of at least one downlink signal; the terminal device can send at least one uplink signal according to the spatial parameter information after the target time period, where the length of the target time period It is determined according to the number of time units in the target time period and the minimum value of the SCS of at least one uplink signal.
  • the first The spatial parameter information indicated by an indication information can be applied to transmit PDSCH and PDCCH. That is, after 14 symbols at 60 kHz, the terminal device can receive the PDSCH and PDCCH according to the spatial parameter information indicated by the first indication information.
  • the terminal device can receive or send the first signal according to the spatial parameter information, and the length of the target time period is based on the number of time units in the target time period And the SCS of the first signal is determined.
  • the SCS of the PDCCH is 60 kHz
  • the SCS of the PUCCH is 120 kHz
  • the number of time units in the target time period is 14 symbols.
  • the first signal is PDCCH
  • the terminal device receives the first indication information, after 14 symbols under 60kHz
  • the spatial parameter information indicated by the first indication information can be applied to receive PDCCH, that is, after 14 symbols under 60kHz
  • the terminal device can receive the PDCCH according to the spatial parameter information indicated by the first indication information;
  • the first signal is PUCCH
  • Parameter information (such as type D QCL) can be applied to send PUCCH, that is, after 14 symbols at 120 kHz
  • the terminal device can send PUCCH according to the spatial parameter information (such as type D QCL) indicated by the first indication information.
  • the at least two types of signals include the first signal
  • the at least two types of signals are received and/or transmitted according to the spatial parameter information, and the length of the target time period is based on the time unit of the target time period The number and the SCS of the first signal are determined.
  • the SCS of PDCCH is 60kHz
  • the SCS of PUCCH is 120kHz.
  • the terminal device passes through 14 symbols at 60kHz. Then, the spatial parameter information indicated by the first indication information can be applied to the transmission of PDCCH and PUCCH, that is, after 14 symbols at 60 kHz, the terminal device can receive the PDCCH and send the PUCCH according to the spatial parameter information indicated by the first indication information.
  • the spatial parameter information indicated by the first indication information can be applied to the transmission of PDCCH and PUCCH, that is, after 14 symbols under 60kHz. After each symbol, the terminal device can receive the PDCCH and send the PUCCH according to the spatial parameter information indicated by the first indication information.
  • the first signal may be determined by the terminal device based on its capabilities, or may be predefined, or indicated by MAC CE signaling or RRC signaling, which is not limited in this application.
  • At least one of the at least two types of signals corresponds to the first piece of spatial parameter information in the multiple pieces of spatial parameter information.
  • at least one type of signal may not include PDSCH.
  • at least one type of signal among PUCCH, PUSCH, SRS, PTRS, DMRS, PDCCH, TRS, CSI-RS, or SSB may correspond to the multiple spatial parameter information The first spatial parameter information.
  • at least one type of signal may not include PDSCH and PUSCH.
  • the PDCCH and CSI-RS can use the first TCI state for transmission.
  • the terminal device may receive the second indication information, and the second indication information is used to instruct the terminal device to obtain the first indication information.
  • the second indication information is used to indicate that the first indication information is enabled.
  • the second indication information is used to instruct the terminal device to receive the first indication information.
  • the second indication information is used to indicate that the first indication information is used to indicate spatial parameter information of at least two types of signals.
  • the second indication information may be carried in RRC signaling, MAC CE signaling or other signaling, that is, the first indication information may be enabled through RRC signaling or other signaling to indicate the spatial parameters of at least two types of signals Information function. Otherwise, the terminal device may not be able to learn that the first indication information is used to indicate the spatial parameter information of at least two types of signals.
  • the terminal device receives the first indication information.
  • step 901 For the related description of the first indication information, refer to step 901, which is not repeated here.
  • the at least two types of signals may include at least two types of uplink signals; or, the at least two types of signals may include at least two types of downlink signals; or, the at least two types of signals may include at least One type of uplink signal and at least one type of downlink signal.
  • step 903 to step 904 can be performed:
  • the network device sends a downlink signal according to the spatial parameter information.
  • the spatial related parameter information may include QCL information, and the QCL information may be used to indicate the spatial related parameters (or referred to as spatial correlation characteristics) of the downlink signal.
  • the spatial related parameter information may include TCI information.
  • the spatial related parameter information may include TCI status information.
  • the downlink signal may include at least one of PTRS, DMRS, PDCCH, PDSCH, TRS, CSI-RS, or SSB.
  • DMRS may refer to a DMRS used to demodulate PDCCH or PDSCH.
  • PTRS refers to PTRS that can be used for downlink channel phase tracking.
  • the network device can send the downlink signal according to the spatial parameter information, that is, the network device can use the spatial parameter information to send the downlink signal.
  • the spatial parameter information of the downlink signal may take effect after the target time period.
  • the network device may send the downlink signal according to the spatial parameter information after the target time period.
  • the target time period For the relevant description of the target time period, reference may be made to step 901, which is not repeated here.
  • the terminal device receives the downlink signal according to the spatial parameter information.
  • the terminal device can receive the downlink signal according to the spatial parameter information, that is, the terminal device can use the spatial parameter information to receive the downlink signal.
  • the spatial parameter information of the downlink signal may take effect after the target time period.
  • the terminal device may receive the downlink signal according to the spatial parameter information after the target time period.
  • the target time period For the relevant description of the target time period, reference may be made to step 901, which is not repeated here.
  • step 905 to step 906 may be performed:
  • the terminal device sends an uplink signal according to the spatial parameter information.
  • the spatial correlation parameter information may include spatial relation information, and the spatial relation information is used to indicate the spatial correlation parameters (also referred to as spatial correlation characteristics) of the uplink signal.
  • the uplink signal may include at least one of PUCCH, PUSCH, SRS, PTRS or DMRS.
  • the DMRS may be a DMRS used to demodulate PUCCH or PUSCH.
  • PTRS refers to PTRS that can be used for uplink channel phase tracking.
  • the spatial parameter information of the uplink signal is type D QCL.
  • the spatial parameter information is type D QCL.
  • the terminal device can send the uplink signal according to the spatial parameter information, that is, the terminal device can use the spatial parameter information to send the uplink signal.
  • the spatial parameter information of the uplink signal may take effect after the target time period.
  • the terminal device may send the uplink signal according to the spatial parameter information after the target time period.
  • the target time period For the relevant description of the target time period, reference may be made to step 901, which is not repeated here.
  • the network device receives the uplink signal according to the spatial parameter information.
  • the network device may receive the uplink signal according to the spatial parameter information, that is, the network device uses the spatial parameter information to receive the uplink signal.
  • the spatial parameter information of the uplink signal may take effect after the target time period.
  • the network device may receive the uplink signal according to the spatial parameter information after the target time period.
  • step 903 and step 904 may be performed; or, only step 905 and step 906 may be performed; or both steps 903 and 906 may be performed, and
  • the order of execution between step 903 and step 905 is not limited.
  • the terminal device may receive the first indication information, and receive and/or send at least two types of signals according to the spatial parameter information indicated by the first indication information.
  • the base station needs to update the beams corresponding to different signals/channels through multiple signaling, which has a large signaling overhead and a slow update speed.
  • the present application can simultaneously indicate the spatial parameter information (ie beams) of at least two types of signals through the first indication information, so that the terminal device can quickly complete beam switching of multiple types of signals in a mobile scenario, effectively avoiding link interruption, And can save signaling.
  • FIG. 10 Another embodiment of the present application provides a communication method, as shown in FIG. 10, including:
  • a network device sends first indication information, where the first indication information is used to indicate spatial parameter information of one of at least two types of signals.
  • a target set can be pre-defined through RRC signaling or MAC CE signaling.
  • the target set includes at least two types of signals. If a signal in the target set updates the spatial parameter information, the The spatial parameter information of other signals in the target set is also updated at the same time.
  • the at least two types of signals may include at least two of PUCCH, PUSCH, SRS, PTRS, DMRS, PDCCH, PDSCH, TRS, CSI-RS, or SSB.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Downlink Control Channel
  • SRS Physical Uplink Control
  • PTRS DMRS
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • TRS CSI-RS
  • SSB SSB
  • any one of the at least two types of signals is indicated by RRC signaling or MAC CE signaling, or may be predefined.
  • RRC signaling or MAC CE signaling any one of the at least two types of signals is indicated by RRC signaling or MAC CE signaling, or may be predefined.
  • MAC CE signaling any one of the at least two types of signals is indicated by RRC signaling or MAC CE signaling, or may be predefined.
  • the terminal device may receive the second indication information, and the second indication information is used to instruct the terminal device to obtain the first indication information.
  • the second indication information For the specific description of the second indication information, reference may be made to the related description of step 901, which is not repeated here.
  • the terminal device receives the first indication information.
  • step 1001 For the related description of the first indication information, refer to step 1001, which is not repeated here.
  • Steps 1003-step 1006 can refer to steps 903-906, which will not be repeated here.
  • the terminal device may receive the first indication information, and receive and/or send at least two types of signals according to the spatial parameter information indicated by the first indication information.
  • the base station needs to update the beams corresponding to different signals/channels through multiple signaling, which has a large signaling overhead and a slow update speed.
  • This application can enable the terminal device to receive and/or send at least two types of signals according to the first indication information, so that the terminal device can quickly complete beam switching of multiple types of signals in a mobile scenario, effectively avoiding link interruption, and Save signaling.
  • the methods provided in the embodiments of the present application are introduced from the perspective of terminal equipment, network equipment, and interaction between the terminal equipment and the network equipment.
  • it may also include a network device, and the network device and the terminal device as well as the network device can interact with each other.
  • the terminal device, the network device, and the network device may include a hardware structure and/or a software module, which are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module The above functions. Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 11 shows a possible structural schematic diagram of the apparatus 11 involved in the foregoing embodiment.
  • the apparatus may be a terminal device, and the terminal device includes: a transceiver unit 1101 .
  • the transceiver unit 1101 is configured to receive first indication information, the first indication information is used to indicate spatial parameter information of at least two types of signals, or the first indication information is used to indicate at least two types of signals
  • the spatial parameter information of one type of signal in the signal the transceiver unit 1101 is further configured to receive and/or send at least two types of signals according to the spatial parameter information.
  • the transceiving unit 1101 is used to support the terminal device to perform the processes 902, 904, and 905 in FIG. 9; the processes 1002, 1004, and 1005 in FIG. Among them, all relevant content of the steps involved in the above method embodiments can be cited in the functional description of the corresponding functional module, which will not be repeated here.
  • FIG. 12 shows a possible structural schematic diagram of the device 12 involved in the above embodiment.
  • the device may be a network device, and the network device includes: a transceiver unit 1201 .
  • the transceiver unit 1201 is configured to send first indication information, the first indication information is used to indicate spatial parameter information of at least two types of signals, or the first indication information is used to indicate at least two types of signals
  • the spatial parameter information of one type of signal among the signals; the transceiver unit 1201 is further configured to receive and/or send at least two types of signals according to the spatial parameter information.
  • the transceiving unit 1201 is used to support the terminal device to perform the processes 901, 903, and 906 in FIG. 9; the processes 1001, 1003, and 1006 in FIG. Among them, all relevant content of the steps involved in the above method embodiments can be cited in the functional description of the corresponding functional module, which will not be repeated here.
  • the terminal equipment, network equipment, or network equipment in the foregoing device embodiments and the terminal equipment, network equipment, or network equipment in the method embodiments may completely correspond, and the corresponding modules or units execute the corresponding steps, such as communication modules.
  • the (transceiver) can execute the sending and/or receiving steps in the method embodiment, and other steps except the sending and receiving can be executed by the processing unit (processor).
  • the sending unit and the receiving unit can form a transceiver unit, and the transmitter and receiver can form a transceiver to realize the transceiver function together; there can be one or more processors.
  • the functions of the aforementioned terminal device or network device may be realized by a chip, and the processing unit may be realized by hardware or software.
  • the processing unit may be a logic circuit, an integrated circuit, etc.
  • the processing unit can be a general-purpose processor, which can be implemented by reading the software code stored in the storage unit.
  • the storage unit can be integrated in the processor or located outside the processor, Exist independently.
  • the terminal equipment or network equipment in the above device embodiments and the terminal equipment, network equipment or network equipment in the method embodiments completely correspond, and the corresponding modules or units execute the corresponding steps, for example, the sending module (transmitter) method execution method implementation
  • the receiving module executes the receiving step in the method embodiment, and other steps except sending and receiving can be executed by the processing module (processor).
  • the sending module and the receiving module can form a transceiver module, and the transmitter and receiver can form a transceiver to realize the transceiver function together; there can be one or more processors.
  • the division of modules or units in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated in A processor may also exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the receiving unit and the sending unit may be integrated into the transceiver unit.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state drive (solid state drives, SSD)) )Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法和装置,涉及通信领域,能够解决更新不同信号/信道对应的波束时信令开销大,更新速度慢的问题。其方法包括:接收第一指示信息,第一指示信息用于指示至少两种类型的信号的空间参数信息;根据空间参数信息接收和/或发送至少两种类型的信号。本申请实施例应用于各种通信系统,例如,5G通信系统。

Description

一种通信方法和装置 技术领域
本申请涉及通信领域,尤其涉及一种通信方法和装置。
背景技术
随着通信系统的发展,波束赋形技术的应用日益广泛。波束赋形技术是通信设备通过调整天线阵列中的天线的加权系数从而产生具有指向性的波束的技术,通过波束赋形技术可以获取较大的天线增益以补偿信号传输过程中信号的损耗。
当信号基于波束赋形技术进行传输时,例如在下行信号的传输中,一旦终端设备发生移动,网络设备的发射波束(发送波束)和终端设备的接收波束均可能发生动态变化,网络设备需要通过多个信令分别更新不同信号/信道对应的波束,信令开销大,更新速度慢。
发明内容
本申请实施例提供一种通信方法和装置,能够解决更新不同信号/信道对应的波束时信令开销大,更新速度慢的问题。
第一方面,本申请实施例提供一种通信方法,包括:接收第一指示信息,第一指示信息用于指示至少两种类型的信号的空间参数信息;根据空间参数信息接收和/或发送至少两种类型的信号。
第二方面,本申请实施例提供一种通信方法,包括:接收第一指示信息,第一指示信息用于指示至少两种类型的信号中的一种类型的信号的空间参数信息;根据空间参数信息接收和/或发送至少两种类型的信号。
基于本申请实施例提供的方法,终端设备可以接收第一指示信息,并根据第一指示信息指示的空间参数信息接收和/或发送至少两种类型的信号。相比现有技术中,基站需要通过多个信令分别更新不同信号/信道对应的波束,信令开销大,更新速度慢。本申请可以使得终端设备根据第一指示信息接收和/或发送至少两种类型的信号,从而终端设备在移动场景下可以快速完成多种类型的信号的波束切换,有效避免链路中断,且可以节省信令。
在第一方面或第二方面的一种可能的设计中,至少两种类型的信号包括物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、探测参考信号(sounding reference signal,SRS)、相位追踪参考信号(phase tracking reference signal,PTRS)、解调参考信号(demodulation reference signal,DMRS)、物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH)、追踪参考信号(tracking reference signal,TRS)、信道状态信息参考信号(channel state information-reference signal,CSI-RS)或同步信号块(synchronization signal block,SSB)中的至少两个。
应该理解的是,至少两种类型的信号可以包括PUCCH、PUSCH、SRS、PTRS、DMRS、PDCCH、PDSCH、TRS、CSI-RS或SSB中的任意两种类型的信号,或者任意三种类型的信号,或者任意四种类型的信号,或者任意五种类型的信号等,本申请不做限定。
在第一方面或第二方面的一种可能的设计中,第一指示信息携带在下行控制信息(downlink control information,DCI)中的目标字段。例如,可以在版本16(release-16,Rel-16)标准协议38.212中的格式(format)1-1的DCI中新增一个目标字段(字域)用于承载第一指示信息。再例如,可以在Rel-16标准协议38.212中的format 1-1的DCI中复用其它字段承载第一指示信息。
在第一方面或第二方面的一种可能的设计中,目标字段为传输配置指示(transmission configuration indicator,TCI)域。
在第一方面或第二方面的一种可能的设计中,第一指示信息携带在无线资源控制(radio resource control,RRC)信令或媒体接入控制层控制单元(media access control control element,MAC CE)信令中。
在第一方面或第二方面的一种可能的设计中,空间参数信息在目标时间段后生效,目标时间段与终端设备的能力相关。
在第一方面或第二方面的一种可能的设计中,该方法还包括:上报能力信息,能力信息用于指示目标时间段。
在第一方面或第二方面的一种可能的设计中,目标时间段的长度是根据目标时间段的时间单元个数和至少两种类型的信号的子载波间隔(subcarrier spacing,SCS)的最小值确定的。
在第一方面或第二方面的一种可能的设计中,若至少两种类型的信号包括至少一个上行信号和至少一个下行信号,根据空间参数信息接收和/或发送至少两种类型的信号包括:根据空间参数信息接收至少一个下行信号,目标时间段的长度是根据目标时间段的时间单元个数和至少一个下行信号的SCS的最小值确定的;根据空间参数信息发送至少一个上行信号,目标时间段的长度是根据目标时间段的时间单元个数和至少一个上行信号的SCS的最小值确定的。
在第一方面或第二方面的一种可能的设计中,若至少两种类型的信号包括第一信号,根据空间参数信息接收和/或发送至少两种类型的信号包括:根据空间参数信息接收或发送第一信号,目标时间段的长度是根据目标时间段的时间单元个数和第一信号的SCS确定的。
在第一方面或第二方面的一种可能的设计中,若至少两种类型的信号包括第一信号,根据空间参数信息接收和/或发送至少两种类型的信号包括:根据空间参数信息接收和/或发送至少两种类型的信号,目标时间段的长度是根据目标时间段的时间单元个数和第一信号的SCS确定的。
在第一方面或第二方面的一种可能的设计中,至少两种类型的信号中的任一种类型的信号是通过RRC信令或MAC CE信令指示的,或者是预定义的。
在第一方面或第二方面的一种可能的设计中,当第一指示信息指示多个空间参数信息时,至少两种类型的信号中的至少一种类型的信号对应多个空间参数信息中的第一个空间参数信息。
在第一方面或第二方面的一种可能的设计中,当至少两种类型的信号包括上行信号时,上行信号的空间参数信息为类型D准共址QCL信息(type D QCL信息)。
在第一方面或第二方面的一种可能的设计中,该方法还包括:接收第二指示信息,第二指示信息用于指示获取第一指示信息。
第三方面,本申请实施例提供一种通信方法,包括:发送第一指示信息,第一指示信息用于指示至少两种类型的信号的空间参数信息;根据空间参数信息接收和/或发送至少两种类型的信号。
第四方面,本申请实施例提供一种通信方法,包括:发送第一指示信息,第一指示信息用于指示至少两种类型的信号中的一种类型的信号的空间参数信息;根据空间参数信息接收和/或发送至少两种类型的信号。
基于本申请实施例提供的方法,网络设备可以向终端设备发送第一指示信息,以便终端设备根据第一指示信息指示的空间参数信息接收和/或发送至少两种类型的信号。相比现有技术中,基站需要通过多个信令分别更新不同信号/信道对应的波束,信令开销大,更新速度慢。本申请实施例中网络设备向终端设备发送第一指示信息,使得终端设备可以根据第一指示信息接收和/或发送至少两种类型的信号,从而终端设备在移动场景下可以快速完成多种类型的信号的波束切换,有效避免链路中断,且可以节省信令。
在第三方面或第四方面的一种可能的设计中,至少两种类型的信号包括PUCCH、PUSCH、SRS、PTRS、DMRS、PDCCH、PDSCH、TRS、CSI-RS或SSB中的至少两个。
在第三方面或第四方面的一种可能的设计中,第一指示信息携带在DCI中的目标字段。
在第三方面或第四方面的一种可能的设计中,目标字段为TCI域。
在第三方面或第四方面的一种可能的设计中,第一指示信息携带在RRC信令或MAC CE信令中。
在第三方面或第四方面的一种可能的设计中,空间参数信息在目标时间段后生效,目标时间段与终端设备的能力相关。
在第三方面或第四方面的一种可能的设计中,该方法还包括:接收能力信息,能力信息用于指示目标时间段。
在第三方面或第四方面的一种可能的设计中,目标时间段的长度是根据目标时间段的时间单元个数和至少两种类型的信号的子载波间隔SCS的最小值确定的。
在第三方面或第四方面的一种可能的设计中,若至少两种类型的信号包括至少一个上行信号和至少一个下行信号,根据空间参数信息接收和/或发送至少两种类型的信号包括:根据空间参数信息发送至少一个下行信号,目标时间段的长度是根据目标时间段的时间单元个数和至少一个下行信号的SCS的最小值确定的;根据空间参数信息接收至少一个上行信号,目标时间段的长度是根据目标时间段的时间单元个数和至少一个上行信号的SCS的最小值确定的。
在第三方面或第四方面的一种可能的设计中,若至少两种类型的信号包括第一信号,根据空间参数信息接收和/或发送至少两种类型的信号包括:根据空间参数信息接收或发送第一信号,目标时间段的长度是根据目标时间段的时间单元个数和第一信号的SCS确定的。
在第三方面或第四方面的一种可能的设计中,若至少两种类型的信号包括第一信号, 根据空间参数信息接收和/或发送至少两种类型的信号包括:根据空间参数信息接收和/或发送至少两种类型的信号,目标时间段的长度是根据目标时间段的时间单元个数和第一信号的SCS确定的。
在第三方面或第四方面的一种可能的设计中,至少两种类型的信号中的任一种类型的信号是通过RRC信令或MAC CE信令指示的,或者是预定义的。
在第三方面或第四方面的一种可能的设计中,当第一指示信息指示多个空间参数信息时,至少两种类型的信号中的至少一种类型的信号对应多个空间参数信息中的第一个空间参数信息。
在第三方面或第四方面的一种可能的设计中,当至少两种类型的信号包括上行信号时,上行信号的空间参数信息为类型D准共址QCL信息。
在第三方面或第四方面的一种可能的设计中,该方法还包括:发送第二指示信息,第二指示信息用于指示发送第一指示信息。
第五方面,本申请实施例提供一种通信装置,包括:收发单元,用于接收第一指示信息,第一指示信息用于指示至少两种类型的信号的空间参数信息;收发单元,还用于根据空间参数信息接收和/或发送至少两种类型的信号。
第六方面,本申请实施例提供一种通信装置,包括:收发单元,用于接收第一指示信息,第一指示信息用于指示至少两种类型的信号中的一种类型的信号的空间参数信息;收发单元,还用于根据空间参数信息接收和/或发送至少两种类型的信号。
在第五方面或第六方面的一种可能的设计中,至少两种类型的信号包括PUCCH、PUSCH、SRS、PTRS、DMRS、PDCCH、PDSCH、TRS、CSI-RS或SSB中的至少两个。
在第五方面或第六方面的一种可能的设计中,第一指示信息携带在DCI中的目标字段。
在第五方面或第六方面的一种可能的设计中,目标字段为TCI域。
在第五方面或第六方面的一种可能的设计中,第一指示信息携带在RRC信令或MAC CE信令中。
在第五方面或第六方面的一种可能的设计中,空间参数信息在目标时间段后生效,目标时间段与终端设备的能力相关。
在第五方面或第六方面的一种可能的设计中,收发单元还用于,上报能力信息,能力信息用于指示目标时间段。
在第五方面或第六方面的一种可能的设计中,目标时间段的长度是根据目标时间段的时间单元个数和至少两种类型的信号的SCS的最小值确定的。
在第五方面或第六方面的一种可能的设计中,若至少两种类型的信号包括至少一个上行信号和至少一个下行信号,收发单元,用于:根据空间参数信息接收至少一个下行信号,目标时间段的长度是根据目标时间段的时间单元个数和至少一个下行信号的SCS的最小值确定的;根据空间参数信息发送至少一个上行信号,目标时间段的长度是根据目标时间段的时间单元个数和至少一个上行信号的SCS的最小值确定的。
在第五方面或第六方面的一种可能的设计中,若至少两种类型的信号包括第一信号,收发单元,用于:根据空间参数信息接收或发送第一信号,目标时间段的长度是根据目标时间段的时间单元个数和第一信号的SCS确定的。
在第五方面或第六方面的一种可能的设计中,若至少两种类型的信号包括第一信号, 收发单元,用于:根据空间参数信息接收和/或发送至少两种类型的信号,目标时间段的长度是根据目标时间段的时间单元个数和第一信号的SCS确定的。
在第五方面或第六方面的一种可能的设计中,至少两种类型的信号中的任一种类型的信号是通过RRC信令或MAC CE信令指示的,或者是预定义的。
在第五方面或第六方面的一种可能的设计中,当第一指示信息指示多个空间参数信息时,至少两种类型的信号中的至少一种类型的信号对应多个空间参数信息中的第一个空间参数信息。
在第五方面或第六方面的一种可能的设计中,当至少两种类型的信号包括上行信号时,上行信号的空间参数信息为类型D准共址QCL信息。
在第五方面或第六方面的一种可能的设计中,收发单元,还用于接收第二指示信息,第二指示信息用于指示获取第一指示信息。
第七方面,本申请实施例提供一种通信装置,包括:收发单元,用于发送第一指示信息,第一指示信息用于指示至少两种类型的信号的空间参数信息;收发单元,还用于根据空间参数信息接收和/或发送至少两种类型的信号。
第八方面,本申请实施例提供一种通信装置,包括:收发单元,用于发送第一指示信息,第一指示信息用于指示至少两种类型的信号中的一种类型的信号的空间参数信息;收发单元,还用于根据空间参数信息接收和/或发送至少两种类型的信号。
在第七方面或第八方面的一种可能的设计中,至少两种类型的信号包括PUCCH、PUSCH、SRS、PTRS、DMRS、PDCCH、PDSCH、TRS、CSI-RS或SSB中的至少两个。
在第七方面或第八方面的一种可能的设计中,第一指示信息携带在下行控制信息DCI中的目标字段。
在第七方面或第八方面的一种可能的设计中,目标字段为传输配置指示TCI域。
在第七方面或第八方面的一种可能的设计中,第一指示信息携带在无线资源控制RRC信令或媒体接入控制层控制单元MAC CE信令中。
在第七方面或第八方面的一种可能的设计中,空间参数信息在目标时间段后生效,目标时间段与终端设备的能力相关。
在第七方面或第八方面的一种可能的设计中,收发单元,还用于接收能力信息,能力信息用于指示目标时间段。
在第七方面或第八方面的一种可能的设计中,目标时间段的长度是根据目标时间段的时间单元个数和至少两种类型的信号的子载波间隔SCS的最小值确定的。
在第七方面或第八方面的一种可能的设计中,若至少两种类型的信号包括至少一个上行信号和至少一个下行信号,收发单元,用于:根据空间参数信息发送至少一个下行信号,目标时间段的长度是根据目标时间段的时间单元个数和至少一个下行信号的SCS的最小值确定的;根据空间参数信息接收至少一个上行信号,目标时间段的长度是根据目标时间段的时间单元个数和至少一个上行信号的SCS的最小值确定的。
在第七方面或第八方面的一种可能的设计中,若至少两种类型的信号包括第一信号,收发单元,用于根据空间参数信息接收或发送第一信号,目标时间段的长度是根据目标时间段的时间单元个数和第一信号的SCS确定的。
在第七方面或第八方面的一种可能的设计中,若至少两种类型的信号包括第一信号, 收发单元,用于根据空间参数信息接收和/或发送至少两种类型的信号,目标时间段的长度是根据目标时间段的时间单元个数和第一信号的SCS确定的。
在第七方面或第八方面的一种可能的设计中,至少两种类型的信号中的任一种类型的信号是通过RRC信令或MAC CE信令指示的,或者是预定义的。
在第七方面或第八方面的一种可能的设计中,当第一指示信息指示多个空间参数信息时,至少两种类型的信号中的至少一种类型的信号对应多个空间参数信息中的第一个空间参数信息。
在第七方面或第八方面的一种可能的设计中,当至少两种类型的信号包括上行信号时,上行信号的空间参数信息为类型D准共址QCL信息。
在第七方面或第八方面的一种可能的设计中,收发单元,还用于发送第二指示信息,第二指示信息用于指示发送第一指示信息。
第九方面,本申请实施例还提供了一种通信装置,该通信装置可以是终端设备或芯片。该通信装置包括处理器,用于实现上述第一方面或第二方面提供的任意一种通信方法。该通信装置还可以包括存储器,用于存储程序指令和数据,存储器可以是集成在该通信装置内的存储器,或设置在该通信装置外的片外存储器。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面或第二方面提供的任意一种通信方法。该通信装置还可以包括通信接口,该通信接口用于该通信装置与其它设备(例如,网络设备)进行通信。
第十方面,本申请实施例还提供了一种通信装置,该通信装置可以是网络设备或芯片。该通信装置包括处理器,用于实现上述第三方面或第四方面提供的任意一种通信方法。该通信装置还可以包括存储器,用于存储程序指令和数据,存储器可以是集成在该通信装置内的存储器,或设置在该通信装置外的片外存储器。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第三方面或第四方面提供的任意一种通信方法。该通信装置还可以包括通信接口,该通信接口用于该通信装置与其它设备(例如,终端设备)进行通信。
第十一方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一方面提供的任意一种通信方法。
第十二方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第四方面中任一方面提供的任意一种通信方法。
第十三方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面至第四方面中任一方面提供的任意一种通信方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,本申请实施例提供了一种通信系统,该系统包括第五方面和第七方面中的通信装置,或者该系统包括第六方面中的和第八方面中的通信装置。
附图说明
图1为本申请实施例提供的一种波束训练的示意图;
图2为本申请实施例提供的一种指示PDSCH的波束信息的信号流程图;
图3为本申请实施例提供的一种MAC CE信令的格式示意图;
图4为本申请实施例提供的一种指示PDCCH的波束信息的信号流程图;
图5为本申请实施例提供的一种通信系统架构示意图;
图6为本申请实施例提供的又一种通信系统架构示意图;
图7为本申请实施例提供的一种终端设备的结构示意图;
图8为本申请实施例提供的一种网络设备的结构示意图;
图9为本申请实施例提供的一种信号交互示意图;
图10为本申请实施例提供的又一种信号交互示意图;
图11为本申请实施例提供的又一种终端设备的结构示意图;
图12为本申请实施例提供的又一种网络设备的结构示意图。
具体实施方式
为了下述各实施例的描述清楚简洁,首先给出相关概念或技术的简要介绍:
(1)、空间参数信息:也可以称为空间相关参数信息或空间信息,可以包括准共址/准共站/同位置(quasi-collocation,QCL)信息(info)和/或空间关系(spatial relation)信息。通常,QCL信息用于指示下行信号的空间相关参数(也可以称为空间相关特性/空间特性参数),spatial relation信息用于指示上行信号的空间相关参数。
其中,spatial relation信息用于辅助描述终端设备发射(发送)侧波束赋形信息以及发射流程。spatial relation信息可以指示两个参考信号之间的空间发送参数关系。该两个参考信号可以包括源参考信号(被引用的参考信号)以及目标参考信号。其中,目标参考信号通常为下行信号,例如可以是DMRS或SRS等。被引用的参考信号或者源参考信号可以包括CSI-RS、SRS或SSB等。
其中,QCL信息也可以称为QCL假设信息。QCL信息可以用于辅助描述终端设备接收波束赋形信息以及接收流程。QCL信息可以指示两个参考信号(即源参考信号和目标参考信号)之间的QCL关系。目标参考信号一般为下行信号,例如可以是DMRS或CSI-RS等。源参考信号可以是CSI-RS(例如,跟踪参考信号(tracking reference signal,TRS))或SSB。
应该理解的是,满足QCL关系或满足空间关系的两个参考信号(即源参考信号和目标参考信号)的空间特性参数是相同的/相近的/相似的,从而基于源参考信号的资源索引可推断出目标参考信号的空间特性参数。示例性的,可以预定义用于发送PDCCH和PDSCH的DMRS(目标参考信号)与终端设备初始接入时确定的SSB(源参考信号)具有QCL关系,即可以基于SSB的资源索引推断出DMRS的空间特性参数。
其中,空间特性参数可以包括以下参数中的一种或多种:入射角(angle of arrival,AoA)、主(dominant)入射角AoA、平均入射角、入射角的功率角度谱(power angular spectrum,PAS)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端设备发送波束成型、终端设备接收波束成型、空间信道相关性、网络设备发送波束成型、网络设备接收波束成型、平均信道增益、平均信道时延/平均时延(average delay)、时延扩展(delay spread)、多普勒扩展(doppler spread)、多普勒频移(doppler shift)或空间接收参数(spatial Rx parameters) 等。其中,上述任一种角度可以包括不同维度的分解值或不同维度分解值的组合。
空间特性参数描述了源参考信号与目标参考信号的天线端口间的空间信道特性,有助于终端设备完成接收侧波束赋形或接收处理过程。例如终端设备可以根据QCL信息指示的源参考信号的接收波束信息接收目标参考信号。空间特性参数还有助于终端设备完成发射侧波束赋形或者发射处理过程。例如终端设备可以根据空间特性参数指示的源参考信号的发射波束信息,发射目标参考信号。
在一种可选的实施方式中,为了节省网络设备向终端设备指示QCL信息的开销,网络设备可以指示PDCCH或PDSCH的解调参考信号与终端设备之前上报的多个参考信号(例如,CSI-RS)中的一个或多个是满足QCL关系的。每一个上报的CSI-RS资源索引对应一个基于该CSI-RS资源测量时建立的一个收发波束对。
在现有协议中,QCL关系可以基于不同的参数分为类型A、类型B、类型C和类型D等四个类型。其中:
类型A(type A):可以包括多普勒频移、多普勒扩展、平均时延和时延扩展;
类型B(type B):可以包括多普勒频移和多普勒扩展;
类型C(type C):可以包括多普勒频移和平均时延;
类型D(type D):可以包括空间接收参数,空间接收参数可以理解为用于指示接收波束的方向信息的参数。
本申请各实施例中的QCL信息或type D QCL信息可以包括SRS。
网络设备可以同时为终端设备配置一种或多种类型的QCL信息,例如QCL type A+D或者QCL type C+D等。
当QCL关系为type D的QCL关系时,可以认为QCL关系是空域QCL。当天线端口满足空域QCL关系时,可以是下行信号的端口和下行信号的端口之间满足QCL关系,或上行信号的端口和上行信号的端口之间满足spatial relation。例如,对于下行信号和上行信号间的QCL关系,或上行信号与下行信号的端口间的spatial relation,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发射波束。又例如,对于下行信号和上行信号间的QCL关系,或上行信号与下行信号的端口间的spatial relation,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束互易性,根据下行接收波束确定上行发射波束,或根据上行发射波束确定下行接收波束。
从发送端来看,如果两个天线端口是空域QCL的,则可以是指该两个天线端口对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域QCL的,则可以是指接收端能够在同一波束方向上接收到该两个天线端口发送的信号。
具有空域QCL关系的端口上传输的信号还可以具有对应的波束,对应的波束可以包括以下一项或多项:相同的接收波束、相同的发射波束、互易场景中与接收波束对应的发射波束、互易场景中与发射波束对应的接收波束。
具有空域QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送的信号。空间滤波器可以包括以下一项或多项:预编码、天线端口的权值、天线端口的相位偏转或天线端口的幅度增益。
具有空域QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接 (beam pair link,BPL)的信号,对应的BPL包括以下一项或多项:相同的下行BPL、相同的上行BPL、与下行BPL对应的上行BPL或与上行BPL对应的下行BPL。
(2)、传输配置指示状态(transmission configuration indicator state,TCI-state):也可以称为TCI信息,是由网络设备配置给各个终端设备的,用于指示信号/信道的QCL信息。其中,信道例如可以是:PDCCH、CORESET或PDSCH等。信号例如可以是:CSI-RS、DMRS或TRS等。
其中,一个TCI-state可以配置一个或多个源参考信号,及所关联的QCL类型。换句话说,一个TCI-state的配置信息可以包括一个或两个参考信号(源参考信号)的标识,以及所关联的QCL类型。TCI-state可以指示TCI-state中包括的源参考信号与目标参考信号满足QCL关系,即目标参考信号的空间特性参数等信息与TCI中包括的源参考信号的空间特性参数等信息相同、相似、或相近。这样,终端设备可以根据源参考信号的空间特性参数接收目标参考信号。
下面是TCI-state的一种可能的格式:
Figure PCTCN2020075424-appb-000001
此外,TCI-state可以是全局配置的。在为不同的小区或不同的带宽部分(bandwidth part,BWP)配置的TCI-state中,若TCI-state的索引相同,则TCI-state的配置也相同。
(3)、天线端口(antenna port):可以简称为端口。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以包括多个物理天线的加权组合,每个天线端口可以与一个参考信号端口对应。
天线端口可以为具有不同天线端口号的天线端口。天线端口还可以为具有相同天 线端口号或不同天线端口号,在不同时间内进行信息发送或接收的天线端口。天线端口还可以为具有相同天线端口号或不同天线端口号,在不同频率内进行信息发送或接收的天线端口。天线端口还可以为具有相同天线端口号或不同天线端口号,在不同码域资源内进行信息发送或接收的天线端口。
具有QCL关系的天线端口对应的信号可以具有相同或相近的空间特性参数(或称为参数),或者,一个天线端口的空间特性参数可以用于确定与该天线端口具有QCL关系的另一个天线端口的空间特性参数,或者,具有QCL关系的两个天线端口具有相同的或相似的空间特性参数,或者,具有QCL关系的两个天线端口间的空间特性参数差小于某阈值。
(4)、单元载波(component carrier,CC):又可以称为分量载波、组成载波或成员载波等。多载波聚合中的每个载波都可以称为“CC”。终端设备可以在多个CC上接收数据。每个载波由一个或多个物理资源块(physical resource block,PRB)组成,每个载波上可以有各自对应的PDCCH,调度各自CC的PDSCH;或者,有些载波没有PDCCH,此时这些载波可以进行跨载波调度(cross-carrier scheduling)。
其中,跨载波调度是指网络设备通过在一个CC上发送PDCCH来调度另一个CC上的数据传输(即,在另一个CC上传输PDSCH,或者,在另一个CC上传输PUSCH)。示例性的,网络设备可以在一个CC的BWP上发送PDCCH来调度另一个CC上的BWP的PDSCH或PUSCH的传输。即,控制信道在一个CC上传输,而对应的数据信道在另一个CC上传输。
(5)、BWP:由于NR中同一小区中不同终端设备的发射或者接收能力可能是不同的,系统可以为每个终端设备配置相应的带宽,这一部分配置给终端设备的带宽称为BWP,终端设备在其对应的BWP上传输。BWP可以是载波上一组连续的频域资源,如物理资源块(physical resource block,PRB)。BWP在频域上的最小粒度可以为1个PRB。不同的BWP占用的频域资源可以部分重叠(overlap),也可以互不重叠。不同的BWP占用的频域资源的带宽可以相同,也可以不同,本申请对此不作限定。
在单载波场景下,一个终端设备在同一时刻可以只有一个激活的BWP(active BWP),终端设备只在激活的BWP上接收数据/参考信号,或者发送数据/参考信号。
在本申请实施例中适用于BWP场景的情况下,BWP也可以是一个特定的频率上的带宽集合,或者是多个资源块(resource block,RB)组成的集合等等,本申请对此不做限定。
(6)、控制资源集合(control resource set,CORESET):用于传输下行控制信息的资源集合,也可以称为控制资源区域或物理下行控制信道资源集合。
网络设备可为终端设备配置一个或多个控制资源集合,用于发送物理下行控制信道。网络设备可以在终端设备对应的任一控制资源集合上,向终端设备发送控制信道。此外,网络设备还需要通知终端设备所述控制资源集合相关联的其他配置,例如搜索空间集合等。每个控制资源集合的配置信息存在差异,例如频域宽度差异和/或时域长度差异等。
可选的,本申请中的控制资源集合可以为下任意一项:未来的第五代(5th generation,5G)移动通信系统定义的CORESET、控制区域(control region)或增 强物理下行控制信道(enhanced-physical downlink control channel,ePDCCH)集合(set)。
其中,PDCCH所占用的时频位置可以称为下行控制区域。在一种可能的情况中,PDCCH始终位于一个子帧的前m个符号,其中,m可能的取值为1、2、3、或4。在另一种可能的情况中,PDCCH可以位于一个子帧的任意一个符号或多个符号。下行控制区域可以由RRC信令通过CORESET和搜索空间集合(search space set)灵活配置。CORESET可以配置PDCCH或控制信道单元(control channel element,CCE)的频域位置以及时域的持续符号数等信息。搜索空间集合可配置PDCCH的检测周期、偏移量以及在一个时隙内的起始符号等信息。例如,搜索空间集合可配置PDCCH周期为1个时隙,时域起始符号为符号0,则终端设备可以在每个时隙的起始位置检测PDCCH。
(7)、参考信号:通信系统通常包括两种类型的参考信号,一类参考信号用于估计信道,从而可以对含有控制信息或者数据的接收信号进行相干解调;另一类用于信道状态或信道质量的测量,从而实现对终端设备的调度。例如,终端设备可以基于对CSI-RS的信道质量测量得到信道状态信息CSI,所述CSI包括秩指示(rank indicator,RI),预编码指示(precoding matrix indicator,PMI)或信道质量指示(channel quality indicator,CQI)等中的至少一种。CSI信息可由终端设备设备通过物理上行控制信道或物理上行共享信道发送给网络设备。
(8)、波束:波束可以包括宽波束、窄波束或者其他类型波束。不同的波束可以认为是不同的通信资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束对应一个或多个天线端口,用于传输数据信道、控制信道或探测信号等。一个波束对应的一个或多个天线端口也可以看作是一个天线端口集。
可选的,波束也可以称为或者等价为空域滤波器(spatial filter或spatial domain filter)、空间传输滤波器或空域传输滤波器(spatial domain transmission filter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),或者称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。其中,终端设备侧的接收波束和网络设备侧的发送波束可以为下行空间滤波器,终端设备侧的发送波束和网络设备侧的接收波束可以为上行空间滤波器。
波束可以包括网络设备的发送波束和接收波束以及终端设备的发送波束和接收波束。其中,网络设备的发送波束用于描述网络设备发送侧波束赋形信息,网络设备的接收波束用于描述网络设备接收侧波束赋形信息。终端设备的发送波束用于描述终端设备发送侧波束赋形信息,终端设备的接收波束用于描述终端设备接收侧波束赋形信息。也即波束可以用于描述波束赋形信息。此外,在标准中不使用“波束”的称呼,网络设备的发送波束可以通过参考信号资源表示,如波束索引1,在标准中可以描述 为参考信号资源索引1,终端设备的接收波束可以通过QCL中的Spatial Rx parameter指示,波束状态信息在标准中可以描述为L1-RSRP related information或L1-SINR related information。
可选的,波束可以与资源对应,例如波束可以和时间资源、空间资源或频域资源对应。可选的,波束还可以与参考信号资源(例如,波束赋形的参考信号资源)或者波束赋形信息对应。可选的,波束还可以与网络设备的参考信号资源关联的信息对应。其中参考信号例如可以包括CSI-RS、SSB、DMRS、PTRS或TRS等。参考信号资源关联的信息可以是参考信号资源标识或者QCL信息(如type D的QCL)等。其中,参考信号资源标识对应了之前基于该参考信号资源测量时建立的一个收发波束对,通过该参考信号(源参考信号)资源索引,终端设备可推断目标参考信号的波束信息。
(9)、波束赋形:形成波束的技术可以称为波束赋形技术。波束赋形技术可以包括数字波束赋形技术、模拟波束赋形技术以及混合数字/模拟波束赋形技术。波束赋形的信号可包括广播信号、同步信号以及信道状态信息参考信号等。当信号基于波束赋形技术进行传输时,一旦终端设备发生移动,可能出现传输信号对应的赋形波束的方向不再匹配移动后的终端设备的位置,导致接收信号频繁中断。为跟踪信号传输过程中的赋形波束变化,可以引入一种基于波束赋形技术的信道质量测量及结果上报过程。信道质量的测量可以基于波束赋形后的同步信号或信道状态信息参考信号。相比小区切换,用户在不同赋形波束间的切换更加动态和频繁,因此需要一种动态测量上报机制,例如用户设备可以通过物理上行控制信道或物理上行共享信道将赋形波束参考信号的信道质量结果上报给网络设备。
(10)、波束训练:可以是指终端设备(例如,用户设备(user equipment,UE))通过对网络设备(例如,基站)发送的多个波束进行测量选择其较优的N个波束,并将较优的N个波束测量信息上报给基站的过程。波束测量信息主要包括参考信号资源索引、参考信号接收功率(reference signal received power,RSRP)、参考信号信号干扰噪声比(signal to interference plus noise ratio,SINR)中的至少一种。
如图1所示,波束训练过程可包括如下过程:
1)最优的N个BPL(一个BPL可以包括一个基站发射波束和一个终端接收波束,或者,一个BPL包括一个终端发射波束和一个基站接收波束)的选择。如图1中的(a)和(b)所示,UE可以基于基站的波束扫描实现对基站发射波束和/或终端接收波束的选择,基站基于UE的波束扫描实现对终端发射波束和/或基站接收波束的选择。
2)发射波束的更新,发射波束可以为基站发射波束,也可以为终端发射波束。当该发射波束为基站发射波束时,如图1中的(e)所示,基站通过不同的发射波束向UE发送参考信号,UE通过同一个接收波束来接收基站通过不同的发射波束发送的参考信号,并基于接收信号确定基站的最优发射波束,然后将基站的最优发射波束反馈给基站,以便于基站对发射波束进行更新。当该发射波束为终端发射波束时,如图1中的(d)所示,UE发送多个波束,基站对UE发送的多个波束进行测量,并且将UE发送的多个波束中较优的波束通知给UE。UE通过不同的发射波束向基站发送参考信号,基站通过同一个接收波束来接收UE通过不同的发射波束发送的参考信号,并基于接收信号确定UE的最优发射波束,然后将UE的最优发射波束反馈给UE,以便于UE对发 射波束进行更新。其中,上述通过不同的发射波束发送参考信号的过程可以称为波束扫描,基于接收信号确定最优发射波束的过程可以称为波束匹配。
3)接收波束的更新,接收波束可以为基站接收波束,也可以为终端接收波束。当该接收波束为基站接收波束时,如图1中的(f)所示,UE可以通过同一个发射波束向基站发送参考信号,基站采用不同的接收波束接收UE发送的参考信号,然后基于接收信号确定基站的最优接收波束,以对基站的接收波束进行更新。当该接收波束为UE的接收波束时,如图1中的(c)所示,基站通过同一个发射波束向UE发送参考信号,UE采用不同的接收波束接收基站发送的参考信号,然后基于接收信号确定UE的最优接收波束,以对UE的接收波束进行更新。
(11)、波束指示:在信号的传输中,例如在下行信号的传输过程中,基站发射波束和终端接收波束均可能发生动态变化,终端设备基于接收信号确定的最优接收波束可能包括多个,为了使终端设备确定自身的接收波束,终端设备可以将多个接收波束的信息反馈给网络设备,网络设备可以通过向终端设备发送波束指示信息来向终端设备指示终端接收波束。例如,当终端设备采用模拟域的波束赋形时,终端设备可以基于网络设备发送的波束指示信息来精确的确定终端接收波束,从而可以节省终端设备的波束扫描时间,达到省电的效果。
目前,PDSCH、PDCCH、CSI-RS、PUCCH、SRS和PUSCH的波束指示方法具体如下:
1)、如图2所示,网络设备可以通过RRC、MAC CE和DCI等三级信令向终端设备指示PDSCH的波束信息(或称为QCL信息)。
首先,网络设备可以通过RRC的指示字段为PDSCH配置N个TCI state。例如,RRC的指示字段可以为PDSCH-Config,其格式可以如下所示:
Figure PCTCN2020075424-appb-000002
而后,网络设备可以通过MAC-CE从N个TCI state中激活K个TCI state,K个TCI state是N个TCI state的子集。例如,协议中MAC CE的格式可以如图3所示,该MAC CE的各个字域的说明如下:
服务小区(serving cell)标识(identity,ID):此字域用于指示该MAC CE所指示的TCI state所属的服务小区的ID。
BWP ID:此字域包括BWP ID,用于指示该MAC CE所应用的下行带宽区域。
Ti:此字域指示TCI-StateID i的TCI state的激活/去激活状态。当Ti字域置为"1"时,表示TCI-StateID i的TCI状态被激活了,并映射到DCI中的TCI字域(TCI field);当Ti字域置为"0"时,表示TCI-StateID i的TCI state被去激活了且不会映射到DCI的TCI字域。其中,DCI中是否存在TCI域可以是通过高层信令(RRC TCI-Present InDCI)指示的。
R:保留字段(reserved field)。
TCI State映射到DCI的码点(codepoint)按照其所有Ti字域置为"1"的TCI state顺序映射。例如,第一个Ti字域置为"1"的TCI State映射到codepoint value0;第二个Ti域置为"1"的TCI state映射到codepoint value 1等等,激活的TCI状态的最大个数可以为8。另外,在多发送接收点(transmission reception point,TRP)传输场景下,MAC CE也可以将至多两个TCI state映射至DCI的TCI域的一个码点上。
在一种可能的设计中,网络设备可以通过一个MAC CE同时更新多个CC/BWP的PDSCH的TCI-StateID。
然后,网络设备可以通过DCI中的TCI字域(也可以简称为TCI域)指示K个TCI state中的至少一个TCI state用于PDSCH的接收,TCI字域可以包括X比特(bit),X为大于等于1的整数。例如:协议中,当X=3时,TCI域的不同取值可以分别指示表1中的一个TCI state。
表1
TCI域的取值 TCI state
000 TCI-StateID a1
001 TCI-StateID a2
010 TCI-StateID a3
011 TCI-StateID a4
100 TCI-StateID a5
101 TCI-StateID a6
110 TCI-StateID a7
111 TCI-StateID a8
在一种可能的设计中,PDSCH的波束信息(或称为QCL信息)也可以通过RRC和DCI等两级信令指示,即可以通过DCI中的TCI字域指示N个TCI state中的至少一个TCI state用于PDSCH的接收。
2)、如图4所示,网络设备可以通过RRC和MAC CE等二级信令向终端设备指示PDCCH的波束信息(或称为QCL信息)。具体的,可以通过RRC为PDCCH配置M个TCI state,该M个TCI state为PDSCH的N个TCI state的子集。而后,可以通过MAC CE激活M个TCI state中的一个TCI state,该一个TCI state用于PDCCH的接收。在一种可能的设计中,可以通过一个MAC CE同时更新多个CC/BWP中具有相同CORESET ID的TCI state。
在一种可能的设计中,PDCCH的波束信息也可以仅通过RRC信令指示,即通过RRC信令激活M个TCI状态中的一个TCI state,该一个TCI state用于PDCCH的接收。
3)、CSI-RS的波束信息(或称为QCL信息)可以通过RRC指示,即可以通过RRC为CSI-RS配置1个TCI状态,该1个TCI state为PDSCH的N个TCI state中的一个。
4)、PUCCH的波束信息(或称为spatial relation信息)可以通过RRC和MAC CE等二级信令指示。可以通过RRC为PUCCH配置N个spatial relation,而后通过MAC CE激活N个spatial relation中的一个spatial relation,该一个spatial relation用于PUCCH的发送。另外,一个MAC CE可以同时更新一个PUCCH资源组的spatial relation。或者,也可以仅通过RRC信令指示PUCCH的波束信息,即通过RRC信令激活N个spatial relation中的一个spatial relation,该一个spatial relation用于PUCCH的发送。
5)、SRS的波束信息(或称为spatial relation信息)可以通过RRC和MAC CE等二级信令,或者仅通过RRC信令指示,或者仅通过MAC CE信令指示。其中,SRS可以分为周期SRS,半周期SRS和非周期SRS。对于周期SRS,可以通过RRC配置1个spatial relation;对于半周期SRS,可以通过RRC配置1个spatial relation,或者,通过MAC CE指示1个spatial relation;对于非周期SRS,可以通过RRC配置1个spatial relation,或者,通过MAC CE指示1个spatial relation。另外,可以通过一个MAC CE同时更新多个CC/BWP上的相同SRS resource ID(半周期/非周期SRS)的spatial relation。
6)、PUSCH的波束信息(或称为spatial relation信息)可以通过DCI中的SRI域指示。其中,PUSCH的spatial relation信息与SRI域指示的SRS的spatial relation信息相同。
综上所述,在终端设备移动场景下,网络设备需要通过多个信令、多级信令分别更新不同信号/信道的波束信息,导致信令开销较大,更新速度较慢。
本申请实施例提供一种通信方法,可以通过一个信令同时更新多种类型的信道/信号的空间参数信息(波束信息),可以使得终端设备快速完成波束切换,避免链路中断,且可以节省信令开销。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(univeRMal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、5G移动通信系统或新无线(new radio,NR)等,本申请所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统和/或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是未来演进的公用陆地移动通信网络(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)网络、机器到 机器(machine to machine,M2M)网络、物联网(internet of things,IoT)网络或者其他网络。
图5是一种适用本申请的通信系统100。该通信系统100处于单载波场景或载波聚合场景(carrier aggregation,CA)中,该通信系统100包括网络设备110和终端设备120,网络设备110与终端设备120通过无线网络进行通信。应理解,图5中网络设备110下可以包括一个或多个小区。当通信系统100的传输方向为上行传输时,终端设备120为发送端,网络设备110为接收端,当通信系统100的传输方向为下行传输时,网络设备110为发送端,终端设备120为接收端。
图6是又一种适用本申请的通信系统200。该通信系统200处于双链接/双连接(dual connectivity,DC)或多点协作传输(coordinated multipoint transmission/reception,CoMP)的场景中,该通信系统200包括网络设备210、网络设备220和终端设备230,网络设备210为终端设备230初始接入时的网络设备,负责与终端设备230之间的RRC通信,网络设备220是在RRC重配置时添加的,用于提供额外的无线资源。配置了CA的终端设备230与网络设备210和网络设备220相连,网络设备210和终端设备230之间的链路可以为称之为第一链路,网络设备220和终端设备230之间的链路可以称之为第二链路。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的网络设备和终端设备的数量还可以是其它的数量。
应理解,本申请实施例的技术方案可以应用于单载波或CA场景下的波束指示,或者是DC场景下的波束指示。
应理解,本申请实施例中的技术方案可以适用于主小区/主服务小区(primary cell/primary serving cell,Pcell)是高频或者低频,辅小区/辅服务小区(secondary cell/secondary serving cell,Scell)是高频或者低频的情况,例如,当Pcell是低频,Scell是高频。通常低频和高频是相对而言的,也可以以某一特定频率为分界,例如6GHz。
应理解,本申请实施例的技术方案还可以应用于多点协作传输(coordinated multipoint transmission/reception,CoMP)场景下的波束指示。其中CoMP可以为非相干联合发送(non coherent joint transmission,NCJT)、相干联合发送(coherent joint transmission,CJT)或联合发送(joint transmission,JT)中的一种或多种场景。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者PLMN中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、 开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是GSM系统或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
本申请实施例中的网络设备可以是无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:基站、下一代基站gNB、TRP、演进型节点B(evolved Node B,eNB)、家庭基站、基带单元(baseband unit,BBU),或WiFi系统中的接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
本申请实施例图5或图6中的终端设备或网络设备,可以由一个设备实现,也可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,或者是芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
例如,用于实现本申请实施例提供的终端设备的功能的装置可以通过图7中的装置700来实现。图7所示为本申请实施例提供的装置700的硬件结构示意图。该装置700中包括至少一个处理器701,用于实现本申请实施例提供的终端设备的功能。装置700中还可以包括总线702以及至少一个通信接口704。装置700中还可以包括存储器703。
在本申请实施例中,处理器可以是中央处理器(central processing unit,CPU),通用处理器、网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device, PLD)。处理器还可以是其它任意具有处理功能的装置,例如专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、软件模块或者其任意组合。
总线702可用于在上述组件之间传送信息。
通信接口704,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口704可以是接口、电路、收发器或者其它能够实现通信的装置,本申请不做限制。通信接口704可以和处理器701耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
在本申请实施例中,存储器可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,也可以与处理器耦合,例如通过总线702。存储器也可以和处理器集成在一起。
其中,存储器703用于存储程序指令,并可以由处理器701来控制执行,从而实现本申请下述实施例提供的通信方法。处理器701用于调用并执行存储器703中存储的指令,从而实现本申请下述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
可选地,存储器703可以包括于处理器701中。
在具体实现中,作为一种实施例,处理器701可以包括一个或多个CPU,例如图7中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置700可以包括多个处理器,例如图7中的处理器701和处理器707。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,装置700还可以包括输出设备705和输入设备706。输出设备705和处理器701耦合,可以以多种方式来显示信息。例如,输出设备705可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备706和处理器701耦合,可以以多种方式接收用户的输入。例如,输入设备706可以是触摸屏设备或传感设备等。
上述的装置700可以是一个通用设备或者是一个专用设备。在具体实现中,终端设备700可以是车载终端或内置计算机(处理器)的交通设备或有图7中类似结构的设备。本申请实施例不限定装置700的类型。
例如,用于实现本申请实施例提供的网络设备的功能的装置可以通过图8中的装置800来实现。图8所示为本申请实施例提供的装置800的硬件结构示意图。该装置800中包括至少一个处理器801,用于实现本申请实施例提供的终端设备的功能。装置800中还可以包括总线802以及至少一个通信接口804。装置800中还可以包括存储器803。
总线802可用于在上述组件之间传送信息。
通信接口804,用于与其他设备或通信网络通信,如以太网,RAN,WLAN等。通信接口804可以是接口、电路、收发器或者其它能够实现通信的装置,本申请不做限制。通信接口804可以和处理器801耦合。
其中,存储器803用于存储程序指令,并可以由处理器801来控制执行,从而实现本申请下述实施例提供的通信方法。例如,处理器801用于调用并执行存储器803中存储的指令,从而实现本申请下述实施例提供的通信方法。
可选地,存储器803可以包括于处理器801中。
在具体实现中,作为一种实施例,处理器801可以包括一个或多个CPU,例如图8中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置800可以包括多个处理器,例如图8中的处理器801和处理器805。这些处理器中的每一个可以是一个单核处理器,也可以是一个多核处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述的装置800可以是一个通用设备或者是一个专用设备。在具体实现中,装置800可以为车载终端或内置计算机(处理器)的交通设备或有图8中类似结构的设备。本申请实施例不限定装置800的类型。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括CPU、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD、数字通用盘(digital versatile disc, DVD)等),智能卡和闪存器件(例如,EPROM、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。并且,在本申请的描述中,除非另有说明,“至少一个”是指一个或多个。“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,信令和消息有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请下述实施例中各个网元之间的消息名字或者消息中各参数的名字仅是一个示例,具体实现中也可以是其他名字,本申请实施例对此不作具体限定。
本申请实施例中,“信号”也可以是指“信道”或“信号资源”,有时三者可以相互替换,本申请不做限定。
本申请各实施例中,“type D QCL”与“spatial relation”可以相互替换;或者,“QCL”与“spatial relation”可以相互替换;或者“TCI”与“spatial relation”可以相互替换,本申请不做限定。
为了便于理解,以下结合附图对本申请实施例提供的通信方法进行具体介绍。
如图9所示,本申请实施例提供一种通信方法,包括:
901、网络设备发送第一指示信息,第一指示信息用于指示至少两种类型的信号的空间参数信息。
其中,至少两种类型的信号可以包括PUCCH、PUSCH、SRS、PTRS、DMRS、PDCCH、PDSCH、TRS、CSI-RS或SSB中的至少两个。其中,SSB可以包括以下一项或多项:主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)。
应该理解的是,至少两种类型的信号可以包括PUCCH、PUSCH、SRS、PTRS、DMRS、PDCCH、PDSCH、TRS、CSI-RS或SSB中的任意两种类型的信号,或者任意三种类型的信号,或者任意四种类型的信号,或者任意五种类型的信号,本申请不做限定。
示例性的,至少两种类型的信号可以包括PDSCH和PDCCH。或者,至少两种类型的信号可以包括PDSCH和PUCCH。或者,至少两种类型的信号可以包括PDSCH和CSI-RS。 或者,至少两种类型的信号可以包括PDSCH和SRS。或者,至少两种类型的信号可以包括PDSCH和PUSCH。或者,至少两种类型的信号可以包括PDCCH和PUCCH。或者,至少两种类型的信号可以包括PDSCH、PDCCH、PUCCH和PUSCH。或者,至少两种类型的信号可以包括PDSCH、PDCCH和PUCCH。或者,至少两种类型的信号可以包括PDSCH、PDCCH和CSI-RS。或者,至少两种类型的信号可以包括PUSCH和PUCCH。或者,至少两种类型的信号可以包括PUSCH、PUCCH和SRS。或者,至少两种类型的信号可以包括PUCCH和SRS。
其中,至少两种类型的信号中的任一种类型的信号可以是通过RRC信令或MAC CE信令指示的(可以是显示指示,例如在RRC信令或MAC CE信令携带某类型的信号的标识,也可以是隐示指示,例如通过RRC信令或MAC CE信令中的字段的位置指示某类型的信号)。或者至少两种类型的信号中的任一种类型的信号可以是(协议)预定义的。可以是至少两种类型的信号都是预定义的。例如,可以预定义至少两种类型的信号包括第一指示信息所在BWP/CC上的所有信号(可以排除用于波束训练或波束管理的SRS/CSI-RS)。或者,可以是至少一种类型的信号是预定义的,其他类型的信号是网络设备指示的。比如,预定义PDSCH是通过DCI中的TCI域指示的,再通过MAC CE指示DCI中的TCI域也用于指示其它信号(如TRS、CSI-RS等信号)。
应该理解的是,第一指示信息用于指示至少两种类型的信号的空间参数信息,即第一指示信息指示的空间参数信息可以应用于至少两种类型的信号的传输。例如,假设至少两种类型的信号可以包括PDSCH和PDCCH,那么第一指示信息指示的空间参数信息可以用于PDSCH和PDCCH的传输。例如,终端设备可以根据第一指示信息指示的空间参数信息接收PDSCH和PDCCH。
应该理解的是,本申请中的空间参数信息可以为TCI状态(TCI state),还可以为TCI状态标识,还可以为spatial relation,还可以为QCL信息,还可以为type D的QCL信息,本申请不做限定。
需要说明的是,第一指示信息指示的空间参数信息用于至少两种类型的信号的传输,可以理解为,空间参数信息对应的参考信号资源或资源标识与至少两种类型的信号满足QCL关系,或者说空间参数信息对应的参考信号资源或资源标识与至少两种类型的信号使用相同的/相似的空域滤波器,或者说空间参数信息对应的参考信号资源或资源标识与至少两种类型的信号使用相同的QCL信息,或者说空间参数信息对应的参考信号资源或资源标识与至少两种类型的信号使用相同的TCI状态,或者说空间参数信息对应的参考信号资源或资源标识与至少两种类型的信号具有相同/相似的空间相关参数,本申请不做限定。
在一种可能的设计中,第一指示信息可以携带在DCI中的目标字段。例如,目标字段可以为DCI中的TCI域。或者可以在DCI中新增一个目标字段,例如,可以在Rel-16标准协议38.212中的format 1-1的DCI中新增一个目标字段(字域)用于承载第一指示信息。再例如,可以在Rel-16标准协议38.212中的format 1-1的DCI中复用其它字段承载第一指示信息。
在另一种可能的设计中,第一指示信息可以携带在RRC信令或MAC CE信令中。即第一指示信息可以由RRC信令或MAC CE信令承载。
需要说明的是,第一指示信息指示的空间参数信息可以在目标时间段后生效,目标时间段与终端设备的能力相关。终端设备可以通过能力信息将目标时间段上报给网络设备,能力信息用于指示目标时间段。例如,能力信息可以用于指示目标时间段(包括)的时间单元个数和/或目标时间段的长度(绝对时间)。其中,时间单元可以为符号(symbol)、时隙(slot)、子帧(subframe)或无线帧。目标时间段的起始时刻可以是终端设备接收到第一指示信息的时刻。示例性的,目标时间段可以为timeDurationForQCL。
在一种可能的设计中,目标时间段的长度是根据目标时间段的时间单元个数和至少两种类型的信号的SCS的最小值确定的。
举例来说,如果至少两种类型的信号包括PDCCH和PUCCH,PDCCH的SCS为60kHz,PUCCH的SCS为120kHz,目标时间段的时间单元个数为14个symbol,那么经过60kHz下的14个symbol后,第一指示信息指示的空间参数信息可以应用于传输PDCCH和PUCCH。也就是说,经过60kHz下的14个symbol后,终端设备可以根据第一指示信息指示的空间参数信息接收PDCCH和发送PUCCH。
在另一种可能的设计中,若至少两种类型的信号包括至少一个上行信号和至少一个下行信号,终端设备可以在目标时间段后,根据空间参数信息接收至少一个下行信号,其中目标时间段的长度是根据目标时间段的时间单元个数和至少一个下行信号的SCS的最小值确定的;终端设备可以在目标时间段后,根据空间参数信息发送至少一个上行信号,其中目标时间段的长度是根据目标时间段的时间单元个数和至少一个上行信号的SCS的最小值确定的。
举例来说,如果至少一个下行信号包括PDSCH和PDCCH,PDSCH的SCS为120kHz,PDCCH的SCS为60kHz,目标时间段的时间单元个数为14个symbol,那么经过60kHz下的14个symbol后,第一指示信息指示的空间参数信息可以应用于传输PDSCH和PDCCH。也就是说,经过60kHz下的14个symbol后,终端设备可以根据第一指示信息指示的空间参数信息接收PDSCH和PDCCH。
在又一种可能的设计中,若至少两种类型的信号包括第一信号,终端设备可以根据空间参数信息接收或发送第一信号,目标时间段的长度是根据目标时间段的时间单元个数和第一信号的SCS确定的。
例如,假设至少两种类型的信号包括PDCCH和PUCCH,PDCCH的SCS为60kHz,PUCCH的SCS为120kHz,目标时间段的时间单元个数为14个symbol。若第一信号为PDCCH,终端设备接收到第一指示信息后,经过60kHz下的14个symbol后,第一指示信息指示的空间参数信息可以应用于接收PDCCH,即经过60kHz下的14个symbol后,终端设备可以根据第一指示信息指示的空间参数信息接收PDCCH;若第一信号为PUCCH,终端设备接收到第一指示信息后,经过120kHz下的14个symbol后,第一指示信息指示的空间参数信息(如type D QCL)可以应用于发送PUCCH,即经过120kHz下的14个symbol后,终端设备可以根据第一指示信息指示的空间参数信息(如type D QCL)发送PUCCH。
在再一种可能的设计中,若至少两种类型的信号包括第一信号,根据空间参数信息接收和/或发送至少两种类型的信号,目标时间段的长度是根据目标时间段的时间单元个数和第一信号的SCS确定的。
例如,假设至少两种类型的信号包括PDCCH和PUCCH,PDCCH的SCS为60kHz,PUCCH的SCS 为120kHz,若第一信号为PDCCH,终端设备接收到第一指示信息后,经过60kHz下的14个symbol后,第一指示信息指示的空间参数信息可以应用于PDCCH和PUCCH的传输,即经过60kHz下的14个symbol后,终端设备可以根据第一指示信息指示的空间参数信息接收PDCCH和发送PUCCH。若第一信号为PUCCH,终端设备接收到第一指示信息后,经过120kHz下的14个symbol后,第一指示信息指示的空间参数信息可以应用于PDCCH和PUCCH的传输,即经过60kHz下的14个symbol后,终端设备可以根据第一指示信息指示的空间参数信息接收PDCCH和发送PUCCH。其中,第一信号可以是终端设备基于其能力确定的,或者可以是预定义的,或者通过MAC CE信令或RRC信令指示的,本申请不做限定。
另外,当第一指示信息指示多个空间参数信息时,至少两种类型的信号中的至少一种类型的信号对应多个空间参数信息中的第一个空间参数信息。其中,至少一种类型的信号可以不包括PDSCH。例如,当第一指示信息指示多个空间参数信息时,PUCCH、PUSCH、SRS、PTRS、DMRS、PDCCH、TRS、CSI-RS或SSB中的至少一种类型的信号可以对应多个空间参数信息中的第一个空间参数信息。或者,至少一种类型的信号可以不包括PDSCH和PUSCH。
举例来说,假设第一指示信息携带在DCI中的TCI域,当TCI域指示2个TCI state时,PDCCH和CSI-RS可以使用第一个TCI state进行传输。
在一些实施例中,终端设备可以接收第二指示信息,第二指示信息用于指示终端设备获取第一指示信息。或者说,第二指示信息用于指示使能第一指示信息。或者说,第二指示信息用于指示终端设备接收第一指示信息。或者说,第二指示信息用于指示第一指示信息用于指示至少两种类型的信号的空间参数信息。第二指示信息可以携带在RRC信令、MAC CE信令或其他信令中,即可以通过RRC信令或其他信令使能(enable)第一指示信息指示至少两种类型的信号的空间参数信息的功能。否则,终端设备可能无法获知第一指示信息用于指示至少两种类型的信号的空间参数信息。
902、终端设备接收第一指示信息。
第一指示信息的相关描述可以参考步骤901,在此不做赘述。
需要说明的是,至少两种类型的信号可以包括至少两种类型的上行信号;或者,至少两种类型的信号可以包括至少两种类型的下行信号;或者,至少两种类型的信号可以包括至少一种类型的上行信号和至少一种类型的下行信号。
当至少两种类型的信号包括下行信号时,可以执行步骤903-步骤904:
903、网络设备根据空间参数信息发送下行信号。
当至少两种类型的信号包括下行信号时,空间相关参数信息可以包括QCL信息,QCL信息可以用于指示下行信号的空间相关参数(或者称为空间相关特性)。或者,当至少两种类型的信号包括下行信号时,空间相关参数信息可以包括TCI信息。或者,当至少两种类型的信号包括下行信号时,空间相关参数信息可以包括TCI状态信息。
其中,下行信号可以包括PTRS、DMRS、PDCCH、PDSCH、TRS、CSI-RS或SSB中的至少一个。其中,DMRS可以是指用于解调PDCCH或PDSCH的DMRS。PTRS是指可以用于下行信道相位跟踪的PTRS。
网络设备可以根据空间参数信息发送下行信号,即网络设备可以使用空间参数信息发送下行信号。
下行信号的空间参数信息可以在目标时间段后生效,例如网络设备可以在目标时 间段后根据空间参数信息发送下行信号。目标时间段的相关描述可以参考步骤901,在此不做赘述。
904、终端设备根据空间参数信息接收下行信号。
终端设备可以根据空间参数信息接收下行信号,即终端设备可以使用空间参数信息接收下行信号。
下行信号的空间参数信息可以在目标时间段后生效,例如终端设备可以在目标时间段后根据空间参数信息接收下行信号。目标时间段的相关描述可以参考步骤901,在此不做赘述。
当至少两种类型的信号包括上行信号时,可以执行步骤905-步骤906:
905、终端设备根据空间参数信息发送上行信号。
当至少两种类型的信号包括上行信号时,空间相关参数信息可以包括空间关系(spatial relation)信息,spatial relation信息用于指示上行信号的空间相关参数(还可以称为空间相关特性)。
其中,上行信号可以包括PUCCH、PUSCH、SRS、PTRS或DMRS中的至少一个。其中,DMRS可以是用于解调PUCCH或PUSCH的DMRS。PTRS是指可以用于上行信道相位跟踪的PTRS。
在一种可能的设计中,上行信号的空间参数信息为type D QCL。例如,当上行信号为SRS时,空间参数信息为type D QCL。
终端设备可以根据空间参数信息发送上行信号,即终端设备可以使用空间参数信息发送上行信号。
上行信号的空间参数信息可以在目标时间段后生效,例如终端设备可以在目标时间段后根据空间参数信息发送上行信号。目标时间段的相关描述可以参考步骤901,在此不做赘述。
906、网络设备根据空间参数信息接收上行信号。
网络设备可以根据空间参数信息接收上行信号,即网络设备使用空间参数信息接收上行信号。
上行信号的空间参数信息可以在目标时间段后生效,例如网络设备可以在目标时间段后根据空间参数信息接收上行信号。
需要说明的是,本申请实施例在执行完步骤901和步骤902后,可以仅执行步骤903和步骤904;或者,仅执行步骤905和步骤906;或者可以对步骤903-步骤906都执行,且不限定步骤903与步骤905之间的执行先后顺序。
基于本申请实施例提供的方法,终端设备可以接收第一指示信息,并根据第一指示信息指示的空间参数信息接收和/或发送至少两种类型的信号。相比现有技术中,基站需要通过多个信令分别更新不同信号/信道对应的波束,信令开销大,更新速度慢。本申请可以通过第一指示信息同时指示至少两种类型的信号的空间参数信息(即波束),使得终端设备在移动场景下,快速完成多种类型的信号的波束切换,有效避免链路中断,且可以节省信令。
本申请的又一实施例提供一种通信方法,如图10所示,包括:
1001、网络设备发送第一指示信息,第一指示信息用于指示至少两种类型的信号 中的一种类型的信号的空间参数信息。
在一种可能的设计中,可以通过RRC信令或MAC CE信令或预定义一个目标集合,该目标集合中包括至少两种类型的信号,若目标集合中的一个信号更新空间参数信息,该目标集合中的其它信号的空间参数信息也同时更新。
其中,至少两种类型的信号可以包括PUCCH、PUSCH、SRS、PTRS、DMRS、PDCCH、PDSCH、TRS、CSI-RS或SSB中的至少两个,具体说明可以参考步骤901的相关描述,在此不做赘述。
其中,至少两种类型的信号中的任一种类型的信号是通过RRC信令或MAC CE信令指示的,或者可以是预定义的,具体说明可以参考步骤901的相关描述,在此不做赘述。
在一些实施例中,终端设备可以接收第二指示信息,第二指示信息用于指示终端设备获取第一指示信息。第二指示信息的具体说明可以参考步骤901的相关描述,在此不做赘述。
1002、终端设备接收第一指示信息。
第一指示信息的相关描述可以参考步骤1001,在此不做赘述。
步骤1003-步骤1006可以参考步骤903-步骤906,在此不做赘述。
基于本申请实施例提供的方法,终端设备可以接收第一指示信息,并根据第一指示信息指示的空间参数信息接收和/或发送至少两种类型的信号。相比现有技术中,基站需要通过多个信令分别更新不同信号/信道对应的波束,信令开销大,更新速度慢。本申请可以使得终端设备根据第一指示信息接收和/或发送至少两种类型的信号,从而终端设备在移动场景下可以快速完成多种类型的信号的波束切换,有效避免链路中断,且可以节省信令。
上述本申请提供的实施例中,分别从终端设备、网络设备以及终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。可选的,上述本申请提供的实施例中,还可以包括网络设备,网络设备和终端设备以及网络设备之间可以交互。为了实现上述本申请实施例提供的方法中的各功能,终端设备、网络设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
在采用对应各个功能划分各个功能模块的情况下,图11示出了上述实施例中所涉及的装置11的一种可能的结构示意图,该装置可以为终端设备,该终端设备包括:收发单元1101。在本申请实施例中,收发单元1101用于接收第一指示信息,第一指示信息用于指示至少两种类型的信号的空间参数信息,或者,第一指示信息用于指示至少两种类型的信号中的一种类型的信号的空间参数信息;收发单元1101,还用于根据空间参数信息接收和/或发送至少两种类型的信号。
在图9或图10所示的方法实施例中,收发单元1101用于支持终端设备执行图9中的过程902、904和905;图10中的过程1002、1004和1005。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中所涉及的装置12的一种可能的结构示意图,该装置可以为网络设备,该网络设备包括:收发单元1201。在本申请实施例中,收发单元1201,用于发送第一指示信息,第一指示信息用于指示至少两种类型的信号的空间参数信息,或者,第一指示信息用于指示至少两种类型的信号中的一种类型的信号的空间参数信息;收发单元1201,还用于根据空间参数信息接收和/或发送至少两种类型的信号。
在图9或图10所示的方法实施例中,收发单元1201用于支持终端设备执行图9中的过程901、903和906;图10中的过程1001、1003和1006。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
示例性的,上述各个装置实施例中终端设备、网络设备或网络设备和方法实施例中的终端设备、网络设备或网络设备可以完全对应,由相应的模块或单元执行相应的步骤,例如通信模块(收发器)可以执行方法实施例中发送和/或接收的步骤,除发送接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。发送单元和接收单元可以组成收发单元,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
示例性的,上述终端设备或者网络设备的功能可以通过芯片来实现,处理单元可以通过硬件来实现,也可以通过软件来实现,当通过硬件实现时,该处理单元可以是逻辑电路、集成电路等;当通过软件来实现时,该处理单元可以是一个通用处理器,通过读取存储单元中存储的软件代码来实现,该存储单元可以集成在处理器中,也可以位于该处理器之外,独立存在。
上述各个装置实施例中终端设备或网络设备和方法实施例中的终端设备、网络设备或网络设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
本申请实施例中对模块或单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。示例性地,在本申请实施例中,接收单元和发送单元可以集成至收发单元中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、 计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drives,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (49)

  1. 一种通信方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示至少两种类型的信号的空间参数信息;
    根据所述空间参数信息接收和/或发送所述至少两种类型的信号。
  2. 根据权利要求1所述的通信方法,其特征在于,所述至少两种类型的信号包括物理上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS、相位追踪参考信号PTRS、解调参考信号DMRS、物理下行控制信道PDCCH、物理下行共享信道PDSCH、追踪参考信号TRS、信道状态信息参考信号CSI-RS或同步信号块SSB中的至少两个。
  3. 根据权利要求1或2所述的通信方法,其特征在于,所述第一指示信息携带在下行控制信息DCI中的目标字段。
  4. 根据权利要求3所述的通信方法,其特征在于,
    所述目标字段为传输配置指示TCI域。
  5. 根据权利要求1或2所述的通信方法,其特征在于,
    所述第一指示信息携带在无线资源控制RRC信令或媒体接入控制层控制单元MAC CE信令中。
  6. 根据权利要求1-5任一项所述的通信方法,其特征在于,所述空间参数信息在目标时间段后生效,所述目标时间段与终端设备的能力相关。
  7. 根据权利要求6所述的方法,所述方法还包括:
    上报能力信息,所述能力信息用于指示所述目标时间段。
  8. 根据权利要求6或7所述的通信方法,其特征在于,
    所述目标时间段的长度是根据所述目标时间段的时间单元个数和所述至少两种类型的信号的子载波间隔SCS的最小值确定的。
  9. 根据权利要求6或7所述的通信方法,其特征在于,若所述至少两种类型的信号包括至少一个上行信号和至少一个下行信号,所述根据所述空间参数信息接收和/或发送所述至少两种类型的信号包括:
    根据所述空间参数信息接收所述至少一个下行信号,所述目标时间段的长度是根据所述目标时间段的时间单元个数和所述至少一个下行信号的SCS的最小值确定的;
    根据所述空间参数信息发送所述至少一个上行信号,所述目标时间段的长度是根据所述目标时间段的时间单元个数和所述至少一个上行信号的SCS的最小值确定的。
  10. 根据权利要求6或7所述的通信方法,其特征在于,若所述至少两种类型的信号包括第一信号,所述根据所述空间参数信息接收和/或发送所述至少两种类型的信号包括:
    根据所述空间参数信息接收或发送所述第一信号,所述目标时间段的长度是根据所述目标时间段的时间单元个数和所述第一信号的SCS确定的。
  11. 根据权利要求6或7所述的通信方法,其特征在于,若所述至少两种类型的信号包括第一信号,所述根据所述空间参数信息接收和/或发送所述至少两种类型的信号包括:
    根据所述空间参数信息接收和/或发送所述至少两种类型的信号,所述目标时间段的长度是根据所述目标时间段的时间单元个数和所述第一信号的SCS确定的。
  12. 根据权利要求1-11任一项所述的通信方法,其特征在于,
    所述至少两种类型的信号中的任一种类型的信号是通过RRC信令或MAC CE信令指示的,或者是预定义的。
  13. 根据权利要求2所述的通信方法,其特征在于,当所述第一指示信息指示多个空间参数信息时,所述至少两种类型的信号中的至少一种类型的信号对应所述多个空间参数信息中的第一个空间参数信息。
  14. 根据权利要求1-13任一项所述的通信方法,其特征在于,当所述至少两种类型的信号包括上行信号时,所述上行信号的空间参数信息为类型D准共址QCL信息。
  15. 根据权利要求1-14任一项所述的通信方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示获取所述第一指示信息。
  16. 一种通信方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示至少两种类型的信号中的一种类型的信号的空间参数信息;
    根据所述空间参数信息接收和/或发送所述至少两种类型的信号。
  17. 根据权利要求16所述的通信方法,其特征在于,所述至少两种类型的信号包括物理上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS、相位追踪参考信号PTRS、解调参考信号DMRS、物理下行控制信道PDCCH、物理下行共享信道PDSCH、追踪参考信号TRS、信道状态信息参考信号CSI-RS或同步信号块SSB中的至少两个。
  18. 根据权利要求16或17所述的通信方法,其特征在于,
    所述第一指示信息携带在无线资源控制RRC信令或媒体接入控制层控制单元MAC CE信令中。
  19. 根据权利要求16-18任一项所述的通信方法,其特征在于,
    所述至少两种类型的信号中的任一种类型的信号是通过RRC信令或MAC CE信令指示的,或者是预定义的。
  20. 根据权利要求16-19任一项所述的通信方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示获取所述第一指示信息。
  21. 一种通信方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示至少两种类型的信号的空间参数信息;
    根据所述空间参数信息接收和/或发送所述至少两种类型的信号。
  22. 根据权利要求21所述的通信方法,其特征在于,所述至少两种类型的信号包括物理上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS、相位追踪参考信号PTRS、解调参考信号DMRS、物理下行控制信道PDCCH、物理下行共享信道PDSCH、追踪参考信号TRS、信道状态信息参考信号CSI-RS或同步信号块SSB中的至少两个。
  23. 根据权利要求21或22所述的通信方法,其特征在于,所述第一指示信息携带在下行控制信息DCI中的目标字段。
  24. 根据权利要求23所述的通信方法,其特征在于,
    所述目标字段为传输配置指示TCI域。
  25. 根据权利要求21或22所述的通信方法,其特征在于,
    所述第一指示信息携带在无线资源控制RRC信令或媒体接入控制层控制单元MAC CE信 令中。
  26. 根据权利要求21-25任一项所述的通信方法,其特征在于,
    所述空间参数信息在目标时间段后生效,所述目标时间段与终端设备的能力相关。
  27. 根据权利要求26所述的方法,所述方法还包括:
    接收能力信息,所述能力信息用于指示所述目标时间段。
  28. 根据权利要求26或27所述的通信方法,其特征在于,
    所述目标时间段的长度是根据所述目标时间段的时间单元个数和所述至少两种类型的信号的子载波间隔SCS的最小值确定的。
  29. 根据权利要求26或27所述的通信方法,其特征在于,若所述至少两种类型的信号包括至少一个上行信号和至少一个下行信号,所述根据所述空间参数信息接收和/或发送所述至少两种类型的信号包括:
    根据所述空间参数信息发送所述至少一个下行信号,所述目标时间段的长度是根据所述目标时间段的时间单元个数和所述至少一个下行信号的SCS的最小值确定的;
    根据所述空间参数信息接收所述至少一个上行信号,所述目标时间段的长度是根据所述目标时间段的时间单元个数和所述至少一个上行信号的SCS的最小值确定的。
  30. 根据权利要求26或27所述的通信方法,其特征在于,若所述至少两种类型的信号包括第一信号,所述根据所述空间参数信息接收和/或发送所述至少两种类型的信号包括:
    根据所述空间参数信息接收或发送所述第一信号,所述目标时间段的长度是根据所述目标时间段的时间单元个数和所述第一信号的SCS确定的。
  31. 根据权利要求26或27所述的通信方法,其特征在于,若所述至少两种类型的信号包括第一信号,所述根据所述空间参数信息接收和/或发送所述至少两种类型的信号包括:
    根据所述空间参数信息接收和/或发送所述至少两种类型的信号,所述目标时间段的长度是根据所述目标时间段的时间单元个数和所述第一信号的SCS确定的。
  32. 根据权利要求21-31任一项所述的通信方法,其特征在于,
    所述至少两种类型的信号中的任一种类型的信号是通过RRC信令或MAC CE信令指示的,或者是预定义的。
  33. 根据权利要求22所述的通信方法,其特征在于,当所述第一指示信息指示多个空间参数信息时,所述至少两种类型的信号中的至少一种类型的信号对应所述多个空间参数信息中的第一个空间参数信息。
  34. 根据权利要求21-33任一项所述的通信方法,其特征在于,当所述至少两种类型的信号包括上行信号时,所述上行信号的空间参数信息为类型D准共址QCL信息。
  35. 根据权利要求21-34任一项所述的通信方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示发送所述第一指示信息。
  36. 一种通信方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示至少两种类型的信号中的一种类型的信号的空间参数信息;
    根据所述空间参数信息接收和/或发送所述至少两种类型的信号。
  37. 根据权利要求36所述的通信方法,其特征在于,所述至少两种类型的信号包括物理上行控制信道PUCCH、物理上行共享信道PUSCH、探测参考信号SRS、相位追踪参考信号 PTRS、解调参考信号DMRS、物理下行控制信道PDCCH、物理下行共享信道PDSCH、追踪参考信号TRS、信道状态信息参考信号CSI-RS或同步信号块SSB中的至少两个。
  38. 根据权利要求36或37所述的通信方法,其特征在于,
    所述第一指示信息携带在无线资源控制RRC信令或媒体接入控制层控制单元MAC CE信令中。
  39. 根据权利要求36-38任一项所述的通信方法,其特征在于,
    所述至少两种类型的信号中的任一种类型的信号是通过RRC信令或MAC CE信令指示的,或者是预定义的。
  40. 根据权利要求36-39任一项所述的通信方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示发送所述第一指示信息。
  41. 一种通信装置,其特征在于,包括用于执行如权利要求1-15任一项所述的通信方法的单元。
  42. 一种通信装置,其特征在于,包括用于执行如权利要求16-20任一项所述的通信方法的单元。
  43. 一种通信装置,其特征在于,包括用于执行如权利要求21-35任一项所述的通信方法的单元。
  44. 一种通信装置,其特征在于,包括用于执行如权利要求36-40任一项所述的通信方法的单元。
  45. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器和存储器耦合;
    所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述计算机执行指令,以使所述通信装置执行如权利要求1-15或者权利要求16-20中任一项所述的通信方法。
  46. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器和存储器耦合;
    所述存储器用于存储计算机执行指令,当所述通信装置运行时,所述处理器执行所述计算机执行指令,以使所述通信装置执行如权利要求21-35或者权利要求36-40中任一项所述的通信方法。
  47. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机执行权利要求1-15或者权利要求16-20或者权利要求21-35或者权利要求36-40中任一项所述的通信方法。
  48. 一种芯片系统,其特征在于,包括处理器,所述处理器和存储器耦合,所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求1-15或者权利要求16-20或者权利要求21-35或者权利要求36-40中任一项所述的通信方法。
  49. 一种通信系统,其特征在于,包括终端设备和网络设备,
    所述终端设备用于执行如权利要求1-15或者权利要求16-20中任一项所述的通信方法,所述网络设备用于执行如权利要求21-35或者权利要求36-40中任一项所述的通信方法。
PCT/CN2020/075424 2020-02-14 2020-02-14 一种通信方法和装置 WO2021159528A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20919235.0A EP4096321A4 (en) 2020-02-14 2020-02-14 COMMUNICATION METHOD AND APPARATUS
PCT/CN2020/075424 WO2021159528A1 (zh) 2020-02-14 2020-02-14 一种通信方法和装置
CN202080096558.8A CN115088343A (zh) 2020-02-14 2020-02-14 一种通信方法和装置
US17/887,265 US20220394701A1 (en) 2020-02-14 2022-08-12 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075424 WO2021159528A1 (zh) 2020-02-14 2020-02-14 一种通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/887,265 Continuation US20220394701A1 (en) 2020-02-14 2022-08-12 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021159528A1 true WO2021159528A1 (zh) 2021-08-19

Family

ID=77291679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075424 WO2021159528A1 (zh) 2020-02-14 2020-02-14 一种通信方法和装置

Country Status (4)

Country Link
US (1) US20220394701A1 (zh)
EP (1) EP4096321A4 (zh)
CN (1) CN115088343A (zh)
WO (1) WO2021159528A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020926A1 (en) * 2022-07-28 2024-02-01 Nokia Shanghai Bell Co., Ltd. Enhancements on multi-transmission and reception point transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220225291A1 (en) * 2021-01-14 2022-07-14 Qualcomm Incorporated Techniques for quasi-colocation prioritization rule for control channel repetition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124919A1 (en) * 2008-11-18 2010-05-20 Samsung Electronics Co. Ltd. Apparatus and method for receiving system information in mobile communication terminal
CN107888266A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种准共址指示信息指示方法及设备
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124919A1 (en) * 2008-11-18 2010-05-20 Samsung Electronics Co. Ltd. Apparatus and method for receiving system information in mobile communication terminal
CN107888266A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种准共址指示信息指示方法及设备
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Enhancements to multi-beam operation", 3GPP DRAFT; R1-1903231 ENHANCEMENTS TO MULTI-BEAM OPERATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20190225 - 20190301, 20 February 2019 (2019-02-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051600927 *
See also references of EP4096321A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024020926A1 (en) * 2022-07-28 2024-02-01 Nokia Shanghai Bell Co., Ltd. Enhancements on multi-transmission and reception point transmission

Also Published As

Publication number Publication date
EP4096321A4 (en) 2023-04-05
EP4096321A1 (en) 2022-11-30
US20220394701A1 (en) 2022-12-08
CN115088343A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
US11737082B2 (en) Signal transmission method and communications apparatus
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
CN112073129B (zh) 确定天线面板状态的方法和装置
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
EP4017176A1 (en) Method for indicating antenna panel state, and device
CN112019313B (zh) 确定小区激活时延的方法和装置
WO2021017874A1 (zh) 一种通信方法及通信装置
US20220394701A1 (en) Communication method and apparatus
KR20230074558A (ko) 빔 처리 방법, 장치 및 관련 장비
CN113825229A (zh) 传输配置指示状态TCI state切换的方法和装置
US11963205B2 (en) Resource management method and apparatus
CN112399597A (zh) 更新波束信息的方法和通信装置
US20230023281A1 (en) Communication method, apparatus, and system, and storage medium
US20220416857A1 (en) Data transmission method and apparatus
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2020187125A1 (zh) 数据传输方法和装置
US20230140502A1 (en) Beam indication method and communications apparatus
US11990977B1 (en) Beam training method and apparatus
CN112312441B (zh) 一种通信方法和通信装置
WO2022267876A1 (zh) 一种波束管理的方法和装置
US20240187080A1 (en) Communicating based on quasi-collocation properties
WO2024109710A1 (zh) 信息传输方法、装置及系统
WO2020113573A1 (zh) 一种srs的发送、接收方法及设备
WO2023021388A1 (en) Apparatus and method for measurement reporting for l1/l2 mobility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020919235

Country of ref document: EP

Effective date: 20220826

NENP Non-entry into the national phase

Ref country code: DE