WO2021254472A1 - 传输配置指示状态TCI state切换的方法和装置 - Google Patents

传输配置指示状态TCI state切换的方法和装置 Download PDF

Info

Publication number
WO2021254472A1
WO2021254472A1 PCT/CN2021/100812 CN2021100812W WO2021254472A1 WO 2021254472 A1 WO2021254472 A1 WO 2021254472A1 CN 2021100812 W CN2021100812 W CN 2021100812W WO 2021254472 A1 WO2021254472 A1 WO 2021254472A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
reference signal
terminal device
qcl
time
Prior art date
Application number
PCT/CN2021/100812
Other languages
English (en)
French (fr)
Inventor
管鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021254472A1 publication Critical patent/WO2021254472A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of wireless communications, and in particular to a method and device for switching the transmission configuration indication state TCI state.
  • the beam indication information is generally in the form of indicating a transmission configuration indicator (TCI) state (TCI state).
  • the signaling sent by the network device is correctly received by the terminal device.
  • the terminal device starts to actually use the signaling instruction, there is a time delay in between. Adjust the content to prepare for data reception, etc.
  • the network device sends signaling to the terminal device for TCI state switching, there will also be a period of time delay, for example, it is recorded as the handover delay. How to reduce the handover delay as much as possible is a problem that needs to be solved urgently.
  • the present application provides a method and device for switching the transmission configuration indication state TCI state, in order to reduce the switching delay as much as possible.
  • a communication method is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method may include: the terminal device uses the first transmission configuration to indicate the TCI state TCI state in the process of communicating with the network device, the terminal device receives handover signaling from the network device, and the handover signaling includes instructions for instructing activation Information about the second TCI state; after the first duration, the terminal device uses the second TCI state to communicate with the network device, and the first duration is the same as the reference signal in the second TCI state It is related to whether the reference signal in the first TCI state overlaps.
  • the current TCI state used by the terminal device to communicate with the network device is the first TCI state, after receiving the handover signaling (the activated TCI state indicated in the handover signaling is the second TCI state) after the first time period ,
  • the TCI state used by the terminal device to communicate with the network device is the second TCI state.
  • the second TCI state in the handover signaling is the new TCI state
  • the first TCI state is the currently activated TCI state.
  • the terminal device uses the first TCI state to communicate with the network device. It can be understood that the terminal device uses the beam indicated by the first TCI state to communicate with the network device, or in other words, the terminal device uses the receiving beam indicated by the first TCI state to receive data from The data of the network device, that is, the receiving beam of the terminal device is determined based on the first TCI state.
  • the handover signaling includes information used to indicate the activated second TCI state, which means that the handover signaling includes information used to activate the second TCI state.
  • the first duration may include at least: the duration required to interpret the signaling, the duration required to determine the receiving beam (T L1-RSRP ), and the delay required for time-frequency synchronization.
  • the reference signal in the second TCI state overlaps with the reference signal in the first TCI state, it means that the reference signal in the second TCI state is of the same type as that in the first TCI state Does the reference signal overlap?
  • the reference signal in the first TCI state there are multiple reference signals of the same type in the first TCI state, and multiple reference signals of the same type in the second TCI state; for another example, there are multiple reference signals of the same type in the first TCI state, and the second TCI state has multiple reference signals of the same type.
  • There is one reference signal of the same type in the state another example, there is one reference signal of the same type in the first TCI state, and there are multiple reference signals of the same type in the second TCI state; another example, the same type in the first TCI state
  • the reference signal in the second TCI state may or may not overlap with the reference signal of the same type in the first TCI state.
  • the first TCI state can also be replaced by the first TCI state combination
  • the second TCI state can also be replaced by the second TCI state combination.
  • the activation signaling can be used to activate the second TCI state combination; the first duration indicates the time from receiving the handover signaling to the second TCI state combination; the reference signal in the first TCI state and the second TCI state partially overlap It may mean that the TCI state in the first TCI state combination and the second TCI state combination partially overlap, or it may also mean that the reference signal of the TCI state in the first TCI state combination and the second TCI state combination partially overlap.
  • the time length (ie, the first time length) between when the terminal device receives the handover signaling, that is, the signaling indicating the activation of the second TCI state, and when the terminal device can use the new second TCI state for communication, It is related to whether there is an overlapping reference signal between the second TCI state and the first TCI state. It can be understood that the terminal device determines the time when the second TCI state can be used for data transmission according to whether one or more reference signals in the second TCI state overlap with one or more reference signals in the first TCI state.
  • the receiving beam search time can be 0, correspondingly the first duration is shorter; when the reference signal of QCL type A overlaps, the time-frequency synchronization delay can be 0 , Correspondingly the first duration is shorter. Therefore, the TCI state switching delay (that is, the length of the first time period) is greatly reduced, especially the delay for receiving beam search and the delay for resynchronizing time and frequency.
  • the first duration includes the duration required to determine the receiving beam; when the reference signal in the second TCI state is the same as the reference signal in the first TCI state When the reference signals overlap, and the overlapped reference signal is a reference signal of type D QCL, the length of time required to determine the receiving beam is zero.
  • the first duration includes the duration required to determine the receiving beam; when there is no type D in the second TCI state and the first TCI state When the reference signals of the QCL coincide, the time required for determining the receiving beam is determined based on a preset first formula.
  • the time required to determine the receiving beam is greater than zero.
  • the preset first formula can be defined in advance by the protocol; or when the second TCI state does not coincide with the reference signal of the QCL belonging to type D in the first TCI state, determine what is required for receiving the beam
  • the duration can also be a fixed value or a fixed time range or a pre-configured time, etc., which is not limited.
  • the terminal device can determine whether a certain condition is satisfied (to distinguish, denoted as condition A1), when condition A1 is satisfied, the time required to receive the beam is determined to be 0; when condition A1 is not satisfied, the required time for receiving beam is determined
  • condition A1 can be expressed as: in the second TCI state in the handover signaling and the first TCI state (that is, the currently activated TCI state), there is at least one overlapping reference signal (or at least one reference signal is overlapping State), and the coincident reference signal includes a QCL type D reference signal.
  • the receive beam search time can be 0, thereby greatly reducing the TCI state switching delay, especially the delay used for receive beam search.
  • the first duration includes the duration required for time-frequency synchronization; when the reference signal in the second TCI state and the reference signal in the first TCI state When the reference signal overlaps, and the overlapped reference signal is the reference signal of the following type of QCL, the time length required for the time-frequency synchronization is 0: the reference signal of type A QCL, or the reference signal of type B QCL, or Reference signal for QCL of type C.
  • the first duration includes the duration required for time-frequency synchronization; when the second TCI state and the first TCI state do not belong to the following types
  • the reference signals of the QCL overlap, and the duration required for the time-frequency synchronization is determined based on a preset second formula: a reference signal of a QCL of type A, or a reference signal of a QCL of type B, or a reference signal of a QCL of type C.
  • the preset second formula may be implemented in advance defined by the protocol, for example.
  • the duration required for time-frequency synchronization can also be a fixed value or a fixed time
  • the scope or pre-configured time, etc., are not limited.
  • condition A2 can be expressed as: in the second TCI state in the handover signaling and the first TCI state (that is, the currently activated TCI state), at least one reference signal overlaps or at least one reference signal is in an overlapping state , And the overlapping reference signal is: a reference signal of QCL type A, or a reference signal of QCL type B, or a reference signal of QCL type C.
  • the time required for time-frequency synchronization can be Is 0, thus greatly reducing the TCI state switching delay, especially the time required for time-frequency synchronization.
  • the method further includes: In the first time period, the terminal device determines a receiving beam according to the coincident reference signal in the second TCI state and the first TCI state.
  • the terminal device receives the handover signaling to the terminal Before the device can use the second TCI state to communicate with the network device, the terminal device can determine the receiving beam according to the coincident reference signal in the second TCI state and the first TCI state, thereby saving the time required for receiving the beam and reducing communication interruption. Time length, improve user experience.
  • the method before the terminal device receives the handover signaling from the network device, the method further includes: the terminal device receives the signal from the network device For the configuration information of multiple TCI states, there are multiple reference signals of the same QCL type in each TCI state; wherein, the multiple TCI states include the first TCI state and/or the second TCI state.
  • the scope of the TCI state can be expanded, so that one TCI state can include multiple reference signals of the same type, that is, there are multiple reference signals of the same QCL type in the TCI state.
  • one TCI state can include multiple reference signals of the same type, that is, there are multiple reference signals of the same QCL type in the TCI state.
  • there are multiple reference signals of QCL type D in a TCI state
  • there are multiple reference signals of QCL type A in a TCI state and so on.
  • the reference signals included in the multiple TCI states may overlap.
  • the terminal device can use this reference signal in the overlapping state during this switching process to keep the receiving beam and For information about time-frequency synchronization, there is no need to perform a beam search process and/or a synchronization process on a new beam, which can effectively reduce the time delay.
  • the method further includes: After the terminal device uses the second TCI state to communicate with the network device, the terminal device reports to the network device information about the reference signal resource included in the second TCI state, where the reference signal resource The information is the information of the reference signal in the second TCI state that does not overlap with the first TCI state.
  • the terminal device reports the reference signal resource information included in the second TCI state to the network device, so that the network device can determine the beam used for communication, or in other words, to indicate the beam used for communication to the network device, or Said, in order to recommend the beam used for communication to the network equipment.
  • the information of the reference signal resource may include a reference signal identifier, for example.
  • the terminal device may select a better or optimal reference signal resource for reporting.
  • the terminal device uses the second TCI state to communicate with the network device, considering that there are multiple reference signals of the same QCL type in the TCI state, when the quality of other reference signal resources is good, the terminal device can recommend Use other reference signal resources with better quality, that is, the terminal device can recommend the use of the beam used in the communication process, and report to the network device. Therefore, not only can the TCI state switching delay be reduced, but also the communication quality in the communication process can be improved as much as possible.
  • a communication method is provided.
  • the method can be executed by a terminal device, or can also be executed by a chip or chip system or circuit configured in the terminal device, which is not limited in this application.
  • the method may include: the terminal device uses the first transmission configuration to indicate the TCI state TCI state in the process of communicating with the network device, the terminal device receives handover signaling from the network device, and the handover signaling includes instructions for instructing activation Information about the second TCI state; after the first duration, the terminal device uses the second TCI state to communicate with the network device, and the first duration and the reference signal in the second TCI state are the same as those in the second TCI state. Whether the reference signal in the first TCI state has a quasi co-location QCL relationship with the same signal is related.
  • the terminal device uses the first TCI state to communicate with the network device. It can be understood that the terminal device uses the beam indicated by the first TCI state to communicate with the network device, or in other words, the terminal device uses the receiving beam indicated by the first TCI state to receive data from The data of the network device, that is, the receiving beam of the terminal device is determined based on the first TCI state.
  • the same signal or the same signal may be a synchronization signal block (synchronization signal block, SSB), that is, whether the reference signal in the second TCI state and the reference signal in the first TCI state are the same as the SSB It has a quasi co-location QCL relationship.
  • SSB synchronization signal block
  • the same signal may be the SSB in the first TCI state or the second TCI state configuration information.
  • the reference signal in the first TCI state includes: channel state information reference signal (channel state information reference signal, CSI-RS) #1 and SSB#1, where CSI-RS#1 and SSB#1 have a QCL relationship;
  • the second TCI state includes CSI-RS#2 and SSB#1, where CSI-RS#2 and SSB#1 have a QCL relationship.
  • the reference signal CSI-RS#2 in the second TCI state and the reference signal CSI-RS#1 in the first TCI state have a QCL relationship with the same signal SSB#1.
  • the same signal can also be a signal in another TCI state (such as SSB), for example, the same signal can also be an SSB in a TCI state known by the terminal device; another example, the same signal can also be a terminal device The SSB in the maintained TCI state.
  • TCI state such as SSB
  • the same signal can also be an SSB in a TCI state known by the terminal device; another example, the same signal can also be a terminal device
  • the SSB in the maintained TCI state for the known TCI state and the maintained TCI state, refer to the description of the following embodiments.
  • the first duration may include at least: the duration required to interpret the signaling, the duration required to determine the receiving beam (T L1-RSRP ), and the delay required for time-frequency synchronization.
  • the QCL type may be one or more of A, B, C, and D.
  • it may be QCL types A and C, that is, QCL types that are more related to time domain synchronization.
  • the QCL type D reference signal in the first TCI state and the second TCI state is the same signal QCL, there is no need to perform the receive beam search again.
  • the time length between when the terminal device receives the handover signaling, that is, the signaling indicating the activated second TCI state, and when the terminal device can use the new TCI state for communication i.e., the first time length
  • the terminal device determines the time when the second TCI state can be used for data transmission according to whether the reference signal in the second TCI state and the reference signal in the first TCI state have a QCL relationship with the same signal.
  • the time delay for re-synchronization of time and frequency is 0, and accordingly the first duration is shorter.
  • the TCI state switching delay is greatly reduced, especially the delay of re-synchronizing time and frequency.
  • the first duration includes the duration required for time-frequency synchronization; when the reference signal in the second TCI state and the reference signal in the first TCI state When the reference signal and the same signal have the following types of QCL relationships, the duration required for the time-frequency synchronization is 0: Type A QCL relationships, or Type B QCL relationships, or Type C QCL relationships.
  • the duration required for the time-frequency synchronization is 0: QCL of type A Relationship, or QCL relationship of type B, or QCL relationship of type C.
  • the first duration includes the duration required for time-frequency synchronization; when the reference signal in the second TCI state and the reference signal in the first TCI state When the reference signal does not have the following type of QCL relationship with the same signal, the time required for time-frequency synchronization is determined based on a preset second formula: a reference signal of type A QCL, or a reference signal of type B QCL, or Reference signal for QCL of type C.
  • the terminal device can determine whether a certain condition is met (to distinguish, denoted as condition B1), when condition B1 is met, the time required for time-frequency synchronization is 0; when condition B1 is not met, time-frequency synchronization is required
  • condition B1 may be expressed as: the reference signal in the second TCI state in the handover signaling and the reference signal in the first TCI state (that is, the currently activated TCI state) have a QCL relationship with the same signal (such as SSB).
  • the QCL type can be one or more of A, B, C, and D.
  • it can be QCL types A and C, that is, QCL types that are more related to time domain synchronization.
  • the terminal device determines the time when the new TCI state can be used for data transmission according to whether the reference signal in the second TCI state and the reference signal in the first TCI state have a QCL relationship with the same signal. For example, when the reference signal in the second TCI state and the reference signal in the first TCI state have a QCL relationship with the same signal, the time delay for resynchronizing time and frequency is zero. Thus, the TCI state switching delay is greatly reduced, especially the delay of re-synchronizing time and frequency.
  • the first duration includes the duration required to determine the receiving beam; when the reference signal in the second TCI state is the same as the reference signal in the first TCI state When the reference signal and the same signal have a QCL relationship of type D, the time required for determining the receiving beam is 0.
  • the time required to determine the receiving beam is 0.
  • the first duration includes the duration required to determine the receiving beam; when the reference signal in the second TCI state is the same as the reference signal in the first TCI state When the reference signal does not have a QCL relationship of type D with the same signal, the time required for determining the receiving beam is determined based on a preset first formula.
  • a communication method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or chip system or circuit configured in the network device, which is not limited in this application.
  • the method may include: the network device uses the first transmission configuration to indicate the TCI state TCI state in the process of communicating with the terminal device, the network device sends handover signaling to the terminal device, and the handover signaling includes a signal for indicating activation Information about the second TCI state; after the first duration, the network device uses the second TCI state to communicate with the terminal device, and the first duration and: the reference signal in the second TCI state and Whether the reference signal in the first TCI state has coincidence correlation.
  • the network device uses the first TCI state to communicate with the terminal device. It can be understood that the network device uses the beam indicated by the first TCI state to communicate with the terminal device.
  • the terminal device transmits data, that is, the transmission beam of the network device is determined based on the first TCI state.
  • the first duration may include at least: the duration required to interpret the signaling, the duration required to determine the receiving beam (T L1-RSRP ), and the delay required for time-frequency synchronization.
  • the terminal device receives the handover signaling, that is, the signaling indicating the activated second TCI state, and the terminal device can use the new TCI state for communication, there is a period of time (that is, the first duration)
  • the length of this period of time can be related to whether the second TCI state and the first TCI state have overlapping reference signals. For example, when the reference signal of QCL type D overlaps, it can be determined that the terminal device's receiving beam search time can be 0; when the reference signal of QCL type A overlaps, the network device can determine that the time delay for the terminal device to resynchronize can be Is 0. Therefore, the TCI state switching delay is greatly reduced, especially the delay for receiving beam search and the delay for resynchronizing time and frequency.
  • the first duration includes the duration required to determine the receiving beam; when the reference signal in the second TCI state is the same as the reference signal in the first TCI state When the reference signals overlap, and the overlapped reference signal is a reference signal of type D QCL, the length of time required to determine the receiving beam is zero.
  • the first duration includes the duration required to determine the receiving beam; when there is no type D in the second TCI state and the first TCI state When the reference signals of the QCL coincide, the time required for determining the receiving beam is determined based on a preset first formula.
  • the network device can determine The terminal device determines that the time required to receive the beam is zero.
  • the first duration includes the duration required for time-frequency synchronization; when the reference signal in the second TCI state and the reference signal in the first TCI state When the reference signal overlaps, and the overlapped reference signal is the reference signal of the following type of QCL, the time length required for the time-frequency synchronization is 0: the reference signal of type A QCL, or the reference signal of type B QCL, or Reference signal for QCL of type C.
  • the first duration includes the duration required for time-frequency synchronization; when the second TCI state and the first TCI state do not belong to the following types
  • the reference signals of the QCL overlap, and the duration required for the time-frequency synchronization is determined based on a preset second formula: a reference signal of a QCL of type A, or a reference signal of a QCL of type B, or a reference signal of a QCL of type C.
  • the network device may determine that the time required for time-frequency synchronization of the terminal device is zero.
  • the method further includes: In the first time period, the network device determines the receiving beam of the terminal device according to the coincident reference signal in the second TCI state and the first TCI state.
  • the method before the network device sends handover signaling to the terminal device, the method further includes: the network device sends multiple signals to the terminal device For the configuration information of the TCI state, there are multiple reference signals of the same QCL type in each TCI state; wherein, the multiple TCI states include the first TCI state and/or the second TCI state.
  • the method further includes: After the network device uses the second TCI state to communicate with the terminal device, the network device receives information from the reference signal resource included in the second TCI state reported by the terminal device, where the reference The signal resource information is the information of the reference signal in the second TCI state that does not overlap with the first TCI state.
  • the network device receives information from the reference signal resource included in the second TCI state reported by the terminal device, so as to determine the beam used for communication.
  • the network device may notify the terminal device of the resource required for reporting when sending the handover signaling to the terminal device, so that the terminal device can report according to the resource required for the report.
  • a communication method is provided.
  • the method may be executed by a network device, or may also be executed by a chip or chip system or circuit configured in the network device, which is not limited in this application.
  • the method may include: the network device uses the first transmission configuration to indicate the TCI state TCI state in the process of communicating with the terminal device, the network device sends handover signaling to the terminal device, and the handover signaling includes a signal for indicating activation Information about the second TCI state; after the first duration, the network device uses the second TCI state to communicate with the terminal device, and the first duration and: the reference signal in the second TCI state and Whether the reference signal in the first TCI state has a quasi co-location QCL relationship with the same signal is related.
  • the network device uses the first TCI state to communicate with the terminal device. It can be understood that the network device uses the beam indicated by the first TCI state to communicate with the terminal device.
  • the terminal device transmits data, that is, the transmission beam of the network device is determined based on the first TCI state.
  • the same signal may be an SSB, that is, whether the reference signal in the second TCI state and the reference signal in the first TCI state have a quasi co-located QCL relationship with the same SSB.
  • the first duration may include at least: the duration required to interpret the signaling, the duration required to determine the receiving beam (T L1-RSRP ), and the delay required for time-frequency synchronization.
  • the QCL type may be one or more of A, B, C, and D.
  • it may be QCL types A and C, that is, QCL types that are more related to time domain synchronization.
  • the terminal device receives the handover signaling, that is, the signaling indicating the activation of the second TCI state, and the terminal device can use the second TCI state for communication, there is a period of time (that is, the first duration)
  • the length of this period of time can be related to whether the second TCI state and the first TCI state have a QCL relationship with the same signal. For example, when the reference signal in the second TCI state and the reference signal in the first TCI state have a QCL relationship with the same signal, the network device may determine that the time delay for the terminal device to resynchronize time and frequency may be zero.
  • the TCI state switching delay is greatly reduced, especially the delay of re-synchronizing time and frequency.
  • the first duration includes the duration required for time-frequency synchronization; when the reference signal in the second TCI state and the reference signal in the first TCI state When the reference signal and the same signal have the following types of QCL relationships, the duration required for the time-frequency synchronization is 0: Type A QCL relationships, or Type B QCL relationships, or Type C QCL relationships.
  • the duration required for the time-frequency synchronization is 0: QCL of type A Relationship, or QCL relationship of type B, or QCL relationship of type C.
  • the first duration includes the duration required for time-frequency synchronization; when the reference signal in the second TCI state and the reference signal in the first TCI state When the reference signal does not have the following type of QCL relationship with the same signal, the time required for time-frequency synchronization is determined based on a preset second formula: a reference signal of type A QCL, or a reference signal of type B QCL, or Reference signal for QCL of type C.
  • the network device can determine that the time-frequency synchronization of the terminal device The required duration is 0: QCL relationship of type A, or QCL relationship of type B, or QCL relationship of type C.
  • the first duration includes the duration required to determine the receiving beam; when the reference signal in the second TCI state is the same as the reference signal in the first TCI state When the reference signal and the same signal have a QCL relationship of type D, the time required for determining the receiving beam is 0.
  • the time required to determine the receiving beam is 0.
  • the first duration includes the duration required to determine the receiving beam; when the reference signal in the second TCI state is the same as the reference signal in the first TCI state When the reference signal does not have a QCL relationship of type D with the same signal, the time required for determining the receiving beam is determined based on a preset first formula.
  • a communication device configured to execute the method provided in the above-mentioned first aspect or the second aspect.
  • the communication device may include a module for executing the method provided in the first aspect or the second aspect.
  • the communication device includes a transceiver module and a processing module.
  • the transceiver module (which may include a sending module and a receiving module) is used to perform the signal or information transceiving operations in the above-mentioned solution; the processing module is used to perform operations other than the receiving and sending in the above-mentioned solution, such as determining the time required for receiving the beam and Determine the time required for time-frequency synchronization, etc.
  • a communication device is provided, and the communication device is configured to execute the method provided in the third aspect or the fourth aspect.
  • the communication device may include a module for executing the method provided in the third aspect or the fourth aspect.
  • the communication device includes a transceiver module and a processing module.
  • the transceiver module (which may include a sending module and a receiving module) is used to perform the signal or information transceiving operations in the above-mentioned solution;
  • the processing module is used to perform operations other than the receiving and sending in the above-mentioned solution, such as determining the time required for receiving the beam and Determine the time required for time-frequency synchronization and configure TCI state.
  • a communication device including a processor.
  • the processor is coupled with the memory, and can be used to execute instructions in the memory to implement the foregoing first aspect or second aspect, and the method in any one of the first aspect or the second aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface, used for signal transmission and reception, or input and output of computer programs or instructions.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a terminal device.
  • the communication interface may be an input/output interface, which may be an input/output interface, interface circuit, output circuit, input circuit, etc. on the chip or chip system. Pins or related circuits, etc.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the method in any one of the foregoing third aspect or fourth aspect and the third aspect or fourth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, the processor is coupled with the communication interface, and the communication interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the communication device is a network device.
  • the communication interface may be a transceiver, or an input/output interface, used for signal transmission and reception, or input and output of computer programs or instructions.
  • the communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the communication device is a chip or a chip system configured in a network device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin, or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or a logic circuit.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device in a ninth aspect, includes a processor coupled with a memory.
  • the processor executes a computer program or instruction in the memory, the first aspect or the second aspect and the first aspect or The method in any possible implementation of the second aspect is executed.
  • a communication device in a tenth aspect, includes a processor coupled with a memory.
  • the processor executes a computer program or instruction in the memory, the third aspect or the fourth aspect and the third aspect or The method in any one of the possible implementations of the fourth aspect is executed.
  • a communication device in an eleventh aspect, includes a transceiver, a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the communication device A method as in the first aspect or the second aspect and any one of the first aspect or the second aspect may be implemented.
  • a communication device in a twelfth aspect, includes a transceiver, a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the communication device Implement the method in any one of the possible implementation manners of the third aspect or the fourth aspect, and the third aspect or the fourth aspect.
  • a communication device in a thirteenth aspect, includes a processor and an interface.
  • the processor is coupled to the memory through the interface.
  • the processor executes a computer program or instruction in the memory, the first aspect or the second aspect Aspect and the method in any one of the possible implementation manners of the first aspect or the second aspect are executed.
  • a communication device in a fourteenth aspect, includes a processor and an interface.
  • the processor is coupled to the memory through the interface.
  • the processor executes a computer program or instruction in the memory, the third or fourth aspect Aspect and the method in any one of the possible implementation manners of the third aspect or the fourth aspect are executed.
  • a chip including: a processor and an interface, used to call and run a computer program stored in the memory from a memory, and execute the first aspect or the second aspect and the first or second aspect The method in any one of the possible implementations.
  • a chip including: a processor and an interface, used to call and run a computer program stored in the memory from a memory, and execute the third aspect or the fourth aspect, and the third or fourth aspect The method in any one of the possible implementations.
  • a computer-readable storage medium is provided with a computer program stored thereon.
  • the computer program When the computer program is executed by a communication device, the communication device realizes the first aspect or the second aspect and the first or second aspect.
  • the method in any possible implementation of the two aspects.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the third aspect or the fourth aspect and the third or the third aspect.
  • the method in any possible implementation of the four aspects.
  • a computer program product containing instructions that, when executed by a computer, cause a communication device to implement the method provided in the first aspect or the second aspect.
  • a computer program product containing instructions which when executed by a computer, causes a communication device to implement the method provided in the third aspect or the fourth aspect.
  • a communication system including the aforementioned network equipment and terminal equipment.
  • Fig. 1 and Fig. 2 are schematic diagrams of a communication system applied in an embodiment of the present application.
  • 3 and 4 are schematic diagrams of the format of MAC-CE applicable to the embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a communication method provided according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the overlap of reference signals in the new TCI state and the old TCI state applicable to the embodiments of the present application.
  • FIG. 7 is a schematic diagram of CSI-RS resources of a common SSB applicable to an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a communication method applicable to an embodiment of the present application.
  • Fig. 9 is a schematic flow chart for determining whether to train a receiving beam and whether to perform time-frequency synchronization, which is applicable to an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a communication method suitable for another embodiment of the present application.
  • FIG. 11 is a schematic flowchart of determining whether time-frequency synchronization is required for another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is another schematic block diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • the embodiments of this application can be applied to beam-based communication systems, such as: 5th generation (5G) systems, new radio (NR), long term evolution (LTE) systems, LTE frequency division dual Frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS) or other evolved communication systems, etc.
  • 5G 5th generation
  • NR new radio
  • LTE long term evolution
  • FDD frequency division dual Frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • the communication system applied in the embodiments of the present application may include one or more network devices and one or more terminal devices.
  • a network device can transmit data or control signaling to one or more terminal devices.
  • multiple network devices can also transmit data or control signaling for one terminal device at the same time.
  • FIG. 1 is a schematic diagram of a communication system 100 applied in an embodiment of this application.
  • the communication system 100 includes a network device or 110 and a plurality of terminal devices 120 (terminal device 120a and terminal device 120b as shown in FIG. 1).
  • the network device 110 may simultaneously transmit multiple analog beams through multiple radio frequency channels to transmit data to multiple terminal devices.
  • the network device transmits beam 1 and beam 2 at the same time, where beam 1 is used to transmit data for the terminal device 120a, and beam 2 is used to transmit data for the terminal device 120b.
  • the beam 1 may be referred to as the serving beam of the terminal device 120a, and the beam 2 may be referred to as the serving beam of the terminal device 120b.
  • the terminal device 120a and the terminal device 120b may belong to the same cell.
  • FIG. 2 shows another schematic diagram of a communication system 200 applicable to an embodiment of the present application.
  • the communication system 200 may include at least two network devices, such as the network device 210 shown in FIG. 2 (the network device 210a and the network device 210b shown in FIG. 2); the communication system 200 also It may include at least one terminal device, such as the terminal device 220 shown in FIG. 2.
  • the terminal device 220 may establish a wireless link with the network device 210a and the network device 210b through dual connectivity (DC) technology or multi-connection technology.
  • the network device 210a may be, for example, a primary base station
  • the network device 210b may be, for example, a secondary base station.
  • the network device 210a is the network device when the terminal device 220 initially accesses, and is responsible for radio resource control (RRC) communication with the terminal device 220.
  • RRC radio resource control
  • the network device 210b may be added during RRC reconfiguration. , Used to provide additional wireless resources.
  • FIG. 1 and FIG. 2 are only exemplary illustrations, and the present application is not limited thereto.
  • the embodiments of the present application may also include a larger number of network devices or terminal devices.
  • the terminal equipment in the embodiments of the present application may also be referred to as: user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), access terminal, user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • access terminal user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a device that provides users with voice/data connectivity, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some examples of terminals are: mobile phones (mobile phones), tablets, notebook computers, palmtop computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocols , SIP) telephone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing equipment connected to wireless modem, vehicle Devices, wearable devices, terminal devices in a 5G network, or terminal devices in a public land mobile network (PLMN) that will evolve in the future, etc., which
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device can also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device, and may be a transmission reception point (TRP). ), it can also be an evolved base station (evolved NodeB, eNB or eNodeB) in the LTE system, a home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU) , It can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and a network device in a 5G network or
  • the network equipment in the future evolved PLMN network may be an access point (AP) in a WLAN, or a gNB in a new radio system (new radio, NR) system, which is not limited in the embodiment of the present application.
  • AP access point
  • WLAN
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • CU centralized unit
  • DU distributed unit
  • RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node
  • CU-UP node user plane CU node
  • RAN equipment of DU node may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, or a control plane CU node (CU).
  • -CP node user plane CU node (CU-UP node) and RAN equipment of DU node.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment.
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) , It can also belong to the base station corresponding to the small cell.
  • the small cell here can include: metro cell, micro cell, pico cell, femto cell, etc. , These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-speed data transmission services.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit a signal can be called a transmission beam (Tx beam), it can be called a spatial domain transmission filter or a spatial transmission parameter; the beam used to receive a signal can be called To receive the beam (reception beam, Rx beam), it can be called a spatial domain receive filter (spatial domain receive filter) or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technology.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology, etc.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One beam corresponds to one or more antenna ports, which are used to transmit data channels, control channels, and sounding signals.
  • One or more antenna ports corresponding to a beam can also be regarded as an antenna port set.
  • network equipment and terminals in order to overcome path loss, network equipment and terminals usually use high-gain antenna arrays to form directional analog beams for communication. When the directions of sending and receiving are aligned, normal communication can be realized.
  • the transmission beam of the network device and the reception beam of the terminal device need to be aligned.
  • the aligned transmitting beam of the network device and the receiving beam of the terminal device may be referred to as a downlink beam pair or downlink beam for short.
  • the communication link formed by the downlink beam pair may be referred to as a downlink beam pair link for short.
  • the receiving beam of the network equipment and the transmitting beam of the terminal equipment need to be aligned.
  • the aligned receiving beam of the network device and the transmitting beam of the terminal device may be referred to as an uplink beam pair or uplink beam for short.
  • the communication link formed by the uplink beam pair may be referred to as an uplink beam pair link for short.
  • the transmitting beam and the receiving beam of the network device are sometimes referred to as the network device beam for short.
  • the transmitting beam and receiving beam of a terminal device are sometimes referred to as terminal device beams (or terminal beams) for short.
  • the network device can send signaling to notify the terminal device about the beam change. After receiving the signaling sent by the network device, the terminal device updates the used beam according to the information instruction of the network device.
  • Beams generally correspond to resources. For example, when performing beam measurements, network devices can use different beams to send signals on different resources, terminal devices use different beams to receive signals on different resources, and terminal devices can feed back to the network devices on different resources The quality of the measured signal, so that the network device knows the quality of the corresponding beam.
  • the beam information is also indicated by its corresponding resource. For example, the network device instructs the terminal device physical downlink shared channel (PDSCH) beam information through the transmission configuration indicator (TCI) resource in the downlink control information (DCI).
  • PDSCH physical downlink shared channel
  • TCI transmission configuration indicator
  • each beam of the network device corresponds to a resource, so the resource identifier (or index) can be used to uniquely identify the beam corresponding to the resource.
  • the resource can be an uplink signal resource or a downlink signal resource.
  • Uplink signals include, but are not limited to: uplink random access sequence, sounding reference signal (sounding reference signal, SRS), demodulation reference signal (demodulation reference signal, DMRS) (such as uplink control channel demodulation reference signal or uplink data channel demodulation) Reference signal) and uplink phase noise tracking signal.
  • sounding reference signal sounding reference signal
  • demodulation reference signal demodulation reference signal, DMRS
  • uplink phase noise tracking signal uplink phase noise tracking signal.
  • Downlink signals include but are not limited to: channel state information reference signal (CSI-RS), cell specific reference signal (CS-RS), UE specific reference signal (user equipment specific reference signal, US-RS), demodulation reference signal (demodulation reference signal, DMRS) (downstream control channel demodulation reference signal or downlink data channel demodulation reference signal), downlink phase noise tracking signal, and synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block, SS/PBCH block).
  • the SS/PBCH block may be referred to as a synchronization signal block (synchronization signal block, SSB).
  • Radio resource control radio resource control
  • a resource is a data structure, including its corresponding uplink/downlink signal related parameters, such as the type of uplink/downlink signal, the resource element that carries the uplink/downlink signal, the transmission time and period of the uplink/downlink signal , The number of ports used to send uplink/downlink signals, etc.
  • Each uplink/downlink signal resource has a unique identifier to identify the uplink/downlink signal resource. It is understandable that the identifier of the resource may also be referred to as the index of the resource, which is not limited in the embodiment of the present application.
  • beam management resources may refer to resources used for beam management, and may also be embodied as resources used for calculation and measurement of beam quality.
  • beam quality may include but is not limited to: layer 1 reference signal received power (L1-RSRP), layer 1 reference signal received quality (L1-RSRQ), layer 1 signal and interference Noise ratio (layer 1 signal to interference and noise ratio, L1-SINR), etc.
  • beam management resources may include: synchronization signals, broadcast channels, downlink channel measurement reference signals, tracking signals, downlink control channel demodulation reference signals, downlink shared channel demodulation reference signals, uplink sounding reference signals, uplink random access signals, etc. .
  • the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port can be used to determine the parameters of the other antenna port that has the QCL relationship with the antenna port, or the two antenna ports have the same parameters , Or, the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following: delay spread, Doppler spread, Doppler shift, average delay, average Gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters can include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle of departure, AOD), average departure angle AOD, AOD extension, reception Antenna spatial correlation parameters, transmit antenna spatial correlation parameters, transmit beams, receive beams, and resource identifiers.
  • angles may be decomposition values of different dimensions, or a combination of decomposition values of different dimensions.
  • Antenna ports are antenna ports with different antenna port numbers, and/or antenna ports that have the same antenna port number for information transmission or reception in different time and/or frequency and/or code domain resources, and/or have different Antenna port number The antenna port for sending or receiving information in different time and/or frequency and/or code domain resources.
  • the resource identifier may include: CSI-RS resource identifier, or SRS resource identifier, or SSB resource identifier, or the resource identifier of the preamble sequence transmitted on the Physical Random Access Channel (PRACH), or the demodulation reference signal (
  • the resource identifier of demodulation reference signal (DMRS) is used to indicate the beam on the resource.
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, and delay spread;
  • Type B Doppler frequency shift, Doppler spread
  • Type C Doppler frequency shift, average delay
  • Type D (type D): Space receiving parameters.
  • the QCL relationship refers to the QCL relationship of type D, it can be considered as an airspace QCL.
  • the QCL relationship between the downlink signal port and the downlink signal port, or between the uplink signal port and the uplink signal port can be that the two signals have the same AOA or AOD. Yu means the same receiving beam or transmitting beam.
  • the AOA and AOD of the two signals can have a corresponding relationship, or the AOD and AOA of the two signals have a corresponding relationship, that is, the beam can be used Reciprocity, the uplink transmit beam is determined according to the downlink receive beam, or the downlink receive beam is determined according to the uplink transmit beam.
  • the two antenna ports are spatial QCL, it can mean that the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are spatial QCL, it can mean that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the signal transmitted on the port with the spatial QCL relationship may also have a corresponding beam, and the corresponding beam includes at least one of the following: the same receiving beam, the same transmitting beam, and the transmitting beam corresponding to the receiving beam (corresponding to the reciprocal Scene), the receiving beam corresponding to the transmitting beam (corresponding to the scene with reciprocity).
  • the signal transmitted on the port with the spatial QCL relationship can also be understood as using the same spatial filter to receive or transmit the signal.
  • the spatial filter may be at least one of the following: precoding, weight of the antenna port, phase deflection of the antenna port, and amplitude gain of the antenna port.
  • the spatial receiving parameter (ie, QCL of type D) can be understood as a parameter used to indicate the direction information of the receiving beam, or in other words, determining the receiving beam can be regarded as determining the receiving spatial parameter in QCL type D.
  • QCL types A, B, and C various parameters in QCL types A, B, and C (or QCL of types A, B, and C), such as average delay and Doppler spread, are mainly used for time domain synchronization; Doppler shift And time delay spread, it is mainly used for frequency domain synchronization. Therefore, the parameters that determine other types of QCL (such as QCL types A, B, C) can be referred to as time-frequency synchronization.
  • the spatial relationship may also be referred to as uplink transmission configuration indicator (UL TCI).
  • the spatial relationship can be used to determine the transmission beam of the uplink signal.
  • the spatial relationship can be determined by beam training.
  • the reference signal used for beam training may be, for example, an uplink reference signal, such as SRS, or a downlink reference signal, such as SSB or CSI-RS.
  • the terminal device may determine the transmitting beam based on the spatial relationship indicated by the network device, and the network device may determine the receiving beam based on the same spatial relationship.
  • the spatial relationship may also include related parameters for uplink transmission power control, including one or more of the following: Pathloss Reference RS, reference power, compensation coefficient (Alpha), open loop or closed loop Power control indicator, closed loop power control number (closedLoopIndex), etc.
  • Pathloss Reference RS reference power
  • compensation coefficient Alpha
  • open loop or closed loop Power control indicator open loop or closed loop Power control indicator
  • closed loop power control number closedLoopIndex
  • SR is configured by network equipment to each terminal device.
  • the following is a format of SR.
  • TCI state (TCI state)
  • the TCI state can be used to indicate the QCL relationship between the two reference signals.
  • the TCI state includes the type of QCL (multiple (such as two) different QCL types can be configured) and the reference signal of each QCL type.
  • the reference signal may specifically include: the carrier component (CC) identification (ID) and/or the bandwidth part (BWP) ID of the reference signal, and the number (or rather, the number of each reference signal resource). Reference signal resource identification).
  • the reference signal resource number may be, for example, at least one of the following: non-zero power (NZP) CSI-RS reference signal resource identifier (NZP-CSI-RS-ResourceId), non-zero power CSI-RS reference Signal resource set identifier (NZP-CSI-RS-ResourceSetId) or SSB index (SSB-Index).
  • NZP non-zero power
  • NZP-CSI-RS-ResourceId non-zero power CSI-RS reference Signal resource set identifier
  • SSB-Index SSB index
  • the information of the sending beam (that is, the sending beam of the network device or the receiving beam of the terminal device) can be indicated through the TCI state.
  • Each TCI state includes its own index (TCI stateId) and two QCI information (QCI information, QCl-Info).
  • Each QCl-Info may include a reference signal resource (referenceSignal), which indicates that the resource using the TCI state and the reference signal resource included in the QCL-Info form a QCL relationship. For example, if a TCI state is configured for resource 1, where the resource included in the QCL-Info included in the TCI state is resource 2, it means that resource 1 and resource 2 are QCL.
  • TCI state is configured by network equipment to each terminal device.
  • the following is a format of TCI state.
  • the terminal device may determine the receiving beam based on the TCI state indicated by the network device, and the network device may determine the transmitting beam based on the same TCI state.
  • the TCI state can be globally configured. In TCI states configured for different cells and different BWPs, if the indexes of the TCI states are the same, the configurations of the corresponding TCI states are also the same.
  • TCI can be used to indicate TCI state.
  • the network device can configure the TCI state list (list) for the terminal device through high-level signaling (such as radio resource control (RRC)). For example, the network device can use the TCI state in the RRC message. Add the mode list (TCI statesToAddModList) to configure the TCI state list for the terminal device.
  • the TCI state list may include multiple TCI states. For example, the network device may configure a maximum of 64 TCI states for each BWP in each cell.
  • the network device can activate one or more TCI states through high-level signaling (such as medium access control-control element (MAC-CE)).
  • the activated TCI state is a subset of the TCI state list configured in the above RRC message.
  • the network device can activate up to 8 TCI states for each BWP in each cell.
  • the network device may also indicate a selected TCI state through the TCI field in the physical layer signaling (downlink control information (DCI)).
  • DCI downlink control information
  • the DCI may be suitable for DCI scheduling physical downlink resources, for example.
  • the configuration information of a TCI state may include the identification of one or two reference signal resources and the associated QCL type.
  • the terminal device can demodulate the physical downlink control channel (physical downlink control channel, PDCCH) or physical downlink shared channel ( physical downlink shared channel, PDSCH).
  • the terminal device can know which transmit beam is used by the network device to send the signal, and can then determine which receive beam to use to receive the signal according to the beam pairing relationship determined by the channel measurement described above.
  • the terminal device may determine the receiving beam for receiving the PDSCH according to the TCI field in the DCI on the PDCCH.
  • the network device can give beam instructions to the terminal device through different signaling, which can instruct the terminal device on how to receive the downlink physical channel or physical signal, and can also instruct the terminal device on how to send the uplink physical channel or Physical signal.
  • the beam indication information may include but is not limited to one or more of the following: beam number, beam management resource number, uplink signal resource number, downlink signal resource number, absolute index of beam, relative index of beam, logical index of beam, beam correspondence
  • the index of the antenna port, the antenna port group index corresponding to the beam, the index of the downlink signal corresponding to the beam, the time index of the downlink synchronization signal block corresponding to the beam, the beam pair link (BPL) information, and the transmission parameters corresponding to the beam (Tx parameter), the reception parameter corresponding to the beam (Rx parameter), the transmission weight corresponding to the beam, the weight matrix corresponding to the beam, the weight vector corresponding to the beam, the reception weight corresponding to the beam, the index of the transmission weight corresponding to the beam, and the corresponding beam
  • the network device may also allocate QCL identifiers to beams having a QCL relationship among the beams associated with the frequency resource group.
  • the beam indication information may also be embodied as TCI, and the TCI may include various parameters, such as: cell ID, BWP ID, reference signal identifier, synchronization signal block identifier, QCL type, and so on.
  • the network equipment can use signaling, such as high-level signaling (such as RRC, MAC-CE) or physical layer signaling (such as DCI), to perform beam indication for terminal equipment.
  • signaling such as high-level signaling (such as RRC, MAC-CE) or physical layer signaling (such as DCI), to perform beam indication for terminal equipment.
  • network equipment can use a three-level signaling structure of RRC signaling + MAC-CE signaling + DCI signaling to perform PDSCH beam indication.
  • Network equipment can configure TCI states for terminal equipment through high-level signaling (such as RRC signaling). For example, network equipment can configure up to 128 TCI states through RRC signaling. After that, the network device can activate one or more TCI states through high-level signaling (such as MAC-CE signaling), for example, up to 8 TCI states can be activated. The activated TCI state is a subset of the TCI state configured by the above RRC signaling. Thereafter, the network device may also indicate a selected TCI state through the TCI field in the physical layer signaling (such as DCI), and the selected TCI state is used for the current PDSCH transmission.
  • the DCI may be suitable for DCI scheduling physical downlink resources (such as PDSCH), for example.
  • the network device can configure the TCI state of each BWP of each CC for the terminal device through RRC signaling, and the network device can use MAC-CE signaling to perform TCI state for each BWP of each CC of the terminal device. Activation.
  • FIG. 3 is a schematic diagram of the format of the MAC-CE applicable to the embodiment of the present application.
  • an octet (Oct) in FIG. 3 represents a byte composed of 8 bits (bits).
  • the MAC-CE can be used to configure the TCI state for the PDSCH in the indicated serving cell.
  • the MAC-CE includes an identifier (ID) of a serving cell (serving cell), an ID of a BWP, and an indication bit used to indicate whether each TCI state is activated.
  • ID identifier
  • serving cell serving cell
  • ID of a BWP an indication bit used to indicate whether each TCI state is activated.
  • Ti in the MAC-CE is used to indicate whether each TCI state is activated.
  • Each Ti can occupy one bit, and i can correspond to the i-th TCI state in the TCI state list configured through the TCI statesToAddModList in the RRC message.
  • i is equal to the value of TCI state ID (TCI stateId).
  • TCI stateId TCI state ID
  • the activated TCI state indicated by the MAC-CE can be understood as: the TCI state configured for the serving cell and BWP indicated by the MAC-CE, that is, when the PDSCH is transmitted on the BWP in the serving cell, it can be based on The information indicated by the TCI state determines the transmission beam and the reception beam.
  • the network equipment configures the TCI state of the CORESET of each BWP of each CC for the terminal equipment through RRC signaling, and the network equipment uses MAC-CE signaling for each BWP of each CC of the terminal equipment.
  • the control resource set indicates a TCI state for the transmission of the target CORESET. Since each CC can be configured with multiple control resource sets (CORESET), and the CORESET ID is unique within a CC, this signaling carries multiple fields, including the CC serving cell ID field and the CORESET ID field To uniquely determine the CORESET applicable to the signaling, it can be understood that the number of CORESET is unique within a CC.
  • FIG. 4 is a schematic diagram of a MAC-CE format applicable to an embodiment of the present application.
  • the MAC-CE can be used to configure the TCI state for the PDCCH in the indicated serving cell.
  • the MAC-CE includes the identifier (ID) of the serving cell (serving cell), the ID of the CORESET, and the ID of the activated TCI state.
  • the activated TCI state indicated by the MAC-CE can be understood as: the TCI state configured for the serving cell and BWP indicated by the MAC-CE, that is, when the PDCCH is transmitted on the BWP in the serving cell, it can be based on
  • the information indicated by the TCI state determines the transmission beam and the reception beam.
  • the TCI state includes the CSI-RS resource index (CSI-RS resource index), but does not include the SSB number (ssb-index); for the TCI state used to indicate the CSI-RS
  • the TCI state received by the RS resource may include the CSI-RS resource number or the SSB number.
  • the signaling sent by the network device is correctly received by the terminal device, and there is a time delay between when the terminal device starts to actually apply the signaling instruction.
  • This time delay is mainly used for terminal equipment to interpret the signaling content, adjust according to the signaling content, and prepare for data reception.
  • this period of delay is recorded as the handover delay.
  • the handover delay is mainly caused by the network equipment sending signaling to perform TCI state switching. Therefore, this period of delay may also be referred to as TCI state switching delay, or beam switching delay.
  • this time interval is also different. Specifically, it can be further divided into the following categories.
  • the interpretation of RRC signaling is usually on the order of 10 milliseconds (ms).
  • Interpretation of MAC CE signaling is less than 3 milliseconds.
  • the terminal device can feed back its capabilities. In existing solutions, this ability can be fed back in an implicit way that is associated with other capabilities. Specifically, this capability is related to the time period of its capability QCL (timeDurationForQCL), which is a time length related to the subcarrier interval.
  • the terminal device can receive the corresponding PDSCH according to the TCI field in the DCI, so this time interval is at least used for the function of interpreting the DCI.
  • the TCI state indicated by the network device actually includes the identification of the reference signal, which can be understood as the network device indicating the sending beam of the network device, or it can also be the receiving beam of the terminal device.
  • the terminal device After interpreting the reference signal indicated by the signaling, it needs to find a receiving beam that matches the sending beam.
  • the protocol restricts how long the terminal device needs to determine the receiving beam. According to the different states of the TCI state indicated by the network device on the terminal device side, this time constraint is different.
  • this time length is related to the period of the reference signal.
  • the method for the terminal device to find the receiving beam may include trying to use different receiving beams to measure the reference signal included in the TCI state to determine the receiving quality of the reference signal, and the receiving beam with better quality is used as the subsequent use.
  • Receive beam For the number of receiving beams of the terminal equipment, 8 can be used as a typical value.
  • the received quality of the reference signal obtained by one measurement may have a large error. Therefore, it is possible to perform operations such as filtering the quality of the reference signal through multiple measurements to make the measured value as accurate as possible.
  • T L1-RSRP T L1-RSRP_Measurement_Period_CSI-RS , and this time delay is determined by Table 1. It can be seen that if switching to an unknown TCI state, the delay is very large.
  • DRX means discontinuous reception (discontinuous reception, DRX)
  • DRX cycle means discontinuous reception cycle
  • T CSI-RS indicates the CSI-RS period used for L1-RSRP measurement.
  • T DRX Represents the length of the DRX cycle.
  • T Report Indicates the reporting period.
  • Time domain characteristics or time domain behaviors may include periodic, semi-persistent, and aperiodic.
  • the time domain behavior of CSI-RS is periodic, or periodic CSI-RS, which means that CSI-RS is sent periodically; the time domain behavior of CSI-RS is aperiodic, or aperiodic CSI-RS, which means aperiodic CSI-RS is sent; the time domain behavior of CSI-RS is semi-persistent, or semi-persistent CSI-RS, which means that CSI-RS is sent semi-continuously.
  • the value is mainly determined by the time domain position of CSI-RS and measurement gap and synchronization signal/physical broadcast channel block measurement timing configuration (SS/PBCH Block Measurement Timing Configuration, SMTC).
  • SS/PBCH Block Measurement Timing Configuration SS/PBCH Block Measurement Timing Configuration
  • the measurement interval may represent a period of time configured by the network device for the terminal device that does not require the terminal device to receive the PDCCH/PDSCH and send the PUCCH/PUSCH.
  • SMTC represents a window configured by the network device for the terminal device to perform SSB-based measurement. The terminal device only needs to perform the SSB measurement within the SMTC window, and does not need to perform the SSB measurement outside the SMTC window.
  • N The value mainly depends on the beam scanning mode of the CSI-RS and the number of beams received by the terminal.
  • maxNumberRxBeam represents the number of received beams
  • N res_per_set represents the number of CSI-RS resources in the CSI-RS resource set.
  • ceil() Represents a round-up function.
  • the known TCI state is mentioned many times, which means the TCI state that meets certain conditions.
  • the known TCI state can indicate that the most recent measurement or reporting time of the reference signal in the TCI state and the signaling time interval for switching the TCI state need to be less than 1280 milliseconds; for another example, the terminal device needs to perform the reference signal L1-RSRP reporting, etc.
  • the new beam-pair link that is, the transmission beam of the network device to the receiving device of the terminal device
  • the communication link formed by the beam needs to re-synchronize the time and frequency.
  • this delay (the delay required for real-time frequency synchronization) is marked as: TO k *(T first-SSB + T SSB-proc ).
  • T first-SSB indicates the first SSB transmission time that can be measured with the CSI-RS QCL in the TCI state after the TCI state switching signaling is correctly interpreted by the terminal device.
  • the type of QCL is QCL type A or QCL type C.
  • T SSB-proc Represents the fixed processing time, such as 2 milliseconds.
  • the terminal device For the TCI state that is not maintained by the terminal device, the terminal device needs to obtain the new time-frequency synchronization by measuring the SSB with the reference signal QCL in the TCI state.
  • SSB is a broadcast signal, which can be periodically sent by network equipment. In a cycle, for example, within 20 milliseconds, a network device can send multiple SSBs, which are uniquely identified by the SSB index.
  • TCI state maintained by the terminal device "Maintenance" is actually a public perception of terminal behavior, that is, if a TCI state is activated, then the terminal device should maintain information such as the receive beam and time-frequency offset corresponding to this TCI state.
  • the activated TCI state refers to one or more TCI states activated by the PDSCH TCI state activation/deactivation signaling shown in FIG. 3.
  • the terminal device can maintain the time-frequency synchronization information of these activated TCI states for fast switching.
  • the formula for determining the handover delay can be as described in Table 2.
  • condition Switching delay (slot) MAC CE signaling + TCI state is known n+T HARQ +(3ms+TO k *(T first-SSB +T SSB-proc ))
  • RRC signaling + TCI state is known n+T RRC_processing +TO k *(T first-SSB +T SSB-proc )
  • RRC signaling + TCI state is known n+(T RRC_processing +T L1-RSRP +(T first-SSB +T SSB-proc ))
  • each parameter in Table 2 can be unified into a slot first, and then the calculation is performed. Take 3ms in Table 2 as an example, assuming that 8 slots are included in 1ms, then 3ms in Table 2 is 24 slots. Regarding other parameters, such as T first-SSB , T SSB-proc, etc., when the unit is ms, they can all be replaced with slot before calculation.
  • a network device determines which TCI state is more suitable for a terminal device's optimal TCI state, mainly based on: the information reported by a terminal device, the information reported by other terminal devices in the network, the scheduling decision of the network device, and many other factors. of.
  • the time delay between the time when the network device sends signaling to the terminal device to change the TCI state and the time when the terminal device actually applies the TCI state is too long, it will cause information aging or beam aging problems, that is, the terminal device uses the TCI In the state, the TCI state is no longer the optimal TCI state, and even communication is no longer possible according to the TCI state. This will obviously cause the problem of communication quality degradation or even interruption.
  • the length of the handover delay mainly depends on whether the TCI state indicated by the network device is the TCI state known by the terminal device, and whether the terminal device maintains these TCI states.
  • the network device uses signaling or a combination of multiple signaling to perform this notification.
  • the overall delay varies from a few milliseconds to a few seconds.
  • the methods to keep the handover delay low mainly include the following:
  • the terminal device can report the number of TCI states supported by the network device through the terminal capability.
  • the optional value reported by the terminal capability includes any value in ⁇ 1,2,4,8 ⁇ .
  • the maximum value reported for terminal capabilities can be 8
  • real terminals in the current network, especially mobile terminals do not have such capabilities, and usually they can only support one or two TCI states.
  • Many terminal devices do not support the ability to activate multiple TCI states at the same time. Therefore, once TCI state switching occurs, time-frequency synchronization delay will be introduced. Even for a terminal device that can maintain multiple TCI states at the same time, the TCI state that the network device will switch to is not necessarily among the multiple TCI states maintained by the terminal device. Therefore, considering that the cycle of SSB is currently generally 20 milliseconds, under the existing mechanism, once TCI state switching occurs, the switching delay is at least 20 milliseconds or more.
  • an embodiment of the present application proposes a TCI state switching method, which can effectively reduce the switching delay, and minimize the problem of excessively long switching delays, resulting in reduced communication performance or even interruption.
  • FIG. 5 is a schematic interaction diagram of a method 500 for TCI state switching provided by an embodiment of the present application.
  • the method 500 is mainly exemplified in the downstream communication, and the upstream communication is similar.
  • the method 500 may include the following steps.
  • the terminal device uses the first TCI state to communicate with the network device.
  • the TCI state used when the terminal device communicates with the network device is the first TCI state, or in other words, the TCI state used when the terminal device and the network device transmit data is the first TCI state.
  • the terminal device receives handover signaling from the network device, where the handover signaling includes information used to indicate the activated second TCI state.
  • the terminal device uses the first TCI state to communicate with the network device, in some cases, for example, when the relative position of the network device and the terminal device changes, such as when the terminal device moves or rotates, the network device and the terminal The beam of the device will change accordingly.
  • the network device sends signaling to notify the terminal device about the beam change.
  • the terminal device updates the used beam according to the instructions of the network device.
  • the network device sends handover signaling to the terminal device, indicating that the activated TCI state is the second TCI state. That is to say, through the switching signaling, the terminal device will use the first TCI state to communicate with the network device and will be updated to use the second TCI state to communicate with the network device.
  • the handover signaling may be high-level signaling, such as MAC CE signaling (for example, using the signaling format shown in FIG. 3 or FIG. 4).
  • the handover signaling can also be physical layer signaling (such as DCI), that is, the network device can indicate a selected TCI-state through the TCI field in the physical layer signaling (such as DCI), and the selected TCI -state is used for PDSCH transmission scheduled by the DCI.
  • DCI physical layer signaling
  • the handover signaling is only a naming for distinguishing different functions, and its naming does not limit the protection scope of the embodiments of the present application.
  • the terminal device uses the second TCI state to communicate with the network device, where the first duration is related to one or both of the following: the reference signal in the second TCI state and the reference signal in the first TCI state Whether the reference signals overlap, and/or whether the reference signal in the second TCI state and the reference signal in the first TCI state have a QCL relationship with the same signal.
  • the signaling sent by the network device is correctly received by the terminal device.
  • the terminal device starts to actually apply the signaling instruction, there is a period of time (ie, the first period) in the middle.
  • the duration #A represents the time required for handover, that is, the time required between the terminal device receiving the handover signaling and the instruction of the terminal device to actually apply the signaling.
  • duration #A represents the duration between when the terminal device receives the handover signaling and when the terminal device can use the new TCI state to communicate with the network device. Take the following line communication as an example, and the duration #A may be the handover delay described above, for example.
  • the terminal device uses the second TCI state to communicate with the network device, which means that the terminal device can use the second TCI state to communicate with the network device, which does not limit the terminal device to communicate with the network device. That is, after the duration #A, if the terminal device communicates with the network device, the first TCI state is no longer used for communication, and the second TCI state is used for communication.
  • the first TCI state can also be replaced with a first TCI state combination
  • the second TCI state can also be replaced with a second TCI state combination.
  • the terminal device uses the first TCI state to communicate with the network device; in step 520, the terminal device receives handover signaling from the network device, and the handover signaling includes a second TCI state for indicating activation Combined information.
  • the first duration may indicate the time available for the second TCI state combination after the handover signaling is received;
  • the first TCI The state partially overlaps with the reference signal in the second TCI state, which can mean that the TCI state in the first TCI state combination and the second TCI state combination partially overlap, or it can also mean that the first TCI state combination and the second TCI state combination are in the combination.
  • the reference signals of the TCI state partially overlap.
  • the following mainly takes the first TCI state and the second TCI state as examples for exemplary description.
  • the new TCI state is used to represent the second TCI state
  • the old TCI state is used to represent the first TCI state.
  • the new TCI state indicates the activated TCI state indicated in the handover signaling
  • the old TCI state indicates the currently activated TCI state; in other words, the new TCI state indicates the TCI state to be used, and the old TCI state indicates that the new TCI is being activated.
  • the TCI state used before the state in other words, the new TCI state represents the TCI state after the switch, and the old TCI state represents the TCI state before the switch.
  • Duration #A is related to whether the reference signal in the new TCI state overlaps with the reference signal in the old TCI state
  • Solution B Duration #A is related to whether the reference signal in the new TCI state and the reference signal in the old TCI state have a QCL relationship with the same signal.
  • Aspect 1 About TCI state configuration.
  • one TCI state can include multiple reference signals of the same type, that is, there are multiple reference signals of the same QCL type in the TCI state.
  • there are multiple reference signals of QCL type D in a TCI state
  • there are multiple reference signals of QCL type A in a TCI state and so on.
  • the reference signals in the multiple TCI states mentioned in the following embodiments represent reference signals of the same QCL type.
  • the reference signals included in the multiple TCI states may overlap.
  • the network device instructs the TCI state to switch, if there is an overlapping reference signal between the new TCI state and the original TCI state, the terminal device can use this reference signal in the overlapping state during this switching process to keep the receiving beam and For the time-frequency synchronization information, there is no need to perform the beam search process and/or the synchronization process on the new beam, which can effectively reduce the time delay, as shown in FIG. 6.
  • the reference signal in TCI state#1 includes CSI-RS resource #1 (CSI-RS resource#1) and CSI-RS resource #2 (CSI-RS resource#2)
  • the reference signal in TCI state#2 includes CSI -RS resource #2 (CSI-RS resource#2) and CSI-RS resource #3 (CSI-RS resource#3).
  • the terminal device can maintain the corresponding receive beams of CSI-RS resource #1 and CSI-RS resource #2 in TCI state#1, as well as CSI-RS resource #1 and CSI-RS resource #1.
  • the network device instructs the terminal device to switch from TCI state#1 to TCI state#2
  • both TCI states include CSI-RS resource #2
  • the terminal device switches from TCI state#1 to TCI state#
  • the receiving beam and time-frequency synchronization information corresponding to CSI-RS resource #2 can be directly used to receive the signal sent by the network device without going through the process of re-searching for the beam and time-frequency synchronization.
  • the time delay caused by the handover can be greatly reduced, that is, the time length of the time length #A can be reduced.
  • the reference signal of QCL type A or QCL type D is mainly used as an example for exemplification, which is not limited.
  • it may also be of other types, such as QCL type B or QCL type C with the same reference signal.
  • the embodiments of the present application focus on whether reference signals of the same type overlap, and there is no limitation on whether the reference signals of QCL type A and QCL type D are the same. As shown in Table 3, the reference signals of QCL type A and QCL type D may be the same; or as shown in Table 4, the reference signals of QCL type A and QCL type D may be different. Taking the reference signal as the CSI-RS, the TCI state includes TCI state 1, TCI state 2, and TCI state 3 as examples. Table 3 and Table 4 show possible TCI state configurations.
  • QCL type A reference signals include: CSI-RS resource #1, CSI-RS resource #2, and QCL type D reference signals include: CSI-RS resource #1, CSI-RS resource #2.
  • QCL type A reference signals include: CSI-RS resource #2, CSI-RS resource #3, and QCL type D reference signals include: CSI-RS resource #2, CSI-RS resource #3 .
  • QCL type A reference signals include: CSI-RS resource #3, CSI-RS resource #4, and QCL type D reference signals include: CSI-RS resource #3, CSI-RS resource #4 .
  • QCL type A reference signals include: CSI-RS resource #1, CSI-RS resource #2, and QCL type D reference signals include: CSI-RS resource #5, CSI-RS resource #6.
  • QCL type A reference signals include: CSI-RS resource #2, CSI-RS resource #3, and QCL type D reference signals include: CSI-RS resource #6, CSI-RS resource #7 .
  • QCL type A reference signals include: CSI-RS resource #3, CSI-RS resource #4, and QCL type D reference signals include: CSI-RS resource #7, CSI-RS resource #8 .
  • TCI state 1 and TCI state 2 have overlapping QCL type A reference signals and overlapping QCL type D reference signals (CSI-RS resource #2), and TCI state 2 and TCI state 3 have overlap The QCL type A reference signal and the overlapping QCL type D reference signal (CSI-RS resource #3).
  • TCI state 1 and TCI state 2 have overlapping QCL type A reference signals (CSI-RS resource #2) and overlapping QCL type D reference signals (CSI-RS resource #6)
  • TCI state 2 and TCI state 3 have overlapping QCL type A reference signals (CSI-RS resource #3) and overlapping QCL type D reference signals (CSI-RS resource #7).
  • a TCI state can include a larger number of reference signals of the same type.
  • TCI state configuration is introduced above in conjunction with aspect 1. It can be seen from the foregoing that in this application, the scope of the TCI state can be expanded, and one TCI state includes multiple reference signals of the same QCL type. The following introduces related information about duration #A.
  • Aspect 2 Duration #A.
  • the duration #A can include at least two schemes, scheme A and scheme B.
  • Solution A Duration #A is related to whether the reference signal in the new TCI state overlaps with the reference signal in the old TCI state.
  • Solution A can be combined with aspect 1 described above, that is, the scope of the TCI state is extended, so that one TCI state can include multiple reference signals of the same type, so that the reference signals included in multiple TCI states may overlap.
  • the duration #A can at least include: the delay required to interpret the signaling, the delay required to determine the received beam (T L1-RSRP ) (or the time required to determine the received beam), and the required time-frequency synchronization Time delay (or the time required for time-frequency synchronization).
  • T L1-RSRP the delay required to determine the received beam
  • T L1-RSRP the delay required to determine the received beam
  • Time delay or the time required for time-frequency synchronization
  • the duration #A represents the time required between the terminal device receiving the handover signaling and the terminal device actually applying the signaling. Regarding the specific time included in the duration #A, the embodiment of the present application It is not limited. For example, the duration #A indicates that it may also include other times, such as the time required for the terminal device to feedback the reception of the handover signaling, and so on.
  • T L1-RSRP The delay required for the receiving beam
  • T L1-RSRP 0;
  • condition A1 In the TCI state (that is, the new TCI state) in the handover signaling and the currently activated TCI state (that is, the old TCI state), at least one reference signal overlaps or at least one reference signal is in an overlapping state , And the coincident reference signal includes a QCL type D reference signal.
  • T L1-RSRP 0, that is, there is no need to retrain the receiving beam.
  • the terminal device switches from the old TCI state to the new TCI state, it can directly use the receiving beam corresponding to the same QCL type D reference signal to receive the signal sent by the network device without going through the process of re-searching for the beam.
  • the new TCI state is TCI state 2
  • the old TCI state is TCI state 1.
  • T L1-RSRP T L1-RSRP_Measurement_Period_CSI-RS means that the receiving beam is retrained.
  • the delay required to receive the beam it can be considered whether there are overlapping reference signals in the new TCI state and the old TCI state. Specifically, for example, when the reference signals of QCL type D overlap, the receiving beam search time is 0, that is, the required delay of the receiving beam is 0.
  • T first-SSB and T SSB-proc please refer to the above description, which will not be repeated here.
  • condition A2 In the TCI state (that is, the new TCI state) in the handover signaling and the currently activated TCI state (that is, the old TCI state), at least one reference signal overlaps or at least one reference signal is in an overlapping state , And the overlapped reference signal is a QCL type A reference signal, or the overlapped reference signal is a QCL type B reference signal, or, the overlapped reference signal is a QCL type C reference signal.
  • the overlapping reference signal in condition A2 can be QCL type A, QCL type B, or QCL type C. The following is concise, taking QCL type A as an example for illustrative description.
  • the new TCI state is TCI state 2
  • the old TCI state is TCI state 1.
  • switching from the old TCI state to the new TCI state that is, when switching from TCI state 1 to TCI state 2, since TCI state 2 and the currently activated TCI state 1, there is a reference signal of QCL type A that overlaps , That is, CSI-RS resource #2, so the time delay required for time-frequency synchronization is 0, that is, there is no need to go through the process of time-frequency synchronization.
  • the new TCI state is TCI state 3
  • the old TCI state is TCI state 1.
  • switching from the old TCI state to the new TCI state that is, when switching from TCI state 1 to TCI state 3.
  • TCI state 3 and the currently active TCI state 1 there is no overlapping QCL type A reference signal, Therefore, the time delay required for time-frequency synchronization is (T first-SSB + T SSB-proc ), that is, time-frequency synchronization can be performed again.
  • the formula for determining the duration #A may be as described in Table 5.
  • the unit of time length #A is slot
  • the unit of each parameter in Table 5 can be unified to slot before calculation.
  • 3ms in Table 5 as an example, assuming that 8 slots are included in 1ms, then 3ms in Table 5 is 24 slots.
  • other parameters such as T first-SSB , T SSB-proc, etc.
  • T first-SSB when the unit is ms, they can all be replaced with slot before calculation.
  • the handover signaling is MAC CE signaling, that is, MAC CE signaling is used to notify the activated TCI state, there may be the following situations.
  • the time length of duration #A can be: n+T HARQ +(3ms+TO k *(T first-SSB +T SSB-proc )); in the case of not satisfying condition A1 below, the time length of the time length #A may be: n+T HARQ +T L1-RSRP_Measurement_Period_CSI-RS +(3ms+TO k *(T first-SSB +T SSB-proc )).
  • the time length of duration #A can be: n + T HARQ + T L1-RSRP + 3ms; if condition A2 is not met, the time length of duration #A can be: n +T HARQ +T L1-RSRP +(3ms+(T first-SSB +T SSB-proc )).
  • the time length of the time length #A may be: n+T HARQ +3ms.
  • the time length of duration #A can be: n+T HARQ +T L1-RSRP_Measurement_Period_CSI-RS +(3ms+(T first-SSB +T SSB-proc ) ).
  • the time length of the time length #A can be: n+T HARQ +T L1-RSRP +(3ms+T first-SSB +T SSB-proc ).
  • the time length of the time length #A may be: n+T HARQ +T L1-RSRP_Measurement_Period_CSI-RS +3ms.
  • the solution described in solution A can be combined with the solution described in aspect 1.
  • the scope of the TCI state is expanded so that one TCI state can include multiple
  • the same type of reference signals can increase the possibility of overlapping reference signals in multiple TCI states, and make the receive beam search time 0 and/or the time-frequency synchronization delay 0 as much as possible, thereby reducing TCI state switching Time delay.
  • one of them can be selected. For example, one may be selected based on the size of the identifier, such as selecting a reference signal with a smaller or larger identifier, or selecting a reference signal with better received signal quality.
  • the terminal device determines the time when the new TCI state can be used for data transmission according to the overlap between one or more reference signals in the new TCI state and one or more reference signals in the current TCI state. For example, when the reference signal of QCL type D overlaps, the receiving beam search time is 0; when the reference signal of QCL type A overlaps, the time-frequency synchronization time delay is 0. Therefore, the TCI state switching delay is greatly reduced, especially the delay for receiving beam search and the delay for resynchronizing time and frequency.
  • Solution B Duration #A is related to whether the reference signal in the new TCI state and the reference signal in the old TCI state have a QCL relationship with the same signal.
  • the following takes the same signal as the SSB as an example for exemplification. It should be understood that the specific form of the signal is not limited.
  • the signal may also be a CSI-RS or SRS.
  • the delay required for time-frequency synchronization is mainly because for terminal equipment that cannot support multiple active TCI states at the same time, once TCI state switching occurs, the terminal equipment needs to be based on the TCI state reference signal (such as CSI-state) in the switching signaling. RS) to find a corresponding SSB, and perform time-frequency synchronization by measuring this SSB.
  • the correspondence between CSI-RS and SSB is not necessarily one-to-one. In fact, most network device implementations will consider using a wider transmit beam to transmit SSB, and a narrower transmit beam to transmit CSI-RS. Therefore, when TCI state switching occurs between adjacent narrow beams, their corresponding SSBs may be the same.
  • the timing deviation of multiple beams does not exceed a threshold.
  • the threshold can be predefined, or dynamically configured, or a default value. Not limited.
  • the threshold is 1/4 cyclic prefix (CP) length, that is, when the timing deviation of multiple beams does not exceed 1/4 CP length, they can be considered to be co-timing, and there is no need to re-estimate the time offset; When the timing deviation of multiple beams exceeds 1/4 CP length, it can be considered that they need to re-estimate the time offset.
  • CP cyclic prefix
  • Solution B can be combined with the solution for TCI state configuration described in aspect 1, that is, to extend the scope of TCI state; alternatively, solution B can also be used alone, such as using the existing TCI state configuration method, that is, there is no need to extend TCI state Scope.
  • solution B may adopt the TCI state configuration shown in Table 6. Taking the reference signal as the CSI-RS, the TCI state includes TCI state 1, TCI state 2, TCI state 3, and TCI state 4 as examples. Table 6 shows possible TCI state configurations.
  • TCI state ID The first set of QCL types and reference signals
  • the second group of QCL types and reference signals 1 Type A, CSI-RS resource #1 Type D, CSI-RS resource #1 2 Type A, CSI-RS resource #2 Type D, CSI-RS resource #2 3 Type A, CSI-RS resource #3 Type D, CSI-RS resource #3 4 Type A, CSI-RS resource #4 Type D, CSI-RS resource #4
  • the QCL-info configuration of the CSI-RS resources is shown in Table 7.
  • the reference signal of QCL type A includes: CSI-RS resource #1, and the reference signal of QCL type D includes: CSI-RS resource #1.
  • the reference signal of QCL type A includes: CSI-RS resource #2, and the reference signal of QCL type D includes: CSI-RS resource #2.
  • the reference signal of QCL type A includes: CSI-RS resource #3, and the reference signal of QCL type D includes: CSI-RS resource #3.
  • the reference signal of QCL type A includes: CSI-RS resource #4, and the reference signal of QCL type D includes: CSI-RS resource #4.
  • CSI-RS resource #1 and CSI-RS resource #2 have a QCL relationship with the same SSB#1 (for example, the QCL type is type C, type D); another example is for CSI -RS resource #3 and CSI-RS resource #4, as shown in Table 7, have a QCL relationship with the same SSB#2 (for example, the QCL type is type C and type D). Therefore, considering the switching based on TCI state, when switching from TCI state 1 to TCI state 2, or when switching from TCI state 3 to TCI state 4, there is no need to perform time-frequency synchronization again.
  • Table 6 mainly shows that the reference signals of QCL type A and QCL type D are the same. It should be understood that whether the reference signals of QCL type A and QCL type D are the same is not limited.
  • T first-SSB and T SSB-proc please refer to the above description, which will not be repeated here.
  • condition B1 the reference signal in the TCI state (that is, the new TCI state) in the switching signaling and the reference signal in the currently activated TCI state (that is, the old TCI state) have a QCL relationship with the same signal (such as the SSB).
  • the QCL type can be one or more of A, B, C, and D.
  • it can be QCL types A and C, that is, QCL types that are more related to time domain synchronization.
  • the new TCI state is TCI state 2
  • the old TCI state is TCI state 1.
  • the reference signal in TCI state 2 is the same as the reference signal in TCI state 1 that is currently activated.
  • #1 has a QCL relationship, so the time delay required for time-frequency synchronization is 0, that is, there is no need to go through the process of time-frequency synchronization.
  • the new TCI state is TCI state 3
  • the old TCI state is TCI state 1.
  • the reference signal in TCI state 3 is not the same as the reference signal in the currently activated TCI state 1.
  • the signal has a QCL relationship, so the time delay required for time-frequency synchronization is (T first-SSB + T SSB-proc ), that is, time-frequency synchronization can be performed again.
  • the time delay required for time-frequency synchronization when determining the time delay required for time-frequency synchronization, it can be considered whether the reference signal in the new TCI state and the reference signal in the old TCI state have a QCL relationship with the same signal (such as SSB). Specifically, when it has a QCL relationship with the same signal (such as SSB), the time delay required for time-frequency synchronization is zero.
  • the formula for determining the duration #A may be as described in Table 8.
  • the unit of each parameter in Table 8 can be unified to slot before calculation.
  • 3ms in Table 8 as an example, assuming that 8 slots are included in 1ms, then 3ms in Table 8 is 24 slots.
  • other parameters such as T first-SSB , T SSB-proc, etc.
  • T first-SSB T SSB-proc
  • the handover signaling is MAC CE signaling, that is, MAC CE signaling is used to notify the activated TCI state.
  • the time length of duration #A can be: n+T HARQ +3ms; in the case of not satisfying condition B1, the time length of duration #A can be: n+T HARQ +(3ms+( T first-SSB +T SSB-proc )).
  • the above scheme B mainly introduces whether the reference signal in the new TCI state and the reference signal in the old TCI state have a QCL relationship with the same signal. It can be understood that the reference signal in the new TCI state and the reference signal in the old TCI state directly have In the QCL relationship, there is no need to perform time-frequency synchronization and/or receive beam search again.
  • the above scheme B is mainly concerned with whether time-frequency synchronization is required. It should be understood that when the QCL type D reference signal in the new TCI state and the QCL type D reference signal in the old TCI state are the same signal QCL, or when the new TCI state is When the QCL type D reference signal in the old TCI state and the QCL type D reference signal QCL in the old TCI state, there is no need to perform a receive beam search.
  • the terminal device determines the time when the new TCI state can be used for data transmission according to whether the reference signal in the new TCI state and the reference signal in the current TCI state have a QCL relationship with the same signal. For example, when the reference signal in the new TCI state and the reference signal in the current TCI state have a QCL relationship with the same signal, the time delay for resynchronizing time and frequency is zero. Thus, the TCI state switching delay is greatly reduced, especially the delay of re-synchronizing time and frequency.
  • scheme A and scheme B are described above respectively, and scheme A and scheme B can be used independently.
  • Solution A and Solution B can also be used in combination. For example, if the terminal device supports one TCI state and includes multiple reference signals of the same QCL type, solution A is used, and if the terminal device does not support one TCI state, multiple reference signals are included. Plan B is used in the case of the same QCL type reference signal.
  • FIG. 8 shows a schematic interaction diagram of a method 800 applicable to an embodiment of the present application.
  • the method 800 may include the following steps.
  • the terminal device reports whether it can support multiple reference signals of the same QCL type in one TCI state. For example, the terminal device may report that it supports a TCI state that includes multiple reference signals of the same QCL type, or the terminal device may report that it does not support a TCI state that includes multiple reference signals of the same QCL type. For another example, the terminal device can report how many reference signals of the same QCL type can be supported in a TCI state at most. For another example, the terminal device can report the maximum number of TCI states that can include multiple reference signals of the same type. That is, the terminal device can report the maximum number of TCI states that it can support. The TCI state of the reference signal. It should be understood that the specific form of the terminal capability reported by the terminal device is not limited in the embodiment of the present application.
  • the terminal device When the terminal device supports a TCI state that includes multiple reference signals of the same QCL type, it can be configured using the configuration method described in aspect 1 above, or it can be determined using the solution described in solution A above Duration#A. Alternatively, it may also be assumed that the terminal device supports a TCI state that includes multiple reference signals of the same QCL type. In this case, there is no need to report whether a TCI state includes multiple reference signals of the same QCL type.
  • the network device sends configuration information to the terminal device.
  • the network device may send configuration information to the terminal device through RRC signaling.
  • one TCI state may include multiple reference signals of the same QCL type.
  • TCI state configuration used for downlink signals (such as PDCCH/PDSCH) is as shown in Table 3.
  • the network device instructs the terminal device to activate the PDSCH TCI state.
  • the network device can activate the TCI state of the PDSCH through MAC CE signaling.
  • the network device can activate the TCI state of the PDSCH by using the signaling shown in FIG. 3.
  • the network device instructs the terminal device to activate the PDCCH TCI state.
  • the network device can activate the TCI state of the PDCCH through MAC CE signaling.
  • the network device can activate the TCI state of the PDCCH by using the signaling shown in FIG. 4.
  • CORESET ID 1
  • PDCCH TCI state activated by the network device through MAC CE signaling
  • TCI state 1 the TCI state ID field is assigned a value of 0000001.
  • the terminal device Since the TCI state 1 contains multiple CSI-RS resources, the terminal device needs to measure all or part of the CSI-RS resources, including training appropriate receiving beams, determining correct time-frequency synchronization parameters, and so on. Exemplarily, it can be implemented in any of the following ways.
  • the terminal device can measure one of the CSI-RS resources.
  • the network device ensures that multiple CSI-RS resources included in the same TCI state are QCL. For example, if multiple CSI-RS resources have the same receiving beam for the terminal device, then they are of type D QCL, or that they have a QCL relationship of type D. For another example, if multiple CSI-RS resources have the same time-frequency synchronization for the terminal device, then they are of QCL type A, or in other words, they have a QCL relationship of type A. In this case, the terminal device may only need to measure any one of the CSI-RS resources.
  • the terminal device can feed back the receiving parameters of different CSI-RS resources to the network device in the early beam search process.
  • the terminal device can measure multiple CSI-RS resources.
  • the terminal device can measure multiple CSI-RS resources, and maintain QCL type D parameters and QCL type A parameters respectively, that is, receive beams and time-frequency synchronization information.
  • the network device can temporarily trigger the terminal device to measure all CSI-RS resources in the TCI state before and after the TCI state switch, and when the TCI state switch is not required, instruct the terminal device to use a CSI-RS resource for communication. Just mark it.
  • the identification of the CSI-RS resource may come from the measurement result of the reference signal in the current TCI state by the terminal device, as in step 870.
  • the network device and the terminal device may use the default beam communication.
  • the default beam in the downlink, can be defined as the SSB beam determined when the terminal device initially accesses the network; in the uplink, it can be defined as the beam for transmitting message 3 (msg.3). That is, in step 810, the terminal device reports the terminal capabilities through the uplink default beam, and the PDSCH sent by the network device in steps 820, 830, and 840 is transmitted through the downlink default beam.
  • the beam may be updated, for example, the activated TCI state may change.
  • the network device can send signaling to the terminal device to indicate the updated TCI state.
  • the network device instructs the terminal device to update the PDCCH TCI state, and the terminal device uses the new PDCCH TCI state to prepare to receive the PDCCH.
  • the network device updates the PDCCH TCI state through the MAC CE, and the terminal device prepares to receive the PDCCH according to the new PDCCH TCI state.
  • the network equipment can indicate the PDCCH TCI state through the signaling as shown in FIG. 4. As described in the previous step 840, it is assumed that the currently activated TCI state is TCI state 1, that is, the MAC CE signaling used to update the PDCCH TCI state in step 850 is performed according to TCI state 1.
  • the CORESET TCI state indicated by the network device through MAC CE signaling is TCI state 2 or TCI state 3.
  • the network device indicates the TCI state through MAC CE signaling, it may correspond to the following situation 1 or situation 2:
  • the terminal device can determine whether the newly indicated TCI state (ie TCI state 2 or TCI state 3) is the same as the current TCI state (ie TCI state). 1) Whether there are coincident reference signal resources to determine whether it is necessary to receive beam scanning or re-synchronize time-frequency. The detailed flowchart of this step is shown in Figure 9.
  • the terminal device receives the MAC CE signaling and feeds back the correctly received message to the network device.
  • the MAC CE can be transmitted through PDSCH. Assuming that the time when the terminal device receives the PDSCH is time slot n (slot n), the PDSCH carries the MAC CE, that is, the time when the terminal device receives the MAC CE signaling is slot n.
  • the terminal device receives the PDSCH and feeds back response information to the network device.
  • the response information may be transmitted through a physical uplink control channel (PUCCH).
  • the response information fed back by the terminal device may be, for example, hybrid automatic repeat request (HARQ)-acknowledgement (ACK) information or HARQ-negative acknowledgement (NACK) information.
  • HARQ hybrid automatic repeat request
  • ACK ie, HARQ-ACK
  • NACK HARQ-NACK
  • T_HARQ can be configured by a network device.
  • the terminal equipment interprets the MAC CE signaling content.
  • the terminal device interprets the content of the MAC CE signaling, and obtains the TCI state and the CSI-RS resource information therein.
  • the terminal device verifies in step 8501 that the PDSCH is correctly received at the physical layer of the terminal device (that is, received correctly in the form of 01 bits), and the content of the MAC CE signaling needs to be encapsulated into a specific format and then interpreted by the upper layer of the terminal device ( That is, the information indicated by the network device is TCI state 2 or TCI state 3 is recovered from the 01 format bit stream).
  • T_processing is 3ms, for example.
  • T_processing includes the time required for the terminal device to interpret the MAC CE signaling content, and T_processing may also include the time for the terminal device to adjust the receiving beam. As mentioned above, for the known TCI state, the terminal device stores information about the received beam.
  • the terminal device has adjusted the receiving beam according to the MAC CE signaling instructions.
  • step 8501 and step 8502 are exemplary descriptions and are not limited thereto.
  • step 8501 and step 8502 can also be combined into one step.
  • the terminal device can successfully interpret the MAC CE signaling content, and then feed back an ACK to the network device.
  • the terminal device determines whether it is necessary to train the receiving beam.
  • the terminal device can determine whether the CSI-RS resources of QCL type D of the new TCI state overlap with the CSI-RS resources of QCL type D of the old TCI state, according to whether there is overlap , To determine whether you need to train the receiving beam.
  • the result of the judgment may be: the CSI-RS resource of QCL type D of the new TCI state overlaps with the CSI-RS resource of QCL type D of the old TCI state, or the CSI-RS resource of QCL type D of the new TCI state overlaps with the CSI-RS resource of QCL type D of the old TCI state.
  • the CSI-RS resources of the QCL type D of the TCI state do not overlap.
  • the network device in step 850 indicates TCI state 2 through MAC CE signaling.
  • TCI state 1 and TCI state 2 are of QCL type D.
  • the terminal device can continue to use the receiving beam of the old TCI state (ie, TCI state 1), and can directly perform step 8505. Specifically, the terminal device may continue to use the receiving beam corresponding to CSI-RS resource #2.
  • step 850 the network device indicates TCI state 3 through MAC CE signaling.
  • the terminal device can perform step 8504.
  • the terminal equipment trains the receiving beam.
  • the terminal device determines that it is necessary to train the receive beam, it may not need to perform step 8505, and the terminal device performs step 8506 by default, that is, time-frequency synchronization needs to be performed again.
  • the reference signals of QCL type A and QCL type D may be the same or different. Then, when the reference signals of QCL type A and QCL type D are the same, as shown in Table 3, the QCL type A and QCL type D reference signals point to the same CSI-RS resource. Therefore, if the terminal device determines the new TCI
  • the CSI-RS resources of the QCL type D of the state and the CSI-RS resources of the QCL type D of the old TCI state do not overlap, so the CSI-RS resources of the QCL type A of the new TCI state and the CSI-RS resources of the QCL type A of the old TCI state are not overlapped. RS resources also do not overlap.
  • the terminal device determines that it is necessary to train the receiving beam, the terminal device also needs to perform time-frequency synchronization again.
  • the time-frequency synchronization of each beam is different. If even the beams need to be retrained, the time-frequency synchronization information obtained before can basically no longer be used.
  • the terminal device may also perform step 8505.
  • the terminal device determines whether it is necessary to re-synchronize the time and frequency.
  • the terminal device may not need to perform step 8505, that is, the terminal device may not need to determine the QCL type A CSI-RS resource of the new TCI state and the QCL type A of the old TCI state. Whether the CSI-RS resources overlap.
  • the terminal device can continue to determine whether the QCL type A CSI-RS resource of the new TCI state and the QCL type A CSI-RS resource of the old TCI state overlap .
  • step 8503 there is no strict sequence relationship between step 8503 and step 8505.
  • the terminal device may perform step 8503 first, and then perform step 8505; or, perform step 8503 first, and then determine whether to perform step 8505 according to the result of the judgment.
  • the terminal device may also perform step 8505 first, and then perform step 8503.
  • the terminal device may also step 8503 and step 8505 at the same time.
  • the terminal device can determine whether the CSI-RS resources of QCL type A in the new TCI state overlap with the CSI-RS resources of QCL type A in the old TCI state, according to whether there is overlap To determine whether you need to re-synchronize time and frequency.
  • the result of the terminal device judgment may be: the CSI-RS resource of QCL type A of the new TCI state overlaps with the CSI-RS resource of QCL type A of the old TCI state, or the CSI-RS resource of QCL type A of the new TCI state It does not overlap with the CSI-RS resources of QCL type A in the old TCI state.
  • the network device indicates TCI state 2 through MAC CE signaling.
  • TCI state 1 and TCI state 2 are each of QCL type A.
  • the terminal device can continue to use the time-frequency synchronization of the old TCI state (ie, TCI state 1), and can directly perform step 8507. Specifically, the terminal device can continue to use the time-frequency synchronization corresponding to CSI-RS resource #2.
  • step 850 the network device indicates TCI state 3 through MAC CE signaling.
  • the terminal device needs to determine a new time-frequency parameter, and the terminal device can execute step 8506.
  • the terminal device re-synchronizes time and frequency.
  • the terminal device can measure the time-frequency synchronization with the SSB acquisition of the CSI-RS resource QCL.
  • the terminal device can find its QCL based on the CSI-RS resource of the new TCI state SSB.
  • one CSI-RS resource can be determined first, and then SSB measurement is performed.
  • a possible implementation is to determine a CSI-RS resource according to the size of the CSI-RS resource identifier, and then perform SSB measurement. For example, a CSI-RS resource with a smaller identifier can be selected. For example, the CSI-RS resource #3 with a smaller reference signal resource identifier in TCI state 3 in the embodiment of the present application.
  • the terminal device can wait for the opportunity to measure the SSB with CSI-RS resource #3QCL.
  • SSB is usually sent periodically, so the terminal device can measure the SSB time-frequency parameters in the nearest SSB cycle after the MAC CE content is determined to achieve time-frequency synchronization.
  • the terminal equipment can measure once to control the handover delay and minimize the handover delay.
  • the terminal device can also measure multiple times to improve measurement accuracy. Taking the terminal device to measure multiple times as an example, a possible implementation is that the terminal device can continue to perform joint processing through the next N cycles (N is an integer greater than 1 or equal to 1) measurement, such as filtering processing, etc., to obtain more Accurate measurement results.
  • N is an integer greater than 1 or equal to 1
  • measurement method when the measurement is performed multiple times
  • the embodiment of the present application does not limit it, and any method that obtains the measurement result through the measurement multiple times is applicable to the embodiment of the present application.
  • the terminal device completes the TCI state switch.
  • the terminal device uses the new TCI state indicated by the MAC CE to communicate with the network device, such as using the new TCI state indicated by the MAC CE to receive downlink signals (such as PDCCH/PDSCH).
  • downlink signals such as PDCCH/PDSCH.
  • step 8503 and/or step 8505 whether the CSI-RS resources of QCL type D in the new TCI state overlap with the CSI-RS resources of QCL type D in the old TCI state, and/or, according to the new TCI state Whether the CSI-RS resources of the QCL type A of the QCL type A and the CSI-RS resources of the QCL type A of the old TCI state overlap, the time for the terminal device to complete the TCI state switching may have the following possibilities.
  • the terminal device has completed time-frequency synchronization and can start subsequent downlinks based on the new TCI state Signal (such as PDCCH/PDSCH) reception.
  • TCI state Signal such as PDCCH/PDSCH
  • the terminal device If the reference signal of QCL type D overlaps and the reference signal of QCL type A does not overlap, then at time: slot n+T_HARQ+T_processing+(T first-SSB +T SSB-proc ), the terminal device has completed the time-frequency Synchronize, and can start receiving subsequent downlink signals (such as PDCCH/PDSCH) according to the new TCI state.
  • slot n+T_HARQ+T_processing+(T first-SSB +T SSB-proc ) the terminal device has completed the time-frequency Synchronize, and can start receiving subsequent downlink signals (such as PDCCH/PDSCH) according to the new TCI state.
  • T L1-RSRP T L1-RSRP_Measurement_Period_CSI-RS .
  • the terminal device can communicate according to the old TCI state (TCI state 1).
  • the network device also transmits according to the old TCI state (TCI state 1).
  • the network equipment and the terminal equipment simultaneously switch the beams at the aligned time point to ensure the beam alignment of the network equipment terminal equipment.
  • the network device and the terminal device send and receive the PDCCH according to the new TCI state.
  • the new TCI state can be truly used for PDCCH transmission.
  • the terminal device reports the reference signal resource information included in the new TCI state.
  • One TCI state can include multiple CSI-RS resources, and the terminal device can report to the selected better or optimal reference signal resource. It can be understood that the terminal device can recommend the beam used for communication with the network device.
  • the specific selection of a better or optimal reference signal resource can be determined by measuring the multiple reference signal resources. For the specific measurement method, refer to the description of step 840.
  • the network device indicates TCI state 2 through MAC CE signaling, and each of TCI state 1 and TCI state 2 has a CSI-RS resource in the QCL type D reference signal #2 is coincident. Therefore, the terminal device can use the receiving beam corresponding to the coincident reference signal (ie, CSI-RS resource #2).
  • the terminal equipment can set information indicating CSI-RS resource #3 to the network to recommend better The beam communicates. Therefore, not only can the handover delay be reduced, but also the communication quality in the communication process can be improved as much as possible.
  • the terminal device reports the reference signal resource information included in the new TCI state, which can be reported when the terminal device finds that the reference signal resources in the new TCI state other than the overlapping reference signals are of good quality, such as when the CSI-RS resource
  • the terminal device can set information indicating CSI-RS resource #3 to the network; or, it can also be that the network device requires the terminal device to periodically report the reference signal in the TCI state; or, it can also be The network device requires the terminal device to report the reference signal in the new TCI state after the TCI state is switched; or it can be pre-defined that the terminal device needs to report the reference signal in the TCI state periodically; or it can be pre-defined After the TCI state switch occurs, the terminal device needs to report the reference signal in the new TCI state.
  • the network device can allocate the resources required for reporting to the terminal device.
  • the MAC CE TCI state switching signaling in step 850 is associated with a report resource or report setting, and the terminal device uses the associated report resource to report.
  • the terminal device requests resources from the network device. For example, when reporting is required, the terminal device may request the network device to report the required resources.
  • a possible process suitable for scheme A is introduced in conjunction with method 800.
  • the process of switching the TCI state to the uplink signal (such as PUCCH or PUSCH)
  • the process similar to the one described above can also be used.
  • a method similar to that shown in FIG. 9 is used to determine whether the receiving beam needs to be trained and/or whether the time-frequency synchronization needs to be re-synchronized.
  • one TCI state can be extended, so that one TCI state can include multiple reference signals of the same QCL type.
  • the terminal device can indicate the information of the reference signal in the TCI state to the network device.
  • multiple different terminal devices can form a terminal device group and share the same TCI state.
  • each terminal device group may also have its own group identifier.
  • the reference signal of QCL type D includes CSI-RS resource #1; for terminal device 2, the reference signal of QCL type D
  • the signal includes CSI-RS resource #2.
  • Terminal device 1 and terminal device 2 can form a terminal device group.
  • the public TCI state corresponding to the terminal device group is public TCI state#1, that is, the TCI state shared by terminal device 1 and terminal device 2 is public TCI state#1.
  • the QCL type D reference signal includes: CSI-RS resource #1, CSI-RS resource #2.
  • a network device may indicate a new TCI state to multiple terminal devices in a terminal device group, and each terminal device may individually determine the receiving beam corresponding to the TCI state.
  • a network device can indicate a new TCI state to multiple terminal devices in the terminal device group through a common channel or a multicast channel, such as a common control channel, and each terminal device can determine the TCI state individually Corresponding receiving beam. It should be understood that the receiving beams determined by different terminal devices may be different.
  • the network device may periodically send the SSB.
  • one TCI state can be extended, so that one TCI state can include multiple reference signals of the same QCL type.
  • the terminal device may determine the time when the new TCI state can be used for data transmission according to whether one or more reference signals in the new TCI state overlap with one or more reference signals in the old TCI state. For example, when the reference signal of QCL type D overlaps, the receiving beam search time is 0; when the reference signal of QCL type A overlaps, the time-frequency synchronization time delay is 0. In this way, the TCI state switching delay can be reduced, especially the delay used for receiving beam search and the time-frequency resynchronization delay.
  • FIG. 10 shows a schematic interaction diagram of a method 1000 applicable to another embodiment of the present application.
  • the method 1000 is mainly described by taking the signal as an SSB as an example, and the method 1000 may include the following steps.
  • Can the terminal device report whether it supports the switching between the TCI states of the shared SSB without the need to re-synchronize the time-frequency function. Specifically, the terminal device can report whether it can support the reference signal in the new TCI state and the reference signal in the old TCI state There is no need to re-synchronize time and frequency when it has a QCL relationship with the same signal (such as SSB) (such as QCL of type A).
  • This capability may be given a variety of possible names during the standard discussion and finalization process, such as fast TCI state switching, etc. The naming of this capability is not limited in the embodiment of this application.
  • the terminal device supports the switching between the TCI states of the shared SSB without the need to re-synchronize the time-frequency function. In this case, there is no need to report whether the shared SSB can switch between the TCI states. Frequency synchronization function.
  • the network device sends configuration information to the terminal device.
  • the network device may send configuration information to the terminal device through RRC signaling.
  • TCI state configuration is shown in Table 6
  • CSI-RS resource configuration (such as the QCL-info configuration of each resource) is shown in Table 7.
  • the network device instructs the terminal device to activate the PDSCH TCI state.
  • the network device can activate the TCI state of the PDSCH through MAC CE signaling.
  • the network device can activate the TCI state of the PDSCH by using the signaling shown in FIG. 3.
  • the network device instructs the terminal device to activate the PDCCH TCI state.
  • the network device can activate the TCI state of the PDCCH through MAC CE signaling.
  • the network device can activate the TCI state of the PDCCH by using the signaling shown in FIG. 4.
  • CORESET ID 1
  • PDCCH TCI state activated by the network device through MAC CE signaling
  • TCI state 1 the TCI state ID field is assigned a value of 0000001.
  • the network device and the terminal device can communicate using the default beam.
  • the default beam in the downlink, can be defined as the SSB beam determined when the terminal device initially accesses the network; in the uplink, it can be defined as the beam for transmitting message 3 (msg.3). That is, in step 1010, the terminal device reports the terminal capability through the uplink default beam, and the PDSCH sent by the network device in steps 1020, 1030, and 1040 is transmitted through the downlink default beam.
  • the beam may be updated, for example, the activated TCI state may change.
  • the network device can send signaling to the terminal device to indicate the updated TCI state.
  • the network device instructs the terminal device to update the PDCCH TCI state, and the terminal device uses the new PDCCH TCI state to prepare to receive the PDCCH.
  • the network device updates the PDCCH TCI state through the MAC CE, and the terminal device prepares to receive the PDCCH according to the new PDCCH TCI state.
  • the network equipment can indicate the PDCCH TCI state through the signaling as shown in FIG. 4. As described in the previous step 1040, it is assumed that the currently activated TCI state is TCI state 1, that is, the MAC CE signaling used to update the PDCCH TCI state in step 1050 is performed according to TCI state 1.
  • the CORESET TCI state indicated by the network device through MAC CE signaling is TCI state 2 or TCI state 3.
  • the network device indicates the TCI state through MAC CE signaling, it may correspond to Case 3 or Case 4:
  • the terminal device can determine whether the newly indicated TCI state (ie TCI state 2 or TCI state 3) is the same as the current TCI state (ie TCI state). 1) There is a QCL relationship for the same SSB to determine whether time-frequency synchronization needs to be re-synchronized. The detailed flowchart of this step is shown in Figure 11.
  • the terminal device receives the MAC CE signaling, and feeds back the correctly received message to the network device.
  • the MAC CE can be transmitted through PDSCH.
  • the PDSCH carries the MAC CE, that is, the time when the terminal device receives the MAC CE signaling is slot n.
  • the terminal device receives the PDSCH and feeds back response information to the network device, and the response information can be transmitted through the PUCCH.
  • the response information fed back by the terminal device may be, for example, HARQ-ACK information or HARQ-NACK information.
  • ACK that is, HARQ-ACK
  • NACK that is, HARQ-NACK
  • T_HARQ can be configured by a network device.
  • the terminal equipment interprets the MAC CE signaling content.
  • the terminal device interprets the content of the MAC CE signaling, and obtains the TCI state and the CSI-RS resource information therein.
  • the terminal device verifies in step 10501 that the PDSCH is correctly received at the physical layer of the terminal device (that is, received correctly in the form of 01 bits), and the content of the MAC CE signaling needs to be encapsulated into a specific format and then interpreted by the upper layer of the terminal device ( That is, the information indicated by the network device is TCI state 2 or TCI state 3 is recovered from the 01 format bit stream).
  • T_processing is 3ms, for example.
  • T_processing includes the time required for the terminal device to interpret the MAC CE signaling content, and T_processing may also include the time for the terminal device to adjust the receiving beam. As mentioned above, for the known TCI state, the terminal device stores information about the received beam.
  • the terminal device has adjusted the receiving beam according to the MAC CE signaling instructions.
  • step 10501 and step 10502 are exemplary descriptions and are not limited thereto.
  • step 10501 and step 10502 can also be combined into one step.
  • the terminal device can successfully interpret the MAC CE signaling content, and then feed back an ACK to the network device.
  • the terminal device determines whether it is necessary to re-synchronize the time and frequency.
  • the terminal device can determine whether the CSI-RS resource of the new TCI state and the CSI-RS resource of the old TCI state have a QCL relationship with the same signal (such as SSB), according to whether the CSI-RS resource of the new TCI state has a QCL relationship with The same signal (such as SSB) has a QCL relationship to determine whether time-frequency synchronization needs to be re-synchronized.
  • the same signal such as SSB
  • the result of the terminal equipment judgment may be: the CSI-RS resource of the new TCI state and the CSI-RS resource of the old TCI state have a QCL relationship with the same signal (such as SSB), or the CSI-RS resource of the new TCI state and the old TCI
  • the state CSI-RS resource does not have a QCL relationship with the same signal (such as SSB).
  • the network device If there is a QCL relationship with the same signal (such as SSB), that is, in step 1050, the network device indicates TCI state 2 through MAC CE signaling.
  • TCI state 2 By comparing the configuration in step 1020 (that is, the configuration in Table 6 and Table 7), TCI
  • the respective reference signals CSI-RS resource #1 and CSI-RS resource #2 of state 1 and TCI state 2 have QCL of type A for the same SSB. Therefore, the terminal device can continue to use the time-frequency synchronization of the old TCI state (ie, TCI state 1), and can directly perform step 10505. Specifically, the terminal device can continue to use the time-frequency synchronization corresponding to CSI-RS resource #2.
  • the network device If there is no QCL relationship with the same signal (such as SSB), that is, in step 1050, the network device indicates TCI state 3 through MAC CE signaling, and by comparing the configuration in step 1020 (that is, the configuration in Table 6 and Table 7), The respective reference signals CSI-RS resource #1 and CSI-RS resource #3 of TCI state 1 and TCI state 3 are related to different SSB QCLs. Therefore, the terminal device needs to determine a new time-frequency parameter, and the terminal device can execute step 10504.
  • the terminal device re-synchronizes time and frequency.
  • the terminal device can measure the time-frequency synchronization with the SSB acquisition of the CSI-RS resource QCL.
  • the terminal device determines that the CSI-RS resource of the new TCI state and the CSI-RS resource of the old TCI state do not have a QCL relationship with the same signal (such as SSB), the terminal device can find it based on the CSI-RS resource of the new TCI state Compared with the SSB of QCL. For example, CSI-RS resource #3 in TCI state 3 has a Type C QCL relationship with SSB#2.
  • the terminal device can wait for the opportunity to measure SSB#2. Since SSBs are sent periodically, the terminal device can measure the time-frequency parameters of SSB#2 in the last SSB cycle after the MAC CE content is determined to achieve time-frequency synchronization with SSB#2.
  • time-frequency synchronization can be initially achieved after one measurement, so as to control the time delay as much as possible.
  • the measurement may be performed multiple times.
  • the terminal device may subsequently continue to perform joint processing, such as filtering processing, through the measurement of the next M cycles (M is an integer greater than or equal to 1), so as to improve the accuracy of the measurement.
  • the terminal device completes the TCI state switch.
  • the terminal device uses the new TCI state indicated by the MAC CE to communicate with the network device, such as using the new TCI state indicated by the MAC CE to receive downlink signals (such as PDCCH/PDSCH).
  • downlink signals such as PDCCH/PDSCH.
  • the time for the terminal device to complete the TCI state switch can be as follows: kind of possibility.
  • the terminal device If there is a QCL relationship, at time: slot n+T_HARQ+T_processing, the terminal device has completed time-frequency synchronization and can start receiving subsequent downlink signals (such as PDCCH/PDSCH) according to the new TCI state.
  • subsequent downlink signals such as PDCCH/PDSCH
  • the terminal device If there is no QCL relationship, then at time: slot n+T_HARQ+T_processing+(T first-SSB +T SSB-proc ), the terminal device has completed time-frequency synchronization and can start to perform subsequent downlink signals according to the new TCI state (Such as PDCCH/PDSCH) reception.
  • the terminal device can communicate according to the old TCI state (TCI state 1).
  • the network device also transmits according to the old TCI state (TCI state 1).
  • the network equipment and the terminal equipment simultaneously switch the beams at the aligned time point to ensure the beam alignment of the network equipment terminal equipment.
  • the network equipment and terminal equipment send and receive PDCCH according to the new TCI state.
  • the new TCI state can be truly used for PDCCH transmission.
  • Method 1000 a possible process suitable for scheme B is introduced.
  • a similar to the one described above can also be used.
  • Method such as using a method similar to that shown in FIG. 11 to determine whether time-frequency synchronization needs to be re-synchronized.
  • the network device may periodically send the SSB.
  • the above description is mainly based on whether the reference signal in the new TCI state and the reference signal in the old TCI state have a QCL relationship with the same SSB as an example. This is not limited, and any other signal can be used. In the examples of this application.
  • the signal may also be CSI-RS or SRS, and so on.
  • the above mainly introduces the determination of whether the time-frequency synchronization needs to be re-executed, and it should be understood that the description of the method 800 can be referred to for the manner of whether or not the receive beam search needs to be re-executed. For example, when the QCL type D reference signal in the new TCI state and the old TCI state is the same signal QCL, there is no need to perform the receive beam search again.
  • the signaling-based TCI handover delay that is, the time from when the terminal device receives the signaling (such as handover signaling) to applying the new TCI
  • the time delay can be: T HARQ + TO k * (T first-SSB + T SSB-proc ).
  • TO k is equal to 0, otherwise, TO k is equal to 1.
  • the new TCI state is always inactive, so it is always necessary to assume this long delay. Based on the embodiment of the present application, this is not necessary, that is, the time delay may be a short time length.
  • the time-frequency offset estimated for the old TCI state can be directly applied to the new TCI state, and TO k can be 0, which helps to reduce the delay of beam switching.
  • the terminal device can determine the time when the new TCI state can be used for data transmission based on whether the reference signal in the new TCI state and the reference signal in the old TCI state have a QCL relationship with the same signal (such as SSB) . For example, when there is a QCL relationship, the time delay for resynchronizing time and frequency is zero. In this way, the TCI state switching delay can be reduced, especially the delay for re-synchronizing time and frequency.
  • the downstream communication is mainly described as an example, but this does not limit the application, and the uplink communication may also use the methods provided in the embodiments of the application. That is to say, in uplink communication, if the TCI state needs to be changed, the time between receiving the handover signaling and switching to the new TCI state can be the same as the reference signal in the new TCI state and the reference signal in the old TCI state. There is coincidence correlation, or it can also be related to whether the reference signal in the new TCI state and the reference signal in the old TCI state have a QCL relationship with the same signal. Specifically, reference may be made to the description of Scheme A and Scheme B above.
  • the reference signal in the new TCI state and the reference signal in the old TCI state are mainly used as an example to illustrate whether the reference signal in the new TCI state has a QCL relationship with the same SSB.
  • the SSB It is only an exemplary description, and other signals may also be applicable to the embodiments of the present application.
  • the signal may also be CSI-RS or SRS, and so on.
  • the first TCI state can be replaced by the first TCI state combination
  • the second TCI state can be replaced by the second TCI state combination
  • terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices
  • network devices can also be implemented by Can be used for network device components (such as chips or circuits) to achieve.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of this application.
  • the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function as an example.
  • FIG. 12 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1200 includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiver unit 1210 can implement corresponding communication functions, and the processing unit 1220 is used for data processing.
  • the transceiver unit 1210 may also be referred to as a communication interface or a communication unit.
  • the communication device 1200 may further include a storage unit, the storage unit may be used to store instructions and/or data, and the processing unit 1220 may read the instructions and/or data in the storage unit, so that the communication device implements the aforementioned method Examples.
  • the communication device 1200 can be used to perform the actions performed by the terminal device in the above method embodiment.
  • the communication device 1200 can be a terminal device or a component configurable in the terminal device, and the transceiver unit 1210 is used to perform the above method.
  • the processing unit 1220 is configured to perform the processing-related operations on the terminal device side in the above method embodiment for the operations related to receiving and sending on the terminal device side.
  • the communication device 1200 can be used to perform the actions performed by the network device in the above method embodiment.
  • the communication device 1200 can be a network device or a component configurable in the network device, and the transceiver unit 1210 is used to perform the above
  • the processing unit 1220 is configured to perform the processing-related operations on the network device side in the above method embodiments for the operations related to receiving and sending on the network device side in the method embodiments.
  • the communication device 1200 is used to perform the actions performed by the terminal device in the embodiment shown in FIG. 5 above.
  • the transceiver unit 1210 is configured to receive handover signaling from the network device in the process of using the first TCI state to communicate with the network device, and the handover signaling includes information for indicating the activated second TCI state
  • the processing unit 1220 is used for: processing handover signaling; the transceiver unit 1210 is also used for: after the first duration, the terminal device uses the second TCI state to communicate with the network device, the first duration and: the reference in the second TCI state Whether the signal overlaps with the reference signal in the first TCI state.
  • the first duration includes the duration required to determine the received beam; when the reference signal in the second TCI state overlaps with the reference signal in the first TCI state, and the overlapped reference signal is of type D QCL When the reference signal is used, it is determined that the time required to receive the beam is 0; or, when the second TCI state overlaps with the reference signal of the QCL of type D in the first TCI state, the time required to determine the received beam is based on the preset The first formula is determined.
  • the first duration includes the duration required for time-frequency synchronization; when the reference signal in the second TCI state overlaps with the reference signal in the first TCI state, and the overlapped reference signal is the reference of the following types of QCL Signal, the time required for time-frequency synchronization is 0: the reference signal of QCL of type A, or the reference signal of QCL of type B, or the reference signal of QCL of type C; or, when the second TCI state and the first TCI There are no reference signals of the following types of QCL overlap in the state, and the time required for time-frequency synchronization is determined based on the preset second formula: type A QCL reference signal, or type B QCL reference signal, or type C QCL reference signal.
  • the processing unit 1220 is configured to: within the first time period, according to the second TCI state and the first TCI state The coincident reference signal in the state determines the receiving beam.
  • the transceiver unit 1210 is further configured to: receive configuration information of multiple TCI states from the network device, each TCI state has multiple reference signals of the same QCL type; wherein, the multiple TCI states include the first TCI state and/or second TCI state.
  • the transceiver unit 1210 is further configured to report to the network device information about the reference signal resource included in the second TCI state, where the information about the reference signal resource is the information in the second TCI state that does not overlap with the first TCI state Reference signal information.
  • the transceiver unit 1210 is configured to receive handover signaling from the network device in the process of using the first TCI state to communicate with the network device, and the handover signaling includes information for indicating the activated second TCI state.
  • the processing unit 1220 is used to process handover signaling; the transceiving unit 1210 is also used to: after the first duration, the terminal device uses the second TCI state to communicate with the network device, and the first duration and the second TCI state Whether the reference signal and the reference signal in the first TCI state have a quasi co-located QCL relationship with the same signal.
  • the first duration includes the duration required for time-frequency synchronization; when the reference signal in the second TCI state and the reference signal in the first TCI state have the following type of QCL relationship with the same signal, time-frequency synchronization is required
  • the duration of is 0: QCL relationship of type A, or QCL relationship of type B, or QCL relationship of type C; or, when the reference signal in the second TCI state and the reference signal in the first TCI state do not have the same signal
  • the duration required for time-frequency synchronization is determined based on the preset second formula: type A QCL reference signal, or type B QCL reference signal, or type C QCL reference signal.
  • the communication device 1200 can implement the steps or processes performed by the terminal device in the method embodiment according to the present application.
  • the communication device 1200 can include methods for executing the method 500 in FIG. 5, the method 800 in FIG. 8 and the method in FIG.
  • the units in the communication device 1200 and the other operations and/or functions described above are used to implement the method 500 in FIG. 5, the method 800 in FIG. 8 and the corresponding processes of the method 1000 in FIG. 10, respectively.
  • the transceiver unit 1210 can be used to execute steps 510 to 530 in the method 500, and the processing unit 1220 can be used to execute the processing steps in the method 500, such as determining the duration.
  • #A Determine whether condition A1, condition A2, condition B1 and other processing steps are met.
  • the transceiver unit 1210 can be used to execute steps 810 to 870 in the method 800, and the processing unit 1220 can be used to execute steps 8502 to 8507 in the method 800.
  • the transceiving unit 1210 can be used to execute steps 1010 to 1060 in the method 1000, and the processing unit 1220 can be used to execute steps 10502 to 10505 in the method 1000.
  • the communication device 1200 is used to perform the actions performed by the network device in the embodiment shown in FIG. 5 above.
  • the transceiver unit 1210 is configured to: in the process of communicating with the terminal device using the first TCI state, send handover signaling to the terminal device, and the handover signaling includes information for indicating the activated second TCI state; After the first duration, the transceiver unit 1210 is further configured to: use the second TCI state to communicate with the terminal device, and the first duration is related to whether the reference signal in the second TCI state overlaps with the reference signal in the first TCI state .
  • the first duration includes the duration required to determine the received beam; when the reference signal in the second TCI state overlaps with the reference signal in the first TCI state, and the overlapped reference signal is of type D QCL
  • the processing unit 1220 determines that the time required for the terminal device to determine to receive the beam is 0; or, when the second TCI state does not coincide with the reference signal of the QCL of type D in the first TCI state, the processing unit 1220 determines that the terminal The time required for the device to determine the receiving beam is determined based on the preset first formula.
  • the first duration includes the duration required for time-frequency synchronization; when the reference signal in the second TCI state overlaps with the reference signal in the first TCI state, and the overlapped reference signal is the reference of the following types of QCL Signal, the processing unit 1220 determines that the time required for time-frequency synchronization of the terminal device is 0: the reference signal of QCL of type A, or the reference signal of QCL of type B, or the reference signal of QCL of type C; or, when the second The TCI state and the first TCI state do not have the reference signals of the following types of QCLs overlapping, and the processing unit 1220 determines the duration required for time-frequency synchronization of the terminal device based on a preset second formula: a reference signal of a QCL of type A, or The reference signal of QCL of type B or the reference signal of QCL of type C.
  • the processing unit 1220 is configured to determine the receiving beam of the terminal device according to the coincident reference signal in the second TCI state and the first TCI state within the first time period.
  • the transceiver unit 1210 is further configured to: send configuration information of multiple TCI states to the terminal device, and there are multiple reference signals of the same QCL type in each TCI state; wherein, the multiple TCI states include the first TCI state. And/or the second TCI state.
  • the transceiver unit 1210 is further configured to: receive information about the reference signal resource included in the second TCI state reported by the terminal device, so as to determine the beam used for communication, where the information about the reference signal resource is in the second TCI state Information about the reference signal that does not overlap with the first TCI state.
  • the transceiver unit 1210 is configured to: send handover signaling to the terminal device during the process of using the first TCI state to communicate with the terminal device, and the handover signaling includes information for indicating the activated second TCI state ; After the first duration, the transceiver unit 1210 is also used to: use the second TCI state to communicate with the terminal device, the first duration and: whether the reference signal in the second TCI state and the reference signal in the first TCI state are the same The signals have a quasi co-location QCL relationship.
  • the first duration includes the duration required for time-frequency synchronization; when the reference signal in the second TCI state and the reference signal in the first TCI state have the following type of QCL relationship with the same signal, the processing unit 1220 determines the terminal The time required for device time-frequency synchronization is 0: QCL relationship of type A, or QCL relationship of type B, or QCL relationship of type C; or, when the reference signal in the second TCI state and the reference in the first TCI state When the signal does not have the following type of QCL relationship with the same signal, the processing unit 1220 determines the duration required for the time-frequency synchronization of the terminal device based on the preset second formula: the reference signal of the QCL of type A or the reference of the QCL of type B Signal, or reference signal of type C QCL.
  • the communication device 1200 can implement the steps or processes performed by the network device in the method embodiment according to the present application.
  • the communication device 1200 can include methods for executing the method 500 in FIG. 5, the method 800 in FIG. 8 and the method in FIG.
  • the units in the communication device 1200 and the other operations and/or functions described above are used to implement the method 500 in FIG. 5, the method 800 in FIG. 8 and the corresponding processes of the method 1000 in FIG. 10, respectively.
  • the transceiver unit 1210 can be used to execute steps 510 to 530 in the method 500, and the processing unit 1220 can be used to execute the processing steps in the method 500, such as determining the duration.
  • #A Determine whether condition A1, condition A2, condition B1 and other processing steps are met.
  • the transceiver unit 1210 may be used to execute steps 810 to 870 in the method 800.
  • the transceiver unit 1210 may be used to execute steps 1010 to 1060 in the method 1000.
  • the processing unit 1220 in the above embodiment may be implemented by at least one processor or processor-related circuit.
  • the transceiver unit 1210 may be implemented by a transceiver or a transceiver-related circuit.
  • the transceiving unit 1210 may also be referred to as a communication unit or a communication interface.
  • the storage unit may be realized by at least one memory.
  • an embodiment of the present application also provides a communication device 1300.
  • the communication device 1300 includes a processor 1310, which is coupled to a memory 1320, the memory 1320 is used to store computer programs or instructions and/or data, and the processor 1310 is used to execute the computer programs or instructions and/or data stored in the memory 1320, This causes the method in the above method embodiment to be executed.
  • the communication device 1300 includes one or more processors 1310.
  • the communication device 1300 may further include a memory 1320.
  • the communication device 1300 includes one or more memories 1320.
  • the memory 1320 may be integrated with the processor 1310 or provided separately.
  • the communication device 1300 may further include a transceiver 1330, and the transceiver 1330 is used for signal reception and/or transmission.
  • the processor 1310 is configured to control the transceiver 1330 to receive and/or send signals.
  • the communication device 1300 is used to implement the operations performed by the terminal device in the foregoing method embodiments.
  • the processor 1310 is used to implement the processing-related operations performed by the terminal device in the foregoing method embodiment
  • the transceiver 1330 is used to implement the transceiving-related operations performed by the terminal device in the foregoing method embodiment.
  • the communication device 1300 is used to implement the operations performed by the network device in the foregoing method embodiments.
  • the processor 1310 is used to implement the processing-related operations performed by the network device in the foregoing method embodiment
  • the transceiver 1330 is used to implement the transceiving-related operations performed by the network device in the foregoing method embodiment.
  • the embodiment of the present application also provides a communication device 1400, and the communication device 1400 may be a terminal device or a chip.
  • the communication device 1400 can be used to perform operations performed by the terminal device in the foregoing method embodiments.
  • FIG. 14 shows a simplified schematic diagram of the structure of the terminal device.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 14 only one memory and processor are shown in FIG. 14. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiving unit 1410 and a processing unit 1420.
  • the transceiving unit 1410 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 1420 may also be referred to as a processor, a processing board, a processing module, a processing device, and the like.
  • the device for implementing the receiving function in the transceiving unit 1410 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1410 can be regarded as the sending unit, that is, the transceiving unit 1410 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be referred to as a receiver, a receiver, or a receiving circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 1420 is configured to perform processing actions on the terminal device side in FIG. 5.
  • the processing unit 1420 is used to perform the processing steps in FIG. 5; the transceiving unit 1410 is used to perform the transceiving operations in step 510 to step 530 in FIG. 5.
  • the processing unit 1420 is used to perform the processing steps in step 8502 to step 8507 in FIG. 9; the transceiving unit 1410 is used to perform the transceiving operations in step 810 to step 870 in FIG. 8.
  • the processing unit 1420 is used to perform the processing steps in step 10502 to step 10505 in FIG. 11; the transceiving unit 1410 is used to perform the transceiving operations in step 1010 to step 1060 in FIG. 10.
  • FIG. 14 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 14.
  • the chip When the communication device 1400 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 1500, and the communication device 1500 may be a network device or a chip.
  • the communication device 1500 can be used to perform operations performed by a network device in the foregoing method embodiments.
  • FIG. 15 shows a simplified schematic diagram of the base station structure.
  • the base station includes 1510 parts and 1520 parts.
  • the 1510 part is mainly used for receiving and sending radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1520 part is mainly used for baseband processing and controlling the base station.
  • the 1510 part can usually be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 1520 part is usually the control center of the base station, and may usually be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 1510 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency circuit, and the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 1510 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 1510 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 1520 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • part 1510 of the transceiving unit is used to perform the steps related to transceiving performed by the network device in the embodiment shown in FIG. 5; part 1520 is used to perform the steps performed by the network device in the embodiment shown in FIG. 5 The processing related steps.
  • part 1510 of the transceiving unit is used to perform the transceiving operations in step 810 to step 870 in FIG. 8; part 1520 is used to perform the processing performed by the network device in the embodiment shown in FIG. 8 Related steps.
  • part 1510 of the transceiving unit is used to perform the transceiving operations in step 1010 to step 1060 in Figure 10; part 1520 is used to perform the processing performed by the network device in the embodiment shown in Figure 10 Related steps.
  • FIG. 15 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 15.
  • the chip When the communication device 1500 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a computer-readable storage medium on which is stored computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiment.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer, cause the computer to implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • An embodiment of the present application also provides a communication system, which includes the network device and the terminal device in the above embodiment.
  • the terminal device or the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system of the operating system layer can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of this application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of this application, as long as it can run a program that records the code of the method provided in the embodiment of this application according to the method provided in the embodiment of this application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • Usable media may include, but are not limited to, magnetic media or magnetic storage devices (for example, floppy disks, hard disks (such as mobile hard disks), magnetic tapes), optical media (for example, optical disks, compact discs).
  • CD compact disc
  • DVD digital versatile disc
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • EPROM erasable programmable read-only memory
  • semiconductor media such as solid state disk (SSD), U disk, read-only memory (ROM), random access memory (random access memory, RAM), etc., which can store programs The medium of the code.
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to: wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the processor mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM can include the following various forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct RAM Bus RAM (DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Direct RAM Bus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above-mentioned units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected according to actual needs to implement the solution provided in this application.
  • each functional unit in each embodiment of the present application may be integrated into one unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer can be a personal computer, a server, or a network device.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website site, computer, server or data center.
  • a cable such as Coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输配置指示状态TCI state切换的方法和装置。该方法可以包括:终端设备使用第一TCI state与网络设备通信的过程中,接收网络设备发送的切换信令,该切换信令用于指示激活的第二TCI state;在接收到切换信令的一段时间后,终端设备可以使用第二TCI state与网络设备通信,该段时间的长度与以下相关:第二TCI state与第一TCI state中的参考信号是否有重合,和/或,第二TCI state中的参考信号与第一TCI state中的参考信号是否与同一信号具有QCL关系。通过本申请,可以大大降低TCI state切换时延,特别是用于接收波束搜索的时延以及重新时频同步的时延。

Description

传输配置指示状态TCI state切换的方法和装置
本申请要求于2020年06月19日提交中国专利局、申请号为202010566089.3、申请名称为“传输配置指示状态TCI state切换的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种传输配置指示状态TCI state切换的方法和装置。
背景技术
在通信过程中,如高频通信中,网络设备和终端设备通过具有方向性的波束进行通信。一般来说,终端设备的接收和发送波束的选择需要依赖网络设备提供的波束指示信息。波束指示信息一般是以指示传输配置指示(transmission configuration indicator,TCI)状态(TCI state)的形式进行的。
实际通信中,网络设备发送的信令被终端设备正确接收,到终端设备开始真正应用该信令的指示,中间存在一段时延,该时延主要用于终端设备解读信令内容,并根据信令内容进行调整准备进行数据接收等。
那么,当网络设备向终端设备发送信令以便进行TCI state切换时,也会存在一段时延,例如记为切换时延。如何尽可能地降低切换时延,是亟需解决的问题。
发明内容
本申请提供一种传输配置指示状态TCI state切换的方法和装置,以期可以尽可能地降低切换时延。
第一方面,提供了一种通信的方法。该方法可以由终端设备执行,或者,也可以由配置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:终端设备使用第一传输配置指示TCI状态TCI state与网络设备通信的过程中,所述终端设备接收来自所述网络设备的切换信令,所述切换信令包括用于指示激活的第二TCI state的信息;在第一时长之后,所述终端设备使用所述第二TCI state与所述网络设备进行通信,所述第一时长与:所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否有重合相关。
可以理解,当前终端设备与网络设备通信使用的TCI state为第一TCI state,在接收到切换信令(该切换信令中指示的激活的TCI state为第二TCI state)后的第一时长之后,终端设备与网络设备通信使用的TCI state为第二TCI state。或者,也可以理解,切换信令中的第二TCI state为新TCI state,第一TCI state为当前激活的TCI state。
示例地,终端设备使用第一TCI state与网络设备通信,可以理解为,终端设备使用第 一TCI state指示的波束与网络设备通信,或者说,终端设备使用第一TCI state指示的接收波束接收来自网络设备的数据,也就是说终端设备的接收波束是基于第一TCI state确定的。
示例地,所述切换信令包括用于指示激活的第二TCI state的信息,即表示,所述切换信令包括用于激活第二TCI state。
示例地,第一时长至少可以包括:解读信令所需时长、确定接收波束所需时长(T L1-RSRP)、时频同步所需时延。
示例地,所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否有重合,表示:所述第二TCI state中的参考信号与所述第一TCI state中同一类型的参考信号是否有重合。
例如,第一TCI state中同一类型的参考信号有多个,第二TCI state中同一类型的参考信号有多个;又如,第一TCI state中同一类型的参考信号有多个,第二TCI state中同一类型的参考信号有一个;又如,第一TCI state中同一类型的参考信号有一个,第二TCI state中同一类型的参考信号有多个;又如,第一TCI state中同一类型的参考信号有一个,第二TCI state中同一类型的参考信号有一个。在上述任一情况下,第二TCI state中的参考信号与第一TCI state中同一类型的参考信号可能有重合,也可能没有重合。
示例地,第一TCI state也可以替换为第一TCI state组合,第二TCI state也可以替换为第二TCI state组合。相应地,激活信令可以用于激活第二TCI state组合;第一时长表示接收到切换信令到第二TCI state组合可用的时间;第一TCI state与第二TCI state中的参考信号部分重合,可以表示第一TCI state组合与第二TCI state组合中的TCI state部分重合,或者,也可以表示第一TCI state组合与第二TCI state组合中的TCI state的参考信号部分重合。
基于上述技术方案,从终端设备接收到切换信令,即指示激活第二TCI state的信令,到终端设备能够使用该新第二TCI state进行通信之间的时间长度(即第一时长),与第二TCI state和第一TCI state是否有重合的参考信号有关。可以理解,终端设备根据第二TCI state中的一个或多个参考信号是否与第一TCI state中的一个或多个参考信号有重合,确定能够使用第二TCI state进行数据传输的时间。例如,当QCL类型D的参考信号有重合时,接收波束搜索时间可以为0,相应地第一时长较短;当QCL类型A的参考信号有重合时,重新时频同步的时延可以为0,相应地第一时长较短。从而,大大降低了TCI state切换时延(即第一时长的长度),特别是用于接收波束搜索的时延以及重新时频同步的时延。
结合第一方面,在第一方面的某些实现方式中,所述第一时长包括确定接收波束所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号有重合,且重合的参考信号为类型D的QCL的参考信号时,所述确定接收波束所需的时长为0。
结合第一方面,在第一方面的某些实现方式中,所述第一时长包括确定接收波束所需的时长;当所述第二TCI state与所述第一TCI state中没有属于类型D的QCL的参考信号重合时,所述确定接收波束所需的时长基于预设的第一公式确定。
或者说,当所述第二TCI state与所述第一TCI state中没有属于类型D的QCL的参考信号重合时,所述确定接收波束所需的时长大于0。
其中,预设的第一公式例如可以实现协议预先定义的;或者当所述第二TCI state与所述第一TCI state中没有属于类型D的QCL的参考信号重合时,确定接收波束所需的时长也可以是一个固定值或固定时间范围或者是预配置的时间等等,对此不作限定。
示例地,终端设备可以判断是否满足一定的条件(为区分,记为条件A1),当满足条件A1时,确定接收波束所需的时长为0;当不满足条件A1时,确定接收波束所需的时长基于预设的第一公式确定。其中,条件A1可以表示为:切换信令中的第二TCI state与第一TCI state(即当前激活的TCI state)中,至少有一个重合的参考信号(或者说至少有一个参考信号处于交叠状态),且该重合的参考信号包括QCL类型D的参考信号。
一种可能的实现方式,用T L1-RSRP表示确定接收波束所需的时长,对于未知的TCI state,如果满足条件A1,T L1-RSRP=0;否则一种可能的方式,T L1-RSRP=T L1-RSRP_Measurement_Period_CSI-RS。关于各个参数的含义,下文介绍。
基于上述技术方案,当QCL类型D的参考信号有重合时,接收波束搜索时间可以为0,从而,大大降低了TCI state切换时延,特别是用于接收波束搜索的时延。
结合第一方面,在第一方面的某些实现方式中,所述第一时长包括时频同步所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号有重合,且重合的参考信号为以下类型的QCL的参考信号时,所述时频同步所需的时长为0:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
结合第一方面,在第一方面的某些实现方式中,所述第一时长包括时频同步所需的时长;当所述第二TCI state与所述第一TCI state中没有属于以下类型的QCL的参考信号重合,所述时频同步所需的时长基于预设的第二公式确定:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
或者说,当所述第二TCI state与所述第一TCI state中没有属于类型A的QCL的参考信号重合、或者属于类型B的QCL的参考信号重合、或者属于类型C的QCL的参考信号重合时,所述时频同步所需的时长大于0。
其中,预设的第二公式例如可以实现协议预先定义的。或者当所述第二TCI state与所述第一TCI state中没有属于类型A或类型B或类型C的QCL的参考信号重合时,时频同步所需的时长也可以是一个固定值或固定时间范围或者是预配置的时间等等,对此不作限定。
示例地,终端设备可以判断是否满足一定的条件(为区分,记为条件A2),当满足条件A2时,时频同步所需的时长为0;当不满足条件A2时,时频同步所需的时长基于预设的第二公式确定。其中,条件A2可以表示为:切换信令中的第二TCI state与第一TCI state(即当前激活的TCI state)中,至少有一个重合的参考信号或者说至少有一个参考信号处于交叠状态,且该重合的参考信号为:QCL类型A的参考信号,或者,QCL类型B的参考信号,或者,QCL类型C的参考信号。
一种可能的实现方式,时频同步所需的时长可以表示为:TO k*(T first-SSB+T SSB-proc)。对于未激活的TCI state,如果满足条件A2,TO k=0;否则一种可能的方式,TO k=1。关于各个参数的含义,下文介绍。
基于上述技术方案,当QCL类型A的参考信号有重合时,或者,当QCL类型B的参考信号有重合时,或者,当QCL类型C的参考信号有重合时,时频同步所需的时长可 以为0,从而,大大降低了TCI state切换时延,特别是用于时频同步所需的时长。
结合第一方面,在第一方面的某些实现方式中,在所述第二TCI state中的参考信号与第一TCI state中的参考信号有重合的情况下,所述方法还包括:在所述第一时长内,所述终端设备根据所述第二TCI state与所述第一TCI state中的重合参考信号确定接收波束。
基于上述技术方案,如果第二TCI state中的参考信号与第一TCI state中的参考信号有重合的情况下,如QCL类型D的参考信号有重合,那么在终端设备接收到切换信令到终端设备能够使用第二TCI state与网络设备进行通信之前,终端设备可以根据第二TCI state与第一TCI state中的重合参考信号确定接收波束,从而节省了接收波束所需要的时间,减少通信中断的时长,提高用户体验。
结合第一方面,在第一方面的某些实现方式中,在所述终端设备接收来自所述网络设备的切换信令之前,所述方法还包括:所述终端设备接收来自所述网络设备的多个TCI state的配置信息,每个TCI state中同一QCL类型的参考信号有多个;其中,所述多个TCI state包括所述第一TCI state和/或所述第二TCI state。
示例地,第一TCI state中同一QCL类型的参考信号有多个。
示例地,第二TCI state中同一QCL类型的参考信号有多个。
基于上述技术方案,可以扩展TCI state的范围,使得一个TCI state可以包括多个同类型的参考信号,也就是说TCI state中的同一QCL类型的参考信号是多个。例如,一个TCI state中QCL类型D的参考信号有多个;又如,一个TCI state中QCL类型A的参考信号有多个,等等。在TCI state中的同一QCL类型的参考信号有多个的情况下,多个TCI state包括的参考信号可能有重合。这样在网络设备指示TCI state切换时,如果第二TCI state和第一TCI state之间有重合的参考信号,终端设备可以在这一次切换过程中使用这个处于重合状态的参考信号,保持接收波束和/或时频同步的信息,无需进行波束搜索过程和/或在新波束上进行同步的过程,可以有效的降低时延。
结合第一方面,在第一方面的某些实现方式中,在所述第二TCI state中的参考信号与第一TCI state中的参考信号有重合的情况下,所述方法还包括:在所述终端设备使用所述第二TCI state与所述网络设备进行通信之后,所述终端设备向所述网络设备上报所述第二TCI state包括的参考信号资源的信息,其中,所述参考信号资源的信息为所述第二TCI state中与第一TCI state中不重合的参考信号的信息。
示例地,所述终端设备向所述网络设备上报所述第二TCI state包括的参考信号资源的信息,以便网络设备确定通信使用的波束,或者说,以便向网络设备指示通信使用的波束,或者说,以便向网络设备推荐通信使用的波束。
示例地,参考信号资源的信息例如可以包括参考信号标识。
示例地,终端设备可以选择较优的或者最优的参考信号资源进行上报。
基于上述技术方案,在终端设备使用第二TCI state与网络设备通信之后,考虑到TCI state中的同一QCL类型的参考信号有多个,那么当其它参考信号资源质量较好时,终端设备可以推荐使用其它质量较好的参考信号资源,即终端设备可以推荐使用通信过程中使用的波束,并向网络设备进行上报。从而,不仅可以降低TCI state切换时延,还可以尽可能地提高通信过程中的通信质量。
第二方面,提供了一种通信的方法。该方法可以由终端设备执行,或者,也可以由配 置于终端设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:终端设备使用第一传输配置指示TCI状态TCI state与网络设备通信的过程中,所述终端设备接收来自所述网络设备的切换信令,所述切换信令包括用于指示激活的第二TCI state的信息;在第一时长之后,所述终端设备使用所述第二TCI state与所述网络设备进行通信,所述第一时长与所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否与同一信号具有准共址QCL关系相关。
示例地,终端设备使用第一TCI state与网络设备通信,可以理解为,终端设备使用第一TCI state指示的波束与网络设备通信,或者说,终端设备使用第一TCI state指示的接收波束接收来自网络设备的数据,也就是说终端设备的接收波束是基于第一TCI state确定的。
示例地,同一信号或者说相同的信号,可以为同步信号块(synchronization signal block,SSB),即所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否与同一SSB具有准共址QCL关系。
示例地,同一信号可以为第一TCI state或者第二TCI state配置信息中的SSB。例如,第一TCI state中参考信号包括:信道状态信息参考信号(channel state information reference signal,CSI-RS)#1和SSB#1,其中,CSI-RS#1与SSB#1具有QCL关系;第二TCI state中包括CSI-RS#2和SSB#1,其中,CSI-RS#2与SSB#1具有QCL关系。那么,也就是说,第二TCI state中的参考信号CSI-RS#2与第一TCI state中的参考信号CSI-RS#1,与同一信号SSB#1QCL关系。或者,又一示例,同一信号也可以为其他TCI state中的信号(如SSB),例如,同一信号也可以为终端设备已知的TCI state中的SSB;又如,同一信号也可以为终端设备维护的TCI state中的SSB。关于已知的TCI state和维护的TCI state,参考下文实施例的描述。
示例地,第一时长至少可以包括:解读信令所需时长、确定接收波束所需时长(T L1-RSRP)、时频同步所需时延。
示例地,QCL类型可以是A,B,C,D中的一种或多种,例如可以是QCL类型A和C,即与时域同步更相关的QCL类型。
示例地,当所述第一TCI state与所述第二TCI state中的QCL类型D参考信号与同一信号QCL时,无需重新进行接收波束搜索。
基于上述技术方案,从终端设备接收到切换信令,即指示激活的第二TCI state的信令,到终端设备能够使用该新TCI state进行通信之间的时间长度(即第一时长),与第二TCI state和第一TCI state是否与同一信号具有QCL关系有关。可以理解,终端设备根据第二TCI state中的参考信号与第一TCI state中的参考信号是否与同一信号具有QCL关系,确定能够使用第二TCI state进行数据传输的时间。例如,当第二TCI state中的参考信号与第一TCI state中的参考信号与同一信号具有QCL关系时,重新时频同步的时延为0,相应地第一时长较短。从而,大大降低了TCI state切换时延,特别是重新时频同步的时延。
结合第二方面,在第二方面的某些实现方式中,所述第一时长包括时频同步所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号与同一信号具有以下类型的QCL关系时,所述时频同步所需的时长为0:类型A的QCL关系、或者类型B的QCL关系、或者类型C的QCL关系。
示例地,当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号直接具有以下类型的QCL关系时,所述时频同步所需的时长为0:类型A的QCL关系、或者类型B的QCL关系、或者类型C的QCL关系。
结合第二方面,在第二方面的某些实现方式中,所述第一时长包括时频同步所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号没有与同一信号具有以下类型的QCL关系时,所述时频同步所需的时长基于预设的第二公式确定:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
示例地,终端设备可以判断是否满足一定的条件(为区分,记为条件B1),当满足条件B1时,时频同步所需的时长为0;当不满足条件B1时,时频同步所需的时长基于预设的第二公式确定。其中,条件B1可以表示为:切换信令中的第二TCI state中的参考信号与第一TCI state(即当前激活的TCI state)中的参考信号,与同一信号(如SSB)具有QCL关系。QCL类型可以是A,B,C,D中的一种或多种,例如可以是QCL类型A和C,即与时域同步更相关的QCL类型。
一种可能的实现方式,时频同步所需的时长可以表示为:TO k*(T first-SSB+T SSB-proc)。对于未激活的TCI state,如果满足条件B1,TO k=0;否则一种可能的方式,TO k=1。关于各个参数的含义,下文介绍。
基于上述技术方案,终端设备根据第二TCI state中的参考信号与第一TCI state中的参考信号是否与同一信号具有QCL关系,确定能够使用新的TCI state进行数据传输的时间。例如,当第二TCI state中的参考信号与第一TCI state中的参考信号与同一信号具有QCL关系时,重新时频同步的时延为0。从而,大大降低了TCI state切换时延,特别是重新时频同步的时延。
结合第二方面,在第二方面的某些实现方式中,所述第一时长包括确定接收波束所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号与同一信号具有类型D的QCL关系时,所述确定接收波束所需的时长为0。
示例地,当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号直接具有类型D的QCL关系时,所述确定接收波束所需的时长为0。
结合第二方面,在第二方面的某些实现方式中,所述第一时长包括确定接收波束所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号没有与同一信号具有类型D的QCL关系时,所述确定接收波束所需的时长基于预设的第一公式确定。
第三方面,提供了一种通信的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:网络设备使用第一传输配置指示TCI状态TCI state与终端设备通信的过程中,所述网络设备向所述终端设备发送切换信令,所述切换信令包括用于指示激活的第二TCI state的信息;在第一时长之后,所述网络设备使用所述第二TCI state与所述终端设备进行通信,所述第一时长与:所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否有重合相关。
示例地,网络设备使用第一TCI state与终端设备通信,可以理解为,网络设备使用第 一TCI state指示的波束与终端设备通信,或者说,网络设备使用第一TCI state指示的接发送波束向终端设备发送数据,也就是说网络设备的发送波束是基于第一TCI state确定的。
示例地,第一时长至少可以包括:解读信令所需时长、确定接收波束所需时长(T L1-RSRP)、时频同步所需时延。
基于上述技术方案,考虑到终端设备从接收到切换信令,即指示激活的第二TCI state的信令,到终端设备能够使用该新TCI state进行通信之间有一段时间(即第一时长),为降低该段时间长度,减少传输中断的时长,可以将该段时间长度与第二TCI state和第一TCI state是否有重合的参考信号联系起来。例如,当QCL类型D的参考信号有重合时,可以确定终端设备接收波束搜索时间可以为0;当QCL类型A的参考信号有重合时,网络设备可以确定终端设备重新时频同步的时延可以为0。从而,大大降低了TCI state切换时延,特别是用于接收波束搜索的时延以及重新时频同步的时延。
结合第三方面,在第三方面的某些实现方式中,所述第一时长包括确定接收波束所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号有重合,且重合的参考信号为类型D的QCL的参考信号时,所述确定接收波束所需的时长为0。
结合第三方面,在第三方面的某些实现方式中,所述第一时长包括确定接收波束所需的时长;当所述第二TCI state与所述第一TCI state中没有属于类型D的QCL的参考信号重合时,所述确定接收波束所需的时长基于预设的第一公式确定。
可以理解,当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号有重合,且重合的参考信号为类型D的QCL的参考信号时,所述网络设备可以确定所述终端设备确定接收波束所需的时长为0。
结合第三方面,在第三方面的某些实现方式中,所述第一时长包括时频同步所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号有重合,且重合的参考信号为以下类型的QCL的参考信号时,所述时频同步所需的时长为0:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
结合第三方面,在第三方面的某些实现方式中,所述第一时长包括时频同步所需的时长;当所述第二TCI state与所述第一TCI state中没有属于以下类型的QCL的参考信号重合,所述时频同步所需的时长基于预设的第二公式确定:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
可以理解,当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号有重合,且重合的参考信号为类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号时,所述网络设备可以确定所述终端设备时频同步所需的时长为0。
结合第三方面,在第三方面的某些实现方式中,在所述第二TCI state中的参考信号与第一TCI state中的参考信号有重合的情况下,所述方法还包括:在所述第一时长内,所述网络设备根据所述第二TCI state与所述第一TCI state中的重合参考信号确定所述终端设备的接收波束。
结合第三方面,在第三方面的某些实现方式中,在所述网络设备向所述终端设备发送切换信令之前,所述方法还包括:所述网络设备向所述终端设备发送多个TCI state的配置 信息,每个TCI state中同一QCL类型的参考信号有多个;其中,所述多个TCI state包括所述第一TCI state和/或所述第二TCI state。
结合第三方面,在第三方面的某些实现方式中,在所述第二TCI state中的参考信号与第一TCI state中的参考信号有重合的情况下,所述方法还包括:在所述网络设备使用所述第二TCI state与所述终端设备进行通信之后,所述网络设备接收来自所述终端设备上报的所述第二TCI state包括的参考信号资源的信息,其中,所述参考信号资源的信息为所述第二TCI state中与第一TCI state中不重合的参考信号的信息。
示例地,所述网络设备接收来自所述终端设备上报的所述第二TCI state包括的参考信号资源的信息,以便确定通信使用的波束。
示例地,网络设备可以在向终端设备发送切换信令时,将上报所需要的资源通知终端设备,以便终端设备可以根据该上报所需要的资源进行上报。
第四方面,提供了一种通信的方法。该方法可以由网络设备执行,或者,也可以由配置于网络设备中的芯片或芯片系统或电路执行,本申请对此不作限定。
该方法可以包括:网络设备使用第一传输配置指示TCI状态TCI state与终端设备通信的过程中,所述网络设备向所述终端设备发送切换信令,所述切换信令包括用于指示激活的第二TCI state的信息;在第一时长之后,所述网络设备使用所述第二TCI state与所述终端设备进行通信,所述第一时长与:所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否与同一信号具有准共址QCL关系相关。
示例地,网络设备使用第一TCI state与终端设备通信,可以理解为,网络设备使用第一TCI state指示的波束与终端设备通信,或者说,网络设备使用第一TCI state指示的接发送波束向终端设备发送数据,也就是说网络设备的发送波束是基于第一TCI state确定的。
示例地,同一信号可以为SSB,即所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否与同一SSB具有准共址QCL关系。
示例地,第一时长可以至少包括:解读信令所需时长、确定接收波束所需时长(T L1-RSRP)、时频同步所需时延。
示例地,QCL类型可以是A,B,C,D中的一种或多种,例如可以是QCL类型A和C,即与时域同步更相关的QCL类型。
基于上述技术方案,考虑到终端设备从接收到切换信令,即指示激活第二TCI state的信令,到终端设备能够使用该第二TCI state进行通信之间有一段时间(即第一时长),为降低该段时间长度,减少传输中断的时长,可以将该段时间长度与第二TCI state和第一TCI state是否与同一信号具有QCL关系联系起来。例如,当第二TCI state中的参考信号与第一TCI state中的参考信号与同一信号具有QCL关系时,网络设备可以确定终端设备重新时频同步的时延可以为0。从而,大大降低了TCI state切换时延,特别是重新时频同步的时延。
结合第四方面,在第四方面的某些实现方式中,所述第一时长包括时频同步所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号与同一信号具有以下类型的QCL关系时,所述时频同步所需的时长为0:类型A的QCL关系、或者类型B的QCL关系、或者类型C的QCL关系。
示例地,当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号直接具有以下类型的QCL关系时,所述时频同步所需的时长为0:类型A的QCL关系、或者类型B的QCL关系、或者类型C的QCL关系。
结合第四方面,在第四方面的某些实现方式中,所述第一时长包括时频同步所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号没有与同一信号具有以下类型的QCL关系时,所述时频同步所需的时长基于预设的第二公式确定:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
可以理解,当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号与同一信号具有以下类型的QCL关系时,所述网络设备可以确定所述终端设备时频同步所需的时长为0:类型A的QCL关系、或者类型B的QCL关系、或者类型C的QCL关系。
结合第四方面,在第四方面的某些实现方式中,所述第一时长包括确定接收波束所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号与同一信号具有类型D的QCL关系时,所述确定接收波束所需的时长为0。
示例地,当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号直接具有类型D的QCL关系时,所述确定接收波束所需的时长为0。
结合第四方面,在第四方面的某些实现方式中,所述第一时长包括确定接收波束所需的时长;当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号没有与同一信号具有类型D的QCL关系时,所述确定接收波束所需的时长基于预设的第一公式确定。
第五方面,提供一种通信装置,所述通信装置用于执行上述第一方面或第二方面提供的方法。具体地,所述通信装置可以包括用于执行第一方面或第二方面提供的方法的模块。如通信装置包括收发模块和处理模块。收发模块(可以包括发送模块和接收模块),用于执行上述方案中信号或信息收发的操作;处理模块,用于执行上述方案中除收发之外的操作,如确定接收波束所需的时长和确定时频同步所需的时长等。
第六方面,提供一种通信装置,所述通信装置用于执行上述第三方面或第四方面提供的方法。具体地,所述通信装置可以包括用于执行第三方面或第四方面提供的方法的模块。如通信装置包括收发模块和处理模块。收发模块(可以包括发送模块和接收模块),用于执行上述方案中信号或信息收发的操作;处理模块,用于执行上述方案中除收发之外的操作,如确定接收波束所需的时长和确定时频同步所需的时长以及配置TCI state等。
第七方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为终端设备。当该通信装置为终端设备时,所述通信接口可以是收发器,或,输入/输出接口,用于信号的收发,或计算机程序或指令的输入输出。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系 统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于终端设备中的芯片或芯片系统。当该通信装置为配置于终端设备中的芯片或芯片系统时,所述通信接口可以是输入/输出接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第八方面,提供一种通信装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第三方面或第四方面以及第三方面或第四方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合,所述通信接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。
在一种实现方式中,该通信装置为网络设备。当该通信装置为网络设备时,所述通信接口可以是收发器,或,输入/输出接口,用于信号的收发,或计算机程序或指令的输入输出。
在另一种实现方式中,该通信装置为芯片或芯片系统。当该通信装置为芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
在另一种实现方式中,该通信装置为配置于网络设备中的芯片或芯片系统。当该通信装置为网络设备中的芯片或芯片系统时,所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第九方面,提供一种通信装置,该通信装置包括处理器,该处理器与存储器耦合,当该处理器执行存储器中的计算机程序或指令时,第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法被执行。
第十方面,提供一种通信装置,该通信装置包括处理器,该处理器与存储器耦合,当该处理器执行存储器中的计算机程序或指令时,第三方面或第四方面以及第三方面或第四方面中任一种可能实现方式中的方法被执行。
第十一方面,提供一种通信装置,该通信装置包括收发器、存储器、处理器及存储在存储器上并可在该处理器上运行的计算机程序,该处理器执行该计算机程序时,通信装置实现如第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十二方面,提供一种通信装置,该通信装置包括收发器、存储器、处理器及存储在存储器上并可在该处理器上运行的计算机程序,该处理器执行该计算机程序时,通信装置实现如第三方面或第四方面以及第三方面或第四方面中任一种可能实现方式中的方法。
第十三方面,提供一种通信装置,该通信装置包括处理器和接口,该处理器通过该接 口与存储器耦合,当该处理器执行存储器中的计算机程序或指令时,第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法被执行。
第十四方面,提供一种通信装置,该通信装置包括处理器和接口,该处理器通过该接口与存储器耦合,当该处理器执行存储器中的计算机程序或指令时,第三方面或第四方面以及第三方面或第四方面中任一种可能实现方式中的方法被执行。
第十五方面,提供一种芯片,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行第一方面或第二方面以及第一方面或第二方面中任一种可能实现方式中的方法。
第十六方面,提供一种芯片,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行第三方面或第四方面以及第三方面或第四方面中任一种可能实现方式中的方法。
第十七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面或第二方面以及第一方面或第二方面的任一可能的实现方式中的方法。
第十八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第三方面或第四方面以及第三方面或第四方面的任一可能的实现方式中的方法。
第十九方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面或第二方面提供的方法。
第二十方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第三方面或第四方面提供的方法。
第二十一方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1与图2是本申请实施例应用的通信系统的示意图。
图3与图4是适用于本申请实施例的MAC-CE的格式的示意图。
图5是根据本申请实施例提供的通信的方法的示意性框图。
图6是适用于本申请实施例的新TCI state与旧TCI state中的参考信号有重合的示意图。
图7是适用于本申请实施例的共SSB的CSI-RS资源的示意图。
图8是适用于本申请一实施例的通信的方法的示意性流程图。
图9是适用于本申请一实施例的判断是否需要训练接收波束和是否需要进行时频同步的示意性流程图。
图10是适用于本申请又一实施例的通信的方法的示意性流程图。
图11是适用于本申请又一实施例的判断是否需要进行时频同步的示意性流程图。
图12是本申请实施例提供的通信装置的示意性框图。
图13是本申请实施例提供的通信装置的另一示意性框图。
图14是本申请实施例提供的终端设备的示意性框图。
图15是本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于基于波束的通信系统,例如:第五代(5th generation,5G)系统、新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)或者其他演进的通信系统等。
本申请实施例应用的通信系统中可以包括一个或多个网络设备,以及一个或多个终端设备。一个网络设备可以向一个或多个终端设备传输数据或控制信令。或者,多个网络设备也可以同时为一个终端设备传输数据或者控制信令。
作为示例而非限定,图1为本申请实施例应用的通信系统100的示意图。
该通信系统100包括一个网络设备或110与多个终端设备120(如图1中所示的终端设备120a和终端设备120b)。网络设备110可以通过多个射频通道同时发送多个模拟波束来为多个终端设备传输数据。如图1所示,网络设备同时发送波束1和波束2,其中波束1用于为终端设备120a传输数据,波束2用于为终端设备120b传输数据。波束1可以称为终端设备120a的服务波束,波束2可以称为终端设备120b的服务波束。终端设备120a和终端设备120b可以属于同一个小区。
图2示出了适用于本申请实施例的通信系统200的另一示意图。
如图2所示,该通信系统200可以包括至少两个网络设备,例如图2中所示的网络设备210(如图2中所示的网络设备210a和网络设备210b);该通信系统200还可以包括至少一个终端设备,例如图2中所示的终端设备220。该终端设备220可以通过双连接(dual connectivity,DC)技术或者多连接技术等与网络设备210a和网络设备210b建立无线链路。其中,网络设备210a例如可以为主基站,网络设备210b例如可以为辅基站。此情况下,网络设备210a为终端设备220初始接入时的网络设备,负责与终端设备220之间的无线资源控制(radio resource control,RRC)通信,网络设备210b可以是RRC重配置时添加的,用于提供额外的无线资源。
应理解,上述图1和图2仅是示例性说明,本申请并未限定于此。例如,本申请实施例还可以包括更多数量的网络设备或终端设备。
本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运 输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
另外,本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,可以是传输接收点(transmission reception point,TRP),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,可以是WLAN中的接入点(access point,AP),可以是新型无线系统(new radio,NR)系统中的gNB,本申请实施例并不限定。
在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的RAN设备。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
为便于理解本申请实施例,下面首先介绍本申请实施例涉及的一些术语。
1、波束
波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波 束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其它类型波束。形成波束的技术可以是波束赋形技术或者其它技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
可选地,具有相同或者类似的通信特征的多个波束可以视为一个波束。
一个波束对应一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。一个波束对应的一个或多个天线端口也可以看作是一个天线端口集。
在高频通信系统中,为了克服路损,网络设备和终端通常都会使用高增益的天线阵列形成具有方向性的模拟波束来进行通信。当发送和接收的方向对齐时,可以实现正常通信。
在下行通信中(网络设备发送、终端设备接收),网络设备的发送波束和终端设备的接收波束需要对齐。在下行通信中,可以将对齐的网络设备的发送波束和终端设备的接收波束简称为下行波束对,或者下行波束。下行波束对构成的通信链路可以简称为下行波束对链路。
在上行通信中(网络设备接收、终端设备发送),网络设备的接收波束和终端设备的发送波束需要对齐。在上行通信中,可以将对齐的网络设备的接收波束和终端设备的发送波束简称为上行波束对,或者上行波束。上行波束对构成的通信链路可以简称为上行波束对链路。
网络设备的发送波束和接收波束有时也简称为网络设备波束。终端设备的发送波束和接收波束有时也简称为终端设备波束(或者说终端波束)。
当网络设备和终端设备的相对位置发生变化时,例如终端设备移动或者旋转等情况下,网络设备和终端设备的波束也会相应的发生变化。网络设备可以发送信令通知终端设备关于波束变化的情况。终端设备接收到网络设备发送的信令后,按照网络设备的信息指示,更新使用的波束。
波束一般和资源对应,例如进行波束测量时,网络设备可以在不同资源使用不同的波束发送信号,终端设备在不同的资源使用不同的波束接收信号,并且终端设备可以向网络设备反馈在不同资源上测得的信号的质量,从而网络设备就知道对应的波束的质量。在数据传输时,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过下行控制信息(downlink control information,DCI)中的传输配置指示(transmission configuration indicator,TCI)资源,来指示终端设备物理下行共享信道(physical downlink shared channel,PDSCH)波束的信息。
2、资源
在波束测量中,网络设备的每一个波束对应一个资源,因此可以通过资源的标识(或者称索引)来唯一标识该资源对应的波束。
资源可以是上行信号资源,也可以是下行信号资源。
上行信号包括但不限于:上行随机接入序列、探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference signal,DMRS)(如上行控制信道解调参考信号或上行数据信道解调参考信号)以及上行相位噪声跟踪信号。
下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)(如下行控制信道解调参考信号或下行数据信道解调参考信号)、下行相位噪声跟踪信号以及同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
资源可以通过无线资源控制(radio resource control,RRC)信令配置。
在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数,例如上行/下行信号的类型,承载上行/下行信号的资源粒,上行/下行信号的发送时间和周期,发送上行/下行信号所采用的端口数等。
每一个上行/下行信号的资源具有唯一的标识,以标识该上行/下行信号的资源。可以理解的是,资源的标识也可以称为资源的索引,本申请实施例对此不作任何限制。
此外,波束管理资源可以指用于波束管理的资源,又可以体现为用于计算和测量波束质量的资源。波束质量例如可以包括但不限于:层一接收参考信号功率(layer 1reference signal received power,L1-RSRP)、层一接收参考信号质量(layer 1reference signal received quality,L1-RSRQ)、层一信号与干扰噪声比(layer 1signal to interference and noise ratio,L1-SINR)等。例如,波束管理资源可以包括:同步信号、广播信道、下行信道测量参考信号、跟踪信号、下行控制信道解调参考信号、下行共享信道解调参考信号、上行探测参考信号、上行随机接入信号等。
3、准共址(quasi-co-location,QCL)
准共址(quasi-co-location,QCL)或者称准同位。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
其中,上述角度可以为不同维度的分解值,或不同维度分解值的组合。天线端口为具有不同天线端口编号的天线端口,和/或,具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或,具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。资源标识可以包括:CSI-RS资源标识,或SRS资源标识,或SSB资源标识,或物理随机接入信道(Physical Random Access Channel,PRACH)上传输的前导序列的资源标识,或解调参考信号(demodulation reference  signal,DMRS)的资源标识,用于指示资源上的波束。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;以及
类型D(type D):空间接收参数。
当QCL关系指类型D的QCL关系时,可以认为是空域QCL。当天线端口满足空域QCL关系时,下行信号的端口和下行信号的端口之间,或上行信号的端口和上行信号的端口之间的QCL关系,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的接收波束或发射波束。又例如对于下行信号和上行信号间或上行信号与下行信号的端口间的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束互易性,根据下行接收波束确定上行发射波束,或根据上行发射波束确定下行接收波束。
从发送端来看,如果说两个天线端口是空域QCL的,则可以是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域QCL的,则可以是指接收端能够在同一波束方向上接收到这两个天线端口发送的信号。
具有空域QCL关系的端口上传输的信号还可以具有对应的波束,对应的波束包括以下至少之一:相同的接收波束、相同的发射波束、与接收波束对应的发射波束(对应于有互易的场景)、与发射波束对应的接收波束(对应于有互易的场景)。
具有空域QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送信号。空间滤波器可以为以下至少之一:预编码,天线端口的权值,天线端口的相位偏转,天线端口的幅度增益。
具有空域QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(beam pair link,BPL),对应的BPL包括以下至少之一:相同的下行BPL,相同的上行BPL,与下行BPL对应的上行BPL,与上行BPL对应的下行BPL。
因此,空间接收参数(即,类型D的QCL)可以理解为用于指示接收波束的方向信息的参数,或者说,确定接收波束,可以认为是确定QCL类型D中的接收空域参数。
此外,QCL类型A,B,C(或者说类型A,B,C的QCL)中的各种参数,例如平均时延和多普勒扩展,主要是用于时域同步;多普勒偏移和时延扩展,则主要是用于频域同步。因此确定QCL其他类型(如QCL类型A,B,C)的参数可以简称为时频同步。
4、空间关系(spatial relation,SR)
空间关系,也可以称为上行传输配置指示(uplink transmission configuration indicator,UL TCI)。空间关系可以用于确定上行信号的发送波束。该空间关系可以由波束训练确定。用于波束训练的参考信号例如可以是上行参考信号,如SRS,也可以是下行参考信号,如SSB或CSI-RS。
在通信过程中,终端设备可以基于网络设备所指示的空间关系确定发送波束,网络设备可以基于同一空间关系确定接收波束。
可选地,空间关系中还可以包含上行发送功率控制的相关参数,包括以下一种或多种:路径损耗估计参考信号(Pathloss Reference RS),基准功率,补偿系数(Alpha),开环 或者闭环功控指示,闭环功控编号(closedLoopIndex)等。
SR是由网络设备配置给各个终端设备的,下列是SR的一种格式。
Figure PCTCN2021100812-appb-000001
5、TCI状态(TCI state)
TCI state可用于指示两种参考信号之间的QCL关系。TCI state包括了QCL的类型(可配置多种(如两种)不同的QCL类型)以及每种QCL类型的参考信号。该参考信号具体可以包括:参考信号所在的载波分量(carrier component,CC)标识(identification,ID)和/或带宽部分(band width part,BWP)ID,以及每个参考信号资源的编号(或者说参考信号资源标识)。其中,参考信号资源的编号例如可以为以下至少一项:非零功率(non-zero power,NZP)CSI-RS参考信号资源标识(NZP-CSI-RS-ResourceId)、非零功率CSI-RS参考信号资源集标识(NZP-CSI-RS-ResourceSetId)或SSB索引(SSB-Index)。
发送波束的信息(即网络设备的发送波束或终端设备的接收波束)可以通过TCI state进行指示。每个TCI state包括一个自身的索引(TCI stateId)和两个QCI信息(QCI information,QCl-Info)。每个QCl-Info可以包括一个参考信号资源(referenceSignal),表示采用该TCI state的资源与该QCL-Info包括的参考信号资源构成QCL关系。例如,为资源1配置了一个TCI state,其中该TCI state包括的QCL-Info中包括的资源为资源2,则表示资源1和资源2是QCL的。
TCI state是由网络设备配置给各个终端设备的,下列是TCI state的一种格式。
Figure PCTCN2021100812-appb-000002
Figure PCTCN2021100812-appb-000003
在此后的通信过程中,终端设备可以基于网络设备所指示的TCI state确定接收波束,网络设备可以基于同一TCI state确定发送波束。
此外,TCI state可以是全局配置的。在为不同的小区(cell)、不同的BWP配置的TCI state中,若TCI state的索引相同,则所对应的TCI state的配置也相同。
6、TCI
TCI可用于指示TCI state。在一种实现方式中,网络设备可通过高层信令(如无线资源控制(radio resource control,RRC))为终端设备配置TCI state列表(list),例如,网络设备可以通过RRC消息中的TCI state增加模式列表(TCI statesToAddModList)来为终端设备配置TCI state列表。该TCI state列表中可以包括多个TCI state,例如,网络设备可以为每个小区中的每个BWP配置最多64个TCI state。
此后,网络设备可以通过高层信令(如介质接入控制-控制元素(medium access control-control element,MAC-CE))激活一个或多个TCI state。被激活的TCI state为上述RRC消息所配置的TCI state列表的一个子集。例如,网络设备可以为每个小区中的每个BWP激活最多8个TCI state。
此后,网络设备还可以通过物理层信令(如下行控制信息(downlink control information,DCI))中的TCI字段指示一个被选择的TCI state。该DCI例如可以适用于调度物理下行资源的DCI。
其中,一个TCI state的配置信息可以包括一个或两个参考信号资源的标识,以及所关联的QCL类型。当QCL关系配置为类型A、或类型B、或类型C中的一种时,终端设备可以根据TCI state的指示,解调物理下行控制信道(physical downlink control channel,PDCCH)或物理下行共享信道(physical downlink shared channel,PDSCH)。当QCL关系配置为类型D时,终端设备可以知道网络设备使用哪个发射波束发送信号,进而可以根据前文所述的信道测量确定的波束配对关系确定使用哪个接收波束接收信号。终端设备可以根据PDCCH上DCI中的TCI字段来确定接收PDSCH的接收波束。
7、波束指示
对于每一个物理信道或者物理信号,网络设备都可以通过不同的信令对终端设备进行波束指示,从而可以指导终端设备如何接收下行物理信道或者物理信号,也可以指导终端设备如何发送上行物理信道或者物理信号。
以波束指示信息表示指示传输所使用的波束为例。波束指示信息可以包括但不限于以下一项或多项:波束编号、波束管理资源编号,上行信号资源号,下行信号资源号、波束的绝对索引、波束的相对索引、波束的逻辑索引、波束对应的天线端口的索引、波束对应的天线端口组索引、波束对应的下行信号的索引、波束对应的下行同步信号块的时间索引、波束对连接(beam pair link,BPL)信息、波束对应的发送参数(Tx parameter)、波束对应的接收参数(Rx parameter)、波束对应的发送权重、波束对应的权重矩阵、波束对应的权重向量、波束对应的接收权重、波束对应的发送权重的索引、波束对应的权重矩阵的索引、波束对应的权重向量的索引、波束对应的接收权重的索引、波束对应的接收码本、波束对应的发送码本、波束对应的接收码本的索引、波束对应的发送码本的索引等。网络设备还可以为频率资源组关联的波束中具有QCL关系的波束分配QCL标示符。波束指示信息还可以体现为TCI,TCI中可以包括多种参数,例如:小区ID、BWP ID、参考信号标识、同步信号块标识、QCL类型等。
网络设备可以通过信令,如高层信令(如RRC、MAC-CE)或物理层信令(如DCI),为终端设备进行波束指示。
以PDSCH为例,网络设备可以使用RRC信令+MAC-CE信令+DCI信令三级信令结构进行PDSCH的波束指示。
网络设备可通过高层信令(如RRC信令)为终端设备配置TCI state,如网络设备可以通过RRC信令配置最多128个TCI state。此后,网络设备可以通过高层信令(如MAC-CE信令)激活一个或多个TCI state,如最多可以激活8个TCI state。被激活的TCI state为上述RRC信令所配置的TCI state中的一个子集。此后,网络设备还可以通过物理层信令(如DCI)中的TCI字段指示一个被选择的TCI state,该被选择的TCI state用于当前的PDSCH传输。该DCI例如可以适用于调度物理下行资源(如PDSCH)的DCI。
以PDSCH为例,网络设备可以通过RRC信令为终端设备配置每一个CC的每一个BWP的TCI state,网络设备可以使用MAC-CE信令为终端设备的每一个CC的每一个BWP进行TCI state的激活。
如图3所示,图3是适用于本申请实施例的MAC-CE的格式的示意图。如图3所示,图3中的一个八位组(octet,Oct)表示8比特(bits)构成的一个字节(byte)。该MAC-CE可以用于给所指示的服务小区中的PDSCH配置TCI state。具体地,该MAC-CE中包括服务小区(serving cell)的标识(identifier,ID)和BWP的ID,以及用于指示各TCI state是否被激活的指示比特。其中,该MAC-CE中Ti用于指示各TCI状态是否被激活。每一个Ti可以占用一个比特,i可以对应通过RRC消息中的TCI statesToAddModList配置的TCI state列表中的第i个TCI state。例如,i等于TCI state ID(TCI stateId)的值。该MAC-CE所指示的被激活的TCI state可以理解为:为其所指示的服务小区和BWP配置的TCI state,也就是说,当在该服务小区中的该BWP上传输PDSCH时,可以基于该TCI state指示的信息确定发送波束和接收波束。
以PDCCH为例,网络设备通过RRC信令为终端设备配置每一个CC的每一个BWP的CORESET的TCI state,网络设备通过MAC-CE信令为终端设备的每一个CC的每一个BWP的每一个控制资源集(CORESET)指示一个TCI state用于目标CORESET的传输。由于每个CC都可以配置多个控制资源集(CORESET),CORESET ID在一个CC内是唯 一的,因此该信令携带了多个字段,其中包括CC ID字段(serving cell ID)和CORESET ID字段来唯一确定该信令适用的CORESET,可以理解,CORESET的编号是一个CC内唯一的。
如图4所示,图4是适用于本申请实施例的MAC-CE的格式的示意图。如图4所示,该MAC-CE可以用于给所指示的服务小区中的PDCCH配置TCI state。具体地,该MAC-CE中包括服务小区(serving cell)的标识(identifier,ID)和CORESET的ID,以及激活的TCI state的ID。该MAC-CE所指示的被激活的TCI state可以理解为:为其所指示的服务小区和BWP配置的TCI state,也就是说,当在该服务小区中的该BWP上传输PDCCH时,可以基于该TCI state指示的信息确定发送波束和接收波束。
基于现有协议,对于用于指示PDCCH和PDSCH接收的TCI state,TCI state中包括CSI-RS资源编号(CSI-RS resource index),不包括SSB编号(ssb-index);对于用于指示CSI-RS资源接收的TCI state,可以包括CSI-RS资源编号或者SSB编号。
8、切换时延
以下行通信为例进行说明。网络设备发送的信令被终端设备正确接收,到终端设备开始真正应用该信令的指示,中间存在一段时延。该段时延主要用于终端设备解读信令内容,根据信令内容进行调整准备进行数据接收等。在本申请实施例中,为便于描述,将该段时延记为切换时延。切换时延主要是由于网络设备发送信令进行TCI state切换造成的,因此,该段时延也可以称为TCI state切换时延,或者,波束切换时延。
根据信令的载体不同,以及根据信令中TCI state在终端设备的状态不同,这一时间间隔也不尽相同。具体来说,可以更进一步的分为以下几种。
(1)解读信令所需时延。
通常来说,解读RRC信令所需的时延>解读MAC CE信令所需的时延>解读DCI信令所需的时延。在现有方案中,解读RRC信令通常在10毫秒(ms)量级。解读MAC CE信令小于3毫秒。对于解读DCI的时间,终端设备可以反馈其能力。在现有方案中,这一能力可以通过与其他能力相关联的隐式方式被反馈。具体来说,这一能力与其能力QCL的时间周期(timeDurationForQCL)相关,这是一个与子载波间隔相关的时间长度。在子载波间隔为60KHz的情况下,其能力为{7,14,28}个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号长度中的一个;在子载波间隔为120KHz的情况下,能力为{14,28}个OFDM符号长度中的一个。在DCI与该DCI调度的PDSCH的时间间隔大于该能力情况下,终端设备才能根据DCI中的TCI字段来接收对应的PDSCH,因此这一时间间隔至少用于解读DCI的功能。
下列是解读DCI信令时延的一种隐式体现方式。
Figure PCTCN2021100812-appb-000004
(2)确定接收波束所需时延(T L1-RSRP)。
主要指终端设备接收波束搜索时延。根据前文所介绍的TCI state的内容,网络设备指示的TCI state实际上包括的是参考信号的标识,可以理解为网络设备指示了网络设备的发 送波束,或者也可以是终端设备的接收波束。对于终端设备来说,在解读出信令所指示的参考信号之后,则需要寻找到匹配该发送波束的接收波束。在现有方案中,协议对于终端设备在多长时间内需要确定接收波束作出了约束。根据网络设备所指示的TCI state在终端设备侧的不同状态,这一时间约束各有不同。
对于已知TCI state,这一时间长度为0。
对于未知TCI state,这一时间长度与参考信号的周期相关。
对于未知的TCI state,终端设备寻找接收波束的方法可以包括尝试使用不同的接收波束测量该TCI state内包括的参考信号,以确定参考信号的接收质量,以质量较优的接收波束作为后续使用的接收波束。对于终端设备接收波束的数目,可以以8作为一个典型值。另外,对于每一个接收波束来说,一次测量获得的参考信号接收质量可能误差较大,因此可以多次测量对参考信号质量进行滤波等操作使得测量值尽可能的准确。具体的,当参考信号为CSI-RS时,T L1-RSRP=T L1-RSRP_Measurement_Period_CSI-RS,这一时延由表1确定。可以看出,如果切换到未知的TCI state,时延非常大。
表1
配置(configuration) T L1-RSRP_Measurement_Period_CSI-RS(ms)
non-DRX max(T Report,ceil(M*P*N)*T CSI-RS)
DRX cycle≤320ms max(T Report,ceil(1.5*M*P*N)*max(T DRX,T CSI-RS))
DRX cycle>320ms ceil(M*P*N)*T DRX
其中,DRX表示非连续接收(discontinuous reception,DRX),DRX cycle表示非连续接收周期。
T CSI-RS:表示用于L1-RSRP测量的CSI-RS周期。
T DRX:表示DRX周期长度。
T Report:表示上报周期。
M:取值主要取决于CSI-RS的时域特性以及是否有配置时域测量限制。时域特性或者说时域行为,例如可以包括周期性(periodic)、半持续性(semi-persistent)和非周期性(aperiodic)。CSI-RS的时域行为为周期性,或者说周期性CSI-RS,表示周期发送CSI-RS;CSI-RS的时域行为为非周期性,或者说非周期性CSI-RS,表示非周期发送CSI-RS;CSI-RS的时域行为为半持续性,或者说半持续性CSI-RS,表示半持续发送CSI-RS。时域测量限制,可以由高层参数timeRestrictionForChannelMeasurement的取值确定。例如,对于周期性CSI-RS,并且timeRestrictionForChannelMeasurement没有配置(即取值为notConfigured)时,M=3。
P:取值主要取决于CSI-RS与测量间隔(measurement gap)以及同步信号/物理广播信道块测量定时配置(SS/PBCH Block Measurement Timing Configuration,SMTC)的时域位置。一种理想的情况,如果CSI-RS与measurement gap以及SMTC的时域位置不重叠,P=1。测量间隔可以表示网络设备为终端设备配置的一段不要求终端设备进行PDCCH/PDSCH的接收和PUCCH/PUSCH的发送的时间。SMTC表示网络设备为终端设备配置的一个用于进行基于SSB的测量的窗口。终端设备只需要在SMTC窗口内进行SSB测量,而在SMTC窗口外无需进行SSB测量。
N:取值主要取决于CSI-RS的波束扫描方式,以及终端接收波束数目。当波束扫描参数repetition配置为OFF时,N=1;当波束扫描参数repetition配置为ON时,N=ceil(maxNumberRxBeam/N res_per_set)。其中,maxNumberRxBeam,表示接收波束数目,N res_per_set表示CSI-RS资源集合中的CSI-RS资源数目。
ceil():表示向上取整函数。
应理解,上述简单介绍了表1中所涉及到的参数,具体地可以参考现有的描述,此处不作限定。
在本申请中,多次提及已知的TCI state,其表示满足一定条件的TCI state。例如,已知的TCI state可以表示:该TCI state中的参考信号的最近一次测量或上报时间与TCI state切换的信令时间间隔需要小于1280毫秒;又如,终端设备需要对该参考信号进行过L1-RSRP上报等。
(3)时频同步所需时延。
在终端设备确定了接收波束后,考虑到新波束对链路和旧波束对链路的时频偏可能不一致,因此在新的波束对链路上(即网络设备的发送波束到终端设备的接收波束构成的通信链路)需要重新进行时频同步。在现有协议中,这一时延(即时频同步所需时延)被标记为:TO k*(T first-SSB+T SSB-proc)。
其中,T first-SSB:表示在TCI state切换信令被终端设备正确解读之后,可以测量的第一个与该TCI state中的CSI-RS QCL的SSB传输的时间。QCL的类型为QCL类型A或者QCL类型C。
T SSB-proc:表示固定处理时间,如为2毫秒。
对于已激活的TCI state,时频同步所需时延为0,TO k=0;
对于未激活的TCI state,时频同步所需时延与SSB周期相关TO k=1。
对于终端设备没有维护的TCI state,终端设备需要通过测量与该TCI state中的参考信号QCL的SSB来获得其中新的时频同步。SSB是广播性质的信号,可以由网络设备周期性的发送。在一个周期内,例如20毫秒内,网络设备可以发送多个SSB,它们由SSB index唯一标识。
应理解,关于终端设备维护的TCI state,本领域技术人员应理解其含义。“维护”实际上是对终端行为的一种公共认知,即一个TCI state如果是激活的,那么终端设备应该维护这个TCI state对应的接收波束和时频偏等信息。
激活的TCI state,是指由图3所示的PDSCH TCI state激活/去激活的信令所激活的一个或多个TCI state。终端设备可以维护这些激活的TCI state的时频同步信息,以便快速的切换。
综上所述,切换时延的确定公式可以如表2所述。
表2
条件 切换时延(slot)
MAC CE信令+TCI state已知 n+T HARQ+(3ms+TO k*(T first-SSB+T SSB-proc))
MAC CE信令+TCI state未知 n+T HARQ+(3ms+T L1-RSRP+(T first-SSB+T SSB-proc))
RRC信令+TCI state已知 n+T RRC_processing+TO k*(T first-SSB+T SSB-proc)
RRC信令+TCI state已知 n+(T RRC_processing+T L1-RSRP+(T first-SSB+T SSB-proc))
其中,考虑到切换时延单位为slot,因此表2中的各个参数可以先将单位统一为slot,再进行计算。以表2中的3ms为例,假设1ms内包括8个slot,那么表2中的3ms为24slot。关于其他参数,如T first-SSB、T SSB-proc等类似,单位为ms时,可以均先替换为slot,再进行计算。
上文简单介绍了关于切换时延的相关信息。
通常,网络设备确定哪一个TCI state是更适合一个终端设备的最优TCI state,主要是根据:一个终端设备的上报信息、网络中其他终端设备的上报信息、网络设备的调度决策等诸多因素决定的。
如果网络设备向终端设备发送信令改变TCI state的时间点和终端设备真正应用该TCI state的时间点之间的时延过长,会造成信息老化或者波束老化的问题,即终端设备使用该TCI state时,该TCI state已经不是最优TCI state,甚至根据该TCI state已经不能进行通信。这显然会造成通信质量下降甚至中断的问题。
由上可知,切换时延的长短主要取决于网络设备指示的TCI state是否是终端设备已知的TCI state,以及终端设备是否维护了这些TCI state。根据现有方案,如果网络设备决定为终端设备更新TCI state,网络设备使用信令或者多个信令的组合来进行这一通知。根据信令的不同、TCI state是否在终端设备已知、是否激活等情况,总体时延在数毫秒到数秒不等。保持低切换时延的方法主要可以包括以下几种:
1)尽量使用物理层信令(如DCI),而非高层信令,特别是RRC信令来进行TCI state的更新;
2)尽量切换到终端设备已知的TCI state;
3)尽量切换到终端设备维护的TCI state。
终端设备能维护多少TCI state,取决于终端设备自身的能力,终端设备需要综合考虑其射频器件、功耗、基带芯片处理能力、存储能力等等因素。在现有方案中,终端设备可以通过终端能力上报网络设备其支持的TCI state的数目,这一项终端能力上报的可选值包括{1,2,4,8}中的任一值。
上报的一种可能形式如下:
maxNumberActiveTCI-PerBWP ENUMERATED{n1,n2,n4,n8}
虽然终端能力上报的取值最大可以为8,但是当前网络中的真实终端,特别是移动终端,不具有这样的能力,通常它们只能支持一个或者两个TCI state。很多终端设备并不支持同时激活多个TCI state的能力。因此一旦出现TCI state切换,会引入时频同步时延。即使对于能够同时维护多个TCI state的终端设备来说,网络设备将要切换的TCI state也并不一定在终端设备维护的多个TCI state之中。因此,考虑到SSB的周期目前一般为20毫秒,在现有机制下,一旦出现TCI state切换,切换时延至少在20毫秒以上。
有鉴于此,本申请实施例提出一种TCI state切换的方法,可以有效地降低切换时延,尽量减少切换时延过长,而导致通信性能降低甚至中断的问题的发生。
下面将结合附图详细说明本申请提供的各个实施例。
图5是本申请实施例提供的一种TCI state切换的方法500的示意性交互图。方法500主要以下行通信为例进行示例性说明,上行通信类似。方法500可以包括如下步骤。
510,终端设备使用第一TCI state与网络设备进行通信。
假设,终端设备与网络设备进行通信时使用的TCI state为第一TCI state,或者说,终端设备与网络设备传输数据时使用的TCI state为第一TCI state。
520,终端设备接收来自网络设备的切换信令,切换信令包括用于指示激活的第二TCI state的信息。
在终端设备使用第一TCI state与网络设备通信的过程中,在一些情况下,例如,当网络设备和终端设备的相对位置发生变化时,如终端设备移动或者旋转等情况下,网络设备和终端设备的波束也会相应的发生变化。通常由网络设备发送信令通知终端设备关于波束变化的情况。终端设备接收到网络设备发送的信令后,按照网络设备的指示,更新使用的波束。
假设网络设备向终端设备发送切换信令,指示激活的TCI state为第二TCI state。也就是说,通过切换信令,终端设备从使用第一TCI state与网络设备通信,将更新为使用第二TCI state与网络设备通信。一示例,切换信令可以为高层信令,例如MAC CE信令(如采用图3或图4所示的信令格式)。又一示例,切换信令也可以为物理层信令(如DCI),即网络设备可以通过物理层信令(如DCI)中的TCI字段指示一个被选择的TCI-state,该被选择的TCI-state用于该DCI调度的PDSCH传输。应理解,切换信令仅是一种为区分不同功能做的命名,其命名不对本申请实施例的保护范围造成限定。
530,在第一时长之后,终端设备使用第二TCI state与网络设备进行通信,其中,第一时长与以下一项或两项相关:第二TCI state中的参考信号与第一TCI state中的参考信号是否有重合,和/或,第二TCI state中的参考信号与第一TCI state中的参考信号是否与同一信号具有QCL关系。
网络设备发送的信令被终端设备正确接收,到终端设备开始真正应用该信令的指示,中间存在一段时长(即第一时长),为清楚,且不失一般性,在本申请实施例中,用时长#A表示该段时长。也就是说,时长#A表示切换所需的时间,即终端设备接收到切换信令到终端设备真正应用该信令的指示之间的所需的时间。例如,时长#A表示从终端设备接收到切换信令,到终端设备能够使用新TCI state与网络设备进行通信之间的时长。以下行通信为例,时长#A例如可以为上文所述的切换时延。
应理解,在时长#A之后,终端设备使用第二TCI state与网络设备进行通信,表示终端设备能够使用第二TCI state与网络设备进行通信,其并不限定终端设备一定与网络设备进行通信。也就是说,在时长#A之后,终端设备如果与网络设备进行通信,不再使用第一TCI state进行通信,使用第二TCI state进行通信。
还应理解,在本申请实施例中,第一TCI state也可以替换为第一TCI state组合,第二TCI state也可以替换为第二TCI state组合。相应地,在步骤510中,终端设备使用第一TCI state与网络设备进行通信;在步骤520中,终端设备接收来自网络设备的切换信令,切换信令包括用于指示激活的第二TCI state组合的信息。在第一TCI state替换为第一TCI state组合、第二TCI state替换为二TCI state组合的情况下,第一时长可以表示接收到切换信令到第二TCI state组合可用的时间;第一TCI state与第二TCI state中的参考信号部分重合,可以表示第一TCI state组合与第二TCI state组合中的TCI state部分重合,或者,也可以表示第一TCI state组合与第二TCI state组合中的TCI state的参考信号部分重合。 为便于描述,下文主要以第一TCI state、第二TCI state为例,进行示例性说明。
为便于理解,先对下文实施例中提及的新TCI state、旧TCI state进行解释。
为清楚,且不失一般性,在本申请实施例中,用新TCI state表示第二TCI state,用旧TCI state表示第一TCI state。也就是说,新TCI state表示切换信令中指示的激活的TCI state,旧TCI state表示当前激活的TCI state;或者说,新TCI state表示即将使用的TCI state,旧TCI state表示在激活新TCI state之前使用的TCI state;或者说,新TCI state表示切换后的TCI state,旧TCI state表示切换前的TCI state。
关于时长#A包括两个方案:
方案A:时长#A与新TCI state中的参考信号与旧TCI state中的参考信号是否有重合相关;
方案B:时长#A与新TCI state中的参考信号与旧TCI state中的参考信号是否与同一信号具有QCL关系有关。
关于方案A和方案B,下文详细介绍。
下面介绍本申请实施例。
首先,从两个方面,简单地介绍本申请实施例。
方面1:关于TCI state配置。
在本申请中,可以扩展TCI state的范围,使得一个TCI state可以包括多个同类型的参考信号,也就是说TCI state中的同一QCL类型的参考信号是多个。例如,一个TCI state中QCL类型D的参考信号有多个;又如,一个TCI state中QCL类型A的参考信号有多个,等等。需要说明的是,下文实施例中提及的多个TCI state中的参考信号,表示QCL类型相同的参考信号。
在TCI state中的同一QCL类型的参考信号有多个的情况下,多个TCI state包括的参考信号可能有重合。这样在网络设备指示TCI state切换时,如果新的TCI state和原有TCI state之间有重合的参考信号,终端设备可以在这一次切换过程中使用这个处于重合状态的参考信号,保持接收波束和/或时频同步的信息,无需进行波束搜索过程和/或在新波束上进行同步的过程,可以有效的降低时延,如图6所示。
假设TCI state#1中的参考信号包括CSI-RS资源#1(CSI-RS resource#1)和CSI-RS资源#2(CSI-RS resource#2),TCI state#2中的参考信号包括CSI-RS资源#2(CSI-RS resource#2)和CSI-RS资源#3(CSI-RS resource#3)。当网络设备指示终端设备TCI state#1时,终端设备可以维护TCI state#1中的CSI-RS资源#1和CSI-RS资源#2的对应接收波束,以及CSI-RS资源#1和CSI-RS资源#2对应的这两个波束对链路上的时频偏信息。那么,当网络设备指示终端设备从TCI state#1切换到TCI state#2时,由于这两个TCI state都包括了CSI-RS资源#2,因此终端设备从TCI state#1切换到TCI state#2时,可以直接使用CSI-RS资源#2对应的接收波束和时频同步信息来接收网络设备发送的信号,无需经历重新搜索波束和时频同步的过程。从而可以大大降低切换带来的时延,即减小时长#A的时间长度。
应理解,上文为便于理解,主要以QCL类型A或者QCL类型D的参考信号相同为例进行示例性说明,对此不作限定。例如,也可以是其他类型,如QCL类型B或者QCL类型C的参考信号相同。
还应理解,本申请实施例关注的是同类型的参考信号是否有重合,对于QCL类型A和QCL类型D的参考信号是否相同不作限定。如表3所示,QCL类型A和QCL类型D的参考信号可以相同;或者如表4所示,QCL类型A和QCL类型D的参考信号可以不同。以参考信号为CSI-RS,TCI state包括TCI state 1、TCI state 2、TCI state 3为例,表3和表4示出了可能的TCI state配置。
表3
Figure PCTCN2021100812-appb-000005
如表3所示,对于TCI state 1来说,QCL类型A的参考信号包括:CSI-RS资源#1,CSI-RS资源#2,QCL类型D的参考信号包括:CSI-RS资源#1,CSI-RS资源#2。对于TCI state 2来说,QCL类型A的参考信号包括:CSI-RS资源#2,CSI-RS资源#3,QCL类型D的参考信号包括:CSI-RS资源#2,CSI-RS资源#3。对于TCI state 3来说,QCL类型A的参考信号包括:CSI-RS资源#3,CSI-RS资源#4,QCL类型D的参考信号包括:CSI-RS资源#3,CSI-RS资源#4。
如表4所示,对于TCI state 1来说,QCL类型A的参考信号包括:CSI-RS资源#1,CSI-RS资源#2,QCL类型D的参考信号包括:CSI-RS资源#5,CSI-RS资源#6。对于TCI state 2来说,QCL类型A的参考信号包括:CSI-RS资源#2,CSI-RS资源#3,QCL类型D的参考信号包括:CSI-RS资源#6,CSI-RS资源#7。对于TCI state 3来说,QCL类型A的参考信号包括:CSI-RS资源#3,CSI-RS资源#4,QCL类型D的参考信号包括:CSI-RS资源#7,CSI-RS资源#8。
表4
Figure PCTCN2021100812-appb-000006
每个TCI state有多个参考信号的情况下,多个TCI state包括的参考信号可能有交叠或者说重合。如表3所示,TCI state 1和TCI state 2有重合的QCL类型A的参考信号和重合的QCL类型D的参考信号(CSI-RS资源#2),TCI state 2和TCI state 3有重合的QCL类型A的参考信号和重合的QCL类型D的参考信号(CSI-RS资源#3)。如表4所示, TCI state 1和TCI state 2有重合的QCL类型A的参考信号(CSI-RS资源#2)和重合的QCL类型D的参考信号(CSI-RS资源#6),TCI state 2和TCI state 3有重合的QCL类型A的参考信号(CSI-RS资源#3)和重合的QCL类型D的参考信号(CSI-RS资源#7)。
应理解,表3和表4仅是示例性说明,并不对本申请实施例的保护范围造成限定。例如,一个TCI state中可以包括更多数量的同类型的参考信号。
上文结合方面1介绍了关于TCI state配置的相关内容。由上文可知,在本申请中,可以扩大TCI state的范围,一个TCI state中包括多个相同QCL类型的参考信号。下面介绍关于时长#A的相关信息。
方面2:时长#A。
在本申请中,关于时长#A至少可以包括两个方案,方案A和方案B。
方案A:时长#A与新TCI state中的参考信号与旧TCI state中的参考信号是否有重合相关。
方案A可以与上文所述的方面1结合,即扩展TCI state的范围,使得一个TCI state可以包括多个同类型的参考信号,从而多个TCI state包括的参考信号可能有重合。
由上文可知,时长#A至少可以包括:解读信令所需时延、确定接收波束所需时延(T L1-RSRP)(或者说确定接收波束所需的时长)、时频同步所需时延(或者说时频同步所需的时长)。下面主要对确定接收波束所需时延(T L1-RSRP)和时频同步所需时延进行说明。
应理解,如前所示,时长#A表示终端设备接收到切换信令到终端设备真正应用该信令的指示之间的所需的时间,关于时长#A包括的具体时间,本申请实施例不作限定,例如,时长#A表示还可能包括其他时间,如终端设备反馈接收到切换信令所需的时间等等。
1、确定接收波束所需时延(T L1-RSRP)。
关于T L1-RSRP的时间长度,一种可能的确定方法如下:
对于已知的TCI state,T L1-RSRP=0;
对于未知的TCI state,如果满足条件A1,T L1-RSRP=0;否则T L1-RSRP=T L1-RSRP_Measurement_Period_CSI-RS
关于T L1-RSRP_Measurement_Period_CSI-RS,可以参考上文描述,此处不再赘述。
其中,条件A1:切换信令中的TCI state(即新TCI state)与当前激活的TCI state(即旧TCI state)中,至少有一个重合的参考信号或者说至少有一个参考信号处于交叠状态,且该重合的参考信号包括QCL类型D的参考信号。
当满足该条件A1时,T L1-RSRP=0,即无需重新训练接收波束。具体地,终端设备从旧TCI state切换到新TCI state时,可以直接使用相同的QCL类型D的参考信号对应的接收波束来接收网络设备发送的信号,无需经历重新搜索波束的过程。
以表3所示的配置为例。
一示例,假设新TCI state为TCI state 2,旧TCI state为TCI state 1。对于TCI state切换,从旧TCI state切换到新TCI state,即从TCI state 1切换到TCI state 2时,由于TCI state 2与当前激活的TCI state 1中,有一个重合的QCL类型D的参考信号,即CSI-RS资源#2,因此T L1-RSRP=0,即无需重新训练接收波束。
又一示例,假设新TCI state为TCI state 3,旧TCI state为TCI state 1。对于TCI state切换,从旧TCI state切换到新TCI state,即从TCI state 1切换到TCI state 3时,由于TCI  state 3与当前激活的TCI state 1中,没有重合的QCL类型D的参考信号,因此T L1-RSRP=T L1-RSRP_Measurement_Period_CSI-RS即重新训练接收波束。
由上可知,在确定接收波束所需时延时,可以考虑新TCI state与旧TCI state中,是否有重合的参考信号。具体地,例如当QCL类型D的参考信号有重合时,接收波束搜索时间为0,即接收波束所需时延为0。
2、时频同步所需时延。
基于方案A,当TCI state已知时,关于时频同步所需时延的时间长度,一种可能的确定方法如下:
TO k*(T first-SSB+T SSB-proc)。
对于已激活的TCI state,TO k=0;
对于未激活的TCI state,如果满足条件A2,TO k=0;否则TO k=1。
关于T first-SSB和T SSB-proc,可以参考上文描述,此处不再赘述。
其中,条件A2:切换信令中的TCI state(即新TCI state)与当前激活的TCI state(即旧TCI state)中,至少有一个重合的参考信号或者说至少有一个参考信号处于交叠状态,且该重合的参考信号为QCL类型A的参考信号,或者,该重合的参考信号为QCL类型B的参考信号,或者,该重合的参考信号为QCL类型C的参考信号。也就是说,条件A2中重合的参考信号可以为QCL类型A,也可以为QCL类型B,或者,也可以为QCL类型C。下文为简洁,以QCL类型A为例进行示例性说明。
当满足该条件A2时,TO k=0,时频同步所需时延为0。具体地,终端设备从旧TCI state切换到新TCI state时,可以直接使用相同的QCL类型A的参考信号对应的时频同步信息来接收网络设备发送的信号,无需经历时频同步的过程。
以表3所示的配置为例。
一示例,假设新TCI state为TCI state 2,旧TCI state为TCI state 1。对于TCI state切换,从旧TCI state切换到新TCI state,即从TCI state 1切换到TCI state 2时,由于TCI state 2与当前激活的TCI state 1中,有一个重合的QCL类型A的参考信号,即CSI-RS资源#2,因此时频同步所需时延为0,即无需经历时频同步的过程。
又一示例,假设新TCI state为TCI state 3,旧TCI state为TCI state 1。对于TCI state切换,从旧TCI state切换到新TCI state,即从TCI state 1切换到TCI state 3时,由于TCI state 3与当前激活的TCI state 1中,没有重合的QCL类型A的参考信号,因此时频同步所需时延为(T first-SSB+T SSB-proc),即可以重新进行时频同步。
由上可知,在确定时频同步所需时延时,可以考虑新TCI state与旧TCI state中,是否有重合的参考信号。具体地,当QCL类型A或QCL类型B或QCL类型C的参考信号有重合时,时频同步所需时延为0。
综上所述,在本申请实施例中,时长#A的确定公式可以如表5所述。
表5
条件 时长#A(slot)
MAC CE信令 n+T HARQ+T L1-RSRP+(3ms+TO k*(T first-SSB+T SSB-proc))
RRC信令 n+T RRC_processing+T L1-RSRP+TO k*(T first-SSB+T SSB-proc)
其中,虑到时长#A单位为slot,因此表5中的各个参数可以先将单位统一为slot,再进行计算。以表5中的3ms为例,假设1ms内包括8个slot,那么表5中的3ms为24slot。关于其他参数,如T first-SSB、T SSB-proc等类似,单位为ms时,可以均先替换为slot,再进行计算。例如,可以先将(3ms+TO k*(T first-SSB+T SSB-proc))替换为以slot为单位的值,再与(n+T HARQ+T L1-RSRP)进行和运算。又如,可以先将(TO k*(T first-SSB+T SSB-proc))替换为以slot为单位的值,再与(n+T RRC_processing+T L1-RSRP)进行和运算。
关于各个参数的含义,可以参考上文描述,此处不再赘述。
由表5可知,假设切换信令为MAC CE信令,即使用MAC CE信令通知激活的TCI state,可能有以下几种情况。
1)在满足条件A1的情况下,时长#A的时间长度可以为:n+T HARQ+(3ms+TO k*(T first-SSB+T SSB-proc));在不满足条件A1的情况下,时长#A的时间长度可以为:n+T HARQ+T L1-RSRP_Measurement_Period_CSI-RS+(3ms+TO k*(T first-SSB+T SSB-proc))。
2)在满足条件A2的情况下,时长#A的时间长度可以为:n+T HARQ+T L1-RSRP+3ms;在不满足条件A2的情况下,时长#A的时间长度可以为:n+T HARQ+T L1-RSRP+(3ms+(T first-SSB+T SSB-proc))。
3)在满足条件A1和满足条件A2的情况下,时长#A的时间长度可以为:n+T HARQ+3ms。
4)在不满足条件A1也不满足条件A2的情况下,时长#A的时间长度可以为:n+T HARQ+T L1-RSRP_Measurement_Period_CSI-RS+(3ms+(T first-SSB+T SSB-proc))。
5)在满足条件A1、且不满足条件A2的情况下,时长#A的时间长度可以为:n+T HARQ+T L1-RSRP+(3ms+T first-SSB+T SSB-proc)。
6)在不满足条件A1、且满足条件A2的情况下,时长#A的时间长度可以为:n+T HARQ+T L1-RSRP_Measurement_Period_CSI-RS+3ms。
如上文所述,方案A所述的方案可以与方面1所述的方案结合,当使用方面1所述的方案进行TCI state配置时,即扩展TCI state的范围,使得一个TCI state可以包括多个同类型的参考信号,从而可以提高多个TCI state中的参考信号重合的可能性,可以尽可能地使得接收波束搜索时间为0和/或时频同步的时延为0,从而降低TCI state切换时延。
可选地,当有多个同类型的参考信号重合时,可以选择其中一个。示例地,可以基于标识大小任选一个,如选择标识较小或较大的参考信号,又如选择接收信号质量较优的参考信号。
基于上述方案A,终端设备根据新TCI state中的一个或多个参考信号与当前TCI state中的一个或多个参考信号有重合,确定能够使用新TCI state进行数据传输的时间。例如,当QCL类型D的参考信号有重合时,接收波束搜索时间为0;当QCL类型A的参考信号有重合时,重新时频同步的时延为0。从而,大大降低了TCI state切换时延,特别是用于接收波束搜索的时延以及重新时频同步的时延。
下面介绍方案B。
方案B:时长#A与新TCI state中的参考信号与旧TCI state中的参考信号是否与同一信号具有QCL关系有关。下面以同一信号为SSB为例进行示例性说明,应理解,关于该信号的具体形式不作限定,例如,该信号还可以是CSI-RS或者SRS等等。
时频同步所需时延主要是因为对于不能同时支持多个激活TCI state的终端设备来说,一旦发生TCI state切换,该终端设备需要根据切换信令中的TCI state的参考信号(如CSI-RS)来找到一个对应的SSB,并通过测量这个SSB进行时频同步。在网络设备通过高层信令配置多个TCI state时,CSI-RS与SSB的对应关系不一定是一对一的。实际上,大部分的网络设备实现会考虑使用更宽的发送波束来传输SSB,使用更窄的发送波束来传输CSI-RS。因此,当TCI state切换发生在相邻的窄波束之间时,它们对应的SSB可能是相同的,在这种情况下,无需重新进行时频同步。如图7所示,从CSI-RS资源#1对应的波束切换到CSI-RS资源#2对应的波束时,无需重新进行时频同步;从CSI-RS资源#2对应的波束切换到CSI-RS#3对应的波束时,需要重新进行时频同步。
此外,在以下情况下,也可以认为是共定时的,即无需重新估计时偏:多个波束相邻,或者,多个波束处于同一时频偏差范围内。多个波束处于同一时频偏差范围内,例如,多个波束的定时偏差不超过一门限,该门限可以是预先定义的,或者也可以是动态配置的,或者也可以是默认的值,对此不作限定。例如,该门限为1/4循环前缀(cyclic prefix,CP)长度,也就是说,多个波束的定时偏差不超过1/4CP长度时,可以认为它们是共定时的,无需重新估计时偏;多个波束的定时偏差超过1/4CP长度时,可以认为它们需要重新估计时偏。
方案B可以与方面1所述的关于TCI state配置的方案结合,即扩展TCI state的范围;或者,方案B也可以单独使用,如使用现有的TCI state配置方式,即不需要扩展TCI state的范围。示例地,方案B可以采用如表6所示的TCI state配置。以参考信号为CSI-RS,TCI state包括TCI state 1、TCI state 2、TCI state 3、TCI state 4为例,表6示出了可能的TCI state配置。
表6
TCI state ID 第一组QCL类型和参考信号 第二组QCL类型和参考信号
1 类型A,CSI-RS资源#1 类型D,CSI-RS资源#1
2 类型A,CSI-RS资源#2 类型D,CSI-RS资源#2
3 类型A,CSI-RS资源#3 类型D,CSI-RS资源#3
4 类型A,CSI-RS资源#4 类型D,CSI-RS资源#4
对于其中的CSI-RS资源的QCL-info配置如表7所示。
表7
Figure PCTCN2021100812-appb-000007
如表6所示,对于TCI state 1来说,QCL类型A的参考信号包括:CSI-RS资源#1,QCL类型D的参考信号包括:CSI-RS资源#1。对于TCI state 2来说,QCL类型A的参考信号包括:CSI-RS资源#2,QCL类型D的参考信号包括:CSI-RS资源#2。对于TCI state  3来说,QCL类型A的参考信号包括:CSI-RS资源#3,QCL类型D的参考信号包括:CSI-RS资源#3。对于TCI state 4来说,QCL类型A的参考信号包括:CSI-RS资源#4,QCL类型D的参考信号包括:CSI-RS资源#4。
例如,对于CSI-RS资源#1和CSI-RS资源#2来说,如表7所示,与相同的SSB#1具有QCL关系(如QCL类型为类型C、类型D);又如对于CSI-RS资源#3和CSI-RS资源#4来说,如表7所示,与相同的SSB#2具有QCL关系(如QCL类型为类型C、类型D)。因此,考虑到基于TCI state的切换,从TCI state 1切换到TCI state 2时,或者,从TCI state 3切换到TCI state 4时,无需重新进行时频同步。
例如,对于CSI-RS资源#1和CSI-RS资源#3来说,如表7所示,没有与相同的SSB具有QCL关系;又如对于CSI-RS资源#2和CSI-RS资源#4来说,如表7所示,没有与相同的SSB具有QCL关系。因此,考虑到基于TCI state的切换,从TCI state 1切换到TCI state 3时,或者,从TCI state 2切换到TCI state 4时,需要重新进行时频同步。
表6中主要示出了QCL类型A和QCL类型D的参考信号相同的情况,应理解,对于QCL类型A和QCL类型D的参考信号是否相同不作限定。
基于方案B,当TCI state已知时,关于时频同步所需时延的时间长度,一种可能的确定方法如下:
TO k*(T first-SSB+T SSB-proc)。
对于已激活的TCI state,TO k=0;
对于未激活的TCI state,如果满足条件B1,TO k=0;否则TO k=1。
关于T first-SSB和T SSB-proc,可以参考上文描述,此处不再赘述。
其中,条件B1:切换信令中的TCI state(即新TCI state)中的参考信号与当前激活的TCI state(即旧TCI state)中的参考信号,与同一信号(如SSB)具有QCL关系。QCL类型可以是A,B,C,D中的一种或多种,例如可以是QCL类型A和C,即与时域同步更相关的QCL类型。
当满足该条件B1时,TO k=0,时频同步所需时延为0。具体地,终端设备从旧TCI state切换到新TCI state时,无需经历时频同步的过程。
以表6和表7所示的配置为例。
一示例,假设新TCI state为TCI state 2,旧TCI state为TCI state 1。对于TCI state切换,从旧TCI state切换到新TCI state,即从TCI state 1切换到TCI state 2时,由于TCI state 2中的参考信号与当前激活的TCI state 1中的参考信号,与同一SSB#1具有QCL关系,因此时频同步所需时延为0,即无需经历时频同步的过程。
又一示例,假设新TCI state为TCI state 3,旧TCI state为TCI state 1。对于TCI state切换,从旧TCI state切换到新TCI state,即从TCI state 1切换到TCI state 3时,由于TCI state 3中的参考信号与当前激活的TCI state 1中的参考信号,没有与同一信号具有QCL关系,因此时频同步所需时延为(T first-SSB+T SSB-proc),即可以重新进行时频同步。
由上可知,在确定时频同步所需时延时,可以考虑新TCI state中的参考信号与旧TCI state中的参考信号,是否与同一信号(如SSB)具有QCL关系。具体地,当与同一信号(如SSB)具有QCL关系时,时频同步所需时延为0。
综上所述,在本申请实施例中,时长#A的确定公式可以如表8所述。
表8
条件 时长#A(slot)
MAC CE信令 n+T HARQ+(3ms+TO k*(T first-SSB+T SSB-proc))
RRC信令 n+T RRC_processing+TO k*(T first-SSB+T SSB-proc)
其中,虑到时长#A单位为slot,因此表8中的各个参数可以先将单位统一为slot,再进行计算。以表8中的3ms为例,假设1ms内包括8个slot,那么表8中的3ms为24slot。关于其他参数,如T first-SSB、T SSB-proc等类似,单位为ms时,可以均先替换为slot,再进行计算。例如,可以先将(3ms+TO k*(T first-SSB+T SSB-proc))替换为以slot为单位的值,再与(n+T HARQ)进行和运算。又如,可以先将(TO k*(T first-SSB+T SSB-proc))替换为以slot为单位的值,再与(n+T RRC_processing)进行和运算。
关于各个参数的含义,可以参考上文描述,此处不再赘述。
由表8可知,假设切换信令为MAC CE信令,即使用MAC CE信令通知激活的TCI state。在满足条件B1的情况下,时长#A的时间长度可以为:n+T HARQ+3ms;在不满足条件B1的情况下,时长#A的时间长度可以为:n+T HARQ+(3ms+(T first-SSB+T SSB-proc))。
上文方案B中主要介绍新TCI state中的参考信号与旧TCI state中的参考信号是否与同一信号具有QCL关系,可以理解,新TCI state中的参考信号与旧TCI state中的参考信号直接具有QCL关系时,也可以无需重新进行时频同步和/或接收波束搜索。
上述方案B主要关心是否需要进行时频同步,应理解,当新TCI state中的QCL类型D参考信号与旧TCI state中的QCL类型D参考信号与同一信号QCL时,或者,当新TCI state中的QCL类型D参考信号与旧TCI state中的QCL类型D参考信号QCL时,也可以不需要进行接收波束搜索。
基于上述方案B,终端设备根据新TCI state中的参考信号与当前TCI state中的参考信号是否与同一信号具有QCL关系,确定能够使用新的TCI state进行数据传输的时间。例如,当新TCI state中的参考信号与当前TCI state中的参考信号与同一信号具有QCL关系时,重新时频同步的时延为0。从而,大大降低了TCI state切换时延,特别是重新时频同步的时延。
上文分别描述了方案A和方案B,方案A和方案B可以独立使用。或者,方案A和方案B也可以结合使用,例如,在终端设备支持一个TCI state中包括多个相同QCL类型的参考信号的情况下使用方案A,在终端设备不支持一个TCI state中包括多个相同QCL类型的参考信号的情况下使用方案B。
下面以下行通信为例,介绍适用于上述两个方案的可能的流程。
首先介绍适用于方案A的流程。
图8示出了适用于本申请一实施例的方法800的示意性交互图。方法800可以包括如下步骤。
810,终端能力上报。
终端设备上报能否支持一个TCI state中包括多个相同QCL类型的参考信号。例如,终端设备可以上报支持一个TCI state中包括多个相同QCL类型的参考信号,或者,终端设备可以上报不支持一个TCI state中包括多个相同QCL类型的参考信号。又如,终端设 备可以上报最大能够支持一个TCI state中包括多少个相同QCL类型的参考信号。又如,终端设备可以上报最大能够支持多少个包括多个相同类型参考信号的TCI state,也就是说,终端设备可以上报最大能够支持多少个TCI state,该TCI state表示包括多个相同QCL类型的参考信号的TCI state。应理解,关于终端设备上报的终端能力的具体形式,本申请实施例不作限定。
在终端设备支持一个TCI state中包括多个相同QCL类型的参考信号的情况下,可以使用上文方面1所述的配置方式进行配置,也可以使用上文所述的方案A所述的方案确定时长#A。或者,也可以默认终端设备支持一个TCI state中包括多个相同QCL类型的参考信号,在该情况下,可以不需要上报能否支持一个TCI state中包括多个相同QCL类型的参考信号。
820,网络设备向终端设备发送配置信息。
例如,网络设备可以通过RRC信令向终端设备发送配置信息。
在本申请实施例中,一个TCI state中可以包括多个相同QCL类型的参考信号。在本申请实施例中,假设用于下行信号(如PDCCH/PDSCH)的TCI state配置如表3所示。
830,网络设备向终端设备指示激活PDSCH TCI state。
示例地,网络设备可以通过MAC CE信令激活PDSCH的TCI state。例如,网络设备可以通过采用如图3所示的信令激活PDSCH的TCI state。
为便于下文描述,此处可以假设网络设备通过MAC CE信令激活的PDSCH TCI state为TCI state 1,即T0=1,其他Ti=0。
840,网络设备向终端设备指示激活PDCCH TCI state。
示例地,网络设备可以通过MAC CE信令激活PDCCH的TCI state。例如,网络设备可以通过采用如图4所示的信令激活PDCCH的TCI state。
为便于下文描述,此处可以假设CORESET ID=1,网络设备通过MAC CE信令激活的PDCCH TCI state(即CORESET TCI state)为TCI state 1,即TCI state ID字段赋值为0000001。
由于TCI state 1中包含了多个CSI-RS资源,终端设备需要测量所有的或者部分的CSI-RS资源,包括训练合适的接收波束、确定正确的时频同步参数等。示例地,可以通过以下任一方式实现。
实现方式1,终端设备可以测量其中一个CSI-RS资源即可。
一可能的情况,网络设备确保同一个TCI state包含的多个CSI-RS资源之间是QCL的。例如,如果多个CSI-RS资源对于终端设备来说接收波束相同,那么它们之间是QCL类型D的,或者说他们之间具有类型D的QCL关系。又如,如果多个CSI-RS资源对于终端设备来说时频同步相同,那么它们之间是QCL类型A的,或者说他们之间具有类型A的QCL关系。在该情况下,终端设备可以只需要测量其中任意一个CSI-RS资源即可。
在该实现方式1下,终端设备在前期的波束搜索过程中,可以向网络设备反馈不同CSI-RS资源的接收参数。
实现方式2,终端设备可以测量多个CSI-RS资源。
终端设备可以测量多个CSI-RS资源,分别维护QCL类型D的参数和QCL类型A的参数,即接收波束和时频同步信息等。
在该实现方式2下,对终端能力提出了更高的要求。在网络设备和终端设备根据TCI state 1进行通信时,终端设备需要对TCI state 1中的多个参考信号进行波束测量和时频偏测量,并维护测量结果。
可选地,网络设备可以在TCI state切换前后临时触发终端设备测量该TCI state内所有的CSI-RS资源,在不需要进行TCI state切换时,指示终端设备一个用于通信的CSI-RS资源的标识即可。该CSI-RS资源的标识可以来自于终端设备对当前TCI state中参考信号的测量结果,如步骤870。
需要说明的是,在尚未有步骤840生效之前,示例地,网络设备和终端设备可以使用默认波束通信。默认波束,在下行可以被定义为终端设备初始接入网络时确定的SSB波束;在上行可以被定义传输消息3(msg.3)的波束。也就是说,步骤810中终端设备通过上行默认波束上报终端能力,步骤820、830、840中网络设备发送的PDSCH是通过下行默认波束进行传输的。
在通信过程中,波束可能会发生更新,例如可以体现为激活的TCI state可能会发生改变。在需要更新激活TCI state的时候,网络设备可以向终端设备发送信令,指示更新的TCI state。
850,网络设备向终端设备指示更新PDCCH TCI state,且终端设备使用新的PDCCH TCI state准备接收PDCCH。
例如,网络设备通过MAC CE更新PDCCH TCI state,终端设备根据新的PDCCH TCI state准备接收PDCCH。
网络设备可以通过如图4所示的信令指示PDCCH TCI state。如前步骤840中所述,假设当前激活的TCI state为TCI state 1,即步骤850在用于更新PDCCH TCI state的MAC CE信令是根据TCI state 1进行的。
假设网络设备通过MAC CE信令指示的CORESET TCI state是TCI state 2或者TCI state 3。在网络设备通过MAC CE信令指示TCI state时,可能会对应下面的情况1或情况2:
情况1:需要重新进行接收波束训练和/或时频同步;
情况2:不需要重新进行接收波束训练和/或时频同步。
具体地,终端设备在接收到网络设备更新PDCCH TCI state的MAC CE信令之后,终端设备可以根据新指示的TCI state(即TCI state 2或TCI state 3)是否与当前的TCI state(即TCI state 1)是否有重合的参考信号资源,来确定是否需要接收波束扫描或者重新进行时频同步。这一步骤的详细流程图如图9所示。
8501,终端设备接收MAC CE信令,并向网络设备反馈正确接收的消息。
MAC CE可以通过PDSCH传输。假设终端设备接收到PDSCH的时间为时隙n(slot n),该PDSCH中承载着MAC CE,也就是说终端设备接收到MAC CE信令的时间为slot n。终端设备接收PDSCH,并向网络设备反馈应答信息,该应答信息可以通过物理上行控制信道(physical uplink control channel,PUCCH)传输。示例地,终端设备反馈的应答信息例如可以为,混合自动重传请求(hybrid automatic repeat request,HARQ)-确认(acknowledgement,ACK)信息或HARQ-否定确认(negative acknowledgment,NACK)信息。其中,ACK(即HARQ-ACK)可表示PDSCH被成功接收,NACK(即HARQ-NACK) 可表示PDSCH未被成功接收。
关于该步骤可以参考现有技术,对此不作限定。
假设终端设备成功接收PDSCH,并反馈ACK,且终端设备发送ACK信息的时间为slot n+T_HARQ。其中,关于T_HARQ不作限定,例如T_HARQ可以由网络设备配置。
8502,终端设备解读MAC CE信令内容。
在该步骤中,终端设备解读MAC CE信令的内容,获取TCI state以及其中的CSI-RS资源的信息。
终端设备在步骤8501中校验了PDSCH在终端设备的物理层被正确接收(即以01比特形式正确接收),MAC CE信令的内容需要将比特封装成特定格式之后由终端设备的高层解读(即从01形式的比特流中恢复出网络设备指示的是TCI state 2或TCI state 3这样的信息)。终端设备的物理层和终端设备的高层之间的交互一般是终端设备的内部实现,这一交互需要一定的时间来完成。为不失一般性,本申请实施例中,将该段时间记为T_processing。示例地,T_processing例如为3ms。
T_processing包括终端设备解读MAC CE信令内容所需要的时间,T_processing还可以包括终端设备调整接收波束的时间。如前文所述,对于已知的TCI state,终端设备存储了关于接收波束的信息。
根据前面的假设可知,在时间slot n+T_HARQ+T_processing,终端设备已经按照MAC CE信令的指示调整好了接收波束。
应理解,步骤8501和步骤8502为示例性说明,对此不作限定。例如步骤8501和步骤8502也可以合为一个步骤,如终端设备可以在成功解读出MAC CE信令内容之后,再向网络设备反馈ACK。
8503,终端设备判断是否需要训练接收波束。
如上文对方案A的描述,在步骤8503中,终端设备可以判断新TCI state的QCL类型D的CSI-RS资源和旧TCI state的QCL类型D的CSI-RS资源是否有重合,根据是否有重合,确定是否需要训练接收波束。
判断的结果可能为:新TCI state的QCL类型D的CSI-RS资源和旧TCI state的QCL类型D的CSI-RS资源有重合,或者,新TCI state的QCL类型D的CSI-RS资源和旧TCI state的QCL类型D的CSI-RS资源没有重合。
如果有重合,即步骤850中网络设备通过MAC CE信令指示的是TCI state 2,通过对比步骤820中的配置(即表3的配置),TCI state 1和TCI state 2各自的QCL类型D的参考信号中有一个CSI-RS资源#2是重合的。因此终端设备可以继续使用旧TCI state(即TCI state 1)的接收波束,可以直接执行步骤8505。具体地,终端设备可以继续使用CSI-RS资源#2对应的接收波束。
如果没有重合,即步骤850中网络设备通过MAC CE信令指示的是TCI state 3,通过对比步骤820中的配置(即表3的配置),TCI state 1和TCI state 3之间没有任何重合的CSI-RS资源。因此终端设备可以执行步骤8504。
8504,终端设备训练接收波束。
关于终端设备训练接收波束的方式,可以参考现有的方案,遵守如表1所规定的时延。
在本申请实施例中,如果终端设备确定需要训练接收波束,那么可以不需要再执行步 骤8505,终端设备默认执行步骤8506,即需要重新进行时频同步。
具体来说,如前所述,QCL类型A和QCL类型D的参考信号可以相同,也可以不同。那么在QCL类型A和QCL类型D的参考信号相同的情况下,如表3所示的配置,QCL类型A和QCL类型D参考信号指向了相同CSI-RS资源,因此,终端设备如果判断新TCI state的QCL类型D的CSI-RS资源和旧TCI state的QCL类型D的CSI-RS资源没有重合,那么新TCI state的QCL类型A的CSI-RS资源和旧TCI state的QCL类型A的CSI-RS资源也没有重合。因此,如果终端设备确定需要训练接收波束,那么终端设备也需要重新进行时频同步。此外,一般来说每个波束的时频同步都不相同,如果连波束都需要重新训练的情况下,之前获得的时频同步信息基本已经不能再用了。
可选地,终端设备也可以执行步骤8505。
8505,终端设备判断是否需要重新进行时频同步。
例如,如果步骤8503中终端设备确认需要训练接收波束,终端设备可以不需要执行步骤8505,即终端设备可以不需要判断新TCI state的QCL类型A的CSI-RS资源和旧TCI state的QCL类型A的CSI-RS资源是否有重合。
又如,如果步骤8503中终端设备确认接收波束无需变化,那么终端设备还可以继续判断新TCI state的QCL类型A的CSI-RS资源和旧TCI state的QCL类型A的CSI-RS资源是否有重合。
应理解,步骤8503和步骤8505之间没有严格的顺序关系。例如,终端设备可以先执行步骤8503,再执行步骤8505;或者,也可以先执行步骤8503,再根据判断的结果确定是否要执行步骤8505。又如,终端设备也可以先执行步骤8505,再执行步骤8503。又如,终端设备也可以同时步骤8503和步骤8505。
如上文对方案A的描述,在步骤8505中,终端设备可以判断新TCI state的QCL类型A的CSI-RS资源和旧TCI state的QCL类型A的CSI-RS资源是否有重合,根据是否有重合,确定是否需要重新进行时频同步。
终端设备判断的结果可能为:新TCI state的QCL类型A的CSI-RS资源和旧TCI state的QCL类型A的CSI-RS资源有重合,或者,新TCI state的QCL类型A的CSI-RS资源和旧TCI state的QCL类型A的CSI-RS资源没有重合。
如果有重合,即步骤850中网络设备通过MAC CE信令指示的是TCI state 2,通过对比步骤820中的配置(即表3的配置),TCI state 1和TCI state 2各自的QCL类型A的参考信号中有一个CSI-RS资源#2是重合的。因此终端设备可以继续使用旧TCI state(即TCI state 1)的时频同步,可以直接执行步骤8507。具体地,终端设备可以继续使用CSI-RS资源#2对应的时频同步。
如果没有重合,即步骤850中网络设备通过MAC CE信令指示的是TCI state 3,通过对比步骤820中的配置(即表3的配置),TCI state 1和TCI state 3之间没有任何重合的CSI-RS资源。因此终端设备需要确定新的时频参数,终端设备可以执行步骤8506。
8506,终端设备重新进行时频同步。
例如,终端设备可以测量与CSI-RS资源QCL的SSB获取时频同步。
如果终端设备判断新TCI state的QCL类型A的CSI-RS资源和旧TCI state的QCL类型A的CSI-RS资源没有重合的情况下,终端设备可以根据新TCI state的CSI-RS资源 找到与其QCL的SSB。
如果有多个CSI-RS资源的话,可以先确定一个CSI-RS资源,再进行SSB的测量。一种可能的实现方式,可以先按照CSI-RS资源标识的大小确定一个CSI-RS资源,再进行SSB的测量。例如,可以选择标识较小的CSI-RS资源,如本申请实施例中TCI state 3中参考信号资源标识较小的是CSI-RS资源#3。
以CSI-RS资源#3为例,终端设备确定CSI-RS资源#3后,可以等待测量与CSI-RS资源#3QCL的SSB的机会。SSB通常是周期发送的,所以在确定MAC CE内容之后的最近的一个SSB周期,终端设备就可以进行SSB时频参数的测量,以实现时频同步。
终端设备可以测量一次,以便控制切换时延,尽量降低切换时延。或者,终端设备也可以测量多次,以便提高测量准确性。以终端设备测量多次为例,一种可能的实现方式,终端设备可以后续继续通过下N个周期(N为大于1或等于1的整数)的测量进行联合处理,如滤波处理等,获取更加准确的测量结果。关于测量多次时的测量方式,本申请实施例不作限定,任何通过测量多次获得测量结果的方式,都适用于本申请实施例。
8507,终端设备完成TCI state切换。
终端设备完成TCI state切换之后,使用MAC CE所指示新的TCI state与网络设备进行通信,如使用MAC CE所指示新的TCI state进行下行信号(如PDCCH/PDSCH)接收。
根据步骤8503和/或步骤8505的判断,即根据新TCI state的QCL类型D的CSI-RS资源和旧TCI state的QCL类型D的CSI-RS资源是否有重合、和/或、根据新TCI state的QCL类型A的CSI-RS资源和旧TCI state的QCL类型A的CSI-RS资源是否有重合,终端设备完成TCI state切换的时间可以有如下几种可能。
1)如果QCL类型D的参考信号和QCL类型A的参考信号都有重合,那么在时间:slot n+T_HARQ+T_processing,终端设备已经完成时频同步,并且可以开始根据新的TCI state进行后续下行信号(如PDCCH/PDSCH)的接收。
2)如果QCL类型D的参考信号有重合、且QCL类型A的参考信号没有重合,那么在时间:slot n+T_HARQ+T_processing+(T first-SSB+T SSB-proc),终端设备已经完成时频同步,并且可以开始根据新的TCI state进行后续下行信号(如PDCCH/PDSCH)的接收。
3)如果QCL类型D的参考信号和QCL类型A的参考信号都没有重合,那么在时间:slot n+T_HARQ+T_processing+T L1-RSRP+(T first-SSB+T SSB-proc),终端设备已经完成时频同步,并且可以开始根据新的TCI state进行后续下行信号(如PDCCH/PDSCH)的接收。其中T L1-RSRP=T L1-RSRP_Measurement_Period_CSI-RS
关于各个参数以及切换时延(即时长#A),可以参考上文方案A中的描述,此处不再赘述。
示例地,在完成切换前,终端设备可以根据旧TCI state(TCI state 1)进行通信。相应地,在终端设备完成切换前,网络设备也根据旧TCI state(TCI state 1)进行传输。网络设备和终端设备在对齐的时间点同时切换波束,才能保证网络设备终端设备的波束对齐。
860,网络设备与终端设备根据新TCI state进行PDCCH发送和接收。
在步骤850终端设备完成准备工作后,新TCI state才可以真正的用于PDCCH的传输。
870,终端设备上报新TCI state中包括的参考信号资源信息。
一个TCI state中可以包含多个CSI-RS资源,终端设备可以向选择较优的或者最优的参考信号资源进行上报。可以理解,终端设备可以推荐网络设备通信使用的波束。具体的选择较优的或者最优的参考信号资源,可以通过对该多个参考信号资源进行测量确定。具体的测量方式,可以参考步骤840的描述。
以表3所示的配置为例,假设步骤850中网络设备通过MAC CE信令指示的是TCI state 2,TCI state 1和TCI state 2各自的QCL类型D的参考信号中有一个CSI-RS资源#2是重合的。因此终端设备可以使用重合的参考信号(即CSI-RS资源#2)对应的接收波束。在终端设备与网络设备使用TCI state 2进行通信的过程中,当CSI-RS资源#3的质量较好时,终端设备可以向网络设置指示CSI-RS资源#3的信息,以推荐较好的波束进行通信。从而,不仅可以降低切换的时延,还可以尽可能地提高通信过程中的通信质量。
此外,终端设备上报新TCI state中包括的参考信号资源信息,可以是终端设备发现新TCI state中除重合的参考信号以外的参考信号资源质量较好的情况下进行上报,如当CSI-RS资源#3的质量较好时,终端设备可以向网络设置指示CSI-RS资源#3的信息;或者,也可以是网络设备要求终端设备对TCI state中参考信号进行周期的上报;或者,也可以是网络设备要求终端设备发生TCI state切换后需要对新TCI state中参考信号进行上报;或者,也可以是预先规定好终端设备需要对TCI state中参考信号进行周期的上报;或者,也可以是预先规定好发生TCI state切换后终端设备需要对新TCI state中参考信号进行上报。
网络设备可以为终端设备分配上报所需要的资源。一种可能的实现方式,在步骤850的MAC CE TCI state切换信令关联一个上报资源或者上报设置,终端设备使用关联的上报资源进行上报。又一种可能的实现方式,终端设备向网络设备请求资源,如在需要上报时,终端设备可以向网络设备请求上报所需要的资源。
上文以下行通信为例,结合方法800介绍了适用于方案A的一可能的流程,在对上行信号(如PUCCH或PUSCH)切换TCI state的过程中,也可以使用类似于上文所述的方法,如使用类似于图9所示的方式判断是否需要训练接收波束和/或是否需要重新进行时频同步。
可选地,如前所述,在本申请实施例中,可以扩展一个TCI state,使得一个TCI state中可以包括多个相同QCL类型的参考信号。而且终端设备可以向网络设备指示TCI state中的参考信号的信息。这样多个不同的终端设备可以构成一个终端设备组,共享一个相同的TCI state。此外,当有终端设备组的情况下,各个终端设备组还可以有各自的组标识。
如表9所示,以终端设备1和终端设备2为例,对于终端设备1来说,QCL类型D的参考信号包括CSI-RS资源#1;对于终端设备2来说,QCL类型D的参考信号包括CSI-RS资源#2。终端设备1和终端设备2可以构成一个终端设备组,假设该终端设备组对应的公共TCI state为公共TCI state#1,即终端设备1和终端设备2共享的TCI state为公共TCI state#1。对于公共TCI state#1来说,QCL类型D的参考信号包括:CSI-RS资源#1,CSI-RS资源#2。
表9
Figure PCTCN2021100812-appb-000008
Figure PCTCN2021100812-appb-000009
示例地,网络设备可以向一个终端设备组内的多个终端设备指示新TCI state,每个终端设备可以各自确定该TCI state对应的接收波束。一种可能的实现方式,网络设备可以通过一个公共信道或者一个组播信道,如公共控制信道,向终端设备组内的多个终端设备指示新TCI state,每个终端设备可以各自确定该TCI state对应的接收波束。应理解,不同的终端设备确定的接收波束可以不同。
应理解,上述各个步骤仅是一种可能的实现方式,本申请实施例并不做限定。例如,在实施各步骤之前,网络设备可以周期性的发送SSB。
基于上述方案方法800,可以扩展一个TCI state,使得一个TCI state中可以包括多个相同QCL类型的参考信号。此外,终端设备可以根据新TCI state中的一个或多个参考信号与旧TCI state中的一个或多个参考信号是否重合,确定能够使用新TCI state进行数据传输的时间。例如,当QCL类型D的参考信号有重合时,接收波束搜索时间为0;当QCL类型A的参考信号有重合时,重新时频同步的时延为0。通过该方式,可以降低TCI state切换时延,特别是用于接收波束搜索的时延以及重新时频同步的时延。
下文介绍适用于方案B的流程。
图10示出了适用于本申请又一实施例的方法1000的示意性交互图。方法1000主要以信号为SSB为例进行说明,方法1000可以包括如下步骤。
1010,终端能力上报。
终端设备上报能否支持共SSB的TCI state之间的切换可以无需重新时频同步的功能,具体来说,即终端设备上报能否支持新TCI state中的参考信号与旧TCI state中的参考信号与相同的信号(如SSB)具有QCL关系(如类型A的QCL)时无需重新进行时频同步。这一能力可能在标准讨论和定型过程中被赋予多种可能的名字,例如快速TCI state切换等,关于该能力的命名,本申请实施例不作限定。或者,也可以默认终端设备支持共SSB的TCI state之间的切换可以无需重新时频同步的功能,在该情况下,可以不需要上报能否共SSB的TCI state之间的切换可以无需重新时频同步的功能。
1020,网络设备向终端设备发送配置信息。
例如,网络设备可以通过RRC信令向终端设备发送配置信息。假设TCI state配置如表6所示,CSI-RS资源的配置(如每个资源的QCL-info配置)如表7所示。
1030,网络设备向终端设备指示激活PDSCH TCI state。
示例地,网络设备可以通过MAC CE信令激活PDSCH的TCI state。例如,网络设备可以通过采用如图3所示的信令激活PDSCH的TCI state。
为便于下文描述,此处可以假设网络设备通过MAC CE信令激活的PDSCH TCI state为TCI state 1,即T0=1,其他Ti=0。
1040,网络设备向终端设备指示激活PDCCH TCI state。
示例地,网络设备可以通过MAC CE信令激活PDCCH的TCI state。例如,网络设备可以通过采用如图4所示的信令激活PDCCH的TCI state。
为便于下文描述,此处可以假设CORESET ID=1,网络设备通过MAC CE信令激活的PDCCH TCI state(即CORESET TCI state)为TCI state 1,即TCI state ID字段赋值为0000001。
在尚未有步骤1040生效之前,示例地,网络设备和终端设备可以使用默认波束通信。默认波束,在下行可以被定义为终端设备初始接入网络时确定的SSB波束;在上行可以被定义传输消息3(msg.3)的波束。也就是说,步骤1010中终端设备通过上行默认波束上报终端能力,步骤1020、1030、1040中网络设备发送的PDSCH是通过下行默认波束进行传输的。
在通信过程中,波束可能会发生更新,例如可以体现为激活的TCI state可能会发生改变。在需要更新激活TCI state的时候,网络设备可以向终端设备发送信令,指示更新的TCI state。
1050,网络设备向终端设备指示更新PDCCH TCI state,且终端设备使用新的PDCCH TCI state准备接收PDCCH。
例如,网络设备通过MAC CE更新PDCCH TCI state,终端设备根据新的PDCCH TCI state准备接收PDCCH。
网络设备可以通过如图4所示的信令指示PDCCH TCI state。如前步骤1040中所述,假设当前激活的TCI state为TCI state 1,即步骤1050在用于更新PDCCH TCI state的MAC CE信令是根据TCI state 1进行的。
假设网络设备通过MAC CE信令指示的CORESET TCI state是TCI state 2或者TCI state 3。在网络设备通过MAC CE信令指示TCI state时,可能会对应下面的情况3或情况4:
情况3:需要重新进行时频同步;
情况4:不需要重新进行时频同步。
具体地,终端设备在接收到网络设备更新PDCCH TCI state的MAC CE信令之后,终端设备可以根据新指示的TCI state(即TCI state 2或TCI state 3)是否与当前的TCI state(即TCI state 1)关于相同的SSB有QCL关系,来确定是否需要重新进行时频同步。这一步骤的详细流程图如图11所示。
10501,终端设备接收MAC CE信令,并向网络设备反馈正确接收的消息。
MAC CE可以通过PDSCH传输。假设终端设备接收到PDSCH的时间为slot n,该PDSCH中承载着MAC CE,也就是说终端设备接收到MAC CE信令的时间为slot n。终端设备接收PDSCH,并向网络设备反馈应答信息,该应答信息可以通过PUCCH传输。示例地,终端设备反馈的应答信息例如可以为,HARQ-ACK信息或HARQ-NACK信息。其中,ACK(即HARQ-ACK)可表示PDSCH被成功接收,NACK(即HARQ-NACK)可表示PDSCH未被成功接收。
关于该步骤可以参考现有技术,对此不作限定。
假设终端设备成功接收PDSCH,并反馈ACK,且终端设备发送ACK信息的时间为slot n+T_HARQ。其中,关于T_HARQ不作限定,例如T_HARQ可以由网络设备配置。
10502,终端设备解读MAC CE信令内容。
在该步骤中,终端设备解读MAC CE信令的内容,获取TCI state以及其中的CSI-RS 资源的信息。
终端设备在步骤10501中校验了PDSCH在终端设备的物理层被正确接收(即以01比特形式正确接收),MAC CE信令的内容需要将比特封装成特定格式之后由终端设备的高层解读(即从01形式的比特流中恢复出网络设备指示的是TCI state 2或TCI state 3这样的信息)。终端设备的物理层和终端设备的高层之间的交互一般是终端设备的内部实现,这一交互需要一定的时间来完成。为不失一般性,本申请实施例中,将该段时间记为T_processing。示例地,T_processing例如为3ms。
T_processing包括终端设备解读MAC CE信令内容所需要的时间,T_processing还可以包括终端设备调整接收波束的时间。如前文所述,对于已知的TCI state,终端设备存储了关于接收波束的信息。
根据前面的假设可知,在时间slot n+T_HARQ+T_processing,终端设备已经按照MAC CE信令的指示调整好了接收波束。
应理解,步骤10501和步骤10502为示例性说明,对此不作限定。例如步骤10501和步骤10502也可以合为一个步骤,如终端设备可以在成功解读出MAC CE信令内容之后,再向网络设备反馈ACK。
10503,终端设备判断是否需要重新进行时频同步。
如上文对方案B的描述,在步骤10503中,终端设备可以判断新TCI state的CSI-RS资源和旧TCI state的CSI-RS资源是否与相同的信号(如SSB)有QCL关系,根据是否与相同的信号(如SSB)有QCL关系,确定是否需要重新进行时频同步。
终端设备判断的结果可能为:新TCI state的CSI-RS资源和旧TCI state的CSI-RS资源与相同的信号(如SSB)有QCL关系,或者,新TCI state的CSI-RS资源和旧TCI state的CSI-RS资源不与相同的信号(如SSB)有QCL关系。
如果与相同的信号(如SSB)有QCL关系,即步骤1050中网络设备通过MAC CE信令指示的是TCI state 2,通过对比步骤1020中的配置(即表6和表7的配置),TCI state 1和TCI state 2各自的参考信号CSI-RS资源#1和CSI-RS资源#2关于同一个SSB有类型A的QCL。因此终端设备可以继续使用旧TCI state(即TCI state 1)的时频同步,可以直接执行步骤10505。具体地,终端设备可以继续使用CSI-RS资源#2对应的时频同步。
如果没有与相同的信号(如SSB)有QCL关系,即步骤1050中网络设备通过MAC CE信令指示的是TCI state 3,通过对比步骤1020中的配置(即表6和表7的配置),TCI state 1和TCI state 3各自的参考信号CSI-RS资源#1和CSI-RS资源#3关于不同的SSB QCL。因此终端设备需要确定新的时频参数,终端设备可以执行步骤10504。
10504,终端设备重新进行时频同步。
例如,终端设备可以测量与CSI-RS资源QCL的SSB获取时频同步。
如果终端设备判断新TCI state的CSI-RS资源和旧TCI state的CSI-RS资源没有与相同的信号(如SSB)有QCL关系的情况下,终端设备可以根据新TCI state的CSI-RS资源找到与其QCL的SSB。例如,TCI state 3中的CSI-RS资源#3是与SSB#2有类型C的QCL关系的。
终端设备可以等待测量SSB#2的机会。由于SSB都是周期发送的,所以在确定MAC CE内容之后的最近一个SSB周期,终端设备就可以进行SSB#2时频参数的测量,以实现 与SSB#2的时频同步。
可选地,可以测量一次,即可以认为一次测量之后时频同步可以初步达成,从而尽量控制时延。或者,也可以测量多次,如终端设备可以后续继续通过下M个周期(M为大于1或等于1的整数)的测量进行联合处理,如滤波处理等,以提高测量的准确性。
10505,终端设备完成TCI state切换。
终端设备完成TCI state切换之后,使用MAC CE所指示新的TCI state与网络设备进行通信,如使用MAC CE所指示新的TCI state进行下行信号(如PDCCH/PDSCH)接收。
根据步骤10503的判断,即根据新TCI state的CSI-RS资源和旧TCI state的CSI-RS资源是否与相同的信号(如SSB)有QCL关系,终端设备完成TCI state切换的时间可以有如下几种可能。
1)如果具有QCL关系,那么在时间:slot n+T_HARQ+T_processing,终端设备已经完成时频同步,并且可以开始根据新的TCI state进行后续下行信号(如PDCCH/PDSCH)的接收。
2)如果不具有QCL关系,那么在时间:slot n+T_HARQ+T_processing+(T first-SSB+T SSB-proc),终端设备已经完成时频同步,并且可以开始根据新的TCI state进行后续下行信号(如PDCCH/PDSCH)的接收。
关于各个参数以及切换时延(即时长#A),可以参考上文方案B中的描述,此处不再赘述。
示例地,在完成切换前,终端设备可以根据旧TCI state(TCI state 1)进行通信。相应地,在终端设备完成切换前,网络设备也根据旧TCI state(TCI state 1)进行传输。网络设备和终端设备在对齐的时间点同时切换波束,才能保证网络设备终端设备的波束对齐。
1060,网络设备与终端设备根据新TCI state进行PDCCH发送和接收。
在步骤1050终端设备完成准备工作后,新TCI state才可以真正的用于PDCCH的传输。
上文以下行通信为例,结合方法1000介绍了适用于方案B的一可能的流程,在对上行信号(如PUCCH或PUSCH)切换TCI state的过程中,也可以使用类似于上文所述的方法,如使用类似于图11所示的方式判断是否需要重新进行时频同步。
应理解,上述各个步骤仅是一种可能的实现方式,本申请实施例并不做限定。例如,在实施各步骤之前,网络设备可以周期性的发送SSB。
还应理解,上述主要以新TCI state中的参考信号与旧TCI state中的参考信号是否与相同的SSB具有QCL关系为例进行了示例性说明,对此不做限定,任何其他信号都可以用于本申请实施例。例如,该信号还可以是CSI-RS或者SRS等等。
还应理解,上文主要介绍了关于判断是否需要重新进行时频同步,应理解,关于是否需要重新进行接收波束搜索的方式可以参考方法800中的描述。例如,当新TCI state与旧TCI state中的QCL类型D参考信号与相同的信号QCL时,无需重新进行接收波束搜索。
基于上述方法1000,考虑到基于信令的TCI切换时延,即终端设备接收到信令(如切换信令)到应用新TCI的时间,主要取决于TCI state是否对终端设备是已知的,以及是否是激活的。例如,如果是基于MAC CE的切换,并且新的TCI state对终端设备是激 活的,那么该时延可以为:T HARQ+TO k*(T first-SSB+T SSB-proc)。其中,如果该新的TCI state是激活的,TO k等于0,否则,TO k等于1。对于大部分只能支持一个激活TCI state的终端设备来说,新的TCI state总是未被激活的,因此总是需要假设有这一段较长的时延。基于本申请实施例,这并不是必须的,即该段时延可以是很短的时长。特别是当新TCI state与旧TCI state之间关联相同的QCL类型A或QCL类型B或QCL类型C的参考信号时,例如相同的SSB。在这种情况下,为旧TCI state估计的时频偏可以直接应用于新TCI state,并且TO k可以为0,这有助于降低波束切换的时延。
在本申请实施例中,终端设备可以根据新TCI state中的参考信号与旧TCI state中的参考信号是否与相同的信号(如SSB)具有QCL关系,确定能够使用新TCI state进行数据传输的时间。例如,当具有QCL关系时,重新时频同步的时延为0。通过该方式,可以降低TCI state切换时延,特别是用于重新时频同步的时延。
应理解,在上述一些实施例中,主要以下行通信为例进行描述,但这不对本申请造成限定,上行通信也可以使用本申请实施例提供的方式。也就是说,在上行通信中,如果需要更换TCI state,在接收到切换信令到切换到新的TCI state之间的时长可以与新TCI state中的参考信号与旧TCI state中的参考信号是否有重合相关,或者,也可以与新TCI state中的参考信号与旧TCI state中的参考信号是否与同一信号具有QCL关系有关。具体地,可以参考上文方案A和方案B的描述。
还应理解,在上述关于方案B的描述中,主要以新TCI state中的参考信号与旧TCI state中的参考信号是否与相同的SSB具有QCL关系为例进行了示例性说明,应理解,SSB仅是一种示例性说明,其他信号也可以适用于本申请实施例,例如,该信号还可以是CSI-RS或者SRS等等。
还应理解,上文实施例中,第一TCI state可以替换为第一TCI state组合,第二TCI state可以替换为第二TCI state组合。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
以上,结合图5至图11详细说明了本申请实施例提供的方法。以下,结合图12至图15详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图12是本申请实施例提供的通信装置的示意性框图。该通信装置1200包括收发单元1210和处理单元1220。收发单元1210可以实现相应的通信功能,处理单元1220用于进行数据处理。收发单元1210还可以称为通信接口或通信单元。
可选地,该通信装置1200还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1220可以读取存储单元中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置1200可以用于执行上文方法实施例中终端设备所执行的动作,这时,该通信装置1200可以为终端设备或者可配置于终端设备的部件,收发单元1210用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元1220用于执行上文方法实施例中终端设备侧的处理相关的操作。
或者,该通信装置1200可以用于执行上文方法实施例中网络设备所执行的动作,这时,该通信装置1200可以为网络设备或者可配置于网络设备的部件,收发单元1210用于执行上文方法实施例中网络设备侧的收发相关的操作,处理单元1220用于执行上文方法实施例中网络设备侧的处理相关的操作。
作为一种设计,该通信装置1200用于执行上文图5所示实施例中终端设备所执行的动作。
一种可能的实现方式,收发单元1210用于:使用第一TCI state与网络设备通信的过程中,接收来自网络设备的切换信令,切换信令包括用于指示激活的第二TCI state的信息;处理单元1220用于:处理切换信令;收发单元1210还用于:在第一时长之后,终端设备使用第二TCI state与网络设备进行通信,第一时长与:第二TCI state中的参考信号与第一TCI state中的参考信号是否有重合相关。
作为一示例,第一时长包括确定接收波束所需的时长;当第二TCI state中的参考信号与所述第一TCI state中的参考信号有重合,且重合的参考信号为类型D的QCL的参考信号时,确定接收波束所需的时长为0;或者,当第二TCI state与第一TCI state中没有属于类型D的QCL的参考信号重合时,确定接收波束所需的时长基于预设的第一公式确定。
作为又一示例,第一时长包括时频同步所需的时长;当第二TCI state中的参考信号与第一TCI state中的参考信号有重合,且重合的参考信号为以下类型的QCL的参考信号时,时频同步所需的时长为0:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号;或者,当第二TCI state与第一TCI state中没有属于以下类型的QCL的参考信号重合,时频同步所需的时长基于预设的第二公式确定:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
作为又一示例,在第二TCI state中的参考信号与第一TCI state中的参考信号有重合的情况下,处理单元1220用于:在第一时长内,根据第二TCI state与第一TCI state中的 重合参考信号确定接收波束。
作为又一示例,收发单元1210还用于:接收来自网络设备的多个TCI state的配置信息,每个TCI state中同一QCL类型的参考信号有多个;其中,多个TCI state包括第一TCI state和/或第二TCI state。
作为又一示例,收发单元1210还用于:向网络设备上报第二TCI state包括的参考信号资源的信息,其中,参考信号资源的信息为第二TCI state中与第一TCI state中不重合的参考信号的信息。
又一种可能的实现方式,收发单元1210用于:使用第一TCI state与网络设备通信的过程中,接收来自网络设备的切换信令,切换信令包括用于指示激活的第二TCI state的信息;处理单元1220用于:处理切换信令;收发单元1210还用于:在第一时长之后,终端设备使用第二TCI state与网络设备进行通信,第一时长与:第二TCI state中的参考信号与第一TCI state中的参考信号是否与同一信号具有准共址QCL关系相关。
作为一示例,第一时长包括时频同步所需的时长;当第二TCI state中的参考信号与第一TCI state中的参考信号与同一信号具有以下类型的QCL关系时,时频同步所需的时长为0:类型A的QCL关系、或者类型B的QCL关系、或者类型C的QCL关系;或者,当第二TCI state中的参考信号与第一TCI state中的参考信号没有与同一信号具有以下类型的QCL关系时,时频同步所需的时长基于预设的第二公式确定:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
该通信装置1200可实现对应于根据本申请的方法实施例中的终端设备执行的步骤或者流程,该通信装置1200可以包括用于执行图5中的方法500和图8中方法800以及图10中方法1000中的终端设备执行的方法的单元。并且,该通信装置1200中的各单元和上述其他操作和/或功能分别为了实现图5中的方法500和图8中方法800以及图10中方法1000的相应流程。
其中,当该通信装置1200用于执行图5中的方法500时,收发单元1210可用于执行方法500中的步骤510至步骤530,处理单元1220可用于执行方法500中的处理步骤,如确定时长#A、判断是否满足条件A1、条件A2、条件B1等处理步骤。
当该通信装置1200用于执行图8中的方法800时,收发单元1210可用于执行方法800中的步骤810至步骤870,处理单元1220可用于执行方法800中的步骤8502至步骤8507。
当该通信装置1200用于执行图10中的方法1000时,收发单元1210可用于执行方法1000中的步骤1010至步骤1060,处理单元1220可用于执行方法1000中的步骤10502至步骤10505。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
作为另一种设计,通信装置1200用于执行上文图5所示实施例中网络设备所执行的动作。
一种可能的实现方式,收发单元1210用于:使用第一TCI state与终端设备通信的过程中,向终端设备发送切换信令,切换信令包括用于指示激活的第二TCI state的信息;在第一时长之后,收发单元1210还用于:使用第二TCI state与终端设备进行通信,第一时 长与:第二TCI state中的参考信号与第一TCI state中的参考信号是否有重合相关。
作为一示例,第一时长包括确定接收波束所需的时长;当第二TCI state中的参考信号与所述第一TCI state中的参考信号有重合,且重合的参考信号为类型D的QCL的参考信号时,处理单元1220确定终端设备确定接收波束所需的时长为0;或者,当第二TCI state与第一TCI state中没有属于类型D的QCL的参考信号重合时,处理单元1220确定终端设备确定接收波束所需的时长基于预设的第一公式确定。
作为又一示例,第一时长包括时频同步所需的时长;当第二TCI state中的参考信号与第一TCI state中的参考信号有重合,且重合的参考信号为以下类型的QCL的参考信号时,处理单元1220确定终端设备时频同步所需的时长为0:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号;或者,当第二TCI state与第一TCI state中没有属于以下类型的QCL的参考信号重合,处理单元1220确定终端设备时频同步所需的时长基于预设的第二公式确定:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
作为又一示例,处理单元1220用于:在第一时长内,根据第二TCI state与第一TCI state中的重合参考信号确定终端设备的接收波束。
作为又一示例,收发单元1210还用于:向终端设备发送多个TCI state的配置信息,每个TCI state中同一QCL类型的参考信号有多个;其中,多个TCI state包括第一TCI state和/或第二TCI state。
作为又一示例,收发单元1210还用于:接收来自终端设备上报的第二TCI state包括的参考信号资源的信息,以便确定通信使用的波束,其中,参考信号资源的信息为第二TCI state中与第一TCI state中不重合的参考信号的信息。
又一种可能的实现方式,收发单元1210用于:使用第一TCI state与终端设备通信的过程中,向终端设备发送切换信令,切换信令包括用于指示激活的第二TCI state的信息;在第一时长之后,收发单元1210还用于:使用第二TCI state与终端设备进行通信,第一时长与:第二TCI state中的参考信号与第一TCI state中的参考信号是否与同一信号具有准共址QCL关系相关。
作为一示例,第一时长包括时频同步所需的时长;当第二TCI state中的参考信号与第一TCI state中的参考信号与同一信号具有以下类型的QCL关系时,处理单元1220确定终端设备时频同步所需的时长为0:类型A的QCL关系、或者类型B的QCL关系、或者类型C的QCL关系;或者,当第二TCI state中的参考信号与第一TCI state中的参考信号没有与同一信号具有以下类型的QCL关系时,处理单元1220确定终端设备时频同步所需的时长基于预设的第二公式确定:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
该通信装置1200可实现对应于根据本申请的方法实施例中的网络设备执行的步骤或者流程,该通信装置1200可以包括用于执行图5中的方法500和图8中方法800以及图10中方法1000中的网络设备执行的方法的单元。并且,该通信装置1200中的各单元和上述其他操作和/或功能分别为了实现图5中的方法500和图8中方法800以及图10中方法1000的相应流程。
其中,当该通信装置1200用于执行图5中的方法500时,收发单元1210可用于执行 方法500中的步骤510至步骤530,处理单元1220可用于执行方法500中的处理步骤,如确定时长#A、判断是否满足条件A1、条件A2、条件B1等处理步骤。
当该通信装置1200用于执行图8中的方法800时,收发单元1210可用于执行方法800中的步骤810至步骤870。
当该通信装置1200用于执行图10中的方法1000时,收发单元1210可用于执行方法1000中的步骤1010至步骤1060。
上文实施例中的处理单元1220可以由至少一个处理器或处理器相关电路实现。收发单元1210可以由收发器或收发器相关电路实现。收发单元1210还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
如图13所示,本申请实施例还提供一种通信装置1300。该通信装置1300包括处理器1310,处理器1310与存储器1320耦合,存储器1320用于存储计算机程序或指令和/或数据,处理器1310用于执行存储器1320存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置1300包括的处理器1310为一个或多个。
可选地,如图13所示,该通信装置1300还可以包括存储器1320。
可选地,该通信装置1300包括的存储器1320可以为一个或多个。
可选地,该存储器1320可以与该处理器1310集成在一起,或者分离设置。
可选地,如图13所示,该通信装置1300还可以包括收发器1330,收发器1330用于信号的接收和/或发送。例如,处理器1310用于控制收发器1330进行信号的接收和/或发送。
作为一种方案,该通信装置1300用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器1310用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器1330用于实现上文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,该通信装置1300用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器1310用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器1330用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种通信装置1400,该通信装置1400可以是终端设备也可以是芯片。该通信装置1400可以用于执行上述方法实施例中由终端设备所执行的操作。
当该通信装置1400为终端设备时,图14示出了一种简化的终端设备的结构示意图。如图14所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带 信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图14中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图14所示,终端设备包括收发单元1410和处理单元1420。收发单元1410也可以称为收发器、收发机、收发装置等。处理单元1420也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元1410中用于实现接收功能的器件视为接收单元,将收发单元1410中用于实现发送功能的器件视为发送单元,即收发单元1410包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元1420用于执行图5中终端设备侧的处理动作。例如,处理单元1420用于执行图5中的处理步骤;收发单元1410用于执行图5中的步骤510至步骤530中的收发操作。
又如,在一种实现方式中,处理单元1420用于执行图9中的步骤8502至步骤8507中的处理步骤;收发单元1410用于执行图8中的步骤810至步骤870中的收发操作。
又如,在一种实现方式中,处理单元1420用于执行图11中的步骤10502至步骤10505中的处理步骤;收发单元1410用于执行图10中的步骤1010至步骤1060中的收发操作。
应理解,图14仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图14所示的结构。
当该通信装置1400为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信装置1500,该通信装置1500可以是网络设备也可以是芯片。该通信装置1500可以用于执行上述方法实施例中由网络设备所执行的操作。
当该通信装置1500为网络设备时,例如为基站。图15示出了一种简化的基站结构示意图。基站包括1510部分以及1520部分。1510部分主要用于射频信号的收发以及射频信号与基带信号的转换;1520部分主要用于基带处理,对基站进行控制等。1510部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1520部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1510部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1510部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1510部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发 射机、发射器或者发射电路等。
1520部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1510部分的收发单元用于执行图5所示实施例中由网络设备执行的收发相关的步骤;1520部分用于执行图5所示实施例中由网络设备执行的处理相关的步骤。
又如,在一种实现方式中,1510部分的收发单元用于执行图8中的步骤810至步骤870中的收发操作;1520部分用于执行图8所示实施例中由网络设备执行的处理相关的步骤。
又如,在一种实现方式中,1510部分的收发单元用于执行图10中的步骤1010至步骤1060中的收发操作;1520部分用于执行图10所示实施例中由网络设备执行的处理相关的步骤。
应理解,图15仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图15所示的结构。
当该通信装置1500为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定, 只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。
其中,计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质(或者说计算机可读介质)例如可以包括但不限于:磁性介质或磁存储器件(例如,软盘、硬盘(如移动硬盘)、磁带)、光介质(例如,光盘、压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等)、智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等、U盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)等各种可以存储程序代码的介质。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元实现本申请提供的方案。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。
当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,计算机可以是个人计算机,服务器,或者网络设备等。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。关于计算机可读存储介质,可以参考上文描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求和说明书的保护范围为准。

Claims (16)

  1. 一种通信的方法,其特征在于,包括:
    终端设备使用第一传输配置指示TCI状态TCI state与网络设备通信的过程中,所述终端设备接收来自所述网络设备的切换信令,所述切换信令包括用于指示激活的第二TCI state的信息;
    在第一时长之后,所述终端设备使用所述第二TCI state与所述网络设备进行通信,其中,所述第一时长与以下一项或两项相关:
    所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否有重合;和/或,
    所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否与同一信号具有准共址QCL关系。
  2. 根据权利要求1所述的方法,其特征在于,在所述第二TCI state中的参考信号与第一TCI state中的参考信号有重合的情况下,所述方法还包括:
    在所述第一时长内,所述终端设备根据所述第二TCI state与所述第一TCI state中的重合参考信号确定接收波束。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述终端设备接收来自所述网络设备的切换信令之前,所述方法还包括:
    所述终端设备接收来自所述网络设备的多个TCI state的配置信息,每个TCI state中同一QCL类型的参考信号有多个;
    其中,所述多个TCI state包括所述第一TCI state和/或所述第二TCI state。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,在所述第二TCI state中的参考信号与第一TCI state中的参考信号有重合的情况下,所述方法还包括:
    在所述终端设备使用所述第二TCI state与所述网络设备进行通信之后,所述终端设备向所述网络设备上报所述第二TCI state包括的参考信号资源的信息,用于指示通信使用的波束,
    其中,所述参考信号资源的信息为所述第二TCI state中与所述第一TCI state中不重合的参考信号的信息。
  5. 一种通信的方法,其特征在于,包括:
    网络设备使用第一传输配置指示TCI状态TCI state与终端设备通信的过程中,所述网络设备向所述终端设备发送切换信令,所述切换信令包括用于指示激活的第二TCI state的信息;
    在第一时长之后,所述网络设备使用所述第二TCI state与所述终端设备进行通信,
    其中,所述第一时长与以下一项或两项相关:
    所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否有重合;和/或,
    所述第二TCI state中的参考信号与所述第一TCI state中的参考信号是否与同一信号具有准共址QCL关系。
  6. 根据权利要求5所述的方法,其特征在于,在所述第二TCI state中的参考信号与第一TCI state中的参考信号有重合的情况下,所述方法还包括:
    在所述第一时长内,所述网络设备根据所述第二TCI state与所述第一TCI state中的重合参考信号确定所述终端设备的接收波束。
  7. 根据权利要求5或6所述的方法,其特征在于,在所述网络设备向所述终端设备发送切换信令之前,所述方法还包括:
    所述网络设备向所述终端设备发送多个TCI state的配置信息,每个TCI state中同一QCL类型的参考信号有多个;
    其中,所述多个TCI state包括所述第一TCI state和/或所述第二TCI state。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,在所述第二TCI state中的参考信号与第一TCI state中的参考信号有重合的情况下,所述方法还包括:
    在所述网络设备使用所述第二TCI state与所述终端设备进行通信之后,所述网络设备接收来自所述终端设备上报的所述第二TCI state包括的参考信号资源的信息,
    其中,所述参考信号资源的信息为所述第二TCI state中与所述第一TCI state中不重合的参考信号的信息。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一时长包括确定接收波束所需的时长;
    当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号有重合,且重合的参考信号为类型D的QCL的参考信号时,所述确定接收波束所需的时长为0;或者,
    当所述第二TCI state与所述第一TCI state中没有属于类型D的QCL的参考信号重合时,所述确定接收波束所需的时长基于预设的第一公式确定。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一时长包括时频同步所需的时长;
    当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号有重合,且重合的参考信号为以下类型的QCL的参考信号时,所述时频同步所需的时长为0:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号;或者,
    当所述第二TCI state与所述第一TCI state中没有属于以下类型的QCL的参考信号重合,所述时频同步所需的时长基于预设的第二公式确定:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
  11. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一时长包括时频同步所需的时长;
    当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号与同一信号具有以下类型的QCL关系时,所述时频同步所需的时长为0:类型A的QCL关系、或者类型B的QCL关系、或者类型C的QCL关系;或者,
    当所述第二TCI state中的参考信号与所述第一TCI state中的参考信号没有与同一信号具有以下类型的QCL关系时,所述时频同步所需的时长基于预设的第二公式确定:类型A的QCL的参考信号、或者类型B的QCL的参考信号、或者类型C的QCL的参考信号。
  12. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至11中任一项所述的方法。
  13. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,当所述处理器执行存储器中的计算机程序或指令时,权利要求1至11中任一项所述的方法被执行。
  14. 一种通信装置,包括收发器、存储器、处理器及存储在存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,所述通信装置实现如权利要求1至11中任一项所述的方法。
  15. 一种芯片,其特征在于,包括:处理器和接口,用于从存储器中调用并运行所述存储器中存储的计算机程序,执行如权利要求1至11中任一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至11中任一项所述的方法。
PCT/CN2021/100812 2020-06-19 2021-06-18 传输配置指示状态TCI state切换的方法和装置 WO2021254472A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010566089.3A CN113825229A (zh) 2020-06-19 2020-06-19 传输配置指示状态TCI state切换的方法和装置
CN202010566089.3 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021254472A1 true WO2021254472A1 (zh) 2021-12-23

Family

ID=78911587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100812 WO2021254472A1 (zh) 2020-06-19 2021-06-18 传输配置指示状态TCI state切换的方法和装置

Country Status (2)

Country Link
CN (1) CN113825229A (zh)
WO (1) WO2021254472A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023124995A1 (zh) * 2021-12-29 2023-07-06 华为技术有限公司 通信方法、终端设备、网络设备及通信系统
CN116470995A (zh) * 2022-01-07 2023-07-21 维沃移动通信有限公司 Tci状态更新方法、装置、通信设备、系统及存储介质
WO2023220966A1 (en) * 2022-05-18 2023-11-23 Nec Corporation Method, device and computer storage medium of communication
WO2023226003A1 (en) * 2022-05-27 2023-11-30 Qualcomm Incorporated Semi-known transmission configuration indicator state
CN115299007A (zh) * 2022-06-28 2022-11-04 北京小米移动软件有限公司 一种传输配置指示tci状态使用时间的确定方法及其装置
WO2024031472A1 (zh) * 2022-08-10 2024-02-15 Oppo广东移动通信有限公司 一种无线通信方法及装置、设备、存储介质
WO2024092767A1 (zh) * 2022-11-04 2024-05-10 富士通株式会社 信息接收、信息发送方法以及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106907A (zh) * 2018-10-26 2020-05-05 维沃移动通信有限公司 传输配置指示tci状态的指示方法及终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076364B (zh) * 2018-07-25 2022-02-01 北京小米移动软件有限公司 传输配置方法及装置
CN110839290B (zh) * 2018-08-17 2022-04-22 成都华为技术有限公司 信号传输的方法和通信装置
US11632164B2 (en) * 2018-11-02 2023-04-18 Ntt Docomo, Inc. User terminal and radio communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106907A (zh) * 2018-10-26 2020-05-05 维沃移动通信有限公司 传输配置指示tci状态的指示方法及终端

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Editorial correction for active TCI state switching delay", 3GPP DRAFT; R4-2000580, vol. RAN WG4, 14 February 2020 (2020-02-14), pages 1 - 4, XP051850580 *
ERICSSON: "On active TCI state switching requirements in NR-U", 3GPP DRAFT; R4-2007969, vol. RAN WG4, 15 May 2020 (2020-05-15), pages 1 - 5, XP051884807 *
HUAWEI; HISILICON: "CR to TCI state switch TC R16", 3GPP DRAFT; R4-2007824, vol. RAN WG4, 9 June 2020 (2020-06-09), pages 1 - 6, XP051895037 *
MEDIATEK INC: "Discussion on active spatial relation switch", 3GPP DRAFT; R4-2006478, vol. RAN WG4, 15 May 2020 (2020-05-15), pages 1 - 4, XP051883559 *

Also Published As

Publication number Publication date
CN113825229A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2021254472A1 (zh) 传输配置指示状态TCI state切换的方法和装置
AU2019203984B2 (en) Self-contained time division duplex (tdd) subframe structure for wireless communications
AU2018361151B2 (en) System and method for indicating wireless channel status
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
EP3952419A1 (en) Secondary cell activation method and apparatus
WO2020220849A1 (zh) 数据接收和发送方法及装置
WO2020248779A1 (zh) 更新传输配置指示tci信息的方法与通信装置
WO2020164454A1 (zh) 信号传输方法和通信装置
WO2020238617A1 (zh) 确定小区激活时延的方法和装置
EP3846532A1 (en) Power control method and device
WO2021031812A1 (zh) 一种天线面板状态的指示方法及装置
WO2021052473A1 (zh) 通信方法和通信装置
WO2021017874A1 (zh) 一种通信方法及通信装置
WO2022082386A1 (zh) 一种无线通信的方法与装置
CN112399597A (zh) 更新波束信息的方法和通信装置
WO2023011195A1 (zh) 一种通信方法及通信装置
WO2020238991A1 (zh) 一种状态信息发送、接收方法及装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2020187125A1 (zh) 数据传输方法和装置
WO2021159528A1 (zh) 一种通信方法和装置
WO2021062836A1 (zh) 功率调整方法及装置
WO2021013138A1 (zh) 无线网络通信方法和通信装置
WO2020221040A1 (zh) 通信方法和通信装置
WO2021062810A1 (zh) 探测参考信号的发送方法,及相关产品
CN114342519A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825043

Country of ref document: EP

Kind code of ref document: A1