WO2020238617A1 - 确定小区激活时延的方法和装置 - Google Patents

确定小区激活时延的方法和装置 Download PDF

Info

Publication number
WO2020238617A1
WO2020238617A1 PCT/CN2020/089815 CN2020089815W WO2020238617A1 WO 2020238617 A1 WO2020238617 A1 WO 2020238617A1 CN 2020089815 W CN2020089815 W CN 2020089815W WO 2020238617 A1 WO2020238617 A1 WO 2020238617A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
activated
filtering
spatial
downlink signal
Prior art date
Application number
PCT/CN2020/089815
Other languages
English (en)
French (fr)
Inventor
王晓娜
管鹏
樊波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20813346.2A priority Critical patent/EP3968556A4/en
Publication of WO2020238617A1 publication Critical patent/WO2020238617A1/zh
Priority to US17/539,018 priority patent/US20220086702A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0044Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of quality context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/085Reselecting an access point involving beams of access points

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for determining cell activation delay.
  • a terminal device will perform initial access in a primary cell (PCell) after it is turned on. Afterwards, the network device may carry configuration parameters of the secondary cell (secondary cell, SCell) through configuration signaling or resource control (radio resource control, RRC) configuration to add an SCell for the terminal device.
  • PCell primary cell
  • RRC radio resource control
  • the network device may dynamically decide to configure an SCell for the user based on an internal algorithm, and issue SCell activation signaling to the terminal device through media access control (MAC)-control element (CE) signaling.
  • the terminal device activates the corresponding SCell according to the activation signaling, and then detects a synchronization signal block (synchronization signal block, SSB) signal in a corresponding time window to realize the downlink time-frequency domain synchronization between the SCell and the terminal device.
  • the terminal device determines channel state information (CSI) according to the SSB signal, and determines whether to report the CSI to the network device. If the network device receives the CSI within the time window, it is considered that the terminal device has successfully completed the activation of the SCell. If the network device does not receive the CSI within the time window, it is considered that the SCell activation has failed.
  • CSI channel state information
  • the time length of the time window between the terminal device and the network device (also referred to as "activation delay") can be fixed.
  • activation delay the time length of the time window between the terminal device and the network device
  • the present application provides a method and device for determining the activation delay of a cell, which can improve the accuracy of the determined activation delay, thereby improving the activation success rate of the cell while ensuring the power consumption of the equipment.
  • a method for determining cell activation delay includes: determining spatial filtering of a downlink signal of a cell to be activated of a terminal device and spatial filtering of a downlink signal of an activated cell of the terminal device; Whether the downlink spatial filtering of the downlink signal of the cell to be activated is the same as the downlink spatial filtering of the downlink signal of the activated cell is determined to determine the activation delay of the cell to be activated, and the activation delay is used to transmit channel state information.
  • the terminal device or the network device may determine the activation delay corresponding to the cell to be activated according to the same or different downlink spatial filtering of the downlink signal of the cell to be activated and the downlink signal of the activated cell. In this way, the terminal device sends the CSI within the activation time delay, and the network device receives the CSI within the activation time delay, and determines whether the cell to be activated is successfully activated according to whether the CSI is received.
  • the terminal equipment and network equipment in the embodiments of this application can determine a reasonable activation delay, so as to prevent the terminal equipment and network equipment from misjudging whether the secondary cell is successfully activated due to the activation delay being too long or too short, thereby ensuring that the equipment Under the premise of high power consumption and overhead, the activation success rate of the cell is improved.
  • the spatial filtering is spatial transmission filtering and/or spatial reception filtering.
  • the spatial filtering may be spatial transmission filtering and spatial reception filtering, or the spatial filtering may be spatial transmission filtering, or the spatial filtering may also be spatial reception filtering.
  • the terminal device and the network device can further determine a reasonable activation delay, so as to further improve the activation success rate of the cell while ensuring the power consumption of the device.
  • determining the activation delay of the cell to be activated includes at least one of the following: in the case that the spatial filtering of the downlink signal of the cell to be activated is the same as the spatial filtering of the downlink signal of the activated cell, determining the cell to be activated When the spatial filtering of the downlink signal of the cell to be activated is not the same as the spatial filtering of the downlink signal of the activated cell, the activation delay of the cell to be activated is determined to be the second Time delay.
  • the downlink space transmission filtering of the downlink signal of the cell to be activated is the same or different from the downlink space transmission filtering of the downlink signal of the activated cell.
  • the determined activation delay is different, or the downlink space reception filtering of the downlink signal of the cell to be activated is different from that of the activated cell.
  • the activation delay determined by the same or different downlink signal receiving filtering in the downlink space is different. In this way, the terminal equipment and the network equipment can further determine a reasonable activation delay, so as to further improve the activation success rate of the cell while ensuring the power consumption of the equipment.
  • Determining the activation delay of the cell to be activated includes at least one of the following: the spatial transmission filtering of the downlink signal of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the activated cell, and the filtering of the downlink signal of the cell to be activated.
  • the spatial reception filtering is the same as the spatial reception filtering of the downlink signal of the activated cell
  • the activation delay of the cell to be activated is determined as the first delay
  • the spatial transmission filtering of the downlink signal of the cell to be activated is the same as that of the already activated cell.
  • the activation delay of the cell to be activated is The second time delay; the spatial transmission filtering of the downlink signal of the cell to be activated is different from the spatial transmission filtering of the downlink signal of the activated cell, and the spatial reception filtering of the downlink signal of the cell to be activated is the same as the downlink signal of the activated cell
  • the activation delay of the cell to be activated is determined to be the third delay; the spatial transmission filtering of the downlink signal of the cell to be activated is different from the spatial transmission filtering of the downlink signal of the activated cell.
  • the spatial reception filtering of the downlink signal of the cell to be activated is different from the spatial reception filtering of the downlink signal of the activated cell, it is determined
  • the terminal device or the network device can be based on whether the spatial transmission filtering of the downlink signal of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the cell to be activated, and the spatial reception filtering of the downlink signal of the cell to be activated is the same as that of the cell to be activated. Whether the spatial reception filtering of the downlink signal is the same, the activation delay of the cell to be activated is determined respectively. In this way, the terminal equipment and the network equipment can further determine a reasonable activation delay, so as to further improve the activation success rate of the cell while ensuring the power consumption of the equipment.
  • the method before determining the activation delay of the cell to be activated, the method further includes: determining, according to at least one of the following information, the spatial transmission filtering of the downlink signal of the cell to be activated and the activated cell Whether the spatial transmission filtering of the downlink signal is the same: whether the cell to be activated and the activated cell belong to the same frequency band, whether the cell to be activated and the activated cell share the radio frequency channel, the working frequency of the cell to be activated and the activated cell Whether the frequency interval between the working frequency points of the cell is greater than or equal to the preset threshold.
  • the terminal device or network device can further determine the activation delay corresponding to the cell to be activated, that is, the terminal device or network device can transmit channel state information within the appropriate activation delay, so as to ensure the power consumption of the device. , Improve the success rate of cell activation.
  • the operating frequency of the cell to be activated belongs to frequency band 1 or frequency band 2.
  • the working frequency point of the cell to be activated may belong to a high frequency band or a low frequency band.
  • the embodiments of this application can be applied in more scenarios.
  • the operating frequency of the activated cell belongs to frequency band 1 or frequency band 2.
  • the working frequency point of the activated cell may belong to the high frequency band or the low frequency band.
  • the embodiments of this application can be applied in more scenarios.
  • the terminal device and the network device can also combine whether there is an activated cell of the terminal device in the frequency band to which the working frequency of the cell to be activated belongs, and the spatial filtering and the spatial filtering of the downlink signal of the cell to be activated. Whether the spatial filtering of the downlink signal of the activated cell is the same, determine the activation delay of the cell to be activated.
  • Terminal equipment or network equipment can consider whether the spatial transmission filtering is the same, and whether there are activated cells in the frequency band to which the working frequency of the cell to be activated belongs, these two factors determine the activation delay of the cell to be activated; or the terminal equipment or network
  • the device can consider whether the airspace reception filtering is the same, and whether there are activated cells in the frequency band to which the working frequency of the cell to be activated belongs. These two factors determine the activation delay of the cell to be activated, thereby further ensuring the power consumption of the device. Under the premise of overhead, the activation success rate of the cell is improved.
  • the terminal device or the network device may also determine whether the filtering of the downlink signal of the cell to be activated is the same as the filtering of the downlink signal of the activated cell. Whether the downlink space reception filtering of the downlink signal is the same as the downlink space reception filtering of the downlink signal of the activated cell, and whether there is an activated cell of the terminal device in the frequency band to which the cell to be activated belongs to determine the activation of the cell to be activated Time delay.
  • Terminal equipment or network equipment can consider whether the airspace transmission filter is the same, whether the airspace reception filter is the same, and whether there is an activated cell in the frequency band of the working frequency of the cell to be activated. These three factors determine the activation delay of the cell to be activated. , So as to further improve the activation success rate of the cell on the premise of ensuring the power consumption of the device.
  • a method for determining a cell activation delay comprising: determining a cell state of a cell to be activated of a terminal device; determining the activation delay of the cell to be activated according to the cell state of the cell to be activated, The activation time delay is used to transmit channel state information.
  • the terminal device or the network device can determine the corresponding activation delay according to the cell status of the cell to be activated. In other words, different cell states can correspond to different activation delays. In this way, the terminal device sends CSI within the activation delay determined according to the cell state, and the network device receives the CSI within the activation delay and determines whether the CSI is received or not. The CSI judges whether the cell to be activated is successfully activated. In the embodiments of the present application, the terminal equipment and network equipment can determine a reasonable activation delay, so as to prevent the terminal equipment and network equipment from misjudging whether the secondary cell is successfully activated due to the activation delay being too long or too short, thereby ensuring the power consumption of the device. Under the premise of improving the success rate of cell activation.
  • the cell state includes at least one of whether the cell is known, synchronization information, whether the serving beam is known, whether the terminal device's receiving beam capability is known, and whether the channel state information is known.
  • Whether the serving beam is known that is, whether the beam used to serve the terminal device for communication is known.
  • Unknown cell may mean that the terminal device needs to perform cell detection.
  • Known cell may mean that the terminal device does not need to perform cell detection.
  • cell detection means that the terminal device needs to perform cell blind detection on time-frequency resources.
  • the synchronization information includes at least one of whether the operating frequency is known, whether the downlink timing is known, and whether the uplink timing is known.
  • the synchronization information may include whether the specific location of the working frequency point of the cell to be activated is known.
  • the receiving beam capability of the terminal device side includes at least one of supporting multi-beam scanning reception, whether to support wide beam reception, and whether to support synchronization signal block SSB symbol-level cut beam reception.
  • the determining the activation delay of the cell to be activated according to the cell state of the cell to be activated includes at least one of the following: when the cell to be activated is an unknown cell and an unknown serving beam, It is determined that the activation delay of the cell to be activated is the first delay; in the case that the cell to be activated is cell unknown, the serving beam is unknown, and the terminal device supports multi-beam scanning reception, the activation delay of the cell to be activated is determined to be The second delay; when the cell to be activated is cell unknown, the serving beam is unknown, and the terminal device supports wide beam reception, the activation delay of the cell to be activated is determined to be the third delay; the cell to be activated is When the cell is known and the serving beam is unknown, the activation delay of the cell to be activated is determined to be the fourth delay; when the cell to be activated is the cell and the serving beam is known, the activation delay of the cell to be activated is determined The activation delay is the fifth delay; when the cell to be activated is an unknown
  • Different cell states can correspond to different activation delays, so that terminal equipment or network equipment can more accurately determine the size of the activation delay, so as to further improve the success of cell activation while ensuring the power consumption of the device. rate.
  • the method before determining the activation delay of the cell to be activated, the method further includes: in the case that the cell to be activated and at least one activated cell belong to the same frequency band, determining that the cell to be activated is The cell is known and/or the serving beam is known; or when the spatial filtering of the downlink signal of the cell to be activated is the same as the spatial filtering of the downlink signal of at least one activated cell, it is determined that the cell to be activated is a cell known and / Or the serving beam is known; or in the case of receiving valid measurement results of the cell to be activated within the preset time period before the activation signaling is transmitted, determine that the cell to be activated is the cell known and/or the serving beam is known Or in the case where the cell to be activated and all activated cells belong to different frequency bands, it is determined that the cell to be activated is cell unknown and/or service beam unknown.
  • the specific cell state of the cell to be activated can be determined by the above method, which helps the terminal device or network equipment to more accurately determine the activation delay of the cell to be activated, thereby further improving the power consumption of the device while ensuring The activation success rate of the cell.
  • a device for determining a cell activation delay may be a network device or a chip in the network device.
  • the device can also be a terminal device, or a chip in the terminal device.
  • the device has the function of realizing the above-mentioned first aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a transceiver module and a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute the instructions stored in the storage module or from other instructions, so that the device executes the above-mentioned first aspect and various possible implementation modes of communication methods.
  • the device can be a network device.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be an input/output interface, pin or circuit on the chip, for example.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal device executes the above-mentioned first aspect and any possible implemented communication method.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above All aspects of the communication method program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a device for determining a cell activation delay may be a terminal device or a chip in the terminal device. Or the device is a network device, or a chip in the network device.
  • the device has the function of realizing the above-mentioned second aspect and various possible implementation modes. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a transceiver module and a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other instructions, so that the device executes the second aspect or any one of the methods described above.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be, for example, an input/output interface, pin or circuit on the chip.
  • the processing module may be a processor, for example. The processing module can execute instructions so that the chip in the terminal device executes the second aspect described above and any possible implemented communication method.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as ROM or other types of static storage devices that can store static information and instructions, RAM, etc.
  • the processor mentioned in any of the above may be a CPU, a microprocessor, an application-specific integrated circuit ASIC, or one or more integrated circuits used to control the execution of the programs of the above-mentioned communication methods.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the first aspect and any possible implementations thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the second aspect and any possible implementations thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the first aspect described above, or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the second aspect described above, or any possible implementation manner thereof.
  • a communication system which includes the terminal device described in the third aspect and the network device described in the third aspect.
  • a communication system in a tenth aspect, includes the terminal device described in the fourth aspect and the network device described in the fourth aspect.
  • the terminal device or the network device can determine the activation delay corresponding to the cell to be activated according to the same or different downlink spatial filtering of the downlink signal of the cell to be activated and the downlink signal of the activated cell. In this way, the terminal device sends the CSI within the activation time delay, and the network device receives the CSI within the activation time delay, and determines whether the cell to be activated is successfully activated according to whether the CSI is received.
  • the terminal equipment and network equipment in the embodiments of this application can determine a reasonable activation delay, so as to prevent the terminal equipment and network equipment from misjudging whether the secondary cell is successfully activated due to the activation delay being too long or too short, thereby ensuring that the equipment Under the premise of high power consumption and overhead, the activation success rate of the cell is improved.
  • Figure 1 is a schematic diagram of a communication system of the present application
  • Figure 2 is a schematic diagram of a method for determining cell activation delay according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a method for determining cell activation delay according to another embodiment of the present application.
  • FIG. 4 is a schematic block diagram of an apparatus for determining a cell activation delay according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of an apparatus for determining a cell activation delay according to an embodiment of the present application
  • FIG. 6 is a schematic block diagram of an apparatus for determining cell activation delay according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus for determining cell activation delay according to another embodiment of the present application.
  • FIG. 8 is a schematic block diagram of an apparatus for determining a cell activation delay according to a specific embodiment of the present application.
  • FIG. 9 is a schematic diagram of an apparatus for determining cell activation delay according to another specific embodiment of the present application.
  • FIG. 10 is a schematic diagram of an apparatus for determining a cell activation delay according to another specific embodiment of the present application.
  • FIG. 11 is a schematic diagram of an apparatus for determining a cell activation delay according to another specific embodiment of the present application.
  • a beam is a communication resource, and different beams can be considered as different communication resources. Different beams can send the same information or different information.
  • the beam may correspond to at least one of time domain resources, space resources, and frequency domain resources.
  • multiple beams with the same or type of communication characteristics may be regarded as one beam, and one beam may include one or more antenna ports for transmitting data channels, control channels, and sounding signals.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna;
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means, which is not limited in this application. Among them, the beamforming technology (beamforming) can achieve higher antenna array gain by oriented in a specific direction in space.
  • beams can be divided into transmitting beams and receiving beams of network equipment, and transmitting beams and receiving beams of terminal equipment.
  • the transmitting beam of the network device is used to describe the beamforming information on the receiving side of the network device, and the receiving beam of the network device is used to describe the beamforming information on the receiving side of the network device.
  • the transmitting beam of the terminal device is used to describe the beamforming information on the transmitting side of the terminal device, and the receiving beam of the terminal device is used to describe the beamforming information on the receiving side.
  • beamforming technology includes digital beamforming technology, analog beamforming technology, and hybrid digital-analog beamforming technology.
  • the analog beamforming technology can be realized by radio frequency.
  • a radio frequency link RF chain
  • communication based on analog beams requires the beams of the transmitter and receiver to be aligned, otherwise signals cannot be transmitted normally.
  • one or more antenna ports forming a beam may also be regarded as an antenna port set.
  • the beam can also be embodied by a spatial filter or a spatial domain transmission filter.
  • the beam can also be referred to as a "spatial filter”
  • the transmitting beam is referred to as a "spatial filter”.
  • Transmitting filter” and receiving beam are called “spatial receive filter” or "downstream spatial filter”.
  • the receiving beam of a network device or the transmitting beam of a terminal device may also be referred to as an "uplink spatial filter”
  • the transmitting beam of a network device or a receiving beam of a terminal device may also be referred to as a "downlink spatial filter”.
  • Optimal N beam pair links (a BPL includes a transmit beam of a network device and a receive beam of a terminal device, or a BPL includes a transmit beam of a terminal device and a receive beam of a network device )s Choice. Used for terminal equipment based on the beam scanning of the network equipment to realize the selection of the transmission beam of the network equipment and/or the receiving beam of the terminal equipment, and the network equipment realizes the transmission beam and/or network equipment of the terminal equipment based on the beam scanning of the terminal equipment The choice of receiving beam.
  • the transmitting beam may be a base station transmitting beam, or a terminal device transmitting beam.
  • the transmit beam is a base station transmit beam
  • the base station transmits reference signals to user equipment (UE) through different transmit beams, and the UE uses the same receive beam to receive the reference signals sent by the base station through different transmit beams, based on The received signal determines the optimal transmit beam of the base station, and then feeds back the optimal transmit beam of the base station to the base station, so that the base station can update the transmit beam.
  • UE user equipment
  • the UE transmits reference signals to the base station through different transmitting beams, and the base station uses the same receiving beam to receive the reference signals sent by the UE through different transmitting beams, and determines the UE's maximum value based on the received signal.
  • Optimal transmit beam and then feed back the UE's optimal transmit beam to the UE, so that the UE can update the transmit beam.
  • the foregoing process of transmitting reference signals through different transmit beams may be referred to as beam scanning, and the process of determining the optimal transmit beam based on the received signal may be referred to as beam matching.
  • the receiving beam may be a base station receiving beam or a terminal device receiving beam.
  • the receiving beam is a base station receiving beam
  • the UE sends a reference signal to the base station through the same transmitting beam.
  • the base station uses different receiving beams to receive the reference signal sent by the UE, and then determines the optimal receiving beam of the base station based on the received signal, so as to The receive beam is updated.
  • the receiving beam is the receiving beam of the UE
  • the base station sends the reference signal to the UE through the same transmitting beam, and the UE uses different receiving beams to receive the reference signal sent by the base station, and then determines the UE's optimal receiving beam based on the received signal to correct
  • the UE's receive beam is updated.
  • the network device will configure the type of reference signal resource set for beam training.
  • the repetition parameter configured for the reference signal resource set is "on"
  • the terminal device assumes the reference signal resource set
  • the reference signal in the reference signal is transmitted using the same downlink spatial filter, that is, using the same transmit beam transmission; in this case, in general, the terminal device will use different receive beams to receive the reference signal in the above reference signal resource set, and train The best receiving beam of the terminal device.
  • the terminal device can report the channel quality of the best N reference signals measured by the UE.
  • the terminal device When the repetition parameter configured for the reference signal resource set is "off", the terminal device does not assume that the reference signals in the reference signal resource set use the same downlink spatial filter for transmission, that is, it does not assume that the network device uses the same transmit beam Transmit the reference signal. At this time, the terminal equipment selects the best N beams in the resource set by measuring the channel quality of the reference signal in the set and feeds it back to the network equipment. Generally, at this time, the terminal equipment uses it in this process The same receiving beam.
  • Beamforming technology (beamforming):
  • Beamforming technology can achieve higher antenna array gain by oriented in a specific direction in space.
  • Analog beamforming can be achieved through radio frequency.
  • a radio frequency link RF chain
  • the beam quality includes layer 1 reference signal received power (layer 1 reference signal received power, L1-RSRP), layer 1 received reference signal quality (layer 1 reference signal received quality, L1-RSRQ), etc.
  • beam management resources may include synchronization signals, broadcast channels, downlink channel measurement reference signals, tracking signals, downlink control channel demodulation reference signals, downlink shared channel demodulation reference signals, uplink sounding reference signals, uplink random access signals, etc. .
  • Used to indicate the beam used for transmission including the transmitting beam and/or the receiving beam.
  • the index of the downlink signal corresponding to the beam, the time index of the downlink synchronization signal block corresponding to the beam, the beam pair link (BPL) information, the transmission parameter (Tx parameter) corresponding to the beam, and the reception parameter (Rx parameter) corresponding to the beam The transmission weight corresponding to the beam, the weight matrix corresponding to the beam, the weight vector corresponding to the beam, the receiving weight corresponding to the beam, the index of the transmission weight corresponding to the beam, the index of the weight matrix corresponding to the beam, the index of the weight vector corresponding to the beam, the beam At least one of the index of the corresponding reception weight, the reception codebook corresponding to the beam, the transmission codebook corresponding to the beam, the transmission codebook corresponding to the beam, the transmission codebook corresponding to the beam
  • the downlink signal includes a synchronization signal, Broadcast channel, broadcast signal demodulation signal, channel state information downlink signal (channel state information reference signal, CSI-RS), cell specific reference signal (CS-RS), terminal equipment dedicated reference signal (user equipment specific Reference signal, US-RS), downlink control channel demodulation reference signal, downlink data channel demodulation reference signal, and downlink phase noise tracking signal.
  • the uplink signal includes any of a medium uplink random access sequence, an uplink sounding reference signal, an uplink control channel demodulation reference signal, an uplink data channel demodulation reference signal, and an uplink phase noise tracking signal.
  • the network device may also allocate QCL identifiers to beams having a quasi-co-location (QCL) relationship among the beams associated with the frequency resource group.
  • QCL quasi-co-location
  • the beam may also be called a spatial transmission filter
  • the transmit beam may also be called a spatial transmit filter
  • the receive beam may also be called a spatial receive filter.
  • the beam indication information may also be embodied as a transmission configuration index (TCI).
  • TCI may include various parameters, such as cell number, bandwidth part number, reference signal identifier, synchronization signal block identifier, QCL type, and so on. Among them, the parity relationship of quasi-co-location (QCL) is used to indicate that multiple resources have one or more identical or similar communication characteristics. For multiple resources with parity relationship, the same or Similar communication configuration.
  • the large-scale characteristics of the channel transmitting one symbol on one port can be inferred from the large-scale characteristics of the channel transmitting one symbol on the other port.
  • Large-scale characteristics can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receiving parameters, terminal device receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, receiver antenna Spatial correlation, main angle of arrival (angel-of-arrival, AoA), average angle of arrival, expansion of AoA, etc.
  • Spatial QCL can be considered as a type of QCL. There are two angles to understand spatial: from the sending end or from the receiving end.
  • the two antenna ports are quasi-co-located in the spatial domain, it means that the corresponding beam directions of the two antenna ports are spatially consistent, that is, the spatial filters are the same.
  • the two antenna ports are spatially quasi-co-located, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction, that is, the reception parameter QCL.
  • the co-location relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics.
  • the same or similar communication configuration can be adopted.
  • Large-scale characteristics can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receiving parameters, terminal device receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, receiver antenna Spatial correlation, main angle of arrival (Angel-of-Arrival, AoA), average angle of arrival, expansion of AoA, etc.
  • Spatial QCL can be considered as a type of QCL. There are two angles to understand spatial: from the sending end or from the receiving end. From the perspective of the transmitting end, if the two antenna ports are quasi-co-located in the airspace, it means that the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are spatially quasi-co-located, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the configuration and instructions of the quasi-parity hypothesis can be used to help the receiving end in signal reception and demodulation.
  • the receiving end can confirm that the A port and the B port have a QCL relationship, that is, the large-scale parameters of the signal measured on the A port can be used for the signal measurement and demodulation on the B port.
  • the signal of wireless communication needs to be received and sent by an antenna, and multiple antenna elements can be integrated on a panel.
  • a radio link can drive one or more antenna elements.
  • the terminal device may include multiple antenna panels, and each antenna panel includes one or more beams.
  • the network device may also include multiple antenna panels, and each antenna panel includes one or more beams.
  • the antenna panel can be expressed as an antenna array (antenna array) or an antenna subarray (antenna subarray).
  • An antenna panel may include one or more antenna arrays/sub-arrays.
  • An antenna panel can be controlled by one or more oscillators.
  • the radio frequency link can also be called a receiving channel and/or a sending channel, a receiver branch, and so on.
  • An antenna panel can be driven by one RF link or multiple RF links. Therefore, the antenna panel in this application can also be replaced with a radio frequency link or multiple radio frequency links driving an antenna panel or one or more radio frequency links controlled by a crystal oscillator.
  • Carrier component (CC) and carrier aggregation are identical to Carrier component (CC).
  • Carrier aggregation refers to the joint use of multiple CCs by terminal equipment, including continuous in-band, discontinuous in-band, and discontinuous in-band.
  • CA can increase the available bandwidth and obtain a better transmission rate.
  • the CA allows PDCCH and PDSCH to be in the same or different CCs, that is, cross-carrier scheduling is allowed.
  • CC, bandwidth part (bandwidth part, BWP), CC/BWP, CC and/or BWP are usually equivalently replaced because they all describe a section of frequency domain resources.
  • CC can also be equivalently replaced with a cell.
  • BWP represents a continuous frequency domain resource.
  • BWP can be understood as a continuous frequency band, the frequency band includes at least one continuous subband, and each bandwidth part can correspond to a set of system parameters (numerology). Different bandwidth parts can correspond to different system parameters.
  • Synchronous signal broadcast channel block (synchronous signal/PBCH block, SS/PBCH block):
  • the SS/PBCH block can also be called SSB.
  • PBCH is an abbreviation of physical broadcast channel.
  • the SSB includes at least one of a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS), and a PBCH. It is mainly used for cell search, cell synchronization, and signals carrying broadcast information.
  • Primary cell primary cell, PCell
  • PCell is a cell where CA terminal equipment resides, and CA terminal equipment corresponds to a physical uplink control channel (PUCCH) channel.
  • PUCCH physical uplink control channel
  • Secondary primary cell primary secondary Cell, PSCell
  • the PSCell is a special secondary cell on the secondary base station (secondary eNodeB, SeNB) that the master base station (master eNodeB, MeNB) configures to the DC UE through RRC connection signaling.
  • Secondary cell secondary cell, SCell
  • SCell refers to a cell configured to CA terminal equipment through RRC connection signaling. It works on SCC (secondary carrier) and can provide CA terminal equipment with more radio resources. SCell can have only downlink or both uplink and downlink
  • Downlink signal It can be a downlink data signal, such as: downlink control channel signal, downlink data channel signal; it can also be a downlink reference signal, such as: CSI-RS, tracking reference signal (tracking reference signal, TRS), demodulation Reference signal (demodulation reference signal, DMRS), corresponding tracking reference signal (corresponding tracking reference signal, PTRS), common reference signal (common reference signal, CRS).
  • CSI-RS tracking reference signal
  • TRS tracking reference signal
  • demodulation Reference signal demodulation reference signal
  • DMRS demodulation reference signal
  • PTRS tracking reference signal
  • common reference signal common reference signal
  • Uplink signal it can be an uplink data signal, such as an uplink control channel signal, an uplink data channel signal; it can also be an uplink reference signal, such as SSB, sounding reference signal (SRS), DMRS, PTRS.
  • uplink data signal such as an uplink control channel signal, an uplink data channel signal
  • uplink reference signal such as SSB, sounding reference signal (SRS), DMRS, PTRS.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal equipment in the embodiments of this application may refer to user equipment, access terminal equipment, user unit, user station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, user terminal equipment, terminal equipment, wireless communication equipment , User agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (PLMN) Terminal equipment, etc., this embodiment of the present application does not limit this.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the network device in the embodiment of the application may be a device used to communicate with a terminal device.
  • the network device may be a global system for mobile communications (GSM) system or code division multiple access (CDMA)
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base transceiver station (BTS) in the LTE system can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station (evoled) in the LTE system.
  • NodeB, NB base station
  • WCDMA wideband code division multiple access
  • evoled evolved base station
  • NodeB, eNB or eNodeB it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future
  • the network equipment in the 5G network or the network equipment in the PLMN network that will evolve in the future, one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or can also be a network node that constitutes a gNB or transmission point
  • a baseband unit (BBU), or a distributed unit (DU), etc. which are not limited in the embodiment of the present application.
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements part of the functions of gNB
  • DU implements part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), or the CU can be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a communication system of the present application.
  • the communication system in FIG. 1 may include at least one terminal device (for example, a terminal device 10, a terminal device 20, a terminal device 30, a terminal device 40, a terminal device 50, and a terminal device 60) and a network device 70.
  • the network device 70 is used to provide communication services for the terminal device and access the core network.
  • the terminal device can access the network by searching for synchronization signals, broadcast signals, etc. sent by the network device 70 to communicate with the network.
  • the terminal device 10, the terminal device 20, the terminal device 30, the terminal device 40, and the terminal device 60 in FIG. 1 can perform uplink and downlink transmissions with the network device 70.
  • the network device 70 can send downlink signals to the terminal device 10, the terminal device 20, the terminal device 30, the terminal device 40, and the terminal device 60, and can also receive the terminal device 10, the terminal device 20, the terminal device 30, the terminal device 40, and the terminal device. Uplink signal sent by device 60.
  • the terminal device 40, the terminal device 50, and the terminal device 60 can also be regarded as a communication system.
  • the terminal device 60 can send downlink signals to the terminal device 40 and the terminal device 50, and can also receive uplink signals sent by the terminal device 40 and the terminal device 50. signal.
  • embodiments of the present application may be applied to a communication system including one or more network devices, and may also be applied to a communication system including one or more terminal devices, which is not limited in this application.
  • a network device can send data or control signaling to one or more terminal devices. Multiple network devices can also simultaneously send data or control signaling to one or more terminal devices.
  • the time window between the terminal device and the network device can be determined with reference to whether the frequency band to which the secondary cell currently belongs is known, or combined with the frequency band to which the secondary cell currently belongs and whether there are other frequencies in the frequency band to which the secondary cell belongs. Determined by the activated cell.
  • the time window corresponding to different activation scenarios has different lengths of time (also called "activation delay"), so that the terminal device and the network device can transmit CSI within a reasonable activation delay, thereby ensuring the power consumption of the device Under the premise of overhead, the activation success rate of the cell is improved.
  • R15 supports two frequency ranges, low frequency (FR1) and high frequency (FR2).
  • FR1 low frequency
  • FR2 high frequency
  • the frequency range of FR1 is 450MHz-6000MHz, and the antenna array scale is small, and the output analog beam is wider.
  • the frequency range of FR2 is 24250MHz-52600MHz, and the antenna array is large in scale, and the output analog beam is narrow.
  • Network equipment uses different RF channels for FR1 and FR2.
  • Fig. 2 shows a schematic diagram of a method for determining a cell activation delay according to an embodiment of the present application.
  • execution subject of the embodiments of the present application may be a terminal device or a network device.
  • 201 Determine spatial filtering of a downlink signal of a cell to be activated of a terminal device and spatial filtering of a downlink signal of an activated cell of the terminal device.
  • the terminal device can determine the spatial filtering of the downlink signal of its own cell to be activated, and determine the spatial filtering of the downlink signal of its activated cell.
  • the network device may determine the spatial filtering of the downlink signal of the cell to be activated of a certain terminal device, and determine the spatial filtering of the downlink signal of the activated cell of the terminal device.
  • the downlink signal may be a downlink pilot signal or downlink data.
  • the downlink pilot signal may be at least one of SSB, CSI-RS, PTRS, TRS, DMRS or CRS.
  • the downlink data may be a physical downlink shared channel (PDSCH) or a broadcast channel (broadcast channel, PBCH).
  • PDSCH physical downlink shared channel
  • PBCH broadcast channel
  • the activated cell may be PCell, PSCell or SCell.
  • the activated cell can be understood as a cell that can currently provide services for terminal devices, or a cell that is connected to the terminal device in radio resource control (radio resource control, RRC), or a cell that can communicate with terminal devices .
  • RRC radio resource control
  • activated cell may also be referred to as “activated CC”, “serving cell”, “activated serving cell”, or “serving CC”, which is not limited in this application.
  • the terminal device may receive activation signaling, where the activation signaling is used to instruct the terminal device to activate the cell to be activated.
  • the cell to be activated is the cell that the network device wants to activate.
  • the network device sends the activation signaling.
  • the spatial filtering may be spatial transmission filtering and spatial reception filtering, or the spatial filtering may be spatial transmission filtering, or the spatial filtering may also be spatial reception filtering.
  • the operating frequency of the cell to be activated belongs to frequency band 1 or frequency band 2.
  • frequency band 1 is the aforementioned FR1
  • frequency band 2 is the aforementioned FR2.
  • the operating frequency of the cell to be activated in the embodiment of the present application may belong to FR1 or FR2.
  • the operating frequency of the cell to be activated may also belong to other frequency bands, which is not limited in this application.
  • the operating frequency of the activated cell belongs to frequency band 1 or frequency band 2.
  • the activated cell and the working frequency of the cell to be activated may belong to the same frequency band, or may belong to different frequency bands.
  • the operating frequency of the cell to be activated and the operating frequency of the activated cell may be in the same frequency band or in different frequency bands.
  • one frequency band may include one or more frequency bands.
  • the terminal device or the network device may determine the activation corresponding to the cell to be activated according to the same or different downlink spatial filtering of the downlink signal of the cell to be activated and the downlink spatial filtering of the downlink signal of the activated cell. Time delay.
  • the terminal device sends the CSI within the activation time delay
  • the network device receives the CSI within the activation time delay, and determines whether the cell to be activated is successfully activated according to whether the CSI is received.
  • the terminal equipment and network equipment in the embodiments of this application can determine a reasonable activation delay, so as to prevent the terminal equipment and network equipment from misjudging whether the secondary cell is successfully activated due to the activation delay being too long or too short, thereby ensuring that the equipment Under the premise of high power consumption and overhead, the activation success rate of the cell is improved.
  • the activation delay can be regarded as a period of time.
  • the terminal may regard the time when the activation signaling for activating the cell to be activated is received as the starting time of the activation delay.
  • the network device may regard the moment when the activation signaling for activating the cell to be activated is sent as the starting moment of the activation delay.
  • step 202 may specifically be at least one of the following: if the spatial filtering of the downlink signal of the cell to be activated and the spatial filtering of the downlink signal of the activated cell If the filtering is the same, the activation delay of the cell to be activated may be the first delay; if the spatial filtering of the downlink signal of the cell to be activated is different from the spatial filtering of the downlink signal of the activated cell, the activation delay of the cell to be activated It can be the second delay. Wherein, the first time delay and the second time delay are different.
  • step 202 may specifically be: the terminal device and the network device may also combine whether there is an activated cell of the terminal device in the frequency band to which the working frequency of the cell to be activated belongs, and the downlink signal of the cell to be activated. Whether the spatial filtering and the spatial filtering of the downlink signal of the activated cell are the same, determine the activation delay of the cell to be activated.
  • the activation delay for the UE to activate the cell to be activated needs to consider at least one of the following processing: cell detection, beam measurement, beam measurement result reporting, radio frequency channel parameter setting, adaptive gain control (AGC) adjustment, Downlink time-frequency domain synchronization, effective CSI measurement and reporting, etc.
  • AGC adaptive gain control
  • determining the activation delay of the cell to be activated may be at least one of the following:
  • the cell to be activated The activation delay is the first delay.
  • the UE may determine the serving beam of the cell to be activated, and/or cell frequency domain information, and/or cell timing synchronization information, and/or radio frequency channel parameter settings based on the measurement information of the activated cell.
  • the cell to be activated is activated The delay is the second delay.
  • the UE may determine the serving beam of the cell to be activated based on the measurement information of the activated cell.
  • the UE may determine the cell frequency domain information of the cell to be activated, and/or cell timing synchronization information, and/or radio frequency channel parameter settings based on the measurement information of the activated cell.
  • the cell to be activated is activated The delay is the fourth delay.
  • the first time delay, the second time delay, the third time delay and the fourth time delay may be partly different or all different. That is to say, the embodiment of the present application can divide the scene in more detail, so as to determine a more appropriate activation delay, and further improve the activation success rate of the cell while ensuring the power consumption of the device.
  • first delay in this embodiment of the application may be the same as or different from the “first delay” in other embodiments.
  • second delay in this embodiment of the application is different from the “first delay” in other embodiments.
  • the “two delays” can be the same or different, which is not limited in this application.
  • the spatial filtering of the downlink signal is the same as or different from the spatial filtering of the downlink signal of the cell to be activated.
  • the cell may be any one of the aforementioned at least one activated cell, or may not be any one of the at least one activated cell, which is not limited in this application.
  • N1, N2, N3, and N4 may be N1>N2>N3>N4.
  • N1, N2, N3, and N4 can also be N1 ⁇ N2 ⁇ N3 ⁇ N4, N1 ⁇ N4 ⁇ N3 ⁇ N2, N2 ⁇ N1 ⁇ N3 ⁇ N4, or other size relationships, etc., this application It is not enumerated one by one here, but the above-mentioned arbitrary ordering size relationship is within the protection scope of this application.
  • the value of a is 5 ms.
  • the T SMTC_SCell is the same frequency signal block measurement time configuration (SSB measurement timing configurations, SMTC) period configured by the cell to be activated, for example: 5 ms, 10 ms, 20 ms, or other integers. a can also take 3, 4, 6, 7 or other integers, which is not limited in this application.
  • SSB measurement timing configurations SMTC
  • the spatial filtering can be spatial transmission filtering or spatial reception filtering, that is, all "spatial filtering" in the embodiments of the present application can be replaced with “spatial transmission filtering", or all “spatial filtering” can be replaced with “spatial filtering”. Receive filtering”.
  • step 202 may specifically be at least one of the following:
  • the spatial transmission filtering of the downlink signal of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the activated cell, and the spatial reception filtering of the downlink signal of the cell to be activated is the same as the spatial reception filtering of the downlink signal of the activated cell In the same situation, determine that the activation delay of the cell to be activated is the first delay;
  • the spatial transmission filtering of the downlink signal of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the activated cell, and the spatial reception filtering of the downlink signal of the cell to be activated is the same as the spatial reception filtering of the downlink signal of the activated cell Under different circumstances, determine that the activation delay of the cell to be activated is the second delay;
  • the spatial transmission filtering of the downlink signal of the cell to be activated is different from the spatial transmission filtering of the downlink signal of the activated cell, and the spatial reception filtering of the downlink signal of the cell to be activated is the same as the spatial reception filtering of the downlink signal of the activated cell In the same situation, determine that the activation delay of the cell to be activated is the third delay;
  • the spatial transmission filtering of the downlink signal of the cell to be activated is different from the spatial transmission filtering of the downlink signal of the activated cell
  • the spatial reception filtering of the downlink signal of the cell to be activated is different from the spatial reception filtering of the downlink signal of the activated cell
  • the terminal device or the network device may be based on whether the spatial transmission filtering of the downlink signal of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the cell to be activated, and the spatial reception filtering of the downlink signal of the cell to be activated is the same as that of the cell to be activated. Whether the spatial reception filtering of the downlink signal of the activated cell is the same, respectively determine the activation delay of the cell to be activated.
  • the first time delay, the second time delay, the third time delay, and the fourth time delay may be partially or completely different.
  • first delay in this embodiment of the application may be the same as or different from the “first delay” in other embodiments.
  • second delay in this embodiment of the application is different from the “first delay” in other embodiments.
  • the second time delay may be the same or different.
  • third time delay in this embodiment of the application may be the same as or different from the “third time delay” in other embodiments.
  • It can be the same as or different from the "fourth time delay” in other embodiments, which is not limited in this application.
  • step 202 may specifically be: the terminal device or network device may also send filtering and filtering according to the downlink space of the downlink signal of the cell to be activated. Whether the downlink space transmission filtering of the downlink signal of the activated cell is the same, whether the downlink space reception filtering of the downlink signal of the cell to be activated and the downlink space reception filtering of the downlink signal of the activated cell are the same, and whether the cell to be activated belongs to Whether there is an activated cell of the terminal device in the frequency band of, determine the activation delay of the cell to be activated.
  • determining the activation delay of the cell to be activated may be at least one of the following:
  • the downlink space transmission filtering of the downlink signal of the cell to be activated is the same as the downlink space transmission filtering of the downlink signal of the activated cell
  • the downlink space reception filtering of the downlink signal of the cell to be activated and the downlink signal of the activated cell are When the spatial reception filtering is the same, and the activated cell of the terminal device exists in the frequency band to which the cell to be activated belongs, it is determined that the activation delay of the cell to be activated is the first delay.
  • the downlink space transmission filter of the downlink signal of the cell to be activated is different from the downlink space transmission filter of the downlink signal of the activated cell, the downlink space reception filtering of the downlink signal of the cell to be activated is the same as the downlink signal of the activated cell.
  • the spatial reception filtering is the same, and the activated cell of the terminal device exists in the frequency band to which the cell to be activated belongs, it is determined that the activation delay of the cell to be activated is the second delay.
  • the downlink space transmission filtering of the downlink signal of the cell to be activated is the same as the downlink space transmission filtering of the downlink signal of the activated cell
  • the downlink space reception filtering of the downlink signal of the cell to be activated and the downlink signal of the activated cell are When the spatial reception filtering is different, and the activated cell of the terminal device exists in the frequency band to which the cell to be activated belongs, it is determined that the activation delay of the cell to be activated is the third delay.
  • the downlink space transmission filter of the downlink signal of the cell to be activated is different from the downlink space transmission filter of the downlink signal of the activated cell, the downlink space reception filtering of the downlink signal of the cell to be activated is the same as the downlink signal of the activated cell.
  • the spatial reception filtering is different, and the activated cell of the terminal device exists in the frequency band to which the cell to be activated belongs, it is determined that the activation delay of the cell to be activated is the fourth delay.
  • the downlink space transmission filtering of the downlink signal of the cell to be activated is the same as the downlink space transmission filtering of the downlink signal of the activated cell, the downlink space reception filtering of the downlink signal of the cell to be activated and the downlink signal of the activated cell are In the case where the spatial reception filtering is the same, and there is no activated cell of the terminal device in the frequency band to which the cell to be activated belongs, it is determined that the activation delay of the cell to be activated is the fifth delay.
  • the downlink space transmission filter of the downlink signal of the cell to be activated is different from the downlink space transmission filter of the downlink signal of the activated cell, the downlink space reception filtering of the downlink signal of the cell to be activated is the same as the downlink signal of the activated cell.
  • the spatial reception filtering is the same, and there is no activated cell of the terminal device in the frequency band to which the cell to be activated belongs, it is determined that the activation delay of the cell to be activated is the sixth delay.
  • the downlink space transmission filtering of the downlink signal of the cell to be activated is the same as the downlink space transmission filtering of the downlink signal of the activated cell, the downlink space reception filtering of the downlink signal of the cell to be activated and the downlink signal of the activated cell are In the case where the spatial reception filtering is different, and there is no activated cell of the terminal device in the frequency band to which the cell to be activated belongs, it is determined that the activation delay of the cell to be activated is the seventh delay.
  • the downlink space transmission filter of the downlink signal of the cell to be activated is different from the downlink space transmission filter of the downlink signal of the activated cell, the downlink space reception filtering of the downlink signal of the cell to be activated is the same as the downlink signal of the activated cell.
  • the spatial reception filtering is different, and there is no activated cell of the terminal device in the frequency band to which the cell to be activated belongs, it is determined that the activation delay of the cell to be activated is the eighth delay.
  • the first delay, the second delay, the third delay, the fourth delay, the fifth delay, the sixth delay, the seventh delay, and the eighth delay can be partially different or all different.
  • first delay in this embodiment of the application may be the same as or different from the “first delay” in other embodiments.
  • the “second delay” in this embodiment of the application is different from the “first delay” in other embodiments.
  • the second time delay may be the same or different.
  • the “third time delay” in this embodiment of the application may be the same as or different from the “third time delay” in other embodiments.
  • “It can be the same as or different from the "fourth delay” in other embodiments.
  • the "fifth delay” in this embodiment of this application can be the same as or different from the “fifth delay” in other embodiments.
  • the “sixth delay” in this example may be the same as or different from the “sixth delay” in other embodiments.
  • the “seventh delay” in this embodiment of the application may be the same as the “seventh delay” in other embodiments. , It can also be different.
  • the “eighth delay” in this embodiment of the present application and the “eighth delay” in other embodiments may be the same or different, which is not limited in this application.
  • N1, N2, N3, N4, N5, N6, N7, and N8 may specifically be N1>N2>N3>N4>N5>N6>N7>N8.
  • N1, N2, N3, N4, N5, N6, N7, and N8 can also be N1 ⁇ N2 ⁇ N3 ⁇ N4 ⁇ N5 ⁇ N6 ⁇ N7 ⁇ N8, N1 ⁇ N8 ⁇ N4 ⁇ N5 ⁇ N3 ⁇ N7 ⁇ N2 ⁇ N6, N2 ⁇ N1 ⁇ N3 ⁇ N4 ⁇ N6 ⁇ N7 ⁇ N5 ⁇ N8, or other size relationships, etc., this application will not list them all here, but the size relationships in any order above are all in this Within the scope of application for protection.
  • the value of a is 5 ms.
  • T SMTC_SCell is the SMTC period configured for the cell to be activated. a can also take 3, 4, 6, 7 or other integers, which is not limited in this application.
  • condition for determining the activation delay of the cell to be activated can be regarded as a scenario. That is, in this embodiment of the present application, different scenarios correspond to different activation delays.
  • the terminal device or network device can determine the spatial transmission filtering of the downlink signal of the cell to be activated and the activated cell according to whether the working frequency of the cell to be activated and the activated cell belong to the same frequency band or the same frequency band. Whether the spatial transmission filtering of the downlink signal is the same.
  • the spatial transmission filtering of the downlink signal of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the activated cell. If the cell to be activated and the activated cell do not belong to the same frequency band or the same frequency band, the spatial filtering of the downlink signal of the cell to be activated is different from the spatial filtering of the downlink signal of the activated cell. In this way, the terminal device or the network device can further determine the corresponding activation delay, that is, the terminal device or the network device can transmit the channel state information within the appropriate activation delay, thereby increasing the power consumption of the device while ensuring The activation success rate of the cell.
  • the terminal device or network device may determine whether the spatial transmission filtering of the downlink signal of the cell to be activated and the spatial transmission filtering of the downlink signal of the activated cell according to whether the cell to be activated and the activated cell share a radio frequency channel the same.
  • the spatial transmission filtering of the downlink signal of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the activated cell. If the radio frequency channels of the cell to be activated and the cell to be activated are not shared, that is, the radio frequency channels are independent of each other, the spatial transmission filtering of the downlink signal of the cell to be activated is different from the spatial transmission filtering of the downlink signal of the activated cell.
  • the terminal device or the network device can further determine the corresponding activation delay, that is, the terminal device or the network device can transmit the channel state information within the appropriate activation delay, thereby increasing the power consumption of the device while ensuring The activation success rate of the cell.
  • the terminal device or network device may determine the downlink signal of the cell to be activated according to whether the frequency interval between the working frequency of the cell to be activated and the working frequency of the activated cell is greater than or equal to a preset threshold Whether the spatial transmission filtering of the activated cell is the same as the spatial transmission filtering of the downlink signal of the activated cell.
  • the spatial transmission filtering of the downlink signal of the cell to be activated and the activated cell is different. If the frequency interval between the working frequency point of the cell to be activated and the working frequency point of the cell to be activated is less than the preset threshold, the spatial transmission filtering of the cell to be activated and the spatial transmission of the downlink signal of the activated cell The filtering is the same.
  • the terminal device or the network device can further determine the corresponding activation delay, that is, the terminal device or the network device can transmit the channel state information within the appropriate activation delay, thereby increasing the power consumption of the device while ensuring The activation success rate of the cell.
  • the preset threshold may be configured by the network device, may also be pre-appointed by the network device and the terminal device, or may be stipulated by the protocol.
  • the above method for determining whether the airspace transmission filtering of the cell to be activated and the airspace transmission filtering of the downlink signal of the activated cell are the same may be specified by the protocol, or may be determined by the network equipment and configured for the terminal equipment. , It can also be determined by the terminal device and reported to the network device, which is not limited in this application.
  • the terminal device or the network device may also combine whether the working frequency points of the cell to be activated and the activated cell belong to the same frequency band (or the same frequency band), whether the cell to be activated and the activated cell share a radio frequency channel, and Whether the frequency interval between the working frequency point of the cell to be activated and the working frequency point of the activated cell is greater than or equal to at least two of the preset thresholds to determine the spatial transmission filtering of the downlink signal of the cell to be activated and the Whether the spatial transmission filtering of the downlink signal of the activated cell is the same.
  • the terminal device or the network device determines that the foregoing two or three items are satisfied, it is determined that the spatial transmission filtering of the downlink signal of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the activated cell. Or when the terminal device or the network device determines that any of the foregoing is not satisfied, it is determined that the spatial transmission filtering of the downlink signal of the cell to be activated is different from the spatial transmission filtering of the downlink signal of the activated cell. Or there are other combinations, which are all within the protection scope of this application.
  • the terminal device may determine whether the spatial transmission filtering of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the activated cell, and report the determination result to the network device.
  • the reporting method may be direct reporting, that is, the reported information includes the attributes of the spatial transmission filtering of the cell to be activated and the spatial transmission filtering of the downlink signal of the activated cell.
  • the reporting method is indirect reporting, that is, the reported information may include the aforementioned conditions for determining the activation delay, so that the network device determines the activation delay of the cell to be activated according to the activation delay condition and the activation delay determined by the terminal device Consistent.
  • the attributes of the spatial transmission filtering of the cell to be activated and the spatial transmission filtering of the downlink signal of the activated cell may be represented by the value of at least one bit.
  • the first value (for example, "0") of the at least one bit indicates that the spatial transmission filtering of the cell to be activated is the same as the spatial transmission filtering of all activated cells of the terminal device;
  • the second value of the at least one bit is A value (for example, "1") indicates that the airspace transmission filter of the cell to be activated is the same as the airspace transmission filter of at least one activated cell of the terminal device;
  • the third value (for example, "2") of the at least one bit indicates the The spatial transmission filtering of the cell to be activated is the same as the spatial transmission filtering of the at least one activated cell of the terminal device, and the frequency band to which the cell to be activated belongs is the same as the frequency band to which the at least one activated cell belongs.
  • the reported information includes activation scenarios, and the activation scenarios respectively correspond to the conditions for determining the activation delay.
  • the network device can determine the activation delay conditions of the cell to be activated according to the activation scenario, and then determine the activation of the cell to be activated. Time delay. It should be understood that the activation scenario may be determined by the value of at least one bit.
  • the network device may also determine whether the spatial transmission filtering of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the activated cell, and send configuration information, and configure the terminal equipment to determine the cell to be activated in the same way. Whether the spatial transmission filtering is the same as the spatial transmission filtering of the downlink signal of the activated cell.
  • the configuration information may indicate the activation scenario, and may also indicate the conditions for determining the activation delay.
  • different values of at least one field in the configuration information may indicate different activation scenarios.
  • the terminal device can learn the current activation scene according to the configuration information.
  • the first value (for example, “0”) of at least one field in the configuration information indicates activation scenario 1
  • the second value (for example, “1”) of the at least one field indicates activation scenario 2.
  • the configuration information may indicate the attributes of downlink signal transmission filtering in the downlink space of each cell among all the cells of the terminal device.
  • the network device may also divide the cells with the same downlink signal spatial transmission filtering into the same group, and divide the cells with different downlink signal spatial transmission filtering into different groups.
  • the configuration information may configure a preset threshold.
  • the terminal device and the network device determine the frequency interval between the working frequency of the cell to be activated and the working frequency of the activated cell according to the preset threshold, and determine the activation delay of the cell to be activated.
  • configuration information can be carried in the activation signaling.
  • the terminal device or the network device may determine the same or different downlink spatial filtering of the downlink signal of the cell to be activated and the downlink spatial filtering of the downlink signal of the activated cell.
  • the activation delay corresponding to the cell to be activated the terminal device sends the CSI within the activation time delay, and the network device receives the CSI within the activation time delay, and determines whether the cell to be activated is successfully activated according to whether the CSI is received.
  • the terminal equipment and network equipment in the embodiments of this application can determine a reasonable activation delay, so as to prevent the terminal equipment and network equipment from misjudging whether the secondary cell is successfully activated due to the activation delay being too long or too short, thereby ensuring that the equipment Under the premise of high power consumption and overhead, the activation success rate of the cell is improved.
  • Fig. 3 shows a schematic diagram of a method for determining a cell activation delay according to another embodiment of the present application.
  • execution subject of the embodiments of the present application may be a terminal device or a network device.
  • the cell state may include at least one of whether the cell is known, synchronization information, whether the serving beam is known, the receiving beam capability of the terminal device, and whether the channel state information is known.
  • whether the serving beam is known that is, whether the beam used to serve the terminal device for communication is known.
  • Unknown cell may mean that the terminal device needs to perform cell detection.
  • Known cell may mean that the terminal device does not need to perform cell detection.
  • cell detection means that the terminal device needs to perform cell blind detection on time-frequency resources.
  • the synchronization information includes at least one of whether the operating frequency is known, whether the downlink timing is known, and whether the uplink timing is known.
  • the synchronization information may include whether the specific location of the operating frequency point of the cell to be activated is known.
  • the receiving beam capability of the terminal device may include at least one of whether the terminal device supports multi-beam scanning reception, whether it supports wide beam reception, and whether it supports SSB symbol-level cut beam reception.
  • the cell to be activated may belong to frequency band 1 or frequency band 2.
  • the cell to be activated in the embodiment of the present application may belong to FR1 or FR2.
  • the cell to be activated may also belong to other frequency bands, which is not limited in this application.
  • the terminal device may receive activation signaling, where the activation signaling is used to activate the cell to be activated.
  • the cell to be activated is the cell that the network device wants to activate.
  • the network device sends the activation signaling.
  • the terminal device or the network device may determine the corresponding activation delay according to the cell state of the cell to be activated. In other words, different cell states can correspond to different activation delays.
  • the terminal device sends CSI within the activation delay determined according to the cell state, and the network device receives the CSI within the activation delay and determines whether the CSI is received or not.
  • the CSI judges whether the cell to be activated is successfully activated.
  • the terminal equipment and network equipment can determine a reasonable activation delay, so as to prevent the terminal equipment and network equipment from misjudging whether the secondary cell is successfully activated due to the activation delay being too long or too short, thereby ensuring the power consumption of the device. Under the premise of improving the success rate of cell activation.
  • step 302 may specifically be at least one of the following:
  • the activation delay of the cell to be activated is the first delay.
  • the activation delay of the cell to be activated is the second delay.
  • the activation delay of the cell to be activated is the third delay.
  • the activation delay of the cell to be activated is the fourth delay.
  • the activation delay of the cell to be activated is the fifth delay.
  • the activation delay of the cell to be activated is the sixth delay.
  • N1, N2, N3, N4, N5, and N6 may be N1>N2>N3>N4>N5>N6.
  • N1, N2, N3, N4, N5 and N6 can also be N1 ⁇ N2 ⁇ N3 ⁇ N4 ⁇ N5 ⁇ N6, N1 ⁇ N6 ⁇ N4 ⁇ N5 ⁇ N3 ⁇ N2, N2 ⁇ N1 ⁇ N3 ⁇ N4 ⁇ N6 ⁇ N5, or other size relationships, etc., this application does not enumerate one by one, but the above-mentioned arbitrary order size relationships are all within the protection scope of this application.
  • the value of a is 5 ms.
  • T SMTC_SCell is the SMTC period configured for the cell to be activated. a can also take 3, 4, 6, 7 or other integers, which is not limited in this application.
  • the cell state and the activation delay may have a mapping relationship
  • the terminal device or the network device may determine the activation delay of the cell to be activated according to the mapping relationship.
  • mapping relationship may be specified by the protocol, may also be set by the network device and notified to the terminal device, or set by the terminal device and notified to the network device, which is not limited in this application.
  • the terminal device or the network device may determine whether the cell to be activated is a known cell and/or whether the serving beam is known based on whether the at least one activated cell and the cell to be activated belong to the same frequency band or the same frequency band.
  • the cell status of the cell to be activated is known to the cell, or the cell status of the cell to be activated is known to the serving beam , Or the cell status of the cell to be activated is known as the cell and the serving beam is known.
  • the cell status of the cell to be activated and all the activated cells of the terminal device do not belong to the same frequency band, or the same frequency band, the cell status of the cell to be activated is cell unknown, or the cell status of the cell to be activated is serving beam unknown, Or the cell status of the cell to be activated is unknown cell and unknown serving beam.
  • the at least one activated cell may be a part of activated cells or all activated cells of the terminal device.
  • the terminal device or the network device may determine whether the cell to be activated is a cell known and/or served according to whether the spatial filtering of the downlink signal of the at least one activated cell is the same as the spatial filtering of the downlink signal of the cell to be activated. Whether the beam is known.
  • the cell status of the cell to be activated is known by the cell, or the cell status of the cell to be activated
  • the cell status is known as the serving beam, or the cell status of the cell to be activated is known as the serving beam and the cell is known.
  • the cell status of the cell to be activated is cell unknown, or the cell status of the cell to be activated is serving The beam is unknown, or the cell status of the cell to be activated is cell unknown and the serving beam is unknown.
  • the spatial filtering is spatial transmission filtering and/or spatial reception filtering.
  • spatial filtering as spatial transmission filtering and spatial reception filtering
  • the spatial transmission filtering of the downlink signal of the activated cell is different from the spatial transmission filtering of the downlink signal of the cell to be activated, the spatial domain of the downlink signal of the activated cell
  • the receiving filtering is the same as the spatial filtering of the downlink signal of the cell to be activated, then the spatial filtering of the downlink signal of the activated cell is different from the spatial filtering of the downlink signal of the cell to be activated; if the spatial filtering of the downlink signal of the activated cell
  • the transmission filtering is the same as the spatial transmission filtering of the downlink signal of the cell to be activated.
  • the spatial reception filtering of the downlink signal of the activated cell is different from the spatial reception filtering of the downlink signal of the cell to be activated.
  • the spatial filtering is different from the spatial filtering of the downlink signal of the cell to be activated; if the spatial transmission filtering of the downlink signal of the activated cell is different from the spatial transmission filtering of the downlink signal of the cell to be activated, the spatial domain of the downlink signal of the activated cell
  • the receiving filtering is different from the spatial receiving filtering of the downlink signal of the cell to be activated, and the spatial filtering of the downlink signal of the activated cell is different from the spatial filtering of the downlink signal of the cell to be activated.
  • the terminal device determines whether the cell to be activated is known and/or serving beam Is it known?
  • the terminal device can determine whether the cell to be activated is known and/or the serving beam is known according to whether the measurement result of the cell to be activated has been reported within the preset time period of receiving the activation signaling.
  • the network device may determine whether the cell to be activated is known and/or the serving beam is known according to whether the measurement result sent by the terminal device is received within a preset time period after the activation signaling is sent.
  • the cell status of the cell to be activated is known to the cell, or the cell to be activated is known as the serving beam, or the cell to be activated is The cell is known and the serving beam is known; if the terminal device has not reported the measurement result of the cell to be activated, the cell status of the cell to be activated is cell unknown, or the cell to be activated is the serving beam is unknown, or the cell to be activated is unknown The cell is unknown and the serving beam is unknown.
  • the preset time period may be specified by the protocol, or may be set by the network device and notified to the terminal device, or may be set by the terminal device and notified to the network device, which is not limited in this application.
  • the embodiment of the present application may limit the measurement result as a valid measurement result, or not limit whether the measurement result is valid, which is not limited in the present application.
  • the measurement result can be SSB ID, CRI, L1-SINR, reference signal received power (RSRP), reference signal received quality (RSRQ), signal to interference and noise ratio (RSRP) signal to interference and noise ratio, SINR), at least one of CQI, RI, and PMI.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • RSRP signal to interference and noise ratio
  • SINR signal to interference and noise ratio
  • the determination of the cell state may be stipulated by the protocol, or may be set by the network device and notified to the terminal device, or may be set by the terminal device and notified to the network device.
  • the terminal device may determine the cell state of the cell to be activated, and report the cell state to the network device.
  • the reporting method may be direct reporting, that is, the reported information includes the cell status.
  • the reporting method is indirect reporting, that is, the reported information may include the above activation scenario, so that the network device determines the cell status of the cell to be activated according to the activation scenario, and then determines the activation delay of the cell to be activated, thereby realizing the network device determination
  • the activation delay method is consistent with the terminal device determining the activation delay method.
  • the reported information includes at least one bit, and the first value (for example, "0") of the at least one bit indicates that the cell status of the cell to be activated is an unknown cell; the second value of the at least one bit ( For example, "1") indicates that the cell state of the cell to be activated is a known cell and the serving beam is unknown; the third value of the at least one bit (for example, "2") indicates that the cell state of the cell to be activated is a known cell And the service Boai Tree is known.
  • the reported information includes activation scenarios, which respectively correspond to cell states.
  • the network device can determine the cell state of the cell to be activated according to the activation scenario, and then determine the activation delay of the cell to be activated. It should be understood that the activation scenario may be determined by the value of at least one bit.
  • the network device may also determine the cell state of the cell to be activated, and send configuration information, and configure the terminal device to determine the cell state of the cell to be activated in the same manner.
  • the configuration information may indicate the activation scenario, and may also indicate the cell status.
  • configuration information can be carried in the activation signaling.
  • different values of at least one field in the configuration information may indicate different activation scenarios.
  • the terminal device can learn the current activation scene according to the configuration information.
  • the first value (for example, “0”) of at least one field in the configuration information indicates activation scenario 1
  • the second value (for example, “1”) of the at least one field indicates activation scenario 2.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices.
  • the methods and operations implemented by access network devices are also It can be implemented by components (such as chips or circuits) that can be used for access network equipment.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of using the corresponding functional modules to divide each functional module.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 4 is a schematic block diagram of an apparatus 400 for determining a cell activation delay according to an embodiment of the present application.
  • the apparatus 400 may correspond to the terminal device or the network device in the embodiment shown in FIG. 2, and may have any function of the terminal device or the network device in the method.
  • the device 400 includes a processing module 410 and a transceiver module 420.
  • the transceiver module may include a sending module and/or a receiving module.
  • the processing module 410 is configured to determine the spatial filtering of the downlink signal of the cell to be activated of the terminal device and the spatial filtering of the downlink signal of the activated cell of the terminal device;
  • the processing module 410 is configured to determine the activation delay of the cell to be activated according to whether the downlink spatial filtering of the downlink signal of the cell to be activated is the same as the downlink spatial filtering of the downlink signal of the activated cell.
  • the channel state information is transmitted through the transceiver module 420.
  • the spatial filtering is spatial transmission filtering and/or spatial reception filtering.
  • the processing module 410 is specifically used for at least one of the following: spatial filtering of the downlink signal of the cell to be activated and downlink of the activated cell
  • the spatial filtering of the signal is the same, the activation delay of the cell to be activated is determined as the first delay; when the spatial filtering of the downlink signal of the cell to be activated is different from the spatial filtering of the downlink signal of the activated cell Next, determine that the activation delay of the cell to be activated is the second delay.
  • the processing module 410 is specifically used for at least one of the following: spatial transmission filtering of the downlink signal of the cell to be activated and the filtering of the activated cell
  • the spatial transmission filtering of the downlink signal is the same, and the spatial reception filtering of the downlink signal of the cell to be activated is the same as the spatial reception filtering of the downlink signal of the activated cell, it is determined that the activation delay of the cell to be activated is the first time.
  • the spatial transmission filtering of the downlink signal of the cell to be activated is the same as the spatial transmission filtering of the downlink signal of the activated cell, and the spatial reception filtering of the downlink signal of the cell to be activated is the same as the spatial domain of the downlink signal of the activated cell In the case of different reception filtering, it is determined that the activation delay of the cell to be activated is the second delay; the spatial transmission filtering of the downlink signal of the cell to be activated is different from the spatial transmission filtering of the downlink signal of the activated cell, and the When the spatial reception filtering of the downlink signal of the cell to be activated is the same as the spatial reception filtering of the downlink signal of the activated cell, the activation delay of the cell to be activated is determined to be the third delay; the downlink signal of the cell to be activated When the spatial transmission filtering of the downlink signal of the activated cell is different from the spatial transmission filtering of the downlink signal of the activated cell, and the spatial reception filtering of the downlink signal
  • the processing module 410 is further configured to determine the spatial transmission filtering of the downlink signal of the cell to be activated and the downlink signal of the activated cell according to at least one of the following information. Whether the airspace transmission filtering of the signal is the same: whether the cell to be activated and the activated cell belong to the same frequency band, whether the cell to be activated and the activated cell share the radio frequency channel, the working frequency of the cell to be activated and the activated cell's Whether the frequency point interval between the working frequency points is greater than or equal to the preset threshold.
  • the operating frequency of the cell to be activated belongs to frequency band 1 or frequency band 2.
  • the operating frequency of the activated cell belongs to frequency band 1 or frequency band 2.
  • FIG. 5 shows a schematic structural diagram of an apparatus 500 for determining a cell activation delay provided by an embodiment of the present application.
  • the apparatus 500 may be the terminal device or the network device described in FIG. 2.
  • the device can adopt the hardware architecture shown in Figure 5.
  • the apparatus may include a processor 510 and a transceiver 530.
  • the transceiver may include a transmitter and/or a receiver.
  • the device may further include a memory 540, and the processor 510, the transceiver 530, and the memory 540 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 410 in FIG. 4 may be implemented by the processor 510, and the related functions implemented by the transceiver module 420 may be implemented by the processor 510 controlling the transceiver 530.
  • the processor 510 may be a CPU, a microprocessor, an ASIC, a dedicated processor, or one or more integrated circuits for executing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process the communication protocol and communication data
  • the central processor can be used to control the device (such as base station, terminal equipment, or chip) that determines the cell activation delay, execute software programs, and process software Program data.
  • the processor 510 may include one or more processors, for example, including one or more CPUs.
  • the processor may be a single-core CPU or a multi-core CPU.
  • the transceiver 530 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 540 includes but is not limited to RAM, ROM, EPROM, and a compact disc read-only memory (CD-ROM), and the memory 540 is used to store related instructions and data.
  • the memory 540 is used to store program codes and data of the terminal device, and may be a separate device or integrated in the processor 510.
  • the processor 510 is configured to control the transceiver to perform information transmission with the terminal device.
  • the processor 510 is configured to control the transceiver to perform information transmission with the terminal device.
  • the transceiver to perform information transmission with the terminal device.
  • the apparatus 500 may further include an output device and an input device.
  • the output device communicates with the processor 510 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 510 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 5 only shows the simplified design of the device for determining the cell activation delay.
  • the device can also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminal devices that can implement the application are protected by this application. Within range.
  • the device 500 may be a chip, for example, a communication chip that can be used in a terminal device or a network device, and is used to implement related functions of the processor 510 in the terminal device or the network device.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiments of the present application also provide a device, and the device may be a terminal device or a network device or a circuit.
  • the device can be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 6 shows a schematic block diagram of an apparatus 600 for determining a cell activation delay according to another embodiment of the present application.
  • the apparatus 600 may correspond to the network device or terminal device in the embodiment shown in FIG. 3, and may have any function of the network device or terminal device in the method.
  • the device 600 includes a processing module 610 and a transceiver module 620.
  • the processing module 610 is used to determine the cell state of the cell to be activated of the terminal device
  • the processing module 610 is further configured to determine the activation time delay of the cell to be activated according to the cell status of the cell to be activated, and the activation time delay is used to transmit channel state information through the transceiver module 620.
  • the cell state includes at least one of whether the cell is known, synchronization information, whether the serving beam is known, the receiving beam capability of the terminal device, and whether the channel state information is known.
  • the synchronization information includes at least one of whether the operating frequency is known, whether the downlink timing is known, and whether the uplink timing is known.
  • the receiving beam capability of the terminal device side includes at least one of support for multi-beam scanning reception, whether to support wide beam reception, and whether to support synchronization signal block SSB symbol-level cut beam reception.
  • the processing module 610 is specifically used for at least one of the following: in the case that the cell to be activated is cell unknown and the serving beam is unknown, determining that the activation delay of the cell to be activated is the first delay; When the activated cell is the cell unknown, the serving beam is unknown, and the terminal device supports multi-beam scanning reception, the activation delay of the cell to be activated is determined to be the second delay; the cell to be activated is the cell unknown, the serving beam is unknown, In the case that the terminal device supports wide beam reception, the activation delay of the cell to be activated is determined to be the third delay; in the case that the cell to be activated is a known cell and the serving beam is unknown, the activation of the cell to be activated is determined The time delay is the fourth time delay; when the cell to be activated is the cell known and the serving beam is known, the activation time delay of the cell to be activated is determined to be the fifth time delay; the cell to be activated is the cell known When the serving beam is known and the channel state
  • the processing module 610 is further configured to: in the case that the cell to be activated and at least one activated cell belong to the same frequency band, determine that the cell to be activated is a cell already activated.
  • the serving beam is known; or when the spatial filtering of the downlink signal of the cell to be activated is the same as the spatial filtering of the downlink signal of at least one activated cell, it is determined that the cell to be activated is known and/or The serving beam is known; or in the case of receiving valid measurement results of the cell to be activated within the preset time period before the activation signaling is transmitted, it is determined that the cell to be activated is the cell known and/or the serving beam is known; or In the case that the cell to be activated and all activated cells belong to different frequency bands, it is determined that the cell to be activated is cell unknown and/or service beam unknown.
  • FIG. 7 shows an apparatus 700 for determining a cell activation delay provided by another embodiment of the present application.
  • the apparatus 700 may be the terminal device or the network device described in FIG. 3.
  • the device can adopt the hardware architecture shown in FIG. 7.
  • the apparatus may include a processor 710 and a transceiver 730.
  • the transceiver may include a transmitter and/or a receiver.
  • the device may further include a memory 740, and the processor 710, the transceiver 730, and the memory 740 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 610 in FIG. 6 may be implemented by the processor 710, and the related functions implemented by the transceiver module 620 may be implemented by the processor 710 controlling the transceiver 730.
  • the processor 710 may be a CPU, a microprocessor, an ASIC, a dedicated processor, or one or more integrated circuits for executing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process the communication protocol and communication data
  • the central processor can be used to control the device (such as base station, terminal equipment, or chip) that determines the cell activation delay, execute software programs, and process software Program data.
  • the processor 710 may include one or more processors, for example, one or more CPUs.
  • the processor may be a single-core CPU or a multi-core CPU.
  • the transceiver 730 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 740 includes but is not limited to RAM, ROM, EPROM, and compact disc read-only memory (CD-ROM), and the memory 740 is used to store related instructions and data.
  • the memory 740 is used to store program codes and data of the terminal device, and may be a separate device or integrated in the processor 710.
  • the processor 710 is configured to control the transceiver to perform information transmission with the terminal device.
  • the processor 710 is configured to control the transceiver to perform information transmission with the terminal device.
  • the apparatus 700 may further include an output device and an input device.
  • the output device communicates with the processor 710 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 710 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 7 only shows the simplified design of the device for determining the cell activation delay.
  • the device can also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminal devices that can implement the application are protected by this application. Within range.
  • the apparatus 700 may be a chip, for example, a communication chip that can be used in a terminal device or a network device, and used to implement related functions of the processor 710 in the terminal device or the network device.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiments of the present application also provide a device, and the device may be a terminal device or a network device or a circuit.
  • the device can be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 8 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 8 only one memory and processor are shown in FIG. 8. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 810 and a processing unit 820.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 810 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 810 can be regarded as the sending unit, that is, the transceiver unit 810 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 810 is configured to perform sending and receiving operations on the terminal device side in the foregoing method embodiment
  • processing unit 820 is configured to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the processing unit 820 is configured to execute processing steps 201 and/or 202 on the terminal device side in FIG. 2 or execute processing steps 301 and/or 302 on the terminal device side in FIG. 3.
  • the transceiving unit 810 is used to perform the transceiving operations in FIG. 2 or FIG. 3.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the device shown in FIG. 9 can also be referred to.
  • the device can perform functions similar to the processor 810 in FIG. 8.
  • the device includes a processor 901, a data sending processor 903, and a data receiving processor 905.
  • the processing module in the foregoing embodiment may be the processor 901 in FIG. 9 and completes corresponding functions.
  • the transceiving module 420 or the transceiving module 620 in the foregoing embodiment may be the receiving data processor 905 or the sending data processor 903 in FIG. 9.
  • a channel encoder and a channel decoder are shown in FIG. 9, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • FIG. 10 shows another form of terminal equipment of this embodiment.
  • the processing device 1000 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1003 and an interface 1004.
  • the processor 1003 completes the function of the processing module 410 or the processing module 610
  • the interface 1004 completes the function of the aforementioned transceiver module 420 or the transceiver module 620.
  • the modulation subsystem includes a memory 1006, a processor 1003, and a program stored in the memory and capable of running on the processor. When the processor executes the program, the program described in the first to fifth embodiments is implemented. method.
  • the memory 1006 may be non-volatile or volatile, and its location may be located inside the modulation subsystem or in the processing device 1000, as long as the memory 1006 can be connected to the The processor 1003 is fine.
  • the device 1100 includes one or more radio frequency units, such as a remote radio unit (RRU) 1110 and one Or multiple baseband units (BBU) (also referred to as digital units, DU) 1120.
  • the RRU 1110 may be called a transceiver module, which corresponds to the above-mentioned receiving module and sending module.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1111 and Radio frequency unit 1112.
  • the RRU 1110 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 1110 part of the BBU is mainly used to perform baseband processing and control the base station.
  • the RRU 1110 and the BBU 1120 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1120 is the control center of the base station, and can also be called a processing module. It can correspond to the processing module 410 in FIG. 4 or the processing module 610 in FIG. 6, and is mainly used to complete baseband processing functions, such as channel coding. , Multiplexing, modulation, spread spectrum and so on.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the access network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1120 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) of a single access standard, or can support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1120 further includes a memory 1121 and a processor 1122.
  • the memory 1121 is used to store necessary instructions and data.
  • the processor 1122 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the access network device in the foregoing method embodiment.
  • the memory 1121 and the processor 1122 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the access network equipment is not limited to the above forms, and may also be in other forms: for example: including BBU and adaptive radio unit (ARU), or BBU and active antenna unit (AAU); also It can be customer premises equipment (CPE), or other forms, which are not limited in this application.
  • BBU and adaptive radio unit ARU
  • BBU and active antenna unit AAU
  • CPE customer premises equipment
  • a computer-readable storage medium is provided, and an instruction is stored thereon, and the method in the foregoing method embodiment is executed when the instruction is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method in the foregoing method embodiment is executed.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, PROM, EPROM, EEPROM or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory synchronous link DRAM, SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearance of "in one embodiment” or “in an embodiment” in various places throughout the specification does not necessarily refer to the same embodiment. In addition, these specific features, structures, or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that, in the various embodiments of the present application, the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application. The implementation process constitutes any limitation.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a and/or B can mean: A alone exists, and both A and B exist. , There are three cases of B alone. Among them, the presence of A or B alone does not limit the number of A or B. Taking the existence of A alone as an example, it can be understood as having one or more A.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种确定小区激活时延的方法和装置。该方法包括:终端设备或网络设备可以根据待激活小区的下行信号的下行空域滤波和已激活小区的下行信号的下行空域滤波相同或者不同,分别确定该待激活小区对应的激活时延。这样终端设备在该激活时延内发送CSI,网络设备在该激活时延内接收该CSI,并根据是否接收到该CSI判断该待激活小区是否激活成功。也就是说,本申请实施例中终端设备和网络设备能够确定合理的激活时延,避免由于激活时延太长或太短导致终端设备和网络设备误判辅小区是否成功激活,从而在保证设备功耗开销的前提下,提高小区激活成功率。

Description

确定小区激活时延的方法和装置
本申请要求于2019年5月31日提交中国专利局、申请号为201910473078.8、申请名称为“确定小区激活时延的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种确定小区激活时延的方法和装置。
背景技术
在新空口(new radio,NR)中,终端设备在开机后会在主小区(primary cell,PCell)进行初始接入。之后,网络设备可以通过配置信令或资源控制(radio resource control,RRC)配置携带辅小区(secondary cell,SCell)的配置参数,以为该终端设备添加SCell。
具体地,网络设备可以基于内部算法动态决策为用户配置SCell,并通过媒体访问控制(media access control,MAC)-控制元素(control element,CE)信令下发SCell激活信令给终端设备。终端设备根据该激活信令进行激活相应地SCell,之后在相应的时间窗内检测同步信号块(synchronization signal block,SSB)信号,实现SCell与终端设备的下行时频域同步。终端设备根据该SSB信号确定信道状态信息(channel state information,CSI),并确定是否向网络设备上报该CSI。网络设备若在该时间窗内收到该CSI,则认为终端设备成功完成该SCell的激活。网络设备若在该时间窗内未收到该CSI,则认为该SCell激活失败。
传统方案中,终端设备和网络设备之间的时间窗的时间长度(也可以称为“激活时延”)可以是固定的。但是,随着终端设备和网络设备对小区的激活成功率和功耗开销的要求越来越高,则如何设定激活时延的大小亟待解决。
发明内容
本申请提供一种确定小区激活时延的方法和装置,能够提高确定的激活时延的精度,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
第一方面,提供了一种确定小区激活时延的方法,该方法包括:确定终端设备的待激活小区的下行信号的空域滤波和该终端设备的已激活小区的下行信号的空域滤波;根据该待激活小区的下行信号的下行空域滤波和该已激活小区的下行信号的下行空域滤波是否相同,确定该待激活小区的激活时延,该激活时延内用于传输信道状态信息。
终端设备或网络设备可以根据待激活小区的下行信号的下行空域滤波和已激活小区的下行信号的下行空域滤波相同或者不同,分别确定该待激活小区对应的激活时延。这样终端设备在该激活时延内发送CSI,网络设备在该激活时延内接收该CSI,并根据是否接收到该CSI判断该待激活小区是否激活成功。也就是说,本申请实施例中终端设备和网络 设备能够确定合理的激活时延,避免由于激活时延太长或太短导致终端设备和网络设备误判辅小区是否成功激活,从而在保证设备的功耗开销的前提下,提高了小区的激活成功率。
在一种可能的实现方式中,该空域滤波为空域发送滤波和/或空域接收滤波。
该空域滤波可以是空域发送滤波和空域接收滤波,或者该空域滤波为空域发送滤波,或者该空域滤波还可以是空域接收滤波。本申请实施例中终端设备和网络设备能够更进一步确定合理的激活时延,从而更近一步在保证设备的功耗开销的前提下,提高小区的激活成功率。
在一种可能的实现方式中,在该空域滤波为空域发送滤波或空域接收滤波的情况下,该根据该待激活小区的下行信号的下行空域滤波和该已激活小区的下行信号的下行空域滤波是否相同,确定该待激活小区的激活时延包括以下至少一项:在该待激活小区的下行信号的空域滤波与该已激活小区的下行信号的空域滤波相同的情况下,确定该待激活小区的激活时延为第一时延;在该待激活小区的下行信号的空域滤波与该已激活小区的下行信号的空域滤波不相同的情况下,确定该待激活小区的激活时延为第二时延。
待激活小区的下行信号的下行空域发送滤波和已激活小区的下行信号的下行空域发送滤波相同或者不同确定的激活时延不同,或者待激活小区的下行信号的下行空域接收滤波和已激活小区的下行信号的下行空域接收滤波相同或者不同确定的激活时延不同。这样终端设备和网络设备能够更进一步确定合理的激活时延,从而更近一步提高在保证设备的功耗开销的前提下,提高小区的激活成功率。
在一种可能的实现方式中,在该空域滤波为空域发送滤波和空域接收滤波的情况下,该根据该待激活小区的下行信号的空域滤波与已激活小区的下行信号的空域滤波是否相同,确定该待激活小区的激活时延包括以下至少一项:在该待激活小区的下行信号的空域发送滤波与该已激活小区的下行信号的空域发送滤波相同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波相同的情况下,确定该待激活小区的激活时延为第一时延;在该待激活小区的下行信号的空域发送滤波与该已激活小区的下行信号的空域发送滤波相同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波不同的情况下,确定该待激活小区的激活时延为第二时延;在该待激活小区的下行信号的空域发送滤波与该已激活小区的下行信号的空域发送滤波不同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波相同的情况下,确定该待激活小区的激活时延为第三时延;在该待激活小区的下行信号的空域发送滤波与已激活小区的下行信号的空域发送滤波不同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波不同的情况下,确定该待激活小区的激活时延为第四时延。
终端设备或网络设备可以根据该待激活小区的下行信号的空域发送滤波与该待激活小区的下行信号的空域发送滤波是否相同,以及待激活小区的下行信号的空域接收滤波与该待激活小区的下行信号的空域接收滤波是否相同,分别确定该待激活小区的激活时延。这样终端设备和网络设备能够更进一步确定合理的激活时延,从而更近一步在保证设备的功耗开销的前提下,提高小区的激活成功率。
在一种可能的实现方式中,在确定该待激活小区的激活时延之前,该方法还包括:根据以下信息的至少一种确定该待激活小区的下行信号的空域发送滤波与该已激活小区的 下行信号的空域发送滤波是否相同:该待激活小区与该已激活小区是否属于同一频段、该待激活小区与该已激活小区是否共享射频通道、该待激活小区的工作频点与该已激活小区的工作频点之间的频点间隔是否大于或等于预设阈值。
终端设备或网络设备可以进一步确定出待激活小区对应的激活时延,即终端设备或网络设备能够在合适的激活时延内进行信道状态信息的传输,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
在一种可能的实现方式中,该待激活小区的工作频点属于频段1或频段2。
待激活小区的工作频点可以属于高频频段,也可以属于低频频段。也就是说,本申请实施例能够应用中更多的场景。
在一种可能的实现方式中,该已激活小区的工作频点属于频段1或频段2。
已激活小区的工作频点可以属于高频频段,也可以属于低频频段。也就是说,本申请实施例能够应用中更多的场景。
在一种可能的实现方式中,终端设备和网络设备还可以结合待激活小区的工作频点所属的频段内是否存在该终端设备的已激活小区,以及待激活小区的下行信号的空域滤波和已激活小区的下行信号的空域滤波是否相同,确定该待激活小区的激活时延。
终端设备或网络设备可以考虑空域发送滤波是否相同,以及待激活小区的工作频点所属的频段内是否存在已激活小区,这两个因素来确定待激活小区的激活时延;或者终端设备或网络设备可以考虑空域接收滤波是否相同,以及待激活小区的工作频点所属的频段内是否存在已激活小区,这两个因素来确定待激活小区的激活时延,从而更进一步在保证设备的功耗开销的前提下,提高小区的激活成功率。
在一种可能的实现方式中,终端设备或网络设备还可以根据该待激活小区的下行信号的下行空域发送滤波和该已激活小区的下行信号的下行空域发送滤波是否相同,该待激活小区的下行信号的下行空域接收滤波和该已激活小区的下行信号的下行空域接收滤波是否相同,以及结合该待激活小区所属的频段中是否存在该终端设备的已激活小区,确定该待激活小区的激活时延。
终端设备或网络设备可以考虑空域发送滤波是否相同,空域接收滤波是否相同,以及待激活小区的工作频点所属的频段内是否存在已激活小区,这三个因素来确定待激活小区的激活时延,从而更进一步在保证设备的功耗开销的前提下,提高小区的激活成功率。
第二方面,提供了一种确定小区激活时延的方法,该方法包括:确定终端设备的待激活小区的小区状态;根据该待激活小区的小区状态,确定该待激活小区的激活时延,该激活时延内用于传输信道状态信息。
终端设备或网络设备可以根据待激活小区的小区状态,确定对应的激活时延。也就是说,不同的小区状态可以对应不同的激活时延,这样终端设备在根据小区状态确定的激活时延内发送CSI,网络设备在该激活时延内接收该CSI,并根据是否接收到该CSI判断该待激活小区是否激活成功。本申请实施例中终端设备和网络设备能够确定合理的激活时延,避免由于激活时延太长或太短导致终端设备和网络设备误判辅小区是否成功激活,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
在一种可能的实现方式中,该小区状态包括小区是否已知、同步信息、服务波束是否已知、终端设备接收波束能力和信道状态信息是否已知中的至少一项。
服务波束是否已知,即用于服务该终端设备进行通信的波束是否已知。小区未知可以是指终端设备需要进行小区检测。小区已知可以是指终端设备不需要进行小区检测。其中,小区检测即为终端设备需要在时频资源上进行小区盲检。
在一种可能的实现方式中,该同步信息包括工作频点是否已知、下行定时是否已知和上行定时是否已知中的至少一项。
同步信息可以包括该待激活小区的工作频点的具体位置是否已知。
在一种可能的实现方式中,该终端设备侧接收波束能力包括支持多波束扫描接收、是否支持宽波束接收和是否支持同步信号块SSB符号级切波束接收中的至少一项。
在一种可能的实现方式中,该根据该待激活小区的小区状态,确定该待激活小区的激活时延包括以下至少一项:在该待激活小区是小区未知、服务波束未知的情况下,确定该待激活小区的激活时延为第一时延;在该待激活小区是小区未知、服务波束未知、该终端设备支持多波束扫描接收的情况下,确定该待激活小区的激活时延为第二时延;在该待激活小区是小区未知、服务波束未知、该终端设备支持宽波束接收的情况下,确定该待激活小区的激活时延为第三时延;在该待激活小区是小区已知、服务波束未知的情况下,确定该待激活小区的激活时延为第四时延;在该待激活小区是小区已知、服务波束已知的情况下,确定该待激活小区的激活时延为第五时延;在该待激活小区是小区已知、服务波束已知、信道状态信息未知的情况下,确定该待激活小区的激活时延为第六时延。
不同的小区状态可以分别对应不同的激活时延,这样终端设备或网络设备能够更准确的确定出激活时延的大小,从而更进一步在保证设备的功耗开销的前提下,提高小区的激活成功率。
在一种可能的实现方式中,在确定该待激活小区的激活时延之前,该方法还包括:在该待激活小区与至少一个已激活小区属于相同频段的情况下,确定该待激活小区为小区已知和/或服务波束已知;或在该待激活小区的下行信号的空域滤波与至少一个已激活小区的下行信号的空域滤波相同的情况下,确定该待激活小区为小区已知和/或服务波束已知;或在传输激活信令之前的预设时段内,收到过待激活小区的有效测量结果的情况下,确定该待激活小区为小区已知和/或服务波束已知;或在该待激活小区与所有已激活小区属于不同频段的情况下,确定该待激活小区为小区未知和/或服务波束未知。
通过上述方式可以确定待激活小区的具体的小区状态,从而有助于终端设备或网络设备更准确的确定待激活小区的激活时延,从而更进一步在保证设备的功耗开销的前提下,提高小区的激活成功率。
第三方面,提供了一种确定小区激活时延的装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置还可以是终端设备,或终端设备内的芯片。该装置具有实现上述第一方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块和处理模块。所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第一方面,及各 种可能的实现方式的通信方法。在本设计中,该装置可以为网络设备。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块。收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端设备内的芯片执行上述第一方面,以及任意可能的实现的通信方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第四方面,提供了一种确定小区激活时延的装置,该装置可以是终端设备,也可以是终端设备内的芯片。或者该装置为网络设备,或网络设备内的芯片。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块和处理模块。所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第二方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块。所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端设备内的芯片执行上述第二方面,以及任意可能的实现的通信方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,特定应用集成电路ASIC,或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第五方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面,及其任意可能的实现方式中的方法的指令。
第六方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面,及其任意可能的实现方式中的方法的指令。
第七方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面,或其任意可能的实现方式中的方法。
第八方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面,或其任意可能的实现方式中的方法。
第九方面,提供了一种通信系统,该通信系统包括上述第三方面所述的终端设备和上述第三方面所述的网络设备。
第十方面,提供了一种通信系统,该通信系统包括上述第四方面所述的终端设备和上述第四方面所述的网络设备。
基于上述技术方案,终端设备或网络设备可以根据待激活小区的下行信号的下行空域滤波和已激活小区的下行信号的下行空域滤波相同或者不同,分别确定该待激活小区对应的激活时延。这样终端设备在该激活时延内发送CSI,网络设备在该激活时延内接收该CSI,并根据是否接收到该CSI判断该待激活小区是否激活成功。也就是说,本申请实施例中终端设备和网络设备能够确定合理的激活时延,避免由于激活时延太长或太短导致终端设备和网络设备误判辅小区是否成功激活,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
附图说明
图1是本申请一个通信系统的示意图;
图2是本申请一个实施例的确定小区激活时延的方法的示意图;
图3是本申请另一个实施例的确定小区激活时延的方法的示意图;
图4是本申请一个实施例的确定小区激活时延的装置的示意性框图;
图5是本申请一个实施例的确定小区激活时延的装置的示意性结构图;
图6是本申请另一个实施例的确定小区激活时延的装置的示意性框图;
图7是本申请另一个实施例的确定小区激活时延的装置的示意性结构图;
图8是本申请一个具体实施例的确定小区激活时延的装置的示意性框图;
图9是本申请另一个具体实施例的确定小区激活时延的装置的示意图;
图10是本申请另一个具体实施例的确定小区激活时延的装置的示意图;
图11是本申请另一个具体实施例的确定小区激活时延的装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
下面将本申请涉及到的术语进行详细的介绍:
1、波束(beam):
波束是一种通信资源,不同的波束可以认为是不同的通信资源。不同的波束可以发送相同的信息,也可以发送不同的信息。波束可以对应时域资源、空间资源和频域资源中的至少一项。
可选地,具有相同或者类型的通信特征的多个波束可以视为一个波束,一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等。例如,发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布;接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
具体地,波束可以是宽波束,也可以是窄波束,还可以是其他类型的波束。形成波束的技术可以是波束成型技术也可以是其他技术手段,本申请对此不进行限定。其中,波束成型技术(beamforming)可以是通过在空间上朝向特定的方向来实现更高的天线阵列增 益。此外,波束可以分为网络设备的发送波束和接收波束,与终端设备的发送波束和接收波束。网络设备的发送波束用于描述网络设备接收侧波束赋形信息,网络设备的接收波束用于描述网络设备接收侧波束赋形信息。终端设备的发送波束用于描述终端设备发送侧波束赋形信息,终端设备的接收波束用于描述接收侧波束赋形信息。
更具体地,波束成型技术包括数字波束成型技术、模拟波束成型技术和混合数字模拟波束成型技术。其中,模拟波束成型技术可以通过射频实现,例如,一个射频链路(RF chain)通过移相器来调整相位,从而控制模拟波束方向的改变。因此,一个RF chain在同一时刻只能打出一个模拟波束。此外,基于模拟波束的通信,需要发送端和接收端的波束对齐,否则无法正常传输信号。
应理解,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
还应理解,波束还可以通过空间滤波器(spatial filter)或空间传输滤波器(spatial domain transmission filter)体现,换句话说,波束也可以称为“空间滤波器”,其中发射波束称为“空间发射滤波器”,接收波束称为“空间接收滤波器”或“下行空间滤波器”。网络设备的接收波束或终端设备的发送波束还可以称为“上行空间滤波器”,网络设备的发送波束或终端设备的接收波束还可以称为“下行空间滤波器”。最优的N个波束对(beam pair link,BPL)(一个BPL包括一个网络设备的发射波束和一个终端设备的接收波束,或者,一个BPL包括一个终端设备的发射波束和一个网络设备的接收波束)的选择。用于终端设备基于网络设备的波束扫描实现对网络设备的发射波束和/或终端设备的接收波束的选择,以及,网络设备基于终端设备的波束扫描实现对终端设备的发射波束和/或网络设备的接收波束的选择。
具体地,发射波束可以为基站发射波束,也可以为终端设备发射波束。当该发射波束为基站发射波束时,基站通过不同的发射波束向用户设备(user equipment,UE)发送参考信号,UE通过同一个接收波束来接收基站通过不同的发射波束发送的参考信号,并基于接收信号确定基站的最优发射波束,然后将基站的最优发射波束反馈给基站,以便于基站对发射波束进行更新。当该发射波束为终端设备发射波束时,UE通过不同的发射波束向基站发送参考信号,基站通过同一个接收波束来接收UE通过不同的发射波束发送的参考信号,并基于接收信号确定UE的最优发射波束,然后将UE的最优发射波束反馈给UE,以便于UE对发射波束进行更新。其中,上述通过不同的发射波束发送参考信号的过程可以称为波束扫描,基于接收信号确定最优发射波束的过程可以称为波束匹配。
接收波束可以为基站接收波束,也可以为终端设备接收波束。当该接收波束为基站接收波束时,UE通过同一个发射波束向基站发送参考信号,基站采用不同的接收波束接收UE发送的参考信号,然后基于接收信号确定基站的最优接收波束,以对基站的接收波束进行更新。当该接收波束为UE的接收波束时,基站通过同一个发射波束向UE发送参考信号,UE采用不同的接收波束接收基站发送的参考信号,然后基于接收信号确定UE的最优接收波束,以对UE的接收波束进行更新。
需要说明的是,对于下行波束的训练,网络设备会配置参考信号资源集合的类型用于波束训练,当为参考信号资源集合配置的重复参数为“on”时,终端设备假设该参考信号资源集合中的参考信号使用相同的下行空间滤波器传输,也即使用相同的发送波束传输;此时,一般情况下,终端设备会使用不同的接收波束接收上述参考信号资源集合中的参考信 号,训练出终端设备最好的接收波束,可选地,终端设备可以上报UE测量的最好的N个参考信号的信道质量。当为参考信号资源集合配置的重复参数为“off”时,终端设备不会假设该参考信号资源集合中的参考信号使用相同的下行空间滤波器传输,也即不假设网络设备使用相同的发送波束传输参考信号,此时终端设备通过测量该集合中参考信号的信道质量在该资源集合中选出最好的N个波束反馈给网络设备,一般情况下,此时,终端设备在此过程中使用相同的接收波束。
2、波束成型技术(beamforming):
波束成型技术可以通过在空间上朝向特定的方向来实现更高的天线阵列增益。模拟波束成型,可以通过射频实现。例如,一个射频链路(RF chain)通过移相器来调整相位,从而控制模拟波束方向的改变。因此,一个RF chain在同一时刻只能打出一个模拟波束。
3、波束管理资源:
指用于波束管理的资源,又可以体现为用于计算和测量波束质量的资源。波束质量包括层一接收参考信号功率(layer 1 reference signal received power,L1-RSRP),层一接收参考信号质量(layer 1 reference signal received quality,L1-RSRQ)等。具体的,波束管理资源可以包括同步信号,广播信道,下行信道测量参考信号,跟踪信号,下行控制信道解调参考信号,下行共享信道解调参考信号,上行探测参考信号,上行随机接入信号等。
4、波束指示信息:
用于指示传输所使用的波束,包括发送波束和/或接收波束。包括波束编号、波束管理资源编号,上行信号资源号,下行信号资源号、波束的绝对索引、波束的相对索引、波束的逻辑索引、波束对应的天线端口的索引、波束对应的天线端口组索引、波束对应的下行信号的索引、波束对应的下行同步信号块的时间索引、波束对连接(beam pair link,BPL)信息、波束对应的发送参数(Tx parameter)、波束对应的接收参数(Rx parameter)、波束对应的发送权重、波束对应的权重矩阵、波束对应的权重向量、波束对应的接收权重、波束对应的发送权重的索引、波束对应的权重矩阵的索引、波束对应的权重向量的索引、波束对应的接收权重的索引、波束对应的接收码本、波束对应的发送码本、波束对应的接收码本的索引、波束对应的发送码本的索引中的至少一种,下行信号包括同步信号、广播信道、广播信号解调信号、信道状态信息下行信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、终端设备专用参考信号(user equipment specific reference signal,US-RS)、下行控制信道解调参考信号,下行数据信道解调参考信号,下行相位噪声跟踪信号中任意一种。上行信号包括中上行随机接入序列,上行探测参考信号,上行控制信道解调参考信号,上行数据信道解调参考信号,上行相位噪声跟踪信号任意一种。可选的,网络设备还可以为频率资源组关联的波束中具有准同位(quasi-co-location,QCL)关系的波束分配QCL标示符。波束也可以称为空域传输滤波器,发射波束也可以称为空域发射滤波器,接收波束也可以称为空域接收滤波器。波束指示信息还可以体现为传输配置编号(transmission configuration index,TCI),TCI中可以包括多种参数,例如,小区编号,带宽部分编号,参考信号标识,同步信号块标识,QCL类型等。其中,准同位(quasi-co-location,QCL)的同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传 送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等。空域准同位(spatial QCL)可以认为是QCL的一种类型。对于spatial有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的,即spatial filter相同。从接收端来看,如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号,即关于接收参数QCL。
5、QCL:
同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(Angel-of-Arrival,AoA),平均到达角,AoA的扩展等。
6、空域准同位(spatial QCL):
spatial QCL可以认为是QCL的一种类型。对于spatial有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
7、准同位假设(QCL assumption):
是指假设两个端口之间是否具有QCL关系。准同位假设的配置和指示可以用来帮助接收端进行信号的接收和解调。例如接收端能确认A端口和B端口具有QCL关系,即可以将A端口上测得的信号的大尺度参数用于B端口上的信号测量和解调。
8、天线面板(panel):
无线通信的信号需要由天线进行接收和发送,多个天线单元(antenna element)可以集成在一个面板(panel)上。一个射频链路可以驱动一个或多个天线单元。在本申请实施例中,终端设备可以包括多个天线面板,每个天线面板包括一个或者多个波束。网络设备也可以包括多个天线面板,每个天线面板包括一个或者多个波束。天线面板又可表示为天线阵列(antenna array)或者天线子阵列(antenna subarray)。一个天线面板可以包括一个或多个天线阵列/子阵列。一个天线面板可以有一个或多个晶振(oscillator)控制。射频链路又可以称为接收通道和/或发送通道,接收机支路(receiver branch)等。一个天线面板可以由一个射频链路驱动,也可以由多个射频链路驱动。因此本申请中的天线面板也可以替换为射频链路或者驱动一个天线面板的多个射频链路或者由一个晶振控制的一个或多个射频链路。
9、载波分量(carrier component,CC)和载波聚合:
载波聚合(carrier aggregation,CA)指终端设备联合用多个CC,包括带内连续,带内不连续,带间不连续等。CA可以提高可用带宽,获得更好的传输速率。CA中允许PDCCH和PDSCH在同一个或者不同的CC中,即允许跨载波的调度。其中,CC,带宽部分(bandwidth part,BWP),CC/BWP,CC和/或BWP通常可等效替换,因为它们都描述的一段频域资源。CC也可以和小区(cell)等效替换。其中,BWP表示连续的一段频域资源,例如,BWP可以理解为一段连续的频带,该频带包含至少一个连续的子带,每个带宽部分可以对应一组系统参数(numerology)。不同带宽部分可以对应不同的系统参数。
10、同步信号广播信道块(synchronous signal/PBCH block,SS/PBCH block):
SS/PBCH block还可以称为SSB。其中,PBCH为物理广播信道(physical broadcast channel)的缩写。SSB包含主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和PBCH中的至少一个。主要用于小区搜索、小区同步、承载广播信息的信号。
11、主小区(primary cell,PCell):
PCell是CA的终端设备驻留的小区,CA的终端设备对应物理上行控制信道(physical uplink control channel,PUCCH)信道。
12、辅助主小区(primary secondary Cell,PSCell):
PSCell是主基站(master eNodeB,MeNB)通过RRC连接信令配置给DC UE的在辅基站(secondary eNodeB,SeNB)上的一个特殊辅小区。
13、辅小区(secondary cell,SCell):
SCell是指通过RRC连接信令配置给CA终端设备的小区,工作在SCC(辅载波)上,可以为CA终端设备提供更多的无线资源。SCell可以只有下行,也可以上下行同时存在
14、下行信号:可以是下行数据信号,例如:下行控制信信道信号、下行数据信道信号;也可以是下行参考信号,例如:CSI-RS、追踪参考信号(tracking reference signal,TRS)、解调参考信号(demodulation reference signal,DMRS)、相应跟踪参考信号(corresponding tracking reference signal,PTRS)、公共参考信号(common reference signal,CRS)。
15、上行信号:可以是上行数据信号,例如:上行控制信道信号、上行数据信道信号;也可以是上行参考信号,例如:SSB、探测参考信号(sounding reference signal,SRS)、DMRS、PTRS。
需要说明的是,随着技术的不断发展,本申请实施例的术语有可能发生变化,但都在本申请的保护范围之内。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备, 或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请一个通信系统的示意图。图1中的通信系统可以包括至少一个终端设备(例如终端设备10、终端设备20、终端设备30、终端设备40、终端设备50和终端设备60)和网络设备70。网络设备70用于为终端设备提供通信服务并接入核心网,终端设备可以通过搜索网络设备70发送的同步信号、广播信号等接入网络,从而进行与网络的通信。图1中的终端设备10、终端设备20、终端设备30、终端设备40和终端设备60可以与网络设备70进行上下行传输。例如,网络设备70可以向终端设备10、终端设备20、终端设备30、终端设备40和终端设备60发送下行信号,也可以接收终端设备10、终端设备20、终端设备30、终端设备40和终端设备60发送的上行信号。
此外,终端设备40、终端设备50和终端设备60也可以看作一个通信系统,终端设备60可以向终端设备40和终端设备50发送下行信号,也可以接收终端设备40和终端设备50发送的上行信号。
需要说明的是,本申请实施例可以应用于包括一个或多个网络设备的通信系统中,也可以应用于包括一个或多个终端设备的通信系统中,本申请对此不进行限定。
应理解,该通信系统中包括的网络设备可以是一个或多个。一个网络设备可以向一个或多个终端设备发送数据或控制信令。多个网络设备也可以同时向一个或多个终端设备发送数据或控制信令。
传统方案中,终端设备和网络设备之间的时间窗可以是参考辅小区当前所属的频段是否已知确定的,或者是结合辅小区当前所属的频段以及该辅小区所属的频段中是否还存在其他已激活的小区来确定的。不同的激活场景对应的时间窗的时间长度(也可以称为“激活时延”)不同,使得终端设备和网络设备之间能够在合理的激活时延内传输CSI,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
需要说明的是,R15支持低频(FR1)和高频(FR2)两个频率范围。其中,FR1的频率范围为450MHz-6000MHz,且天线阵列规模较小,输出的模拟波束较宽。FR2的频率范围为24250MHz-52600MHz,且天线阵列规模较大,输出的模拟波束较窄。网络设备针对FR1和FR2使用不同的射频通道。
图2示出了本申请一个实施例的确定小区激活时延的方法的示意图。
需要说明的是,本申请实施例的执行主体可以是终端设备,也可以是网络设备。
201,确定终端设备的待激活小区的下行信号的空域滤波和该终端设备的已激活小区的下行信号的空域滤波。
具体地,终端设备可以确定自己的待激活小区的下行信号的空域滤波,以及确定自己 的已激活小区的下行信号的空域滤波。或者网络设备可以确定某一个终端设备的待激活小区的下行信号的空域滤波,以及确定该终端设备的已激活小区的下行信号的空域滤波。
需要说明的是,该下行信号可以是下行导频信号,也可以是下行数据。其中,该下行导频信号可以是SSB、CSI-RS、PTRS、TRS、DMRS或CRS中的至少一项。下行数据可以是物理下行共享信道(physical downlink shared channel,PDSCH)或广播信道(broadcast channel,PBCH)。
还需要说明的是,该已激活小区可以是PCell、PSCell或SCell。
应理解,该已激活小区可以理解为当前能够为终端设备提供服务的小区,或者说与终端设备处于无线资源控制(radio resource control,RRC)连接的小区,或者说能够与终端设备进行通信的小区。
还应理解,该已激活小区还可以称为“已激活CC”,“服务小区”,“已激活服务小区”,或“服务CC”,本申请对此不进行限定。
可选地,在步骤201之前,终端设备可以接收激活信令,该激活信令用于指示终端设备激活该待激活小区。换句话说,该待激活小区为网络设备想要激活的小区。相应地,网络设备发送该激活信令。
可选地,该空域滤波可以是空域发送滤波和空域接收滤波,或者该空域滤波为空域发送滤波,或者该空域滤波还可以是空域接收滤波。
可选地,该待激活小区的工作频点属于频段1,或频段2。
具体地,频段1为前述FR1,频段2为前述FR2。也就是说,本申请实施例中的待激活小区的工作频点可以属于FR1,也可以属于FR2。
应理解,该待激活小区的工作频点还可以属于其他频段,本申请对此不进行限定。
可选地,该已激活小区的工作频点属于频段1或频段2。
具体地,该已激活小区可以与该待激活小区的工作频点属于同一个频段,也可以属于不同的频段。
可选地,该待激活小区的工作频点与已激活小区的工作频点可以是在同一频带内,也可以是在不同频带内。
应理解,一个频段内可以包括一个或多个频带。
202,根据该待激活小区的下行信号的下行空域滤波和该已激活小区的下行信号的下行空域滤波是否相同,确定该待激活小区的激活时延,该激活时延内用于传输信道状态信息。
具体地,本申请实施例中,终端设备或网络设备可以根据待激活小区的下行信号的下行空域滤波和已激活小区的下行信号的下行空域滤波相同或者不同,分别确定该待激活小区对应的激活时延。这样终端设备在该激活时延内发送CSI,网络设备在该激活时延内接收该CSI,并根据是否接收到该CSI判断该待激活小区是否激活成功。也就是说,本申请实施例中终端设备和网络设备能够确定合理的激活时延,避免由于激活时延太长或太短导致终端设备和网络设备误判辅小区是否成功激活,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
需要说明的是,该激活时延可以看作为一段时间。终端可以将接收到激活该待激活小区的激活信令的时刻看作该激活时延的起始时刻。网络设备可以将发送激活该待激活小区 的激活信令的时刻看作该激活时延的起始时刻。
在一个实施例中,在空域滤波为空域发送滤波或空域接收滤波的情况下,步骤202具体可以是以下至少一项:若待激活小区的下行信号的空域滤波和已激活小区的下行信号的空域滤波相同,则该待激活小区的激活时延可以是第一时延;若待激活小区的下行信号的空域滤波和已激活小区的下行信号的空域滤波不同,则该待激活小区的激活时延可以是第二时延。其中,该第一时延和该第二时延不同。
在另一个实施例中,步骤202具体可以是:终端设备和网络设备还可以结合待激活小区的工作频点所属的频段内是否存在该终端设备的已激活小区,以及待激活小区的下行信号的空域滤波和已激活小区的下行信号的空域滤波是否相同,确定该待激活小区的激活时延。
具体地,UE激活待激活小区的激活时延需要考虑至少以下一项的处理:小区检测、波束测量、波束测量结果上报、射频通道参数设置、自适应增益控制(automatic gain control,AGC)调整、下行时频域同步、有效CSI测量和上报等。
具体的,确定该待激活小区的激活时延可以是下述至少一项:
若该待激活小区的下行信号的空域滤波和该已激活小区的下行信号的空域滤波相同,且该待激活小区所属的频段内存在该终端设备的至少一个已激活小区,则该待激活小区的激活时延为第一时延。针对该情况,UE可基于该已激活小区的测量信息确定待激活小区的服务波束、和/或小区频域信息、和/或小区定时同步信息、和/或射频通道参数设置。
若该待激活小区的下行信号的空域滤波和该已激活小区的下行信号的空域滤波相同,且该待激活小区所属的频段内不存在该终端设备的已激活小区,则该待激活小区的激活时延为第二时延。针对该情况,UE可基于该已激活小区的测量信息确定待激活小区的服务波束。
若该待激活小区的下行信号的空域滤波和该已激活小区的下行信号的空域滤波不同,且该二待激活小区所属的频段内存在该终端设备的至少一个已激活小区,则该待激活小区的激活时延为第三时延。针对该情况,UE可基于该已激活小区的测量信息确定待激活小区的小区频域信息、和/或小区定时同步信息、和/或射频通道参数设置。
若该待激活小区的下行信号的空域滤波和该已激活小区的下行信号的空域滤波不同,且该待激活小区所属的频段内不存在该终端设备的已激活小区,则该待激活小区的激活时延为第四时延。
其中,该第一时延、该第二时延、该第三时延和该第四时延可以部分不相同或全部不相同。也就是说,本申请实施例能够将场景划分的更加详细,从而能够确定出更加合适的激活时延,更进一步在保证设备的功耗开销的前提下,提高小区的激活成功率。
应理解,本申请实施例的“第一时延”与其他实施例的“第一时延”可以相同,也可以不同,本申请实施例的“第二时延”与其他实施例的“第二时延”可以相同,也可以不同,本申请对此不进行限定。
需要说明的是,在该待激活小区所属的频段内存在该终端设备的至少一个已激活小区的情况下,下行信号的空域滤波与该待激活小区的下行信号的空域滤波相同或不同的已激活小区可以是前述至少一个已激活小区中的任意一个小区,也可以不是该至少一个已激活小区中的任意一个小区,本申请对此不进行限定。
例如,该第一时延为T1=[N1*T SMTC_SCell+a],第二时延为T2=[N2*T SMTC_SCell+a],第三时延为T3=[N3*T SMTC_SCell+a],第四时延为T4=[N4*T SMTC_SCell+a]。其中,N1≠N2≠N3≠N4。
可选地,N1、N2、N3和N4的关系可以是N1>N2>N3>N4。
需要说明的是,N1、N2、N3和N4的关系还可以是N1<N2<N3<N4,N1<N4<N3<N2,N2<N1<N3<N4,或者其他的大小关系等,本申请在此不进行一一列举,但上述任意排序的大小关系都在本申请保护的范围内。
可选地,a的取值为5ms。可选的,N1=1,N2=7,N3=9,N4=25。
应理解,该T SMTC_SCell为该待激活小区配置的同频信号块测量时间配置(SSB measurement timing configurations,SMTC)周期,例如:5ms,10ms,20ms,或其他整数。a还可以取3,4,6,7或其他整数,本申请对此不进行限定。
需要说明的是,空域滤波可以为空域发送滤波或空域接收滤波,即可以将本申请实施例中的所有“空域滤波”替换为“空域发送滤波”,或者将所有“空域滤波”替换为“空域接收滤波”。
在一个实施例中,在空域滤波为空域发送滤波和空域接收滤波的情况下,步骤202具体可以是下述至少一项:
在该待激活小区的下行信号的空域发送滤波与该已激活小区的下行信号的空域发送滤波相同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波相同的情况下,确定该待激活小区的激活时延为第一时延;
在该待激活小区的下行信号的空域发送滤波与该已激活小区的下行信号的空域发送滤波相同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波不同的情况下,确定该待激活小区的激活时延为第二时延;
在该待激活小区的下行信号的空域发送滤波与该已激活小区的下行信号的空域发送滤波不同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波相同的情况下,确定该待激活小区的激活时延为第三时延;
在该待激活小区的下行信号的空域发送滤波与已激活小区的下行信号的空域发送滤波不同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波不同的情况下,确定该待激活小区的激活时延为第四时延。
具体地,终端设备或网络设备可以根据该待激活小区的下行信号的空域发送滤波与该待激活小区的下行信号的空域发送滤波是否相同,以及待激活小区的下行信号的空域接收滤波与该待激活小区的下行信号的空域接收滤波是否相同,分别确定该待激活小区的激活时延。该第一时延、第二时延、第三时延和第四时延可以部分不相同或全部不相同。
应理解,本申请实施例的“第一时延”与其他实施例的“第一时延”可以相同,也可以不同,本申请实施例的“第二时延”与其他实施例的“第二时延”可以相同,也可以不同,本申请实施例的“第三时延”与其他实施例的“第三时延”可以相同,也可以不同,本申请实施例的“第四时延”与其他实施例的“第四时延”可以相同,也可以不同,本申请对此不进行限定。
在另一个实施例中,该下行空域滤波为下行空域发送滤波和下行空域接收滤波,则步骤202具体可以是:终端设备或网络设备还可以根据该待激活小区的下行信号的下行空域 发送滤波和该已激活小区的下行信号的下行空域发送滤波是否相同,该待激活小区的下行信号的下行空域接收滤波和该已激活小区的下行信号的下行空域接收滤波是否相同,以及结合该待激活小区所属的频段中是否存在该终端设备的已激活小区,确定该待激活小区的激活时延。
具体地,确定该待激活小区的激活时延可以是下述至少一项:
若该待激活小区的下行信号的下行空域发送滤波和该已激活小区的下行信号的下行空域发送滤波相同,该待激活小区的下行信号的下行空域接收滤波和该已激活小区的下行信号的下行空域接收滤波相同,且该待激活小区所属的频段中存在该终端设备的已激活小区的情况下,确定该待激活小区的激活时延为第一时延。
若该待激活小区的下行信号的下行空域发送滤波和该已激活小区的下行信号的下行空域发送滤波不同,该待激活小区的下行信号的下行空域接收滤波和该已激活小区的下行信号的下行空域接收滤波相同,且该待激活小区所属的频段中存在该终端设备的已激活小区的情况下,确定该待激活小区的激活时延为第二时延。
若该待激活小区的下行信号的下行空域发送滤波和该已激活小区的下行信号的下行空域发送滤波相同,该待激活小区的下行信号的下行空域接收滤波和该已激活小区的下行信号的下行空域接收滤波不同,且该待激活小区所属的频段中存在该终端设备的已激活小区的情况下,确定该待激活小区的激活时延为第三时延。
若该待激活小区的下行信号的下行空域发送滤波和该已激活小区的下行信号的下行空域发送滤波不同,该待激活小区的下行信号的下行空域接收滤波和该已激活小区的下行信号的下行空域接收滤波不同,且该待激活小区所属的频段中存在该终端设备的已激活小区的情况下,确定该待激活小区的激活时延为第四时延。
若该待激活小区的下行信号的下行空域发送滤波和该已激活小区的下行信号的下行空域发送滤波相同,该待激活小区的下行信号的下行空域接收滤波和该已激活小区的下行信号的下行空域接收滤波相同,且该待激活小区所属的频段中不存在该终端设备的已激活小区的情况下,确定该待激活小区的激活时延为第五时延。
若该待激活小区的下行信号的下行空域发送滤波和该已激活小区的下行信号的下行空域发送滤波不同,该待激活小区的下行信号的下行空域接收滤波和该已激活小区的下行信号的下行空域接收滤波相同,且该待激活小区所属的频段中不存在该终端设备的已激活小区的情况下,确定该待激活小区的激活时延为第六时延。
若该待激活小区的下行信号的下行空域发送滤波和该已激活小区的下行信号的下行空域发送滤波相同,该待激活小区的下行信号的下行空域接收滤波和该已激活小区的下行信号的下行空域接收滤波不同,且该待激活小区所属的频段中不存在该终端设备的已激活小区的情况下,确定该待激活小区的激活时延为第七时延。
若该待激活小区的下行信号的下行空域发送滤波和该已激活小区的下行信号的下行空域发送滤波不同,该待激活小区的下行信号的下行空域接收滤波和该已激活小区的下行信号的下行空域接收滤波不同,且该待激活小区所属的频段中不存在该终端设备的已激活小区的情况下,确定该待激活小区的激活时延为第八时延。
可选地,该第一时延、该第二时延、该第三时延、该第四时延、该第五时延、该第六时延、该第七时延和该第八时延可以部分不相同或全部不相同。
应理解,本申请实施例的“第一时延”与其他实施例的“第一时延”可以相同,也可以不同,本申请实施例的“第二时延”与其他实施例的“第二时延”可以相同,也可以不同,本申请实施例的“第三时延”与其他实施例的“第三时延”可以相同,也可以不同,本申请实施例的“第四时延”与其他实施例的“第四时延”可以相同,也可以不同,本申请实施例的“第五时延”与其他实施例的“第五时延”可以相同,也可以不同本申请实施例的“第六时延”与其他实施例的“第六时延”可以相同,也可以不同,本申请实施例的“第七时延”与其他实施例的“第七时延”可以相同,也可以不同,本申请实施例的“第八时延”与其他实施例的“第八时延”可以相同,也可以不同,本申请对此不进行限定。
例如,该第一时延为T1=[N1*T SMTC_SCell+a],第二时延为T2=[N2*T SMTC_SCell+a],第三时延为T3=[N3*T SMTC_SCell+a],第四时延为T4=[N4*T SMTC_SCell+a],该第五时延为T5=[N5*T SMTC_SCell+a],第六时延为T6=[N6*T SMTC_SCell+a],第七时延为T7=[N7*T SMTC_SCell+a],第八时延为T8=[N8*T SMTC_SCell+a]。其中,N1≠N2≠N3≠N4≠N5≠N6≠N7≠N8。
可选地,N1、N2、N3、N4、N5、N6、N7和N8的关系具体可以是N1>N2>N3>N4>N5>N6>N7>N8。
需要说明的是,N1、N2、N3、N4、N5、N6、N7和N8的关系还可以是N1<N2<N3<N4<N5<N6<N7<N8,N1<N8<N4<N5<N3<N7<N2<N6,N2<N1<N3<N4<N6<N7<N5<N8,或者其他的大小关系等,本申请在此不进行一一列举,但上述任意排序的大小关系都在本申请保护的范围内。
具有其他的大小关系,本申请对此不进行限定。
可选地,a的取值为5ms。
应理解,该T SMTC_SCell为为该待激活小区配置的SMTC周期。a还可以取3,4,6,7或其他整数,本申请对此不进行限定。
还应理解,判断待激活小区的激活时延的条件可以看作是场景。也就是说,本申请实施例中,不同场景对应不同的激活时延。
可选地,终端设备或网络设备可以根据该待激活小区和该已激活小区的工作频点是否属于同一频段,或同一频带,确定该待激活小区的下行信号的空域发送滤波和该已激活小区的下行信号的空域发送滤波是否相同。
具体地,若该待激活小区和该已激活小区属于同一频段,或同一频带,则该待激活小区的下行信号的空域发送滤波和该已激活小区的下行信号的空域发送滤波相同。若该待激活小区和该已激活小区不属于同一频段,或同一频带,则该待激活小区的下行信号的空域发送滤波和该已激活小区的下行信号的空域滤波发送滤波不同。这样终端设备或网络设备可以进一步确定出对应的激活时延,即终端设备或网络设备能够在合适的激活时延内进行信道状态信息的传输,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
可选地,终端设备或网络设备可以根据该待激活小区和该已激活小区是否共享射频通道,确定该待激活小区的下行信号的空域发送滤波和该已激活小区的下行信号的空域发送滤波是否相同。
具体地,若该待激活小区和已待激活小区共享射频通道,则该待激活小区的下行信号的空域发送滤波和该已激活小区的下行信号的空域发送滤波相同。若该待激活小区和已待激活小区的射频通道不共享,即射频通道相互独立,则该待激活小区的下行信号的空域发 送滤波和该已激活小区的下行信号的空域发送滤波不同。这样终端设备或网络设备可以进一步确定出对应的激活时延,即终端设备或网络设备能够在合适的激活时延内进行信道状态信息的传输,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
可选地,终端设备或网络设备可以根据该待激活小区的工作频点和该已激活小区的工作频点之间的频点间隔是否大于或等于预设阈值,确定该待激活小区的下行信号的空域发送滤波和该已激活小区的下行信号的空域发送滤波是否相同。
具体地,若该待激活小区的工作频点和该已激活小区的工作频点之间的频点间隔大于或等于预设阈值,则该待激活小区的下行信号的空域发送滤波和该已激活小区的下行信号的空域发送滤波不同。若该待激活小区的工作频点和该已待激活小区的工作频点之间的频点间隔小于预设阈值,则该待激活小区的空域发送滤波和该已激活小区的下行信号的空域发送滤波相同。这样终端设备或网络设备可以进一步确定出对应的激活时延,即终端设备或网络设备能够在合适的激活时延内进行信道状态信息的传输,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
需要说明的是,该预设阈值可以是网络设备配置的,也可以是网络设备和终端设备预先约定的,还可以是协议规定的。
还需要说明的是,上述确定该待激活小区的空域发送滤波和该已激活小区的下行信号的空域发送滤波是否相同的方式可以是协议规定的,也可以是网络设备确定并为终端设备配置的,还可以是终端设备确定并上报给网络设备,本申请对此不进行限定。
可选地,终端设备或网络设备还可以结合该待激活小区和该已激活小区的工作频点是否属于同一频段(或同一频带)、该待激活小区和该已激活小区是否共享射频通道、和该待激活小区的工作频点和该已激活小区的工作频点之间的频点间隔是否大于或等于预设阈值中的至少两项来确定该待激活小区的下行信号的空域发送滤波和该已激活小区的下行信号的空域发送滤波是否相同。
具体地,在终端设备或网络设备确定满足上述两项或三项时,确定该待激活小区的下行信号的空域发送滤波和该已激活小区的下行信号的空域发送滤波相同。或者在终端设备或网络设备确定不满足上述任一项时,确定该待激活小区的下行信号的空域发送滤波和该已激活小区的下行信号的空域发送滤波不相同。或者还有其他组合形式,也都在本申请的保护范围之内。
可选地,终端设备可以判断该待激活小区的空域发送滤波和该已激活小区的下行信号的空域发送滤波是否相同,并将判断结果上报给网络设备。
具体地,该上报方式可以是直接上报,即上报信息包括该待激活小区的空域发送滤波和该已激活小区的下行信号的空域发送滤波的属性。或者该上报方式为间接上报,即该上报信息可以包括上述确定激活时延的条件,使得网络设备根据该激活时延的条件确定出的待激活小区的激活时延与终端设备确定的激活时延一致。
例如,该待激活小区的空域发送滤波和该已激活小区的下行信号的空域发送滤波的属性可以通过至少一个比特位的取值表示。该至少一个比特位的第一取值(例如“0”)表示该待激活小区的空域发送滤波和该终端设备的所有已激活小区的空域发送滤波都相同;该至少一个比特位的第二取值(例如“1”)表示该待激活小区的空域发送滤波和该终端设备的至少一个已激活小区的空域发送滤波相同;该至少一个比特位的第三取值(例如“2”) 表示该待激活小区的空域发送滤波和该终端设备的至少一个已激活小区的空域发送滤波相同,且该待激活小区所属的频段和该至少一个已激活小区所属的频段相同。
再例如,该上报信息包括激活场景,该激活场景分别对应确定激活时延的条件,网络设备可以根据该激活场景确定出待激活小区的激活时延的条件,进而确定出该待激活小区的激活时延。应理解,该激活场景可以通过至少一个比特位的取值确定。
可选地,网络设备也可以判断该待激活小区的空域发送滤波和该已激活小区的下行信号的空域发送滤波是否相同,并发送配置信息,配置终端设备通过相同的方式判断该待激活小区的空域发送滤波和该已激活小区的下行信号的空域发送滤波是否相同。
具体地,该配置信息可以指示激活场景,还可以指示确定激活时延的条件。
例如,该配置信息中的至少一个字段的不同取值可以表示不同的激活场景。这样终端设备根据该配置信息可以获知当前的激活场景。例如,该配置信息中的至少一个字段的第一取值(例如“0”)表示激活场景1,该至少一个字段的第二取值(例如“1”)标识激活场景2。
再例如,该配置信息可以指示终端设备的所有小区中的每个小区的下行信号的下行空域发送滤波的属性。具体地,网络设备还可以将下行信号空域发送滤波相同的小区分为同一组,将下行信号空域发送滤波不同的小区分到不同的组。
再例如,该配置信息可以配置预设阈值。终端设备和网络设备根据该预设阈值,确定待激活小区的工作频点和已激活小区的工作频点的频点间隔,确定待激活小区的激活时延。
需要说明的是,该配置信息可以携带在激活信令中。
因此,本申请实施例的确定小区激活时延的方法,终端设备或网络设备可以根据待激活小区的下行信号的下行空域滤波和已激活小区的下行信号的下行空域滤波相同或者不同,分别确定该待激活小区对应的激活时延。这样终端设备在该激活时延内发送CSI,网络设备在该激活时延内接收该CSI,并根据是否接收到该CSI判断该待激活小区是否激活成功。也就是说,本申请实施例中终端设备和网络设备能够确定合理的激活时延,避免由于激活时延太长或太短导致终端设备和网络设备误判辅小区是否成功激活,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
图3示出了本申请另一个实施例的确定小区激活时延的方法的示意图。
需要说明的是,本申请实施例的执行主体可以是终端设备,也可以是网络设备。
还需要说明的是,在不作特别说明的情况下,本申请实施例中与图2所示的实施例中的相同术语表示的含义相同。
301,确定终端设备的待激活小区的小区状态。
可选地,该小区状态可以包括小区是否已知、同步信息、服务波束是否已知、终端设备接收波束能力和信道状态信息是否已知中的至少一项。
具体地,服务波束是否已知,即用于服务该终端设备进行通信的波束是否已知。小区未知可以是指终端设备需要进行小区检测。小区已知可以是指终端设备不需要进行小区检测。其中,小区检测即为终端设备需要在时频资源上进行小区盲检。
可选地,同步信息包括工作频点是否已知、下行定时是否已知和上行定时是否已知中的至少一项。
具体地,同步信息可以包括该待激活小区的工作频点的具体位置是否已知。
可选地,终端设备接收波束能力可以包括终端设备是否支持多波束扫描接收、是否支持宽波束接收、是否支持SSB符号级切波束接收中的至少一项。
可选地,该待激活小区可以属于频段1或频段2。也就是说,本申请实施例中的待激活小区可以属于FR1,也可以属于FR2。
应理解,该待激活小区还可以属于其他频段,本申请对此不进行限定。
可选地,在步骤301之前,终端设备可以接收激活信令,该激活信令用于激活该待激活小区。换句话说,该待激活小区为网络设备想要激活的小区。相应地,网络设备发送该激活信令。
302,根据该待激活小区的小区状态,确定该待激活小区的激活时延,该激活时延内用于传输信道状态信息。
具体地,终端设备或网络设备可以根据待激活小区的小区状态,确定对应的激活时延。也就是说,不同的小区状态可以对应不同的激活时延,这样终端设备在根据小区状态确定的激活时延内发送CSI,网络设备在该激活时延内接收该CSI,并根据是否接收到该CSI判断该待激活小区是否激活成功。本申请实施例中终端设备和网络设备能够确定合理的激活时延,避免由于激活时延太长或太短导致终端设备和网络设备误判辅小区是否成功激活,从而在保证设备的功耗开销的前提下,提高小区的激活成功率。
可选地,步骤302具体可以是以下至少一项:
在该待激活小区是小区未知、服务波束未知的情况下,确定该待激活小区的激活时延为第一时延。
在该待激活小区是小区未知、服务波束未知、终端设备支持多波束扫描接收的情况下,确定该待激活小区的激活时延为第二时延。
在该待激活小区是小区未知、服务波束未知、终端设备支持宽波束接收的情况下,确定该待激活小区的激活时延为第三时延。
在该待激活小区是小区已知、服务波束未知的情况下,确定该待激活小区的激活时延为第四时延。
在该待激活小区是小区已知、服务波束已知的情况下,确定该待激活小区的激活时延为第五时延。
在该待激活小区是小区已知、服务波束已知、信道状态信息未知的情况下,确定该待激活小区的激活时延为第六时延。
例如,该第一时延可以为T1=[N1*T SMTC_SCell+a],第二时延为T2=[N2*T SMTC_SCell+a],第三时延为T3=[N3*T SMTC_SCell+a],第四时延为T4=[N4*T SMTC_SCell+a],该第五时延为T5=[N5*T SMTC_SCell+a],第六时延为T6=[N6*T SMTC_SCell+a]。其中,N1≠N2≠N3≠N4≠N5≠N6。
可选地,N1、N2、N3、N4、N5和N6的关系可以是N1>N2>N3>N4>N5>N6。
需要说明的是,N1、N2、N3、N4、N5和N6的关系还可以是N1<N2<N3<N4<N5<N6,N1<N6<N4<N5<N3<N2,N2<N1<N3<N4<N6<N5,或者其他的大小关系等,本申请在此不进行一一列举,但上述任意排序的大小关系都在本申请保护的范围内。
可选地,a的取值为5ms。
应理解,该T SMTC_SCell为为该待激活小区配置的SMTC周期。a还可以取3,4,6,7或其他整数,本申请对此不进行限定。
可选地,小区状态和激活时延可以具有映射关系,终端设备或网络设备可以根据该映射关系确定待激活小区的激活时延。
应理解,该映射关系可以是协议规定的,也可以是网络设备设定并告知终端设备,还可以是由终端设备设定并告知网络设备,本申请对此不进行限定。
可选地,终端设备或网络设备可以根据至少一个已激活小区和待激活小区是否属于同一频段,或同一频带,确定该待激活小区为小区是否已知,和/或服务波束是否已知。
具体地,在该待激活小区和至少一个已激活小区属于同一频段,或同一频带的情况下,该待激活小区的小区状态为小区已知,或者该待激活小区的小区状态为服务波束已知,或者该待激活小区的小区状态为小区已知以及服务波束已知。在该待激活小区和该终端设备的全部已激活小区不属于同一频段,或同一频带的情况下,该待激活小区的小区状态为小区未知,或者该待激活小区的小区状态为服务波束未知,或者该待激活小区的小区状态为小区未知以及服务波束未知。
应理解,该至少一个已激活小区可以是该终端设备的部分已激活小区或全部已激活小区。
可选地,终端设备或网络设备可以根据至少一个已激活小区的下行信号的空域滤波和待激活小区的下行信号的空域滤波是否相同,确定该待激活小区为小区是否小区已知和/或服务波束是否已知。
具体地,在该至少一个已激活小区的下行信号的空域滤波和该待激活小区的下行信号的空域滤波相同的情况下,该待激活小区的小区状态为小区已知,或该待激活小区的小区状态为服务波束已知,或该待激活小区的小区状态为服务波束已知和小区已知。在该至少一个已激活小区的下行信号的空域滤波和该待激活小区的下行信号的空域滤波不同的情况下,该待激活小区的小区状态为小区未知,或者该待激活小区的小区状态为服务波束未知,或者该待激活小区的小区状态为小区未知以及服务波束未知。
需要说明的是,该空域滤波为空域发送滤波和/或空域接收滤波。在空域滤波为空域发送滤波和空域接收滤波的情况下,若该已激活小区的下行信号的空域发送滤波和该待激活小区的下行信号的空域发送滤波不同,该已激活小区的下行信号的空域接收滤波和该待激活小区的下行信号的空域接收滤波相同,则该已激活小区的下行信号的空域滤波和该待激活小区的下行信号的空域滤波不同;若该已激活小区的下行信号的空域发送滤波和该待激活小区的下行信号的空域发送滤波相同,该已激活小区的下行信号的空域接收滤波和该待激活小区的下行信号的空域接收滤波不同,则该已激活小区的下行信号的空域滤波和该待激活小区的下行信号的空域滤波不同;若该已激活小区的下行信号的空域发送滤波和该待激活小区的下行信号的空域发送滤波不同,该已激活小区的下行信号的空域接收滤波和该待激活小区的下行信号的空域接收滤波不同,则该已激活小区的下行信号的空域滤波和该待激活小区的下行信号的空域滤波不同。
可选地,在传输激活信令之前的预设时段内,根据终端设备是否上报过待激活小区的信道或波束测测量结果的情况,确定所述待激活小区是否小区已知和/或服务波束是否已知。
具体地,终端设备可以根据在接收到激活信令的预设时段内是否上报过该待激活小区的测量结果的情况,确定该待激活小区是否小区已知和/或服务波束是否已知。网络设备可以根据发送激活信令之后的预设时段内是否接收到终端设备发送的测量结果的情况,确定该待激活小区是否小区已知和/或服务波束是否已知。以终端设备为例进行说明,若终端设备上报过待激活小区的测量结果,则该待激活小区的小区状态为小区已知,或该待激活小区为服务波束已知,或该待激活小区为小区已知以及服务波束已知;若终端设备没有上报过该待激活小区的测量结果,则该待激活小区的小区状态为小区未知,或该待激活小区为服务波束未知,或该待激活小区为小区未知以及服务波束未知。
应理解,该预设时段可以是由协议规定的,也可以是由网络设备设定并告知终端设备,还可以是由终端设备设定并告知网络设备,本申请对此不进行限定。
还应理解,本申请实施例可以限定该测量结果为有效测量结果,也可以不限定该测量结果是否有效,本申请对此不进行限定。
需要说明的是,该测量结果可以是SSB ID、CRI、L1-SINR、参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)、信号干扰噪声比(signal to interference and noise ratio,SINR)、CQI、RI、PMI中的至少一项。
可选地,小区状态的判断可以是由协议规定的,也可以是由网络设备设定并告知终端设备,还可以是由终端设备设定并告知网络设备。
可选地,终端设备可以判断该待激活小区的小区状态,并将小区状态上报给网络设备。
具体地,该上报方式可以是直接上报,即上报信息包括该小区状态。或者该上报方式为间接上报,即该上报信息可以包括上述激活场景,使得网络设备根据该激活场景确定出待激活小区的小区状态,进而确定出待激活小区的激活时延,从而实现网络设备确定激活时延的方式与终端设备确定激活时延的方式一致。
例如,该上报信息包括至少一个比特位,该至少一个比特位的第一取值(例如“0”)表示该待激活小区的小区状态为未知小区;该至少一个比特位的第二取值(例如“1”)表示该待激活小区的小区状态为已知小区和服务波束未知;该至少一个比特位的第三取值(例如“2”)表示该待激活小区的小区状态为已知小区和服务博爱树已知。
再例如,该上报信息包括激活场景,该激活场景分别对应小区状态,网络设备可以根据该激活场景确定出待激活小区的小区状态,进而确定出该待激活小区的激活时延。应理解,该激活场景可以通过至少一个比特位的取值确定。
可选地,网络设备也可以判断该待激活小区的小区状态,并发送配置信息,配置终端设备通过相同的方式判断该待激活小区的小区状态。
具体地,该配置信息可以指示激活场景,还可以指示小区状态。
需要说明的是,该配置信息可以携带在激活信令中。
例如,该配置信息中的至少一个字段的不同取值可以表示不同的激活场景。这样终端设备根据该配置信息可以获知当前的激活场景。例如,该配置信息中的至少一个字段的第一取值(例如“0”)表示激活场景1,该至少一个字段的第二取值(例如“1”)标识激活场景2。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方 案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由接入网设备实现的方法和操作,也可以由可用于接入网设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图2至图3详细说明了本申请实施例提供的方法。以下,结合图4至图11详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图4是本申请一个实施例的确定小区激活时延的装置400的示意性框图。
应理解,该装置400可以对应于图2所示的实施例中的终端设备或网络设备,可以具有方法中的终端设备或网络设备的任意功能。该装置400,包括处理模块410和收发模块420。该收发模块可以包括发送模块和/或接收模块。
处理模块410,用于确定终端设备的待激活小区的下行信号的空域滤波和该终端设备的已激活小区的下行信号的空域滤波;
该处理模块410,用于根据该待激活小区的下行信号的下行空域滤波和该已激活小区的下行信号的下行空域滤波是否相同,确定该待激活小区的激活时延,该激活时延内用于通过收发模块420传输信道状态信息。
该空域滤波为空域发送滤波和/或空域接收滤波。
可选地,在该空域滤波为空域发送滤波或空域接收滤波的情况下,该处理模块410具体用于以下至少一项:在该待激活小区的下行信号的空域滤波与该已激活小区的下行信号的空域滤波相同的情况下,确定该待激活小区的激活时延为第一时延;在该待激活小区的下行信号的空域滤波与该已激活小区的下行信号的空域滤波不相同的情况下,确定该待激 活小区的激活时延为第二时延。
可选地,在该空域滤波为空域发送滤波和空域接收滤波的情况下,该处理模块410具体用于以下至少一项:在该待激活小区的下行信号的空域发送滤波与该已激活小区的下行信号的空域发送滤波相同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波相同的情况下,确定该待激活小区的激活时延为第一时延;在该待激活小区的下行信号的空域发送滤波与该已激活小区的下行信号的空域发送滤波相同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波不同的情况下,确定该待激活小区的激活时延为第二时延;在该待激活小区的下行信号的空域发送滤波与该已激活小区的下行信号的空域发送滤波不同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波相同的情况下,确定该待激活小区的激活时延为第三时延;在该待激活小区的下行信号的空域发送滤波与已激活小区的下行信号的空域发送滤波不同,且该待激活小区的下行信号的空域接收滤波与该已激活小区的下行信号的空域接收滤波不同的情况下,确定该待激活小区的激活时延为第四时延。
可选地,在确定该待激活小区的激活时延之前,该处理模块410,还用于根据以下信息的至少一种确定该待激活小区的下行信号的空域发送滤波与该已激活小区的下行信号的空域发送滤波是否相同:该待激活小区与该已激活小区是否属于同一频段、该待激活小区与该已激活小区是否共享射频通道、该待激活小区的工作频点与该已激活小区的工作频点之间的频点间隔是否大于或等于预设阈值。
可选地,该待激活小区的工作频点属于频段1或频段2。
可选地,该已激活小区的工作频点属于频段1或频段2。
图5示出了本申请实施例提供的确定小区激活时延的装置500的示意性结构图。该装置500可以为图2中所述的终端设备或网络设备。该装置可以采用如图5所示的硬件架构。该装置可以包括处理器510和收发器530。该收发器可以包括发送器和/或接收器。可选地,该装置还可以包括存储器540,该处理器510、收发器530和存储器540通过内部连接通路互相通信。图4中的处理模块410所实现的相关功能可以由处理器510来实现,收发模块420所实现的相关功能可以由处理器510控制收发器530来实现。
可选地,处理器510可以是一个CPU,微处理器,ASIC,专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对确定小区激活时延的装置(如,基站、终端设备、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器510可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器530用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器540包括但不限于是RAM、ROM、EPROM、只读光盘(compact disc read-only memory,CD-ROM),该存储器540用于存储相关指令及数据。
存储器540用于存储终端设备的程序代码和数据,可以为单独的器件或集成在处理器510中。
具体地,所述处理器510用于控制收发器与终端设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置500还可以包括输出设备和输入设备。输出设备和处理器510通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器510通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图5仅仅示出了确定小区激活时延的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端设备都在本申请的保护范围之内。
在一种可能的设计中,该装置500可以是芯片,例如可以为可用于终端设备或网络设备中的通信芯片,用于实现终端设备或网络设备中处理器510的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端设备或网络设备也可以是电路。该装置可以用于执行上述方法实施例中由终端设备所执行的动作。
图6示出了本申请另一个实施例的确定小区激活时延的装置600的示意性框图。
应理解,该装置600可以对应于图3所示的实施例中的网络设备或终端设备,可以具有方法中的网络设备或终端设备的任意功能。该装置600,包括处理模块610和收发模块620。
该处理模块610,用于确定终端设备的待激活小区的小区状态;
该处理模块610,还用于根据该待激活小区的小区状态,确定该待激活小区的激活时延,该激活时延内用于通过收发模块620传输信道状态信息。
可选地,该小区状态包括小区是否已知、同步信息、服务波束是否已知、终端设备接收波束能力和信道状态信息是否已知中的至少一项。
可选地,该同步信息包括工作频点是否已知、下行定时是否已知和上行定时是否已知中的至少一项。
可选地,该终端设备侧接收波束能力包括支持多波束扫描接收、是否支持宽波束接收和是否支持同步信号块SSB符号级切波束接收中的至少一项。
可选地,该处理模块610具体用于以下至少一项:在该待激活小区是小区未知、服务波束未知的情况下,确定该待激活小区的激活时延为第一时延;在该待激活小区是小区未知、服务波束未知、该终端设备支持多波束扫描接收的情况下,确定该待激活小区的激活时延为第二时延;在该待激活小区是小区未知、服务波束未知、该终端设备支持宽波束接收的情况下,确定该待激活小区的激活时延为第三时延;在该待激活小区是小区已知、服 务波束未知的情况下,确定该待激活小区的激活时延为第四时延;在该待激活小区是小区已知、服务波束已知的情况下,确定该待激活小区的激活时延为第五时延;在该待激活小区是小区已知、服务波束已知、信道状态信息未知的情况下,确定该待激活小区的激活时延为第六时延。
可选地,在确定该待激活小区的激活时延之前,该处理模块610还用于:在该待激活小区与至少一个已激活小区属于相同频段的情况下,确定该待激活小区为小区已知和/或服务波束已知;或在该待激活小区的下行信号的空域滤波与至少一个已激活小区的下行信号的空域滤波相同的情况下,确定该待激活小区为小区已知和/或服务波束已知;或在传输激活信令之前的预设时段内,收到过待激活小区的有效测量结果的情况下,确定该待激活小区为小区已知和/或服务波束已知;或在该待激活小区与所有已激活小区属于不同频段的情况下,确定该待激活小区为小区未知和/或服务波束未知。
图7示出了本申请另一个实施例提供的确定小区激活时延的装置700,该装置700可以为图3中所述的终端设备或网络设备。该装置可以采用如图7所示的硬件架构。该装置可以包括处理器710和收发器730。该收发器可以包括发送器和/或接收器。可选地,该装置还可以包括存储器740,该处理器710、收发器730和存储器740通过内部连接通路互相通信。图6中的处理模块610所实现的相关功能可以由处理器710来实现,收发模块620所实现的相关功能可以由处理器710控制收发器730来实现。
可选地,处理器710可以是一个CPU,微处理器,ASIC,专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对确定小区激活时延的装置(如,基站、终端设备、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器710可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器730用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器740包括但不限于是RAM、ROM、EPROM、只读光盘(compact disc read-only memory,CD-ROM),该存储器740用于存储相关指令及数据。
存储器740用于存储终端设备的程序代码和数据,可以为单独的器件或集成在处理器710中。
具体地,所述处理器710用于控制收发器与终端设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置700还可以包括输出设备和输入设备。输出设备和处理器710通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器710通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图7仅仅示出了确定小区激活时延的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端设备都在本申请的保护范围之内。
在一种可能的设计中,该装置700可以是芯片,例如可以为可用于终端设备或网络设备中的通信芯片,用于实现终端设备或网络设备中处理器710的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端设备或网络设备也可以是电路。该装置可以用于执行上述方法实施例中由终端设备所执行的动作。
可选地,本实施例中的装置为终端设备时,图8示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图8中,终端设备以手机作为例子。如图8所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图8中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图8所示,终端设备包括收发单元810和处理单元820。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元810中用于实现接收功能的器件视为接收单元,将收发单元810中用于实现发送功能的器件视为发送单元,即收发单元810包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元810用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元820用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元820用于执行图2中终端设备侧的处理步骤201和/或202,或者执行图3中终端设备侧的处理步骤301和/或302。收发单元810,用于执 行图2或图3中的收发操作。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
可选地,该装置为终端设备时,还可以参照图9所示的设备。作为一个例子,该设备可以完成类似于图8中处理器810的功能。在图9中,该设备包括处理器901,发送数据处理器903,接收数据处理器905。上述实施例中的处理模块可以是图9中的该处理器901,并完成相应的功能。上述实施例中的收发模块420或收发模块620可以是图9中的接收数据处理器905或发送数据处理器903。虽然图9中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图10示出本实施例的另一种终端设备的形式。处理装置1000中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信设备可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1003,接口1004。其中处理器1003完成处理模块410或处理模块610的功能,接口1004完成上述收发模块420或收发模块620的功能。作为另一种变形,该调制子系统包括存储器1006、处理器1003及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现实施例一至五之一所述方法。需要注意的是,所述存储器1006可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1000中,只要该存储器1006可以连接到所述处理器1003即可。
本实施例中的装置为接入网设备时,该接入网设备可以如图11所示,装置1100包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1110和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1120。所述RRU 1110可以称为收发模块,与上述接收模块和发送模块对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1111和射频单元1112。所述RRU 1110部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 1110部分主要用于进行基带处理,对基站进行控制等。所述RRU 1110与BBU 1120可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1120为基站的控制中心,也可以称为处理模块,可以与图4中的处理模块410对应,或与图6中的处理模块610对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于接入网设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1120可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1120还包括存储器1121和处理器1122。所述存储器1121用以存储必要的指令和数据。所述处理器1122用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于接入网设备的操作流程。所述存储器1121和处理器1122可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
另外,接入网设备不限于上述形态,也可以是其它形态:例如:包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU和有源天线单元(active antenna unit,AAU);也可以为客户终端设备(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,处理器可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、PROM、EPROM、EEPROM或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同 步连接动态随机存取存储器(synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种确定小区激活时延的方法,其特征在于,包括:
    确定终端设备的待激活小区的下行信号的空域滤波和所述终端设备的已激活小区的下行信号的空域滤波;
    根据所述待激活小区的下行信号的下行空域滤波和所述已激活小区的下行信号的下行空域滤波是否相同,确定所述待激活小区的激活时延,所述激活时延内用于传输信道状态信息。
  2. 根据权利要求1所述的方法,其特征在于,所述空域滤波为空域发送滤波和/或空域接收滤波。
  3. 根据权利要求2所述的方法,其特征在于,在所述空域滤波为空域发送滤波或空域接收滤波的情况下,所述根据所述待激活小区的下行信号的下行空域滤波和所述已激活小区的下行信号的下行空域滤波是否相同,确定所述待激活小区的激活时延包括以下至少一项:
    在所述待激活小区的下行信号的空域滤波与所述已激活小区的下行信号的空域滤波相同的情况下,确定所述待激活小区的激活时延为第一时延;
    在所述待激活小区的下行信号的空域滤波与所述已激活小区的下行信号的空域滤波不相同的情况下,确定所述待激活小区的激活时延为第二时延。
  4. 根据权利要求2所述的方法,其特征在于,在所述空域滤波为空域发送滤波和空域接收滤波的情况下,所述根据所述待激活小区的下行信号的空域滤波与已激活小区的下行信号的空域滤波是否相同,确定所述待激活小区的激活时延包括以下至少一项:
    在所述待激活小区的下行信号的空域发送滤波与所述已激活小区的下行信号的空域发送滤波相同,且所述待激活小区的下行信号的空域接收滤波与所述已激活小区的下行信号的空域接收滤波相同的情况下,确定所述待激活小区的激活时延为第一时延;
    在所述待激活小区的下行信号的空域发送滤波与所述已激活小区的下行信号的空域发送滤波相同,且所述待激活小区的下行信号的空域接收滤波与所述已激活小区的下行信号的空域接收滤波不同的情况下,确定所述待激活小区的激活时延为第二时延;
    在所述待激活小区的下行信号的空域发送滤波与所述已激活小区的下行信号的空域发送滤波不同,且所述待激活小区的下行信号的空域接收滤波与所述已激活小区的下行信号的空域接收滤波相同的情况下,确定所述待激活小区的激活时延为第三时延;
    在所述待激活小区的下行信号的空域发送滤波与已激活小区的下行信号的空域发送滤波不同,且所述待激活小区的下行信号的空域接收滤波与所述已激活小区的下行信号的空域接收滤波不同的情况下,确定所述待激活小区的激活时延为第四时延。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,在确定所述待激活小区的激活时延之前,所述方法还包括:
    根据以下信息的至少一种确定所述待激活小区的下行信号的空域发送滤波与所述已激活小区的下行信号的空域发送滤波是否相同:
    所述待激活小区与所述已激活小区是否属于同一频段、所述待激活小区与所述已激活 小区是否共享射频通道、所述待激活小区的工作频点与所述已激活小区的工作频点之间的频点间隔是否大于或等于预设阈值。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述待激活小区的工作频点属于频段1或频段2。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述已激活小区的工作频点属于频段1或频段2。
  8. 一种确定小区激活时延的方法,其特征在于,包括:
    确定终端设备的待激活小区的小区状态;
    根据所述待激活小区的小区状态,确定所述待激活小区的激活时延,所述激活时延内用于传输信道状态信息。
  9. 根据权利要求8所述的方法,其特征在于,所述小区状态包括小区是否已知、同步信息、服务波束是否已知、终端设备接收波束能力和信道状态信息是否已知中的至少一项。
  10. 根据权利要求9所述的方法,其特征在于,所述同步信息包括工作频点是否已知、下行定时是否已知和上行定时是否已知中的至少一项。
  11. 根据权利要求9所述的方法,其特征在于,所述终端设备侧接收波束能力包括支持多波束扫描接收、是否支持宽波束接收和是否支持同步信号块SSB符号级切波束接收中的至少一项。
  12. 根据权利要求9至11中至少一项所述的方法,其特征在于,所述根据所述待激活小区的小区状态,确定所述待激活小区的激活时延包括以下至少一项:
    在所述待激活小区是小区未知、服务波束未知的情况下,确定所述待激活小区的激活时延为第一时延;
    在所述待激活小区是小区未知、服务波束未知、所述终端设备支持多波束扫描接收的情况下,确定所述待激活小区的激活时延为第二时延;
    在所述待激活小区是小区未知、服务波束未知、所述终端设备支持宽波束接收的情况下,确定所述待激活小区的激活时延为第三时延;
    在所述待激活小区是小区已知、服务波束未知的情况下,确定所述待激活小区的激活时延为第四时延;
    在所述待激活小区是小区已知、服务波束已知的情况下,确定所述待激活小区的激活时延为第五时延;
    在所述待激活小区是小区已知、服务波束已知、信道状态信息未知的情况下,确定所述待激活小区的激活时延为第六时延。
  13. 根据权利要求9至12中任一项所述的方法,其特征在于,在确定所述待激活小区的激活时延之前,所述方法还包括:
    在所述待激活小区与至少一个已激活小区属于相同频段的情况下,确定所述待激活小区为小区已知和/或服务波束已知;或
    在所述待激活小区的下行信号的空域滤波与至少一个已激活小区的下行信号的空域滤波相同的情况下,确定所述待激活小区为小区已知和/或服务波束已知;或
    在传输激活信令之前的预设时段内,收到过待激活小区的有效测量结果的情况下,确 定所述待激活小区为小区已知和/或服务波束已知;或
    在所述待激活小区与所有已激活小区属于不同频段的情况下,确定所述待激活小区为小区未知和/或服务波束未知。
  14. 一种确定小区激活时延的装置,其特征在于,包括:
    处理模块,用于确定终端设备的待激活小区的下行信号的空域滤波和所述终端设备的已激活小区的下行信号的空域滤波;
    所述处理模块,用于根据所述待激活小区的下行信号的下行空域滤波和所述已激活小区的下行信号的下行空域滤波是否相同,确定所述待激活小区的激活时延,所述激活时延内用于通过收发模块传输信道状态信息。
  15. 根据权利要求14所述的装置,其特征在于,所述空域滤波为空域发送滤波和/或空域接收滤波。
  16. 根据权利要求15所述的装置,其特征在于,在所述空域滤波为空域发送滤波或空域接收滤波的情况下,所述处理模块具体用于以下至少一项:
    在所述待激活小区的下行信号的空域滤波与所述已激活小区的下行信号的空域滤波相同的情况下,确定所述待激活小区的激活时延为第一时延;
    在所述待激活小区的下行信号的空域滤波与所述已激活小区的下行信号的空域滤波不相同的情况下,确定所述待激活小区的激活时延为第二时延。
  17. 根据权利要求15所述的装置,其特征在于,在所述空域滤波为空域发送滤波和空域接收滤波的情况下,所述处理模块具体用于以下至少一项:
    在所述待激活小区的下行信号的空域发送滤波与所述已激活小区的下行信号的空域发送滤波相同,且所述待激活小区的下行信号的空域接收滤波与所述已激活小区的下行信号的空域接收滤波相同的情况下,确定所述待激活小区的激活时延为第一时延;
    在所述待激活小区的下行信号的空域发送滤波与所述已激活小区的下行信号的空域发送滤波相同,且所述待激活小区的下行信号的空域接收滤波与所述已激活小区的下行信号的空域接收滤波不同的情况下,确定所述待激活小区的激活时延为第二时延;
    在所述待激活小区的下行信号的空域发送滤波与所述已激活小区的下行信号的空域发送滤波不同,且所述待激活小区的下行信号的空域接收滤波与所述已激活小区的下行信号的空域接收滤波相同的情况下,确定所述待激活小区的激活时延为第三时延;
    在所述待激活小区的下行信号的空域发送滤波与已激活小区的下行信号的空域发送滤波不同,且所述待激活小区的下行信号的空域接收滤波与所述已激活小区的下行信号的空域接收滤波不同的情况下,确定所述待激活小区的激活时延为第四时延。
  18. 根据权利要求15至17中任一项所述的装置,其特征在于,在确定所述待激活小区的激活时延之前,所述处理模块,还用于根据以下信息的至少一种确定所述待激活小区的下行信号的空域发送滤波与所述已激活小区的下行信号的空域发送滤波是否相同:
    所述待激活小区与所述已激活小区是否属于同一频段、所述待激活小区与所述已激活小区是否共享射频通道、所述待激活小区的工作频点与所述已激活小区的工作频点之间的频点间隔是否大于或等于预设阈值。
  19. 一种确定小区激活时延的装置,其特征在于,包括:
    处理模块,用于确定终端设备的待激活小区的小区状态;
    所述处理模块,还用于根据所述待激活小区的小区状态,确定所述待激活小区的激活时延,所述激活时延内用于通过收发模块传输信道状态信息。
  20. 根据权利要求19所述的装置,其特征在于,所述小区状态包括小区是否已知、同步信息、服务波束是否已知、终端设备接收波束能力和信道状态信息是否已知中的至少一项。
  21. 根据权利要求20所述的装置,其特征在于,所述处理模块具体用于以下至少一项:
    在所述待激活小区是小区未知、服务波束未知的情况下,确定所述待激活小区的激活时延为第一时延;
    在所述待激活小区是小区未知、服务波束未知、所述终端设备支持多波束扫描接收的情况下,确定所述待激活小区的激活时延为第二时延;
    在所述待激活小区是小区未知、服务波束未知、所述终端设备支持宽波束接收的情况下,确定所述待激活小区的激活时延为第三时延;
    在所述待激活小区是小区已知、服务波束未知的情况下,确定所述待激活小区的激活时延为第四时延;
    在所述待激活小区是小区已知、服务波束已知的情况下,确定所述待激活小区的激活时延为第五时延;
    在所述待激活小区是小区已知、服务波束已知、信道状态信息未知的情况下,确定所述待激活小区的激活时延为第六时延。
  22. 根据权利要求20或21所述的装置,其特征在于,在确定所述待激活小区的激活时延之前,所述处理模块还用于:
    在所述待激活小区与至少一个已激活小区属于相同频段的情况下,确定所述待激活小区为小区已知和/或服务波束已知;或
    在所述待激活小区的下行信号的空域滤波与至少一个已激活小区的下行信号的空域滤波相同的情况下,确定所述待激活小区为小区已知和/或服务波束已知;或
    在传输激活信令之前的预设时段内,收到过待激活小区的有效测量结果的情况下,确定所述待激活小区为小区已知和/或服务波束已知;或
    在所述待激活小区与所有已激活小区属于不同频段的情况下,确定所述待激活小区为小区未知和/或服务波束未知。
  23. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至13中任一项所述的方法。
  24. 一种计算机程序产品,当其在处理器上运行时,使得处理器执行权利要求1至13中任一项所述的方法。
  25. 一种装置,其特征在于,包括处理器,用于调用存储器中存储的程序,以执行如权利要求1至13中任一项所述的方法。
  26. 一种装置,包括:处理器和接口电路,所述处理器用于通过所述接口电路与其它装置通信,并执行如权利要求1至13中任一项所述的方法。
  27. 一种终端设备,其特征在于,包括如权利要求25或26所述的装置。
  28. 一种网络设备,其特征在于,包括如权利要求25或26所述的装置。
PCT/CN2020/089815 2019-05-31 2020-05-12 确定小区激活时延的方法和装置 WO2020238617A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20813346.2A EP3968556A4 (en) 2019-05-31 2020-05-12 METHOD AND DEVICE FOR DETERMINING THE ACTIVATION DELAY OF A CELL
US17/539,018 US20220086702A1 (en) 2019-05-31 2021-11-30 Method and apparatus for determining cell activation delay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910473078.8A CN112019313B (zh) 2019-05-31 2019-05-31 确定小区激活时延的方法和装置
CN201910473078.8 2019-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/539,018 Continuation US20220086702A1 (en) 2019-05-31 2021-11-30 Method and apparatus for determining cell activation delay

Publications (1)

Publication Number Publication Date
WO2020238617A1 true WO2020238617A1 (zh) 2020-12-03

Family

ID=73507066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089815 WO2020238617A1 (zh) 2019-05-31 2020-05-12 确定小区激活时延的方法和装置

Country Status (4)

Country Link
US (1) US20220086702A1 (zh)
EP (1) EP3968556A4 (zh)
CN (1) CN112019313B (zh)
WO (1) WO2020238617A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210234597A1 (en) * 2020-01-27 2021-07-29 Qualcomm Incorporated Asymmetric uplink-downlink beam training in frequency bands
US11831383B2 (en) 2020-01-27 2023-11-28 Qualcomm Incorporated Beam failure recovery assistance in upper band millimeter wave wireless communications
US11856570B2 (en) 2020-01-27 2023-12-26 Qualcomm Incorporated Dynamic mixed mode beam correspondence in upper millimeter wave bands
WO2022174454A1 (en) * 2021-02-22 2022-08-25 Nokia Shanghai Bell Co., Ltd. Mechanism for cell activation
BR112023027287A2 (pt) * 2021-06-24 2024-03-12 Nokia Technologies Oy Indicação de estado de célula

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925547A (zh) * 2015-08-17 2018-04-17 瑞典爱立信有限公司 小区的激活
WO2019013564A1 (en) * 2017-07-12 2019-01-17 Lg Electronics Inc. METHOD AND APPARATUS FOR SUPPORTING SWITCHING OF A BANDWIDTH PART IN A WIRELESS COMMUNICATION SYSTEM

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8792376B2 (en) * 2011-01-11 2014-07-29 Samsung Electronics Co., Ltd. Secondary carrier activation/deactivation method and apparatus for mobile communication system supporting carrier aggregation
PL3123790T3 (pl) * 2014-03-24 2018-10-31 Ericsson Telefon Ab L M System i sposób aktywowania i dezaktywowania wielu komórek podrzędnych
WO2017033091A1 (en) * 2015-08-24 2017-03-02 Nokia Solutions And Networks Oy Activation delay for pucch scell based on ul response
CN114025365B (zh) * 2017-08-11 2024-04-12 华为技术有限公司 一种辅小区激活方法、接入网设备、通信装置以及系统
EP3787189A1 (en) * 2017-11-09 2021-03-03 Comcast Cable Communications LLC Csi transmission with multiple bandwidth parts
US11206549B1 (en) * 2017-11-09 2021-12-21 Verana Networks, Inc. Wireless mesh network
CA3028778A1 (en) * 2017-12-29 2019-06-29 Comcast Cable Communications, Llc Selection of grant and csi
US11128359B2 (en) * 2018-01-04 2021-09-21 Comcast Cable Communications, Llc Methods and systems for information reporting
US10863570B2 (en) * 2018-01-09 2020-12-08 Comcast Cable Communications, Llc Beam selection in beam failure recovery request retransmission
EP3791680A4 (en) * 2018-05-10 2022-06-29 Nokia Technologies Oy Secondary cell beam recovery
CN112585903B (zh) * 2018-06-25 2024-04-09 瑞典爱立信有限公司 无线通信系统中的服务小区激活
WO2020164091A1 (en) * 2019-02-15 2020-08-20 Nokia Shanghai Bell Co., Ltd. Known cell definition with beamforming
US20220303811A1 (en) * 2019-05-10 2022-09-22 Ntt Docomo, Inc. User equipment and communication method
US11984961B2 (en) * 2019-08-21 2024-05-14 Samsung Electronics Co., Ltd. Method and apparatus of beam selection at terminal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107925547A (zh) * 2015-08-17 2018-04-17 瑞典爱立信有限公司 小区的激活
WO2019013564A1 (en) * 2017-07-12 2019-01-17 Lg Electronics Inc. METHOD AND APPARATUS FOR SUPPORTING SWITCHING OF A BANDWIDTH PART IN A WIRELESS COMMUNICATION SYSTEM

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Further discussion on SCell activation requirements in FR2", 3GPP TSG-RAN4 MEETING AH#88 R4-1809894, 6 July 2018 (2018-07-06), XP051578928, DOI: 20200713131752X *
HUAWEI ET AL.: "CR on SCell activation delay", 3GPP TSG-RAN WG4 MEETING #88 R4-1810710, 24 August 2018 (2018-08-24), XP051579639, DOI: 20200713132235X *
MEDIATEK INC.: "Discussion on SCell activation delay requirement", 3GPP TSG-RAN WG4 MEETING #AH1807 R4-1808920, 6 July 2018 (2018-07-06), XP051468810, DOI: 20200713132803X *
NOKIA ET AL.: "CR on NR SCell Activation Delay", 3GPP TSG-RAN WG4 MEETING #88 R4-1811029, 24 August 2018 (2018-08-24), XP051579944, DOI: 20200713132122X *
See also references of EP3968556A4

Also Published As

Publication number Publication date
EP3968556A4 (en) 2022-10-05
CN112019313B (zh) 2022-05-17
CN112019313A (zh) 2020-12-01
EP3968556A1 (en) 2022-03-16
US20220086702A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2020156174A1 (zh) 波束指示的方法和通信装置
WO2020238617A1 (zh) 确定小区激活时延的方法和装置
WO2020248825A1 (zh) 确定天线面板状态的方法和装置
WO2020103793A1 (zh) 波束上报的方法和通信装置
WO2020215981A1 (zh) 辅小区激活方法和装置
WO2020034889A1 (zh) 信号传输的方法和通信装置
WO2020030050A1 (zh) 训练天线面板的方法与装置
WO2019029510A1 (zh) 带宽部分的配置方法、网络设备及终端
US20230045308A1 (en) Resource configuration method and apparatus
WO2021254472A1 (zh) 传输配置指示状态TCI state切换的方法和装置
WO2020083053A1 (zh) 通信方法和通信装置
WO2020164454A1 (zh) 信号传输方法和通信装置
WO2020221349A1 (zh) 波束失败上报的方法和装置
WO2022007967A1 (zh) 一种参考信号资源的配置方法和装置
WO2020114294A1 (zh) 一种天线面板及波束的管理方法和设备
WO2021017874A1 (zh) 一种通信方法及通信装置
WO2020248779A1 (zh) 更新传输配置指示tci信息的方法与通信装置
US20220240120A1 (en) Resource Measurement Method and Apparatus
WO2021134626A1 (zh) 传输同步信号块的方法和装置
WO2021062764A1 (zh) 终端的定时提前量ta处理的方法和装置
US20220225337A1 (en) Interference measurement reporting method and communications apparatus
WO2021062836A1 (zh) 功率调整方法及装置
US20220140887A1 (en) Method for determining receive parameter used for channel measurement and apparatus
WO2020221040A1 (zh) 通信方法和通信装置
WO2021159398A1 (zh) 波束失败恢复的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020813346

Country of ref document: EP

Effective date: 20211208