WO2021062836A1 - 功率调整方法及装置 - Google Patents

功率调整方法及装置 Download PDF

Info

Publication number
WO2021062836A1
WO2021062836A1 PCT/CN2019/109765 CN2019109765W WO2021062836A1 WO 2021062836 A1 WO2021062836 A1 WO 2021062836A1 CN 2019109765 W CN2019109765 W CN 2019109765W WO 2021062836 A1 WO2021062836 A1 WO 2021062836A1
Authority
WO
WIPO (PCT)
Prior art keywords
path loss
reference signal
loss estimation
mac
uplink
Prior art date
Application number
PCT/CN2019/109765
Other languages
English (en)
French (fr)
Inventor
管鹏
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19947616.9A priority Critical patent/EP4027710A4/en
Priority to CN201980100850.XA priority patent/CN114451022A/zh
Priority to AU2019469004A priority patent/AU2019469004B2/en
Priority to PCT/CN2019/109765 priority patent/WO2021062836A1/zh
Publication of WO2021062836A1 publication Critical patent/WO2021062836A1/zh
Priority to US17/707,293 priority patent/US20220225242A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • This application relates to the field of communication technology, and in particular to a power adjustment method and device.
  • the terminal device may first determine the transmission power of the uplink signal.
  • the method for determining the transmission power of the uplink signal is as follows: the terminal device performs high-level filtering on the received power of the path loss estimation reference signal sent by the network device to obtain the high-level filtered reference signal received power; and then according to the high-level filtering The received power of the reference signal and the transmit power of the reference signal obtain the estimated path loss; and then the transmit power of the uplink signal is obtained according to the estimated path loss.
  • the network equipment may configure the path loss estimation reference signal through related signaling, and then the terminal equipment may estimate the path loss estimation value through the configured path loss estimation reference signal within a certain period of time.
  • the transmission power of the uplink signal obtained by the terminal device in the above method is often unstable.
  • the embodiments of the present application provide a power adjustment method and device, which are used to increase the stability of the transmission power of an uplink signal, so that the uplink signal can be effectively transmitted.
  • an embodiment of the present application provides a power adjustment method.
  • the method includes: receiving a medium access control control element (MAC CE), where the MAC CE is used to update a path loss estimation reference signal Determine the path loss estimation value according to the path loss estimation reference signal; wherein, the effective time of the path loss estimation value is no later than n+X+T, where n is the time when the feedback information is sent, and the feedback information is used for feedback Whether the MAC CE is received correctly, the X is a fixed duration, and the T is a variable duration.
  • MAC CE medium access control control element
  • the effective time of the path loss estimation value is no later than n+X+T; that is to say, the communication device (such as terminal equipment or chip, etc.) avoids the inability to estimate the path loss reference signal in a short time Filtering the received power of, so that the communication device has enough time to filter the received power of the path loss estimation reference signal (also known as the reference signal received power) multiple times to determine the path loss estimate; and The received power is obtained through multiple filtering, which improves the stability and accuracy of the determination of the path loss estimation value.
  • the method further includes: after the path loss estimation value becomes effective, determining the transmission power of the uplink signal according to the path loss estimation value.
  • the time for the communication device to use the path loss estimation value to determine the transmission power of the uplink signal may not be earlier than n+X+T (at n+X+ T time, or after n+X+T time). That is, the communication device can determine the transmission power of the uplink signal according to the estimated path loss when n+X+T, or the communication device can also determine the transmission power of the uplink signal according to the estimated path loss after n+X+T. Transmission power.
  • the uplink signal may include physical random access channel (PRACH), physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH), sounding reference One or more of the signal (sounding reference signal, SRS), PUCCH demodulation reference signal (de-modulation reference signal, DMRS), PUSCH-DMRS, or uplink phase tracking reference signal (PTRS).
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS sounding reference One or more of the signal
  • SRS sounding reference signal
  • PUCCH demodulation reference signal demodulation reference signal
  • DMRS de-modulation reference signal
  • PUSCH-DMRS uplink phase tracking reference signal
  • the method further includes: sending the uplink signal at the transmission power after the path loss estimation value becomes effective.
  • the uplink signal is sent after the path loss estimation value becomes effective, so that the uplink signal can be transmitted stably and in time, thereby improving the stability of signal transmission.
  • the T is related to network configuration information and/or capability information of the terminal device, and the capability information of the terminal device includes high-level filtering capability information of the terminal device.
  • the capability information of the terminal device is used to indicate the capability of the terminal device.
  • the terminal device needs to report the capability information of the terminal device to the network device, and the network device can be the terminal device according to the capability information of the terminal device.
  • Configure related capability information It can be understood that the capability information configured by the network device may be the same as or different from the capability information reported by the terminal device, which is not limited in the embodiment of the present application.
  • the T may be different according to the high-level filtering capability information of different terminal devices, which avoids that different terminal devices use the same duration, which may cause some terminal devices to have a waiting time.
  • the waiting time can be understood as the Some terminal equipment has determined the path loss estimate, but it has not reached the specified time, and needs to wait for the path loss estimate to take effect; or some terminal equipment has not effectively determined the path loss estimate, and has to use the ineffective determination
  • the estimated path loss of, resulting in the inability to send the uplink signal stably.
  • the network configuration information includes at least one of the following: high-level filtering configuration information, measurement times, measurement period, measurement settings, or time domain information of the path loss estimation reference signal. That is, the information is the information configured by the network device, or the information is the information predefined by the protocol.
  • the high-level filtering capability information includes at least one of the following: high-level filtering configuration information, measurement times, measurement period, measurement settings, or time domain information of the path loss estimation reference signal;
  • the number of measurements is the number of measurements of the received power of the path loss estimation reference signal;
  • the measurement period is the transmission period of the path loss estimation reference signal;
  • the measurement setting is a setting related to the path loss estimation reference signal .
  • the T measurement times*measurement period.
  • the MAC CE includes the information of the path loss estimation reference signal.
  • the MAC CE includes the path loss estimation reference signal information, so that the communication device can estimate the path loss estimation value according to the path loss estimation reference signal in the MAC CE, which is compared with radio resource control.
  • radio resource control RRC
  • RRC Radio resource control
  • the MAC CE further includes a parameter related to the transmission power of the uplink signal, and the parameter related to the transmission power of the uplink signal includes at least one of the following: target power, Path loss compensation factor or power adjustment parameter.
  • the target power, the path loss compensation factor, and the power adjustment parameter are parameters related to the transmission power.
  • the effective time of the parameter related to the transmission power of the uplink signal is no later than n+X; or, the effective time of the parameter related to the transmission power of the uplink signal No later than n+X+T.
  • the communication device can use the parameters related to the transmission power included in the MAC CE to determine the transmission power of the uplink signal by interpreting the MAC CE, or it can wait for the path loss estimation value to be determined. After it comes out, it is used together with the path loss estimate to determine the transmit power of the uplink signal.
  • the effective time of the parameters related to the transmission power is not later than n+X+T
  • the parameters related to the transmission power of the uplink signal can be updated synchronously with the path loss estimation value (that is, synchronously effective), which can improve the uplink signal's effective time. The accuracy of the transmit power.
  • the time delay for adjusting the transmission power can be reduced.
  • the MAC CE includes the information of the reference signal of the uplink transmission beam, and the path loss estimation reference signal is related to the reference signal of the uplink transmission beam.
  • the MAC CE may include the information of the reference signal of the uplink transmission beam.
  • the communication device can update the path loss estimation reference according to the reference signal of the uplink beam. signal. That is to say, through the MAC CE, the communication device can not only update the uplink transmission beam, but also update the path loss estimation reference signal, thereby reducing signal overhead and avoiding multiple MAC CEs to instruct the communication device to adjust the path loss estimation separately Reference signal and uplink transmission beam.
  • the method further includes: adjusting the uplink transmission beam according to the MAC CE; wherein the effective time of the uplink transmission beam is no later than n+X; or, the uplink transmission The effective time of the beam is no later than n+X+T.
  • the effective time of the uplink transmission beam may be consistent with the effective time of the path loss estimate, or it may not be consistent.
  • the uplink transmission beam can be updated synchronously with the path loss estimation value (that is, synchronously effective), thereby improving the accuracy of the transmission power of the uplink signal .
  • the time delay can be reduced.
  • the MAC CE includes the information of the reference signal of the downlink transmission beam, and the path loss estimation reference signal is related to the reference signal of the downlink transmission beam.
  • the downlink transmission beam is the downlink transmission beam used by the network device to send the downlink signal
  • the downlink transmission beam is changed, that is, the downlink transmission beam used by the network device to send the downlink signal is changed; thus, the downlink reception beam corresponding to the downlink transmission beam
  • the uplink transmission beam changes, and further, the transmission power of the uplink signal can also be updated.
  • the MAC CE is used not only to update the downlink receive beam, but also to update the uplink transmit beam and path loss estimation reference signal, which reduces signal overhead and avoids using multiple MAC CEs to instruct the communication device to adjust the downlink separately. Receiving beam, uplink sending beam, and path loss estimation reference signal.
  • the method further includes: adjusting an uplink transmission beam and a downlink reception beam according to the downlink transmission beam; wherein the effective time of the downlink reception beam and the uplink transmission beam is no later than n +X+T; or, the effective time of the downlink receive beam is no later than n+X, and the effective time of the uplink transmit beam is no later than n+X+T; or, the downlink receive beam and the uplink The effective time of the transmission beam is no later than n+X.
  • the embodiments of the present application provide a communication device, the communication device includes a processing unit and a receiving unit; the receiving unit is configured to receive a media access layer control element MAC CE, and the MAC CE is used to update the route.
  • Loss estimation reference signal the processing unit is configured to determine the path loss estimation value according to the path loss estimation reference signal; wherein the effective time of the path loss estimation value is not later than n+X+T, and the n is sending feedback The time of the information, the feedback information is used to feed back whether the MAC CE is received correctly, the X is a fixed duration, and the T is a variable duration; the processing unit is also used to estimate the path loss Determine the transmit power of the uplink signal.
  • the device further includes a sending unit, configured to send the uplink signal at the transmission power after the path loss estimation value becomes effective.
  • the T is related to network configuration information and/or capability information of the terminal device.
  • the high-level filtering capability information includes at least one of the following: high-level filtering configuration information, measurement times, measurement period, measurement settings, or time domain information of the path loss estimation reference signal;
  • the number of measurements is the number of measurements of the received power of the path loss estimation reference signal;
  • the measurement period is the transmission period of the path loss estimation reference signal;
  • the measurement setting is a setting related to the path loss estimation reference signal .
  • the network configuration information includes at least one of the following: high-level filtering configuration information, measurement times, measurement period, measurement settings, or time domain information of the path loss estimation reference signal. That is, the information is the information configured by the network device, or the information is the information predefined by the protocol.
  • the MAC CE includes the information of the path loss estimation reference signal.
  • the MAC CE further includes a parameter related to the transmission power of the uplink signal, and the parameter related to the transmission power of the uplink signal includes at least one of the following: target power, Path loss compensation factor or power adjustment parameter.
  • the effective time of the parameter related to the transmission power of the uplink signal is no later than n+X; or, the effective time of the parameter related to the transmission power of the uplink signal is no later than ⁇ n+X+T.
  • the MAC CE includes the information of the reference signal of the uplink transmission beam, and the path loss estimation reference signal is related to the reference signal of the uplink transmission beam.
  • the processing unit is further configured to adjust the uplink transmission beam according to the MAC CE; wherein, the effective time of the uplink transmission beam is no later than n+X; or, the The effective time of the uplink transmission beam is no later than n+X+T.
  • the MAC CE includes the information of the reference signal of the downlink transmission beam, and the path loss estimation reference signal is related to the reference signal of the downlink transmission beam.
  • the processing unit is further configured to adjust the uplink transmission beam and the downlink reception beam according to the downlink transmission beam; wherein, the effective time of the downlink reception beam and the uplink transmission beam is not too late Or, the effective time of the downlink receive beam is no later than n+X, and the effective time of the uplink transmit beam is no later than n+X+T; or, the downlink receive beam and the all The effective time of the uplink transmission beam is no later than n+X.
  • an embodiment of the present application provides a power adjustment method.
  • the method includes sending a media access layer control element MAC CE to a terminal device, where the MAC CE is used to update a path loss estimation reference signal.
  • the MAC CE includes the information of the path loss estimation reference signal.
  • the MAC CE further includes a parameter related to the transmission power of the uplink signal, and the parameter related to the transmission power of the uplink signal includes at least one of the following: target power, Path loss compensation factor or power adjustment parameter.
  • the MAC CE includes the information of the reference signal of the uplink transmission beam, and the path loss estimation reference signal is related to the reference signal of the uplink transmission beam.
  • the MAC CE includes the information of the reference signal of the downlink transmission beam, and the path loss estimation reference signal is related to the reference signal of the downlink transmission beam.
  • an embodiment of the present application provides a communication device, including a sending unit, configured to send a media access layer control element MAC CE to a terminal device, where the MAC CE is used to update a path loss estimation reference signal.
  • the MAC CE includes the information of the path loss estimation reference signal.
  • the MAC CE further includes a parameter related to the transmission power of the uplink signal, and the parameter related to the transmission power of the uplink signal includes at least one of the following: target power, Path loss compensation factor or power adjustment parameter.
  • the MAC CE includes the information of the reference signal of the uplink transmission beam, and the path loss estimation reference signal is related to the reference signal of the uplink transmission beam.
  • the MAC CE includes the information of the reference signal of the downlink transmission beam, and the path loss estimation reference signal is related to the reference signal of the downlink transmission beam.
  • an embodiment of the present application provides a communication device, the communication device includes a processor and a memory, the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory, So that the communication device executes the corresponding method as shown in the first aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory. So that the communication device executes the corresponding method as shown in the third aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the Code instructions to perform the corresponding method as shown in the first aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the Code instructions to perform the corresponding method as shown in the third aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive or send a signal; and the memory is used to store program code;
  • the processor is configured to call the program code from the memory to execute the method described in the first aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive signals or send signals; and the memory is used to store program codes;
  • the processor is configured to call the program code from the memory to execute the method described in the third aspect.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, and when the processor invokes a computer program in a memory, the method described in the first aspect is executed.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, and when the processor invokes a computer program in a memory, the method described in the third aspect is executed.
  • an embodiment of the present application provides a communication system.
  • the communication system includes a terminal device and a network device.
  • the terminal device is configured to execute the method described in the first aspect
  • the network device is configured to execute The method described in the third aspect.
  • embodiments of the present application provide a computer-readable storage medium, where the computer-readable storage medium is used to store instructions, and when the instructions are executed, the method described in the first aspect is implemented.
  • embodiments of the present application provide a computer-readable storage medium, where the computer-readable storage medium is used to store instructions, and when the instructions are executed, the method described in the third aspect is implemented.
  • embodiments of the present application provide a computer program product including instructions, which when executed, enable the method described in the first aspect to be implemented.
  • embodiments of the present application provide a computer program product including instructions, which when executed, enable the method described in the third aspect to be implemented.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a power adjustment method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of an effective time provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of uplink signal transmission time according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of a signaling format provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of a signaling format provided by an embodiment of the present application.
  • FIG. 7a is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7b is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8a is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8b is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • At least one (item) refers to one or more
  • multiple refers to two or more than two
  • at least two (item) refers to two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships.
  • a and/or B can mean: there is only A, only B, and both A and B. In this case, A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the communication system used in this application can be understood as a wireless cellular communication system, or as a wireless communication system based on a cellular network architecture, and so on.
  • the power adjustment method provided in this application can be applied to various communication systems, for example, it can be an Internet of Things (IoT) system, a narrowband Internet of Things (NB-IoT) system, and a long-term evolution ( Long term evolution, LTE) system, it can also be the fifth generation (5th-generation, 5G) communication system, it can also be a hybrid architecture of LTE and 5G, it can also be a 5G new radio (NR) system, and future communications New communication systems, etc. appearing in development.
  • IoT Internet of Things
  • NB-IoT narrowband Internet of Things
  • LTE long-term evolution
  • 5G fifth generation
  • 5G 5G new radio
  • NR 5G new radio
  • Fig. 1 is a schematic diagram of a communication system provided by an embodiment of the present application, and the solution in the present application can be applied to the communication system.
  • the communication system may include at least one network device, and only one is shown, such as the next generation Node B (gNB) in the figure; and one or more terminal devices connected to the network device, as shown in the figure Terminal device 1 and terminal device 2.
  • gNB next generation Node B
  • the network device may be a device that can communicate with a terminal device.
  • the network device can be any device with wireless transceiver functions, including but not limited to a base station.
  • the base station may be an eNB or an eNodeB (evolutional NodeB) in long term evolution (LTE), or the base station may be a gNB, or the base station may be a base station in a future communication system.
  • the network device may also be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless fidelity (WiFi) system.
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • cloud radio access network cloud radio access network, CRAN
  • the network device may also be a wearable device or a vehicle-mounted device.
  • the network device may also be a small station, a transmission reference point (TRP), etc.
  • TRP transmission reference point
  • the base station may also be a base station in a public land mobile network (PLMN) that will evolve in the future, and so on.
  • PLMN public land mobile network
  • Terminal equipment may also be referred to as user equipment (UE), terminal, and so on.
  • a terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, for example, in the air. Airplanes, balloons, or satellites.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial control) ), wireless terminals in self-driving (selfdriving), wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, Wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the terminal device may also be a terminal device in a future 5G network or a terminal device in a future evolved PLMN, etc.
  • the terminal device 1 and the terminal device 2 can also communicate with anything (vehicle-to-everything, V2X) or machine through device-to-device (D2D), vehicle-to-everything (V2X) or machine For communication with machine-to-machine (M2M) technologies, the embodiment of the present application does not limit the communication method between the terminal device 1 and the terminal device 2.
  • the network device and the terminal device 1 can be used to execute the power adjustment method provided in the embodiment of the present application, for example, the method shown in FIG. 2 can be executed.
  • the network device and the terminal device 2 may also be used to implement the power adjustment method provided in the embodiment of the present application.
  • uplink communication in a cellular network system refers to a terminal device sending a signal to a network device such as a base station, and the signal may include one or more of an uplink signal or an uplink physical channel.
  • the signal may include physical random access channel (PRACH), physical uplink control channel (PUCCH), physical uplink shared channel (PUSCH), sounding reference signal ( One or more of sounding reference signal (SRS), PUCCH demodulation reference signal (de-modulation reference signal, DMRS), PUSCH-DMRS or uplink phase tracking reference signal (PTRS).
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • SRS sounding reference signal
  • DMRS PUCCH demodulation reference signal
  • PUSCH-DMRS uplink phase tracking reference signal
  • PTRS uplink phase tracking reference signal
  • the transmission power of the PUSCH can satisfy the following formula:
  • PL b1, f1, c1 are the estimated path loss values
  • q d1 is the identification of the reference signal used by the terminal device.
  • the path loss estimate value is a value estimated by the terminal device using the reference signal identified as q d1. Specifically, the path loss estimate is obtained from the transmission power of the reference signal and the reception power of the reference signal, the transmission power of the reference signal is notified to the terminal device by the network device, and the reception power of the reference signal is measured by the terminal device.
  • the received power of the reference signal is a reference signal receiving power (RSRP) (commonly referred to as RSRP) after high-layer filtering, that is, the RSRP needs to be obtained by filtering by the terminal device according to multiple measurement results.
  • RSRP reference signal receiving power
  • P PUSCH, b1, f1, c1 (i1, j1, q d1 , l1) is the first transmission power, which is the transmission power of the determined signal; further, i1 is the transmission opportunity of PUSCH (transmission occasion), j1 is The index of the element in this parameter set, q d1 is the identification of the reference signal, l1 is the power control adjustment state with index of the PUSCH, and b1 is the bandwidth part of the PUSCH used by the terminal device (bandwidth part, BWP), f1 is the carrier frequency used by the terminal equipment, and c1 is the serving cell of the terminal equipment.
  • P CMAX, f1, c1 (i1) is the maximum transmit power of the terminal equipment when it is on the carrier frequency f1 of the serving cell c1. It is the target power of the terminal device, which can be specifically understood as the target power value of the PUSCH at the network device, that is, the power that the PUSCH is expected to reach when the PUSCH reaches the network device. This value can be configured by the network device.
  • the terminal device can be notified to perform related operations through radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the terminal device can be notified to update the path loss estimation reference signal through RRC signaling.
  • RRC Radio Resource Control
  • the use of RRC signaling to configure the relevant parameters of uplink transmit power control has a long time delay and low flexibility. Therefore, faster signaling, such as MAC CE signaling, is required to update related parameters.
  • the MAC CE signaling can be used to instruct the terminal equipment to update the path loss estimation reference signal, where the MAC CE signaling can be carried on the physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the effective time of the MAC CE signaling is within 3 ms after the terminal device sends the feedback information.
  • the terminal device interprets the MAC CE to obtain a new path loss estimation reference signal, according to
  • the path loss estimation reference signal is used to measure the received power of the path loss estimation reference signal (ie RSRP, the received power after high-level filtering) (also directly referred to as the reference signal received power) to obtain the path loss estimate, and determine the transmission of the uplink signal power.
  • RSRP the received power after high-level filtering
  • the terminal equipment does not measure RSRP many times, which means that the terminal equipment may not need enough samples for filtering, that is, the terminal equipment obtains not enough high-level filtering RSRP, which leads to unstable uplink signal transmission power. . Therefore, the embodiment of the present application provides a power adjustment method, which can improve the stability of the uplink signal transmission power, so that the uplink signal can be effectively transmitted.
  • the communication device as a terminal device as an example to illustrate the power adjustment method provided in the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a power adjustment method provided by an embodiment of the present application. As shown in FIG. 2, the power adjustment method includes:
  • a network device sends a MAC CE signaling to a terminal device, where the MAC CE signaling is used to update a path loss estimation reference signal.
  • the path loss estimation reference signal may also be referred to as a path loss reference signal (pathloss reference), that is, the terminal device can obtain a path loss estimation value according to the path loss estimation reference signal. Therefore, the embodiment of the present application does not limit the specific name of the path loss estimation reference signal.
  • the network device can send MAC CE signaling to the terminal device in any one or more of the following scenarios:
  • Scenario 1 The network device detects that the relative position of the terminal device and the network device has changed; where the relative position of the terminal device and the network device can be understood as taking the network device as a reference, and the position of the terminal device has changed.
  • Scenario 2 The network device determines that the transmission power of the uplink signal of the terminal device is too low or too high; wherein, when the transmission power of the uplink signal is too high, the terminal device may cause interference to other terminal devices; and the transmission of the uplink signal When the power is too low, the network device may not be able to receive the uplink signal, or the network device may not receive the uplink signal correctly, etc. In this case, the terminal device can re-determine the transmission power of the uplink signal. Avoid the above situation.
  • Scenario 3 The network device needs to switch the uplink receiving beam serving the terminal device; among them, because the uplink receiving beam transmission changes, the uplink transmission beam needs to be changed, so the terminal device can adjust the transmission power of the uplink signal in time. Match with the uplink receiving beam.
  • the terminal device receives the MAC CE signaling sent by the network device, and determines the path loss estimation value according to the path loss estimation reference signal (for example, q d1 in formula 1).
  • the path loss estimation value may be PL b1, f1, c1 (q d1 ) in formula (1), and the path loss estimation value is determined by the transmission power of the path loss estimation reference signal and the high-level filtering
  • the received power of the path loss estimation reference signal is obtained, that is, the received power of the path loss estimation reference signal needs to be obtained through multiple high-level filtering.
  • the terminal device can perform averaging processing or weighting processing on the obtained high-level filtered received power, which is not limited in the embodiment of the present application.
  • the reference signal received power obtained after high-level filtering can satisfy the following formula:
  • F n is the filtering result, that is, the received power of the reference signal obtained after the nth filtering
  • F n-1 is the received power of the reference signal obtained after the n-1th filtering
  • M n is the measurement of the nth q d1 result.
  • F 0 can be M 1 for the first filtering.
  • the terminal device determines the transmission power of the uplink signal according to the path loss estimation value.
  • the terminal device can obtain the transmission power of the uplink signal according to the similar formula (1). If the uplink signal is the PUSCH, the terminal device can obtain the transmission power of the PUSCH according to the formula (1).
  • the transmission power of the SRS can satisfy the following formula:
  • the transmission power of the PRACH can satisfy the following formula:
  • P PRACH,b,f,c (i) min ⁇ P CMAX,f,c (i), P PRACH,target,f,c +PL b,f,c ⁇ (4)
  • P PRACH, target, f, c are the target power configured by the network device, and PL b, f, c uses a synchronization signal block (synchronization signal block, SSB) associated with PRACH as a path loss estimation reference signal by default.
  • SSB synchronization signal block
  • the path loss estimation reference signal used to determine the path loss estimation value of PRACH is not limited to SSB, and may also be the path loss estimation reference signal described in the embodiment of this application (ie, MAC CE signaling).
  • the transmission power of the PUCCH may satisfy the following formula:
  • ⁇ F_PUCCH (F) is a special adjustment amount for PUCCH, and F is a PUCCH format.
  • formulas satisfied by the transmission power of other types of uplink signals can be referred to formulas (1)-(4), which will not be detailed here.
  • the other types of uplink signals may also include PUCCH-DMRS, PUSCH-DMRS, PTRS, and so on.
  • the terminal device transmits the uplink signal at a determined transmission power.
  • the effective time of the path loss estimate is no later than n+X+T, where n is the time to send feedback information, and the feedback information is used to feed back whether the MAC CE is received correctly, the X is a fixed duration, and the T For variable duration.
  • the effective time is no earlier than n+X and no later than n+X+T, which can be understood as the terminal device can be no earlier than n+X and no later than n+X+T
  • High-level filtering is performed multiple times within the time period to obtain the filtered reference signal received power.
  • the terminal device may apply the path loss estimation value, or it is understood that the terminal device uses the path loss estimation value to determine the transmission power of the uplink signal. That is, the terminal device can use the path loss estimation reference signal indicated by the MAC CE to adjust the uplink transmission power to transmit the uplink signal.
  • the terminal device can use the new path loss estimation value to calculate the transmit power of the uplink signal.
  • the effective time can be at n+X, after n+X, and before n+X+T, or at n+X+T.
  • the division is not limited.
  • the time for the terminal device to apply the path loss estimation value can be when n+X+T or after n+X+T.
  • the time at which the terminal device sends the feedback information can be understood as the time when the terminal device sends the feedback information, or it can be understood as the slot for the terminal device to send the feedback information, or it can be understood as the mini-port where the terminal device sends the feedback information.
  • Slot or understood as an orthogonal frequency division multiplexing (OFDM) symbol for feedback information generated by a terminal device, etc.
  • the embodiment of the present application does not limit the time unit represented by n.
  • the n can be an uplink slot or a downlink slot corresponding to the uplink slot. It can be understood that in the case where the terminal device has sent multiple pieces of feedback information, the n may be the time or time slot of the last feedback information, and so on.
  • X duration can be the duration of the terminal device interpreting the MAC CE signaling, and the terminal device interpreting the MAC CE signaling Contents, it is determined that the MAC CE signaling requires the terminal device to update the path loss estimation reference signal, so that the terminal device can measure according to the path loss estimation reference signal indicated by the MAC CE signaling to obtain the RSRP. It can be understood that the interpretation operation performed by the terminal device within the X duration is only an example, and within this duration, the terminal device can also perform other operations such as beam adjustment, panel adjustment, radio frequency adjustment, buffer processing, etc. at the same time.
  • the effective time of the path loss estimate may be equivalent to the effective time of the uplink signal transmission power.
  • the feedback information can be understood as a hybrid automatic repeat request (hybrid automatic repeat request) message, that is, the feedback information can indicate the MAC CE by feeding back an acknowledgement (ACK) or negative acknowledgement (NACK) to the network device Whether the signaling is received correctly.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the embodiment of the present application does not limit the specific format of the feedback information.
  • X is a fixed duration.
  • the X can be 3ms. It is understandable that the X is a fixed duration for the terminal device 1; but for different terminal devices such as the terminal device 1 and the terminal device 2, it is also possible. Variable duration, that is, the X may be different for different terminal devices, but it can be a fixed duration for the same terminal device.
  • the X may be related to the capabilities of the terminal device. For example, the terminal device may report X, and X may include 1ms, 2ms, 3ms, and so on.
  • X is also related to the subcarrier interval.
  • the terminal device may also report different capabilities according to different subcarrier intervals. For example, if the subcarrier interval is 15KHz, X is 3 time slots; if the subcarrier interval is 120KHz, X is 25 time slots. Understandably, in this case, the absolute time represented by the two Xs is different.
  • the X can be the length of the uplink time slot (also can be understood as the number of uplink time slots), or the length of the downlink time slot (also can be understood as the number of downlink time slots), as for the uplink time slot and the downlink time slot Whether the subcarrier spacing of the time slot is the same is not limited.
  • T can be the length of the uplink time slot, that is, the number of uplink time slots, or the length of the downlink time slot, that is, the number of downlink time slots, or the length of absolute time. The length is not limited.
  • the sub-carrier interval of the uplink transmission of the terminal equipment may be different from the sub-carrier interval of the downlink transmission. That is to say, the length of an uplink time slot and the length of a downlink time slot may be different, that is, the number of the uplink time slot. It may be different from the number of the downlink time slot. Therefore, when the terminal device uses the form of n+X+T to confirm the time, it can consider the conversion relationship between uplink and downlink time slots, or confirm the conversion relationship between absolute time such as milliseconds and time slot length. Optionally, it can be all converted into absolute time, for example, after all converted into milliseconds, the formula can be applied.
  • the terminal device can also convert the time n+X+T into a downlink time slot before applying n+ X+T this time.
  • the specific conversion example is as follows. If n is the uplink time slot number, X is the time length counted by the number of uplink time slots, and T is the time length counted by the number of downlink time slots, then n is converted to the downlink time slot number, and X is converted into the time length of the time slot count in the following row.
  • the method of converting the uplink time slot z to the downlink time slot y can satisfy the following formula:
  • ⁇ UL and ⁇ DL are system parameter configurations for uplink and downlink respectively.
  • the conversion of the number of uplink time slots into the number of downlink time slots can also refer to a similar formula. It can be understood that y and z in formula (5) are only examples.
  • the terminal device can also adjust the transmission power of the uplink signal according to the MAC CE signaling, the terminal device can also convert all the time n+X+T into the uplink time slot before applying n+X+ T this time.
  • the specific conversion example is as follows. If n is the number of uplink time slots, X is the length of time counted by the number of uplink time slots, and T is the length of time counted by the number of downlink time slots, then convert T to the number of uplink time slots. length of time.
  • T may be the duration of the terminal device performing high-level filtering to obtain the received power of the path loss estimation reference signal, and the sum of the duration of the terminal device determining the uplink signal transmission power according to the path loss estimation value.
  • the T is related to network configuration information and/or capability information of the terminal device, and the capability information of the terminal device includes high-level filtering capability information of the terminal device.
  • the capability information of the terminal device is used to indicate the capability of the terminal device, and the terminal device needs to report the capability information of the terminal device to the network device.
  • the high-level filtering capability information of the terminal device includes at least one of the following: high-level filtering configuration information, measurement times, measurement period, measurement settings, or time domain information of the path loss estimation reference signal.
  • the number of measurements is the number of measurements of the received power of the path loss estimation reference signal;
  • the measurement period is the transmission period of the path loss estimation reference signal;
  • the measurement setting is a setting related to the path loss estimation reference signal.
  • the network configuration information includes at least one of the following: high-level filtering configuration information, measurement times, measurement period, measurement settings, or time domain information of the path loss estimation reference signal. That is, the information is the information configured by the network device, or the information is the information predefined by the protocol. It can be understood that whether the network configuration information is configured according to the high-level filtering capability information of the terminal device is not limited in the embodiment of the present application.
  • the number of measurements refers to the number of times that a stable path loss estimation value is obtained and the path loss estimation reference signal is measured, such as 1 time, 2 times, 3 times, 4 times, etc., which are predefined by the protocol or configured by the network or reported by the terminal device.
  • the measurement period refers to the transmission period of the path loss estimation reference signal sent by the network device that is predefined by the protocol or configured by the network or reported by the terminal device and/or the measurement period of the terminal to perform measurement based on the path loss reference signal.
  • Measurement settings refer to the measurement-related restrictions pre-defined in the protocol or network configuration or reported by the terminal device, including measurement window (measurement window), discontinuous reception (DRX) configuration, etc.
  • the measurement time window is W
  • the time domain information of the path loss estimation reference signal may indicate whether the path loss reference signal is sent periodically, semi-continuously or non-periodically. For example, if the path loss reference signal is sent aperiodicly, T is related to the trigger time of the aperiodic reference signal. For example, the update of the path loss estimation value can be performed after the aperiodic reference signal is sent, so that the terminal device can effectively measure the path loss estimation reference signal. In other words, a non-periodic reference signal transmission and measurement can be included between n+X and n+X+T. It can be understood that the description of each piece of information shown above is only an example, and in the future communication system or other fields, the above piece of information may have other definitions, which are not limited in the embodiment of the present application.
  • T may also be related to a scaling factor, such as a scaling factor determined according to N and/or P.
  • N is related to the number of beams received by the terminal device, or N can also be directly configured by the network device, and is related to the type of the path loss estimation reference signal.
  • N can also be related to whether the path loss estimation reference signal indicated by MAC CE signaling belongs to the path loss estimation reference signal configured by RRC, for example, the path loss estimation reference signal indicated by MAC CE belongs to the path loss estimation configured by RRC.
  • the effective time of the path loss estimation value is not earlier than n+X and not later than n+X+T; that is, the terminal device avoids the inability to estimate the path loss reference signal in a short time
  • the received power of the terminal is filtered multiple times, so that the terminal device can not only have enough time to filter the received power of the path loss estimation reference signal multiple times to determine the path loss estimate; it also allows the terminal device to determine the path loss estimate in time.
  • the path loss estimation value improves the stability of the determination of the path loss estimation value.
  • the upstream signal is an SRS as an example to illustrate the power adjustment method. It is understandable that the method steps of this specific scenario can refer to the description of the foregoing embodiment.
  • the following will introduce the content of the MAC CE signaling in detail, and with the content of the MAC CE signaling, the terminal equipment performs differently. step.
  • each SRS resource set (SRS-resourceset) may include one or more SRS resources (SRS-resource). Therefore, each SRS resource can correspond to a path loss estimation reference signal, or each SRS resource set corresponds to a path loss estimation reference signal, and so on.
  • the MAC CE signaling includes the information of the path loss estimation reference signal.
  • the MAC CE signaling may include the identification of the path loss estimation reference signal, and the identification of the path loss estimation reference signal can make the terminal device clearly know which path loss estimation reference signal is used to estimate the path loss estimation value.
  • the MAC CE signaling may also include carrier component (CC) information and bandwidth part (BWP) information where the path loss estimation reference signal is located.
  • CC carrier component
  • BWP bandwidth part
  • the MAC CE signaling may also include the target SRS resource or the target SRS resource set or the target SRS.
  • the identification of the resource group through the identification of the target SRS resource or the target SRS resource set or the target SRS resource group, the terminal device can know that the path loss estimate is used for the SRS resource in the SRS resource set, or the terminal device can be made Know which SRS resource set (which SRS resource group) the path loss estimate can be used for, and improve the consistency of information interpretation.
  • the MAC CE signaling may also include CC information and BWP information where the target SRS resource or the target SRS resource set or the target SRS resource group is located, and the target SRS resource or the target SRS resource set or the target SRS resource group.
  • the CC information and the BWP information can enable the terminal device to know the frequency domain location where the target SRS resource or the target SRS resource set or the target SRS resource group is located.
  • the MAC CE signaling may also include the identifier of the target PUCCH resource or the target PUCCH resource set or the target PUCCH resource group.
  • the target PUCCH resource or the target PUCCH resource set or the target PUCCH resource group please refer to the description of the target SRS resource or the target SRS resource set or the target SRS resource group.
  • the content included in the MAC CE may also include the identification of the path loss estimation reference signal, the CC information and BWP information where the path loss estimation reference signal is located, the identification of the target PUCCH resource or the target PUCCH resource set or the target PUCCH resource group , And the CC information and BWP information of the target PUCCH resource or the target PUCCH resource set or the target PUCCH resource group.
  • the MAC CE signaling includes a mapping relationship from a sounding reference signal resource indicator codepoint (SRS resource indicator codepoint, SRI codepoint) to a path loss estimation reference signal. Therefore, the terminal device can determine the path loss estimation reference signal according to the MAC CE signaling and the SRI codepoint in the downlink control information (downlink control information, DCI).
  • DCI downlink control information
  • the MAC CE signaling may include the identification of the path loss estimation reference signal and the identification of the certain uplink signal .
  • it may also include the CC information and BWP information where the path loss estimation reference signal is located, and the CC information and BWP information where the certain uplink signal is located.
  • the at least two uplink signals include a first uplink signal and a second uplink signal, which are different from the first uplink signal.
  • the path loss estimation reference signal corresponding to the signal is the first path loss estimation reference signal
  • the path loss estimation reference signal corresponding to the second uplink signal is the second path loss estimation reference signal
  • the MAC CE signaling may include the first path loss estimation reference signal.
  • the MAC CE signaling may also include the CC information and BWP information where the first uplink signal is located, as well as the CC information and BWP information where the first path loss estimation reference signal is located, and the location where the second uplink signal is located. CC information and BWP information, and CC information and BWP information where the second path loss estimation reference signal is located.
  • the embodiment of the present application does not limit it.
  • the MAC CE signaling header may also include a logical channel identity (LCID), and the LCID may be used to indicate that the MAC CE is used to update the path loss estimation reference signal. That is, the terminal device can learn what the function of the MAC CE signaling is through the LCID. For example, the terminal device can learn that the MAC CE signaling is used to update the path loss estimation reference signal.
  • LCID logical channel identity
  • the network device sends the MAC CE signaling to the terminal device, so that after receiving the MAC CE signaling, the terminal device understands the MAC CE signaling to update the path loss estimation reference signal to To estimate the path loss estimation value based on the new path loss estimation reference signal; thus, the terminal device can obtain the path loss estimation value according to the path loss estimation reference signal, and use the path loss estimation value after the path loss estimation value becomes effective To determine the transmit power of the uplink signal.
  • the embodiments of the present application ensure that the terminal device has enough time to measure the path loss estimation value according to the updated path loss estimation reference signal, and then determine the transmission power of the uplink signal.
  • the MAC CE signaling may also include parameters related to the transmit power of the uplink signal, that is, in addition to the path loss estimation reference signal information, the MAC CE signaling may also include at least one of the following : Target power, path loss compensation factor or power adjustment parameter.
  • the MAC CE signaling may include Or one or more of f b1, f1, c1 (i1, l1).
  • the MAC CE signaling may include Or one or more of f b, f, c (i, l). It can be understood that, for the specific description of each parameter, reference may be made to the foregoing embodiment, which will not be described in detail here.
  • the MAC CE signaling may also include other parameters related to the calculation of the transmission power of the uplink signal, and the parameters related to the transmission power of the uplink signal may also be Other parameters, or other types of parameters, etc., are not listed in the embodiment of the present application.
  • the network device sends the MAC CE signaling to the terminal device, so that after receiving the MAC CE signaling, the terminal device understands the MAC CE signaling to update the path loss estimation reference signal to In order to estimate the path loss estimation value according to the new path loss estimation reference signal; thus, the terminal device can obtain the path loss estimation value according to the path loss estimation reference signal.
  • the terminal device can be based on the path loss estimation value (that is, the path loss estimation value estimated by using the path loss estimation reference signal in the MAC CE signaling) and the transmission of the uplink signal after n+X+T time.
  • the power-related parameters determine the transmit power of the uplink signal. As an example, refer to FIG.
  • the terminal device can first perform the parameters related to the transmission power of the uplink signal ( If the effective time excluding the path loss estimation value is after n+X time (and may also include time n+X), it is determined that the transmission power of the uplink signal is the first transmission power. It can be understood that the path loss estimation value corresponding to the first transmission power is the old path loss estimation value, that is, the path loss estimation reference signal used by the terminal device before the network device sends the MAC CE signaling. estimated value.
  • the transmission power of the uplink signal is the second transmission power.
  • the path loss estimation value corresponding to the second transmission power is the new path loss estimation value, that is, the path loss estimation value estimated by the path loss estimation reference signal in the MAC CE signaling sent by the network device.
  • the embodiments of the present application ensure that the terminal device has enough time to measure the path loss estimation value according to the updated path loss estimation reference signal, and then determine the transmission power of the uplink signal; at the same time, the corresponding delay and the transmission power of the uplink signal are also considered.
  • the application time of the relevant parameter ensure that the terminal device has enough time to measure the path loss estimation value according to the updated path loss estimation reference signal, and then determine the transmission power of the uplink signal; at the same time, the corresponding delay and the transmission power of the uplink signal are also considered.
  • the application time of the relevant parameter ensure that the terminal device has enough time to measure the path loss estimation value according to the updated path loss estimation reference signal, and then determine the transmission power of the uplink signal; at the same time, the corresponding delay and the transmission power of the uplink signal are also considered.
  • the scenario shown above uses the MAC CE to directly indicate the path loss estimation reference signal.
  • the MAC CE may not indicate the path loss estimation reference signal, but uses other information to indicate the path loss estimation reference signal.
  • the situation please refer to Scenario Two and Scenario Three.
  • the MAC CE signaling includes the information of the reference signal of the uplink transmission beam.
  • the MAC CE signaling can be used to instruct to update the uplink transmission beam.
  • the MAC CE signaling may include the identifier of the reference signal of the uplink transmission beam, and the CC information and BWP information where the reference signal of the uplink transmission beam is located.
  • FIG. 5 is a schematic diagram of a MAC CE format provided by an embodiment of the present application, in which the meaning of each field is as follows:
  • A/D The length of this field can be 1 bit, set to 1 to indicate activation, and set to 0 to indicate deactivation. Specifically, when set to 1, it can indicate that the MAC CE signaling is used to instruct to update the uplink transmission beam.
  • SRS resource set cell ID (Cell ID): The length can be 5 bits, which can indicate the CC where the SRS resource set is located. If the C field in FIG. 5 is 0, it can also indicate the CC where the resource represented by the resource ID in FIG. 5 is located.
  • SRS resource set BWP ID 2 bits, which can indicate the BWP where the SRS resource set is located. If the C field in FIG. 5 is 0, it can also indicate the BWP where the resource represented by the resource ID in FIG. 5 is located.
  • the length can be 1 bit; set to 1 to indicate that the resource reservation cell IDi and resource BWP IDi fields in Figure 5 are present, and set to 0 to indicate that they do not exist.
  • SUL The length can be 1 bit; set to 1 to indicate SUL, and set to 0 to indicate to NUL.
  • SP SRS resource set ID The length can be 4 bits, which can represent the ID of the target SRS resource set.
  • the length can be 1 bit, which can indicate the type of the reference resource of the spatial relation. Set to 0 to indicate that the resource IDi in the figure represents the ID or SSB ID of the SRS resource, and set to 1 to indicate that the resource IDi in the figure represents the channel status information reference signal (CSI-RS) resource. ID. Understandably, this field only exists when the A/D field is set to 1.
  • Resource IDi The length can be 7 bits, which can represent the identifier of the reference resource of the spatial relation.
  • the first bit of the resource IDi can be used to distinguish SRS or synchronization signal block (synchronization signal block, SSB), and the last 6 bits can be the ID or SSB ID of the SRS resource.
  • the Fi field is set to 1
  • the 7 bits of the resource IDi are the ID of the CSI RS resource. Understandably, this field only exists when the A/D field is set to 1.
  • Resource serving cell IDi The length can be 5 bits, and it can indicate the CC where the resource IDi is located.
  • Resource BWP IDi The length can be 2 bits, which can indicate the BWP where the resource IDi is located.
  • the MAC CE signaling may include an identification whether to update the path loss estimation reference signal.
  • the length of the identifier (that is, the identifier of whether to update the path loss estimation reference signal) may be 1 bit long.
  • the 1 bit may be a newly added bit in the MAC CE signaling shown in FIG. 5, or the 1-bit R field in FIG. 5 may be 1 bit or a combination of multiple R fields.
  • the MAC CE signaling may also include an identification of whether there is a path loss estimation reference signal.
  • the length of the identifier (that is, the identifier of whether there is a path loss estimation reference signal) may be 1 bit long.
  • the 1 bit may be added to the MAC CE signaling shown in FIG. 5 by 1 bit, or the 1 bit may also be 1 bit in the R field in FIG. 5 or a combination of multiple R fields.
  • the flag is'Yes', for example, when the related field is set to 1, it means that the MAC CE contains the flag of the path loss estimation reference signal.
  • the flag is'No', for example, when the relevant field is set to 0, it means that the MAC CE does not contain the identification of the path loss estimation reference signal.
  • the terminal device can update the path loss reference signal by referring to the reference signal of the spatial relation. .
  • the identification of the path loss estimation reference signal can exist when there is a path loss estimation reference signal in the MAC CE signaling, that is, the identification of the path loss estimation reference signal can be in the MAC CE signaling whether there is a path loss estimation reference The signal's mark "is" exists when it is "yes".
  • the MAC CE may include the identification of one path loss estimation reference signal or the identification of multiple path loss estimation reference signals. If the MAC CE includes a path loss estimation reference signal identifier, it can indicate that the transmission power of all SRS resources in the SRS resource set corresponding to the SRS resource set ID indicated by the MAC CE can refer to the indicated path loss estimation Reference signal.
  • the MAC CE may indicate that the transmission power of all SRS resources in the SRS resource set corresponding to the SRS resource set ID indicated by the MAC CE may refer to the multiple indicated in turn.
  • Path loss estimation reference signal It can be understood that the corresponding relationship between the path loss estimation reference signal and the SRS resource set shown above is only an example, and in specific implementation, other indication methods may also be referred to.
  • the path loss estimation reference signal may be included in the MAC CE, that is, in the following scenario, the “identification of the path loss estimation reference signal” in the MAC CE is Yes.
  • the scenario where the path loss estimation reference signal is included in the MAC CE may include one or more of the following:
  • the reference signal of the spatial relation is a non-periodic reference signal. Since the measurement opportunity of the aperiodic reference signal may be one time, the aperiodic reference signal is not suitable for estimating the path loss estimation value. Optionally, it may also include a scenario where the spatial relation is a semi-persistent reference signal.
  • the spatial relation of different SRS resources has different reference signals. If the path loss estimation reference signal of each SRS resource changes with the change of the reference signal in the spatial relation, it may cause the path loss estimation of different SRS resources to be different, and ultimately lead to different transmission powers of different SRS, thereby increasing the terminal.
  • the complexity of device implementation causes power imbalance between different transmission ports, so the transmission power of multiple SRS resources in one SRS resource set can be kept consistent. Therefore, in this scenario, the path loss estimation reference signal of one half-period (per) SRS resource set can be indicated.
  • the reference signal of the spatial relation is the uplink reference signal. Because the uplink reference signal cannot be used as a reference signal for path loss estimation. Therefore, in this scenario, the MAC CE may include the path loss estimation reference signal.
  • the terminal device can search for the spatial relation of the uplink reference signal according to the configuration of the uplink reference signal, that is, according to a kind of'chain rule', it can find a downlink reference signal and use this The downlink reference signal is used as the path loss estimation reference signal.
  • the path loss estimation reference signal is related to the reference signal of the uplink transmission beam, that is to say, the terminal device can perform RSRP (received power after high-level filtering) measurement according to the reference signal in the uplink transmission beam to obtain Estimated path loss.
  • the MAC CE signaling may also include the identification of the target SRS resource or the target SRS resource set.
  • the MAC CE signaling header may include the LCID.
  • the LCID the target SRS resource, or the identification of the target SRS resource set, reference may be made to the foregoing embodiment, which will not be described in detail here.
  • the transmission beam of the PUSCH may be determined by the uplink transmission beam of the SRS resource indicated by the SRI in the DCI.
  • the transmit power of the PUSCH may be determined according to the path loss estimation reference signal associated (or corresponding) to the SRI codepoint in the DCI. That is to say, if the uplink transmission beam of the SRS resource indicated by the sounding reference signal resource indicator (SRS resource indicator, SRI) in the DCI of the scheduling PUSCH changes, the uplink transmission beam of the PUSCH should change.
  • the path loss estimation reference signal for determining the PUSCH transmission power should also be changed accordingly.
  • the MAC CE in scenario 2 may also include information for indicating whether the MAC CE is also used to update the path loss estimation reference signal used to determine the PUSCH transmission power. If it is included, the terminal device can use the uplink beam of the SRS resource indicated by the SRI to determine the path loss estimation reference signal of the PUSCH.
  • the effective time can be no later than n+X+T; if it is not included, the terminal device can The mapping relationship between the SRI codepoint and the path loss estimation reference signal is used to determine the path loss estimation reference signal of the PUSCH.
  • the network device sends the MAC CE signaling to the terminal device, so that after receiving the MAC CE signaling, the terminal device knows that the uplink transmission beam is updated by interpreting the MAC CE signaling.
  • the terminal device can estimate the path loss estimation value according to the reference signal of the uplink transmission beam included in the MAC CE signaling; and update the uplink transmission beam according to the MAC CE signaling.
  • the terminal device can determine the transmission of the uplink signal according to the estimated path loss (that is, the estimated path loss estimated by the reference signal of the uplink transmission beam in the MAC CE signaling) after n+X+T time. power.
  • the terminal device can adjust the uplink transmission beam according to the uplink transmission beam indicated by the MAC CE signaling after n+X+T time.
  • the network equipment uses simplified signaling (ie MAC CE signaling), that is, the MAC CE signaling indicates the uplink transmission beam to simultaneously instruct the terminal equipment to update the uplink transmission beam and the path loss estimation reference signal. It is ensured that the terminal equipment has enough time to measure the path loss estimation value according to the updated path loss estimation reference signal, and then determine the transmission power of the uplink signal. At the same time, the corresponding delay of the application time of the uplink transmission beam indicated by the MAC CE is also considered.
  • simplified signaling ie MAC CE signaling
  • the MAC CE signaling includes the information of the reference signal of the downlink transmission beam.
  • the MAC CE signaling can be used to indicate to update the activated TCI (transmission configuration indicator) status.
  • the activated TCI state By indicating the activated TCI state, it can indirectly indicate the update of the uplink transmission beam and the downlink reception beam, and indirectly indicate the update of the path loss estimation reference signal.
  • the MAC CE signaling may include one or more activated TCI states, or may include one or more deactivated TCI states.
  • the network device can use the activated TCI state to indicate the beam of data transmission, so that the terminal device can adjust the receiving beam according to the activated TCI state, so that the terminal device can receive data.
  • the network device can use MAC CE signaling to activate one or more TCI states, as shown in the signaling format in FIG. 6.
  • Ti represents the i-th TCI state configured in RRC
  • the network device sends the above MAC CE to configure a list of activated TCI states for the terminal device.
  • the activated TCI state means that the terminal device in this TCI state needs to be measured and maintained, including maintaining the beam direction corresponding to this TCI state, receiving weight, time offset, frequency offset, etc.
  • the terminal device may perform RSRP measurement according to the reference signal in the activated TCI.
  • the terminal device may select one or more of the multiple activated TCIs as the path loss estimation reference signal.
  • the terminal device selects the embodiment of the present application. For example, it can be selected based on the identifier of the TCI state, or based on the measurement result of the reference signal contained in the TCI, and so on.
  • the network device sends the above MAC CE signaling to the terminal device, so that after receiving the MAC CE signaling, the terminal device knows that the network device needs to update the downlink transmission beam by interpreting the MAC CE signaling. Therefore, the terminal device can estimate the path loss estimation value according to the reference signal of the downlink transmission beam included in the MAC CE signaling; and adjust the uplink transmission beam and the downlink reception beam according to the MAC CE signaling. As an example, the terminal device can be based on the path loss estimation value (that is, estimated by using the reference signal of the downlink transmission beam in the MAC CE signaling after n+X+T time (or at n+X+T) The path loss estimate) determines the transmit power of the uplink signal.
  • the path loss estimation value that is, estimated by using the reference signal of the downlink transmission beam in the MAC CE signaling after n+X+T time (or at n+X+T) The path loss estimate
  • the terminal device can adjust the uplink transmission beam and the downlink reception beam according to the downlink transmission beam indicated by the MAC CE signaling after n+X+T time (or n+X+T). It can be understood that, due to the consistency of the receiving and sending beams, the terminal device can use the beam for receiving the downlink signal to send the uplink signal.
  • MAC CE signaling may also include parameters related to the transmit power of the uplink signal, such as target power, path loss compensation factor, or power adjustment parameters, etc.
  • parameters related to the transmit power of the uplink signal such as target power, path loss compensation factor, or power adjustment parameters, etc.
  • the network equipment uses simplified signaling, that is, the MAC CE signaling instructs the terminal equipment to update the uplink transmission beam, the downlink reception beam, and the path loss estimation reference signal by instructing to update the downlink transmission beam.
  • the terminal device has enough time to measure the path loss estimation value according to the updated path loss estimation reference signal, and then determine the transmission power of the uplink signal.
  • the corresponding delay of the application time of the uplink transmission beam and the downlink reception beam corresponding to the downlink transmission beam indicated by the MAC CE is also considered.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices, and the methods and operations implemented by network devices can also be Can be used for network equipment components (such as chips or circuits) to achieve.
  • each network element such as a terminal device and a network device
  • each network element includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the terminal device or the network device into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of dividing each function module corresponding to each function.
  • Fig. 7a is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device or a chip.
  • the communication device is used to execute the power adjustment method described in the embodiment of the present application.
  • the communication device includes:
  • the receiving unit 701 is configured to obtain a media access layer control element MAC CE, where the MAC CE is used to update the path loss estimation reference signal;
  • the processing unit 702 is configured to determine the path loss estimation value according to the path loss estimation reference signal; wherein, the effective time of the path loss estimation value is not later than n+X+T, where n is the time to send the feedback information, and the feedback information is used To feed back whether the MAC CE is received correctly, the X is a fixed duration, and the T is a variable duration;
  • the processing unit 702 is further configured to determine the transmission power of the uplink signal according to the path loss estimation value.
  • the communication device further includes: a sending unit 703, configured to send the uplink signal with the transmission power after the path loss estimation value becomes effective.
  • the T is related to the high-level filtering capability information of the terminal device.
  • the high-level filtering capability information includes at least one of the following: high-level filtering configuration information, measurement times, measurement period, measurement settings, or time domain information of the path loss estimation reference signal; wherein, the measurement times The number of measurements of the received power of the path loss estimation reference signal; the measurement period is the transmission period of the path loss estimation reference signal; the measurement setting is a setting related to the path loss estimation reference signal.
  • the MAC CE includes the information of the path loss estimation reference signal.
  • the MAC CE also includes a parameter related to the transmission power of the uplink signal, and the parameter related to the transmission power of the uplink signal includes at least one of the following: target power, path loss compensation factor, or Power adjustment parameters.
  • the effective time of the parameter related to the transmission power of the uplink signal is no later than n+X; or, the effective time of the parameter related to the transmission power of the uplink signal is no later than n+X +T.
  • the MAC CE includes the information of the reference signal of the uplink transmission beam, and the path loss estimation reference signal is related to the reference signal of the uplink transmission beam.
  • the processing unit 702 is further configured to adjust the uplink transmission beam according to the MAC CE; wherein, the effective time of the uplink transmission beam is no later than n+X; or, the time of the uplink transmission beam The effective time is no later than n+X+T.
  • the MAC CE includes the information of the reference signal of the downlink transmission beam, and the path loss estimation reference signal is related to the reference signal of the downlink transmission beam.
  • the processing unit 702 is further configured to adjust the uplink transmission beam and the downlink reception beam according to the downlink transmission beam; wherein, the effective time of the downlink reception beam and the uplink transmission beam is no later than n+ X+T; or, the effective time of the downlink receive beam is no later than n+X, and the effective time of the uplink transmit beam is no later than n+X+T; or, the effective time of the downlink receive beam and the uplink transmit beam No later than n+X.
  • the processing unit 702 can be one or more processors
  • the sending unit 703 can be a transmitter
  • the receiving unit 701 can be a receiver.
  • the sending unit 703 and the receiving unit 701 are integrated into one device, such as a transceiver.
  • the receiving unit 701 may receive the MAC CE sent by the network device, and the sending unit 703 may send the uplink signal at a determined transmission power of the uplink signal.
  • the processing unit 702 can be one or more processors
  • the sending unit 703 can be an output interface
  • the receiving unit 701 can be an input interface
  • the input and output interface is also called a communication interface, or an interface circuit, or an interface, and so on.
  • Fig. 7b is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a network device or a chip.
  • the communication device is used to perform the power adjustment method described in the embodiment of the present application.
  • the communication device includes:
  • the sending unit 710 is configured to send a media access layer control element MAC CE to the terminal device, where the MAC CE is used to update the path loss estimation reference signal.
  • the MAC CE includes the information of the path loss estimation reference signal.
  • the MAC CE further includes a parameter related to the transmission power of the uplink signal, and the parameter related to the transmission power of the uplink signal includes at least one of the following: target power, path loss compensation factor Or power adjustment parameters.
  • the MAC CE includes the information of the reference signal of the uplink transmission beam, and the path loss estimation reference signal is related to the reference signal of the uplink transmission beam.
  • the MAC CE includes the information of the reference signal of the downlink transmission beam, and the path loss estimation reference signal is related to the reference signal of the downlink transmission beam.
  • the communication device may further include a processing unit and a receiving unit, which are not shown in the figure.
  • the processing unit may be one or more processors, the sending unit 710 may be a transmitter, and the receiving unit may be a receiver, or the sending unit 710 and the receiving unit are integrated into one device, such as a transceiver.
  • the processing unit may be one or more processors, the sending unit 710 may be an output interface, and the receiving unit may be an input interface, or the sending unit 710 and the receiving unit are integrated into one unit, such as an input and output interface. , Or called communication interface, or interface circuit, or interface, etc.
  • a communication device 80 provided by an embodiment of the application is used to implement the function of the terminal device in the foregoing method.
  • the device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device can also be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 80 includes at least one processor 820, which is configured to implement the function of the terminal device in the method provided in the embodiment of the present application.
  • the device 80 may also include a communication interface 810.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 810 is used for the device in the device 80 to communicate with other devices.
  • the processor 820 uses the communication interface 810 to send and receive data, and is used to implement the method described in the foregoing method embodiment.
  • the device 80 may also include at least one memory 830 for storing program instructions and/or data.
  • the memory 830 and the processor 820 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 820 may cooperate with the memory 830 to operate.
  • the processor 820 may execute program instructions stored in the memory 830. At least one of the at least one memory may be included in the processor.
  • connection medium between the aforementioned communication interface 810, the processor 820, and the memory 830 is not limited in the embodiment of the present application.
  • the memory 830, the communication interface 820, and the communication interface 810 are connected by a bus 840 in FIG. 8a.
  • the bus is represented by a thick line in FIG. 8a.
  • the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 8a, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • FIG. 8b is a schematic structural diagram of a terminal device 800 provided in an embodiment of this application.
  • the terminal device can perform the method shown in FIG. 2, or the terminal device can also perform the operation of the terminal device shown in FIG. 7a.
  • FIG. 8b only shows the main components of the terminal device.
  • the terminal device 800 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to execute the process described in FIG. 2.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the terminal device 800 may also include input and output devices, such as a touch screen, a display screen, a keyboard, etc., which are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 8b only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire terminal.
  • the equipment controls, executes the software program, and processes the data of the software program.
  • the processor may also be a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read-only memory
  • electrically available Erase programmable read-only memory electrically available Erase programmable read-only memory
  • EEPROM electrically available Erase programmable read-only memory
  • flash memory electrically available Erase programmable read-only memory
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the transceiver unit 801 of the terminal device 800, and the processor with the processing function may be regarded as the processing unit 802 of the terminal device 800.
  • the terminal device 800 may include a transceiving unit 801 and a processing unit 802.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiving unit 801 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiving unit 801 can be regarded as the sending unit, that is, the transceiving unit 801 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver unit 801 and the processing unit 802 may be integrated into one device or separated into different devices.
  • the processor and the memory may also be integrated into one device or separate into different devices.
  • the transceiver unit 801 may be used to execute the method shown in step 201 shown in FIG. 2.
  • the transceiver unit 801 may also be used to execute the method shown in step 204 shown in FIG. 2.
  • the processing unit 802 may also be used to execute the methods shown in 202 and 203 shown in FIG. 2.
  • the transceiver unit 801 may also be used to execute the methods shown by the sending unit 703 and the receiving unit 701.
  • the processing unit 802 may also be used to execute the method shown by the processing unit 702.
  • the device shown in FIG. 9 may also be referred to.
  • the device includes a processor 910, a data sending processor 920, and a data receiving processor 930.
  • the processing unit 702 in the foregoing embodiment may be the processor 910 in FIG. 9 and completes corresponding functions.
  • the receiving unit 701 in the foregoing embodiment may be the receiving data processor 930 in FIG. 9, and the sending unit 703 may be the sending data processor 920 in FIG. 9.
  • Fig. 9 shows a channel encoder and a channel decoder, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are merely illustrative.
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code, which when the computer program code runs on a computer, causes the computer to execute the steps shown in FIG. 2 Show the method in the embodiment. Further, the computer can be made to execute the method shown in FIG. 2 according to various scenarios provided in the embodiments of the present application.
  • the present application also provides a computer-readable medium that stores program code, and when the program code is run on a computer, the computer executes the steps in the embodiment shown in 2. Methods. Further, the computer can be made to execute the method shown in FIG. 2 according to various scenarios provided in the embodiments of the present application.
  • the present application also provides a system, which includes the aforementioned terminal device and network device.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed between two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component can be based on, for example, a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.
  • a signal having one or more data packets (e.g. data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through a signal) Communicate through local and/or remote processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种功率调整方法及装置,用于增加上行信号的发送功率的稳定性,使得上行信号能够有效的传输。该方法包括:接收MAC CE(201),该MAC CE用于更新路损估计参考信号;根据路损估计参考信号确定路损估计值(202);其中,该路损估计值的生效时间不晚于n+X+T,该n为发送反馈信息的时间,该反馈信息用于反馈该MAC CE是否被正确接收,该X为固定时长,该T为可变时长。从上可看出,该路损估计值的生效时间不晚于n+X+T,避免了无法在短时间内对路损估计参考信号的接收功率进行多次滤波,从而可使得通信装置可有足够的时间对该路损估计参考信号的接收功率进行多次滤波,路损估计值确定的稳定性和准确性。

Description

功率调整方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种功率调整方法及装置。
背景技术
在终端设备向网络设备发送上行信号时,该终端设备可先确定该上行信号的发送功率。其中,该上行信号的发送功率的确定方法如:该终端设备对该网络设备发送的路损估计参考信号的接收功率进行高层滤波,得到高层滤波后的参考信号接收功率;然后根据该高层滤波后的参考信号接收功率以及该参考信号的发送功率得到路损估计值;进而根据该路损估计值得到该上行信号的发送功率。
其中,网络设备可通过相关信令来配置路损估计参考信号,然后终端设备在一定时间内通过配置的路损估计参考信号来进行路损估计值的估计。
然而,上述方法中终端设备得到的上行信号的发送功率往往不稳定。
发明内容
本申请实施例提供一种功率调整方法及装置,用于增加上行信号的发送功率的稳定性,使得上行信号能够有效的传输。
第一方面,本申请实施例提供了一种功率调整方法,该方法包括:接收媒体接入层控制元素(medium access control control element,MAC CE),所述MAC CE用于更新路损估计参考信号;根据路损估计参考信号确定路损估计值;其中,该路损估计值的生效时间不晚于n+X+T,所述n为发送反馈信息的时间,所述反馈信息用于反馈所述MAC CE是否被正确接收,所述X为固定时长,所述T为可变时长。
从上可看出,该路损估计值的生效时间不晚于n+X+T;也就是说,通信装置(如终端设备或芯片等)避免了无法在短时间内对路损估计参考信号的接收功率进行多次滤波,从而可使得该通信装置有足够的时间对该路损估计参考信号的接收功率(也可理解为参考信号接收功率)进行多次滤波,确定路损估计值;且经过多次滤波得到接收功率,提高了路损估计值确定的稳定性和准确性。
在一种可能的实现方式中,所述方法还包括:在所述路损估计值生效后,根据所述路损估计值确定上行信号的发送功率。
其中,尽管路损估计值的生效时间不晚于n+X+T,但是通信装置运用该路损估计值确定上行信号的发送功率的时间可不早于n+X+T(在n+X+T时,或在n+X+T时间之后)。即该通信装置可在n+X+T时,根据路损估计值确定上行信号的发送功率,或者,该通信装置还可在n+X+T时间后,根据路损估计值确定上行信号的发送功率。
本申请实施例中,通过提高路损估计值的稳定性和准确性,从而提高了该上行信号发送功率的确定结果的稳定性和准确性。可理解,该上行信号可包括物理随机接入信道 (physical random access channel,PRACH)、物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、探测参考信号(sounding reference signal,SRS)、PUCCH解调参考信号(de-modulation reference signal,DMRS)、PUSCH-DMRS或上行相位跟踪参考信号(phase tracking reference signal,PTRS)中的一项或多项。
在一种可能的实现方式中,所述方法还包括:在所述路损估计值生效后,以所述发送功率发送所述上行信号。
本申请实施例中,在路损估计值生效后发送该上行信号,可使得该上行信号稳定且及时的得到传输,从而提高了信号传输的稳定性。
在一种可能的实现方式中,所述T与网络配置信息和/或终端设备的能力信息相关,所述终端设备的能力信息包括所述终端设备的高层滤波能力信息。其中,该终端设备的能力信息用于表示该终端设备的能力大小,该终端设备需要将该终端设备的能力信息上报给网络设备,该网络设备可根据该终端设备的能力信息来为该终端设备配置相关的能力信息。可理解,网络设备配置的能力信息可以与终端设备上报的能力信息相同,也可能不同,本申请实施例不作限定。
本申请实施例中,该T可根据不同终端设备的高层滤波能力信息而不同,避免了不同终端设备均使用同一时长,从而导致有的终端设备可能会产生等待时长,该等待时长可理解为该有的终端设备已经确定了路损估计值,但是未到达规定时间,而需要等待该路损估计值生效的时长;或者有的终端设备还未有效确定出路损估计值,而不得已使用未有效确定的路损估计值,导致不能稳定发送上行信号。
在一种可能的实现方式中,所述网络配置信息包括以下至少一项:高层滤波配置信息、测量次数、测量周期、测量设置或所述路损估计参考信号的时域信息。即这些信息为网络设备配置的信息,或者这些信息为协议预定义的信息。
在一种可能的实现方式中,所述高层滤波能力信息包括以下至少一项:高层滤波配置信息、测量次数、测量周期、测量设置或所述路损估计参考信号的时域信息;其中,所述测量次数为所述路损估计参考信号的接收功率的测量次数;所述测量周期为所述路损估计参考信号的传输周期;所述测量设置为与所述路损估计参考信号相关的设置。
在一种可能的实现方式中,所述T=测量次数*测量周期。
在一种可能的实现方式中,所述MAC CE中包括所述路损估计参考信号的信息。
本申请实施例中,该MAC CE中通过包括路损估计参考信号的信息,可使得通信装置根据该MAC CE中的路损估计参考信号来进行估计路损估计值,相比于通过无线资源控制(radio resource control,RRC)信令配置路损估计参考信号,减少了信令开销且减少了时延。
在一种可能的实现方式中,所述MAC CE中还包括与所述上行信号的发送功率相关的参数,所述与所述上行信号的发送功率相关的参数包括以下至少一项:目标功率、路损补偿因子或功率调整参数。
本申请实施例中,该目标功率、路损补偿因子以及功率调整参数即为与发送功率相关的参数。
在一种可能的实现方式中,所述与所述上行信号的发送功率相关的参数的生效时间不晚于n+X;或者,所述与所述上行信号的发送功率相关的参数的生效时间不晚于n+X+T。
本申请实施例中,通信装置接收到MAC CE后,通过解读该MAC CE可利用该MAC CE中所包括的与发送功率相关的参数来确定上行信号的发送功率,也可以等待路损估计值确定出来之后,与该路损估计值同时用于确定上行信号的发送功率。其中,与发送功率相关的参数的生效时间不晚于n+X+T时,该与上行信号的发送功率相关的参数可以与路损估计值同步更新(即同步生效),可提高上行信号的发送功率的准确性。而与发送功率相关的参数不晚于n+X时,可降低调整发送功率的时延。
在一种可能的实现方式中,所述MAC CE中包括上行发送波束的参考信号的信息,所述路损估计参考信号与所述上行发送波束的参考信号相关。
本申请实施例中,该MAC CE中可包括上行发送波束的参考信号的信息,通过包括该上行发送波束的参考信号的信息,可使得通信装置根据该上行波束的参考信号来更新路损估计参考信号。也就是说,通过该MAC CE,通信装置不仅可更新上行发送波束,还可更新路损估计参考信号,从而降低了信号开销,避免了通过多个MAC CE来指示该通信装置分别调整路损估计参考信号以及上行发送波束。
在一种可能的实现方式中,所述方法还包括:根据所述MAC CE调整所述上行发送波束;其中,所述上行发送波束的生效时间不晚于n+X;或者,所述上行发送波束的生效时间不晚于n+X+T。
本申请实施例中,由于更新上行发送波束可不进行高层滤波,而确定路损估计值时可进行高层滤波,因此该上行发送波束的生效时间可以与路损估计值的生效时间一致,也可以不一致。其中,其中,上行发送波束的生效时间不晚于n+X+T时,可使得该上行发送波束可以与路损估计值同步更新(即同步生效),从而提高上行信号的发送功率的准确性。而上行发送波束的生效时间不晚于n+X时,可降低时延。
在一种可能的实现方式中,所述MAC CE中包括下行发送波束的参考信号的信息,所述路损估计参考信号与所述下行发送波束的参考信号相关。
本申请实施例中,下行发送波束即为网络设备发送下行信号的下行发送波束,该下行发送波束改变,即网络设备发送下行信号的下行发送波束改变了;从而与下行发送波束对应的下行接收波束随着改变,进而上行发送波束随着改变,进一步的,上行信号的发送功率也可随着更新。也就是说,通过该MAC CE不仅用于更新下行接收波束,还可用于更新上行发送波束和路损估计参考信号,降低了信号开销,避免了通过多个MAC CE来指示该通信装置分别调整下行接收波束、上行发送波束以及路损估计参考信号。
在一种可能的实现方式中,所述方法还包括:根据所述下行发送波束调整上行发送波束和下行接收波束;其中,所述下行接收波束和所述上行发送波束的生效时间不晚于n+X+T;或者,所述下行接收波束的生效时间不晚于n+X,所述上行发送波束的生效时间不晚于n+X+T;或者,所述下行接收波束和所述上行发送波束的生效时间不晚于n+X。
第二方面,本申请实施例提供一种通信装置,所述通信装置包括处理单元和接收单元;所述接收单元,用于接收媒体接入层控制元素MAC CE,所述MAC CE用于更新路损估计参考信号;所述处理单元,用于根据路损估计参考信号确定路损估计值;其中,所述路损估 计值的生效时间不晚于n+X+T,所述n为发送反馈信息的时间,所述反馈信息用于反馈所述MAC CE是否被正确接收,所述X为固定时长,所述T为可变时长;所述处理单元,还用于根据所述路损估计值确定上行信号的发送功率。
在一种可能的实现方式中,所述装置还包括发送单元,用于在所述路损估计值生效后,以所述发送功率发送所述上行信号。
在一种可能的实现方式中,所述T与网络配置信息和/或终端设备的能力信息相关。
在一种可能的实现方式中,所述高层滤波能力信息包括以下至少一项:高层滤波配置信息、测量次数、测量周期、测量设置或所述路损估计参考信号的时域信息;其中,所述测量次数为所述路损估计参考信号的接收功率的测量次数;所述测量周期为所述路损估计参考信号的传输周期;所述测量设置为与所述路损估计参考信号相关的设置。
在一种可能的实现方式中,所述网络配置信息包括以下至少一项:高层滤波配置信息、测量次数、测量周期、测量设置或所述路损估计参考信号的时域信息。即这些信息为网络设备配置的信息,或者这些信息为协议预定义的信息。
在一种可能的实现方式中,所述MAC CE中包括所述路损估计参考信号的信息。
在一种可能的实现方式中,所述MAC CE中还包括与所述上行信号的发送功率相关的参数,所述与所述上行信号的发送功率相关的参数包括以下至少一项:目标功率、路损补偿因子或功率调整参数。
在一种可能的实现方式中,所述与所述上行信号的发送功率相关的参数的生效时间不晚于n+X;或者,所述与上行信号的发送功率相关的参数的生效时间不晚于n+X+T。
在一种可能的实现方式中,所述MAC CE中包括上行发送波束的参考信号的信息,所述路损估计参考信号与所述上行发送波束的参考信号相关。
在一种可能的实现方式中,所述处理单元,还用于根据所述MAC CE调整所述上行发送波束;其中,所述上行发送波束的生效时间不晚于n+X;或者,所述上行发送波束的生效时间不晚于n+X+T。
在一种可能的实现方式中,所述MAC CE中包括下行发送波束的参考信号的信息,所述路损估计参考信号与所述下行发送波束的参考信号相关。
在一种可能的实现方式中,所述处理单元,还用于根据所述下行发送波束调整上行发送波束和下行接收波束;其中,所述下行接收波束和所述上行发送波束的生效时间不晚于n+X+T;或者,所述下行接收波束的生效时间不晚于n+X,所述上行发送波束的生效时间不晚于n+X+T;或者,所述下行接收波束和所述上行发送波束的生效时间不晚于n+X。
第三方面,本申请实施例提供一种功率调整方法,该方法包括:向终端设备发送媒体接入层控制元素MAC CE,所述MAC CE用于更新路损估计参考信号。
在一种可能的实现方式中,所述MAC CE中包括所述路损估计参考信号的信息。
在一种可能的实现方式中,所述MAC CE中还包括与所述上行信号的发送功率相关的参数,所述与所述上行信号的发送功率相关的参数包括以下至少一项:目标功率、路损补偿因子或功率调整参数。
在一种可能的实现方式中,所述MAC CE中包括上行发送波束的参考信号的信息,所述路损估计参考信号与所述上行发送波束的参考信号相关。
在一种可能的实现方式中,所述MAC CE中包括下行发送波束的参考信号的信息,所述路损估计参考信号与所述下行发送波束的参考信号相关。
第四方面,本申请实施例提供一种通信装置,包括发送单元,用于向终端设备发送媒体接入层控制元素MAC CE,所述MAC CE用于更新路损估计参考信号。
在一种可能的实现方式中,所述MAC CE中包括所述路损估计参考信号的信息。
在一种可能的实现方式中,所述MAC CE中还包括与所述上行信号的发送功率相关的参数,所述与所述上行信号的发送功率相关的参数包括以下至少一项:目标功率、路损补偿因子或功率调整参数。
在一种可能的实现方式中,所述MAC CE中包括上行发送波束的参考信号的信息,所述路损估计参考信号与所述上行发送波束的参考信号相关。
在一种可能的实现方式中,所述MAC CE中包括下行发送波束的参考信号的信息,所述路损估计参考信号与所述下行发送波束的参考信号相关。
第五方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面中所示的相应的方法。
第六方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第三方面中所示的相应的方法。
第七方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面所示的相应的方法。
第八方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第三方面所示的相应的方法。
第九方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于从所述存储器调用所述程序代码执行如第三方面所述的方法。
第十一方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,如第一方面所述的方法被执行。
第十二方面,本申请实施例提供一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序时,如第三方面所述的方法被执行。
第十三方面,本申请实施例提供一种通信系统,所述通信系统包括终端设备和网络设备,所述终端设备用于执行如第一方面所述的方法,所述网络设备用于执行如第三方面所述的方法。
第十四方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质 用于存储指令,当所述指令被执行时,使得第一方面所述的方法被实现。
第十五方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使得第三方面所述的方法被实现。
第十六方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第一方面所述的方法被实现。
第十七方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得第三方面所述的方法被实现。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种功率调整方法的流程示意图;
图3是本申请实施例提供的一种生效时间的示意图;
图4是本申请实施例提供的一种上行信号发送时间的示意图;
图5是本申请实施例提供的一种信令格式示意图;
图6是本申请实施例提供的一种信令格式示意图;
图7a是本申请实施例提供的一种通信装置的结构示意图;
图7b是本申请实施例提供的一种通信装置的结构示意图;
图8a是本申请实施例提供的一种通信装置的结构示意图;
图8b是本申请实施例提供的一种终端设备的结构示意图;
图9是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图对本申请实施例进行描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
首先,介绍本申请实施例所涉及的网络架构。其中,本申请使用的通信系统可理解为无线蜂窝通信系统,又或者理解为基于蜂窝网络架构的无线通信系统等等。本申请提供的功率调整方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统,还可以是LTE与5G混合架构、也可以是5G新无线(new radio,NR)系统,以及未来通信发展中出现的新的通信系统等。只要通信系统中需要确定路损估计值,均可以采用本申请实施例提供的功率调整方法。图1是本申请实施例提供的一种通信系统的示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括至少一个网络设备,仅示出一个,如图中的下一代基站(the next generation Node B,gNB);以及与该网络设备连接的一个或多个终端设备,如图中的终端设备1和终端设备2。
其中,网络设备可以是能和终端设备通信的设备。网络设备可以是任意一种具有无线收发功能的设备,包括但不限于基站。例如,该基站可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB),又如该基站可以为gNB,又或者该基站为未来通信系统中的基站。可选的,该网络设备还可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该网络设备还可以是可穿戴设备或车载设备等。可选的,该网络设备还可以是小站,传输节点(transmission reference point,TRP)等。可理解,该基站还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站等等。
终端设备,也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(selfdriving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。可理解,该终端设备还可是未来5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选的,图1所示的通信系统中,终端设备1和终端设备2也可以通过设备到设备(device to device,D2D)、车与任何事物通信(vehicle-to-everything,V2X)或机器到机器(machine to machine,M2M)等技术进行通信,本申请实施例对于终端设备1与终端设备2之间的通信方法不作限定。可理解,图1所示的通信系统中,网络设备和终端设备1可用于执行本申请实施例所提供的功率调整方法,如可执行图2所示的方法。另外,网络设备和终端设备2也可用于执行本申请实施例提供的功率调整方法。
其次,以下将介绍本申请实施例所涉及的发送功率的计算公式以及功率调整方法。
一般来说,上行通信在蜂窝网络系统中指的是终端设备向网络设备如基站发送信号,该信号可包括上行信号或上行物理信道中的一项或多项。例如,该信号可包括物理随机接入信道(physical random access channel,PRACH)、物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、探测参考信号(sounding reference signal,SRS)、PUCCH解调参考信号(de-modulation reference signal,DMRS)、PUSCH-DMRS或上行相位跟踪参考信号(phase tracking reference signal,PTRS)中的一项或多项。可理解,该信号不局限于此,该信号还可为其他类型的上行信号或上行物理信道等等,本申请实施例不作限定。
以PUSCH为例,该PUSCH的发送功率可满足如下公式:
Figure PCTCN2019109765-appb-000001
其中,PL b1,f1,c1(q d1)为路损估计值,q d1为终端设备使用的参考信号的标识。也就是说,该路损估计值为该终端设备使用标识为q d1的参考信号所估计出来的值。具体的,该路损估计值由该参考信号的发送功率与该参考信号的接收功率得到,该参考信号的发送功率由网络设备通知终端设备,该参考信号的接收功率由终端设备测量得到。可理解,该参考信号的接收功率为高层滤波之后的参考信号接收功率(reference signal receiving power,RSRP)(通常称为RSRP),即该RSRP需要终端设备根据多次的测量结果滤波而得到。
其中,P PUSCH,b1,f1,c1(i1,j1,q d1,l1)为第一发送功率,该第一发送功率即确定的信号的发送功率;进一步的,i1为PUSCH的传输机会(transmission occasion),j1为
Figure PCTCN2019109765-appb-000002
这一参数集合中元素的索引,q d1为参考信号的标识,l1为PUSCH的功率控制调整状态的索引(power control adjustment state with index),b1为终端设备使用的PUSCH的带宽部分(bandwidth part,BWP),f1为终端设备使用的载频,c1为终端设备的服务小区。P CMAX,f1,c1(i1)为终端设备在服务小区c1的载频f1上时的最大发送功率。
Figure PCTCN2019109765-appb-000003
为终端设备的目标功率,即具体可以理解为在网络设备处PUSCH的目标功率值,即PUSCH到达网络设备时,期望PUSCH能够达到的功率,该值可由网络设备配置。
Figure PCTCN2019109765-appb-000004
为PUSCH的总带宽,
Figure PCTCN2019109765-appb-000005
为路径损耗补偿因子,
Figure PCTCN2019109765-appb-000006
*PL b1,f1,c1(q d1)为对路损损耗的补偿值,Δ TF,b1,f1,c1(i1)为PUSCH的发送功率调整分量,f b1,f1,c1(i1,l1)表示PUSCH功率控制调整状态(power control adjustment state),可由网络设备直接通过下行控制信息(downlink control information,DCI)指示当前PUSCH的发射功率是否需要调大或调小。可理解,本申请实施例对于公式(1)的具体描述不作限定,公式(1)中各个参数还可能有其他解释,这里不再一一说明。
一般的,可通过无线资源控制(radio resource control,RRC)信令来通知终端设备进行相关操作,如可通过RRC信令来通知终端设备更新路损估计参考信号。然而,使用RRC信令配置上行发送功率控制的相关参数,时延大,灵活性低,因此需要更快的信令,例如MAC CE信令来实现相关参数的更新。如可通过MAC CE信令来指示终端设备更新路损估计 参考信号,其中,该MAC CE信令可承载于物理下行共享信道(physical downlink shared channel,PDSCH)上。该MAC CE信令的生效时间即为终端设备可在发送反馈信息之后的3ms内。也就是说,在终端设备向网络设备反馈了与该MAC CE对应的反馈信息之后的3ms内,该终端设备需要完成以下操作:该终端设备解读该MAC CE得到新的路损估计参考信号,根据该路损估计参考信号来测量该路损估计参考信号的接收功率(即RSRP,高层滤波后的接收功率)(也可直接称为参考信号接收功率)得到路损估计值,确定上行信号的发送功率。
然而,在3ms内,终端设备测量RSRP的次数不多,也就是说终端设备进行滤波所需的样本可能不够多,即终端设备得到的高层滤波的RSRP不够多,从而导致上行信号发送功率不稳定。由此,本申请实施例提供了一种功率调整方法,可提高上行信号发送功率的稳定性,使得上行信号能够有效得到传输。
接着,以下将以通信装置为终端设备为例来说明本申请实施例所提供的功率调整方法。
图2是本申请实施例提供的一种功率调整方法的流程示意图,如图2所示,该功率调整方法包括:
201、网络设备向终端设备发送MAC CE信令,该MAC CE信令用于更新路损估计参考信号。
其中,对于该MAC CE信令的具体描述可参考如下描述,这里先不介绍。
其中,路损估计参考信号也可称为路损参考信号(pathloss reference),即终端设备根据该路损估计参考信号可得到路损估计值。因此,本申请实施例对于该路损估计参考信号的具体名称不作限定。
可选的,该网络设备可在如下任意一种或多种场景下向终端设备发送MAC CE信令:
场景一,网络设备检测到终端设备和该网络设备的相对位置发生变化;其中,终端设备和网络设备的相对位置可理解为如以网络设备为参考物,该终端设备的位置发生了变化。
场景二,该网络设备确定该终端设备的上行信号的发送功率过低或过高;其中,上行信号的发送功率过高时,该终端设备可能会对其他终端设备造成干扰;而上行信号的发送功率过低时,可能会使得该网络设备无法接收到该上行信号,或使得该网络设备无法正确接收到该上行信号等等,该情况下,该终端设备通过重新确定上行信号的发送功率,可避免上述情况。
场景三,该网络设备需要切换服务该终端设备的上行接收波束;其中,由于上行接收波束发送变化,由此上行发送波束就需要变化,从而该终端设备通过重新调整上行信号的发送功率,可及时与该上行接收波束匹配。
202、终端设备接收网络设备发送的MAC CE信令,并根据路损估计参考信号(如公式1中的q d1)确定路损估计值。
本申请实施例中,该路损估计值可为公式(1)中的PL b1,f1,c1(q d1),该路损估计值是由路损估计参考信号的发送功率以及高层滤波后的路损估计参考信号的接收功率得到,也就是说,路损估计参考信号的接收功率需要经过多次高层滤波得到。如终端设备可对得到的高层滤波后的接收功率进行平均处理,又或者加权处理等等,本申请实施例不作限定。
作为示例,高层滤波后得到的参考信号接收功率可满足如下公式:
F n=(1-α)*F n-1+α*M n  (2)
其中,F n是滤波结果,即第n次滤波后得到的参考信号接收功率,F n-1是第n-1次滤波后得到的参考信号接收功率,M n是第n次q d1的测量结果。可理解,对于第一次滤波F 0可为M 1。另外,公式(2)中的α可满足α=1/2 (ki/4),其中,ki为网络设备通过RRC信令配置的滤波系数(filter coefficient)。
203、终端设备根据路损估计值确定上行信号的发送功率。
具体的,该终端设备可根据类似公式(1)来得到上行信号的发送功率,如上行信号为PUSCH,该终端设备便可根据公式(1)来得到该PUSCH的发送功率。
又如该上行信号为SRS,则该SRS的发送功率可满足如下公式:
Figure PCTCN2019109765-appb-000007
其中,对于公式(2)的具体描述可参考公式(1),这里不再一一详述。
又如该上行信号为PRACH,则该PRACH的发送功率可满足如下公式:
P PRACH,b,f,c(i)=min{P CMAX,f,c(i),P PRACH,target,f,c+PL b,f,c}  (4)
其中,P PRACH,target,f,c为网络设备配置的目标功率,PL b,f,c默认使用与PRACH关联的同步信号块(synchronization signal block,SSB)作为路损估计参考信号。但是,本申请实施例中,用于确定PRACH的路损估计值的路损估计参考信号不限于是SSB,还可以是本申请实施例中所描述的路损估计参考信号(即MAC CE信令中所指示的路损估计参考信号)。
又如该上行信号为PUCCH,则该PUCCH的发送功率可满足如下公式:
Figure PCTCN2019109765-appb-000008
其中,最后一项g b,f,c(i,l)与公式(1)的最后一项类似,这里不再详述。Δ F_PUCCH(F)是PUCCH专有的调整量,F是PUCCH格式。
可理解,对于其他类型的上行信号的发送功率所满足的公式可参考公式(1)-公式(4),这里不作一一详述。其中,该其他类型的上行信号还可包括PUCCH-DMRS、PUSCH-DMRS或PTRS等等。
204、在路损估计值生效后,终端设备以确定的发送功率发送上行信号。
其中,该路损估计值的生效时间不晚于n+X+T,该n为发送反馈信息的时间,该反馈信息用于反馈该MAC CE是否被正确接收,该X为固定时长,该T为可变时长。
本申请实施例中,该生效时间不早于n+X,且不晚于n+X+T可理解为终端设备可在不早于n+X的时间,且不晚于n+X+T的时间内进行多次高层滤波以获得滤波后的参考信号接收功率。但是在不早于n+X+T的时间,该终端设备可以应用路损估计值,或者,理解为该终端设备使用该路损估计值来确定上行信号的发送功率。即终端设备能够应用MAC CE指示的路损估计参考信号调整上行发送功率来发送上行信号。也就是说,在该路损估计值生效后,该终端设备可以使用新的路损估计值来计算上行信号的发送功率。需要说明的是,该生效时间可以在n+X时,也可以在n+X之后,且n+X+T之前,也可以在n+X+T时,本申请 实施例对于该时间节点的划分不作限定。以及该终端设备应用该路损估计值的时间可以在n+X+T时,还可以在n+X+T之后。
具体的,终端设备发送反馈信息的时间,可理解为终端设备发送反馈信息的时刻,或者可理解为终端设备发送反馈信息的时隙(slot),又或者理解为终端设备发送反馈信息的mini-slot,又或者理解为终端设备发生反馈信息的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号等等,本申请实施例对于该n所表示的时间单位不作限定。可选的,该n可以是上行slot,还可以是上行slot对应的下行slot。可理解,在终端设备发送了多个反馈信息的情况下,该n可以是最后一个反馈信息的时刻或时隙等等。
作为示例如图3所示,其中在n时隙,该终端设备向网络设备发送反馈信息,X时长可为终端设备解读该MAC CE信令的时长,在终端设备解读到该MAC CE信令的内容,确定该MAC CE信令要求终端设备更新路损估计参考信号,由此该终端设备可根据该MAC CE信令所指示的路损估计参考信号来测量,从而获得RSRP。可理解,该X时长内终端设备所执行的解读操作仅为示例,在该时长内,终端设备还可以同时执行其他操作如波束的调整,面板的调整,射频的调整,缓存的处理等等。
可选的,由于该路损估计值生效后,该上行信号的发送功率便可得到,因此该路损估计值的生效时间可等效于上行信号发送功率的生效时间。该反馈信息可理解为混合自动重传请求(hybrid automatic repeat request)消息,即该反馈信息可通过向网络设备反馈肯定应答(acknowledgement,ACK)或否定应答(negative-acknowledgment,NACK)来指示MAC CE信令是否被正确接收。本申请实施例对于该反馈信息的具体格式等不作限定。
对于X和T的具体描述,可如下所示:
其中,X为固定时长,如该X可为3ms,可理解,该X对于终端设备1来说,是固定时长;但是对于不同的终端设备如终端设备1和终端设备2来说,又是可变时长,也就是说,该X对于不同的终端设备可能会有所差别,但是对于同一个终端设备可以是固定时长。可选的,该X可以和终端设备的能力相关,例如终端设备可以上报X,X可包括1ms,2ms,3ms等。可选的,当X的单位是时隙时,X还与子载波间隔相关。例如子载波间隔为15KHz,则X可以是3个时隙;又例如子载波间隔是120KHz,X可以是24个时隙。可理解,尽管该X的时隙数值不同,但是对应的绝对时间均为3ms。可选的,终端设备还可以根据不同的子载波间隔上报不同的能力。例如,如果子载波间隔是15KHz,X是3个时隙;如果子载波间隔是120KHz,X是25个时隙。可理解,该情况下,这两个X代表的绝对时间有所不同。可选的,该X可以是上行时隙的长度(也可以理解为上行时隙数目),还可以是下行时隙的长度(也可理解为下行时隙数目),至于该上行时隙与下行时隙的子载波间隔是否相同,不作限定。可选的,T可以是上行时隙的长度即上行时隙的数目,也可是下行时隙的长度即下行时隙的数目,还可以是绝对时间的长度等,本申请实施例对于如何衡量T的长度不作限定。
需要说明的是,由于终端设备上行传输的子载波间隔和下行传输的子载波间隔可能不同,也就是说一个上行时隙的长度和一个下行时隙的长度可能不同,也即上行时隙的编号和下行时隙的编号可能不同。因此终端设备在使用n+X+T的形式来确认时间的时候可以考虑上下行时隙之间的转换关系,或者确认绝对时间如毫秒和时隙长度之间的转换关系。可 选的,可全部换算成绝对时间,例如全部换算成毫秒之后再应用公式。
可选的,由于终端设备根据该MAC CE信令的指示对下行信号进行测量来估计路损估计值,因此终端设备还可以将n+X+T这个时间换算成下行时隙后再应用n+X+T这个时间。具体换算的例子如下,如果n是上行时隙编号,X是以上行时隙数目计数的时间长度,T是以下行时隙数目计数的时间长度,则将n换算成下行时隙编号,并将X换算成以下行时隙计数的时间长度。
其中,上行时隙z换算到下行时隙y的方法可满足如下公式:
Figure PCTCN2019109765-appb-000009
其中
Figure PCTCN2019109765-appb-000010
是向下取整符号。μ UL和μ DL分别是上行和下行的系统参数配置。同理,上行时隙数目换算成下行时隙数目也可以参考的类似的公式。可理解,公式(5)中的y和z仅为示例。
可选的,由于终端设备也可根据该MAC CE信令的指示来调整上行信号的发送功率,因此终端设备也可以将时间n+X+T全部换算成上行时隙后再应用n+X+T这个时间。具体换算的例子如下,如果n是上行时隙编号,X是以上行时隙数目计数的时间长度,T是以下行时隙数目计数的时间长度,则将T换算成以上行时隙数目计数的时间长度。
可选的,T可为终端设备进行高层滤波以获得路损估计参考信号的接收功率的时长,以及该终端设备根据所述路损估计值确定上行信号发送功率的时长之和。可选的,该T与网络配置信息和/或终端设备的能力信息相关,该终端设备的能力信息包括该终端设备的高层滤波能力信息。其中,该终端设备的能力信息用于表示该终端设备的能力大小,该终端设备需要将该终端设备的能力信息上报给网络设备。该终端设备的高层滤波能力信息包括以下至少一项:高层滤波配置信息、测量次数、测量周期、测量设置或该路损估计参考信号的时域信息。其中,该测量次数为该路损估计参考信号的接收功率的测量次数;该测量周期为该路损估计参考信号的传输周期;该测量设置为与该路损估计参考信号相关的设置。该网络配置信息包括以下至少一项:高层滤波配置信息、测量次数、测量周期、测量设置或该路损估计参考信号的时域信息。即这些信息为网络设备配置的信息,或者这些信息为协议预定义的信息。可理解,该网络配置信息至于是否是根据终端设备的高层滤波能力信息来配置,本申请实施例不作限定。
其中,高层滤波配置信息包括α滤波系数α=1/2 (ki/4),ki为网络设备通过RRC信令配置的滤波系数(filter coefficient)。测量次数指协议预定义或网络配置的或终端设备上报的获得稳定路损估计值,对路损估计参考信号进行测量的次数,例如1次,2次,3次,4次等。测量周期指协议预定义或网络配置的或终端设备上报的网络设备发送路损估计参考信号的发送周期和/或终端根据路损参考信号进行测量的测量周期。测量设置指协议预定义或网络配置的或终端设备上报的测量相关的限制,包括测量时间窗(measurement window),非连续接收(discontinuous reception,DRX)配置等。例如,测量时间窗为W,则终端设备测量行为可以限制在一个时间窗内,例如T=max(测量次数*测量周期,W)。又例如,非连续接收的周期为T-DRX(即DRX的周期),则为避免终端设备还没测量到路损估计参考信号接收功率就进入休眠状态,因此终端设备测量行为可不超过一个休眠周期(非连续接 收周期),由此T=max(测量次数*测量周期,TDRX)。路损估计参考信号的时域信息可表示路损参考信号是周期性发送的,半持续发送的还是非周期性发送的。例如,如果是非周期发送的路损参考信号,则T与非周期参考信号的触发时间有关。如路损估计值的更新可在非周期参考信号发送之后执行,由此可使得终端设备有效测量到路损估计参考信号。或者说,n+X到n+X+T之间可以包含一次非周期参考信号的传输和测量。可理解,以上所示的各个信息的描述仅为一种示例,在未来通信系统或其他领域,以上各个信息还可有其他定义,本申请实施例不作限定。
可选的,T还可以与缩放因子(scaling factor)相关,例如根据N和/或P确定的缩放因子。N与终端设备接收波束数目相关,或者N也可以直接由网络设备配置,与路损估计参考信号的类型相关。例如路损估计参考信号是SSB,则N=8;又例如路损估计参考信号是CSI-RS,那么N=1。或者N也可以与MAC CE信令所指示的路损估计参考信号是否属于RRC所配置的路损估计参考信号相关,例如MAC CE所指示的路损估计参考信号是属于RRC配置过的路损估计参考信号,则说明终端设备一直对维护着对该路损估计参考信号的测量和对测量结果的滤波,则N=0。P是网络设备配置的调整量,例如P=3。缩放因子意义可如T=N*P*测量周期*测量次数。
本申请实施例中,该路损估计值的生效时间不早于n+X,且不晚于n+X+T;也就是说,终端设备避免了无法在短时间内对路损估计参考信号的接收功率进行多次滤波,从而可使得该终端设备不仅可有足够的时间对该路损估计参考信号的接收功率进行多次滤波,确定路损估计值;还使得该终端设备及时来确定该路损估计值,提高了路损估计值确定的稳定性。
为更一步理解本申请实施例所提供的功率调整方法,以下将以具体场景为例来说明,如以上行信号为SRS为例来说明该功率调整方法。可理解,该具体场景的方法步骤可参考前述实施例的描述,以下将详细介绍MAC CE信令中的内容,且随着该MAC CE信令的内容的不同,而使得终端设备所执行的不同步骤。
可理解,该SRS的路损估计参考信号一般是以SRS资源集合的层级配置,也就是说,每一个SRS资源集合(SRS-resourceset)中可包括一个或多个SRS资源(SRS-resource)。因此,每个SRS资源可对应一个路损估计参考信号,或者每个SRS资源集合对应一个路损估计参考信号等等。
场景一、MAC CE信令中包括路损估计参考信号的信息。
其中,该MAC CE信令中可包括路损估计参考信号的标识,通过该路损估计参考信号的标识可使得终端设备明确得知根据哪个路损估计参考信号来进行路损估计值的估计。
可选的,该MAC CE信令中还可包括路损估计参考信号所在的载波分量(carrier component,CC)信息和带宽部分(bandwidth part,BWP)信息。通过该路损估计参考信号所在的CC和BWP可使得该终端设备得知该路损估计参考信号所在的频域位置在哪里。
可选的,为了使得终端设备得知根据该路损估计参考信号得到的路损估计值是用于哪个上行信号,该MAC CE信令中还可包括目标SRS资源或目标SRS资源集合或目标SRS资源组的标识,通过该目标SRS资源或目标SRS资源集合或目标SRS资源组的标识可使得终端 设备得知该路损估计值用于SRS资源集合中的SRS资源,或者,可使得该终端设备得知该路损估计值可用于哪个SRS资源集合(哪个SRS资源组),提高信息解读的一致性。以及该MAC CE信令中还可包括该目标SRS资源或该目标SRS资源集合或目标SRS资源组所在的CC信息和BWP信息,该目标SRS资源或该目标SRS资源集合或目标SRS资源组所在的CC信息和BWP信息可使得终端设备得知该目标SRS资源或该目标SRS资源集合或目标SRS资源组所在的频域位置。
需要说明的是,在该上行信号为其他信号如PUCCH时,该MAC CE信令中也可包括目标PUCCH资源或者目标PUCCH资源集合或者目标PUCCH资源组的标识。其中,对于目标PUCCH资源或目标PUCCH资源集合或者目标PUCCH资源组的相关描述可参考目标SRS资源或者目标SRS资源集合或目标SRS资源组的描述。即该MAC CE中所包括的内容还可包括路损估计参考信号的标识、该路损估计参考信号所在的CC信息和BWP信息、该目标PUCCH资源或者目标PUCCH资源集合或者目标PUCCH资源组的标识,以及目标PUCCH资源或者目标PUCCH资源集合或者目标PUCCH资源组的CC信息和BWP信息。
然而,在上行信号为PUSCH时,该MAC CE信令中包括的是探测参考信号资源指示码点(SRS resource indicator codepoint,SRI codepoint)到路损估计参考信号的映射关系。由此终端设备可根据该MAC CE信令以及下行控制信息(downlink control information,DCI)中的SRI codepoint来确定路损估计参考信号。可理解,对于该MAC CE信令中所包括的其他内容可参考前述实施例,这里不再详述。
由此,在MAC CE信令指示某一个上行信号所对应的的路损估计参考信号需要更新时,该MAC CE信令中可以包括该路损估计参考信号的标识以及该某一个上行信号的标识。可选的,还可包括该路损估计参考信号所在的CC信息和BWP信息,以及该某一个上行信号所在的CC信息和BWP信息。
可选的,在MAC CE信令指示至少两个上行信号对应的路损估计参考信号需要更新时,作为示例,该至少两个上行信号包括第一上行信号和第二上行信号,与第一上行信号对应的路损估计参考信号为第一路损估计参考信号,与该第二上行信号对应的路损估计参考信号为第二路损估计参考信号,则该MAC CE信令中可包括该第一上行信号的标识、该第一路损估计参考信号的标识、该第二上行信号的标识,以及该第二路损估计参考信号的标识。可选的,该MAC CE信令中还可包括该第一上行信号所在的CC信息和BWP信息、以及该第一路损估计参考信号所在的CC信息和BWP信息、该第二上行信号所在的CC信息和BWP信息以及该第二路损估计参考信号所在的CC信息和BWP信息。其中,至于MAC CE信令如何指示第一路损估计参考信号与第一上行信号对应,以及如何指示第二路损估计参考信号与第二上行信号对应,本申请实施例不作限定。
可理解,该MAC CE信令头(header)中还可包括逻辑信道标识(logic channel Identity,LCID),该LCID可用于指示该MAC CE是用于更新路损估计参考信号。即终端设备通过该LCID可得知该MAC CE信令的功能是干什么的,如终端设备可得知该MAC CE信令是用于更新路损估计参考信号的。
本申请实施例中,网络设备通过向终端设备发送上述MAC CE信令,可使得该终端设备接收到该MAC CE信令之后,通过解读该MAC CE信令,得知更新路损估计参考信号以便于 根据新的路损估计参考信号来估计路损估计值;从而终端设备可以根据路损估计参考信号来得到路损估计值,以及在该路损估计值的生效后,使用该路损估计值来确定上行信号的发送功率。
本申请实施例保证了终端设备有足够的时间根据更新后的路损估计参考信号来测量路损估计值,进而确定上行信号的发送功率。
可选的,MAC CE信令中还可包括与上行信号的发送功率相关的参数,也就是说,该MAC CE信令中除了可包括路损估计参考信号的信息,还可包括以下至少一项:目标功率、路损补偿因子或功率调整参数。其中,以公式(1)作为示例,该MAC CE信令中可包括
Figure PCTCN2019109765-appb-000011
或f b1,f1,c1(i1,l1)中的一项或多项。以公式(2)作为示例,该MAC CE信令中可包括
Figure PCTCN2019109765-appb-000012
或f b,f,c(i,l)中的一项或多项。可理解,对于各个参数的具体描述可参考前述实施例,这里不再一一详述。
也就是说,该MAC CE信令中除了包括路损估计参考信号的信息,还可包括其他的与计算上行信号的发送功率相关的参数,而与上行信号的发送功率相关的参数可能还可以是其他参数,或者,还可以是其他类型的参数等等,本申请实施例不再一一列举。
本申请实施例中,网络设备通过向终端设备发送上述MAC CE信令,可使得该终端设备接收到该MAC CE信令之后,通过解读该MAC CE信令,得知更新路损估计参考信号以便于根据新的路损估计参考信号来估计路损估计值;从而终端设备可以根据路损估计参考信号来得到路损估计值。作为示例,该终端设备可以在n+X+T时间之后,根据路损估计值(即利用MAC CE信令中的路损估计参考信号所估计出来的路损估计值)以及与上行信号的发送功率相关的参数确定上行信号的发送功率。作为示例,参见图4,图4是本申请实施例提供的一种生效时间示意图。其中,由于与上行信号的发送功率相关的参数可不进行高层滤波,因此在终端设备解读到该MAC CE信令中的其他参数之后,该终端设备可以先在与上行信号的发送功率相关的参数(不包括路损估计值)的生效时间如在n+X时间之后(也可包括时间n+X),确定上行信号的发送功率如为第一发送功率。可理解,与该第一发送功率对应的路损估计值即为旧的路损估计值,即网络设备未发送MAC CE信令之前,该终端设备所使用的路损估计参考信号估计的路损估计值。进一步的,在该路损估计值的生效时间内如在n+X+T时间之后(也可包括时间n+X+T),确定上行信号的发送功率如为第二发送功率。其中,与该第二发送功率对应的路损估计值即为新的路损估计值,即网络设备发送的MAC CE信令中的路损估计参考信号估计的路损估计值。
本申请实施例保证了终端设备有足够的时间根据更新后的路损估计参考信号来测量路损估计值,进而确定上行信号的发送功率;同时也考虑了相应的延后与上行信号的发送功率相关的参数的应用时间。
以上所示的场景是通过MAC CE直接指示路损估计参考信号,但是在具体实现中,该MAC CE可能并不指示路损估计参考信号,而是通过其他信息来指示路损估计参考信号,该情况可参考场景二和场景三。
场景二、MAC CE信令中包括上行发送波束的参考信号的信息。
其中,该MAC CE信令可用于指示更新上行发送波束。具体的,该MAC CE信令中可包 括上行发送波束的参考信号的标识,以及该上行发送波束的参考信号所在的CC信息和BWP信息。
作为示例,图5是本申请实施例提供的一种MAC CE的格式示意图,其中各个字段代表的意义如下:
A/D:该字段长度可为1比特,置1可表示激活,置0可表示去激活。具体的,置1时可表示该MAC CE信令是用于指示更新上行发送波束的。
SRS资源集合小区ID(Cell ID):长度可为5比特,可表示SRS资源集合所在的CC。如图5中的C字段为0,则也可表示图5中的资源ID所代表的资源所在的CC。
SRS资源集合BWP ID:2比特,可表示SRS资源集合所在的BWP。如图5中的C字段为0,则也可表示图5中资源ID所代表的资源所在的BWP。
C:长度可为1比特;置1表示存在图5中的资源预留小区IDi和资源BWP IDi字段,置0可表示不存在。
SUL:长度可为1比特;置1可表示SUL,置0可表示去NUL。
SP SRS资源集合ID:长度可为4比特,可表示目标SRS资源集合的ID。
Fi:长度可为1比特,可表示空间关系(spatial relation)的参考资源的类型。置0可表示图中的资源IDi表示的是SRS资源的ID或者SSB ID,置1可表示图中的资源IDi表示是的信道状态信息参考信号(channel status information reference signal,CSI-RS)资源的ID。可理解,该字段只在A/D字段置1时存在。
资源IDi:长度可为7比特,可表示spatial relation的参考资源的标识。Fi字段置0时,资源IDi的第一个比特可用于区分SRS或同步信号块(synchronization signal block,SSB),后6个比特可以是SRS资源的ID或者SSB ID。Fi字段置1时,资源IDi的7个比特是CSI RS资源的ID。可理解,该字段只在A/D字段置1时存在。
资源预留小区(resource serving cell)IDi:长度可为5比特,可表示资源IDi所在的CC。
资源BWP IDi:长度可为2比特,可表示资源IDi所在的BWP。
R:预留字段。
进一步的,该MAC CE信令中可包括是否用于更新路损估计参考信号的标识。可选的,该标识(即是否用于更新路损估计参考信号的标识)长度可为可以是1比特长。可选的,该1比特可以在图5所示的MAC CE信令中新增加的1比特,或者该1比特图5中R字段中的1比特或者多个R字段的组合。当该标识为‘是’时,例如相关的字段置1时,表示该MAC CE用于更新路损估计参考信号。当该标识为‘否’时,例如相关的字段置0时,表示该MAC CE不用于更新路损估计参考信号。
该MAC CE信令中还可包括是否存在路损估计参考信号的标识。可选的,该标识(即是否存在路损估计参考信号的标识)长度可以是1比特长。可选的,该1比特可以在图5所示的MAC CE信令中增加1比特,或者该1比特还可以是图5中R字段中的1比特或者多个R字段的组合。当该标识为‘是’时,例如相关的字段置1时,表示该MAC CE中含有路损估计参考信号的标识。当该标识为‘否’时,例如相关的字段置0时,表示该MAC CE中不含路损估计参考信号的标识,该情况下,终端设备可参考spatial relation的参考信号更 新路损参考信号。
可理解,路损估计参考信号的标识可在MAC CE信令中存在路损估计参考信号时存在,也就是说,该路损估计参考信号的标识可在MAC CE中“是否存在路损估计参考信号的标识”为‘是’时存在。可选的,MAC CE中可以包括1个路损估计参考信号的标识或多个路损估计参考信号的标识。如MAC CE中包括1个路损估计参考信号的标识,则可表示该MAC CE指示的SRS资源集合ID对应的SRS资源集合中的所有的SRS资源的发送功率都可参考所指示的路损估计参考信号。又如MAC CE中包括多个路损估计参考信号的标识,则可表示该MAC CE指示的SRS资源集合ID对应的SRS资源集合中的所有的SRS资源的发送功率可依次参考所指示的多个路损估计参考信号。可理解,以上所示的路损估计参考信号与SRS资源集合的对应关系仅为示例,在具体实现中,还可参考其他指示方法。
可选的,在以下场景中,MAC CE中可包括路损估计参考信号,也就是说,在以下场景中MAC CE中“是否存在路损估计参考信号的标识”为是。作为示例,MAC CE中包括路损估计参考信号的场景可包括以下一种或多种:
空间关系(spatial relation)的参考信号是非周期的参考信号。由于非周期的参考信号的测量机会可为一次,因此该非周期的参考信号不适合用于路损估计值的估计。可选的,也可包括spatial relation是半持续的参考信号的场景。
不同SRS资源的spatial relation的参考信号不同。如果每个SRS资源的路损估计参考信号都跟着spatial relation中的参考信号变化而变化,则有可能导致不同SRS资源的路损估计不同,最终导致不同SRS的发送功率不同,由此增加了终端设备实现的复杂度,造成不同发送端口之间功率不平衡,因此一个SRS资源集合中的多个SRS资源的发送功率可保持一致。因此,在这种场景中,可以指示一个半周期(per)SRS资源集合的路损估计参考信号。
spatial relation的参考信号是上行参考信号。由于上行参考信号无法作为路损估计的参考信号。因此,在这种场景中,MAC CE中可以包括路损估计参考信号。可选的,在这种场景下,终端设备可以根据该上行参考信号的配置查找这个上行参考信号的spatial relation,即根据一种‘链式法则’,一直查找到一个下行参考信号,从而利用这个下行参考信号作为路损估计参考信号。
可理解,路损估计参考信号与该上行发送波束的参考信号有关,也就是说终端设备可以根据该上行发送波束中的参考信号来进行RSRP(高层滤波后的接收功率)的测量,从而来得到路损估计值。可选的,该MAC CE信令中还可包括目标SRS资源或目标SRS资源集合的标识。可选的,该MAC CE信令头(header)中可包括LCID。其中,对于该LCID、目标SRS资源或目标SRS资源集合的标识的具体描述可参考前述实施例,这里不作一一详述。
可理解,终端设备发送的上行信号为PUSCH时,该PUSCH的发送波束可以通过DCI中的SRI指示的SRS资源的上行发送波束来确定。可选的,该PUSCH的发送功率可以根据DCI中的SRI codepoint关联(或对应)的路损估计参考信号确定。也就是说,如果调度PUSCH的DCI中的探测参考信号资源指示(SRS resource indicator,SRI)指示的SRS资源的上行发送波束发生变化,则该PUSCH的上行发送波束就应该发生变化,此时用于确定PUSCH发送功率的路损估计参考信号也应该相应的变化。因此场景二中的MAC CE还可以包括用于 指示该MAC CE是否也用于更新用于确定PUSCH发送功率的路损估计参考信号的信息。如果包括,那么终端设备可以使用SRI指示的SRS资源的上行波束来确定PUSCH的路损估计参考信号,可选的,生效时间可以不晚于n+X+T;如果不包括,那么终端设备可以使用SRI codepoint与路损估计参考信号的映射关系来确定PUSCH的路损估计参考信号。
本申请实施例中,网络设备通过向终端设备发送上述MAC CE信令,可使得该终端设备接收到该MAC CE信令之后,通过解读该MAC CE信令,得知更新上行发送波束,由此该终端设备可根据该MAC CE信令中所包括的上行发送波束的参考信号来进行路损估计值的估计;以及根据该MAC CE信令来更新上行发送波束。作为示例,该终端设备可以在n+X+T时间之后,根据路损估计值(即利用MAC CE信令中的上行发送波束的参考信号所估计出来的路损估计值)确定上行信号的发送功率。以及该终端设备可以在n+X+T时间之后,根据MAC CE信令所指示的上行发送波束来调整上行发送波束。
本申请实施例中网络设备通过使用简化的信令(即MAC CE信令),即该MAC CE信令中通过指示上行发送波束,来同时指示终端设备更新上行发送波束以及路损估计参考信号,保证了终端设备有足够的时间根据更新后的路损估计参考信号来测量路损估计值,进而确定上行信号的发送功率。同时也考虑了相应的延后该MAC CE所指示的上行发送波束的应用时间。
场景三、MAC CE信令中包括下行发送波束的参考信号的信息。
其中,该MAC CE信令可用于指示更新激活的TCI(transmission configuration indicator)状态。通过指示该激活的TCI状态,可间接指示更新上行发送波束和下行接收波束,以及间接指示更新路损估计参考信号。具体的,该MAC CE信令中可包括一个或多个激活的TCI状态,或者可包括一个或多个去激活的TCI状态。例如网络设备可利用激活的TCI状态来指示数据传输的波束,由此终端设备可以根据该激活的TCI状态来调整接收波束,由此该终端设备便可进行数据接收。
可选的,网络设备可以使用MAC CE信令激活一个或多个TCI状态,如图6所示的信令格式。其中Ti就代表在RRC中配置的第i个TCI状态,Ti=1意味着这个TCI状态被激活,Ti=0意味着这个TCI被去激活。网络设备发送上述MAC CE可以为终端设备配置一个激活TCI状态的列表。激活的TCI状态意味着对于这个TCI状态终端设备需要进行测量和维护,包括维护这个TCI状态对应的波束方向,接收权值,时偏,频偏等。
具体的,该终端设备可根据激活的TCI中的参考信号来进行RSRP的测量。可选的,如果有多个激活的TCI,那么终端设备可以从多个激活的TCI中选择一个或多个作为路损估计参考信号。其中,对于该终端设备如何选择本申请实施例不作限定,例如可以根据TCI状态的标识来选择,或者根据对TCI中包含的参考信号的测量的结果来选择等等。
本申请实施例中,网络设备通过向终端设备发送上述MAC CE信令,可使得该终端设备接收到该MAC CE信令之后,通过解读该MAC CE信令,得知网络设备需要更新下行发送波束,由此该终端设备可根据该MAC CE信令中所包括的下行发送波束的参考信号来进行路损估计值的估计;以及根据该MAC CE信令来调整上行发送波束和下行接收波束。作为示例,该终端设备可以在n+X+T时间之后(或在n+X+T时),根据路损估计值(即利用MAC CE信令中的下行发送波束的参考信号所估计出来的路损估计值)确定上行信号的发送功率。以 及该终端设备可以在n+X+T时间之后(或在n+X+T),根据MAC CE信令所指示的下行发送波束来调整上行发送波束和下行接收波束。可理解,由于收发波束的一致性,终端设备可以用接收下行信号的波束发送上行信号。
需要说明的是,在场景二和场景三中MAC CE信令中也可包括与上行信号的发送功率相关的参数,如目标功率、路损补偿因子或功率调整参数等等,对于具体的实现方式可参考前述实施例,这里不再一一详述。
本申请实施例中,网络设备通过使用简化的信令,即该MAC CE信令通过指示更新下行发送波束,来同时指示终端设备更新上行发送波束、下行接收波束以及路损估计参考信号,保证了终端设备有足够的时间根据更新后的路损估计参考信号来测量路损估计值,进而确定上行信号的发送功率。同时也考虑了相应的延后该MAC CE所指示的下行发送波束对应的上行发送波束和下行接收波束的应用时间。
可理解,以上各个实施例各有侧重,其中一个实施例中未详细描述的实现方式可参考其他实施例,这里不再一一赘述。进一步的,本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端设备和网络设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备或网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
最后,将详细描述本申请实施例所提供的通信装置。
图7a是本申请实施例提供的一种通信装置的结构示意图,该通信装置可以为终端设备,也可以为芯片。该通信装置用于执行本申请实施例所描述的功率调整方法,如图7a所示,该通信装置包括:
接收单元701,用于获取媒体接入层控制元素MAC CE,该MAC CE用于更新路损估计参考信号;
处理单元702,用于根据路损估计参考信号确定路损估计值;其中,该路损估计值的 生效时间不晚于n+X+T,该n为发送反馈信息的时间,该反馈信息用于反馈该MAC CE是否被正确接收,该X为固定时长,该T为可变时长;
该处理单元702,还用于根据该路损估计值确定上行信号的发送功率。
在一种可能的实现方式中,该通信装置还包括:发送单元703,用于在该路损估计值生效后,以发送功率发送该上行信号。
在一种可能的实现方式中,该T与终端设备的高层滤波能力信息相关。
在一种可能的实现方式中,该高层滤波能力信息包括以下至少一项:高层滤波配置信息、测量次数、测量周期、测量设置或该路损估计参考信号的时域信息;其中,该测量次数为该路损估计参考信号的接收功率的测量次数;该测量周期为该路损估计参考信号的传输周期;该测量设置为与该路损估计参考信号相关的设置。
在一种可能的实现方式中,该MAC CE中包括该路损估计参考信号的信息。
在一种可能的实现方式中,该MAC CE中还包括与该上行信号的发送功率相关的参数,该与上行信号的发送功率相关的参数包括以下至少一项:目标功率、路损补偿因子或功率调整参数。
在一种可能的实现方式中,该与上行信号的发送功率相关的参数的生效时间不晚于n+X;或者,该与上行信号的发送功率相关的参数的生效时间不晚于n+X+T。
在一种可能的实现方式中,该MAC CE中包括上行发送波束的参考信号的信息,该路损估计参考信号与该上行发送波束的参考信号有关。
在一种可能的实现方式中,该处理单元702,还用于根据该MAC CE调整该上行发送波束;其中,该上行发送波束的生效时间不晚于n+X;或者,该上行发送波束的生效时间不晚于n+X+T。
在一种可能的实现方式中,该MAC CE中包括下行发送波束的参考信号的信息,该路损估计参考信号与该下行发送波束的参考信号有关。
在一种可能的实现方式中,该处理单元702,还用于根据该下行发送波束调整上行发送波束和下行接收波束;其中,该下行接收波束和该上行发送波束的生效时间不晚于n+X+T;或者,该下行接收波束的生效时间不晚于n+X,该上行发送波束的生效时间不晚于n+X+T;或者,该下行接收波束和该上行发送波束的生效时间不晚于n+X。
需要理解的是,当上述通信装置是终端设备或终端设备中实现上述功能的部件时,处理单元702可以是一个或多个处理器,发送单元703可以是发送器,接收单元701可以是接收器,或者发送单元703和接收单元701集成于一个器件,例如收发器。例如,接收单元701可以接收网络设备发送的MAC CE,发送单元703可以以确定的上行信号的发送功率来发送该上行信号。
当上述通信装置是芯片时,处理单元702可以是一个或多个处理器,发送单元703可以是输出接口,接收单元701可以是输入接口,或者发送单元703和接收单元701集成于一个单元,例如输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。
可理解,对于图7a所示的各个单元的实现可以参考前述实施例的相应描述。
图7b是本申请实施例提供的一种通信装置的结构示意图,该通信装置可以为网络设备, 也可以为芯片。该通信装置用于执行本申请实施例所描述的功率调整方法,如图7b所示,该通信装置包括:
发送单元710,用于向终端设备发送媒体接入层控制元素MAC CE,该MAC CE用于更新路损估计参考信号。
在一种可能的实现方式中,该MAC CE中包括该路损估计参考信号的信息。
在一种可能的实现方式中,该MAC CE中还包括与该上行信号的发送功率相关的参数,该与该上行信号的发送功率相关的参数包括以下至少一项:目标功率、路损补偿因子或功率调整参数。
在一种可能的实现方式中,该MAC CE中包括上行发送波束的参考信号的信息,该路损估计参考信号与该上行发送波束的参考信号相关。
在一种可能的实现方式中,该MAC CE中包括下行发送波束的参考信号的信息,该路损估计参考信号与该下行发送波束的参考信号相关。
需要理解的是,当上述通信装置是网络设备或网络设备中实现上述功能的部件时,该通信装置还可包括处理单元和接收单元,图中未示出。其中,处理单元可以是一个或多个处理器,发送单元710可以是发送器,接收单元可以是接收器,或者发送单元710和接收单元集成于一个器件,例如收发器。
当上述通信装置是芯片时,处理单元可以是一个或多个处理器,发送单元710可以是输出接口,接收单元可以是输入接口,或者发送单元710和接收单元集成于一个单元,例如输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。
可理解,对于图7b所示的各个单元的实现可以参考前述实施例的相应描述。
如图8a所示为本申请实施例提供的一种通信装置80,用于实现上述方法中终端设备的功能。当实现终端设备的功能时,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该装置还可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。装置80包括至少一个处理器820,用于实现本申请实施例提供的方法中终端设备的功能。装置80还可以包括通信接口810。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口810用于装置80中的装置可以和其它设备进行通信。处理器820利用通信接口810收发数据,并用于实现上述方法实施例所述的方法。
装置80还可以包括至少一个存储器830,用于存储程序指令和/或数据。存储器830和处理器820耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器820可能和存储器830协同操作。处理器820可能执行存储器830中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口810、处理器820以及存储器830之间的具体连接介质。本申请实施例在图8a中以存储器830、通信接口820以及通信接口810之间通过总线840连接,总线在图8a中以粗线表示,其它部件之间的连接方式,仅是进行示意性说 明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8a中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
装置80具体是芯片或者芯片系统时,通信接口810所输出或接收的可以是基带信号。装置80具体是设备时,通信接口810所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
作为示例,图8b为本申请实施例提供的一种终端设备800的结构示意图。该终端设备可执行如图2所示的方法,或者,该终端设备也可执行如图7a所示的终端设备的操作。
为了便于说明,图8b仅示出了终端设备的主要部件。如图8b所示,终端设备800包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行图2所描述的流程。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备800还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8b仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。作为 一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
示例性的,在申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备800的收发单元801,将具有处理功能的处理器视为终端设备800的处理单元802。
如图8b所示,终端设备800可以包括收发单元801和处理单元802。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元801中用于实现接收功能的器件视为接收单元,将收发单元801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,收发单元801、处理单元802可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。例如,在一个实施例中,收发单元801可用于执行图2所示的步骤201所示的方法。又如,在一个实施例中,收发单元801还可用于执行图2所示的步骤204所示的方法。
在一个实施例中,处理单元802还可用于执行图2所示的202和203所示的方法。
又如,在一个实施例中,收发单元801还可用于执行发送单元703和接收单元701所示的方法。又如,在一个实施例中,处理单元802还可用于执行处理单元702所示的方法。
本申请实施例中的通信装置为终端设备时,还可以参照图9所示的设备。该设备包括处理器910,发送数据处理器920,接收数据处理器930。上述实施例中的处理单元702可以是图9中的处理器910,并完成相应的功能。上述实施例中的接收单元701可以是图9中的接收数据处理器930,发送单元703可以是图9中的发送数据处理器920。虽然图9中 示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
可理解的是,本申请实施例中的终端设备的实现方式,具体可参考前述各个实施例,这里不再详述。
可理解,根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2所示实施例中的方法。进一步的,可使得该计算机根据本申请实施例提供的各个场景来执行图2所示的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行2所示实施例中的方法。进一步的,可使得该计算机根据本申请实施例提供的各个场景来执行图2所示的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的终端设备以及网络设备。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑 块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种功率调整方法,其特征在于,所述方法包括:
    接收媒体接入层控制元素MAC CE,所述MAC CE用于更新路损估计参考信号;
    根据路损估计参考信号确定路损估计值;其中,所述路损估计值的生效时间不晚于n+X+T,所述n为发送反馈信息的时间,所述反馈信息用于反馈所述MAC CE是否被正确接收,所述X为固定时长,所述T为可变时长;
    根据所述路损估计值确定上行信号的发送功率。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述路损估计值生效后,以所述发送功率发送所述上行信号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述T与终端设备的高层滤波能力信息相关。
  4. 根据权利要求3所述的方法,其特征在于,所述高层滤波能力信息包括以下至少一项:高层滤波配置信息、测量次数、测量周期、测量设置或所述路损估计参考信号的时域信息;
    其中,所述测量次数为所述路损估计参考信号的接收功率的测量次数;所述测量周期为所述路损估计参考信号的传输周期;所述测量设置为与所述路损估计参考信号相关的设置。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述MAC CE中包括所述路损估计参考信号的信息。
  6. 根据权利要求5所述的方法,其特征在于,所述MAC CE中还包括与所述上行信号的发送功率相关的参数,所述与所述上行信号的发送功率相关的参数包括以下至少一项:目标功率、路损补偿因子或功率调整参数。
  7. 根据权利要求6所述的方法,其特征在于,所述与所述上行信号的发送功率相关的参数的生效时间不晚于n+X;或者,所述与所述上行信号的发送功率相关的参数的生效时间不晚于n+X+T。
  8. 根据权利要求1-4任一项所述的方法,其特征在于,所述MAC CE中包括上行发送波束的参考信号的信息,所述路损估计参考信号与所述上行发送波束的参考信号相关。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    根据所述MAC CE调整所述上行发送波束;其中,所述上行发送波束的生效时间不晚于n+X;或者,所述上行发送波束的生效时间不晚于n+X+T。
  10. 根据权利要求1-4任一项所述的方法,其特征在于,所述MAC CE中包括下行发送波束的参考信号的信息,所述路损估计参考信号与所述下行发送波束的参考信号相关。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    根据所述下行发送波束调整上行发送波束和下行接收波束;其中,所述下行接收波束和所述上行发送波束的生效时间不晚于n+X+T;或者,所述下行接收波束的生效时间不晚于n+X,所述上行发送波束的生效时间不晚于n+X+T;或者,所述下行接收波束和所述上行发送波束的生效时间不晚于n+X。
  12. 一种通信装置,其特征在于,所述通信装置包括:
    接收单元,用于接收媒体接入层控制元素MAC CE,所述MAC CE用于更新路损估计参考信号;
    处理单元,用于根据路损估计参考信号确定路损估计值;其中,所述路损估计值的生效时间不晚于n+X+T,所述n为发送反馈信息的时间,所述反馈信息用于反馈所述MAC CE是否被正确接收,所述X为固定时长,所述T为可变时长;
    所述处理单元,还用于根据所述路损估计值确定上行信号的发送功率。
  13. 根据权利要求12所述的装置,其特征在于,所述装置还包括:
    发送单元,用于在所述路损估计值生效后,以所述发送功率发送所述上行信号。
  14. 根据权利要求12或13所述的装置,其特征在于,所述T与终端设备的高层滤波能力信息相关。
  15. 根据权利要求14所述的装置,其特征在于,所述高层滤波能力信息包括以下至少一项:高层滤波配置信息、测量次数、测量周期、测量设置或所述路损估计参考信号的时域信息;
    其中,所述测量次数为所述路损估计参考信号的接收功率的测量次数;所述测量周期为所述路损估计参考信号的传输周期;所述测量设置为与所述路损估计参考信号相关的设置。
  16. 根据权利要求12-15任一项所述的装置,其特征在于,所述MAC CE中包括所述路损估计参考信号的信息。
  17. 根据权利要求16所述的装置,其特征在于,所述MAC CE中还包括与所述上行信号的发送功率相关的参数,所述与所述上行信号的发送功率相关的参数包括以下至少一项:目标功率、路损补偿因子或功率调整参数。
  18. 根据权利要求17所述的装置,其特征在于,所述与所述上行信号的发送功率相关的参数的生效时间不晚于n+X;或者,所述与所述上行信号的发送功率相关的参数的生效时间不晚于n+X+T。
  19. 根据权利要求12-15任一项所述的装置,其特征在于,所述MAC CE中包括上行发送波束的参考信号的信息,所述路损估计参考信号与所述上行发送波束的参考信号相关。
  20. 根据权利要求19所述的装置,其特征在于,
    所述处理单元,还用于根据所述MAC CE调整所述上行发送波束;其中,所述上行发送波束的生效时间不晚于n+X;或者,所述上行发送波束的生效时间不晚于n+X+T。
  21. 根据权利要求12-15任一项所述的装置,其特征在于,所述MAC CE中包括下行发送波束的参考信号的信息,所述路损估计参考信号与所述下行发送波束的参考信号相关。
  22. 根据权利要求21所述的装置,其特征在于,
    所述处理单元,还用于根据所述下行发送波束调整上行发送波束和下行接收波束;其中,所述下行接收波束和所述上行发送波束的生效时间不晚于n+X+T;或者,所述下行接收波束的生效时间不晚于n+X,所述上行发送波束的生效时间不晚于n+X+T;或者,所述下行接收波束和所述上行发送波束的生效时间不晚于n+X。
  23. 一种通信装置,其特征在于,包括处理器、存储器和收发器;
    所述收发器,用于接收信号或者发送信号;
    所述存储器,用于存储程序代码;
    所述处理器,用于从所述存储器调用所述程序代码执行如权利要求1至11任一项所述的方法。
  24. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1至11任一项所述的方法。
  25. 一种通信装置,其特征在于,包括:处理器,当所述处理器调用存储器中的计算机程序时,如权利要求1至11任一项所述的方法被执行。
  26. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1至11任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1至11任一项所述的方法被实现。
  28. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被执行时,使如权利要求1至11任一项所述的方法被实现。
PCT/CN2019/109765 2019-09-30 2019-09-30 功率调整方法及装置 WO2021062836A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19947616.9A EP4027710A4 (en) 2019-09-30 2019-09-30 FORCE ADJUSTMENT METHOD AND DEVICE
CN201980100850.XA CN114451022A (zh) 2019-09-30 2019-09-30 功率调整方法及装置
AU2019469004A AU2019469004B2 (en) 2019-09-30 2019-09-30 Power adjustment method and apparatus
PCT/CN2019/109765 WO2021062836A1 (zh) 2019-09-30 2019-09-30 功率调整方法及装置
US17/707,293 US20220225242A1 (en) 2019-09-30 2022-03-29 Power adjustment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109765 WO2021062836A1 (zh) 2019-09-30 2019-09-30 功率调整方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/707,293 Continuation US20220225242A1 (en) 2019-09-30 2022-03-29 Power adjustment method and apparatus

Publications (1)

Publication Number Publication Date
WO2021062836A1 true WO2021062836A1 (zh) 2021-04-08

Family

ID=75336353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109765 WO2021062836A1 (zh) 2019-09-30 2019-09-30 功率调整方法及装置

Country Status (5)

Country Link
US (1) US20220225242A1 (zh)
EP (1) EP4027710A4 (zh)
CN (1) CN114451022A (zh)
AU (1) AU2019469004B2 (zh)
WO (1) WO2021062836A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4021111B1 (en) * 2019-11-06 2024-03-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for activating or updating path loss rs of srs and device
EP3829076A3 (en) 2019-11-28 2021-08-04 Samsung Electronics Co., Ltd. Transmission power control of sounding reference signals in wireless communication system and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883343A (zh) * 2011-07-13 2013-01-16 华为技术有限公司 一种扩展载波路径损耗测量方法和相关设备
CN102938930A (zh) * 2011-08-16 2013-02-20 华为技术有限公司 CoMP系统中上行功率控制的补偿方法及基站、用户设备
WO2018128409A1 (ko) * 2017-01-04 2018-07-12 엘지전자(주) 무선 통신 시스템에서의 상향링크 전력 제어 방법 및 이를 위한 장치
CN108924920A (zh) * 2017-03-24 2018-11-30 中兴通讯股份有限公司 发送功率的确定方法和配置方法,终端和基站
CN109392065A (zh) * 2017-08-09 2019-02-26 维沃移动通信有限公司 一种功率控制方法、接收方法、功率分配方法及相关设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2744277A4 (en) * 2011-08-12 2014-12-24 Fujitsu Ltd UPLINK POWER CONTROL METHOD AND DEVICE
US10278088B2 (en) * 2016-07-22 2019-04-30 Qualcomm Incorporated Channel estimation enhancement
TWI644582B (zh) * 2016-08-10 2018-12-11 華碩電腦股份有限公司 無線通訊系統中波束操作的路徑損耗推導的方法和設備
WO2018097947A2 (en) * 2016-11-03 2018-05-31 Convida Wireless, Llc Reference signals and control channels in nr
WO2018127181A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 一种信号传输方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883343A (zh) * 2011-07-13 2013-01-16 华为技术有限公司 一种扩展载波路径损耗测量方法和相关设备
CN102938930A (zh) * 2011-08-16 2013-02-20 华为技术有限公司 CoMP系统中上行功率控制的补偿方法及基站、用户设备
WO2018128409A1 (ko) * 2017-01-04 2018-07-12 엘지전자(주) 무선 통신 시스템에서의 상향링크 전력 제어 방법 및 이를 위한 장치
CN108924920A (zh) * 2017-03-24 2018-11-30 中兴通讯股份有限公司 发送功率的确定方法和配置方法,终端和基站
CN109392065A (zh) * 2017-08-09 2019-02-26 维沃移动通信有限公司 一种功率控制方法、接收方法、功率分配方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "Summary for Al 7.1.6.1 NR UL power control in non-CA aspects", 3GPP DRAFT; R1-1805553 SUMMARY FOR AL 7 1 6 1NR UL POWER CONTROL IN NON CAASPECTS_V3, 26 July 2018 (2018-07-26), pages 1 - 27, XP051427611 *

Also Published As

Publication number Publication date
US20220225242A1 (en) 2022-07-14
CN114451022A (zh) 2022-05-06
EP4027710A1 (en) 2022-07-13
EP4027710A4 (en) 2022-09-28
AU2019469004A1 (en) 2022-04-28
AU2019469004B2 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP7364004B2 (ja) チャネル状態情報の測定目的の指示方法、装置及び通信システム
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
CN111587548B (zh) 具有混合自动重传请求确认的物理上行链路共享信道
CN113261224A (zh) 用于单dci多时隙调度的harq处理
RU2735647C2 (ru) Терминал пользователя, базовая радиостанция и способ радиосвязи
JP2022552296A (ja) 複数のpdsch送信機会における開始シンボルをシグナリングするためのシステム及び方法
WO2019137441A1 (zh) 一种通信方法及装置
JP2023532239A (ja) 複数のtrpへのアップリンク送信のための電力制御
WO2020238617A1 (zh) 确定小区激活时延的方法和装置
WO2020248779A1 (zh) 更新传输配置指示tci信息的方法与通信装置
US11522587B2 (en) Method and device for channel state information feedback
JP2022521719A (ja) 電力制御方法および電力制御装置
WO2021031048A1 (zh) 一种通信方法及装置
US20220225242A1 (en) Power adjustment method and apparatus
WO2021003620A1 (zh) 下行信号传输的方法和设备
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
JP2023521881A (ja) ビームレポートの伝送方法、移動端末及びネットワーク機器
JP2024515496A (ja) 非コードブックベースのマルチtrpのpuschのためのシステムと方法
TW202207719A (zh) 下行定位參考信號收發方法、終端、基地台、設備及裝置
WO2021080486A1 (en) Semi-persistent scheduling for multiple services
WO2020206581A1 (zh) 传输信号的方法、终端设备和网络设备
WO2018202058A1 (zh) 一种混合信道质量测量方法和用户设备
WO2021013102A1 (zh) 参数确定、信息配置方法和设备
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2019029405A1 (zh) 通信方法与设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947616

Country of ref document: EP

Effective date: 20220407

ENP Entry into the national phase

Ref document number: 2019469004

Country of ref document: AU

Date of ref document: 20190930

Kind code of ref document: A