WO2020103793A1 - 波束上报的方法和通信装置 - Google Patents

波束上报的方法和通信装置

Info

Publication number
WO2020103793A1
WO2020103793A1 PCT/CN2019/119186 CN2019119186W WO2020103793A1 WO 2020103793 A1 WO2020103793 A1 WO 2020103793A1 CN 2019119186 W CN2019119186 W CN 2019119186W WO 2020103793 A1 WO2020103793 A1 WO 2020103793A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
information
resource
terminal device
signal resource
Prior art date
Application number
PCT/CN2019/119186
Other languages
English (en)
French (fr)
Inventor
施弘哲
葛士斌
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19886710.3A priority Critical patent/EP3876466A4/en
Publication of WO2020103793A1 publication Critical patent/WO2020103793A1/zh
Priority to US17/324,712 priority patent/US11910218B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment

Definitions

  • the present application relates to the field of communications, and in particular to a beam reporting method and communication device.
  • the wavelength of the signal is shorter and the antenna volume is smaller, and the multi-antenna technology (Massive-MIMO) of the large-scale antenna array is also more suitable for application in the HF scenario.
  • Massive-MIMO technology the transmitting side, such as the network device side, can use digital and analog methods to form a more energy-intensive transmit beam to ensure system coverage.
  • the receiving side, such as the terminal device side, can also form a more energy-intensive receive beam to increase the receive gain.
  • Coordination multiple point is a transmission technology suitable for enhancing the throughput of cell edge users.
  • One terminal device may communicate with multiple transmission and reception points (TRP) at the same time.
  • TRP transmission and reception points
  • the beam reported by the terminal device may come from the same TRP, so that the terminal device cannot perform beam training with multiple TRPs that communicate simultaneously.
  • the present application provides a beam reporting method and a communication device, which can realize beam training in a CoMP system.
  • a method for beam reporting includes: a terminal device receives first information, where the first information is used to configure at least two reference signal resource groups;
  • the terminal device sends reporting information, and the reporting information includes related information of at least two beams, the at least two beams are used to send reference signals carried on at least two reference signal resources, and the at least two beams send The reference signal of can be received simultaneously by the terminal device;
  • the at least two reference signal resources are respectively from the at least two reference signal resource groups.
  • a method for beam reporting includes:
  • the network device sends first information, where the first information is used to configure at least two reference signal resource groups;
  • the network device receives the report information sent by the terminal device, and the report information includes related information of at least two beams, and the at least two beams are used to send reference signals carried on at least two reference signal resources.
  • the reference signals sent by the two beams can be simultaneously received by the terminal device;
  • the at least two reference signal resources are respectively from the at least two reference signal resource groups.
  • reference signal resources are grouped, for example, one reference signal resource group may correspond to one network device in joint transmission, the beams selected and reported by the terminal device are selected from different transmission beam resource groups, and the terminal The beam reported by the device can be simultaneously received by the terminal device. That is to say, in the embodiment of the present application, the relevant information of at least one beam is reported for each reference signal resource group, thereby enabling training of the transmission beam of the network device corresponding to the reference signal resource group. Therefore, the embodiment of the present application The purpose of training the downlink beams of multiple network devices that are jointly transmitted can be achieved in one scan.
  • the number of the at least two reference signal resources may be equal to the number of the at least two reference signal resource groups.
  • the at least two reference signal resources include each reference signal A reference signal resource in the resource group. That is to say, for each reference signal resource group, the terminal device reports related information of a beam corresponding to one reference signal resource.
  • the number of the at least two reference signal resources may be greater than the number of at least two reference signal resource groups.
  • the at least two reference signal resources are one of each reference signal resource group Or multiple reference signal resources. That is to say, for each reference signal resource group, the terminal device reports related information of the beam corresponding to one or more reference signal resources.
  • the terminal device has the capability of simultaneously receiving the reference signals sent by the at least two beams.
  • the network device may simultaneously send reference signals through the at least two beams, or may send the reference signals successively, that is, the terminal device may receive the reference signals sent by the at least two beams simultaneously, or may be successively Receiving the reference signals sent by the at least two beams, the terminal device may receive the reference signals sent by the at least two beams through the same receive beam, or may receive the at least two simultaneously through at least two receive beams that may exist simultaneously
  • the reference signal transmitted by the beam how the specific terminal device determines that the terminal device has the above capabilities is implemented by the terminal device, and is not limited by the embodiment without application.
  • the relevant information of the at least two beams in the embodiment of the present application includes the at least two reference signal received powers and the one-to-one correspondence with the at least two reference signal received powers. Identification of at least two reference signal resources.
  • the beam-related information may have multiple possible forms, as long as the beam-related information can instruct the terminal device to choose to report the at least two beams, the embodiments of the present application are not limited to the above Reference signal received power and reference signal resource identification.
  • the related information of the at least two beams may also be the signal-to-noise ratio of the reference signal sent by the at least two beams.
  • the first information is carried in one or more of the following signaling:
  • the reference signal is sent in a periodic manner;
  • the reference signal is sent in a semi-persistent manner
  • the reference signal is sent in an acyclic manner.
  • the reference signal resource group is a set of reference signal resources, where the first information directly configures, activates, or triggers at least two reference signal resources Set to configure the at least two reference signal resource groups.
  • a resource type (resource type) in a resource configuration can be configured as periodic (periodic), semi-persistent (semi-persistent) and aperiodic (aperiodic) three kinds of time domain periodic behaviors .
  • the network device may directly configure, activate, or trigger at least two reference signal resource sets to configure at least two reference signal resources.
  • the network device directly configures, activates, or triggers multiple resources to implement the grouping of reference signal resources, and reports the relevant information of at least one beam for each resource to implement beam training of the network device corresponding to the resource the goal of.
  • the first information includes quasi-co-located QCL configuration information of reference signal resources in the same reference signal resource set, where the same QCL configuration information
  • the reference signal resources are configured as the same reference signal resource group.
  • the QCL configuration information indicates a TCI status identifier for the transmission configuration that corresponds to the reference signal resource one-to-one.
  • This embodiment of the present application implements the configuration of at least two reference signal resource groups by configuring reference signal resources with the same QCL configuration information as the same reference signal resource group. Since different network devices correspond to different reference signal resource groups, for each Each reference signal resource group terminal device reports relevant information of one or more beams corresponding thereto, and thus the embodiment of the present application achieves the goal of simultaneously training downlink beams of multiple network devices that are jointly transmitted.
  • the first information is resource configuration information
  • the resource configuration information is configured by configuring an identification sequence number of reference signal resources in the same reference signal resource set Configuration of at least two reference signal resource groups.
  • the embodiment of the present application by dividing the reference signal resources whose reference signal resource serial numbers satisfy the rule into the same reference signal resource group, the above-mentioned at least two reference signal resource groups are configured. Since different network devices correspond to different reference signal resource groups, for Each reference signal resource group terminal device reports relevant information of one or more beams corresponding thereto, and thus the embodiment of the present application achieves the goal of simultaneously training downlink beams of multiple network devices that are jointly transmitted.
  • the method before the terminal device sends the report information, the method further includes:
  • the terminal device receives indication information sent by the network device, where the indication information is used to indicate that the multi-beam group reporting mode is on, where the multi-beam group reporting mode is on indicates that the terminal device needs to report the at least Information about the two beams.
  • the method before the network device receives the report information sent by the terminal device, the method further includes:
  • the network device sends indication information to the terminal device, where the indication information is used to indicate that the multi-beam group reporting mode is on, where the multi-beam group reporting mode is on indicates that the terminal device needs to report the Information about at least two beams.
  • the terminal device sends the report information according to the above-mentioned multi-beam group reporting method only when certain conditions are met, which can limit the multi-beam group reporting method to the beam training scenario, avoiding the use of this in other scenarios Method of sending reported information.
  • a communication device including various modules or units for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • the communication device is a terminal device.
  • a communication device including various modules or units for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device is a network-side device.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory so that the network device executes the method in the first aspect and its possible implementation.
  • the communication device is a terminal device.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the terminal device executes the method in the second aspect and its possible implementation.
  • the communication device is a network device.
  • a computer-readable medium on which a computer program is stored, which when executed by a computer implements the method in the first aspect and its possible implementation.
  • a computer-readable medium on which a computer program is stored, which when executed by a computer implements the method in the second aspect and possible implementations thereof.
  • a computer program product which implements the method in the first aspect and possible implementation manners when the computer program product is executed by a computer.
  • a computer program product which when executed by a computer implements the method in the second aspect and its possible implementation.
  • a processing device including a processor and an interface.
  • a processing device including a processor, an interface, and a memory.
  • the processor is configured to be executed as an execution subject of the method in the first aspect to the second aspect or any possible implementation manner of the first aspect to the second aspect
  • related data interaction processes are completed through the above interface.
  • the above interface may further complete the above data interaction process through a transceiver.
  • the processing device in the above eleventh or twelfth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, Integrated circuits, etc .; when implemented by software, the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, or may be located outside the processor, Exist independently.
  • a system including the aforementioned network device and terminal device.
  • FIG. 1 is a schematic diagram of a scenario applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of beam scanning related configuration according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of beam training according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of beam training according to another embodiment of the present application.
  • FIG. 5 is a flowchart of a multi-beam group reporting method according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device of the present application.
  • FIG. 7 is a schematic block diagram of a terminal device of the present application.
  • FIG. 8 is a schematic block diagram of another communication device of the present application.
  • FIG. 9 is a schematic block diagram of a network device of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long-term evolution
  • FDD frequency division duplex
  • LTE time division duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • FIG. 1 shows a schematic block diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include one or more network devices and one or more terminal devices.
  • the wireless communication system 100 includes a first network device 110, a second network device 120, and a One or more terminal devices 130 within the coverage of the first network device 110 and the second network device 120.
  • the terminal device 130 may be mobile or stationary. Both the first network device 110 and the second network device 120 can communicate with the terminal device 130 through a wireless air interface.
  • the first network device 110 and the second network device 120 can provide communication coverage for a specific geographic area, and can communicate with terminal devices located within the coverage area.
  • the first network device 110 or the second network device 120 may be a global system for mobile (GSM) system or a base station (base transceiver) (BTS) in code division multiple access (CDMA) It can also be a base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, an evolved base station (evolved NodeB, eNB or eNodeB) in an LTE system, or it can be A wireless controller in a cloud radio access network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, a network device in a future 5G network, or a future evolution Network equipment in the PLMN network, for example, one of the transmission and reception points (TRP) or transmission points (TRP) in the NR system, one of the base stations in the NR system (gNB), and the base stations in the 5G system Or a group of antenna panels (including multiple antenna panels).
  • GSM global
  • the terminal device 130 may also be called a user equipment (User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, User agent or user device.
  • Access terminals can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, wireless local loop (Wireless Local Loop, WLL) stations, personal digital processing (Personal Digital Assistant (PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, smart home devices, drone devices, and terminal devices in future 5G networks or public land mobile communication networks that evolve in the future (
  • the terminal equipment in the public mobile network (PLMN) is not limited in this embodiment of the present application.
  • the wireless communication system 100 can support CoMP transmission (also called joint transmission), that is, at least two network devices (TRP) use coordinated multipoint transmission to transmit downlink data to the terminal device.
  • CoMP transmission also called joint transmission
  • the terminal device 130 can communicate with
  • the first network device 110 can communicate with the second network device 120, wherein the coordinated multipoint transmission method can be implemented by using spatial diversity and / or spatial multiplexing technologies.
  • the first network device and the second network device can be in the same
  • the carrier may also be on a different carrier, which is not limited in this application.
  • the "cooperative multi-point transmission" in this application includes but is not limited to joint transmission JT.
  • JT includes coherent JT and non-coherent JT (NCJT).
  • NCJT non-coherent JT
  • the difference between the two is that NCJT beamforms different MIMO data streams from multiple cooperative TRPs separately.
  • Coherent JT does all MIMO data streams from multiple cooperative TRPs. Joint beamforming.
  • the first network device may serve as a service network device, and the second network device may be a collaboration network device; or, the first network device may be a collaboration network device, and the second network device is a service network device; or Both the first network device and the second network device may also be serving network devices, and the embodiments of the present application are not limited thereto.
  • the service network device may send control signaling to the terminal device, and the cooperative network device may send data to the terminal device; or, the service network device may send control signaling to the terminal device, which The serving network device and the cooperative network device may simultaneously send data to the terminal device, or the serving network device and the cooperative network device may simultaneously send control signaling to the terminal device, and the serving network device and the cooperative network device may simultaneously Send data to the terminal device.
  • Communication can be performed between the service network device and the cooperative network device, and between multiple cooperative network devices, for example, to transfer control messages.
  • At least two TRPs use a beam that has a pairing relationship with the terminal device to communicate with the terminal device, for example, use a downlink beam paired with the terminal device to send downlink data to the terminal device.
  • the two TRPs need to determine the above-mentioned downlink beam communicating with the terminal device through beam scanning (or beam training).
  • Beam can be understood as a spatial filter or spatial parameters.
  • the beam used to send a signal can be called a transmission beam (transmission beam, Tx beam), which can be a spatial transmission filter (spatial domain domain transmit filter) or a spatial transmission parameter (spatial domain domain transmit parameter);
  • the beam used to receive a signal can be called For receiving beam (reception beam, Rx beam), it can be spatial receiving filter (spatial domain receiving filter) or spatial receiving parameter (spatial domain receiving parameter).
  • the technique of forming a beam may be a beam forming technique or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital / analog beamforming technology.
  • the transmit beam may refer to the signal intensity distribution formed in different directions in space after the signal is transmitted through the antenna, and the receive beam may refer to the signal intensity distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be, for example, a spatial filter.
  • a spatial filter for example, a spatial filter.
  • beam and spatial filter are used interchangeably, for example, “transmit beam” and “spatial transmit filter” are used interchangeably, “receiving beam” and “spatial receive filter” “Device” is used interchangeably, and the meaning to be expressed is consistent when the difference is not emphasized.
  • the beam may be a wide beam, or a narrow beam, or other types of beams.
  • the technique of forming a beam may be a beam forming technique or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital / analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be sent through different beams.
  • the “beam pairing relationship” is the pairing relationship between the transmission beam and the reception beam, that is, the pairing relationship between the spatial transmission filter and the spatial reception filter.
  • a large beamforming gain can be obtained by transmitting a signal between a transmission beam and a reception beam having a beam pairing relationship.
  • the sending end and the receiving end can obtain the beam pairing relationship through beam training.
  • the sending end may send the reference signal by beam scanning
  • the receiving end may also receive the reference signal by beam scanning.
  • the transmitting end can form beams with different directivities in the space through beamforming, and can poll on multiple beams with different directivities to transmit the reference signal through the beams with different directivities, so that The power of the reference signal to transmit the reference signal in the direction pointed by the transmit beam can be maximized.
  • the receiving end can also form beams with different directivities in the space through beamforming, and can poll on multiple beams with different directivities to receive reference signals through beams with different directivities, so that the receiving end receives The power of the reference signal can be maximized in the direction pointed by the receive beam.
  • the receiving end can perform channel measurement based on the received reference signal, and report the measurement result to the sending end through channel state information (channel state information (CSI)).
  • channel state information channel state information
  • the receiving end may report a part of the reference signal resource with a larger reference signal received power (reference signal receiving power, RSRP) to the sending end, such as reporting the identifier of the reference signal resource, or reporting the identifier of the reference signal resource and the reference signal resource Corresponding RSRP, so that the transmitting end uses the beam pairing relationship with better channel quality to transmit and receive signals when transmitting data or signaling.
  • RSRP reference signal receiving power
  • the reference signal can be used for channel measurement or channel estimation.
  • the reference signal resource can be used to configure the transmission properties of the reference signal, for example, the location of the time-frequency resource, the port mapping relationship, the power factor, and the scrambling code. For details, reference may be made to the prior art.
  • the transmitting end device may transmit the reference signal based on the reference signal resource, and the receiving end device may receive the reference signal based on the reference signal resource.
  • the channel measurement involved in this application also includes beam measurement, that is, beam quality information is obtained by measuring a reference signal, and parameters used to measure the beam quality include RSRP, but are not limited thereto.
  • the beam quality can also be determined by reference signal reception quality (RSRQ), signal-noise ratio (SNR), signal-to-interference-noise ratio (signal to interference plus plus noise ratio, SINR, referred to as signal interference). Noise ratio) and other parameters.
  • RSRQ reference signal reception quality
  • SNR signal-noise ratio
  • SINR signal-to-interference-noise ratio
  • Noise ratio signal to interference plus plus noise ratio
  • the reference signal may include, for example, a channel state information reference signal (channel-state information reference (CSI-RS), a synchronization signal block (synchronization signal block, SSB), and a sounding reference signal (SRS).
  • CSI-RS channel state information reference
  • SSB synchronization signal block
  • SRS sounding reference signal
  • the reference signal resources may include CSI-RS resources (CSI-RS resources), SSB resources, and SRS resources (SRS resources).
  • SSB may also be called a synchronization signal / physical broadcast channel block (SS / PBCH block), and the corresponding SSB resource may also be called a synchronization signal / physical broadcast channel block resource.
  • SS / PBCH block resource which can be referred to as SSB resource.
  • each reference signal resource may correspond to a reference signal resource identifier, for example, CSI-RS resource identifier (CSI-RS resource indicator, CRI), SSB resource identifier (SSB resource indicator, SSBRI) , SRS resource index (SRS resource index, SRI).
  • CSI-RS resource indicator CRI
  • SSB resource identifier SSB resource indicator, SSBRI
  • SRS resource index SRS resource index, SRI
  • the SSB resource identifier may also be called an SSB identifier (SSB index).
  • Reporting settings also known as channel state information CSI reporting configurations, which can be associated with one or more resource settings.
  • the reporting parameter (ReportQuantity) in reporting setting can be set to "CRI + RSRP", that is, the quality or intensity of the beam is measured by RSRP, and at the same time
  • Reporting configuration type (ReportConfigureType) to configure the periodic behavior of reporting includes aperiodic reporting (periodic), periodic reporting (periodic) or semi-persistent reporting (semi-persistent), for example, as shown in FIG. 2 beam quality or intensity reporting The behavior is reported acyclically.
  • Resource setting One or more reference signal resource sets are associated, and the configuration resource type is aperiodic, periodic or semi-persistent ( semi-persistent).
  • One resource may include one or more reference signal resources.
  • the reference signal resources may be used to configure transmission properties of the reference signal, such as time-frequency resource location, port mapping relationship, power factor, and scrambling code.
  • the resource set associated with resource configuration may be a non-zero power channel state information reference signal resource set (NZP-CSI-RS resource) set, and the resource type is an acyclic resource.
  • the NZP-CSI-RS resource set may contain one or more NZP-CSI-RS resources. For example, as shown in FIG. 2, it includes 4 NZP-CSI-RS resources, and each resource has its own resource serial number (# 0- # 3), when each NZP-CSI-RS resource is carried on a beam, the terminal device can measure the RSRP of the CSI-RS transmitted on the NZP-CSI-RS resource to compare the beam quality.
  • the resource set associated with the resource setting may be a set of reference power resources of zero power or non-zero power, and the embodiment of the present application is not limited thereto.
  • “resource setting” associated resource set may indicate that the resource configuration is used to configure the resource set, or the resource configuration includes the resource set, and the embodiments of the present application are not limited thereto.
  • the “resource set” in the embodiments of the present application may also be referred to as a “resource set”.
  • the “resource configuration” described above may be applicable to the case where the reference signal resource is CSI-RS.
  • the reference signal resources in the embodiments of the present application are not limited to CSI-RS.
  • the reference signal resources in the embodiments of the present application may also be SSB or SRS. Specifically, for the resource association relationship of SSB or SRS, refer to the prior art. No longer.
  • repetition parameter (repetition) as shown in FIG. 2 is set to ON, indicating that the transmit beams carrying these 4 NZP-CSI-RS resources are repeated, while setting to OFF means that there is no limit (repeated or non-repeated) can).
  • the NZP-CSI-RS resource is periodic, then when the terminal device receives the RRC configuration message, it will start to receive and measure at the corresponding time-frequency position according to the specific CSI-RS resource configuration; if the NZP -CSI-RS resource is semi-persistent, then the terminal equipment starts receiving and measuring after receiving a relevant MAC-CE activation command, and stops measuring after receiving the deactivation command; if the NZP-CSI- RS resource is aperiodic, then the terminal device will start receiving and measuring after receiving a DCI trigger command, and it will end after only one measurement.
  • Antenna port short for port.
  • One antenna port can be configured for each virtual antenna, each virtual antenna can be a weighted combination of multiple physical antennas, and each antenna port can correspond to one reference signal port.
  • the signals corresponding to the antenna ports with the QCL relationship have the same parameters, or the parameters of one antenna port can be used to determine the parameters of the other antenna port with the QCL relationship of the antenna port, or the two antenna ports have the same parameters Or, the parameter difference between the two antenna ports is less than a certain threshold.
  • the parameters may include one or more of the following: delay spread (delay spread), Doppler spread (Doppler spread), Doppler frequency shift (Doppler shift), average delay (average delay), average Gain, spatial reception parameters (spatial Rx parameters).
  • the spatial reception parameters may include one or more of the following: angle of arrival (angle of arrival, AOA), average AOA, AOA extension, angle of departure (angle of departure) (AOD), average angle of departure AOD, AOD extension, reception Antenna spatial correlation parameters, transmit antenna spatial correlation parameters, transmit beam, receive beam, and resource identification.
  • the above angle may be a decomposition value of different dimensions, or a combination of decomposition values of different dimensions.
  • Antenna ports are antenna ports with different antenna port numbers, and / or, antenna ports with the same antenna port number to transmit or receive information within different time and / or frequency and / or code domain resources, and / or have different
  • the antenna port number is the antenna port that transmits or receives information in different time and / or frequency and / or code domain resources.
  • the resource identifier may include: a CSI-RS resource identifier, or an SRS resource identifier, or an SSB resource identifier, or a resource identifier of a preamble sequence transmitted on a physical random access channel (Physical Random Access Channel, PRACH), or a demodulation reference signal ( The demodulation reference (DMRS) resource identifier is used to indicate the beam on the resource.
  • CSI-RS resource identifier or an SRS resource identifier, or an SSB resource identifier
  • a resource identifier of a preamble sequence transmitted on a physical random access channel (Physical Random Access Channel, PRACH), or a demodulation reference signal (DMRS) resource identifier is used to indicate the beam on the resource.
  • QCL relationships can be divided into the following four types based on different parameters:
  • Type A Doppler frequency shift, Doppler spread, average delay, delay spread;
  • Type B Doppler frequency shift, Doppler expansion
  • Type C Doppler frequency shift, average delay
  • Type D spatial reception parameters.
  • QCL The QCL involved in the embodiments of the present application is a type D QCL.
  • QCL can be understood as a QCL of type D, that is, a QCL defined based on spatial reception parameters.
  • the QCL relationship refers to a type D QCL relationship, it can be regarded as an airspace QCL.
  • the QCL relationship between the downlink signal port and the downlink signal port, or between the uplink signal port and the uplink signal port may be that the two signals have the same AOA or AOD, use Yu indicates that they have the same receive beam or transmit beam.
  • the AOA and AOD of the two signals have a corresponding relationship, or the AOD and AOA of the two signals have a corresponding relationship, that is, the beam Reciprocity, determine the uplink transmit beam according to the downlink receive beam, or determine the downlink receive beam according to the uplink transmit beam.
  • the two antenna ports are QCL in space domain, it can mean that the corresponding beam directions of the two antenna ports are spatially consistent.
  • the receiving end if the two antenna ports are QCL in space domain, it can mean that the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • the signal transmitted on the port with the spatial QCL relationship may also have a corresponding beam, and the corresponding beam includes at least one of the following: the same receive beam, the same transmit beam, and the transmit beam corresponding to the receive beam (corresponding to reciprocal Scene), the receive beam corresponding to the transmit beam (corresponding to a reciprocal scene).
  • the signal transmitted on the port with the spatial QCL relationship can also be understood as using the same spatial filter to receive or send the signal.
  • the spatial filter may be at least one of the following: precoding, the weight of the antenna port, the phase deflection of the antenna port, and the amplitude gain of the antenna port.
  • a signal transmitted on a port with an airspace QCL relationship can also be understood as having a corresponding beam pair connection (BPL).
  • the corresponding BPL includes at least one of the following: the same downlink BPL, the same uplink BPL, and the downlink BPL
  • the corresponding upstream BPL corresponds to the downstream BPL.
  • the spatial reception parameter (ie, QCL of type D) can be understood as a parameter for indicating the direction information of the reception beam.
  • Transmission configuration indicator can be used to indicate the QCL relationship between two reference signals.
  • the network device can configure the TCI state list for the terminal device through high-level signaling (such as radio resource control (RRC) messages), and can use high-level signaling (such as MAC CE) or physical layer signaling ( For example, DCI activates or indicates one or more of the TCI states.
  • RRC radio resource control
  • MAC CE physical layer signaling
  • DCI activates or indicates one or more of the TCI states.
  • the network device can configure the TCI state list for the terminal device through the RRC message.
  • the terminal device receives the physical downlink control channel (PDCCH) from the network device.
  • PDCCH physical downlink control channel
  • one or more of the control channel TCI state lists can be activated according to the instructions of the MAC CE, where the control channel TCI state list is a subset of the above TCI state list; the terminal device can obtain the DCI from the PDCCH, and then according to the DCI Instruct to select one or more TCI states in the data channel TCI state list, where the data channel TCI state list is a subset of the above TCI state list, which is indicated to the terminal device through MAC-CE signaling.
  • the configuration information of a TCI state may include the identification of one or two reference signal resources, and the associated QCL type.
  • the terminal device can demodulate the PDCCH or PDSCH according to the indication of the TCI state.
  • the terminal device can know which transmit beam the network device uses to transmit the signal, and then can determine which receive beam to use to receive the signal according to the beam pairing relationship determined by the channel measurement.
  • an optional beam training method is as follows: the downlink beams of at least two transmission points that are jointly transmitted are implemented by one beam scan.
  • the beams of TRP1 and TRP2 are traversed, which is equivalent to a reference signal resource in a NZP-CSI-RS resource set, which passes through the beam wheels of TRP1 and TRP2 Send inquiry.
  • the distance between the two transmission points and the terminal device causes a certain power difference, resulting in the terminal device may select multiple beams from the same transmission point based on the strength of RSRP, for example, two beams of TRP1 for It is reported that in this case, multi-point collaboration cannot be achieved when subsequent data is sent.
  • each transmission point of the joint transmission separately uses a single beam scan for downlink beam training. For example, as shown in FIG. 4, beam scanning and reporting are performed in two beams, and the beams of TRP1 and TRP2 are scanned respectively. At this time, there are two reporting configurations (reporting settings), which are respectively associated with two reference signal resource sets (resource) ), The reference signal resources in these two resources are sent through the beam polling of TRP1 and TRP2 respectively. At this time, the terminal device will select a beam to report from TRP1 after the first beam scan, and then select a beam to report from TRP2 after the second beam scan.
  • the receiving beams used by the terminal device to receive the selected TRP transmit beams may not be the same, or the two receive beams may not exist at the same time, then when the two TRPs pass through their respective When the transmit beam communicates with the terminal device, the terminal device may not be able to receive the signals sent by two TRPs at the same time, but only one of the TRP signals, which affects the communication service.
  • the embodiments of the present application propose a beam training method that can solve the above problems. Specifically, the present application implements reporting of beam-related information of at least two transmission points through one beam scan to realize the beam in the CoMP system training.
  • reference signal resources may be grouped.
  • one reference signal resource group may correspond to one network device in joint transmission, and the beams selected and reported by the terminal device are selected from different transmission beam resource groups.
  • the beams reported by the terminal device can be simultaneously received by the terminal device, thereby achieving the purpose of training the downlink beams of multiple network devices that are jointly transmitted in one scan.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • the computer-readable medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (for example, compact discs (CDs), digital universal discs (DVDs)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and / or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and / or carrying instructions and / or data.
  • FIG. 5 is a schematic flowchart of a multi-beam group reporting method 500 according to an embodiment of the present application.
  • the method shown in FIG. 5 can be applied to a communication system that supports CoMP as shown in FIG.
  • the joint transmission scenario applicable to the embodiment of the present application shown in FIG. 1 may be a joint transmission scenario of a homogeneous network or a joint transmission scenario of a heterogeneous network, which is not limited in the embodiment of the present application.
  • the scene shown in FIG. 1 may be a low-frequency scene or a high-frequency scene, which is not limited in this embodiment of the present application.
  • the method 500 shown in FIG. 5 includes:
  • the network device sends first information, where the first information is used to configure at least two reference signal resource groups;
  • the terminal device receives the first information.
  • the network device may be any one of multiple network devices in CoMP.
  • the first information is sent by the serving network device or the cooperative network device, and the embodiments of the present application are not limited thereto.
  • the at least two reference signal resource groups may correspond to at least two network devices that are jointly transmitted, in other words, each network device that is jointly transmitted corresponds to a reference signal resource group, and each network device may use The resources in the corresponding reference signal resource group send reference signals.
  • reference signal resource groups in the embodiment of the present application may also correspond to the same network device, and the embodiment of the present application is not limited to the scenario where different reference signal resource groups correspond to different network devices.
  • the terminal device sends reporting information, where the reporting information includes related information of at least two beams, the at least two beams are used to send reference signals carried on at least two reference signal resources, and the at least two The reference signals transmitted by the beam can be simultaneously received by the terminal device; wherein the at least two reference signal resources are respectively from the at least two reference signal resource groups.
  • the network device receives the report information sent by the terminal device.
  • reference signal resources are grouped, for example, one reference signal resource group may correspond to one network device in joint transmission, the beams selected and reported by the terminal device are selected from different transmission beam resource groups, and the terminal The beam reported by the device can be simultaneously received by the terminal device. That is to say, in the embodiment of the present application, the relevant information of at least one beam is reported for each reference signal resource group, thereby enabling training of the transmission beam of the network device corresponding to the reference signal resource group. Therefore, the embodiment of the present application The purpose of training the downlink beams of multiple network devices that are jointly transmitted can be achieved in one scan.
  • the number of the at least two reference signal resources may be equal to the number of the at least two reference signal resource groups.
  • the at least two reference signal resources include each reference signal A reference signal resource in the resource group. That is to say, for each reference signal resource group, the terminal device reports related information of a beam corresponding to one reference signal resource.
  • the number of the at least two reference signal resources may be greater than the number of at least two reference signal resource groups.
  • the at least two reference signal resources are one of each reference signal resource group Or multiple reference signal resources. That is to say, for each reference signal resource group, the terminal device reports related information of the beam corresponding to one or more reference signal resources.
  • the terminal device has the capability of simultaneously receiving the reference signals sent by the at least two beams.
  • the network device may simultaneously send reference signals through the at least two beams, or may send the reference signals successively, that is, the terminal device may receive the reference signals sent by the at least two beams simultaneously, or may be successively Receiving the reference signals sent by the at least two beams, the terminal device may receive the reference signals sent by the at least two beams through the same receive beam, or may receive the at least two simultaneously through at least two receive beams that may exist simultaneously
  • the reference signal transmitted by the beam how the specific terminal device determines that the terminal device has the above capabilities is implemented by the terminal device, and is not limited by the embodiment without application.
  • the relevant information of the at least two beams in the embodiment of the present application includes the at least two reference signal received powers and the one-to-one correspondence with the at least two reference signal received powers. Identification of at least two reference signal resources.
  • the beam-related information may have multiple possible forms, as long as the beam-related information can instruct the terminal device to choose to report the at least two beams, the embodiments of the present application are not limited to the above Reference signal received power and reference signal resource identification.
  • the related information of the at least two beams may also be the signal-to-noise ratio of the reference signal sent by the at least two beams.
  • the first information may have multiple possible implementation manners, and the embodiment of the present application does not specifically limit this, as long as the first information can configure at least two reference signal resource groups.
  • the reference signal resource group is a set of reference signal resources, wherein the first information configures the at least two reference signal resource groups by directly configuring, activating, or triggering at least two reference signal resource sets.
  • the first information is carried in at least one of the following signaling:
  • the first information may be carried in any one of the foregoing signalings, or may be carried in the foregoing multiple signalings, and the embodiments of the present application are not limited thereto.
  • the first information is carried in the multiple signalings.
  • the first information may include first sub-information and second sub-information
  • the first sub-information is used to configure multiple sets of reference signal resource groups, for example, the first sub-information is configured by configuring at least two reference signals Resource sets to configure multiple reference signal resource groups
  • the first sub-information may be carried in the above-mentioned one signaling, for example, in RRC signaling
  • the second sub-information may be used for the configuration from the above-mentioned first sub-information
  • a plurality of sets of reference signal resource groups one or more sets of resources are activated or triggered
  • the second sub-information may be carried in the above-mentioned another signaling, for example, in DCI.
  • the first sub-information is used to configure three reference signal resource groups: reference signal resource group # 1, reference signal resource group # 2, and reference signal resource group # 3.
  • the first sub-information can be configured by Three reference signal resource sets to configure the three reference signal resource groups, for example, the first sub-information is used to configure resource set # 1, resource set # 2, and resource set # 3, where resource set # 1 is used as the reference signal resource Group # 1, resource #set is used as reference signal resource group # 2, and resource #set # 3 is used as reference signal resource group # 3.
  • the second sub-information may be used to activate or trigger one or more reference signal resource groups from the above three reference signal resource groups, for example, the second sub-information is used to activate or trigger reference signal resource group # 1 and reference signals Resource group # 2.
  • the resource type (resource) in a resource configuration can be configured as periodic, semi-persistent, and aperiodic. Domain cycle behavior.
  • the network device can activate or trigger at least two reference signal resource sets to configure at least two reference signal resources at a time.
  • direct configuration of at least two reference signal resource sets may indicate that the terminal device directly activates all resources associated with the resource configuration when receiving the RRC configuration message.
  • the first information may be carried in the RRC.
  • a resource associated with multiple resources may be configured to the terminal device through RRC, that is, the number of resources is greater than 1.
  • the terminal device directly configures (also called direct activation) all resources associated with this resource setting when receiving the RRC configuration message, and each activated resource set
  • the reference signal resources form a reference signal resource group.
  • the multiple resources included in the resource setting are resource # set1 and resource # set # 2, after the terminal device obtains the first message, it can confirm that resource # set # 1 corresponds to a reference signal resource group, for example, Reference signal resource group # 1, resource #set # 2 corresponds to a reference signal resource group, for example, reference signal resource group # 2.
  • the terminal device after acquiring the first message, the terminal device is about to set resource # 1 as the reference signal resource group # 1, and use resource #set # 2 as the reference signal resource group # 2.
  • the resource type (resource type) in the resource setting (resource setting) may be configured as periodic, that is, the reference signal may be sent in a periodic manner.
  • the first information may be carried in the MAC-CE.
  • the resource setting also includes multiple resource sets, that is, the number of resource sets is greater than 1.
  • MAC-CE signaling can activate at least two resource sets from the multiple resource sets included in the resource setting, and the reference signal resources in each activated resource set form a reference Signal resource group.
  • the multiple resources included in the resource setting are resource set # 1, resource set # 2, and resource set # 3, which are three sets of reference signal resources.
  • the MAC-CE signaling obtained by the terminal device is derived from the three reference signals. If resource # set and resource # set # 2 are activated in the resource set, the terminal device can determine that resource # set1 corresponds to a reference signal resource group, for example, reference signal resource group # 1 and resource # set # 2 corresponds to a reference signal resource group. , For example, reference signal resource group # 2. In other words, after acquiring the first message, the terminal device is about to set resource # 1 as the reference signal resource group # 1, and use resource #set # 2 as the reference signal resource group # 2.
  • the resource type in the resource setting may be configured as semi-persistent, that is, the reference signal may be sent in a semi-persistent manner.
  • the first information may be carried in the DCI.
  • the resource setting also includes multiple resource sets, that is, the number of Resource sets is greater than 1,
  • DCI can trigger at least two resource sets from the multiple resource sets included in the resource setting, and the reference signal resource in each triggered resource set becomes a reference signal resource group.
  • the multiple resources included in the resource setting are resource set # 1, resource set # 2, and resource set # 3, which are three sets of reference signal resources.
  • the DCI acquired by the terminal device is triggered from the three sets of reference signal resources.
  • resource # set # 2 and resource # set # 3 then the terminal device can determine that resource # set # 2 corresponds to a reference signal resource group, for example, reference signal resource group # 1, and resource # set # 3 corresponds to a reference signal resource group, for example, reference Signal resource group # 2.
  • the terminal device is about to set resource # 2 as the reference signal resource group # 1, and use resource #set # 3 as the reference signal resource group # 2.
  • the resource type in the resource setting can be configured as aperiodic, that is, the reference signal can be sent in an aperiodic manner
  • reference signal resource groups # 1, # 2, and # 3 in this embodiment are only examples to facilitate understanding.
  • the reference signal resource group and the reference signal resource set may be understood as A concept.
  • Table 1 describes examples when the first information is carried in RRC, MACE-CE, and DCI, and the reference signal is sent in a periodic mode, a semi-persistent mode, and an aperiodic mode, respectively.
  • the embodiments of the present application are not limited to this.
  • the signaling carrying the first information can be arbitrarily combined with the reference signal transmission period, for example, when the first information is carried in the RRC, the reference signal transmission It can be semi-persistent or non-periodic.
  • the configuration method shown in Table 1 can be used to group resources, that is, for a certain resource setting, multiple reference signals contained in multiple resource sets associated with it can be activated / triggered at the same time. Transmission, and the reference signal resource in each activated / triggered resource set becomes a reference signal resource group. Therefore, in the embodiment of the present application, multiple resource sets are activated / triggered at a time by the network device to realize the reference signal resource grouping, and the relevant information of at least one beam is reported for each resource group to realize the network device corresponding to the resource group The purpose of beam training.
  • the terminal device can determine the configured multiple reference signal resource groups after receiving the above-mentioned first information, and then the terminal device can send the report information according to the above step 520.
  • the relevant information of the at least two beams included in the reported information is at least two reference signal received powers and the identifiers of the at least two reference signal resources corresponding to the at least two reference signal received powers, for example, the terminal
  • the device determines that when multiple resources associated with a resource setting are directly activated by all configurations, or activated by a MAC-CE activation signaling, or triggered by a DCI trigger instruction, the terminal device sets the reference signal included in the reported CSI
  • the resource identification (for example, CRI, SSB index) must come from the reference signal resources in different resources to achieve beam training for multiple network devices.
  • the first information includes QCL configuration information of reference signal resources in the same reference signal resource set, where reference signal resources having the same QCL configuration information are configured as the same reference signal resource group.
  • the network device first configures a set of reference signal resources for the terminal device
  • the reference signal resource set for example, the reference signal resource set may be configured in an existing manner.
  • each reference signal resource in the resource set can be associated with a QCL configuration information (qcl info).
  • the QCL-info may be a TCI state identifier (TCI state ID) that corresponds one-to-one with reference signal resources.
  • TCI state ID TCI state identifier
  • the following uses QCL-info as the TCI state ID as an example for description, but the embodiment of the present application is not limited to this.
  • the TCI State ID may be used as a reference signal resource group identifier rather than beam indication information.
  • the embodiments of the present application can reuse the existing TCI State ID for reference signal resource grouping.
  • the above multiplexing method may only take effect in some scenarios (for example, specific scenarios below). Specifically, for scenarios where the above multiplexing method takes effect, please refer to the description below. For example, to satisfy the following The scenes of one or more conditions in Condition 1 to Condition 4 will not be repeated here.
  • the first information is carried in at least one of the following signaling:
  • the first information is carried in the multiple signalings.
  • the first information may include first sub-information and second sub-information.
  • the first sub-information is used to configure multiple TCI state ID sequences corresponding to reference signal resources in the same resource.
  • the first sub-information may be carried in one of the above signalings, for example, in RRC signaling, the second sub-information may be used to select one of the multiple sequences, and the second sub-information may be carried in the other signaling.
  • the order for example, is carried in DCI.
  • the resource set includes 6 reference signal resources
  • the first information configures multiple TCI state ID sequences, where each TCI state ID sequence includes 6 TCI state IDs.
  • each TCI state ID sequence includes 6 TCI state IDs.
  • the first sub-information can be configured with 5 TCI state ID sequences.
  • each of the 5 sequences includes 6 TCI state IDs corresponding to resource # 1-6.
  • the 5 sequences are as follows:
  • Sequence 1 The six TCI state IDs corresponding to resource # 1-6 are TCI state ID # 1, 1, 1, 1, 2, and 2, respectively.
  • Sequence 2 The six TCI state IDs corresponding to resource # 1-6 are TCI state ID # 1, 2, 1, 1, 2, and 2, respectively.
  • Sequence 3 The six TCI state IDs corresponding to resource # 1-6 are TCI state ID # 1, 1, 1, 1, 1, 2 respectively.
  • Sequence 4 The 6 TCI state IDs corresponding to resource # 1-6 are TCI state ID # 1, 1, 2, 1, 2, and 1, respectively.
  • Sequence 5 The six TCI state IDs corresponding to resource # 1-6 are TCI state ID # 2, 1, 1, 1, 2, and 2, respectively.
  • the second sub-information is used to select one of a plurality of sequences.
  • the second sub-information is 3 bits, and the 3 bits may indicate one of the five sequences.
  • the grouping of the 6 resources is resource # 1, 5 and 6 (the corresponding TCI state IDs are # 2), which is a reference signal resource group, resource The numbers # 2, 3 and 4 (the corresponding TCI state ID # 1) are another reference signal resource group.
  • the number of bits of the second sub-information corresponds to the number of sequences configured in the first sub-information, as long as the second sub-information can indicate any one of the multiple sequences, the embodiments of the present application are not specific limited.
  • the resource type (resource) in a resource configuration can be configured as periodic, semi-persistent, and aperiodic. Domain cycle behavior.
  • the first information may be carried in the RRC.
  • one resource set includes multiple NZP-CSI-RS resources, and the first information may be configured in the NZP-CSI- In the RS-Resource configuration information, the first information may be a parameter field of NZP-CSI-RS-Resource.
  • the configuration information of NZP-CSI-RS resource includes a TCI state ID.
  • the terminal device receives the configuration information of the reference signal resource and can configure the resource with the same TCI state ID in the resource set
  • the reference signal resources are determined to be the same reference signal resource group.
  • the reference signal resources included in the resource set may be zero-power reference signal resources or non-zero-power reference signal resources, and the reference signals may be CSI-RS, SSB, or SRS, etc., in Table 2 Only the resource set including NZP-CSI-RS resource is used as an example for description, but the embodiment of the present application is not limited to this.
  • the first information may also be configured in the zero power channel state information reference signal
  • the configuration information of the ZP-CSI-RS resource may be a parameter field for configuring the ZP-CSI-RS resource, the embodiment of the present application is not limited thereto.
  • a resource includes a total of resource # 1 to resource # 8, where the TCI corresponding to resource # 1 to resource # 4 is TCI state ID # 1, and the TCI corresponding to resource # 5 to resource # 8 is TCI state ID # 2, after receiving the RRC message carrying the first information, the terminal device can determine that resource # set # 1 to resource # 4 correspond to the same reference signal resource group, for example, reference signal resource group # 1; resource # set # 5 to resource # 8 correspond to the same reference signal resource group, for example, reference signal resource group # 2.
  • the resource type (resource type) in the resource configuration (resource setting) associated with the resource set may be configured as periodic, that is, the reference signal may be sent in a periodic manner.
  • the first information may be carried in the MAC-CE.
  • a resource set includes multiple NZP-CSI-RS resources
  • the first The information may be a set of parameters in the MAC-CE activation signaling associated with the resource set, for example, a sequence of TCI state IDs, where the number of TCI state IDs and the NZP-CSI-RS resource contained in the resource set The number is equal, that is, according to the order, the group TCI state ID and NZP-CSI-RS one-to-one correspondence.
  • the terminal device may determine the reference signal resources corresponding to the same TCI state ID as the same reference signal resource group.
  • the resource set includes a total of resource # 1 to resource # 8
  • the TCI state sequence in the MAC-CE activation signaling associated with the resource set includes 8 TCI state IDs, of which the first 4 TCI state ID is # 1, the last four TCI state ID is # 2, so the TCI corresponding to resource # 1 to resource # 4 is TCI state ID # 1, and the TCI corresponding to resource # 5 to resource # 8 is ID TCI state # ID # 2, after receiving the MAC-CE signaling carrying the first information, the terminal device can determine that resource # set to resource # 4 correspond to the same reference signal resource group, for example, reference signal resource group # 1 ; Resource # set # 5 to resource # 8 correspond to the same reference signal resource group, for example, reference signal resource group # 2.
  • the resource type (resource type) in the resource configuration (resource setting) associated with the resource set may be configured as semi-persistent, that is, the reference signal is sent in a semi-persistent manner.
  • the first information may be carried in DCI, for example, a resource set contains multiple NZP-CSI-RS resources
  • the first information may be A set of parameters in the DCI trigger signaling associated with the resource set, for example, a sequence of TCI state IDs, where the number of TCI state IDs is equal to the number of NZP-CSI-RS resources contained in the resource set, That is, in order of sequence, the group of TCI state ID and NZP-CSI-RS one-to-one correspondence.
  • the terminal device may determine the reference signal resources corresponding to the same TCI state ID as the same reference signal resource group.
  • the resource set includes resource # 1 to resource # 8
  • the TCI state sequence in the DCI trigger signaling associated with the resource set includes 8 TCI state IDs, among which, the first, third, and fifth , 7 TCI state ID is # 1, the remaining 2, 4, 6, 8 TCI state ID is # 2, therefore, the TCI corresponding to resource # 1, # 3, # 5, # 7 is TCI state ID # 1, resource # 2, # 4, # 6, # 8 corresponds to the TCI state ID is TCI state ID # 2, then the terminal device can determine the resource set # 1 # after receiving the DCI carrying the first information 3.
  • # 5 and # 7 correspond to the same reference signal resource group, for example, reference signal resource group # 1; resource sets2, # 4, # 6, and # 8 correspond to the same reference signal resource group, for example, reference signal resource group # 2.
  • the resource type (resource type) in the resource configuration (resource setting) associated with the resource set may be configured as aperiodic.
  • the terminal device After receiving the first information in the second case, the terminal device can determine the configured multiple reference signal resource groups, and then the terminal device can send the report information in the manner of 520. Specifically, the terminal device first determines multiple reference signal resource groups in the same resource set according to the TCI state ID, and then, the terminal device sets the reference signal resource identifiers (for example, CRI, SSB index) included in the reported CSI must come from different Reference signal resource group to implement beam training for multiple network devices.
  • the reference signal resource identifiers for example, CRI, SSB index
  • This embodiment of the present application implements the configuration of at least two reference signal resource groups by configuring reference signal resources with the same QCL configuration information as the same reference signal resource group. Since different network devices correspond to different reference signal resource groups, for each Each reference signal resource group terminal device reports relevant information of one or more beams corresponding thereto, and thus the embodiment of the present application achieves the goal of simultaneously training downlink beams of multiple network devices that are jointly transmitted.
  • the first information is resource configuration information, and the resource configuration information implements configuration of at least two reference signal resource groups by configuring identification signal numbers of reference signal resources in the same reference signal resource set.
  • the first information is resource setting information.
  • the first information may be configured to configure at least two reference signal resource groups by configuring an identification sequence number of reference signal resources in the same resource set.
  • the first information is carried in at least one of the following signaling:
  • the first information is carried in the multiple signalings described above.
  • the first information may include first sub-information and second sub-information.
  • the first sub-information is used to indicate a plurality of grouping rules, where each grouping rule includes a reference signal resource group and a reference signal The relationship between the serial numbers of resources.
  • the second sub-information is used to select one grouping rule among the grouping rules indicated by the first sub-information.
  • the identification sequence numbers of the reference signal resources in the same reference signal resource set are 1 to 8, and 10 to 16; the first sub-information is used to indicate 2 grouping rules, for example, grouping rule 1 is the same reference signal resource
  • grouping rule 1 is the same reference signal resource
  • the reference signal resources with consecutive reference signal resource identifier serial numbers belong to the same reference signal resource group
  • the reference signal resource with even reference signal resource identifier serial numbers in the same two reference signal resource set of the grouping rule two bits belong to the same reference signal resource group
  • reference The reference signal resource whose signal resource identification number is odd number belongs to another reference signal resource group.
  • the second sub-information may indicate an identification of one of the grouping rules, for example.
  • the terminal device can determine that the reference signal resources with sequence numbers 1 to 8 belong to a reference signal resource group according to the first sub-information and the second sub-information, and the sequence number is The reference signal resources of 10-16 are another reference signal resource group.
  • the first information may also be carried in one of the above signalings, for example, in RRC, which is not limited in this embodiment of the present application.
  • the following uses the first information as resource configuration information to be carried in the RRC as an example, and introduces the method of multi-beam group reporting in Case 3 of the present application with specific examples.
  • a predetermined rule may be used to determine the reference signal resource group according to the identification sequence number of the reference signal resource.
  • the predetermined rule may be: Reference signal resources with consecutive reference signal resource identification numbers in the same reference signal resource set belong to the same reference signal resource group.
  • the reference signal resource identifier serial numbers configured by the first information are 1 to 8, and 10 to 16, then according to the above preset rules, the reference signal resources with serial numbers 1 to 8 belong to a reference signal resource group, with serial numbers 10-16
  • the reference signal resource of is another reference signal resource group.
  • the predetermined rule may be that the reference signal resource with an odd number of reference signal resources is a reference signal resource group, and the reference signal resource with an even number of reference signal resources is another reference signal resource group.
  • the reference signal resource identifier serial numbers configured in the first information are 1 to 8, and 10 to 16, then according to the above preset rules, the reference signal resources with serial numbers 1, 3, 5, 7, 11, 13, and 15 belong to one Reference signal resource group, reference signal resources with sequence numbers 2, 4, 6, 8, 10, 12, 14 and 16 belong to another reference signal resource group,
  • the predetermined rule is that: the reference signal resource whose serial number of the reference signal resource is greater than the average / median value of the serial number is a reference signal resource group, and the reference signal resource whose serial number of the reference signal resource is less than the average / median value of the serial number is another reference Signal resource group.
  • the reference signal resource identifier serial numbers configured in the first information are 1 to 8, and 10 to 16, then according to the above preset rule: the reference signal resource whose serial number of the reference signal resource is greater than the average of the serial number is a reference signal resource group.
  • the reference signal resources belong to a reference signal resource group, and the reference signal resources with sequence numbers 10-16 are another reference signal resource group.
  • the reference signal resource corresponding to the reference signal resource identifier sequence number may belong to a reference signal resource group whose sequence number is less than the average value / median value, or belong to the sequence number
  • a reference signal resource group greater than the average value / median value is not limited in this application.
  • the reference signal resource identifier sequence numbers configured by the first information are 1 to 8, and 10 to 16, then according to the above preset rule: the reference signal resource whose reference signal resource identifier sequence number is greater than the middle value of the sequence number is a reference signal resource group.
  • the signal resource identifier whose reference number is less than the median value of the reference number is another reference signal resource group. Since the median value of 15 serial numbers from 1 to 8 and 10 to 16 is 8, since serial numbers 1 to 7 are less than 8, serial numbers 10 to 16 are greater than 8, therefore, the reference signal resources with serial numbers 1 to 7 belong to a reference Signal resource group.
  • Reference signal resources with sequence numbers 10-16 are another reference signal resource group.
  • the reference signal resource identifier sequence number is 8 equal to the intermediate value, assuming that the corresponding reference signal resource when the reference signal resource identifier sequence number is equal to the intermediate value can belong to the reference signal resource group whose sequence number is less than the intermediate value, then the sequence number can be divided into 1 to 8
  • the reference signal resources belong to a reference signal resource group, and the reference signal resources with sequence numbers 10-16 are another reference signal resource group.
  • the intermediate value is the sequence number value of the middlemost position of the reference signal resource identifier sequence number from small to large (or from large to small).
  • the above-mentioned intermediate value is the average value of the two sequence numbers corresponding to the middle two positions of the reference signal resource identification number from small to large (or large to small), or the middle two
  • the larger or smaller value of the two serial numbers corresponding to each position is not limited to this embodiment of the present application.
  • the terminal device After receiving the above-mentioned first information, the terminal device can determine the configured multiple reference signal resource groups, and then the terminal device can send the report information in the manner of 520. Specifically, first, the terminal device may determine multiple reference signal resource groups according to the reference signal resource identifier configured for the resource configuration information, and then the terminal device sets the reference signal resource identifier (for example, CRI, SSB index) included in the reported CSI must Comes from different reference signal resource groups to implement beam training for multiple network devices.
  • the reference signal resource identifier for example, CRI, SSB index
  • the embodiment of the present application by dividing the reference signal resources whose reference signal resource serial numbers satisfy the rule into the same reference signal resource group, the above-mentioned at least two reference signal resource groups are configured. Since different network devices correspond to different reference signal resource groups, for Each reference signal resource group terminal device reports relevant information of one or more beams corresponding thereto, and thus the embodiment of the present application achieves the goal of simultaneously training downlink beams of multiple network devices that are jointly transmitted.
  • the terminal device may send the report information in the manner of the above case 1, case 2, or case 3 embodiment (hereinafter referred to as a multi-beam group report mode).
  • the report information is sent according to the above-mentioned multi-beam group report mode.
  • the terminal device may send the report information in the above manner.
  • the preset condition includes at least one of the following conditions:
  • the reporting parameters in the reporting setting information include beam scanning related parameters, for example, the beam scanning related parameters include CRI and RSRP.
  • the group reporting method in the embodiment of the present application is limited to the measurement and reporting scenarios related to beam scanning.
  • the value of the repetition parameter (repetition) in the resource setting information is a preset value, for example, the preset value is in the OFF state.
  • the preset value is the off state, which can be understood as the currently performing transmit beam scanning.
  • Condition 2 limits the group reporting method of the embodiment of the present application to the scenario of sending beam scanning. It should be understood that the preset value of the repeating parameter in Condition 2 may also be in an ON state, which is not implemented in the embodiments of the present invention. The specific value is limited.
  • the resource type configured by the resource configuration information is a preset resource type, and the preset resource type is a periodic resource, an acyclic resource, or a semi-persistent resource.
  • the method described in the embodiment of the present application can be limited to a certain one or more types of time domain periodic behavior reference signal transmission scenarios.
  • the report information can be sent by using the group report method in the embodiment of the present application.
  • the multiple reference signal resource groups that is, the reference signal resource set are through DCI information. Order triggered.
  • the report information can be sent by using the group reporting method in the embodiment of the present application.
  • the multiple reference signal resource groups that is, the reference signal resource set are sent through the MAC- CE signaling is activated.
  • the report information can be sent by using the group report method in the embodiment of the present application.
  • the multiple reference signal resource groups that is, the reference signal resource set are through RRC signaling Configured. Or, a combination of any two of the above.
  • Condition 4 The first parameter in the reporting setting information takes the first value, where the first parameter takes the first value to indicate that the terminal device supports receiving at least two beams at the same time.
  • Condition 4 combines the grouping reporting method in the prior art to limit the method of grouping reference signal resources to the scenario where grouping reporting is enabled.
  • the first parameter is group-based beam reporting (group-based beam reporting), and the first value indicates an open state.
  • the group-based beam reporting (group-based beam reporting) being in the on state indicates that the terminal device has the ability to receive multiple beams simultaneously. It should be understood that, when the first parameter is in the off state, it may indicate that the terminal device does not support the ability to receive the foregoing multiple beams.
  • the preset condition may include any one of the above four conditions, or may include multiple conditions among the above four conditions, for example, including any two conditions, any three conditions, or All conditions. That is to say, only when the multiple conditions are met at the same time, the terminal device sends the above report information after receiving the first indication information, that is, the reference signal resource identifier (CRI, CRI, SSB index) must come from different reference signal resource groups.
  • the reference signal resource identifier CRI, CRI, SSB index
  • the embodiments of the present application only exemplarily describe an example in which the report information includes the reference signal resource identifier (for example, CRI, SSB index) in the CSI.
  • the report information may further include the reference signal.
  • Other parameters such as received power are not limited to this embodiment of the present application.
  • the terminal device sends the report information according to the above-mentioned multi-beam group reporting method only when certain conditions are met, which can limit the multi-beam group reporting method to the beam training scenario, avoiding the use of this in other scenarios Method of sending reported information.
  • the terminal device can default to the multi-beam group reporting mode of case 1, case 2, or case 3 above to send multiple Specific examples of beam related information.
  • the network device does not need to inform the terminal device whether to use the above-mentioned multi-beam group reporting mode to report information through display signaling, and the terminal device itself can use the above-mentioned multi-beam group reporting mode to report information if it judges that the condition is satisfied.
  • the embodiment of the present application may also send a displayed signaling to the terminal device to notify the terminal device whether to send the report information according to the multi-beam group report mode of FIG. 5 described above.
  • the method may further include: the network device sends indication information to the terminal device, where the indication information is used to indicate that the multi-beam packet reporting mode is on, wherein, the multi-beam group reporting mode being in an on state indicates that the terminal device needs to report relevant information of the at least two beams, wherein the at least two beams are used to transmit the information carried on at least two reference signal resources
  • the reference signals sent by the at least two beams can be simultaneously received by the terminal device, and the at least two reference signal resources are respectively from the at least two reference signal resource groups.
  • the terminal device may not send the information that needs to be reported in accordance with the above regulations, for example, the information reported by the terminal device may be corresponding to the beam from the same TRP Related Information.
  • the network-side device can indicate that the multi-beam group reporting mode is off through the indication information.
  • the network device can schedule Multiple beams of the same TRP serve the UE.
  • the terminal device may report related information of multiple beams of the same TRP.
  • the indication information may be configured through RRC signaling, and further, it may be sent to the terminal device through reporting setting information.
  • the terminal device sends related information of beams from at least two reference signal groups with reference to FIG. 5.
  • the terminal device may not find a beam that satisfies the following two conditions at the same time, Condition 1: from two reference signals Resource group, Condition 2: Multiple beams that the terminal device can receive simultaneously.
  • the embodiments of the present application may set the priority of the two conditions, for example, preferentially report the condition information that satisfies Condition 1, or preferentially report the beam that satisfies Condition 2.
  • the priority is that condition 2 has priority over condition 1. That is, if there is no beam combination that satisfies both Condition 2 and Condition 1, the terminal device selects a beam combination that satisfies Condition 2 for reporting.
  • This priority can be configured as a piece of configuration information by the network device to the terminal device, and the configuration information can be delivered to the terminal device through RRC, MAC-CE, or DCI.
  • the network device configures the indication information for enabling the multi-beam packet reporting mode with priority through RRC signaling, and then can deliver the priority configuration information through DCI, so that the corresponding information can be flexibly obtained according to the requirements of subsequent data scheduling Report information.
  • the priority of condition 2 can be set to be higher than condition 1. At this time, when the terminal device cannot find a beam that satisfies both conditions 1 and 2, then Select the beam that meets the condition 2 to be reported.
  • the network device Since the network device knows which reference signal resource group each beam identifier (or corresponding reference signal resource) belongs to, the network device can also be informed according to the reported beam ID. Whether the beams come from the same TRP. Conversely, if the network device wants to learn the beam quality information of different TRPs as much as possible, it can set the priority of condition 1 to be higher than condition 2. In this case, the network device cannot assume that the multiple beams obtained in this report can Received simultaneously by the terminal device.
  • an RSRP threshold may also be set.
  • the terminal device considers that these beam combinations do not meet the actual transmission requirements. In this case, the terminal Even if the device finds a beam combination that satisfies both condition 1 and condition 2, it does not report these beams, but selects a beam combination that satisfies the conditions of RSRP threshold and higher priority for reporting. .
  • FIG. 1 to FIG. 5 are only to help those skilled in the art to understand the embodiments of the present application, rather than limiting the embodiments of the present application to the specific numerical values or specific scenarios illustrated. Those skilled in the art can obviously make various equivalent modifications or changes according to the examples given in FIGS. 1 to 5. For example, those skilled in the art can use the examples in FIGS. 1 to 5 to combine multiple embodiments. Performing combination and splitting, etc., such modifications or changes of the embodiments of the present application also fall within the scope of the embodiments of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device 600 may include:
  • Processing unit 610 and transceiver unit 620 are identical to processing unit 610 and transceiver unit 620.
  • the processing unit is used to control the transceiver unit to receive first information, and the first information is used to configure at least two reference signal resource groups;
  • reporting information including related information of at least two beams, the at least two beams are used to send reference signals carried on at least two reference signal resources, and the reference signals sent by the at least two beams can Received simultaneously by the communication device;
  • the at least two reference signal resources are respectively from the at least two reference signal resource groups.
  • the relevant information of at least one beam is reported for each reference signal resource group, and thus the training of the transmission beam of the network device corresponding to the reference signal resource can be realized. Therefore, the embodiment of the present application can use one scan To achieve the purpose of training the downlink beams of multiple network devices that are jointly transmitted.
  • the reference signal resource group is a reference signal resource set, wherein the first information configures the at least two reference signal resource groups by directly configuring, activating, or triggering at least two reference signal resource sets.
  • the first information includes quasi-co-located QCL configuration information of reference signal resources in the same reference signal resource set, where reference signal resources having the same QCL configuration information are configured as the same reference signal resource group.
  • the QCL configuration information is a TCI status identifier of the transmission configuration indicator corresponding to the reference signal resource one-to-one.
  • the first information is carried in one or more of the following signaling:
  • the reference signal is sent in a periodic manner;
  • the reference signal is sent in a semi-persistent manner
  • the reference signal is sent in an acyclic manner.
  • the first information is resource configuration information
  • the resource configuration information implements configuration of at least two reference signal resource groups by configuring an identification sequence number of reference signal resources in the same reference signal resource set.
  • the processing unit is further configured to control the transceiver unit to receive indication information sent by the network device, where the indication information is used to indicate that the multi-beam group reporting mode is on, where the multi-beam group reporting mode is The on state indicates that the terminal device needs to report relevant information of the at least two beams.
  • the communication device 600 provided by the present application may correspond to the process performed by the terminal device in the method embodiment of FIG. 5 described above.
  • the functions of each unit / module in the communication device may refer to the description above, and the detailed description is appropriately omitted here.
  • the communication device described in FIG. 6 may be a terminal device, or may be a chip or an integrated circuit installed in the terminal device.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present application, which is convenient for understanding and illustration.
  • the terminal device uses a mobile phone as an example.
  • Fig. 7 shows only the main components of the terminal device.
  • the terminal device 700 includes a processor, a memory, a control circuit, and an antenna.
  • the terminal device may further include input and output devices.
  • the control circuit may be provided in the processor, or may be located outside the processor and exist independently. The embodiments of the present application are not limited thereto.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal device, execute a software program, and process data of the software program, for example, to support the terminal device to perform the actions described in the foregoing method embodiments.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing, and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 7 shows only one memory and processor.
  • the memory may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this. It should be understood that the memory may be integrated in the processor, or may be located outside the processor and exist independently. The embodiments of the present application are not limited thereto.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 7 may integrate the functions of the baseband processor and the central processor, and those skilled in the art may understand that the baseband processor and the central processor may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processor may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • an antenna and a control circuit with a transceiving function may be regarded as the transceiving unit 71 of the terminal device 700, for example, to support the terminal device to perform the transceiving function performed by the terminal device in the method implementation of FIGS. 2 to 8.
  • the processor having a processing function is regarded as the processing unit 72 of the terminal device 700, which corresponds to the processing unit 610 in FIG.
  • the terminal device 700 includes a transceiver unit 71 and a processing unit 72.
  • the transceiver unit may also be referred to as a transceiver, transceiver, transceiver device, etc.
  • the transceiver unit corresponds to the transceiver unit 620 in FIG. 6.
  • the device used to implement the receiving function in the transceiver unit 71 can be regarded as a receiving unit, and the device used to implement the sending function in the transceiver unit 71 can be regarded as a sending unit, that is, the transceiver unit 71 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processing unit 72 may be used to execute instructions stored in the memory to control the transceiver unit 71 to receive signals and / or send signals to complete the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiving unit 71 may be implemented through a transceiving circuit or a dedicated chip for transceiving.
  • the terminal device 700 shown in FIG. 7 can implement various processes involving the terminal device in the method embodiment of FIG. 5.
  • the operations and / or functions of each module in the terminal device 700 are respectively for implementing the corresponding processes in the above method embodiments.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the device 800 may include:
  • Processing unit 810 and transceiver unit 820 are identical to Processing unit 810 and transceiver unit 820.
  • the processing unit is used to control the transceiver unit to send first information, and the first information is used to configure at least two reference signal resource groups;
  • reporting information sent by a terminal device including related information of at least two beams, the at least two beams are used to send reference signals carried on at least two reference signal resources, and the at least two beams send The reference signal of can be received simultaneously by the terminal device;
  • the at least two reference signal resources are respectively from the at least two reference signal resource groups.
  • the relevant information of at least one beam is reported for each reference signal resource group, and thus the training of the transmission beam of the network device corresponding to the reference signal resource can be realized. Therefore, the embodiment of the present application can use one scan To achieve the purpose of training the downlink beams of multiple network devices that are jointly transmitted.
  • the reference signal resource group is a reference signal resource set, wherein the first information configures the at least two reference signal resource groups by directly configuring, activating, or triggering at least two reference signal resource sets.
  • the first information includes quasi-co-located QCL configuration information of reference signal resources in the same reference signal resource set, where reference signal resources having the same QCL configuration information are configured as the same reference signal resource group.
  • the QCL configuration information is a TCI status identifier of the transmission configuration indicator corresponding to the reference signal resource one-to-one.
  • the first information is carried in one or more of the following signaling:
  • the reference signal is sent in a periodic manner;
  • the reference signal is sent in a semi-persistent manner
  • the reference signal is sent in an acyclic manner.
  • the first information is resource configuration information
  • the resource configuration information implements configuration of at least two reference signal resource groups by configuring an identification sequence number of reference signal resources in the same reference signal resource set.
  • the processing unit is further configured to control the transceiver unit to send indication information to the terminal device, where the indication information is used to indicate that the multi-beam reporting mode is on, where the multi-beam reporting mode is on
  • the status indicates that the terminal device needs to report relevant information of the at least two beams.
  • the communication device 800 provided by the present application may correspond to the process performed by the network device in the method embodiment of FIG. 5 above.
  • the communication apparatus described in FIG. 8 may be a network-side device, or may be a chip or an integrated circuit installed in the network-side device.
  • the network-side device may represent any network device that communicates with the terminal device, or may represent an entirety of multiple network devices that communicate with the terminal device.
  • the embodiments of the present application are not limited thereto.
  • FIG. 9 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, may be a schematic structural diagram of a base station. As shown in FIG. 9, the network device 900 can be applied to the system shown in FIG. 1 to perform the functions of the network device in the above method embodiments.
  • the network device 900 may include one or more radio frequency units, such as a remote radio unit (RRU) 91 and one or more baseband units (BBU) (also called digital units, digital units, DUs) ) 92.
  • the RRU 91 may be called a transceiver unit 91, corresponding to the transceiver unit 820 in FIG. 8, optionally, the transceiver unit may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 911 ⁇ RF ⁇ 912.
  • the RRU91 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending precoding matrix information to terminal devices.
  • the BBU92 part is mainly used for baseband processing and controlling the base station.
  • the RRU 91 and the BBU 92 may be physically arranged together, or may be physically separated, that is, distributed base stations.
  • the BBU 92 is the control center of the base station, and may also be referred to as the processing unit 92, which may correspond to the processing unit 810 in FIG. 8 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation flow on the network device in the above method embodiments.
  • the BBU 92 may be composed of one or more boards, and the multiple boards may jointly support a wireless access network of a single access standard (such as an LTE network), or may support wireless networks of different access standards respectively. Access network (such as LTE network, 5G network or other networks).
  • the BBU 92 also includes a memory 921 and a processor 922.
  • the memory 921 is used to store necessary instructions and data.
  • the processor 922 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow on the network device in the foregoing method embodiment. It should be understood that the memory may be integrated in the processor, or may be located outside the processor and exist independently. The embodiments of the present application are not limited thereto.
  • the memory 921 and the processor 922 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be provided with necessary circuits.
  • the network device 900 shown in FIG. 9 can implement various processes involving the network device in the method embodiment of FIG. 5.
  • the operations and / or functions of each module in the network device 900 are respectively to implement the corresponding processes in the above method embodiments.
  • An embodiment of the present application further provides a processing device, including a processor and an interface; the processor is used to execute the communication method in any of the foregoing method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field-programmable gate array (Field-Programmable Gate Array, FPGA), a dedicated integrated chip (Application Specific Integrated Circuit, ASIC), or a system chip (System on Chip, SoC), or It can be a central processor (Central Processor Unit, CPU), a network processor (Network Processor, NP), a digital signal processing circuit (Digital Signal Processor, DSP), or a microcontroller (Micro Controller) Unit, MCU), can also be a programmable controller (Programmable Logic Device, PLD) or other integrated chip.
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • SoC System on Chip
  • CPU Central Processor Unit
  • NP Network Processor
  • DSP Digital Signal Processor
  • MCU microcontroller
  • PLD programmable Logic Device
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an existing programmable gate array (FPGA), or other available Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA existing programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (random access memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous RAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • double data SDRAM double data SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • direct Rambus RAM direct Rambus RAM
  • An embodiment of the present application further provides a communication system, which includes the foregoing network device and terminal device.
  • An embodiment of the present application further provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the method in any of the foregoing method embodiments is implemented.
  • An embodiment of the present application also provides a computer program product that implements the method in any of the above method embodiments when the computer program product is executed by a computer.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • the network device in each of the above device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding steps are performed by the corresponding modules or units, for example, the sending module (transmitter) method performs the sending in the method embodiment , The receiving module (receiver) performs the steps received in the method embodiment, and other steps than sending and receiving may be performed by the processing module (processor).
  • the function of the specific module can refer to the corresponding method embodiment.
  • the sending module and the receiving module may form a transceiver module, and the transmitter and the receiver may form a transceiver to jointly realize the sending and receiving function; the processor may be one or more.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And / or” describes the relationship of the related objects, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related object is a "or” relationship.
  • “At least one of the following” or a similar expression refers to any combination of these items, including any combination of a single item or a plurality of items.
  • At least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program, and / or a computer.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process and / or thread of execution, and a component can be localized on one computer and / or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the component may, for example, be based on a signal having one or more data packets (eg, data from two components that interact with another component between the local system, the distributed system, and / or the network, such as the Internet that interacts with other systems through signals) Communicate through local and / or remote processes.
  • data packets eg, data from two components that interact with another component between the local system, the distributed system, and / or the network, such as the Internet that interacts with other systems through signals
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transferred from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmit to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (eg, floppy disk, hard disk, magnetic tape), optical medium (eg, DVD), or semiconductor medium (eg, solid state disk (SSD)), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种波束上报的方法和通信装置,该方法包括终端设备接收第一信息,所述第一信息用于配置至少两个参考信号资源组;所述终端设备发送上报信息,所述上报信息包括至少两个波束的相关信息,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述终端设备同时接收;其中,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。本申请通过一次波束扫描实现上报至少两个传输点的波束的相关信息,实现CoMP系统中的波束训练。

Description

波束上报的方法和通信装置
本申请要求于2018年11月19日提交中国专利局、申请号为201811378725.9、申请名称为“波束上报的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种波束上报的方法和通信装置。
背景技术
在未来的通信系统中,例如第五代移动通信(5th-Generation,5G)系统中,仅仅利用低于6GHz频段的低频通信已经不能满足日益增长的通信需求,因此频率大于6GHz的高频通信(high frequency,HF)越来越受到学界和业界的重视。然而由于HF信号在空间中能量衰减快,穿透能力弱,信号路损远大于低频信号。因此,为了在高频场景下对抗路径损耗,需要利用天线侧的增益来补偿这一部分损失,从而保证HF系统的覆盖。此外,由于在HF场景下,信号的波长更短,天线的体积更小,大规模天线阵的多天线技术(Massive-MIMO)也更适合于应用在HF场景。利用Massive-MIMO技术,发射侧例如网络设备侧可以用数字和模拟的方式形成能量更集中的发射波束来保证系统覆盖,接收侧例如终端设备侧同样可以形成能量更集中的接收波束增加接收增益。
由于HF系统中收发双方都倾向于利用窄波束进行通信,窄波束的相互匹配显得尤为重要,网络设备和终端设备可通过波束(beam)训练来获取发射波束与接收波束之间的配对关系。
协作多点(coordination multiple point,CoMP)作为适用于提升小区边缘用户吞吐的传输技术,一个终端设备可能会同时与多个传输接收点(transmission and reception point,TRP)通信。按照现有的波束训练方式,在CoMP系统中,终端设备上报的波束可能会来自于同一个TRP,导致终端设备无法实现与同时通信的多个TRP进行波束训练。
因此,如何进行CoMP系统中的波束训练,成为亟待解决的问题。
发明内容
本申请提供一种波束上报的方法和通信装置,能够实现CoMP系统中的波束训练。
第一方面,提供了一种波束上报的方法,该方法包括:终端设备接收第一信息,所述第一信息用于配置至少两个参考信号资源组;
所述终端设备发送上报信息,所述上报信息包括至少两个波束的相关信息,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述终端设备同时接收;
其中,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。
第二方面,提供了一种波束上报的方法,该方法包括:
网络设备发送第一信息,所述第一信息用于配置至少两个参考信号资源组;
所述网络设备接收终端设备发送的上报信息,所述上报信息包括至少两个波束的相关信息,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述终端设备同时接收;
其中,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。
具体地,本申请实施例中,将参考信号资源分组,例如,一个参考信号资源组可以对应联合传输中的一个网络设备,终端设备选择上报的波束分别选自不同的发送波束资源组,且终端设备上报的波束能够被该终端设备同时接收到。也就是说,本申请实施例中,针对每个参考信号资源组上报至少一个波束的相关信息,进而能够实现对该组参考信号资源对应的网络设备的发送波束的训练,因此,本申请实施例能够通过一次扫描实现对联合传输的多个网络设备的下行波束进行训练的目的。
应理解,本申请实施例中,该至少两个参考信号资源的个数可以与至少两个参考信号资源组的个数相等,这种情况下,该至少两个参考信号资源包括每一个参考信号资源组中的一个参考信号资源。也就是说,针对每个参考信号资源组,终端设备上报一个参考信号资源对应的波束的相关信息。
可选地,该至少两个参考信号资源的个数可以大于至少两个参考信号资源组的个数,这种情况下,该至少两个参考信号资源是由每一个参考信号资源组中的一个或多个参考信号资源构成。也就是说,针对每个参考信号资源组,终端设备上报一个或多个参考信号资源对应的波束的相关信息。
需要说明的是,本申请实施例中,终端设备具有同时接收该至少两个波束发送的参考信号的能力。在实际应用中,网络设备可以通过该至少两个波束同时发送参考信号,也可以是先后发送参考信号,也就是说,终端设备可以同时接收该至少两个波束发送的参考信号,也可以是先后接收该至少两个波束发送的参考信号,终端设备可能通过同一个接收波束接收所述至少两个波束发送的参考信号,也可能通过可同时存在的至少两个接收波束同时接收所述至少两个波束发送的参考信号,具体终端设备如何判定具有上述能力为终端设备实现,不申请实施例并不限定。
可选地,在一种实现方式中,本申请实施例中的至少两个波束的相关信息包括上述至少两个参考信号接收功率以及与所述至少两个参考信号接收功率一一对应的所述至少两个参考信号资源的标识。
应理解,本申请实施例中,波束的相关信息可以具有多种可能的形式,只要该波束的相关信息能够实现指示终端设备选择上报上述至少两个波束即可,本申请实施例并不限于上述参考信号接收功率及参考信号资源的标识。例如,至少两个波束的相关信息还可以是该至少两个波束发送的参考信号的信噪比等。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一信息携带在以下一个或多个信令中:
无线资源控制RRC信令、媒体接入控制控制元素MAC-CE和下行控制信息DCI。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一信息携带在RRC中时,所述参考信号的发送方式为周期方式;或,
所述第一信息携带在MAC-CE中时,所述参考信号的发送方式为半持续方式;或,
所述第一指令携带在DCI中时,所述参考信号的发送方式为非周期方式。
结合第一方面或第二方面,在一种可能的实现方式中,所述参考信号资源组为参考信号资源集合,其中,所述第一信息通过直接配置、激活或触发至少两个参考信号资源集合来配置所述至少两个参考信号资源组。
在本申请实施例中,一个资源配置(resource setting)中的资源类型(resource type)可以被配置为周期(periodic)、半持续(semi-persistent)和非周期(aperiodic)三种时域周期行为。针对该三种周期行为,网络设备可以直接配置、激活或触发至少两个参考信号资源集实现配置至少两个参考信号资源。
本申请实施例中,通过网络设备直接配置、激活或触发多个resource set,实现参考信号资源分组,并针对每个资源上报至少一个波束的相关信息来实现与该资源对应的网络设备的波束训练的目的。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一信息包括同一个参考信号资源集合中参考信号资源的准共址QCL配置信息,其中,具有相同QCL配置信息的参考信号资源被配置为同一参考信号资源组。
结合第一方面或第二方面,在一种可能的实现方式中,所述QCL配置信息为与参考信号资源一一对应的传输配置指示TCI状态标识。
本申请实施例通过将具有相同QCL配置信息的参考信号资源配置为同一参考信号资源组,实现了配置上述至少两个参考信号资源组,由于不同的网络设备对应不同的参考信号资源组,针对每个参考信号资源组终端设备上报其对应的一个或多个波束的相关信息,进而本申请实施例实现了对联合传输的多个网络设备的下行波束同时训练的目的。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一信息为资源配置信息,所述资源配置信息通过配置同一个参考信号资源集合中参考信号资源的标识序号实现对至少两个参考信号资源组的配置。
本申请实施例通过将参考信号资源序号满足规则的参考信号资源划分为同一参考信号资源组,实现了配置上述至少两个参考信号资源组,由于不同的网络设备对应不同的参考信号资源组,针对每个参考信号资源组终端设备上报其对应的一个或多个波束的相关信息,进而本申请实施例实现了对联合传输的多个网络设备的下行波束同时训练的目的。
结合第一方面,在一种可能的实现方式中,在所述终端设备发送上报信息之前,所述方法还包括:
所述终端设备接收网络设备发送的指示信息,所述指示信息用于指示多波束分组上报模式为开启状态,其中,所述多波束分组上报模式为开启状态表示所述终端设备需要上报所述至少两个波束的相关信息。
结合第二方面,在一种可能的实现方式中,在所述网络设备接收终端设备发送的上报信息之前,所述方法还包括:
所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示多波束分组上报模式为开启状态,其中,所述多波束分组上报模式为开启状态表示所述终端设备需要上报所述至少两个波束的相关信息。
本申请实施例通过在满足一定的条件下,终端设备才按照上述多波束分组上报的方法 发送上报信息,能够将多波束分组上报的方法限定在波束训练的场景下,避免了其他场景下采用此方法发送上报信息的情况。
第三方面,提供了一种通信装置,包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的各个模块或单元。
在一种实现方式中,该通信装置为终端设备。
第四方面,提供了一种通信装置,包括用于执行第二方面或第二方面中任一种可能实现方式中方法的各个模块或单元。
在一种实现方式中,该通信装置为网络侧设备。
第五方面,提供了一种通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第一方面及其可能实现方式中的方法。
在一种实现方式中,该通信装置为终端设备。
第六方面,提供了一种通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行第二方面及其可能实现方式中的方法。
在一种实现方式中,该通信装置为网络设备。
第七方面,提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现第一方面及其可能实现方式中的方法。
第八方面,提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现第二方面及其可能实现方式中的方法。
第九方面,提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现第一方面及其可能实现方式中的方法。
第十方面,提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现第二方面及其可能实现方式中的方法。
第十一方面,提供了一种处理装置,包括处理器和接口。
第十二方面,提供了一种处理装置,包括处理器、接口和存储器。
在第十一方面或第十二方面中,该处理器,用于作为上述第一方面至第二方面或第一方面至第二方面的任一可能的实现方式中的方法的执行主体来执行这些方法,其中相关的数据交互过程(例如发送或者接收数据传输)是通过上述接口来完成的。在具体实现过程中,上述接口可以进一步通过收发器来完成上述数据交互过程。
应理解,上述十一方面或第十二方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十三方面,提供了一种系统,包括前述的网络设备和终端设备。
附图说明
图1是本申请实施例可应用的场景示意图。
图2是根据本申请一个实施例的波束扫描相关配置示意图。
图3是根据本申请一个实施例的波束训练示意图。
图4是根据本申请另一实施例的波束训练示意图。
图5是根据本申请一个实施例的多波束分组上报的方法流程图。
图6是本申请一种通信装置的示意框图。
图7是本申请一种终端设备的示意框图。
图8是本申请另一种通信装置的示意框图。
图9是本申请一种网络设备的示意框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可应用于各种通信系统,因此,下面的描述不限制于特定通信系统。例如,本申请实施例可以应用于全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
图1示出了适用于本申请实施例的无线通信系统100示意性框图。该无线通信系统100可以包括一个或多个网络设备,以及一个或多个终端设备,例如,如图1所示该无线通信系统100中包括第一网络设备110、第二网络设备120,以及位于第一网络设备110和第二网络设备120覆盖范围内的一个或多个终端设备130。该终端设备130可以是移动的或静止的。第一网络设备110和第二网络设备120均可以与终端设备130通过无线空口进行通信。第一网络设备110和第二网络设备120可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
应理解,本申请实施例中“第一”、“第二”等仅仅是为了区分,第一、第二并不作为对本申请实施例的限定。
该第一网络设备110或第二网络设备120可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,例如,NR系统中传输接收点(transmission and reception point,TRP)或传输点(transmission point,TP)、NR系统中的基站(gNB)、5G系统中的基站的一个或一组(包括多个天线面板)天线面板等。本申请实施例对此并未特别限定。
终端设备130也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、 用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、智能家居设备、无人机设备以及未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
该无线通信系统100可以支持CoMP传输(也可以称为联合传输),即至少两个网络设备(TRP)采用协同多点传输方式向终端设备传输下行数据,换句话说,该终端设备130可以与第一网络设备110通信,也可以与第二网络设备120通信,其中,协同多点传输方式可以采用空间分集和/或空间复用等技术实现,第一网络设备和第二网络设备可以在相同载波上,也可以在不同载波上,本申请对此不做限定。
本申请中的“协作多点传输”包括但不限于联合传输JT。JT包括相干JT和非相干JT(NCJT),两者的区别在于NCJT对来自多个协作TRP的不同的MIMO数据流分别做波束赋形,相干JT对来自多个协作TRP的所有MIMO数据流做联合波束赋形。
在本申请实施例中,第一网络设备可以作为服务网络设备,该第二网络设备可以为协作网络设备;或者,第一网络设备可以为协作网络设备,第二网络设备为服务网络设备;或者,第一网络设备和第二网络设备也可以都为服务网络设备,本申请实施例并不限于此。
在应用协同多点传输的场景中,该服务网络设备可以向终端设备发送控制信令,该协作网络设备可以向终端设备发送数据;或者,该服务网络设备可以向终端设备发送控制信令,该服务网络设备和该协作网络设备可以同时向该终端设备发送数据,或者,该服务网络设备和该协作网络设备可以同时向终端设备发送控制信令,并且该服务网络设备和该协作网络设备可以同时向该终端设备发送数据。本申请实施例对此并未特别限定。所述服务网络设备和协作网络设备之间以及多个协作网络设备之间可以进行通信,例如进行控制消息的传递。
在协作多点传输模式下,至少两个TRP使用与终端设备具有配对关系的波束与终端设备通信,例如,使用与终端设备配对的下行波束向终端设备发送下行数据。具体地,两个TRP需要通过波束扫描(或者称为波束训练)确定上述与终端设备通信的下行波束。
下面对本申请实施例中涉及的一些概念说明如下:
“波束”,可以理解为空间滤波器(spatial filter)或空间参数(spatial parameters)。用于发送信号的波束可以称为发射波束(transmission beam,Tx beam),可以为空间发送滤波器(spatial domain transmit filter)或空间发射参数(spatial domain transmit parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以为空间接收滤波器(spatial domain receive filter)或空间接收参数(spatial domain receive parameter)。
形成波束的技术可以是波束赋形技术或者其他技术。例如,波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
在NR协议中,波束例如可以是空间滤波器(spatial filter)。但应理解,本申请并不 排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
需要说明的是,在下文示出的实施例中,“波束”和“空间滤波器”交替使用,例如“发射波束”和“空间发射滤波器”交替使用,“接收波束”和“空间接收滤波器”交替使用,在不强调其区别时,其所要表达的含义是一致的。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
应理解,上文列举的NR协议中对于波束的体现仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他的术语来表示相同或相似的含义的可能。
“波束配对关系”即,发射波束与接收波束之间的配对关系,也就是空间发射滤波器与空间接收滤波器之间的配对关系。在具有波束配对关系的发射波束和接收波束之间传输信号可以获得较大的波束赋形增益。
在一种实现方式中,发送端和接收端可以通过波束训练来获得波束配对关系。具体地,发送端可通过波束扫描的方式发送参考信号,接收端也可通过波束扫描的方式接收参考信号。具体地,发送端可通过波束赋形的方式在空间形成不同指向性的波束,并可以在多个具有不同指向性的波束上轮询,以通过不同指向性的波束将参考信号发射出去,使得参考信号在发射波束所指向的方向上发射参考信号的功率可以达到最大。接收端也可通过波束赋形的方式在空间形成不同指向性的波束,并可以在多个具有不同指向性的波束上轮询,以通过不同指向性的波束接收参考信号,使得该接收端接收参考信号的功率在接收波束所指向的方向上可以达到最大。
通过遍历各发射波束和接收波束,接收端可基于接收到的参考信号进行信道测量,并将测量得到的结果通过信道状态信息(channel state information,CSI)上报发送端。例如,接收端可以将参考信号接收功率(reference signal receiving power,RSRP)较大的部分参考信号资源上报给发送端,如上报参考信号资源的标识,或者上报参考信号资源的标识和该参考信号资源对应的RSRP,以便发送端在传输数据或信令时采用信道质量较好的波束配对关系来收发信号。
“参考信号与参考信号资源”:参考信号可用于信道测量或者信道估计等。参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等,具体可参考现有技术。发送端设备可基于参考信号资源发送参考信号,接收端设备可基于参考信号资源接收参考信号。
本申请中涉及的信道测量也包括波束测量,即通过测量参考信号获得波束质量信息,用于衡量波束质量的参数包括RSRP,但不限于此。例如,波束质量也可以通过参考信号接收质量(reference signal receiving quality,RSRQ),信噪比(signal-noise ratio,SNR),信号与干扰噪声比(signal to interference plus noise ratio,SINR,简称信干噪比)等参数衡量。本申请实施例中,为方便说明,在未作出特别说明的情况下,所涉及的信道测量可以视为波束测量。
其中,参考信号例如可以包括信道状态信息参考信号(channel state information reference signal,CSI-RS)、同步信号块(synchronization signal block,SSB)以及探测参 考信号(sounding reference signal,SRS)。与此对应地,参考信号资源可以包括CSI-RS资源(CSI-RS resource)、SSB资源、SRS资源(SRS resource)。
需要说明的是,上述SSB也可以称为同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block),所对应的SSB资源也可以称为同步信号/物理广播信道块资源(SS/PBCH block resource),可简称为SSB resource。
为了区分不同的参考信号资源,每个参考信号资源可对应于一个参考信号资源的标识,例如,CSI-RS资源标识(CSI-RS resource indicator,CRI)、SSB资源标识(SSB resource indicator,SSBRI)、SRS资源索引(SRS resource index,SRI)。
其中,SSB资源标识也可以称为SSB标识(SSB index)。
应理解,上文中列举的参考信号以及相应的参考信号资源仅为示例性说明,不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他参考信号来实现相同或相似功能的可能。
“上报配置(reporting setting)”:也可以称为信道状态信息CSI上报配置,可以与一个或多个资源配置(resource setting)关联。以参考信号资源为CSI-RS资源为例,用于波束测量时,可以将reporting setting中的上报参数(ReportQuantity)设置为“CRI+RSRP”,即波束的质量或强度通过RSRP来衡量,同时可以通过上报配置类型(ReportConfigureType)配置上报的周期行为包括非周期上报(aperiodic)、周期上报(periodic)或半持续上报(semi-persistent)),例如,如图2所示波束的质量或强度的上报行为为非周期上报。
“资源配置(resource setting)”:关联有一个或多个参考信号资源集(resource set),且配置资源类型(resource type)为非周期资源(aperiodic)、周期资源(periodic)或半持续资源(semi-persistent)。其中,一个resource set可以包括一个或多个参考信号资源,具体地,参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等。
例如,如图2所示,资源配置(resource setting)关联的resource set可以为非零功率信道状态信息参考信号资源集(NZP-CSI-RS resource set),资源类型为非周期资源。该NZP-CSI-RS resource set中可以包含有一个或多个NZP-CSI-RS resource,例如,如图2所示包括4个NZP-CSI-RS resource,且各个资源有各自的资源序号(#0-#3),每一个NZP-CSI-RS resource发送的时候承载在一个波束上,终端设备便可以测量该NZP-CSI-RS resource上传输的CSI-RS的RSRP来比较波束质量。
应理解,本申请实施例中,资源配置(resource setting)关联的资源集(resource set)可以是零功率或非零功率的参考信号资源的集合,本申请实施例并不限于此。应理解,“资源配置(resource setting)”关联资源集(resource set)可以表示资源配置用于配置该资源集,或者资源配置包括该资源集,本申请实施例并不限于此。应理解,本申请实施例中“资源集”也可以称为“资源集合”。
应理解,上文描述的“资源配置”可以适用于参考信号资源为CSI-RS的情况。但本申请实施例的参考信号资源不限于CSI-RS,例如本申请实施例的参考信号资源还可以是SSB或SRS等,具体地,SSB或SRS的资源关联关系可以参考现有技术,此处不再赘述。
需要说明的是如图2所示的重复参数(repetition)配置为ON表示承载这4个 NZP-CSI-RS resource的发射波束是重复的,而设置为OFF则表示没有限定(重复或不重复均可)。
如果该NZP-CSI-RS resource set是周期的,那么当终端设备收到该RRC配置消息时,便根据具体的CSI-RS资源的配置在相应的时频位置上开始接收和测量;如果该NZP-CSI-RS resource set是半持续的,那么终端设备在收到一个相关的MAC-CE激活指令之后,才开始接收和测量,并在收到去激活指令后停止测量;如果该NZP-CSI-RS resource set是非周期的,那么终端设备会在收到一个DCI触发指令后才开始接收和测量,并只测量一次就结束。
应理解,上述上报配置和资源配置可以是网络设备通过高层信令,例如,RRC信令发送的,本申请实施例并不限于此。
“天线端口(antenna port)”:简称端口。被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号端口对应。
“准共址(quasi-co-location,QCL)”:或者称准同位。具有QCL关系的天线端口对应的信号中具有相同的参数,或者,一个天线端口的参数可用于确定与该天线端口具有QCL关系的另一个天线端口的参数,或者,两个天线端口具有相同的参数,或者,两个天线端口间的参数差小于某阈值。其中,所述参数可以包括以下一项或多项:时延扩展(delay spread),多普勒扩展(Doppler spread),多普勒频移(Doppler shift),平均时延(average delay),平均增益,空间接收参数(spatial Rx parameters)。其中,空间接收参数可以包括以下的一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均离开角AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发射波束、接收波束以及资源标识。
其中,上述角度可以为不同维度的分解值,或不同维度分解值的组合。天线端口为具有不同天线端口编号的天线端口,和/或,具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或,具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。资源标识可以包括:CSI-RS资源标识,或SRS资源标识,或SSB资源标识,或物理随机接入信道(Physical Random Access Channel,PRACH)上传输的前导序列的资源标识,或解调参考信号(demodulation reference signal,DMRS)的资源标识,用于指示资源上的波束。
在NR协议中,QCL关系可以基于不同的参数分为以下四种类型:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展;
类型B(type B):多普勒频移、多普勒扩展;
类型C(type C):多普勒频移、平均时延;以及
类型D(type D):空间接收参数。
本申请实施例所涉及的QCL为类型D的QCL。下文中在没有特别说明的情况下,QCL可以理解为类型D的QCL,即,基于空间接收参数定义的QCL。
当QCL关系指类型D的QCL关系时,可以认为是空域QCL。当天线端口满足空域QCL关系时,下行信号的端口和下行信号的端口之间,或上行信号的端口和上行信号的端口之间的QCL关系,可以是两个信号具有相同的AOA或AOD,用于表示具有相同的 接收波束或发射波束。又例如对于下行信号和上行信号间或上行信号与下行信号的端口间的QCL关系,可以是两个信号的AOA和AOD具有对应关系,或两个信号的AOD和AOA具有对应关系,即可以利用波束互易性,根据下行接收波束确定上行发射波束,或根据上行发射波束确定下行接收波束。
从发送端来看,如果说两个天线端口是空域QCL的,则可以是指这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果说两个天线端口是空域QCL的,则可以是指接收端能够在同一波束方向上接收到这两个天线端口发送的信号。
具有空域QCL关系的端口上传输的信号还可以具有对应的波束,对应的波束包括以下至少之一:相同的接收波束、相同的发射波束、与接收波束对应的发射波束(对应于有互易的场景)、与发射波束对应的接收波束(对应于有互易的场景)。
具有空域QCL关系的端口上传输的信号还可以理解为使用相同的空间滤波器(spatial filter)接收或发送信号。空间滤波器可以为以下至少之一:预编码,天线端口的权值,天线端口的相位偏转,天线端口的幅度增益。
具有空域QCL关系的端口上传输的信号还可以理解为具有对应的波束对连接(beam pair link,BPL),对应的BPL包括以下至少之一:相同的下行BPL,相同的上行BPL,与下行BPL对应的上行BPL,与上行BPL对应的下行BPL。
因此,空间接收参数(即,类型D的QCL)可以理解为用于指示接收波束的方向信息的参数。
传输配置指示(transmission configuration indicator,TCI):可用于指示两种参考信号之间的QCL关系。网络设备可通过高层信令(如无线资源控制(radio resource control,RRC)消息)为终端设备配置TCI状态(TCI state)列表,并可以通过高层信令(如MAC CE)或物理层信令(如DCI激活或指示其中的一个或多个TCI状态。具体地,网络设备可通过RRC消息为终端设备配置TCI状态列表,终端设备在接收来自网络设备的物理下行控制信道(physical downlink control channel,PDCCH时,可以根据MAC CE的指示激活控制信道TCI状态列表中的一个或多个,其中控制信道TCI状态列表为上述TCI状态列表的一个子集;终端设备可以从PDCCH中获取DCI,进而根据DCI的指示选择数据信道TCI状态列表中的一个或多个TCI状态,其中所述数据信道TCI状态列表为上述TCI状态列表的一个子集,通过MAC-CE信令指示给终端设备。
一个TCI状态的配置信息可以包括一个或两个参考信号资源的标识,以及所关联的QCL类型。当QCL关系配置为类型A、或B、或C中的一种时,终端设备可以根据TCI状态的指示,解调PDCCH或PDSCH。
当QCL关系配置为类型D时,终端设备可以知道网络设备使用哪个发射波束发射信号,进而可以根据信道测量确定的波束配对关系确定使用哪个接收波束接收信号。
需要说明的是,本文中的一些名称及英文简称为以LTE系统或5G系统为例对本申请实施例进行的描述,但本申请实施例并不限于此,其可能随着网络的演进发生变化,具体演进可以参考相应标准中的描述。
在CoMP系统中,一种可选的波束训练方式如下:通过一次波束扫描实现对联合传输的至少两个传输点的下行波束进行训练。例如,如图3所示,在一次波束扫描和上报中,将TRP1和TRP2的波束遍历,此时相当于一个NZP-CSI-RS resource set中的参考信号资 源,分别通过TRP1和TRP2的波束轮询发送。这种情况下,由于两个传输点到终端设备的距离造成一定的功率差,导致终端设备基于RSRP的强度可能会选择来自于同一个传输点的多个波束,例如,TRP1的两个波束进行上报,这种情况后续数据发送时无法实现多点协作。
在CoMP系统中,另一种可选的波束训练方式如下:联合传输的各个传输点分别单独采用一次波束扫描进行下行波束进行训练。例如,如图4所示,分两次波束扫描和上报,分别扫描TRP1和TRP2的波束,此时相当于有两个上报配置(reporting setting),分别关联到两个参考信号资源集合(resource set),这两个resource set中的参考信号资源分别通过TRP1和TRP2的波束轮询发送。此时终端设备会在第一次波束扫描后从TRP1选择一个波束上报,再在第二次波束扫描后从TRP2选择一个波束上报。但这种情况下,终端设备用于接收选择并上报的不同TRP的发射波束的接收波束可能不是同一个,也可能这两个接收波束可能不能同时存在,那么当两个TRP分别通过它们各自的发射波束与终端设备通信时,终端设备可能无法同时接收两个TRP发送的信号,只能接收到其中一个TRP的信号,对通信业务造成影响。
综上,可以得出上述CoMP系统中两种波束训练方式都存在一些不足,因此如何进行CoMP系统中的波束训练,成为亟待解决的问题。
鉴于上述问题,本申请实施例提出了一种波束训练的方法,能够解决上述问题,具体地,本申请通过一次波束扫描实现上报至少两个传输点的波束的相关信息,实现CoMP系统中的波束训练。
具体而言,本申请实施例中,可以将参考信号资源分组,例如,一个参考信号资源组可以对应联合传输中的一个网络设备,终端设备选择上报的波束分别选自不同的发送波束资源组,且终端设备上报的波束能够被该终端设备同时接收到,进而实现了一次扫描实现对联合传输的多个网络设备的下行波束进行训练的目的。
以下,为了便于理解和说明,作为示例而非限定,结合图5对本申请中的方法在通信系统中的执行过程和动作进行说明。
应理解,在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile  disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图5是根据本申请一个实施例的多波束分组上报的方法500的示意性流程图。图5所示的方法可以应用于如图1所示支持CoMP的通信系统中。应理解,图1所示的本申请实施例可适用的联合传输场景,可以是同构网络的联合传输场景,也可以是异构网的联合传输场景,本申请实施例并不对此做限定。还应理解,图1所示的场景可以是低频场景,也可以是高频场景,本申请实施例并不对此做限定。
具体地,如图5所示的方法500包括:
510,网络设备发送第一信息,所述第一信息用于配置至少两个参考信号资源组;
相对应地,终端设备接收该第一信息。
应理解,该网络设备可以是CoMP中的多个网络设备的任意一个网络设备。例如,该第一信息是由服务网络设备或协作网络设备发送的,本申请实施例并不限于此。
应理解,该至少两个参考信号资源组可以与联合传输的至少两个网络设备一一对应,换句话说,联合传输的每个网络设备对应一个参考信号资源组,每个网络设备可以通过其对应的该参考信号资源组中的资源发送参考信号。
应理解,本文中仅以应用于CoMP系统中为例,描述本申请实施例的方法,但本申请实施例并不限于此,本申请实施例的方法还可以应用于其他场景中,例如,可以应用于单传输点传输的场景中。
应理解,本申请实施例中的至少两个参考信号资源组也可以对应于同一个网络设备,本申请实施例并不限于不同的参考信号资源组对应不同的网络设备的场景。
520,所述终端设备发送上报信息,所述上报信息包括至少两个波束的相关信息,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述终端设备同时接收;其中,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。
相对应地,所述网络设备接收终端设备发送的上报信息。
具体地,本申请实施例中,将参考信号资源分组,例如,一个参考信号资源组可以对应联合传输中的一个网络设备,终端设备选择上报的波束分别选自不同的发送波束资源组,且终端设备上报的波束能够被该终端设备同时接收到。也就是说,本申请实施例中,针对每个参考信号资源组上报至少一个波束的相关信息,进而能够实现对该组参考信号资源对应的网络设备的发送波束的训练,因此,本申请实施例能够通过一次扫描实现对联合传输的多个网络设备的下行波束进行训练的目的。
应理解,本申请实施例中,该至少两个参考信号资源的个数可以与至少两个参考信号资源组的个数相等,这种情况下,该至少两个参考信号资源包括每一个参考信号资源组中的一个参考信号资源。也就是说,针对每个参考信号资源组,终端设备上报一个参考信号资源对应的波束的相关信息。
可选地,该至少两个参考信号资源的个数可以大于至少两个参考信号资源组的个数,这种情况下,该至少两个参考信号资源是由每一个参考信号资源组中的一个或多个参考信 号资源构成。也就是说,针对每个参考信号资源组,终端设备上报一个或多个参考信号资源对应的波束的相关信息。
需要说明的是,本申请实施例中,终端设备具有同时接收该至少两个波束发送的参考信号的能力。在实际应用中,网络设备可以通过该至少两个波束同时发送参考信号,也可以是先后发送参考信号,也就是说,终端设备可以同时接收该至少两个波束发送的参考信号,也可以是先后接收该至少两个波束发送的参考信号,终端设备可能通过同一个接收波束接收所述至少两个波束发送的参考信号,也可能通过可同时存在的至少两个接收波束同时接收所述至少两个波束发送的参考信号,具体终端设备如何判定具有上述能力为终端设备实现,不申请实施例并不限定。
可选地,在一种实现方式中,本申请实施例中的至少两个波束的相关信息包括上述至少两个参考信号接收功率以及与所述至少两个参考信号接收功率一一对应的所述至少两个参考信号资源的标识。
应理解,本申请实施例中,波束的相关信息可以具有多种可能的形式,只要该波束的相关信息能够实现指示终端设备选择上报上述至少两个波束即可,本申请实施例并不限于上述参考信号接收功率及参考信号资源的标识。例如,至少两个波束的相关信息还可以是该至少两个波束发送的参考信号的信噪比等。
应理解,本申请实施例中,第一信息可以具有多种可能的实现方式,本申请实施例并不对此做具体限定,只要该第一信息能够配置至少两个参考信号资源组即可。
下面作为实例而非限定,将分情况结合具体地例子进行对本申请的第一信息进行详细说明。
情况一:
所述参考信号资源组为参考信号资源集合,其中,所述第一信息通过直接配置、激活或触发至少两个参考信号资源集合来配置所述至少两个参考信号资源组。
可选地,所述第一信息携带在以下至少一个信令中:
无线资源控制RRC信令、媒体接入控制控制元素MAC-CE和下行控制信息DCI。
应理解,该第一信息可以携带在上述的任一个信令中,也可以携带在上述的多个信令中,本申请实施例并不限于此。
例如,在一种实现方式中,该第一信息携带在上述多个信令中。举例而言,假设,第一信息可以包括第一子信息和第二子信息,该第一子信息用于配置多组参考信号资源组,例如,该第一子信息通过配置至少两个参考信号资源集合来配置多个参考信号资源组,该第一子信息可以携带在上述一个信令中,例如,携带在RRC信令中,该第二子信息可以用于从上述第一子信息配置的多组参考信号资源组中激活或触发一组或多组资源,该第二子信息可以携带在上述另一个信令中,例如,携带在DCI中。
例如,该第一子信息用于配置3个参考信号资源组:参考信号资源组#1、参考信号资源组#2和参考信号资源组#3,具体地,该第一子信息可以通过配置3个参考信号资源集合来配置该3个参考信号资源组,例如,第一子信息用于配置resource set#1、resource set#2和resource set#3,其中,resource set#1即作为参考信号资源组#1,resource set#2即作为参考信号资源组#2,resource set#3即作为参考信号资源组#3。该第二子信息可以用于从上述3个参考信号资源组中激活或触发一个或多个参考信号资源组,例如,该第二子信息用于 激活或触发参考信号资源组#1和参考信号资源组#2。
作为示例,而非限定,下面结合表1介绍情况一中该第一信息携带在上述一个信令中的情况。
应理解,在本申请实施例中,一个资源配置(resource setting)中的资源类型(resource type)可以被配置为周期(periodic)、半持续(semi-persistent)和非周期(aperiodic)三种时域周期行为。针对该三种周期行为,网络设备可以一次激活或触发至少两个参考信号资源集实现配置至少两个参考信号资源。
应理解,本申请实施例中,“直接配置”至少两个参考信号资源集合,可以表示终端设备在接收到RRC配置消息时直接激活资源配置关联的全部resource set。
具体地,如表1中第二行所示,所述第一信息可以携带在RRC中,例如,一个关联有多个resource set的resource setting可以通过RRC配置给终端设备,即resource set的数量大于1,这种情况下,无特殊激活指令,终端设备收到RRC配置消息时直接配置(也可以称为直接激活)这个resource setting所关联的的全部resource set,而每一个被激活的resource set中的参考信号资源便组成一个参考信号资源组。
例如,该resource setting包含的多个resource set为resource set#1和resource set#2,那么终端设备在获取到该第一消息后,即可确认resource set#1对应一个参考信号资源组,例如,参考信号资源组#1,resource set#2对应一个参考信号资源组,例如,参考信号资源组#2。换句话说,终端设备在获取第一消息后,即将resource set#1作为参考信号资源组#1,将resource set#2作为参考信号资源组#2。
此时资源配置(resource setting)中的资源类型(resource type)可以被配置为周期(periodic),即所述参考信号的发送方式可以为周期方式。
在另一种实现方式中,如表1中第三行所示,所述第一信息可以携带在MAC-CE中,此时,该resource setting同样包含多个resource set,即resource set的数量大于1,这种情况下,MAC-CE信令可以从所述resource setting所包含的多个resource set中激活至少两个resource set,而每一个被激活的resource set中的参考信号资源便组成一个参考信号资源组。
例如,该resource setting包含的多个resource set为resource set#1、resource set#2和resource set#3共三个参考信号资源集合,终端设备获取到的MAC-CE信令从该三个参考信号资源集合中激活resource set#1和resource set#2,那么终端设备即可确定resource set#1对应一个参考信号资源组,例如,参考信号资源组#1,resource set#2对应一个参考信号资源组,例如,参考信号资源组#2。换句话说,终端设备在获取第一消息后,即将resource set#1作为参考信号资源组#1,将resource set#2作为参考信号资源组#2。
此时资源配置(resource setting)中的资源类型(resource type)可以被配置为半持续(semi-persistent),即所述参考信号的发送方式可以为半持续方式。
在另一种实现方式中,如表1中第四行所示,所述第一信息可以携带在DCI中,此时,该resource setting同样包含多个resource set,即Resource set的数量大于1,这种情况下,DCI可以从所述resource setting所包含的多个resource set中触发至少两个resource set,而每一个被触发的resource set中的参考信号资源便成为一个参考信号资源组。
例如,该resource setting包含的多个resource set为resource set#1、resource set#2和 resource set#3共三个参考信号资源集合,终端设备获取到的DCI从该三个参考信号资源集合中触发resource set#2和resource set#3,那么终端设备即可确定resource set#2对应一个参考信号资源组,例如,参考信号资源组#1,resource set#3对应一个参考信号资源组,例如,参考信号资源组#2。换句话说,终端设备在获取第一消息后,即将resource set#2作为参考信号资源组#1,将resource set#3作为参考信号资源组#2。
此时资源配置(resource setting)中的资源类型(resource type)可以被配置为非周期(aperiodic),即所述参考信号的发送方式可以为非周期方式
应理解,本实施例所述参考信号资源组#1、#2、#3仅为举例方便理解,本实施例所述方法在具体实现时,参考信号资源组和参考信号资源集合可以理解为同一个概念。
表1
Figure PCTCN2019119186-appb-000001
应理解,表1中描述了在第一信息携带在RRC、MACE-CE和DCI中时,所述参考信号的发送方式分别为周期方式、半持续方式和非周期方式的例子。但本申请实施例并不限于此,在实际应用中,携带第一信息的信令可以与参考信号的发送周期方式任意组合,例如,在第一信息携带在RRC中时,参考信号的发送方式可以为半持续方式或非周期方式。
无论是哪一种时域周期行为,如果对某一个resource setting而言,同一时刻只有一个与之关联的resource set所包含的参考信号被激活/触发传输,那么便无法较好的实现CoMP系统中的波束训练。
而本申请实施例通过表1所示的配置方法,能够实现对资源分组,即对某一个resource setting而言,同一时刻可以有多个与之关联的resource set所包含的参考信号被激活/触发传输,而每一个被激活/触发的resource set中的参考信号资源便成为一个参考信号资源组。因此,本申请实施例中,通过网络设备一次激活/触发多个resource set,实现参考信号资源分组,并针对每个资源组上报至少一个波束的相关信息来实现与该资源组对应的网络设备的波束训练的目的。
在本申请实施例中,终端设备接收到上述的第一信息,即可确定配置的多个参考信号资源组,进而终端设备可以按照上述步骤520的方式发送上报信息。以上报信息包括的至 少两个波束的相关信息为至少两个参考信号接收功率以及与该至少两个参考信号接收功率一一对应的所述至少两个参考信号资源的标识,举例而言,终端设备确定当与一个resource setting关联的多个resource set被直接配置全部激活,或被一个MAC-CE激活信令激活,或者被一个DCI触发指令触发时,终端设备设置上报的CSI中包含的参考信号资源标识(例如,CRI、SSB index)必须来自于不同的resource set中的参考信号资源,以实现多个网络设备的波束训练。
情况二:
所述第一信息包括同一个参考信号资源集合中参考信号资源的QCL配置信息,其中,具有相同QCL配置信息的参考信号资源被配置为同一参考信号资源组。
具体而言,在情况二中,网络设备首先为终端设备配置了一个参考信号资源集合
(resource set),例如,可以按照现有方式配置该参考信号资源集合。其中,该resource set中每一个参考信号资源都可以关联一个QCL配置信息(qcl info)。
应理解,该QCL-info可以为与参考信号资源一一对应的TCI状态标识(TCI state ID)。下文中以QCL-info为TCI state ID举例进行说明,但本申请实施例并不限于此。
应理解,在本实施例所述方法中,TCI State ID可以作为参考信号资源分组标识而非波束指示信息。
也就是说,本申请实施例可以复用现有的TCI State ID进行参考信号资源分组。
可选地,上述复用的方法可以仅在部分场景(例如,下文中的特定场景)下生效,具体地,上述复用的方法生效的场景可以参见下文中的描述,例如,为满足下文中条件一至条件四中的一个或多个条件的场景,此处不再赘述。
因此,本申请实施例通过复用已有的TCI State ID用于对参考信号资源分组,能够降低资源分组的实现复杂度。
可选地,所述第一信息携带在以下至少一个信令中:
无线资源控制RRC信令、媒体接入控制控制元素MAC-CE和下行控制信息DCI。
例如,在一种实现方式中,该第一信息携带在上述多个信令中。举例而言,假设,第一信息可以包括第一子信息和第二子信息,该第一子信息用于配置同一resource set中的参考信号资源对应的多个TCI state ID序列,该第一子信息可以携带在上述一个信令中,例如,携带在RRC信令中,该第二子信息可以用于从上述多个序列中选择其中一个序列,该第二子信息可以携带在上述另一个信令中,例如,携带在DCI中。
举例而言,resource set中包括6个参考信号资源,第一信息配置多个TCI state ID序列,其中,每一个TCI state ID序列包括6个TCI state ID。假设第一子信息可以配置5个TCI state ID序列。具体地,该5个序列每一个序列分别包括resource#1-6对应的6个TCI state ID。例如,该5个序列如下:
序列一:resource#1-6对应的6个TCI state ID分别为TCI state ID#1、1、1、1、2、2。
序列二:resource#1-6对应的6个TCI state ID分别为TCI state ID#1、2、1、1、2、2。
序列三:resource#1-6对应的6个TCI state ID分别为TCI state ID#1、1、1、1、1、2。
序列四:resource#1-6对应的6个TCI state ID分别为TCI state ID#1、1、2、1、2、1。
序列五:resource#1-6对应的6个TCI state ID分别为TCI state ID#2、1、1、1、2、2。
该第二子信息用于从多个序列中选择其中一个序列,例如,该第二子信息为3个比特, 该3个比特可以指示上述五个序列中的一个序列号。例如,该第二子信息指示的序列号为5,那么,该6个resource的分组情况为resource#1、5和6(对应的TCI state ID均为#2)为一个参考信号资源组,resource号#2、3和4(对应的TCI state ID均为#1)为另一个参考信号资源组。
应理解,该第二子信息的比特数与第一子信息配置的序列个数对应,只要第二子信息能够指示该多个序列中的任意一个序列即可,本申请实施例并不做具体限定。
作为示例,而非限定,下面结合表2介绍情况二中该第一信息携带在一个信令中的情况。
应理解,在本申请实施例中,一个资源配置(resource setting)中的资源类型(resource type)可以被配置为周期(periodic)、半持续(semi-persistent)和非周期(aperiodic)三种时域周期行为。
具体地,如表2中第二行所示,所述第一信息可以携带在RRC中,例如,一个resource set包含多个NZP-CSI-RS resource,该第一信息可以配置在NZP-CSI-RS-Resource的配置信息中,即第一信息可以是NZP-CSI-RS-Resource的一个参数域。例如,NZP-CSI-RS resource的配置信息包含一项TCI state ID,这种情况下,终端设备收到所述参考信号资源的配置信息,即可将该resource set中配置有相同TCI state ID的参考信号资源确定为同一参考信号资源组。
应理解,本申请实施例中,resource set中的包括的参考信号资源可以是零功率参考信号资源或非零功率参考信号资源,该参考信号可以是CSI-RS、SSB或SRS等,表2中仅以resource set包含NZP-CSI-RS resource为例进行说明,但本申请实施例并不限于此。
例如,在一种实现方式中,第一信息也可以配置在零功率信道状态信息参考信号
ZP-CSI-RS resource的的配置信息中,即第一信息可以是配置ZP-CSI-RS resource的一个参数域,本申请实施例并不限于此。
例如,一个resource set共包括resource#1至resource#8,其中,resource#1至resource#4对应的TCI state ID为TCI state ID#1,resource#5至resource#8对应的TCI state ID为TCI state ID#2,那么终端设备在接收到携带第一信息的RRC消息后,即可确定resource set#1至resource#4对应同一参考信号资源组,例如,参考信号资源组#1;resource set#5至resource#8对应同一参考信号资源组,例如,参考信号资源组#2。
此时该resource set所关联的资源配置(resource setting)中的资源类型(resource type)可以被配置为周期(periodic),即所述参考信号的发送方式可以为周期方式。
在另一种实施方式中,如表2中的第三行所示,所述第一信息可以携带在MAC-CE中,例如,一个resource set包含多个NZP-CSI-RS resource,该第一信息可以为关联该resource set的MAC-CE激活信令中一组参数,例如,一组TCI state ID组成的序列,其中TCI state ID的数量与该resource set中所包含的NZP-CSI-RS resource的数量相等,即按照先后顺序,该组TCI state ID与NZP-CSI-RS resource一一对应。这种情况下,终端设备收到MAC-CE消息后,可以将相同TCI state ID所对应的参考信号资源确定为同一参考信号资源组。
例如,情况二中的resource set共包括resource#1至resource#8,而与该resource set关联的MAC-CE激活信令中的TCI state ID序列包括8个TCI state ID,其中,前4个TCI  state ID为#1,后4个TCI state ID为#2,因此,resource#1至resource#4对应的TCI state ID为TCI state ID#1,resource#5至resource#8对应的TCI state ID为TCI state ID#2,那么终端设备在接收到携带第一信息的MAC-CE信令后,即可确定resource set#1至resource#4对应同一参考信号资源组,例如,参考信号资源组#1;resource set#5至resource#8对应同一参考信号资源组,例如,参考信号资源组#2。
此时该resource set所关联的资源配置(resource setting)中的资源类型(resource type)可以被配置为半持续(semi-persistent),即所述参考信号的发送方式为半持续方式。
在另一种实施方式中,如表2中的第四行所示,所述第一信息可以携带在DCI中,例如,一个resource set包含多个NZP-CSI-RS resource,该第一信息可以为关联该resource set的DCI触发信令中一组参数,例如,一组TCI state ID组成的序列,其中TCI state ID的数量与该resource set中所包含的NZP-CSI-RS resource的数量相等,即按照先后顺序,该组TCI state ID与NZP-CSI-RS resource一一对应。这种情况下,终端设备收到DCI消息后,可以将相同TCI state ID所对应的参考信号资源确定为同一参考信号资源组。
例如,情况二中的resource set共包括resource#1至resource#8,而与该resource set关联的DCI触发信令中的TCI state ID序列包括8个TCI state ID,其中,第1、3、5、7个TCI state ID为#1,剩余第2、4、6、8个TCI state ID为#2,因此,resource#1、#3、#5、#7对应的TCI state ID为TCI state ID#1,resource#2、#4、#6、#8对应的TCI state ID为TCI state ID#2,那么终端设备在接收到携带第一信息的DCI后,即可确定resource set#1、#3、#5、#7对应同一参考信号资源组,例如,参考信号资源组#1;resource set2、#4、#6、#8对应同一参考信号资源组,例如,参考信号资源组#2。
此时该resource set所关联的资源配置(resource setting)中的资源类型(resource type)可以被配置为非周期(aperiodic)。
表2
Figure PCTCN2019119186-appb-000002
终端设备接收到上述情况二中的第一信息后,即可确定配置的多个参考信号资源组,进而终端设备可以按照520的方式发送上报信息。具体地,终端设备首先根据TCI state ID确定同一resource set中的多个参考信号资源组,然后,终端设备设置上报的CSI中包含的参考信号资源标识(例如,CRI、SSB index)必须来自于不同的参考信号资源组,以实现多个网络设备的波束训练。
本申请实施例通过将具有相同QCL配置信息的参考信号资源配置为同一参考信号资源组,实现了配置上述至少两个参考信号资源组,由于不同的网络设备对应不同的参考信 号资源组,针对每个参考信号资源组终端设备上报其对应的一个或多个波束的相关信息,进而本申请实施例实现了对联合传输的多个网络设备的下行波束同时训练的目的。
情况三:
所述第一信息为资源配置信息,所述资源配置信息通过配置同一个参考信号资源集合中参考信号资源的标识序号实现对至少两个参考信号资源组的配置。
例如,该第一信息为资源配置(resource setting)信息,具体地,该第一信息可以通过配置同一resource set中的参考信号资源的标识序号实现对至少两个参考信号资源组的配置。
可选地,所述第一信息携带在以下至少一个信令中:
无线资源控制RRC信令、媒体接入控制控制元素MAC-CE和下行控制信息DCI。
在一种实现方式中,该第一信息携带在上述多个信令中。举例而言,假设,第一信息可以包括第一子信息和第二子信息,例如,该第一子信息用于指示多个分组规则,其中,每一个分组规则包括参考信号资源组与参考信号资源的表示序号的关系。该第二子信息用于选择第一子信息指示的多个分组规则中的一个分组规则。
举例而言,假设同一参考信号资源集中的参考信号资源的标识序号为1至8,以及10至16;该第一子信息用于指示2个分组规则,例如,分组规则一为同一参考信号资源集合中参考信号资源标识序号连续的参考信号资源属于同一个参考信号资源组;分组规则二位同一参考信号资源集合中参考信号资源标识序号为偶数的参考信号资源属于同一个参考信号资源组,参考信号资源标识序号为奇数的参考信号资源属于另一个参考信号资源组。该第二子信息例如可以指示其中一个分组规则的标识。例如,该第二子信息指示分组规则的标识为1,那么终端设备根据该第一子信息和该第二子信息可以确定序号为1至8的参考信号资源属于一个参考信号资源组,序号为10-16的参考信号资源为另一参考信号资源组。
可选地,在另一种实现方式中,所述第一信息也可以携带上述一个信令中,例如,携带在RRC中,本申请实施例并不限于此。
作为示例而非限定,下面以第一信息为资源配置(resource setting)信息携带在RRC中为例,结合具体地例子介绍本申请情况三中多波束分组上报的方法。
例如,本申请实施例中,可以采用预定的规则来根据参考信号资源的标识序号确定参考信号资源组。
具体地,该预定规则可以为:同一参考信号资源集合中参考信号资源标识序号连续的参考信号资源属于同一个参考信号资源组。
例如,第一信息配置的参考信号资源标识序号为1至8,以及10至16,那么按照上述预设规则,序号为1至8的参考信号资源属于一个参考信号资源组,序号为10-16的参考信号资源为另一参考信号资源组。
或者,该预定规则可以为:参考信号资源标识序号为奇数的参考信号资源为一个参考信号资源组,参考信号资源标识序号为偶数的参考信号资源为另一个参考信号资源组。
例如,第一信息配置的参考信号资源标识序号为1至8,以及10至16,那么按照上述预设规则,序号为1、3、5、7、11、13和15的参考信号资源属于一个参考信号资源组,序号为2、4、6、8、10、12、14和16的参考信号资源属于另一个参考信号资源组,
或者,该预定规则为:参考信号资源标识序号大于序号平均值/中间值的参考信号资源为一个参考信号资源组,参考信号资源标识序号小于序号平均值/中间值的参考信号资源为另一个参考信号资源组。
例如,第一信息配置的参考信号资源标识序号为1至8,以及10至16,那么按照上述预设规则:参考信号资源标识序号大于序号平均值的参考信号资源为一个参考信号资源组,参考信号资源标识序号小于序号平均值的参考信号资源为另一个参考信号资源组。由于该平均值=(1+2..+8+10+…+16)/15=8.47,那么由于序号1至8均小于8.47,序号10至16均大于8.47,因此,序号为1至8的参考信号资源属于一个参考信号资源组,序号为10-16的参考信号资源为另一参考信号资源组。
需要说明的是,在参考信号资源标识序号等于平均值/中间值时,该参考信号资源标识序号对应的参考信号资源可以属于序号小于平均值/中间值的一个参考信号资源组,或者,属于序号大于平均值/中间值的一个参考信号资源组,本申请对此不做限定。
例如,第一信息配置的参考信号资源标识序号为1至8,以及10至16,那么按照上述预设规则:参考信号资源标识序号大于序号中间值的参考信号资源为一个参考信号资源组,参考信号资源标识序号小于序号中值的参考信号资源为另一个参考信号资源组。由于1至8,以及10至16共15个序号的中间值为8,由于序号1至7均小于8,序号10至16均大于8,因此,序号为1至7的参考信号资源属于一个参考信号资源组,序号为10-16的参考信号资源为另一参考信号资源组。由于,参考信号资源标识序号为8等于中间值,假设参考信号资源标识序号等于中间值时对应的参考信号资源可以属于序号小于中间值的参考信号资源组,那么,最终可以划分序号为1至8的参考信号资源属于一个参考信号资源组,序号为10-16的参考信号资源为另一参考信号资源组。
应理解,上述多个参考信号资源标识序号为奇数时,上述中间值即为参考信号资源标识序号由小到大(或由大到小)排序最中间一个位置的序号值,在上述多个参考资源标识序号为偶数时,上述中间值即为参考信号资源标识序号由小到大(或由大到小)排序最中间两个位置所对应的两个序号的平均值,或者为排序最中间两个位置对应的两个序号的较大值或较小值,本申请实施例并不限于此。
终端设备接收到上述的第一信息,即可确定配置的多个参考信号资源组,进而终端设备可以按照520的方式发送上报信息。具体地,首先,终端设备可以根据为资源配置信息配置的参考信号资源标识确定多个参考信号资源组,然后终端设备设置上报的CSI中包含的参考信号资源标识(例如,CRI、SSB index)必须来自于不同的参考信号资源组,以实现多个网络设备的波束训练。
本申请实施例通过将参考信号资源序号满足规则的参考信号资源划分为同一参考信号资源组,实现了配置上述至少两个参考信号资源组,由于不同的网络设备对应不同的参考信号资源组,针对每个参考信号资源组终端设备上报其对应的一个或多个波束的相关信息,进而本申请实施例实现了对联合传输的多个网络设备的下行波束同时训练的目的。
应理解,本申请实施例中,终端设备可以在收到第一信息后,即可按照上述情况一、情况二或者情况三实施例的方式(以下称为多波束分组上报模式)发送上报信息。可选地,本申请实施例中还可以是在特定场景下,即在满足一定的条件下,按照上述多波束分组上报模式发送上报信息。
例如,终端设备可以在收到第一信息后,且判断在满足预定条件的情况下,按照上述方式发送上报信息。
具体地,该预设条件包括以下条件中的至少一种:
条件一:上报配置(reporting setting)信息中的上报参数包括波束扫描相关参数,例如,该波束扫描相关参数包括CRI和RSRP。
条件一把本申请实施例分组上报方式限制在波束扫描相关的测量与上报场景下。
条件二:资源配置(resource setting)信息中的重复参数(repetition)取值为预设值,例如,该预设值为关闭(OFF)状态。
该预设值为关闭状态可以理解为当前执行的是发送波束扫描。
条件二将本申请实施例分组上报方式限制在发送波束扫描的场景下,应理解,条件二中所述重复参数的预设值也可以为开启(ON)状态,本发明实施例并未对其具体的取值做限定。
条件三:资源配置信息配置的资源类型为预设资源类型,所述预设资源类型为周期性资源、非周期资源或半持续资源。
通过条件三,可以将本申请实施例所述方法限制在某一种或几种时域周期行为的参考信号发送场景下。例如,当且仅当CSI-RS通过非周期方式发送时,才可以应用本申请实施例分组上报方式发送上报信息,此时,该多个参考信号资源组,即参考信号资源集合是通过DCI信令触发的。或者,当且仅当CSI-RS通过半持续方式发送时,才可以应用本申请实施例分组上报方式发送上报信息,此时,该多个参考信号资源组,即参考信号资源集合是通过MAC-CE信令激活的。或者,当且仅当CSI-RS通过周期方式发送时,才可以应用本申请实施例分组上报方式发送上报信息,此时,该多个参考信号资源组,即参考信号资源集合是通过RRC信令配置的。或者,以上任意两种情况的组合。
条件四:上报配置(reporting setting)信息中的第一参数取值为第一值,其中,所述第一参数取值为第一值表示所述终端设备支持同时接收至少两个波束。
条件四结合现有技术中的分组上报方法,将参考信号资源分组的方法限制在分组上报开启的场景下。例如,该第一参数为基于组的波束报告(group based beam reporting),该第一值表示开启状态。具体地,基于组的波束报告(group based beam reporting)为开启状态表示终端设备具有同时接收多个波束的能力。应理解,在第一参数为关闭状态时可以表示终端设备不支持接收上述多个波束的能力。
应理解,该预设条件可以包括上述四个条件中的任意一个,也可以包括上述四个条件中的多个条件,例如,包括上述四个条件中的任意两个条件、任意三个条件或全部条件。也就说,在该多个条件同时满足的情况下,终端设备才在收到第一指示信息后,发送上述上报信息,即终端设备在设置上报的CSI中包含的参考信号资源标识(CRI、SSB index)必须来自于不同的参考信号资源组。
应理解,本申请实施例中仅是示例性的描述了上报信息包括CSI中的参考信号资源标识(例如,CRI、SSB index)的例子,在实际应用中,该上报信息可以还可以包括参考信号接收功率等其他参数,本申请实施例并不限于此。
本申请实施例通过在满足一定的条件下,终端设备才按照上述多波束分组上报的方法发送上报信息,能够将多波束分组上报的方法限定在波束训练的场景下,避免了其他场景 下采用此方法发送上报信息的情况。
前文结合图5描述了终端设备收到第一信息后,在上述限定的条件成立的情况下,终端设备即可默认上文中的情况一、情况二或情况三的多波束分组上报模式发送多个波束的相关信息的具体例子。也就是说,网络设备无需通过显示信令通知终端设备是否采用上述多波束分组上报模式上报信息,终端设备自身在判断满足条件的情况下,即可采用上述多波束分组上报模式上报信息。可选地,在实际应用中,本申请实施例中还可以通过网络设备发送显示的信令通知终端设备是否按照上述图5的多波束分组上报模式发送上报信息。
具体地,在图5的基础上,在步骤520之前,该方法还可以包括:所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示多波束分组上报模式为开启状态,其中,所述多波束分组上报模式为开启状态表示所述终端设备需要上报所述至少两个波束的相关信息,其中,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述终端设备同时接收,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。
可选地,当该指示信息指示多波束分组上报模式为关闭状态时,终端设备可以不按照上述规定发送需要上报的信息,例如,终端设备上报的信息可以是来自于同一个TRP的波束对应的相关信息。例如,假设两个TRP到终端设备的波束质量相差过大,不宜强制要求数据协作时,网络侧设备可以通过该指示信息指示多波束分组上报模式为关闭状态,这种情况下,网络设备可以调度同一个TRP的多个波束为该UE服务,相应的,在波束训练时,终端设备可以上报同一TRP的多个波束的相关信息。
所述指示信息可以通过RRC信令配置,更进一步的,通过上报配置(reporting setting)信息发送给终端设备。
需要说明的是,前文结合图5描述了终端设备发送来自于至少两个参考信号组的波束的相关信息的例子。
可替代地,在一种可能的实现方式(以下称为带有优先级的多波束分组上报模式)中,终端设备可能没有找到同时满足以下两个条件的波束,条件1:来自两个参考信号资源组,条件2:终端设备能够同时接收的多个波束。
这种情况下,本申请实施例可以设置该两个条件的优先级,例如,优先上报满足条件1,或者,优先上报满足条件2的波束的相关信息。例如,该优先级是条件2优先于条件1。即如果没有同时满足条件2和条件1的波束组合,则终端设备选择满足条件2的波束组合进行上报。
这个优先级可以作为一项配置信息由网络设备配置给终端设备,该配置信息可以通过RRC,MAC-CE或DCI下发给终端设备。例如,网络设备通过RRC信令配置了带有优先级的多波束分组上报模式开启的指示信息,然后可以通过DCI下发优先级配置信息,这样便可以灵活的根据后续数据调度的需求来获得相应的波束上报信息。实际应用中,如果网络设备有比较迫切的多波束传输的需求,便可以将条件2的优先级设为高于条件1,此时当终端设备无法找到同时满足条件1和2的波束时,便选择上报满足条件2的波束,由于网络设备知道每个波束标识(或对应的参考信号资源)隶属于哪一个参考信号资源组,所以网络设备同样可以根据上报的波束ID获知,本次上报的多个波束是否来自于同一个TRP。反之,如果网络设备希望尽量的获知不同TRP的波束质量信息,便可以将条件1 的优先级设为高于条件2,这种情况下网络设备便不可以假设本次上报获得的多个波束可以被终端设备同时接收。
可选的,假设UE即便找到了同时满足上述条件1和条件2的波束组合,但该两个波束之间的RSRP差值很大,在实际应用中,下行传输时该波束组合可能根本不会被调度。因此,本申请实施例中,还可以设置一个RSRP阈值,当波束组合中的波束的RSRP差值大于这个RSRP阈值时,终端设备认为这些波束组合不满足实际传输所需,这种情况下,终端设备即便找到了同时满足条件1和条件2的波束组合,也不会将这些波束上报,而是选择满足RSRP阈值和优先级较高的条件的波束组合进行上报。。
应理解,上文中图1至图5的例子,仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图1至图5的例子,显然可以进行各种等价的修改或变化,例如,本领域技术人员可以根据图1至图5的例子,将多个实施例进行组合拆分等,本申请实施例这样的修改或变化也落入本申请实施例的范围内。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中,结合图1至图5详细描述了本申请实施例的方法,下面结合图6至图9描述本申请实施例的通信装置。
图6为本申请实施例提供的一种通信装置的结构示意图,该通信装置600可以包括:
处理单元610和收发单元620。
具体地,所述处理单元用于控制所述收发单元接收第一信息,所述第一信息用于配置至少两个参考信号资源组;
发送上报信息,所述上报信息包括至少两个波束的相关信息,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述通信装置同时接收;
其中,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。
本申请实施例中,针对每个参考信号资源组上报至少一个波束的相关信息,进而能够实现对该组参考信号资源对应的网络设备的发送波束的训练,因此,本申请实施例能够通过一次扫描实现对联合传输的多个网络设备的下行波束进行训练的目的。
可选地,所述参考信号资源组为参考信号资源集合,其中,所述第一信息通过直接配置、激活或触发至少两个参考信号资源集合来配置所述至少两个参考信号资源组。
可选地,所述第一信息包括同一个参考信号资源集合中参考信号资源的准共址QCL配置信息,其中,具有相同QCL配置信息的参考信号资源被配置为同一参考信号资源组。
可选地,所述QCL配置信息为与参考信号资源一一对应的传输配置指示TCI状态标识。
可选地,所述第一信息携带在以下一个或多个信令中:
无线资源控制RRC信令、媒体接入控制控制元素MAC-CE和下行控制信息DCI。
可选地,所述第一信息携带在RRC中时,所述参考信号的发送方式为周期方式;或,
所述第一信息携带在MAC-CE中时,所述参考信号的发送方式为半持续方式;或,
所述第一指令携带在DCI中时,所述参考信号的发送方式为非周期方式。
可选地,所述第一信息为资源配置信息,所述资源配置信息通过配置同一个参考信号资源集合中参考信号资源的标识序号实现对至少两个参考信号资源组的配置。
可选地,所述处理单元还用于控制所述收发单元接收网络设备发送的指示信息,所述指示信息用于指示多波束分组上报模式为开启状态,其中,所述多波束分组上报模式为开启状态表示所述终端设备需要上报所述至少两个波束的相关信息。
本申请提供的通信装置600可以对应上述图5方法实施例中终端设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处适当省略详细描述。
应理解,图6所述的通信装置可以是终端设备,也可以是安装于终端设备中的芯片或集成电路。
以通信装置为终端设备为例,图7为本申请实施例提供的一种终端设备的结构示意图,便于理解和图示方便,图7中,终端设备以手机作为例子。图7仅示出了终端设备的主要部件。如图7所示终端设备700包括处理器、存储器、控制电路和天线,可选地,该终端设备还可以包括输入输出装置。应理解,该控制电路可以设置在处理器中,也可以位于处理器之外,独立存在,本申请实施例并不限于此。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。应理解,该存储器可以集成在处理器中,也可以位于该处理器之外,独立存在,本申请实施例并不限于此。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图7中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储 单元中,由处理器执行软件程序以实现基带处理功能。
在发明实施例中,可以将具有收发功能的天线和控制电路视为终端设备700的收发单元71,例如,用于支持终端设备执行如图2至图8方法实施中终端设备执行的收发功能。将具有处理功能的处理器视为终端设备700的处理单元72,其与图6中的处理单元610对应。如图7所示,终端设备700包括收发单元71和处理单元72。收发单元也可以称为收发器、收发机、收发装置等,该收发单元与图6中的收发单元620对应。可选的,可以将收发单元71中用于实现接收功能的器件视为接收单元,将收发单元71中用于实现发送功能的器件视为发送单元,即收发单元71包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理单元72可用于执行该存储器存储的指令,以控制收发单元71接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元71的功能可以考虑通过收发电路或者收发的专用芯片实现。
应理解,图7所示的终端设备700能够实现图5方法实施例中涉及终端设备的各个过程。终端设备700中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图8为本申请实施例提供的一种通信装置的结构示意图,该装置800可包括:
处理单元810和收发单元820。
具体地,所述处理单元用于控制所述收发单元发送第一信息,所述第一信息用于配置至少两个参考信号资源组;
接收终端设备发送的上报信息,所述上报信息包括至少两个波束的相关信息,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述终端设备同时接收;
其中,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。
本申请实施例中,针对每个参考信号资源组上报至少一个波束的相关信息,进而能够实现对该组参考信号资源对应的网络设备的发送波束的训练,因此,本申请实施例能够通过一次扫描实现对联合传输的多个网络设备的下行波束进行训练的目的。
可选地,所述参考信号资源组为参考信号资源集合,其中,所述第一信息通过直接配置、激活或触发至少两个参考信号资源集合来配置所述至少两个参考信号资源组。
可选地,所述第一信息包括同一个参考信号资源集合中参考信号资源的准共址QCL配置信息,其中,具有相同QCL配置信息的参考信号资源被配置为同一参考信号资源组。
可选地,所述QCL配置信息为与参考信号资源一一对应的传输配置指示TCI状态标识。
可选地,所述第一信息携带在以下一个或多个信令中:
无线资源控制RRC信令、媒体接入控制控制元素MAC-CE和下行控制信息DCI。
可选地,所述第一信息携带在RRC中时,所述参考信号的发送方式为周期方式;或,
所述第一信息携带在MAC-CE中时,所述参考信号的发送方式为半持续方式;或,
所述第一指令携带在DCI中时,所述参考信号的发送方式为非周期方式。
可选地,所述第一信息为资源配置信息,所述资源配置信息通过配置同一个参考信号资源集合中参考信号资源的标识序号实现对至少两个参考信号资源组的配置。
可选地,所述处理单元还用于控制所述收发单元向所述终端设备发送指示信息,所述指示信息用于指示多波束上报模式为开启状态,其中,所述多波束上报模式为开启状态表示所述终端设备需要上报所述至少两个波束的相关信息。
本申请提供的通信装置800可以对应上述图5方法实施例中网络设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处适当省略详细描述。
应理解,图8所述的通信装置可以是网络侧设备,也可以是安装于网络侧设备中的芯片或集成电路。
应理解,该网络侧设备可以表示与终端设备通信的任意一个网络设备,也可以表示与终端设备通信的多个网络设备构成的整体,本申请实施例并不限于此。
以通信装置为与终端设备通信的一个网络设备为例,图9为本申请实施例提供的一种网络设备的结构示意图,例如可以为基站的结构示意图。如图9所示,该网络设备900可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。
网络设备900可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)91和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)92。所述RRU91可以称为收发单元91,与图8中的收发单元820对应,可选地,该收发单元还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线911和射频单元912。所述RRU91部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送预编码矩阵信息。所述BBU92部分主要用于进行基带处理,对基站进行控制等。所述RRU91与BBU92可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU92为基站的控制中心,也可以称为处理单元92,可以与图8中的处理单元810对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU92可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU92还包括存储器921和处理器922。所述存储器921用以存储必要的指令和数据。所述处理器922用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。应理解,该存储器可以集成在处理器中,也可以位于该处理器之外,独立存在,本申请实施例并不限于此。所述存储器921和处理器922可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图9所示的网络设备900能够实现图5方法实施例中涉及网络设备的各个过程。网络设备900中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(Field-Programmable Gate Array,FPGA),可以是专用集成芯片(Application Specific  Integrated Circuit,ASIC),还可以是系统芯片(System on Chip,SoC),还可以是中央处理器(Central Processor Unit,CPU),还可以是网络处理器(Network Processor,NP),还可以是数字信号处理电路(Digital Signal Processor,DSP),还可以是微控制器(Micro Controller Unit,MCU),还可以是可编程控制器(Programmable Logic Device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种通信系统,其包括前述的网络设备和终端设备。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现 上述任一方法实施例中的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,上文中描述了通信系统中下行传输时通信的方法,但本申请并不限于此,可选地,在上行传输时也可以采用上文类似的方案,为避免重复,此处不再赘述。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计 算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储 介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种波束上报的方法,其特征在于,包括:
    终端设备接收第一信息,所述第一信息用于配置至少两个参考信号资源组;
    所述终端设备发送上报信息,所述上报信息包括至少两个波束的相关信息,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述终端设备同时接收;
    其中,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。
  2. 根据权利要求1所述的方法,其特征在于,在所述终端设备发送上报信息之前,所述方法还包括:
    所述终端设备接收网络设备发送的指示信息,所述指示信息用于指示多波束分组上报模式为开启状态,其中,所述多波束分组上报模式为开启状态表示所述终端设备需要上报所述至少两个波束的相关信息。
  3. 一种波束上报的方法,其特征在于,包括:
    网络设备发送第一信息,所述第一信息用于配置至少两个参考信号资源组;
    所述网络设备接收终端设备发送的上报信息,所述上报信息包括至少两个波束的相关信息,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述终端设备同时接收;
    其中,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。
  4. 根据权利要求3所述的方法,其特征在于,在所述网络设备接收终端设备发送的上报信息之前,所述方法还包括:
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示多波束分组上报模式为开启状态,其中,所述多波束分组上报模式为开启状态表示所述终端设备需要上报所述至少两个波束的相关信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述参考信号资源组为参考信号资源集合,其中,所述第一信息通过直接配置、激活或触发至少两个参考信号资源集合来配置所述至少两个参考信号资源组。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述第一信息包括同一个参考信号资源集合中参考信号资源的准共址QCL配置信息,其中,具有相同QCL配置信息的参考信号资源被配置为同一参考信号资源组。
  7. 根据权利要求6所述的方法,其特征在于,
    所述QCL配置信息为与参考信号资源一一对应的传输配置指示TCI状态标识。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述第一信息携带在以下一个或多个信令中:
    无线资源控制RRC信令、媒体接入控制控制元素MAC-CE和下行控制信息DCI。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第一信息携带在RRC中时,所述参考信号的发送方式为周期方式;或,
    所述第一信息携带在MAC-CE中时,所述参考信号的发送方式为半持续方式;或,
    所述第一指令携带在DCI中时,所述参考信号的发送方式为非周期方式。
  10. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述第一信息为资源配置信息,所述资源配置信息通过配置同一个参考信号资源集合中参考信号资源的标识序号实现对至少两个参考信号资源组的配置。
  11. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述处理单元用于控制所述收发单元:
    接收第一信息,所述第一信息用于配置至少两个参考信号资源组;
    发送上报信息,所述上报信息包括至少两个波束的相关信息,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述通信装置同时接收;
    其中,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。
  12. 根据权利要求11所述的通信装置,其特征在于,所述处理单元还用于控制所述收发单元接收网络设备发送的指示信息,所述指示信息用于指示多波束分组上报模式为开启状态,其中,所述多波束分组上报模式为开启状态表示所述终端设备需要上报所述至少两个波束的相关信息。
  13. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述处理单元用于控制所述收发单元:
    发送第一信息,所述第一信息用于配置至少两个参考信号资源组;
    接收终端设备发送的上报信息,所述上报信息包括至少两个波束的相关信息,所述至少两个波束用于发送承载在至少两个参考信号资源上的参考信号,所述至少两个波束发送的参考信号能够被所述终端设备同时接收;
    其中,所述至少两个参考信号资源分别来自于所述至少两个参考信号资源组。
  14. 根据权利要求13中任一项所述的通信装置,其特征在于,所述处理单元还用于控制所述收发单元向所述终端设备发送指示信息,所述指示信息用于指示多波束上报模式为开启状态,其中,所述多波束上报模式为开启状态表示所述终端设备需要上报所述至少两个波束的相关信息。
  15. 根据权利要求11至14中任一项所述的通信装置,其特征在于,所述参考信号资源组为参考信号资源集合,其中,所述第一信息通过直接配置、激活或触发至少两个参考信号资源集合来配置所述至少两个参考信号资源组。
  16. 根据权利要求11至14中任一项所述的通信装置,其特征在于,
    所述第一信息包括同一个参考信号资源集合中参考信号资源的准共址QCL配置信息,其中,具有相同QCL配置信息的参考信号资源被配置为同一参考信号资源组。
  17. 根据权利要求16所述的通信装置,其特征在于,
    所述QCL配置信息为与参考信号资源一一对应的传输配置指示TCI状态标识。
  18. 根据权利要求11至17中任一项所述的通信装置,其特征在于,
    所述第一信息携带在以下一个或多个信令中:
    无线资源控制RRC信令、媒体接入控制控制元素MAC-CE和下行控制信息DCI。
  19. 根据权利要求18所述的通信装置,其特征在于,
    所述第一信息携带在RRC中时,所述参考信号的发送方式为周期方式;或,
    所述第一信息携带在MAC-CE中时,所述参考信号的发送方式为半持续方式;或,
    所述第一指令携带在DCI中时,所述参考信号的发送方式为非周期方式。
  20. 根据权利要求11至14中任一项所述的通信装置,其特征在于,
    所述第一信息为资源配置信息,所述资源配置信息通过配置同一个参考信号资源集合中参考信号资源的标识序号实现对至少两个参考信号资源组的配置。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当其在计算机上运行时,使得计算机实现如权利要求1-10中任一所述的方法。
  22. 一种通信装置,其特征在于,所述装置用于实现如权利要求1-10中任一项所述的方法。
  23. 一种通信装置,其特征在于,所述装置包括:收发器和处理器;
    所述收发器,用于执行如权利要求1-10中任一项所述方法中接收和/或发送的步骤;
    所述处理器,用于执行如权利要求1-10中任一项所述方法中确定的步骤。
  24. 一种处理装置,其特征在于,包括处理器,所述处理器用于执行存储器中存储的计算机程序,以使得所述装置实现如权利要求1-10中任一项所述的方法。
  25. 一种处理装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,以使得所述装置实现如权利要求1-10中任一项所述的方法。
  26. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1-10中任一项所述的方法。
PCT/CN2019/119186 2018-11-19 2019-11-18 波束上报的方法和通信装置 WO2020103793A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19886710.3A EP3876466A4 (en) 2018-11-19 2019-11-18 BEAM REPORT PROCESS AND COMMUNICATION DEVICE
US17/324,712 US11910218B2 (en) 2018-11-19 2021-05-19 Beam reporting method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811378725.9 2018-11-19
CN201811378725.9A CN111200872A (zh) 2018-11-19 2018-11-19 波束上报的方法和通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/324,712 Continuation US11910218B2 (en) 2018-11-19 2021-05-19 Beam reporting method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020103793A1 true WO2020103793A1 (zh) 2020-05-28

Family

ID=70745901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119186 WO2020103793A1 (zh) 2018-11-19 2019-11-18 波束上报的方法和通信装置

Country Status (4)

Country Link
US (1) US11910218B2 (zh)
EP (1) EP3876466A4 (zh)
CN (1) CN111200872A (zh)
WO (1) WO2020103793A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283876A1 (en) * 2021-07-15 2023-01-19 Lenovo (Beijing) Limited Method and apparatus for uplink transmission

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113747484A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 波束测量方法和装置
WO2022028568A1 (en) * 2020-08-06 2022-02-10 Mediatek Inc. Downlink reception with multiple tci states
EP4218300A1 (en) * 2020-09-24 2023-08-02 Qualcomm Incorporated New beam identification for physical downlink control channel (pdcch) repetition
WO2022067843A1 (en) 2020-10-02 2022-04-07 Apple Inc. Beam management in multi-trp operation
US20220302972A1 (en) * 2020-10-02 2022-09-22 Apple Inc. UE Operations for Beam Management in Multi-TRP Operation
US20220140878A1 (en) * 2020-11-02 2022-05-05 Samsung Electronics Co., Ltd. Method and apparatus for beam measurement and reporting in a wireless communication system
WO2022120855A1 (zh) * 2020-12-11 2022-06-16 华为技术有限公司 确定参考信号序列的方法及装置
WO2022198426A1 (en) * 2021-03-23 2022-09-29 Qualcomm Incorporated Group based beam reporting for non-serving cells
US20240072868A1 (en) * 2021-04-06 2024-02-29 Apple Inc. Group Based Beam Reporting Enhancement for L1-RSRP and L1-SINR
US11910373B2 (en) * 2021-07-13 2024-02-20 Qualcomm Incorporated Sidelink discovery messages for beam training and onboarding of initiator user equipments to sidelink user equipment groups
US12016006B2 (en) * 2021-09-20 2024-06-18 Qualcomm Incorporated Beam report triggers autonomous beam hopping
CN114223230A (zh) * 2021-11-15 2022-03-22 北京小米移动软件有限公司 波束能力上报方法、装置、设备及存储介质
US11909493B2 (en) 2021-11-26 2024-02-20 Samsung Electronics Co., Ltd. Wireless communication apparatus for receiving data from multiple transmission and reception points and operating method of the same
CN114830716A (zh) * 2022-03-18 2022-07-29 北京小米移动软件有限公司 上报方法、装置、设备及存储介质
CN114938712A (zh) * 2022-04-13 2022-08-23 北京小米移动软件有限公司 波束选择方法和装置
CN117294399A (zh) * 2022-06-14 2023-12-26 中国移动通信有限公司研究院 信息发送、接收方法、装置、通信设备及可读存储介质
CN117882354A (zh) * 2022-08-10 2024-04-12 北京小米移动软件有限公司 上行传输的波束测量上报方法及装置
CN117998654A (zh) * 2022-11-04 2024-05-07 华为技术有限公司 波束测量方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017083489A1 (en) * 2015-11-10 2017-05-18 Idac Holdings, Inc. Transmission schemes and modes and fallback schemes for the access link of systems operating in higher frequency bands
CN108288991A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 波束信息、配置信息的反馈方法及装置
CN108702226A (zh) * 2016-02-23 2018-10-23 三星电子株式会社 无线通信系统中的测量参考信号的方法和设备
CN108696346A (zh) * 2017-11-25 2018-10-23 华为技术有限公司 一种参考信号的配置方法和装置
CN108696889A (zh) * 2017-03-30 2018-10-23 财团法人工业技术研究院 波束测量和反馈的方法及使用所述方法的基站与用户设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036249B (zh) 2009-09-24 2015-01-14 株式会社Ntt都科摩 一种小区间干扰协调方法及基站
CN103139918B (zh) 2011-11-30 2016-05-18 华为技术有限公司 一种实现数据调度的方法、装置和系统
EP4280485A3 (en) 2013-01-18 2024-03-06 Huawei Technologies Co., Ltd. Communication method and apparatus
US10425139B2 (en) * 2016-09-21 2019-09-24 Samsung Electronics Co., Ltd. Method and apparatus for beam management reference signals in wireless communication systems
CN107959937B (zh) * 2016-10-17 2022-11-22 中兴通讯股份有限公司 传输模式的确定、数据传输方法及装置、通信系统
CN108243430B (zh) 2016-12-23 2020-09-11 维沃移动通信有限公司 一种波束管理信息的配置、处理方法、终端及基站
CN108282863A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 一种上行测量信号的指示方法及装置
CN108282321B (zh) 2017-01-06 2022-03-29 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
US10567058B2 (en) * 2017-02-08 2020-02-18 Samsung Electronics Co., Ltd. Method and apparatus for beam management
CN108632836B (zh) 2017-03-17 2019-12-03 维沃移动通信有限公司 波束信息获取方法和上报方法、网络侧设备及终端
CN108667496B (zh) * 2017-03-31 2021-10-26 大唐移动通信设备有限公司 一种获取、反馈发送波束信息的方法及装置
CN109005548B (zh) * 2017-06-06 2023-09-29 华为技术有限公司 一种信道质量信息的上报方法及装置
CN109151888B (zh) * 2017-06-16 2021-06-08 华为技术有限公司 一种测量上报的方法及设备
CN109391311A (zh) * 2017-08-10 2019-02-26 株式会社Ntt都科摩 一种用于波束管理的参考信号发送与接收方法及装置
CN112929139B (zh) * 2017-08-11 2022-05-20 中兴通讯股份有限公司 信息上报方法及装置、信息传输方法及装置
EP3662693A4 (en) * 2017-09-08 2021-05-05 Apple Inc. GROUP-BASED CONFIGURATION OF BEAM MESSAGE AND CHANNEL STATUS INFORMATION REFERENCE SIGNAL IN NEW RADIO SYSTEMS
CN112351501B (zh) * 2018-05-11 2024-01-19 成都华为技术有限公司 通信方法及装置
CN110830093B (zh) * 2018-08-10 2021-10-15 华为技术有限公司 传输信道状态信息的方法和装置
EP3857725A4 (en) * 2018-09-28 2022-05-18 Lenovo (Beijing) Limited BEAM MESSAGE
EP3648496A1 (en) * 2018-11-01 2020-05-06 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Beam management methods and apparatuses for positioning measurements in a communications network
CN110535545A (zh) * 2019-01-11 2019-12-03 中兴通讯股份有限公司 一种信息确定方法和装置、信息元素的处理方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017083489A1 (en) * 2015-11-10 2017-05-18 Idac Holdings, Inc. Transmission schemes and modes and fallback schemes for the access link of systems operating in higher frequency bands
CN108702226A (zh) * 2016-02-23 2018-10-23 三星电子株式会社 无线通信系统中的测量参考信号的方法和设备
CN108288991A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 波束信息、配置信息的反馈方法及装置
CN108696889A (zh) * 2017-03-30 2018-10-23 财团法人工业技术研究院 波束测量和反馈的方法及使用所述方法的基站与用户设备
CN108696346A (zh) * 2017-11-25 2018-10-23 华为技术有限公司 一种参考信号的配置方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876466A4
ZTE: "Summary for Al 7.1.6.1 NR UL power control in non-CA aspects", 3GPP TSG RAN WG1 MEETING #92BIS R1-1805553, 17 April 2018 (2018-04-17), XP051427611, DOI: 20200217153356A *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023283876A1 (en) * 2021-07-15 2023-01-19 Lenovo (Beijing) Limited Method and apparatus for uplink transmission

Also Published As

Publication number Publication date
CN111200872A (zh) 2020-05-26
US11910218B2 (en) 2024-02-20
US20210274372A1 (en) 2021-09-02
EP3876466A1 (en) 2021-09-08
EP3876466A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
WO2020103793A1 (zh) 波束上报的方法和通信装置
US11737082B2 (en) Signal transmission method and communications apparatus
US11082986B2 (en) Channel state information processing method and apparatus, and system
WO2020156174A1 (zh) 波束指示的方法和通信装置
CN110809321B (zh) 接收和发送信号的方法以及通信装置
US11522743B2 (en) Sounding reference signal (SRS) design for cellular time division duplex (TDD) mmWave systems
WO2020034889A1 (zh) 信号传输的方法和通信装置
WO2020083053A1 (zh) 通信方法和通信装置
CN111436147B (zh) 传输信号的方法和装置
CN108809369B (zh) 无线通信的方法、网络设备和终端设备
CN112073129B (zh) 确定天线面板状态的方法和装置
CN111586858B (zh) 信号传输方法和通信装置
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
WO2022007967A1 (zh) 一种参考信号资源的配置方法和装置
WO2021017874A1 (zh) 一种通信方法及通信装置
US20220394504A1 (en) Beam pair training method and communication apparatus
EP3905574A1 (en) Signal transmission method and apparatus
WO2020034854A1 (zh) 资源管理的方法和装置
WO2023273969A1 (zh) 资源测量方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019886710

Country of ref document: EP

Effective date: 20210531