WO2020248825A1 - 确定天线面板状态的方法和装置 - Google Patents

确定天线面板状态的方法和装置 Download PDF

Info

Publication number
WO2020248825A1
WO2020248825A1 PCT/CN2020/092929 CN2020092929W WO2020248825A1 WO 2020248825 A1 WO2020248825 A1 WO 2020248825A1 CN 2020092929 W CN2020092929 W CN 2020092929W WO 2020248825 A1 WO2020248825 A1 WO 2020248825A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna panel
resource set
signal resource
downlink signal
configuration
Prior art date
Application number
PCT/CN2020/092929
Other languages
English (en)
French (fr)
Inventor
樊波
管鹏
王晓娜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20823651.3A priority Critical patent/EP3952144A4/en
Publication of WO2020248825A1 publication Critical patent/WO2020248825A1/zh
Priority to US17/531,054 priority patent/US20220077943A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for determining the state of an antenna panel.
  • the fifth generation mobile communication system can use high frequency communication, that is, use an ultra-high frequency band (for example, >6GHz) to transmit data.
  • high-frequency communication is that the signal energy drops sharply with the transmission distance, resulting in a short signal transmission distance.
  • high-frequency communication adopts analog beam technology. By weighting large-scale antenna arrays, the signal energy is concentrated in a small range to form a signal similar to a beam (can be called “analog beam ", can also be referred to simply as "beam”), thereby increasing the transmission distance.
  • Network equipment can generate different beams, pointing to different transmission directions.
  • Network equipment generally uses one or more optimal beams for data transmission.
  • the terminal can also generate different beams and use the best one or more beams for data transmission. Which beam to use for transmission is determined through the beam management process. Beam management can be divided into downlink beam management and uplink beam management.
  • Downlink beam management is used to select (network equipment) transmit beams for downlink data transmission.
  • the network device configures multiple downlink signal resources for the terminal by measuring the configuration information, and each downlink signal resource corresponds to one beam. Each downlink signal resource also corresponds to a downlink signal.
  • the terminal measures the downlink signal sent by each beam to determine the quality of each beam/downlink signal resource.
  • the terminal can select one or more downlink signal resources with the best quality, and report its resource index and corresponding resource quality to the network device, and the network device selects one or more downlink signal resources ( Beam) is used for data transmission.
  • Beam downlink signal resources
  • the beam is generated by an antenna panel (antenna panel, Panel), that is, a beam signal is formed by processing all antennas on an antenna panel (for example, phase weighting processing).
  • Each antenna panel can generate multiple beams with different directions, but only one can be generated at a time.
  • the terminal can be equipped with multiple antenna panels, and the antenna panel with better quality can be selected for data transmission. On the other hand, the terminal can close some antenna panels to save power.
  • the network device does not know which antenna panels are open and which antenna panels are closed. Therefore, the network equipment cannot reasonably schedule the antenna panel for uplink data transmission, resulting in low data transmission efficiency.
  • the present application provides a method and device for determining the state of an antenna panel, which can determine the on-off state of the antenna panel, thereby improving data transmission efficiency.
  • a method for determining the status of an antenna panel includes: receiving configuration information, the configuration information including at least one downlink signal resource set; the first downlink signal resource in the at least one downlink signal resource set When the first antenna panel corresponding to the set is turned on, the first feedback information is sent, and the first feedback information is used to indicate the quality of the resources in the first downlink signal resource set, where the first downlink signal resource set The quality of the resources in is obtained by measuring the downlink signal by the first antenna panel; or when the first antenna panel corresponding to the first downlink signal resource set in the at least one downlink signal resource set is closed, the second antenna panel is sent Feedback information. The second feedback information is used to indicate that the first antenna panel is closed.
  • the terminal To measure the quality of the resources in the first downlink signal resource set, the terminal needs to use the first antenna panel corresponding to the first downlink signal resource set for measurement. Before the measurement, the terminal must determine whether the state of the first antenna panel is on or off. When the first antenna panel is turned on, the terminal can use the first antenna panel to measure the quality of resources in the first downlink signal resource set, and send first feedback information, which may indicate the first The quality of the resources in the downlink signal resource set. When the first antenna panel is closed, the quality of the resources in the first downlink signal resource set is not measured, and second feedback information is sent, and the second feedback information is used to indicate that the first antenna panel is closed. In this way, the network device of the embodiment of the present application can learn the status of the antenna panel, and then can perform reasonable scheduling of the antenna panel, thereby improving data transmission efficiency.
  • the method before sending the first feedback information or the second feedback information, the method further includes: determining the first downlink signal according to the first mapping relationship and the first downlink signal resource set For the first antenna panel corresponding to the resource set, the first mapping relationship is a mapping relationship between the at least one downlink signal resource set and the at least one antenna panel.
  • the mapping relationship between the at least one downlink signal resource set and the at least one antenna panel may be that the at least one downlink signal resource set corresponds to at least one antenna panel.
  • one downlink signal resource set may correspond to one or more antenna panels, or one or more downlink signal resource sets correspond to one antenna panel.
  • the terminal can store the mapping relationship between at least one downlink signal resource set and at least one antenna panel, so that after receiving the configuration information, the terminal can determine each downlink signal in the at least one downlink signal resource set included in the configuration information according to the mapping relationship
  • the antenna panel corresponding to the resource set determines to send the first feedback information or the second feedback information according to whether the antenna panel is turned on.
  • the method before sending the first feedback information or the second feedback information, further includes: determining the first downlink signal resource set according to the second mapping relationship, the third mapping relationship, and the first downlink signal resource set.
  • the first antenna panel corresponding to the first downlink signal resource set, the second mapping relationship is a mapping relationship between at least one reporting configuration and at least one downlink signal resource set, and the third mapping relationship is at least one reporting configuration and at least one antenna panel The mapping relationship.
  • the mapping relationship between the at least one downlink signal resource set and the at least one reporting configuration may be that the at least one downlink signal resource set corresponds to the at least one reporting configuration.
  • the mapping relationship between the at least one reported configuration and the at least one antenna panel may be that the at least one reported configuration corresponds to at least one antenna panel.
  • one downlink signal resource set may correspond to one or more reporting configurations, or one or more downlink signal resource sets correspond to one reporting configuration.
  • One reporting configuration can correspond to one or more antenna panels, or one or more reporting configurations can correspond to one antenna panel.
  • the terminal may determine the first reporting configuration corresponding to the first downlink signal resource set according to the second mapping relationship and the first downlink signal resource set.
  • the terminal may also determine the first antenna panel corresponding to the first reporting configuration according to the third mapping relationship and the first reporting configuration. In this way, the terminal can determine that the first downlink signal resource set corresponds to the first antenna panel.
  • the second feedback information includes at least one field, and when the value of the at least one field is a preset value, it indicates that the first antenna panel is closed.
  • the value of the at least one field is a special value (for example, referred to as a “preset value”), it indicates that the first antenna panel is closed.
  • a method for determining the status of an antenna panel includes: sending configuration information, the configuration information including at least one downlink signal resource set; receiving first feedback information or second feedback information, the first feedback information It is used to indicate the quality of the resources in the first downlink signal resource set in the at least one downlink signal resource set, where the quality of the resources in the first downlink signal resource set is determined by the terminal according to the first downlink signal resource
  • the first antenna panel corresponding to the set is obtained by measuring the downlink signal in an open state, and the second feedback information is used to indicate that the first antenna panel corresponding to the first downlink signal resource set in the at least one downlink signal resource set is closed; According to the first feedback information or the second feedback information, it is determined that the first antenna panel is turned on or off.
  • the network device sends configuration information including at least one set of downlink signal resources, and receives the first feedback information or the second feedback information, so that the status of the antenna panel can be learned according to the first feedback information or the second feedback information, and thus can perform reasonable Dispatching the antenna panel improves the efficiency of data transmission.
  • the at least one downlink signal resource set and the at least one antenna panel have a first mapping relationship
  • the first antenna panel is an antenna in the at least one antenna panel corresponding to the first downlink signal resource set panel.
  • the network device may determine the first downlink signal resource set in the first feedback information or the second feedback information according to the first mapping relationship and the first feedback information, or according to the first mapping relationship and the second feedback information.
  • the corresponding antenna panel can then determine the switch state of the corresponding antenna panel, so that the antenna panel can be dispatched reasonably, and the data transmission efficiency is improved.
  • the at least one reported configuration has a second mapping relationship with the at least one downlink signal resource set
  • the at least one reported configuration has a third mapping relationship with at least one antenna panel
  • the first antenna panel is the The antenna panel corresponding to the first reporting configuration in the at least one antenna panel
  • the first reporting configuration is the reporting configuration corresponding to the first downlink signal resource set in the at least one reporting configuration.
  • the network device may determine the first reporting configuration corresponding to the first downlink signal resource set according to the second mapping relationship and the first downlink signal resource set. The network device then determines the first antenna panel corresponding to the first reporting configuration according to the third mapping relationship and the first reporting configuration. In this way, the network device can determine the on-off state of the first antenna panel corresponding to the first downlink signal resource set according to the feedback information of the first downlink signal resource set, and then can perform reasonable scheduling of the antenna panel and improve data transmission. effectiveness.
  • the second feedback information includes at least one field, and when the value of the at least one field is a preset value, it indicates that the first antenna panel is closed.
  • the network device determines that the first antenna panel is in the closed state, so that the antenna panel can be reasonably scheduled , Improve the efficiency of data transmission.
  • a method for determining the status of an antenna panel includes: receiving first configuration information, where the first configuration information includes at least one uplink signal resource set; When the first antenna panel corresponding to the uplink signal resource set is turned on, the first antenna panel is used to transmit the first reference signal, and the first reference signal is the reference signal corresponding to the resource in the first uplink signal resource set; or When the first antenna panel corresponding to the first uplink signal resource set in the at least one uplink signal resource set is closed, the first reference signal is not sent, and the first reference signal corresponds to the resource in the first uplink signal resource set Reference signal.
  • the uplink signal resource set and the antenna panel have a corresponding relationship, and the resources in the uplink signal resource set have a corresponding relationship with the reference signal.
  • the terminal determines whether the first antenna panel corresponding to the first uplink signal resource set is turned on, and when turned on, uses the first antenna panel to transmit the first reference signal.
  • the first uplink signal resource set may be any one of the at least one uplink signal resource set. That is, the terminal respectively uses the antenna panel corresponding to each uplink signal resource set to transmit the reference signal corresponding to each uplink signal resource set. If the first antenna panel corresponding to the first uplink signal resource set is turned off, the terminal does not transmit the reference signal corresponding to the resource in the first uplink signal resource set. In this way, the network device can learn the status of the antenna panel, and then the antenna panel can be dispatched reasonably, which improves the data transmission efficiency.
  • the first reference signal is used to measure the quality of the first resource in the first uplink signal resource set.
  • the terminal can reuse the reference signal (for example, the first reference signal) used to measure the quality of the resource in the traditional solution, so that the terminal does not need to specifically send the first reference signal so that the network device determines the switch of the antenna panel according to the first reference signal. This saves signaling and resource overhead.
  • the reference signal for example, the first reference signal
  • the at least one uplink signal resource set and the at least one antenna panel have a mapping relationship
  • the first antenna panel is an antenna panel corresponding to the first uplink signal resource set in the at least one antenna panel.
  • the terminal can determine the antenna panel corresponding to each uplink signal resource set according to the mapping relationship.
  • the method further includes: receiving second configuration information; and adjusting the configuration parameters of the first antenna panel according to the second configuration information.
  • the terminal can also receive the second configuration information sent by the network device when the first antenna panel is in the closed state, and adjust the first antenna panel according to the second configuration information, for example, adjust the first antenna panel to the open state, etc. , So that the network device can schedule the first antenna panel for data transmission, thereby improving the data transmission efficiency.
  • the second configuration information includes reconfiguration configuration parameters.
  • the configuration parameters include measurement report related configuration, measurement resource related configuration, transmission configuration number TCI status, spatial relationship, uplink scheduling request SR resource, physical At least one item of uplink control channel resources.
  • a method for determining the status of an antenna panel includes: sending first configuration information, where the first configuration information includes at least one uplink signal resource set; and detecting the first one in the at least one uplink signal resource set.
  • the network device may determine the status of the antenna panel corresponding to each uplink signal resource set according to the receiving situation of the reference signal corresponding to the resource in the uplink signal resource set. In other words, the network device of the embodiment of the present application can learn the status of the antenna panel, and then can perform reasonable scheduling of the antenna panel, which improves the efficiency of data transmission.
  • the first reference signal is used to measure the quality of the first resource in the first uplink signal resource set.
  • the network device detects the first reference signal used to measure the quality of the first resource, and determines the switch of the antenna panel according to the first reference signal, avoiding special monitoring of the first reference signal, thereby saving signaling and resource overhead.
  • the at least one uplink signal resource set and the at least one antenna panel have a mapping relationship
  • the first antenna panel is an antenna panel corresponding to the first uplink signal resource set in the at least one antenna panel.
  • the network device can determine the antenna panel corresponding to each uplink signal resource set according to the mapping relationship. Furthermore, according to which antenna panel detects the uplink signal corresponding to the resource in each uplink signal resource set, it can be determined whether the antenna panel is turned on or off, thereby improving the data transmission efficiency.
  • the determining whether the first antenna panel corresponding to the first uplink signal resource set is turned on according to the receiving situation of the first reference signal includes: in a case where the first reference signal is not received, It is determined that the first antenna panel is turned off; or when the quality of the received first reference signal is less than or equal to the preset quality threshold, it is determined that the first antenna panel is turned off; or the quality of the received first reference signal is greater than In the case of the preset quality threshold, it is determined that the first antenna panel is turned on.
  • the network device can determine whether the first antenna panel is turned on or off according to the specific receiving situation of the first reference signal, so that the first antenna panel can be more reasonably scheduled, and the data transmission efficiency is further improved.
  • the method when the first antenna panel is closed, the method further includes: sending second configuration information to the terminal, where the second configuration information is used to adjust the configuration parameters of the first antenna panel.
  • the network device can send the second configuration information to adjust the first antenna panel, for example, adjust the first antenna panel to the open state, so that the network device can schedule the first antenna panel.
  • the antenna panel performs data transmission, thereby improving the data transmission efficiency.
  • the second configuration information includes reconfiguration configuration parameters.
  • the configuration parameters include measurement report related configuration, measurement resource related configuration, transmission configuration number TCI status, spatial relationship, uplink scheduling request SR resource, physical At least one item of uplink control channel resources.
  • a device for determining the status of an antenna panel may be a terminal or a chip in the terminal.
  • the device has the function of realizing the above-mentioned first aspect and various possible implementation manners. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a transceiver module and a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or from other instructions, so that the device executes the first aspect described above and various possible implementation methods of communication.
  • the device can be a terminal.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be an input/output interface, pin or circuit on the chip, for example.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the above-mentioned first aspect and any possible implemented communication method.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above All aspects of the communication method program execution integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • a device for determining the status of an antenna panel may be a network device or a chip in the network device.
  • the device has the function of realizing the above-mentioned second aspect and various possible implementation modes. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a transceiver module and a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other instructions, so that the device executes the second aspect or any one of the methods described above.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be, for example, an input/output interface, pin or circuit on the chip.
  • the processing module may be a processor, for example. The processing module can execute instructions so that the chip in the network device executes the second aspect and any possible implementation communication methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as ROM or other types of static storage devices that can store static information and instructions, RAM, etc.
  • the processor mentioned in any of the above may be a CPU, a microprocessor, an application-specific integrated circuit ASIC, or one or more integrated circuits used to control the execution of the programs of the above-mentioned communication methods.
  • a device for determining the status of an antenna panel may be a terminal or a chip in the terminal.
  • the device has the function of realizing the aforementioned third aspect and various possible implementation modes. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a transceiver module and a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example. When a storage module is included, the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute the instructions stored in the storage module or from other instructions, so that the device executes the third aspect described above and various possible implementation modes of communication methods.
  • the device can be a terminal.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be an input/output interface, pin or circuit on the chip, for example.
  • the processing module may be a processor, for example.
  • the processing module can execute instructions so that the chip in the terminal executes the third aspect and any possible implementation communication methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as ROM or other types of static storage devices that can store static information and instructions, RAM, etc.
  • the processor mentioned in any one of the foregoing may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the programs of the communication methods of the foregoing aspects.
  • a device for determining the status of an antenna panel may be a network device or a chip in the network device.
  • the device has the function of realizing the above-mentioned fourth aspect and various possible implementation modes. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device includes a transceiver module and a processing module.
  • the transceiver module may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the transceiver module may include a radio frequency circuit or an antenna.
  • the processing module may be a processor.
  • the device further includes a storage module, and the storage module may be a memory, for example.
  • the storage module is used to store instructions.
  • the processing module is connected to the storage module, and the processing module can execute instructions stored in the storage module or instructions derived from other sources, so that the device executes the foregoing fourth aspect or any one of the methods.
  • the chip when the device is a chip, the chip includes a transceiver module and a processing module.
  • the transceiver module may be, for example, an input/output interface, pin or circuit on the chip.
  • the processing module may be a processor, for example. The processing module can execute instructions so that the chip in the network device executes the fourth aspect and any possible implementation communication methods.
  • the processing module may execute instructions in the storage module, and the storage module may be a storage module in the chip, such as a register, a cache, and the like.
  • the storage module may also be located in the communication device but outside the chip, such as ROM or other types of static storage devices that can store static information and instructions, RAM, etc.
  • the processor mentioned in any one of the foregoing may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the programs of the communication methods of the foregoing aspects.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the first aspect and any possible implementations thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the second aspect and any possible implementations thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the third aspect and any possible implementations thereof.
  • a computer storage medium is provided, and program code is stored in the computer storage medium, and the program code is used to instruct instructions to execute the method in the fourth aspect and any possible implementation manners.
  • a computer program product containing instructions which, when running on a computer, causes the computer to execute the method in the first aspect or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the second aspect described above, or any possible implementation manner thereof.
  • a computer program product containing instructions which when running on a computer, causes the computer to execute the method in the third aspect or any possible implementation manner thereof.
  • a computer program product containing instructions which, when running on a computer, causes the computer to execute the method in the fourth aspect or any possible implementation manner thereof.
  • a communication system in a seventeenth aspect, includes the device described in the fifth aspect and the device described in the sixth aspect.
  • a communication system which includes the device described in the seventh aspect and the device described in the eighth aspect.
  • the terminal receives configuration information including at least one downlink signal resource set, and when it is determined that the first antenna panel corresponding to the first downlink signal resource set is turned on, the first antenna panel is used to measure the first antenna panel.
  • the quality of the resources in the downlink signal resource set is sent, and first feedback information is sent, and the first feedback information may indicate the quality of the resources in the first downlink signal resource set.
  • the quality of the resources in the first downlink signal resource set is not measured, and second feedback information is sent, and the second feedback information is used to indicate that the first antenna panel is closed.
  • the network device of the embodiment of the present application can learn the status of the antenna panel, and then can perform reasonable scheduling of the antenna panel, thereby improving data transmission efficiency.
  • Figure 1 is a schematic diagram of a communication system of the present application
  • Figure 2 is a schematic flow chart of a method for downlink beam management in a traditional solution
  • Fig. 3 is a schematic flowchart of a method for uplink beam management in a traditional solution
  • Figure 4 is a schematic diagram of beam management in a traditional solution
  • FIG. 5 is a schematic flowchart of a method for determining the state of an antenna panel according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a method for determining an antenna panel state according to another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of an apparatus for determining the state of an antenna panel according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an apparatus for determining the state of an antenna panel according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a device for determining the state of an antenna panel according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a device for determining the state of an antenna panel according to another embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a device for determining the state of an antenna panel according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an apparatus for determining the state of an antenna panel according to another embodiment of the present application.
  • FIG. 13 is a schematic block diagram of an apparatus for determining the state of an antenna panel according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a device for determining the state of an antenna panel according to another embodiment of the present application.
  • 15 is a schematic diagram of a device for determining the state of an antenna panel according to another specific embodiment of the present application.
  • 16 is a schematic diagram of a device for determining the state of an antenna panel according to another specific embodiment of the present application.
  • FIG. 17 is a schematic diagram of a device for determining the state of an antenna panel according to another specific embodiment of the present application.
  • FIG. 18 is a schematic diagram of a device for determining the state of an antenna panel according to another specific embodiment of the present application.
  • a beam is a communication resource, and different beams can be considered as different communication resources. Different beams can send the same information or different information.
  • the beam may correspond to at least one of time domain resources, space resources, and frequency domain resources.
  • multiple beams with the same or the same type of communication characteristics may be regarded as one beam, and one beam may include one or more antenna ports for transmitting data channels, control channels, sounding signals, and the like.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna;
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means, which is not limited in this application. Among them, the beamforming technology (beamforming) can achieve higher antenna array gain by oriented in a specific direction in space.
  • the beam can be divided into the transmitting beam and the receiving beam of the network device, and the transmitting beam and the receiving beam of the terminal.
  • the transmitting beam of the network device is used to describe the beamforming information on the receiving side of the network device, and the receiving beam of the network device is used to describe the beamforming information on the receiving side of the network device.
  • the transmitting beam of the terminal is used to describe the beamforming information on the transmitting side of the terminal, and the receiving beam of the terminal is used to describe the beamforming information on the receiving side.
  • beamforming technology includes digital beamforming technology, analog beamforming technology, and hybrid digital-analog beamforming technology.
  • the analog beamforming technology can be realized by radio frequency.
  • a radio frequency link RF chain
  • communication based on analog beams requires the beams of the transmitter and receiver to be aligned, otherwise signals cannot be transmitted normally.
  • one or more antenna ports forming a beam may also be regarded as an antenna port set.
  • the beam can also be embodied by a spatial filter or a spatial domain transmission filter.
  • the beam can also be referred to as a "spatial filter”
  • the transmitting beam is referred to as a "spatial filter”.
  • Transmitting filter” and receiving beam are called “spatial receive filter” or "downstream spatial filter”.
  • the receiving beam of the network device or the transmitting beam of the terminal may also be referred to as an "uplink spatial filter”
  • the transmitting beam of the network device or the receiving beam of the terminal may also be referred to as a "downlink spatial filter”.
  • the optimal N beam pair link (a BPL includes the transmit beam of a network device and the receive beam of a terminal, or a BPL includes the transmit beam of a terminal and the receive beam of a network device) select.
  • a BPL includes the transmit beam of a network device and the receive beam of a terminal
  • a BPL includes the transmit beam of a terminal and the receive beam of a network device
  • select For the terminal based on the beam scanning of the network device to realize the selection of the transmission beam of the network device and/or the receiving beam of the terminal, and the network device to realize the transmission beam of the terminal and/or the receiving beam of the network device based on the beam scanning of the terminal select.
  • the transmitting beam may be a base station transmitting beam or a terminal transmitting beam.
  • the transmit beam is a base station transmit beam
  • the base station transmits reference signals to user equipment (UE) through different transmit beams, and the UE uses the same receive beam to receive the reference signals sent by the base station through different transmit beams, based on The received signal determines the optimal transmit beam of the base station, and then feeds back the optimal transmit beam of the base station to the base station, so that the base station can update the transmit beam.
  • UE user equipment
  • the UE When the transmitting beam is a terminal transmitting beam, the UE sends reference signals to the base station through different transmitting beams, and the base station receives the reference signals sent by the UE through different transmitting beams through the same receiving beam, and determines the UE's optimum based on the received signal Transmit the beam, and then feed back the UE's optimal transmit beam to the UE so that the UE can update the transmit beam.
  • the foregoing process of transmitting reference signals through different transmit beams may be referred to as beam scanning, and the process of determining the optimal transmit beam based on the received signal may be referred to as beam matching.
  • the receiving beam may be a base station receiving beam or a terminal receiving beam.
  • the receiving beam is a base station receiving beam
  • the UE sends a reference signal to the base station through the same transmitting beam.
  • the base station uses different receiving beams to receive the reference signal sent by the UE, and then determines the optimal receiving beam of the base station based on the received signal, so as to The receive beam is updated.
  • the receiving beam is the receiving beam of the UE, the base station sends the reference signal to the UE through the same transmitting beam, and the UE uses different receiving beams to receive the reference signal sent by the base station, and then determines the UE's optimal receiving beam based on the received signal to correct The UE's receive beam is updated.
  • the network device will configure the type of reference signal resource set for beam training.
  • the repetition parameter configured for the reference signal resource set is "on"
  • the terminal assumes that the reference signal resource set is in Use the same downlink spatial filter to transmit the reference signal, that is, use the same transmit beam for transmission; in this case, in general, the terminal will use different receive beams to receive the reference signal in the above reference signal resource set, and train the terminal
  • the terminal can report the channel quality of the best N reference signals measured by the UE.
  • the terminal When the repetition parameter configured for the reference signal resource set is "off", the terminal does not assume that the reference signals in the reference signal resource set are transmitted using the same downlink spatial filter, that is, it does not assume that the network equipment uses the same transmit beam for transmission Reference signal. At this time, the terminal selects the best N beams in the resource set by measuring the channel quality of the reference signal in the set and feeds it back to the network device. Generally, at this time, the terminal uses the same reception in this process Beam.
  • Beamforming technology (beamforming):
  • Beamforming technology can achieve higher antenna array gain by oriented in a specific direction in space.
  • Analog beamforming can be achieved through radio frequency. For example, an RF chain adjusts the phase through a phase shifter to control the change of the analog beam direction. Therefore, an RF chain can only shoot one analog beam at the same time.
  • Beam management resources refer to resources used for beam management, and can be embodied as resources used for calculating and measuring beam quality.
  • the beam quality includes layer 1 reference signal received power (layer 1 reference signal received power, L1-RSRP), layer 1 received reference signal quality (layer 1 reference signal received quality, L1-RSRQ), etc.
  • beam management resources may include synchronization signals, broadcast channels, downlink channel measurement reference signals, tracking signals, downlink control channel demodulation reference signals, downlink shared channel demodulation reference signals, uplink sounding reference signals, uplink random access signals, etc. .
  • the resource index can be used to uniquely identify the beam corresponding to the resource.
  • the resource can be an uplink signal resource or a downlink signal resource.
  • Uplink signals include but are not limited to uplink random access sequence, uplink sounding reference signal, uplink control channel demodulation reference signal (DMRS), uplink data channel demodulation reference signal, and uplink phase-tracking reference signal (phase-tracking reference signal). signals, PTRS), sounding reference signal (sounding reference signal, SRS).
  • Downlink signals include but are not limited to: channel state information reference signal (CSI-RS), cell-specific reference signal (CS-RS), UE-specific reference signal (user equipment specific reference signal, US-RS), downlink control channel demodulation reference signal (demodulation reference signal, DMRS), downlink data channel demodulation reference signal, downlink phase noise tracking signal, and synchronization system/physical broadcast channel block (synchronization system/physical broadcast channel block, SS/PBCH block).
  • the SS/PBCH block may be referred to as a synchronization signal block (synchronization signal block, SSB) for short.
  • the resources are configured through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • a resource is a data structure, including its corresponding uplink/downlink signal related parameters, such as the type of uplink/downlink signal, the resource element that carries the uplink/downlink signal, the transmission time and period of the uplink/downlink signal , The number of ports used to send uplink/downlink signals, etc.
  • Each uplink/downlink signal resource has a unique index to identify the downlink signal resource. It is understandable that the index of the resource may also be referred to as the identifier of the resource, which is not limited in the embodiment of the present application.
  • Used to indicate the beam used for transmission including the transmitting beam and/or the receiving beam.
  • the index of the downlink signal corresponding to the beam, the time index of the downlink synchronization signal block corresponding to the beam, the beam pair link (BPL) information, the transmission parameter (Tx parameter) corresponding to the beam, and the reception parameter (Rx parameter) corresponding to the beam The transmission weight corresponding to the beam, the weight matrix corresponding to the beam, the weight vector corresponding to the beam, the receiving weight corresponding to the beam, the index of the transmission weight corresponding to the beam, the index of the weight matrix corresponding to the beam, the index of the weight vector corresponding to the beam, the beam At least one of the index of the corresponding reception weight, the reception codebook corresponding to the beam, the transmission codebook corresponding to the beam, the transmission codebook corresponding to the beam, the transmission codebook corresponding to the beam
  • the network device may also allocate QCL identifiers to beams having a quasi-co-location (QCL) relationship among the beams associated with the frequency resource group.
  • the beam may also be called a spatial transmission filter
  • the transmit beam may also be called a spatial transmit filter
  • the receive beam may also be called a spatial receive filter.
  • the beam indication information may also be embodied as a transmission configuration index (TCI).
  • TCI may include various parameters, such as cell number, bandwidth part number, reference signal identifier, synchronization signal block identifier, QCL type, and so on.
  • the parity relationship of quasi-co-location (QCL) is used to indicate that multiple resources have one or more identical or similar communication characteristics. For multiple resources with parity relationship, the same or Similar communication configuration.
  • the large-scale characteristics of the channel transmitting one symbol on one port can be inferred from the large-scale characteristics of the channel transmitting one symbol on the other port.
  • Large-scale characteristics can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receiving parameters, terminal receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, receiver antenna space Correlation, main angle of arrival (angel-of-arrival, AoA), average angle of arrival, expansion of AoA, etc.
  • Spatial QCL can be considered as a type of QCL. There are two angles to understand spatial: from the sending end or from the receiving end.
  • the two antenna ports are quasi-co-located in the spatial domain, it means that the corresponding beam directions of the two antenna ports are spatially consistent, that is, the spatial filters are the same.
  • the two antenna ports are spatially quasi-co-located, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction, that is, the reception parameter QCL.
  • the co-location relationship is used to indicate that multiple resources have one or more identical or similar communication characteristics.
  • the same or similar communication configuration can be adopted.
  • Large-scale characteristics can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receiving parameters, terminal receiving beam number, transmitting/receiving channel correlation, receiving angle of arrival, receiver antenna space Correlation, AoA, average angle of arrival, expansion of AoA, etc.
  • Beam management is a beam measurement process in the R15 protocol, which can be divided into downlink beam management and uplink beam management.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the terminal in the embodiments of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user Device.
  • the terminal can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in the future 5G network or terminals in the future evolved public land mobile network (PLMN), etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN personal digital assistant
  • the network equipment in the embodiments of the present application may be equipment used to communicate with terminals.
  • the network equipment may be a global system for mobile communications (GSM) system or code division multiple access (CDMA).
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • the base transceiver station (BTS) can also be the base station (NodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station (evoled NodeB) in the LTE system.
  • NodeB base station
  • WCDMA wideband code division multiple access
  • evoled NodeB evolved base station
  • ENB or eNodeB it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, vehicle-mounted device, wearable device, and future 5G
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements part of the functions of gNB
  • DU implements part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), or the CU can be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal or network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal or a network device, or a functional module in the terminal or network device that can call and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CDs), digital versatile discs (digital versatile discs, DVDs) Etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a communication system of the present application.
  • the communication system in FIG. 1 may include at least one terminal (for example, terminal 10, terminal 20, terminal 30, terminal 40, terminal 50, and terminal 60) and a network device 70.
  • the network device 70 is used to provide communication services for the terminal and access the core network.
  • the terminal can access the network by searching for synchronization signals, broadcast signals, etc. sent by the network device 70, so as to communicate with the network.
  • the terminal 10, the terminal 20, the terminal 30, the terminal 40, and the terminal 60 in FIG. 1 can perform uplink and downlink transmissions with the network device 70.
  • the network device 70 may send downlink signals to the terminal 10, the terminal 20, the terminal 30, the terminal 40, and the terminal 60, and may also receive the uplink signal sent by the terminal 10, the terminal 20, the terminal 30, the terminal 40, and the terminal 60.
  • the terminal 40, the terminal 50, and the terminal 60 can also be regarded as a communication system, and the terminal 60 can send downlink signals to the terminal 40 and the terminal 50, and can also receive uplink signals sent by the terminal 40 and the terminal 50.
  • embodiments of the present application may be applied to a communication system including one or more network devices, and may also be applied to a communication system including one or more terminals, which is not limited in this application.
  • a network device can send data or control signaling to one or more terminals. Multiple network devices can also send data or control signaling to one or more terminals at the same time.
  • Fig. 2 shows a schematic flowchart of a method for downlink beam management in a traditional solution.
  • the network device sends measurement configuration information to the terminal.
  • the measurement configuration information can be carried in RRC signaling.
  • the measurement configuration information mainly includes resource configuration information and report configuration information.
  • Resource configuration information is related information used to measure resources, and can be configured through a three-level structure (ie, resource configuration (resourceConfig/resourceSetting), resource set (resourceSet), and resource (resource)) in the protocol.
  • the network device may configure one or more resource configurations for the terminal, each resource configuration includes one or more resource sets, and each resource set may include one or more resources.
  • Each resource configuration, each resource set, or each resource includes an index that identifies itself.
  • each resource configuration, each resource set, or each resource may also include some other parameters, for example, the period of the resource, the signal type corresponding to the resource, and so on.
  • the reported resource configuration information is used to report measurement results related information, and is configured in the protocol through a report configuration (for example, the report configuration is ReportConfig).
  • the network device can configure one or more reporting configurations for the terminal, and each reporting configuration includes reporting related information such as reporting indicators, reporting time, reporting period, and reporting format.
  • the report configuration also includes the resource configuration index, which is used to indicate the measurement configuration through which the reported result is obtained.
  • the network device sends a downlink signal on the resource particle corresponding to the resource configured by the resource configuration information in the measurement configuration information.
  • the terminal measures the downlink signal to determine the quality of each resource (that is, the quality of the beam corresponding to the resource).
  • the terminal sends a beam measurement report to the network device.
  • the beam measurement report includes the index of one or more resources, the quality of the resources, and so on.
  • Table 1 shows the report format adopted for beam measurement in the R15 protocol. Among them, the CSI-RS index (CSI-RS index, CRI) field and the SSB resource index (SSB resource index, SSBRI) field are used to indicate the resource index to be reported. You can report only CRI or SSBRI, or both. The sum is the length of the CRI field and the SSBRI field.
  • RSRP is the quality of resources.
  • the reporting of reference signal receiving power adopts the differential reporting criterion, that is, the RSRP of the best resource (RSRP field in Table 1) is reported in 7-bit quantization, while other RSRP (Differential (in Table 1)
  • the differential)RSRP) field is reported in 4-bit quantization.
  • the above reported information may be carried in a physical uplink control channel (physical uplink control channel) or a physical uplink shared channel (physical uplink shared channel).
  • Fig. 3 is a schematic flowchart of a method for uplink beam management in a traditional solution.
  • the network device sends uplink signal resource configuration information to the terminal.
  • the uplink signal may be SRS.
  • the network device may configure one or more SRS resource sets for uplink beam management for the terminal, and each SRS resource set includes one or more SRS resources.
  • Each SRS resource is associated with a beam, and each SRS resource corresponds to one SRS signal.
  • the uplink beam measurement can be performed by measuring the SRS signal corresponding to these SRS resources.
  • the terminal uses an uplink transmission beam associated with the SRS resource to send a corresponding SRS signal.
  • the network device measures the quality of each SRS resource according to each SRS signal sent by the terminal.
  • Downlink beam management is used by network equipment to select the sending beam for downlink data transmission.
  • the network device configures multiple downlink signal resources for the terminal through measurement configuration information, and each downlink signal resource corresponds to one beam.
  • Each downlink signal resource corresponds to a downlink signal, and the measurement of the downlink signal resource can be realized by measuring the downlink signal.
  • the network device sends the corresponding downlink signal through its corresponding beam, and the terminal measures the downlink signal sent by each beam to determine the quality of each beam.
  • the quality of the beam can be expressed by RSRP.
  • the terminal By measuring the RSRP of each beam, the terminal selects one or more downlink signal resources with the largest RSRP, and reports the index of the selected downlink signal resource and the corresponding RSRP to the network device. The network device then selects one or more downlink signal resources (beams) from them for downlink data transmission.
  • the beam is generated by an antenna panel, that is, a beam signal is formed by processing all antennas on an antenna panel (for example, phase weighting processing).
  • Each antenna panel can generate multiple beams with different directions, but only one can be generated at a time.
  • the terminal can be equipped with multiple antenna panels, and the terminal can select the antenna panel with better quality for data transmission.
  • the terminal can close some antenna panels. When some antenna panels are closed, network equipment will not be able to schedule these antenna panels for uplink data transmission. If the network device does not know which antenna panels are open and which are closed, wrong scheduling will occur, for example, scheduling an antenna panel that has been closed for uplink data transmission, resulting in low data transmission efficiency.
  • the antenna panel may be referred to as a panel for short.
  • the antenna panel opening can be described as activated, and the antenna panel closing can be described as inactive.
  • the index of the antenna panel may refer to an index value specifically used to identify an antenna panel. Without special instructions, the antenna panel in the embodiment of the present application refers to the antenna panel of the terminal.
  • FIG. 5 shows a schematic flowchart of a method for determining the state of an antenna panel according to an embodiment of the present application.
  • the execution body of the embodiments of the present application may be a terminal or a chip in the terminal.
  • the execution subject on the opposite side can be a network device or a chip in the network device.
  • the following embodiments take “terminal” and “network device” as examples for description, but the application is not limited thereto.
  • the terminal receives configuration information, where the configuration information includes at least one downlink signal resource set.
  • the network device sends the configuration information.
  • the terminal receives the configuration information, and measures the quality of resources in each downlink signal resource set in the at least one downlink signal resource set according to the configuration information.
  • Each downlink signal resource set includes at least one resource.
  • each downlink signal resource corresponds to a downlink signal
  • the terminal can determine the quality of the downlink signal by receiving the downlink signal corresponding to each downlink signal resource, and determine the quality of the downlink signal as the corresponding downlink signal resource. quality.
  • the at least one downlink signal resource set may be one downlink signal resource set, or may be multiple downlink signal resource sets.
  • At least one resource can be one resource or multiple resources.
  • configuration information in the embodiment of the present application may be the "measurement configuration information" in the embodiment shown in FIG. 2, or may also be another name, and the embodiment of the present application does not limit the name of the configuration information.
  • the resources in the downlink signal resource set may be non-zero-power channel status information reference signal (none zero-power channel status information reference signal, NZP CSI-RS) resource, synchronization signal-broadcast channel measurement resource block (synchronization signal) and PBCH block, SSB), channel state information interference measurement (channel status information-interference measurement, CSI-IM) resources, and zero-power channel status information reference signal (zero-power channel status information reference signal, ZP CSI-RS) resources.
  • NZP CSI-RS non-zero-power channel status information reference signal
  • CSI-IM channel state information interference measurement
  • ZP CSI-RS zero-power channel status information reference signal
  • the terminal sends first feedback information when the first antenna panel corresponding to the first downlink signal resource set in the at least one downlink signal resource set is turned on, where the first feedback information is used to indicate the first downlink signal resource set.
  • the quality of the resources in the signal resource set where the quality of the resources in the first downlink signal resource set is obtained by measuring the downlink signal by the first antenna panel.
  • the network device receives the first feedback information.
  • the at least one downlink signal set has a corresponding relationship with at least one antenna panel.
  • the terminal wants to measure the quality of resources in a certain downlink signal resource set (for example, the first downlink signal resource set), the first downlink signal needs to be used.
  • the antenna panel (for example, the first antenna panel) corresponding to the line signal resource set is measured.
  • the terminal must determine whether the state of the first antenna panel is on or off. When the first antenna panel is turned on, the terminal can use the first antenna panel to measure the quality of any resource in the first downlink signal resource set; when the first antenna panel is turned off, the first antenna panel is not measured.
  • the first feedback information may indicate the quality of some resources in the first downlink signal resource set, or may indicate the quality of all resources in the first downlink signal resource set.
  • any one resource in the first downlink signal resource set may correspond to one downlink signal, and different resources in the first downlink signal resource set may correspond to downlink signals that may be the same or different.
  • the first feedback information used to indicate the quality of resources of different downlink signal resource sets may be sent to the network device at the same time, or may be sent to the network device separately, which is not limited in this application.
  • the first feedback information may carry an index of a resource in the downlink signal resource set, so that the network device can learn the quality of the resource in the first feedback information according to the first feedback information. The network device then determines the status of the corresponding antenna panel according to which downlink signal resource set the resource belongs to.
  • the quality of the resource may be represented by at least one of the following: resource index (CSI-RS resource index, CRI), SSB index (SSB index), RSRP, reference signal receiving quality (reference signal receiving quality, RSRQ), signal to interference plus noise ratio (SINR), channel quality indicator (CQI), channel rank indicator (RI), precoding matrix indicator (precoding matrix)
  • resource index CSI-RS resource index, CRI
  • SSB index SSB index
  • RSRP reference signal receiving quality
  • RSRQ reference signal receiving quality
  • SINR signal to interference plus noise ratio
  • CQI channel quality indicator
  • RI channel rank indicator
  • precoding matrix indicator precoding matrix
  • the first antenna panel corresponding to the first downlink signal resource set may be obtained from the first mapping relationship. That is, at least one downlink signal resource set and at least one antenna panel are stored in the first mapping relationship.
  • the first downlink signal resource set is any one of the at least one downlink signal resource set in the first mapping relationship
  • the first antenna panel is any one of the at least one antenna panel in the first mapping relationship An antenna panel.
  • the first mapping relationship may be embodied in the form of a table.
  • the antenna panel can be identified by index.
  • the downlink signal resource set may be a resource set or a resource setting.
  • the downlink signal resource set is a resource set
  • multiple resource sets may be configured in one resource setting, or part or all of them may be configured in different resource settings.
  • the terminal may determine the first antenna panel corresponding to the first downlink signal resource set according to the first mapping relationship and the first downlink signal resource set, where the first mapping relationship is at least one downlink signal resource set and at least one The mapping relationship of the antenna panel.
  • the terminal may store the mapping relationship between at least one downlink signal resource set and at least one antenna panel, so that after receiving the configuration information, the terminal can determine each of the at least one downlink signal resource set included in the configuration information according to the mapping relationship.
  • the antenna panel corresponding to the set of downlink signal resources is determined to send the first feedback information or the second feedback information according to whether the antenna panel is turned on.
  • one downlink signal resource set may correspond to one or more antenna panels, or one or more downlink signal resource sets correspond to one antenna panel, which is not limited in this application.
  • the first mapping relationship may be stipulated in the protocol, or pre-arranged by the network device and the terminal, or determined by the network device and notified to the terminal, which is not limited in this application.
  • the network device may send indication information, where the indication information is used to indicate the first mapping relationship.
  • the instruction information can be sent separately, or can be carried in configuration information, or carried in radio resource control (radio resource control, RRC) signaling, or medium access control-control element (medium access control-control element, MAC CE), or downlink control information (DCI), this application is not limited.
  • RRC radio resource control
  • MAC CE medium access control-control element
  • DCI downlink control information
  • the second mapping relationship is a mapping relationship between at least one reported configuration and at least one downlink signal resource set
  • the third mapping relationship is a mapping relationship between at least one reported configuration and at least one antenna panel.
  • the first downlink signal resource set may be any one of the at least one downlink signal resource set
  • the first reporting configuration corresponding to the first downlink signal resource set may be any of the at least one reporting configuration
  • the first antenna panel may be an antenna panel corresponding to the first reporting configuration of the at least one antenna panel.
  • the second mapping relationship or the third mapping relationship may be stipulated in the protocol, or pre-appointed by the network device and the terminal, or determined by the network device and notified to the terminal. This application does not deal with this limited.
  • the terminal may determine the first antenna panel corresponding to the first downlink signal resource set according to the second mapping relationship, the third mapping relationship and the first downlink signal resource set, and the second mapping relationship is at least one A mapping relationship between a reported configuration and at least one downlink signal resource set, and the third mapping relationship is a mapping relationship between at least one reported configuration and at least one antenna panel.
  • the terminal may determine the first reporting configuration corresponding to the first downlink signal resource set according to the second mapping relationship and the first downlink signal resource set.
  • the terminal may also determine the first antenna panel corresponding to the first reporting configuration according to the third mapping relationship and the first reporting configuration. In this way, the terminal can determine that the first downlink signal resource set corresponds to the first antenna panel.
  • one downlink signal resource set may correspond to one or more reporting configurations, or one or more downlink signal resource sets correspond to one reporting configuration.
  • one reporting configuration corresponds to one or more antenna panels, or one or more reporting configurations corresponds to one antenna panel, which is not limited in this application.
  • the configuration information may include the at least one reported configuration. That is, at least one report configuration in the configuration information has a mapping relationship with at least one downlink signal resource set in the configuration information.
  • the terminal sends second feedback information, where the second feedback information is used to indicate the first antenna panel shut down.
  • the network device receives the second feedback information.
  • the second feedback information may carry the index of the resource in the downlink signal resource set, so that the network device can learn the quality of the resource in the first feedback information according to the second feedback information.
  • the network device determines the status of the corresponding antenna panel according to which downlink signal resource set the resource belongs to.
  • step 501 the terminal may perform step 502 or step 503, which is not limited in this application.
  • the second feedback information may include at least one field, and when the at least one field is a preset value, it indicates that the first antenna panel is closed.
  • both the first feedback information and the second feedback information may be represented by at least one field, and distinguished by the value of the at least one field.
  • the value of the at least one field is a special value (for example, referred to as “preset value”), it means that the first antenna panel is closed.
  • the at least one field is 7 bits, that is, the value of the at least one field can be 0-127, and any special value can be preset.
  • the value of the at least one field is The special value, for example, all 0s, or all 1s.
  • the network device receives the second feedback information and parses that the value of at least one field of the second feedback information is the special value, the network device determines that the first antenna panel is in the closed state.
  • the first feedback information and the second feedback information are also represented by different fields.
  • the network device determines whether the first antenna panel is turned on or off according to the first feedback information or the second feedback information.
  • the terminal if the terminal wants to measure the quality of the resources in the first downlink signal resource set, it needs to use the first antenna panel corresponding to the first downlink signal resource set for measurement. Before the measurement, the terminal must determine whether the state of the first antenna panel is on or off. When the first antenna panel is turned on, the terminal can use the first antenna panel to measure the quality of resources in the first downlink signal resource set, and send first feedback information, which may indicate the first The quality of the resources in the downlink signal resource set. When the first antenna panel is closed, the quality of the resources in the first downlink signal resource set is not measured, and second feedback information is sent, and the second feedback information is used to indicate that the first antenna panel is closed. In this way, the network device of the embodiment of the present application can learn the status of the antenna panel, and then can perform reasonable scheduling of the antenna panel, thereby improving data transmission efficiency.
  • Uplink beam management is used for the terminal to select the sending beam for uplink data transmission.
  • the network device configures multiple uplink signal resources for the terminal through measurement configuration information, and each uplink signal resource corresponds to one beam.
  • Each uplink signal resource includes an uplink signal, and by measuring the uplink signal, the measurement of the uplink signal resource can be realized.
  • the terminal sends the corresponding uplink signal through its corresponding beam, and the terminal measures the uplink signal sent by each beam to determine the quality of each beam/uplink signal resource.
  • the network device indicates an index of an uplink signal resource through downlink control information, and the terminal uses the beam corresponding to the uplink signal resource to send uplink data.
  • the terminal can be equipped with multiple antenna panels, and the terminal can select the antenna panel with better quality for data transmission.
  • the terminal can close some antenna panels. When some antenna panels are closed, network equipment will not be able to schedule these antenna panels for uplink data transmission. If the network device does not know which antenna panels are open and which are closed, wrong scheduling will occur, for example, scheduling an antenna panel that has been closed for uplink data transmission, resulting in low data transmission efficiency.
  • FIG. 6 shows a schematic flowchart of a method for determining the state of an antenna panel according to another embodiment of the present application.
  • the execution body of the embodiments of the present application may be a terminal or a chip in the terminal.
  • the execution subject on the opposite side can be a network device or a chip in the network device.
  • the following embodiments take “terminal” and “network device” as examples for description, but the application is not limited thereto.
  • the terminal receives first configuration information, where the first configuration information includes at least one uplink signal resource set.
  • the network device sends the first configuration information.
  • the uplink signal resource set may include one or more resources, and the terminal may perform uplink signal transmission on the resource, so that the network device can determine the quality of the uplink signal resource according to the uplink signal.
  • first configuration information may be the same as the configuration information in the embodiment shown in FIG. 5.
  • the terminal transmits a first reference signal when the first antenna panel corresponding to the first uplink signal resource set in the at least one uplink signal resource set is turned on, and the first reference signal is in the first uplink signal resource set Reference signal corresponding to the resource.
  • the network device detects the first reference signal and receives the first reference signal.
  • the uplink signal resource set and the antenna panel have a corresponding relationship, and the resources in the uplink signal resource set have a corresponding relationship with the reference signal.
  • the terminal determines whether the first antenna panel corresponding to the first uplink signal resource set is turned on, and when turned on, uses the first antenna panel to transmit the first reference signal.
  • the first uplink signal resource set may be any one of the at least one uplink signal resource set. That is, the terminal respectively uses the antenna panel corresponding to each uplink signal resource set to transmit the reference signal corresponding to each uplink signal resource set.
  • the network device detects the reference signal corresponding to the resource in each uplink signal resource set.
  • one resource in an uplink signal resource set can correspond to a reference signal, and different resources in an uplink signal resource set can correspond to different reference signals or the same reference signal. This application does not deal with this limited.
  • the "detect" reference signal of the network device can be understood as the “monitor” reference signal of the network device.
  • the first reference signal is used to measure the quality of the first resource in the first uplink signal resource set.
  • the terminal may multiplex the reference signal (for example, the first reference signal) used to measure the quality of the resource in the traditional solution.
  • the terminal does not need to specifically send the first reference signal so that the network device determines the switch of the antenna panel according to the first reference signal. Accordingly, the network device avoids specifically monitoring the first reference signal, thereby saving signaling and resource overhead.
  • the at least one uplink signal resource set and the at least one antenna panel may have a mapping relationship
  • the first antenna panel is an antenna panel corresponding to the first uplink signal resource set in the at least one antenna panel.
  • the terminal may determine the antenna panel corresponding to each uplink signal resource set according to the mapping relationship.
  • one uplink signal resource set may correspond to one or more antenna panels, or one or more uplink signal resource sets correspond to one antenna panel, which is not limited in this application.
  • mapping relationship may be stipulated by the protocol, or agreed in advance by the network device and the terminal, or determined by the network device and notified to the terminal, which is not limited in this application.
  • the terminal does not send the first reference signal when the first antenna panel corresponding to the first uplink signal resource set in the at least one uplink signal resource set is closed, and the first reference signal is the first uplink signal resource set Reference signal corresponding to the resource in.
  • the network device detects the first reference signal.
  • the terminal does not send the reference signal corresponding to the resource in the first uplink signal resource set.
  • the network device determines whether the first antenna panel corresponding to the first uplink signal resource set is turned on or off according to the receiving situation of the first reference signal.
  • the network device may separately determine the status of the antenna panel corresponding to each uplink signal resource set according to the receiving situation of the reference signal corresponding to the resource in the uplink signal resource set.
  • the network device of the embodiment of the present application can learn the status of the antenna panel, and then can perform reasonable scheduling of the antenna panel, which improves the efficiency of data transmission.
  • the network device determines that the state of the first antenna panel is closed.
  • the network device detects the first reference signal, it may be determined that the first antenna panel is closed when the first reference signal is not received once. It may also be determined that the first antenna panel is closed when the first reference signal is not received for multiple times.
  • the network device may determine that the state of the first antenna panel is on.
  • the network device may further determine the quality of the first reference signal. If the quality of the first reference signal is greater than the preset quality threshold, it is determined that the first antenna panel is turned on; if the quality of the first reference signal is less than or equal to the preset quality threshold, it is determined that the first antenna panel is turned off.
  • the network device may also determine that the first antenna panel is turned off when it is detected that the quality of the first reference signal is less than or equal to the preset quality threshold for multiple times.
  • the network device may also send second configuration information to the terminal, where the second configuration information is used to adjust the configuration parameters of the first antenna panel.
  • the terminal receives the second configuration information, and adjusts the configuration parameters of the first antenna panel according to the second configuration information.
  • the network device may send second configuration information to adjust the first antenna panel, for example, adjust the first antenna panel to the open state, etc., so that the network device can schedule The first antenna panel performs data transmission, thereby improving data transmission efficiency.
  • the second configuration information may be sent separately, or may be carried in any one of RRC signaling, MAC CE signaling, or DCI signaling, which is not limited in this application.
  • the second configuration information includes reconfiguration or activation configuration parameters.
  • the second configuration information may also include deactivated configuration parameters or released configuration parameters.
  • deactivated configuration parameters or released configuration parameters.
  • the configuration parameters include at least one of measurement reporting related configuration, measurement resource related configuration, TCI state, spatial relation, uplink scheduling request (SR) resource, and physical uplink control channel resource.
  • SR uplink scheduling request
  • the measurement report-related configuration can be reportConfig
  • the measurement resource-related configuration can be resource, resource set, resource setting, SRS resource, SRS resource Set, timing advance (time advance, TA), time advance group (time advance group). , TAG), physical random access channel (PRACH) related resources, configured uplink grant (configured UL grant), semi-static physical uplink shared channel (PUSCH) resources At least one.
  • the configuration parameters may also include hybrid automatic repeat request (HARQ) process and power control related parameters.
  • HARQ hybrid automatic repeat request
  • the methods and operations implemented by the terminal can also be implemented by components (such as chips or circuits) that can be used in the terminal
  • the methods and operations implemented by the access network device can also be implemented by It can be implemented by components (such as chips or circuits) of access network equipment.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the transmitter device or the receiver device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following is an example of using the corresponding functional modules to divide each functional module.
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 7 shows a schematic block diagram of an apparatus 700 for determining the state of an antenna panel according to an embodiment of the present application.
  • the apparatus 700 may correspond to the terminal in the embodiment shown in FIG. 3, and may have any function of the terminal in the method.
  • the device 700 includes a transceiver module 710 and a processing module 720.
  • the transceiver module may include a sending module and/or a receiving module.
  • the transceiver module 710 is configured to receive configuration information, where the configuration information includes at least one downlink signal resource set;
  • the processing module 720 is configured to control the transceiver module to send first feedback information when the first antenna panel corresponding to the first downlink signal resource set in the at least one downlink signal resource set is turned on. For indicating the quality of the resources in the first downlink signal resource set, where the quality of the resources in the first downlink signal resource set is obtained by measuring the downlink signal by the first antenna panel; or
  • the processing module 720 is configured to control the transceiver module to send second feedback information when the first antenna panel corresponding to the first downlink signal resource set in the at least one downlink signal resource set is closed. Used to indicate that the first antenna panel is closed.
  • the processing module 720 is further configured to determine the first downlink signal resource according to the first mapping relationship and the first downlink signal resource set before sending the first feedback information or the second feedback information
  • the first antenna panel corresponding to the set, the first mapping relationship is a mapping relationship between the at least one downlink signal resource set and the at least one antenna panel.
  • the processing module 720 is further configured to determine the first downlink signal resource set according to the second mapping relationship, the third mapping relationship, and the first downlink signal resource set before sending the first feedback information or the second feedback information.
  • the first antenna panel corresponding to a downlink signal resource set, the second mapping relationship is a mapping relationship between at least one reported configuration and at least one downlink signal resource set, and the third mapping relationship is a relationship between at least one reported configuration and at least one antenna panel. Mapping relations.
  • the second feedback information includes at least one field, and when the value of the at least one field is a preset value, it indicates that the first antenna panel is closed.
  • FIG. 8 shows an apparatus 800 for beam failure recovery provided by an embodiment of the present application.
  • the apparatus 800 may be the terminal described in FIG. 3.
  • the device can adopt the hardware architecture shown in Figure 8.
  • the apparatus may include a processor 810 and a transceiver 830.
  • the transceiver may include a transmitter and/or a receiver.
  • the device may further include a memory 840, and the processor 810, the transceiver 830, and the memory 840 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 720 in FIG. 7 may be implemented by the processor 810, and the related functions implemented by the transceiver module 710 may be implemented by the processor 810 controlling the transceiver 830.
  • the processor 810 may be a CPU, a microprocessor, an ASIC, a dedicated processor, or one or more integrated circuits for executing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control beam failure recovery devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data .
  • the processor 810 may include one or more processors, for example, including one or more CPUs.
  • the processor may be a single-core CPU or a multi-core CPU.
  • the transceiver 830 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 840 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable memory (erasable read only memory, EPROM), and read-only memory.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable read only memory
  • read-only memory EPROM
  • a compact disc read-only memory, CD-ROM
  • the memory 840 is used to store related instructions and data.
  • the memory 840 is used to store program codes and data of the terminal, and may be a separate device or integrated in the processor 810.
  • the processor 810 is configured to control the transceiver to perform information transmission with the terminal.
  • the processor 810 is configured to control the transceiver to perform information transmission with the terminal.
  • the apparatus 800 may further include an output device and an input device.
  • the output device communicates with the processor 810 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector, etc.
  • the input device communicates with the processor 810 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 8 only shows the simplified design of the beam failure recovery device.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminals that can implement this application are within the protection scope of this application. within.
  • the device 800 may be a chip, for example, a communication chip that can be used in a terminal to implement related functions of the processor 810 in the terminal.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a terminal or a circuit.
  • the device can be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • FIG. 9 shows a schematic block diagram of an apparatus 900 for determining an antenna panel state according to an embodiment of the present application.
  • the apparatus 900 may correspond to the network device in the embodiment shown in FIG. 3, and may have any function of the network device in the method.
  • the device 900 includes a transceiver module 910 and a processing module 920.
  • the transceiver module 910 is configured to send configuration information, where the configuration information includes at least one downlink signal resource set;
  • the transceiver module 910 is further configured to receive first feedback information or second feedback information, where the first feedback information is used to indicate the quality of resources in a first downlink signal resource set in the at least one downlink signal resource set, where , The quality of the resources in the first downlink signal resource set is obtained by the terminal by measuring the downlink signal according to the first antenna panel corresponding to the first downlink signal resource set in the on state, and the second feedback information is used to indicate The first antenna panel corresponding to the first downlink signal resource set in the at least one downlink signal resource set is turned off;
  • the processing module 920 is configured to determine whether the first antenna panel is turned on or off according to the first feedback information or the second feedback information.
  • the at least one downlink signal resource set and the at least one antenna panel have a first mapping relationship
  • the first antenna panel is an antenna panel corresponding to the first downlink signal resource set in the at least one antenna panel.
  • the at least one reported configuration has a second mapping relationship with the at least one downlink signal resource set
  • the at least one reported configuration has a third mapping relationship with at least one antenna panel
  • the first antenna panel is the at least one antenna panel
  • the antenna panel corresponding to the first reporting configuration in the at least one reporting configuration is the reporting configuration corresponding to the first downlink signal resource set in the at least one reporting configuration.
  • the second feedback information includes at least one field, and when the value of the at least one field is a preset value, it indicates that the first antenna panel is closed.
  • FIG. 10 shows an apparatus 1000 for determining the state of an antenna panel provided by an embodiment of the present application.
  • the apparatus 1000 may be the network device described in FIG. 9.
  • the device can adopt the hardware architecture shown in FIG. 10.
  • the device may include a processor 1010 and a transceiver 1020.
  • the device may also include a memory 1030.
  • the processor 1010, the transceiver 1020, and the memory 1030 communicate with each other through an internal connection path.
  • the relevant functions implemented by the processing module 920 in FIG. 9 may be implemented by the processor 1010, and the relevant functions implemented by the transceiver module 910 may be implemented by the processor 1010 controlling the transceiver 1020.
  • the processor 1010 may be a CPU, a microprocessor, an ASIC, a dedicated processor, or one or more integrated circuits for executing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices that determine the status of the antenna panel (such as base stations, terminals, or chips), execute software programs, and process software programs. data.
  • the processor 1010 may include one or more processors, for example, one or more CPUs.
  • the processor may be a single-core CPU or a multi-core CPU.
  • the transceiver 1020 is used to send data and/or signals, and receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1030 includes but is not limited to RAM, ROM, EPROM, and CD-ROM.
  • the memory 1030 is used to store related instructions and data.
  • the memory 1030 is used to store program codes and data of the network device, and may be a separate device or integrated in the processor 1010.
  • the processor 1010 is used to control the transceiver to perform information transmission with the network device.
  • the processor 1010 is used to control the transceiver to perform information transmission with the network device.
  • the apparatus 1000 may further include an output device and an input device.
  • the output device communicates with the processor 1010 and can display information in a variety of ways.
  • the output device may be an LCD, an LED display device, a CRT display device, or a projector.
  • the input device communicates with the processor 901 and can receive user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 10 only shows a simplified design of the device for determining the state of the antenna panel.
  • the device can also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all network devices that can implement this application are protected by this application. Within range.
  • the device 1000 may be a chip, for example, a communication chip that can be used in a network device to implement related functions of the processor 1010 in the network device.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiments of the present application also provide a device, which may be a network device or a circuit.
  • the apparatus can be used to perform the actions performed by the network device in the foregoing method embodiments.
  • FIG. 11 shows a schematic block diagram of an apparatus 1100 for determining the state of an antenna panel according to an embodiment of the present application.
  • the device 1100 may correspond to the terminal in the embodiment shown in FIG. 6, and may have any function of the terminal in the method.
  • the device 1100 includes a transceiver module 1110 and a processing module 1120.
  • the transceiver module may include a sending module and/or a receiving module.
  • the transceiver module 1110 is configured to receive first configuration information, where the first configuration information includes at least one uplink signal resource set;
  • the processing module 1120 is configured to control the transceiver module to use the first antenna panel to send the first reference signal when the first antenna panel corresponding to the first uplink signal resource set in the at least one uplink signal resource set is turned on,
  • the first reference signal is a reference signal corresponding to a resource in the first uplink signal resource set;
  • the processing module 1120 is configured to control the transceiver module not to send the first reference signal when the first antenna panel corresponding to the first uplink signal resource set in the at least one uplink signal resource set is closed. Is a reference signal corresponding to a resource in the first uplink signal resource set.
  • the at least one uplink signal resource set and the at least one antenna panel have a first mapping relationship
  • the first antenna panel is an antenna panel corresponding to the first uplink signal resource set in the at least one antenna panel.
  • the transceiver module 1110 is further configured to receive second configuration information; the processing module is further configured to adjust the configuration parameters of the first antenna panel according to the second configuration information.
  • the second configuration information includes reconfiguration configuration parameters, the configuration parameters including measurement report related configuration, measurement resource related configuration, transmission configuration number TCI status, spatial relationship, uplink scheduling request SR resource, physical uplink control channel resource At least one of.
  • FIG. 12 shows an apparatus 1200 for beam failure recovery provided by an embodiment of the present application.
  • the apparatus 1200 may be the terminal described in FIG. 3.
  • the device can adopt the hardware architecture shown in FIG. 12.
  • the device may include a processor 1210 and a transceiver 1230.
  • the transceiver may include a transmitter and/or a receiver.
  • the device may further include a memory 1240, and the processor 1210, the transceiver 1230, and the memory 1240 communicate with each other through an internal connection path.
  • the related functions implemented by the processing module 1120 in FIG. 11 may be implemented by the processor 1210, and the related functions implemented by the transceiver module 1110 may be implemented by the processor 1210 controlling the transceiver 1230.
  • the processor 1210 may be a CPU, a microprocessor, an ASIC, a dedicated processor, or one or more integrated circuits for executing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control beam failure recovery devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data .
  • the processor 1210 may include one or more processors, for example, one or more CPUs.
  • the processor may be a single-core CPU or a multi-core CPU.
  • the transceiver 1230 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1240 includes but is not limited to RAM, ROM, EPROM, and CD-ROM.
  • the memory 1240 is used to store related instructions and data.
  • the memory 1240 is used to store program codes and data of the terminal, and may be a separate device or integrated in the processor 1210.
  • the processor 1210 is configured to control the transceiver and the terminal to perform information transmission.
  • the processor 1210 is configured to control the transceiver and the terminal to perform information transmission.
  • the apparatus 1200 may further include an output device and an input device.
  • the output device communicates with the processor 1210 and can display information in a variety of ways.
  • the output device may be an LCD, LED display device, CRT display device, or projector.
  • the input device communicates with the processor 601 and can receive user input in various ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 12 only shows the simplified design of the beam failure recovery device.
  • the device may also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all terminals that can implement this application are within the protection scope of this application. within.
  • the device 1200 may be a chip, for example, a communication chip that can be used in a terminal to implement related functions of the processor 1210 in the terminal.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiment of the present application also provides a device, which may be a terminal or a circuit.
  • the device can be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • FIG. 13 shows a schematic block diagram of an apparatus 1300 for determining the state of an antenna panel according to an embodiment of the present application.
  • the apparatus 1300 may correspond to the network device in the embodiment shown in FIG. 6, and may have any function of the network device in the method.
  • the device 1300 includes a transceiver module 1310 and a processing module 1320.
  • the transceiver module may include a sending module and/or a receiving module.
  • the transceiver module 1310 is configured to send first configuration information, where the first configuration information includes at least one uplink signal resource set;
  • the processing module 1320 is configured to detect a first reference signal corresponding to a first resource in a first uplink signal resource set in the at least one uplink signal resource set;
  • the processing module 1320 is further configured to determine whether the first antenna panel corresponding to the first uplink signal resource set is turned on or off according to the receiving situation of the first reference signal.
  • the at least one uplink signal resource set and the at least one antenna panel have a first mapping relationship
  • the first antenna panel is an antenna panel corresponding to the first uplink signal resource set in the at least one antenna panel.
  • the processing module 1320 is specifically configured to: determine that the first antenna panel is turned off when the first reference signal is not received; or when the quality of the received first reference signal is less than or equal to a preset In the case of the quality threshold, it is determined that the first antenna panel is turned off; or in the case that the quality of the received first reference signal is greater than the preset quality threshold, it is determined that the first antenna panel is turned on.
  • the transceiver module 1310 is further configured to send second configuration information to the terminal when the first antenna panel is closed, and the second configuration information is used to adjust the configuration parameters of the first antenna panel.
  • the second configuration information includes reconfiguration configuration parameters, the configuration parameters including measurement report related configuration, measurement resource related configuration, transmission configuration number TCI status, spatial relationship, uplink scheduling request SR resource, physical uplink control channel resource At least one of.
  • FIG. 14 shows an apparatus 1400 for beam failure recovery provided by an embodiment of the present application.
  • the apparatus 1400 may be the network device described in FIG. 6.
  • the device can adopt the hardware architecture shown in FIG. 14.
  • the device may include a processor 1410 and a transceiver 1430.
  • the transceiver may include a transmitter and/or a receiver.
  • the device may further include a memory 1440, and the processor 1410, the transceiver 1430, and the memory 1440 communicate with each other through an internal connection path.
  • the relevant functions implemented by the processing module 1320 in FIG. 13 may be implemented by the processor 1410, and the relevant functions implemented by the transceiver module 1310 may be implemented by the processor 1410 controlling the transceiver 1430.
  • the processor 1410 may be a CPU, a microprocessor, an ASIC, a dedicated processor, or one or more integrated circuits for executing the technical solutions of the embodiments of the present application.
  • a processor may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control beam failure recovery devices (such as base stations, terminals, or chips, etc.), execute software programs, and process software program data .
  • the processor 1410 may include one or more processors, such as one or more CPUs.
  • the processor is a CPU
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the transceiver 1430 is used to send and receive data and/or signals, and to receive data and/or signals.
  • the transceiver may include a transmitter and a receiver, the transmitter is used to send data and/or signals, and the receiver is used to receive data and/or signals.
  • the memory 1440 includes but is not limited to RAM, ROM, EPROM, and CD-ROM.
  • the memory 1440 is used to store related instructions and data.
  • the memory 1440 is used to store program codes and data of the network device, and may be a separate device or integrated in the processor 1410.
  • the processor 1410 is configured to control the transceiver to perform information transmission with the network device.
  • the processor 1410 is configured to control the transceiver to perform information transmission with the network device.
  • the apparatus 1400 may further include an output device and an input device.
  • the output device communicates with the processor 1410 and can display information in a variety of ways.
  • the output device may be an LCD, an LED display device, a CRT display device, or a projector.
  • the input device communicates with the processor 601 and can receive user input in various ways.
  • the input device may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • FIG. 14 only shows the simplified design of the beam failure recovery device.
  • the device can also contain other necessary components, including but not limited to any number of transceivers, processors, controllers, memories, etc., and all network devices that can implement this application are protected by this application. Within range.
  • the device 1400 may be a chip, for example, a communication chip that can be used in a network device to implement related functions of the processor 1410 in the network device.
  • the chip can be a field programmable gate array, a dedicated integrated chip, a system chip, a central processing unit, a network processor, a digital signal processing circuit, a microcontroller, and a programmable controller or other integrated chips for realizing related functions.
  • the chip may optionally include one or more memories for storing program codes. When the codes are executed, the processor realizes corresponding functions.
  • the embodiments of the present application also provide a device, which may be a network device or a circuit.
  • the apparatus can be used to perform the actions performed by the network device in the foregoing method embodiments.
  • FIG. 15 shows a simplified structural diagram of a terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, control the terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 15. In actual end products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal, and the processor with the processing function can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 1510 and a processing unit 1520.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1510 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1510 as the sending unit, that is, the transceiver unit 1510 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, receiver, or receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1510 is configured to perform sending and receiving operations on the terminal side in the foregoing method embodiment
  • processing unit 1520 is configured to perform other operations on the terminal in addition to the transceiving operation in the foregoing method embodiment.
  • the processing unit 1520 is configured to execute processing step 303 on the terminal side.
  • the transceiver unit 1510 is configured to perform the transceiver operations in step 301 and/or step 304 in FIG. 3, and/or the transceiver unit 1510 is also configured to perform other transceiver steps on the terminal side in the embodiment of the present application.
  • the processing unit 1520 is configured to execute processing steps 601 and/or 602 on the terminal side.
  • the transceiver unit 1510 is configured to perform the transceiver operation in step 603 in FIG. 6, and/or the transceiver unit 1510 is also configured to perform other transceiver steps on the terminal side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the device shown in FIG. 16 can also be referred to.
  • the device can perform functions similar to the processor 1510 in FIG. 15.
  • the device includes a processor 1601, a data sending processor 1603, and a data receiving processor 1605.
  • the processing module in the foregoing embodiment may be the processor 1601 in FIG. 16 and completes corresponding functions.
  • the transceiving module 710 or the transceiving module 1110 in the foregoing embodiment may be the receiving data processor 1605 or the sending data processor 1603 in FIG. 16.
  • Fig. 16 shows a channel encoder and a channel decoder, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are merely illustrative.
  • Fig. 17 shows another terminal form of this embodiment.
  • the processing device 1700 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as the modulation subsystem therein.
  • the modulation subsystem may include a processor 1703 and an interface 1704.
  • the processor 1703 completes the functions of the processing module 720 or the processing module 1120
  • the interface 1704 completes the functions of the aforementioned transceiver module 710 or the transceiver module 1110.
  • the modulation subsystem includes a memory 1706, a processor 1703, and a program stored in the memory and capable of running on the processor. When the processor executes the program, the program described in the first to fifth embodiments is implemented. method.
  • the memory 1706 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1700, as long as the memory 1706 can be connected to the The processor 1703 is fine.
  • the device 1800 includes one or more radio frequency units, such as a remote radio unit (RRU) 1810 and one Or multiple BBUs (also referred to as digital unit, DU) 1820.
  • the RRU 1810 may be called a transceiver module, which corresponds to the foregoing receiving module and transmitting module.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1811 and Radio frequency unit 1812.
  • the RRU 1810 part is mainly used for sending and receiving of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to the terminal.
  • the 1810 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 1810 and the BBU 1820 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1820 is the control center of the base station, and may also be called a processing module, which may correspond to the processing module 920 in FIG. 9, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the access network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1820 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access standard (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1820 also includes a memory 1821 and a processor 1822.
  • the memory 1821 is used to store necessary instructions and data.
  • the processor 1822 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the access network device in the foregoing method embodiment.
  • the memory 1821 and the processor 1822 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the access network equipment is not limited to the above forms, and may also be in other forms: for example: including BBU and adaptive radio unit (ARU), or BBU and active antenna unit (AAU); also It can be a customer premises equipment (CPE) or other forms, which are not limited in this application.
  • BBU and adaptive radio unit ARU
  • BBU and active antenna unit AAU
  • CPE customer premises equipment
  • a computer-readable storage medium is provided, and an instruction is stored thereon, and the method in the foregoing method embodiment is executed when the instruction is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method in the foregoing method embodiment is executed.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, PROM, EPROM, EEPROM or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous link dynamic random access memory synchronous link DRAM, SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, both A and B exist, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • one embodiment or “an embodiment” mentioned throughout the specification means that a specific feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application. Therefore, the appearance of "in one embodiment” or “in an embodiment” in various places throughout the specification does not necessarily refer to the same embodiment. In addition, these specific features, structures, or characteristics can be combined in one or more embodiments in any suitable manner. It should be understood that, in the various embodiments of the present application, the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, rather than corresponding to the embodiments of the present application. The implementation process constitutes any limitation.
  • component used in this specification are used to denote computer-related entities, hardware, firmware, a combination of hardware and software, software, or software in execution.
  • the component may be, but is not limited to, a process, a processor, an object, an executable file, an execution thread, a program, and/or a computer running on a processor.
  • the application running on the computing device and the computing device can be components.
  • One or more components may reside in processes and/or threads of execution, and components may be located on one computer and/or distributed among two or more computers.
  • these components can be executed from various computer readable media having various data structures stored thereon.
  • the component may be based on, for example, a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a signal having one or more data packets (such as data from two components interacting with another component in a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • a and/or B can mean: A alone exists, and both A and B exist. , There are three cases of B alone. Among them, the presence of A or B alone does not limit the number of A or B. Taking the existence of A alone as an example, it can be understood as having one or more A.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种确定天线面板状态的方法和装置。终端接收包括至少一个下行信号资源集合的配置信息, 并在确定第一下行信号资源集合对应的第一天线面板在开启的情况下, 采用该第一天线面板测量该第一下行信号资源集合中的资源的质量, 并发送第一反馈信息, 该第一反馈信息可以指示该第一下行信号资源集合中的资源的质量。在第一天线面板关闭的情况下, 不测量该第一下行信号资源集合中的资源的质量, 并发送第二反馈信息, 该第二反馈信息用于指示该第一天线面板关闭。这样, 本申请实施例的网络设备能够获知天线面板的状态, 进而能够进行合理的调度天线面板, 提高了数据传输效率。

Description

确定天线面板状态的方法和装置
本申请要求于2019年6月10日提交中国专利局、申请号为201910497847.8、申请名称为“确定天线面板状态的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种确定天线面板状态的方法和装置。
背景技术
第五代移动通信系统(5th generation,5G)可以采用高频通信,即采用超高频段(例如,>6GHz)传输数据。高频通信的一个主要问题是信号能量随传输距离急剧下降,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过对大规模天线阵列进行加权处理,将信号能量集中在一个较小的范围内,形成一个类似于光束一样的信号(可以称为“模拟波束”,还可以简称为“波束”),从而提高传输距离。
网络设备可以生成不同的波束,指向不同的传输方向。网络设备一般采用一个或多个最佳的波束来进行数据传输。此外,终端也可以生成不同的波束,并采用最佳一个或多个波束来进行数据传输。具体采用哪个波束来进行传输是通过波束管理过程来确定的。波束管理可分为下行波束管理和上行波束管理。
下行波束管理用于选择下行数据传输的(网络设备)发送波束。网络设备通过测量配置信息为终端配置多个下行信号资源,每个下行信号资源与一个波束对应。每个下行信号资源还对应于一个下行信号,通过测量该下行信号,终端测量各个波束发送的下行信号,即可确定各个波束/下行信号资源的质量。通过测量各个波束的质量,终端可以选择一个或多个质量最佳的下行信号资源,并将其资源的索引和相应的资源质量上报给网络设备,网络设备从中选择一个或多个下行信号资源(波束)用于数据传输。
波束是通过天线面板(antenna panel,Panel)生成的,即通过对一个天线面板上的所有天线进行处理(例如,相位加权处理),来形成波束信号。每个天线面板都可以生成多个不同指向的波束,但是同一时间只能生成一个。终端可以配备多个天线面板,并可以选择其中质量较好的天线面板来进行数据传输。另一方面,终端可以关闭某些天线面板,从而节省电能。但是,网络设备并不知道哪些天线面板是开启的,哪些天线面板是关闭的。因此,网络设备无法合理的调度天线面板进行上行数据传输,从而造成数据传输效率较低。
发明内容
本申请提供一种确定天线面板状态的方法和装置,能够确定天线面板的开关状态,从而提高了数据传输效率。
第一方面,提供了一种确定天线面板状态的方法,该方法包括:接收配置信息,该配 置信息包括至少一个下行信号资源集合;在该至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板开启的情况下,发送第一反馈信息,该第一反馈信息用于指示该第一下行信号资源集合中的资源的质量,其中,该第一下行信号资源集合中的资源的质量是由该第一天线面板测量下行信号得到的;或在该至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板关闭的情况下,发送第二反馈信息,该第二反馈信息用于指示该第一天线面板关闭。
终端要测量第一下行信号资源集合中的资源的质量,需要采用该第一下行信号资源集合对应的第一天线面板来测量。在测量之前,终端要判断该第一天线面板的状态是开启,还是关闭。在第一天线面板开启的情况下,终端可以采用该第一天线面板测量该第一下行信号资源集合中的资源的质量,并发送第一反馈信息,该第一反馈信息可以指示该第一下行信号资源集合中的资源的质量。在第一天线面板关闭的情况下,不测量该第一下行信号资源集合中的资源的质量,并发送第二反馈信息,该第二反馈信息用于指示该第一天线面板关闭。这样,本申请实施例的网络设备能够获知天线面板的状态,进而能够进行合理的调度天线面板,提高了数据传输效率。
在一些可能的实现方式中,在发送该第一反馈信息或该第二反馈信息之前,该方法还包括:根据第一映射关系和该第一下行信号资源集合,确定该第一下行信号资源集合对应的该第一天线面板,该第一映射关系为该至少一个下行信号资源集合和至少一个天线面板的映射关系。
至少一个下行信号资源集合和至少一个天线面板的映射关系可以是至少一个下行信号资源集合对应至少一个天线面板。其中,一个下行信号资源集合可以对应一个或多个天线面板,或者一个或多个下行信号资源集合对应一个天线面板。终端可以存储至少一个下行信号资源集合和至少一个天线面板的映射关系,这样终端在接收到配置信息之后,可以根据该映射关系确定出配置信息中包括的至少一个下行信号资源集合中每个下行信号资源集合对应的天线面板,再根据天线面板是否开启,确定发送第一反馈信息或第二反馈信息。
在一些可能的实现方式中,在发送该第一反馈信息或该第二反馈信息之前,该方法还包括:根据第二映射关系、第三映射关系和该第一下行信号资源集合,确定该第一下行信号资源集合对应的该第一天线面板,第二映射关系为至少一个上报配置与至少一个下行信号资源集合的映射关系,该第三映射关系为至少一个上报配置和至少一个天线面板的映射关系。
至少一个下行信号资源集合和至少一个上报配置的映射关系可以是至少一个下行信号资源集合对应至少一个上报配置。至少一个上报配置和至少一个天线面板的映射关系可以是至少一个上报配置对应至少一个天线面板。其中,一个下行信号资源集合可以对应一个或多个上报配置,或者一个或多个下行信号资源集合对应一个上报配置。一个上报配置可以对应一个或多个天线面板,或者一个或多个上报配置对应一个天线面板。终端可以根据第二映射关系和第一下行信号资源集合,确定第一下行信号资源集合对应的第一上报配置。终端也可以根据该第三映射关系和该第一上报配置,确定该第一上报配置对应的第一天线面板。这样终端就可以确定出该第一下行信号资源集合与该第一天线面板对应。
在一些可能的实现方式中,该第二反馈信息包括至少一个字段,该至少一个字段的取 值为预设值时表示该第一天线面板关闭。
该至少一个字段取值为特殊值(例如,称为“预设值”)时表示该第一天线面板关闭。
第二方面,提供了一种确定天线面板状态的方法,该方法包括:发送配置信息,该配置信息包括至少一个下行信号资源集合;接收第一反馈信息或第二反馈信息,该第一反馈信息用于指示该至少一个下行信号资源集合中的第一下行信号资源集合中的资源的质量,其中,该第一下行信号资源集合中的资源的质量为终端根据该第一下行信号资源集合对应的第一天线面板在开启的状态下测量下行信号得到的,该第二反馈信息用于指示该至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板关闭;根据该第一反馈信息或该第二反馈信息,确定该第一天线面板开启或关闭。
网络设备发送包括至少一个下行信号资源集合的配置信息,以及接收第一反馈信息或第二反馈信息,这样能够根据该第一反馈信息或第二反馈信息获知天线面板的状态,进而能够进行合理的调度天线面板,提高了数据传输效率。
在一些可能的实现方式中,该至少一个下行信号资源集合和至少一个天线面板具有第一映射关系,该第一天线面板为该至少一个天线面板中对应于该第一下行信号资源集合的天线面板。
网络设备可以根据该第一映射关系和第一反馈信息,或者根据该第一映射关系和第二反馈信息,确定出与第一反馈信息中或第二反馈信息中的第一下行信号资源集合对应的天线面板,进而确定出该对应的天线面板的开关状态,进而能够进行合理的调度天线面板,提高了数据传输效率。
在一些可能的实现方式中,该至少一个上报配置与该至少一个下行信号资源集合具有第二映射关系,该至少一个上报配置与至少一个天线面板具有第三映射关系,该第一天线面板为该至少一个天线面板中对应于第一上报配置的天线面板,该第一上报配置为该至少一个上报配置中对应于该第一下行信号资源集合的上报配置。
网络设备可以根据第二映射关系和第一下行信号资源集合,确定第一下行信号资源集合对应的第一上报配置。网络设备再根据该第三映射关系和该第一上报配置,确定该第一上报配置对应的第一天线面板。这样网络设备就可以根据第一下行信号资源集合的反馈信息确定出与该第一下行信号资源集合对应的第一天线面板的开关状态,进而能够进行合理的调度天线面板,提高了数据传输效率。
在一些可能的实现方式中,该第二反馈信息包括至少一个字段,该至少一个字段的取值为预设值时表示该第一天线面板关闭。
网络设备收到该第二反馈信息,解析到该第二反馈信息的至少一个字段的取值为该特殊值,则网络设备确定该第一天线面板为关闭状态,进而能够进行合理的调度天线面板,提高了数据传输效率。
第三方面,提供了一种确定天线面板状态的方法,该方法包括:接收第一配置信息,该第一配置信息包括至少一个上行信号资源集合;在该至少一个上行信号资源集合中的第一上行信号资源集合对应的第一天线面板开启的情况下,采用该第一天线面板发送第一参考信号,该第一参考信号为该第一上行信号资源集合中的资源对应的参考信号;或在该至少一个上行信号资源集合中的第一上行信号资源集合对应的第一天线面板关闭的情况下,不发送第一参考信号,该第一参考信号为该第一上行信号资源集合中的资源对应的参考信 号。
上行信号资源集合和天线面板具有对应关系,上行信号资源集合中的资源和参考信号具有对应关系。终端确定第一上行信号资源集合对应的第一天线面板是否开启,在开启的情况下,采用该第一天线面板发送第一参考信号。第一上行信号资源集合可以是该至少一个上行信号资源集合中的任意一个上行信号资源集合。也就是说,终端分别采用每个上行信号资源集合对应的天线面板,发送每个上行信号资源集合对应的参考信号。若第一上行信号资源集合对应的第一天线面板关闭,则终端不发送该第一上行信号资源集合中的资源对应的参考信号。这样可以使得网络设备能够获知天线面板的状态,进而能够进行合理的调度天线面板,提高了数据传输效率。
在一些可能的实现方式中,该第一参考信号用于测量该第一上行信号资源集合中的第一资源的质量。
终端可以复用传统方案中用于测量资源的质量的参考信号(例如,第一参考信号),这样终端不需要专门发送第一参考信号使得网络设备根据该第一参考信号确定天线面板的开关,从而节省了信令和资源开销。
在一些可能的实现方式中,该至少一个上行信号资源集合和至少一个天线面板具有映射关系,该第一天线面板为该至少一个天线面板中对应于该第一上行信号资源集合的天线面板。
终端可以根据该映射关系,确定出每个上行信号资源集合对应的天线面板。
在一些可能的实现方式中,该方法还包括:接收第二配置信息;根据该第二配置信息,调整该第一天线面板的配置参数。
终端还可以接收到网络设备在获知第一天线面板为关闭状态的情况下发送的第二配置信息,并根据该第二配置信息调整第一天线面板,例如,调整第一天线面板为开启状态等,使得网络设备能够调度该第一天线面板进行数据传输,从而提高了数据传输效率。
在一些可能的实现方式中,该第二配置信息包括重配的配置参数,该配置参数包括测量上报相关配置,测量资源相关配置,传输配置编号TCI状态,空间关系,上行调度请求SR资源,物理上行控制信道资源中的至少一项。
第四方面,提供了一种确定天线面板状态的方法,该方法包括:发送第一配置信息,该第一配置信息包括至少一个上行信号资源集合;检测该至少一个上行信号资源集合中的第一上行信号资源集合中的第一资源对应的第一参考信号;根据该第一参考信号的接收情况,确定该第一上行信号资源集合对应的第一天线面板开启或关闭。
网络设备可以根据上行信号资源集合中的资源对应的参考信号的接收情况,分别确定每个上行信号资源集合对应的天线面板的状态。也就是说,本申请实施例的网络设备能够获知天线面板的状态,进而能够进行合理的调度天线面板,提高了数据传输效率。
在一些可能的实现方式中,该第一参考信号用于测量该第一上行信号资源集合中的第一资源的质量。
网络设备检测用于测量第一资源的质量的第一参考信号,并根据该第一参考信号确定天线面板的开关,避免了专门监听该第一参考信号,从而节省了信令和资源开销。
在一些可能的实现方式中,该至少一个上行信号资源集合和至少一个天线面板具有映射关系,该第一天线面板为该至少一个天线面板中对应于该第一上行信号资源集合的天线 面板。
网络设备可以根据该映射关系,确定出每个上行信号资源集合对应的天线面板。进而可以根据每个上行信号资源集合中的资源对应的上行信号是由哪个天线面板检测的,进而确定出这个天线面板是开启或关闭,从而提高了数据传输效率。
在一些可能的实现方式中,该根据该第一参考信号的接收情况,确定该第一上行信号资源集合对应的第一天线面板是否开启包括:在没有接收到该第一参考信号的情况下,确定该第一天线面板关闭;或在接收的该第一参考信号的质量小于或等于预设质量阈值的情况下,确定该第一天线面板关闭;或在接收的该第一参考信号的质量大于该预设质量阈值的情况下,确定该第一天线面板开启。
网络设备可以根据第一参考信号的具体接收情况确定第一天线面板的开启或关闭,从而能够更加合理的调度该第一天线面板,更进一步提高了了数据传输效率。
在一些可能的实现方式中,在所述第一天线面板关闭的情况下,该方法还包括:向终端发送第二配置信息,该第二配置信息用于调整该第一天线面板的配置参数。
网络设备在获知第一天线面板为关闭状态的情况下,网络设备可以发送第二配置信息调整第一天线面板,例如,调整第一天线面板为开启状态等,从而使得网络设备能够调度该第一天线面板进行数据传输,从而提高了数据传输效率。
在一些可能的实现方式中,该第二配置信息包括重配的配置参数,该配置参数包括测量上报相关配置,测量资源相关配置,传输配置编号TCI状态,空间关系,上行调度请求SR资源,物理上行控制信道资源中的至少一项。
第五方面,提供了一种确定天线面板状态的装置,该装置可以是终端,也可以是终端内的芯片。该装置具有实现上述第一方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块和处理模块。所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第一方面,及各种可能的实现方式的通信方法。在本设计中,该装置可以为终端。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块。收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第一方面,以及任意可能的实现的通信方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第六方面,提供了一种确定天线面板状态的装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块和处理模块。所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第二方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块。所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该网络设备内的芯片执行上述第二方面,以及任意可能的实现的通信方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,特定应用集成电路ASIC,或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第七方面,提供了一种确定天线面板状态的装置,该装置可以是终端,也可以是终端内的芯片。该装置具有实现上述第三方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块和处理模块。所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第三方面,及各种可能的实现方式的通信方法。在本设计中,该装置可以为终端。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块。收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该终端内的芯片执行上述第三方面,以及任意可能的实现的通信方法。可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第八方面,提供了一种确定天线面板状态的装置,该装置可以是网络设备,也可以是 网络设备内的芯片。该装置具有实现上述第四方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:收发模块和处理模块。所述收发模块例如可以是收发器、接收器、发射器中的至少一种,该收发模块可以包括射频电路或天线。该处理模块可以是处理器。
可选地,所述装置还包括存储模块,该存储模块例如可以是存储器。当包括存储模块时,该存储模块用于存储指令。该处理模块与该存储模块连接,该处理模块可以执行该存储模块存储的指令或源自其他的指令,以使该装置执行上述第四方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:收发模块和处理模块。所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。处理模块例如可以是处理器。该处理模块可执行指令,以使该网络设备内的芯片执行上述第四方面,以及任意可能的实现的通信方法。
可选地,该处理模块可以执行存储模块中的指令,该存储模块可以为芯片内的存储模块,如寄存器、缓存等。该存储模块还可以是位于通信设备内,但位于芯片外部,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第九方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面,及其任意可能的实现方式中的方法的指令。
第十方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第二方面,及其任意可能的实现方式中的方法的指令。
第十一方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第三方面,及其任意可能的实现方式中的方法的指令。
第十二方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第四方面,及其任意可能的实现方式中的方法的指令。
第十三方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面,或其任意可能的实现方式中的方法。
第十四方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第二方面,或其任意可能的实现方式中的方法。
第十五方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第三方面,或其任意可能的实现方式中的方法。
第十六方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第四方面,或其任意可能的实现方式中的方法。
第十七方面,提供了一种通信系统,该通信系统包括上述第五方面所述的装置和上述第六方面所述的装置。
第十八方面,提供了一种通信系统,该通信系统包括上述第七方面所述的装置和上述第八方面所述的装置。
基于上述技术方案,终端接收包括至少一个下行信号资源集合的配置信息,并在确定第一下行信号资源集合对应的第一天线面板在开启的情况下,采用该第一天线面板测量该第一下行信号资源集合中的资源的质量,并发送第一反馈信息,该第一反馈信息可以指示该第一下行信号资源集合中的资源的质量。在第一天线面板关闭的情况下,不测量该第一下行信号资源集合中的资源的质量,并发送第二反馈信息,该第二反馈信息用于指示该第一天线面板关闭。这样,本申请实施例的网络设备能够获知天线面板的状态,进而能够进行合理的调度天线面板,提高了数据传输效率。
附图说明
图1是本申请一个通信系统的示意图;
图2是传统方案中下行波束管理的方法的示意性流程图;
图3是传统方案中上行波束管理的方法的示意性流程图;
图4是传统方案中波束管理的示意图;
图5是本申请一个实施例的确定天线面板状态的方法的示意性流程图;
图6是本申请另一个实施例的确定天线面板状态的方法的示意性流程图;
图7是本申请一个实施例的确定天线面板状态的装置的示意性框图;
图8是本申请一个实施例的确定天线面板状态的装置的示意性结构图;
图9是本申请另一个实施例的确定天线面板状态的装置的示意性框图;
图10是本申请另一个实施例的确定天线面板状态的装置的示意性结构图;
图11是本申请另一个实施例的确定天线面板状态的装置的示意性框图;
图12是本申请另一个实施例的确定天线面板状态的装置的示意性结构图;
图13是本申请另一个实施例的确定天线面板状态的装置的示意性框图;
图14是本申请另一个实施例的确定天线面板状态的装置的示意性结构图;
图15是本申请另一个具体实施例的确定天线面板状态的装置的示意图;
图16是本申请另一个具体实施例的确定天线面板状态的装置的示意图;
图17是本申请另一个具体实施例的确定天线面板状态的装置的示意图;
图18是本申请另一个具体实施例的确定天线面板状态的装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
下面将本申请涉及到的术语进行介绍。
1、波束(beam):
波束是一种通信资源,不同的波束可以认为是不同的通信资源。不同的波束可以发送相同的信息,也可以发送不同的信息。波束可以对应时域资源、空间资源和频域资源中的至少一项。
可选地,具有相同或者类型的通信特征的多个波束可以视为一个波束,一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等。例如,发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布;接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
具体地,波束可以是宽波束,也可以是窄波束,还可以是其他类型的波束。形成波束的技术可以是波束成型技术也可以是其他技术手段,本申请对此不进行限定。其中,波束成型技术(beamforming)可以是通过在空间上朝向特定的方向来实现更高的天线阵列增益。此外,波束可以分为网络设备的发送波束和接收波束,与终端的发送波束和接收波束。网络设备的发送波束用于描述网络设备接收侧波束赋形信息,网络设备的接收波束用于描述网络设备接收侧波束赋形信息。终端的发送波束用于描述终端发送侧波束赋形信息,终端的接收波束用于描述接收侧波束赋形信息。
更具体地,波束成型技术包括数字波束成型技术、模拟波束成型技术和混合数字模拟波束成型技术。其中,模拟波束成型技术可以通过射频实现,例如,一个射频链路(RF chain)通过移相器来调整相位,从而控制模拟波束方向的改变。因此,一个RF chain在同一时刻只能打出一个模拟波束。此外,基于模拟波束的通信,需要发送端和接收端的波束对齐,否则无法正常传输信号。
应理解,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
还应理解,波束还可以通过空间滤波器(spatial filter)或空间传输滤波器(spatial domain transmission filter)体现,换句话说,波束也可以称为“空间滤波器”,其中发射波束称为“空间发射滤波器”,接收波束称为“空间接收滤波器”或“下行空间滤波器”。网络设备的接收波束或终端的发送波束还可以称为“上行空间滤波器”,网络设备的发送波束或终端的接收波束还可以称为“下行空间滤波器”。最优的N个波束对(beam pair link,BPL)(一个BPL包括一个网络设备的发射波束和一个终端的接收波束,或者,一个BPL包括一个终端的发射波束和一个网络设备的接收波束)的选择。用于终端基于网络设备的波束扫描实现对网络设备的发射波束和/或终端的接收波束的选择,以及,网络设备基于终端的波束扫描实现对终端的发射波束和/或网络设备的接收波束的选择。
具体地,发射波束可以为基站发射波束,也可以为终端发射波束。当该发射波束为基站发射波束时,基站通过不同的发射波束向用户设备(user equipment,UE)发送参考信号,UE通过同一个接收波束来接收基站通过不同的发射波束发送的参考信号,并基于接收信号确定基站的最优发射波束,然后将基站的最优发射波束反馈给基站,以便于基站对发射波束进行更新。当该发射波束为终端发射波束时,UE通过不同的发射波束向基站发送参考信号,基站通过同一个接收波束来接收UE通过不同的发射波束发送的参考信号,并基于接收信号确定UE的最优发射波束,然后将UE的最优发射波束反馈给UE,以便于UE对发射波束进行更新。其中,上述通过不同的发射波束发送参考信号的过程可以称为波束扫描,基于接收信号确定最优发射波束的过程可以称为波束匹配。
接收波束可以为基站接收波束,也可以为终端接收波束。当该接收波束为基站接收波束时,UE通过同一个发射波束向基站发送参考信号,基站采用不同的接收波束接收UE发送的参考信号,然后基于接收信号确定基站的最优接收波束,以对基站的接收波束进行更新。当该接收波束为UE的接收波束时,基站通过同一个发射波束向UE发送参考信号,UE采用不同的接收波束接收基站发送的参考信号,然后基于接收信号确定UE的最优接收波束,以对UE的接收波束进行更新。
需要说明的是,对于下行波束的训练,网络设备会配置参考信号资源集合的类型用于波束训练,当为参考信号资源集合配置的重复参数为“on”时,终端假设该参考信号资源 集合中的参考信号使用相同的下行空间滤波器传输,也即使用相同的发送波束传输;此时,一般情况下,终端会使用不同的接收波束接收上述参考信号资源集合中的参考信号,训练出终端最好的接收波束,可选地,终端可以上报UE测量的最好的N个参考信号的信道质量。当为参考信号资源集合配置的重复参数为“off”时,终端不会假设该参考信号资源集合中的参考信号使用相同的下行空间滤波器传输,也即不假设网络设备使用相同的发送波束传输参考信号,此时终端通过测量该集合中参考信号的信道质量在该资源集合中选出最好的N个波束反馈给网络设备,一般情况下,此时,终端在此过程中使用相同的接收波束。
2、波束成型技术(beamforming):
波束成型技术可以通过在空间上朝向特定的方向来实现更高的天线阵列增益。模拟波束成型,可以通过射频实现。例如,一个RF chain通过移相器来调整相位,从而控制模拟波束方向的改变。因此,一个RF chain在同一时刻只能打出一个模拟波束。
3、波束管理资源:
波束管理资源指用于波束管理的资源,又可以体现为用于计算和测量波束质量的资源。波束质量包括层一接收参考信号功率(layer 1 reference signal received power,L1-RSRP),层一接收参考信号质量(layer 1 reference signal received quality,L1-RSRQ)等。具体的,波束管理资源可以包括同步信号,广播信道,下行信道测量参考信号,跟踪信号,下行控制信道解调参考信号,下行共享信道解调参考信号,上行探测参考信号,上行随机接入信号等。
4、资源
在波束测量中,可以通过资源的索引来唯一标识该资源对应的波束。资源可以是上行信号资源,也可以是下行信号资源。上行信号包括但不限于上行随机接入序列,上行探测参考信号,上行控制信道解调参考信号(demodulation reference signal,DMRS),上行数据信道解调参考信号,上行相位噪声跟踪信号(phase-tracking reference signals,PTRS),探测参考信号(sounding reference signal,SRS)。下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、下行控制信道解调参考信号(demodulation reference signal,DMRS),下行数据信道解调参考信号、下行相位噪声跟踪信号以及同步信号/物理广播信道块(synchronization system/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
资源通过无线资源控制(radio resource control,RRC)信令配置。在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数,例如上行/下行信号的类型,承载上行/下行信号的资源粒,上行/下行信号的发送时间和周期,发送上行/下行信号所采用的端口数等。每一个上行/下行信号的资源具有唯一的索引,以标识该下行信号的资源。可以理解的是,资源的索引也可以称为资源的标识,本申请实施例对此不作任何限制。
5、波束指示信息:
用于指示传输所使用的波束,包括发送波束和/或接收波束。包括波束编号、波束管理资源编号,上行信号资源号,下行信号资源号、波束的绝对索引、波束的相对索引、波 束的逻辑索引、波束对应的天线端口的索引、波束对应的天线端口组索引、波束对应的下行信号的索引、波束对应的下行同步信号块的时间索引、波束对连接(beam pair link,BPL)信息、波束对应的发送参数(Tx parameter)、波束对应的接收参数(Rx parameter)、波束对应的发送权重、波束对应的权重矩阵、波束对应的权重向量、波束对应的接收权重、波束对应的发送权重的索引、波束对应的权重矩阵的索引、波束对应的权重向量的索引、波束对应的接收权重的索引、波束对应的接收码本、波束对应的发送码本、波束对应的接收码本的索引、波束对应的发送码本的索引中的至少一种。可选的,网络设备还可以为频率资源组关联的波束中具有准同位(quasi-co-location,QCL)关系的波束分配QCL标示符。波束也可以称为空域传输滤波器,发射波束也可以称为空域发射滤波器,接收波束也可以称为空域接收滤波器。波束指示信息还可以体现为传输配置编号(transmission configuration index,TCI),TCI中可以包括多种参数,例如,小区编号,带宽部分编号,参考信号标识,同步信号块标识,QCL类型等。其中,准同位(quasi-co-location,QCL)的同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等。空域准同位(spatial QCL)可以认为是QCL的一种类型。对于spatial有两个角度可以理解:从发送端或者从接收端。从发送端来看,如果说两个天线端口是空域准同位的,那么是指这两个天线端口的对应的波束方向在空间上是一致的,即spatial filter相同。从接收端来看,如果说两个天线端口是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号,即关于接收参数QCL。
6、QCL:
同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性,AoA,平均到达角,AoA的扩展等。
7、波束管理
波束管理是R15协议中的一个波束测量流程,可以分为下行波束管理和上行波束管理两种。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system, UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端通信的设备,该网络设备可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方 法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端或网络设备,或者,是终端或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请一个通信系统的示意图。图1中的通信系统可以包括至少一个终端(例如终端10、终端20、终端30、终端40、终端50和终端60)和网络设备70。网络设备70用于为终端提供通信服务并接入核心网,终端可以通过搜索网络设备70发送的同步信号、广播信号等接入网络,从而进行与网络的通信。图1中的终端10、终端20、终端30、终端40和终端60可以与网络设备70进行上下行传输。例如,网络设备70可以向终端10、终端20、终端30、终端40和终端60发送下行信号,也可以接收终端10、终端20、终端30、终端40和终端60发送的上行信号。
此外,终端40、终端50和终端60也可以看作一个通信系统,终端60可以向终端40和终端50发送下行信号,也可以接收终端40和终端50发送的上行信号。
需要说明的是,本申请实施例可以应用于包括一个或多个网络设备的通信系统中,也可以应用于包括一个或多个终端的通信系统中,本申请对此不进行限定。
应理解,该通信系统中包括的网络设备可以是一个或多个。一个网络设备可以向一个或多个终端发送数据或控制信令。多个网络设备也可以同时向一个或多个终端发送数据或控制信令。
图2示出了传统方案中下行波束管理的方法的示意性流程图。
201、网络设备向终端发送测量配置信息。
该测量配置信息可以携带在RRC信令中。测量配置信息主要包括资源配置信息和上报配置信息。资源配置信息是用于测量资源的相关的信息,在协议中可以通过三级结构(即资源配置(resourceConfig/resourceSetting)、资源集合(resourceSet)和资源(resource))进行配置。网络设备可以为终端配置一个或多个资源配置,每个资源配置包括一个或多个资源集,每个资源集可以包括一个或多个资源。每个资源配置、每个资源集或每个资源中都包括标识自己的索引。此外,每个资源配置、每个资源集或每个资源中还可以包括一些其他参数,例如,资源的周期、资源对应的信号类型等。上报资源配置信息是用于测量结果上报相关的信息,在协议中通过上报配置(例如,该上报配置为ReportConfig)进行配置。网络设备可以为终端配置一个或多个上报配置,每个上报配置包括上报指标、上报时间、上报周期和上报格式等上报相关的信息。此外,上报配置中还包括资源配置的索引,用于指示上报的结果是通过什么测量配置得到的。
其中,资源配置的具体格式如下所示:
Figure PCTCN2020092929-appb-000001
上报配置的具体格式如下所示:
Figure PCTCN2020092929-appb-000002
Figure PCTCN2020092929-appb-000003
202,网络设备在测量配置信息中资源配置信息所配置的资源对应的资源粒上发送下行信号。
203,终端对该下行信号进行测量,确定各资源的质量(即资源对应的波束的质量)。
204,终端向网络设备发送波束测量报告。
波束测量报告包括一个或多个资源的索引,资源的质量等。表1示出了R15协议中波束测量采用的上报格式。其中,CSI-RS索引(CSI-RS index,CRI)字段和SSB资源索引(SSB resource index,SSBRI)字段用于指示要上报的资源索引。可以只上报CRI或SSBRI,也可以都上报。和是CRI字段和SSBRI字段的长度。RSRP是资源的质量。参考信号接收功率(reference signal receiving power,RSRP)的上报采用差分上报准则,即最好的资源的RSRP(表1中的RSRP字段)采用7比特量化上报,而其他RSRP(表1中的差分(differential)RSRP)字段采用4比特量化上报。其中,上述上报信息可以承载在物理上行控制信道(physical uplink control channel)或物理上行共享信道中(physical uplink shared channel)。
表1
Figure PCTCN2020092929-appb-000004
图3是传统方案中上行波束管理的方法的示意性流程图。
301,网络设备向终端发送上行信号资源配置信息。
该上行信号可以是SRS。网络设备可以为终端配置一个或多个用于上行波束管理的SRS资源集合,每个SRS资源集合包括一个或多个SRS资源。每个SRS资源与一个波束是关联的,每个SRS资源中对应一个SRS信号,通过测量这些SRS资源对应的SRS信号即可进行上行波束测量。
其中,SRS资源配置的具体格式如下所示:
Figure PCTCN2020092929-appb-000005
Figure PCTCN2020092929-appb-000006
302,终端按照各个SRS资源的配置,采用与该SRS资源关联的上行发送波束发送相应的SRS信号。
303,网络设备根据终端发送的各个SRS信号,测量各个SRS资源的质量。
下行波束管理用于网络设备选择下行数据传输的发送波束。如图4所示,网络设备通过测量配置信息为终端配置多个下行信号资源,每个下行信号资源与一个波束对应。每个下行信号资源对应一个下行信号,通过测量该下行信号,即可实现对该下行信号资源的测量。对于每个下行信号资源,网络设备通过与其对应的波束发送对应的下行信号,终端测量各个波束发送的下行信号,即可确定各个波束的质量。波束的质量可以通过RSRP表示。通过测量各个波束的RSRP,终端选择一个或多个RSRP最大的下行信号资源,并将选中的下行信号资源的索引和相应的RSRP上报给网络设备。网络设备再从中选择一个或多个下行信号资源(波束),用于下行数据传输。
波束是通过天线面板(antenna panel)生成的,即通过对一个天线面板上的所有天线进行处理(例如,相位加权处理),来形成波束信号。每个天线面板都可以生成多个不同指向的波束,但同一个时间只能生成一个。终端可以配备多个天线面板,终端可以选择其中质量较好的天线面板来进行数据传输。另一方面,为了节省电能,终端可以关闭某些天线面板。当某些天线面板关闭时,网络设备将无法调度这些天线面板进行上行数据传输。如果网络设备不知道哪些天线面板是开启的,哪些是关闭的,就会发生错误调度,例如调度一个已经关闭的天线面板进行上行数据传输,从而造成数据传输的效率较低。
应理解,天线面板可以简称为面板(panel)。天线面板开启可以描述为激活,天线面板关闭可以描述为未激活。天线面板的索引可以指一个专门用于标识一个天线面板的索引值。在不做特殊说明的情况下,本申请实施例中的天线面板是指终端的天线面板。
图5示出了本申请实施例的确定天线面板状态的方法的示意性流程图。
需要说明的是,本申请实施例的执行主体可以是终端,也可以是终端内的芯片。对侧的执行主体可以是网络设备,也可以是网络设备内的芯片。为描述方便,下述实施例以“终端”、“网络设备”为例进行说明,但本申请并不限于此。
501,终端接收配置信息,该配置信息包括至少一个下行信号资源集合。相应地,网络设备发送该配置信息。
具体地,终端接收该配置信息,并根据该配置信息测量该至少一个下行信号资源集合中的每个下行信号资源集合中的资源的质量。每个下行信号资源集合包括至少一个资源。
需要说明的是,每个下行信号资源对应一个下行信号,终端可以通过接收每个下行信号资源对应的下行信号确定该下行信号的质量,并将该下行信号的质量确定为对应的下行信号资源的质量。
应理解,该至少一个下行信号资源集合可以是一个下行信号资源集合,也可以是多个下行信号资源集合。至少一个资源可以是一个资源,也可以是多个资源。
还应理解,本申请实施例中的配置信息可以是图2所示的实施例中的“测量配置信息”,或者还可以是其他名称,本申请实施例对该配置信息的名称不进行限定。
可选地,该下行信号资源集合中的资源可以是非零功率信道状态信息参考信号(none zero-power channel status information reference signal,NZP CSI-RS)资源、同步信号-广播信道测量资源块(synchronization signal and PBCH block,SSB)、信道状态信息干扰测量(channel status information-interference measurement,CSI-IM)资源,零功率信道状态信息参考信号(zero-power channel status information reference signal,ZP CSI-RS)资源。
502,终端在该至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板开启的情况下,发送第一反馈信息,该第一反馈信息用于指示该第一下行信号资源集合中的资源的质量,其中,该第一下行信号资源集合中的资源的质量是由该第一天线面板测量下行信号得到的。相应地,网络设备接收该第一反馈信息。
具体地,该至少一个下行信号集合和至少一个天线面板具有对应关系,终端要测量某一个下行信号资源集合(例如,第一下行信号资源集合)中的资源的质量,需要采用该第一下行信号资源集合对应的天线面板(例如,第一天线面板)来测量。在测量之前,终端要判断该第一天线面板的状态是开启,还是关闭。在第一天线面板开启的情况下,终端可以采用该第一天线面板测量该第一下行信号资源集合中的任意一个资源的质量;在第一天线面板关闭的情况下,不测量该第一下行信号资源集合中的资源的质量。该第一反馈信息可以指示该第一下行信号资源集合中的部分资源的质量,也可以是指示该第一下行信号资源集合中的全部资源的质量。
需要说明的是,第一下行信号资源集合中的任意一个资源可以对应一个下行信号,且该第一下行信号资源集合中的不同资源可以对应的下行信号可以相同,也可以不同。
还需要说明的是,该至少一个下行信号资源集合中除该第一下行信号资源集合之外的其他下行信号资源集合也可以根据对应的天线面板是否开启,进行资源的质量测量。此外,用于指示不同下行信号资源集合的资源的质量的第一反馈信息可以同时发送给网络设备,也可以分别独立发送给网络设备,本申请对此不进行限定。
还需要说明的是,该第一反馈信息可以携带下行信号资源集合中的资源的索引,这样网络设备能够根据该第一反馈信息获知该第一反馈信息中的资源质量为哪个资源的质量。 网络设备再根据该资源属于哪个下行信号资源集合,确定出对应的天线面板的状态。
可选地,该资源的质量可以是通过下述至少一项表示:资源索引(CSI-RS resource index,CRI)、SSB的索引(SSB index)、RSRP、参考信号接收质量(reference signal receiving quality,RSRQ)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、信道质量指示(channel quality indicator,CQI)、信道的秩的指示(rank indicator,RI)、预编码矩阵指示(precoding matrix indicator,PMI)、层指示(layer indicator,LI)、信号干扰比(信干比)、信号噪声比(信噪比)等中的一种或多种的组合。
在一个实施例中,该第一下行信号资源集合对应的第一天线面板可以是由第一映射关系得到的。也就是说,第一映射关系中存储至少一个下行信号资源集合和至少一个天线面板。该第一下行信号资源集合为该第一映射关系中至少一个下行信号资源集合中的任意一个下行信号资源集合,该第一天线面板为该第一映射关系中的至少一个天线面板中的任意一个天线面板。
需要说明的是,该第一映射关系可以以表格的形式体现。天线面板可以通过索引标识。
应理解,下行信号资源集合可以是resource set,也可以是resource setting。在该下行信号资源集合为resource set的情况下,多个resource set可以配置在一个resource setting中,也可以部分或全部配置在不同的resource setting中。
可选地,终端可以根据第一映射关系和第一下行信号资源集合确定该第一下行信号资源集合对应的第一天线面板,该第一映射关系为至少一个下行信号资源集合和至少一个天线面板的映射关系。
具体地,终端可以存储至少一个下行信号资源集合和至少一个天线面板的映射关系,这样终端在接收到配置信息之后,可以根据该映射关系确定出配置信息中包括的至少一个下行信号资源集合中每个下行信号资源集合对应的天线面板,再根据天线面板是否开启,确定发送第一反馈信息或第二反馈信息。
需要说明的是,一个下行信号资源集合可以对应一个或多个天线面板,或者一个或多个下行信号资源集合对应一个天线面板,本申请对此不进行限定。
应理解,该第一映射关系可以是协议规定的,也可以是网络设备和终端预先约定的,还可以是网络设备确定并告知终端的,本申请对此不进行限定。
可选地,网络设备可以发送指示信息,该指示信息用于指示该第一映射关系。
具体地,该指示信息可以单独发送,也可以携带在配置信息中,或者携带在无线资源控制(radio resource control,RRC)信令,或者介质接入控制-控制单元(medium access control-control element,MAC CE),或者下行控制信息(downlink control information,DCI)中,本申请对此不进行限定。
在另一个实施例中,该第二映射关系为至少一个上报配置和至少一个下行信号资源集合的映射关系,该第三映射关系为至少一个上报配置和至少一个天线面板的映射关系。该第一下行信号资源集合可以是该至少一个下行信号资源集合中的任意一个下行信号资源集合,该第一下行信号资源集合对应的第一上报配置可以是该至少一个上报配置中的任意一个上报配置,该第一天线面板可以是该至少一个天线面板中第一上报配置对应的天线面板。
需要说明的是,该第二映射关系或该第三映射关系可以是协议规定的,也可以是网络 设备和终端预先约定的,还可以是网络设备确定并告知终端的,本申请对此不进行限定。
可选地,终端可以根据第二映射关系、第三映射关系和该第一下行信号资源集合,确定该第一下行信号资源集合对应的第一天线面板,该第二映射关系为至少一个上报配置和至少一个下行信号资源集合的映射关系,该第三映射关系为至少一个上报配置和至少一个天线面板的映射关系。
具体地,终端可以根据第二映射关系和第一下行信号资源集合,确定第一下行信号资源集合对应的第一上报配置。终端也可以根据该第三映射关系和该第一上报配置,确定该第一上报配置对应的第一天线面板。这样终端就可以确定出该第一下行信号资源集合与该第一天线面板对应。
需要说明的是,一个下行信号资源集合可以对应一个或多个上报配置,或者一个或多个下行信号资源集合对应一个上报配置。此外,一个上报配置对应一个或多个天线面板,或者一个或多个上报配置对应一个天线面板,本申请对此不进行限定。
可选地,该配置信息可以包括该至少一个上报配置。也就是说,配置信息中的至少一个上报配置与配置信息中至少一个下行信号资源集合具有映射关系。
503,终端在该至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板关闭的情况下,发送第二反馈信息,该第二反馈信息用于指示该第一天线面板关闭。相应地,网络设备接收该第二反馈信息。
需要说明的是,该第二反馈信息可以携带下行信号资源集合中的资源的索引,这样网络设备能够根据该第二反馈信息获知该第一反馈信息中的资源质量为哪个资源的质量。网络设备再根据该资源属于哪个下行信号资源集合,确定出对应的天线面板的状态。
需要说明的是,终端在执行完步骤501之后,可以执行步骤502,也可以执行步骤503,本申请对此不进行限定。
可选地,该第二反馈信息可以包括至少一个字段,该至少一个字段为预设值时表示该第一天线面板关闭。
具体地,该第一反馈信息和第二反馈信息都可以通过至少一个字段表示,通过该至少一个字段的取值来区分。例如,该至少一个字段取值为特殊值(例如,称为“预设值”)时表示该第一天线面板关闭。
例如,该至少一个字段为7bit,即该至少一个字段可以的取值为0~127,可以预先设置任意一个特殊值,终端在确定该第一天线面板关闭时,则该至少一个字段取值为该特殊值,例如,全0,或者全1。网络设备收到该第二反馈信息,解析到该第二反馈信息的至少一个字段的取值为该特殊值,则网络设备确定该第一天线面板为关闭状态。
可选地,该第一反馈信息和该第二反馈信息也通过不同的字段表示。
504,网络设备根据该第一反馈信息或该第二反馈信息,确定该第一天线面板开启或关闭。
因此,本申请实施例的确定天线面板状态的方法,终端要测量第一下行信号资源集合中的资源的质量,需要采用该第一下行信号资源集合对应的第一天线面板来测量。在测量之前,终端要判断该第一天线面板的状态是开启,还是关闭。在第一天线面板开启的情况下,终端可以采用该第一天线面板测量该第一下行信号资源集合中的资源的质量,并发送第一反馈信息,该第一反馈信息可以指示该第一下行信号资源集合中的资源的质量。在第 一天线面板关闭的情况下,不测量该第一下行信号资源集合中的资源的质量,并发送第二反馈信息,该第二反馈信息用于指示该第一天线面板关闭。这样,本申请实施例的网络设备能够获知天线面板的状态,进而能够进行合理的调度天线面板,提高了数据传输效率。
上行波束管理用于终端选择上行数据传输的发送波束。如图4所示,网络设备通过测量配置信息为终端配置多个上行信号资源,每个上行信号资源与一个波束对应。每个上行信号资源包括一个上行信号,通过测量该上行信号,即可实现对该上行信号资源的测量。对于每个上行信号资源,终端通过与其对应的波束发送对应的上行信号,终端测量各个波束发送的上行信号,即可确定各个波束/上行信号资源的质量。具体的,在数据传输时,网络设备通过下行控制信息指示一个上行信号资源的索引,终端就会采用该上行信号资源对应的波束发送上行数据。
终端可以配备多个天线面板,终端可以选择其中质量较好的天线面板来进行数据传输。另一方面,为了节省电能,终端可以关闭某些天线面板。当某些天线面板关闭时,网络设备将无法调度这些天线面板进行上行数据传输。如果网络设备不知道哪些天线面板是开启的,哪些是关闭的,就会发生错误调度,例如调度一个已经关闭的天线面板进行上行数据传输,从而造成数据传输的效率较低。
图6示出了本申请另一个实施例的确定天线面板状态的方法的示意性流程图。
需要说明的是,本申请实施例的执行主体可以是终端,也可以是终端内的芯片。对侧的执行主体可以是网络设备,也可以是网络设备内的芯片。为描述方便,下述实施例以“终端”、“网络设备”为例进行说明,但本申请并不限于此。
还需要说明的是,在不作特别说明的情况下,本申请实施例与图5所示的实施例中的相同术语表示的含义相同。
601,终端接收第一配置信息,该第一配置信息包括至少一个上行信号资源集合。相应地,网络设备发送该第一配置信息。
具体地,上行信号资源集合可以包括一个或多个资源,终端可以在该资源上进行上行信号的传输,以使得网络设备根据该上行信号能够确定上行信号资源的质量。
应理解,该第一配置信息可以与图5所示的实施例中的配置信息相同。
602,终端在该至少一个上行信号资源集合中的第一上行信号资源集合对应的第一天线面板开启的情况下,发送第一参考信号,该第一参考信号为该第一上行信号资源集合中的资源对应的参考信号。相应地,网络设备检测该第一参考信号,并收到该第一参考信号。
具体地,上行信号资源集合和天线面板具有对应关系,上行信号资源集合中的资源和参考信号具有对应关系。终端确定第一上行信号资源集合对应的第一天线面板是否开启,在开启的情况下,采用该第一天线面板发送第一参考信号。第一上行信号资源集合可以是该至少一个上行信号资源集合中的任意一个上行信号资源集合。也就是说,终端分别采用每个上行信号资源集合对应的天线面板,发送每个上行信号资源集合对应的参考信号。相应地,网络设备检测每个上行信号资源集合中的资源对应的参考信号。
需要说明的是,上行信号资源集合中的一个资源可以对应一个参考信号,一个上行信号资源集合中的不同资源可以分别对应不同的参考信号,也可以对应相同的参考信号,本申请对此不进行限定。
应理解,网络设备“检测(detect)”参考信号可以理解为网络设备“监听(monitor)” 参考信号。
可选地,该第一参考信号用于测量该第一上行信号资源集合中的第一资源的质量。
具体地,终端可以复用传统方案中用于测量资源的质量的参考信号(例如,第一参考信号)。这样终端不需要专门发送第一参考信号使得网络设备根据该第一参考信号确定天线面板的开关,相应地,网络设备避免了专门监听该第一参考信号,从而节省了信令和资源开销。
可选地,该至少一个上行信号资源集合和至少一个天线面板可以具有映射关系,该第一天线面板为该至少一个天线面板中对应于该第一上行信号资源集合的天线面板。
具体地,终端可以根据该映射关系,确定出每个上行信号资源集合对应的天线面板。
需要说明的是,一个上行信号资源集合可以对应一个或多个天线面板,或者一个或多个上行信号资源集合对应一个天线面板,本申请对此不进行限定。
应理解,该映射关系可以是协议规定的,也可以是网络设备和终端预先约定的,还可以是网络设备确定并告知终端的,本申请对此不进行限定。
603,终端在该至少一个上行信号资源集合中的第一上行信号资源集合对应的第一天线面板关闭的情况下,不发送第一参考信号,该第一参考信号为该第一上行信号资源集合中的资源对应的参考信号。相应地,网络设备检测该第一参考信号。
具体地,若第一上行信号资源集合对应的第一天线面板关闭,则终端不发送该第一上行信号资源集合中的资源对应的参考信号。
604,网络设备根据该第一参考信号的接收情况,确定该第一上行信号资源集合对应的第一天线面板开启或关闭。
具体地,网络设备可以根据上行信号资源集合中的资源对应的参考信号的接收情况,分别确定每个上行信号资源集合对应的天线面板的状态。也就是说,本申请实施例的网络设备能够获知天线面板的状态,进而能够进行合理的调度天线面板,提高了数据传输效率。
可选地,若网络设备检测第一参考信号的结果如步骤603,也就是说,网络设备没有接收到第一参考信号,则网络设备确定第一天线面板的状态为关闭的。
需要说明的是,网络设备检测该第一参考信号,可以是在一次没有收到该第一参考信号时,确定该第一天线面板为关闭。也可以是在多次没有收到第一参考信号时,确定该第一天线面板为关闭。
可选地,若网络设备检测第一参考信号的结果如步骤602,则网络设备可以确定该第一天线面板的状态为开启的。
可选地,若网络设备检测第一参考信号的结果如步骤602,则网络设备还可以进一步确定该第一参考信号的质量。在第一参考信号的质量大于预设质量阈值的情况下,确定该第一天线面板开启;在第一参考信号的质量小于或等于预设质量阈值的情况下,确定该第一天线面板关闭。
需要说明的是,网络设备也可以是在多次检测到该第一参考信号的质量小于或等于预设质量阈值的情况下,确定该第一天线面板关闭。
可选地,步骤604之后,若该第一天线面板为关闭状态,网络设备还可以向终端发送第二配置信息,该第二配置信息用于调整该第一天线面板的配置参数。相应地,终端接收该第二配置信息,并根据该第二配置信息调整该第一天线面板的配置参数。
具体地,网络设备在获知第一天线面板为关闭状态的情况下,网络设备可以发送第二配置信息调整第一天线面板,例如,调整第一天线面板为开启状态等,从而使得网络设备能够调度该第一天线面板进行数据传输,从而提高了数据传输效率。
可选地,该第二配置信息可以单独发送,也可以携带在RRC信令、MAC CE信令或DCI信令中任一个信令中,本申请对此不进行限定。
可选地,该第二配置信息包括重配或激活的配置参数。
可选地,该第二配置信息还可以包括去激活的配置参数或释放的配置参数。也就是说,在配置新的配置参数的同时,可以删除原来的配置参数。
可选地,该配置参数包括测量上报相关配置,测量资源相关配置,TCI状态,空间关系(spatial relation),上行调度请求(scheduling request,SR)资源,物理上行控制信道资源中的至少一项。
具体地,测量上报相关配置可以是reportConfig,测量资源相关配置可以是resource,resource set,resource setting,SRS resource,SRS resource Set,定时提前量(time advance,TA),时间提前量组(time advance group,TAG),物理随机接入信道(physical random access channel,PRACH)相关资源,配置的上行授权(configured UL grant),半静态的物理上行链路共享信道(physical uplink shared channel,PUSCH)资源中的至少一项。该配置参数还可以包括混合自动重传请求(hybrid automatic repeat request,HARQ)进程,功控相关参数。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端实现的方法和操作,也可以由可用于终端的部件(例如芯片或者电路)实现,由接入网设备实现的方法和操作,也可以由可用于接入网设备的部件(例如芯片或者电路)实现。
上述主要从各个交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以使用硬件的形式实现,也可以使用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以使用对应各个功能划分各个功能模块为例进行说明。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的 先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以上,结合图5至图6详细说明了本申请实施例提供的方法。以下,结合图7至图18详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图7示出了本申请实施例的确定天线面板状态的装置700的示意性框图。
应理解,该装置700可以对应于图3所示的实施例中的终端,可以具有方法中的终端的任意功能。该装置700,包括收发模块710和处理模块720。该收发模块可以包括发送模块和/或接收模块。
该收发模块710,用于接收配置信息,该配置信息包括至少一个下行信号资源集合;
该处理模块720,用于在该至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板开启的情况下,控制该收发模块发送第一反馈信息,该第一反馈信息用于指示该第一下行信号资源集合中的资源的质量,其中,该第一下行信号资源集合中的资源的质量是由该第一天线面板测量下行信号得到的;或
该处理模块720,用于在该至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板关闭的情况下,控制该收发模块发送第二反馈信息,该第二反馈信息用于指示该第一天线面板关闭。
可选地,该处理模块720,还用于在发送该第一反馈信息或该第二反馈信息之前,根据第一映射关系和该第一下行信号资源集合,确定该第一下行信号资源集合对应的该第一天线面板,该第一映射关系为该至少一个下行信号资源集合和至少一个天线面板的映射关系。
可选地,该处理模块720,还用于在发送该第一反馈信息或该第二反馈信息之前,根据第二映射关系、第三映射关系和该第一下行信号资源集合,确定该第一下行信号资源集合对应的该第一天线面板,第二映射关系为至少一个上报配置与至少一个下行信号资源集合的映射关系,该第三映射关系为至少一个上报配置和至少一个天线面板的映射关系。
可选地,该第二反馈信息包括至少一个字段,该至少一个字段的取值为预设值时表示该第一天线面板关闭。
图8示出了本申请实施例提供的波束失败恢复的装置800,该装置800可以为图3中所述的终端。该装置可以采用如图8所示的硬件架构。该装置可以包括处理器810和收发器830。该收发器可以包括发送器和/或接收器。可选地,该装置还可以包括存储器840,该处理器810、收发器830和存储器840通过内部连接通路互相通信。图7中的处理模块720所实现的相关功能可以由处理器810来实现,收发模块710所实现的相关功能可以由处理器810控制收发器830来实现。
可选地,处理器810可以是一个CPU,微处理器,ASIC,专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对波束失败恢复的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器810可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器830用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器840包括但不限于是随机存取存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程存储器(erasable programmable read only memory,EPROM)、只读光盘(compact disc read-only memory,CD-ROM),该存储器840用于存储相关指令及数据。
存储器840用于存储终端的程序代码和数据,可以为单独的器件或集成在处理器810中。
具体地,所述处理器810用于控制收发器与终端进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置800还可以包括输出设备和输入设备。输出设备和处理器810通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器810通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图8仅仅示出了波束失败恢复的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
在一种可能的设计中,该装置800可以是芯片,例如可以为可用于终端中的通信芯片,用于实现终端中处理器810的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端也可以是电路。该装置可以用于执行上述方法实施例中由终端所执行的动作。
图9示出了本申请实施例的确定天线面板状态的装置900的示意性框图。
应理解,该装置900可以对应于图3所示的实施例中的网络设备,可以具有方法中的网络设备的任意功能。该装置900,包括收发模块910和处理模块920。
该收发模块910,用于发送配置信息,该配置信息包括至少一个下行信号资源集合;
该收发模块910,还用于接收第一反馈信息或第二反馈信息,该第一反馈信息用于指示该至少一个下行信号资源集合中的第一下行信号资源集合中的资源的质量,其中,该第一下行信号资源集合中的资源的质量为终端根据该第一下行信号资源集合对应的第一天线面板在开启的状态下测量下行信号得到的,该第二反馈信息用于指示该至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板关闭;
该处理模块920,用于根据该第一反馈信息或该第二反馈信息,确定该第一天线面板开启或关闭。
可选地,该至少一个下行信号资源集合和至少一个天线面板具有第一映射关系,该第一天线面板为该至少一个天线面板中对应于该第一下行信号资源集合的天线面板。
可选地,该至少一个上报配置与该至少一个下行信号资源集合具有第二映射关系,该至少一个上报配置与至少一个天线面板具有第三映射关系,该第一天线面板为该至少一个天线面板中对应于第一上报配置的天线面板,该第一上报配置为该至少一个上报配置中对应于该第一下行信号资源集合的上报配置。
可选地,该第二反馈信息包括至少一个字段,该至少一个字段的取值为预设值时表示该第一天线面板关闭。
图10示出了本申请实施例提供的确定天线面板状态的装置1000,该装置1000可以为图9中所述的网络设备。该装置可以采用如图10所示的硬件架构。该装置可以包括处理器1010和收发器1020,可选地,该装置还可以包括存储器1030,该处理器1010、收发器1020和存储器1030通过内部连接通路互相通信。图9中的处理模块920所实现的相关功能可以由处理器1010来实现,收发模块910所实现的相关功能可以由处理器1010控制收发器1020来实现。
可选地,处理器1010可以是一个CPU,微处理器,ASIC,专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对确定天线面板状态的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1010可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1020用于发送数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1030包括但不限于是RAM、ROM、EPROM、CD-ROM,该存储器1030用于存储相关指令及数据。
存储器1030用于存储网络设备的程序代码和数据,可以为单独的器件或集成在处理器1010中。
具体地,所述处理器1010用于控制收发器与网络设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1000还可以包括输出设备和输入设备。输出设备和处理器1010通信,可以以多种方式来显示信息。例如,输出设备可以是LCD,LED显示设备,CRT显示设备,或投影仪(projector)等。输入设备和处理器901通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图10仅仅示出了确定天线面板状态的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
在一种可能的设计中,该装置1000可以是芯片,例如可以为可用于网络设备中的通 信芯片,用于实现网络设备中处理器1010的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是网络设备也可以是电路。该装置可以用于执行上述方法实施例中由网络设备所执行的动作。
图11示出了本申请实施例的确定天线面板状态的装置1100的示意性框图。
应理解,该装置1100可以对应于图6所示的实施例中的终端,可以具有方法中的终端的任意功能。该装置1100,包括收发模块1110和处理模块1120。该收发模块可以包括发送模块和/或接收模块。
该收发模块1110,用于接收第一配置信息,该第一配置信息包括至少一个上行信号资源集合;
该处理模块1120,用于在该至少一个上行信号资源集合中的第一上行信号资源集合对应的第一天线面板开启的情况下,控制该收发模块采用该第一天线面板发送第一参考信号,该第一参考信号为该第一上行信号资源集合中的资源对应的参考信号;或
该处理模块1120,用于在该至少一个上行信号资源集合中的第一上行信号资源集合对应的第一天线面板关闭的情况下,控制该收发模块不发送第一参考信号,该第一参考信号为该第一上行信号资源集合中的资源对应的参考信号。
可选地,该至少一个上行信号资源集合和至少一个天线面板具有第一映射关系,该第一天线面板为该至少一个天线面板中对应于该第一上行信号资源集合的天线面板。
可选地,该收发模块1110,还用于接收第二配置信息;该处理模块,还用于根据该第二配置信息,调整该第一天线面板的配置参数。
可选地,该第二配置信息包括重配的配置参数,该配置参数包括测量上报相关配置,测量资源相关配置,传输配置编号TCI状态,空间关系,上行调度请求SR资源,物理上行控制信道资源中的至少一项。
图12示出了本申请实施例提供的波束失败恢复的装置1200,该装置1200可以为图3中所述的终端。该装置可以采用如图12所示的硬件架构。该装置可以包括处理器1210和收发器1230。该收发器可以包括发送器和/或接收器。可选地,该装置还可以包括存储器1240,该处理器1210、收发器1230和存储器1240通过内部连接通路互相通信。图11中的处理模块1120所实现的相关功能可以由处理器1210来实现,收发模块1110所实现的相关功能可以由处理器1210控制收发器1230来实现。
可选地,处理器1210可以是一个CPU,微处理器,ASIC,专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对波束失败恢复的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1210可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1230用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1240包括但不限于是RAM、ROM、EPROM、CD-ROM,该存储器1240用于存储相关指令及数据。
存储器1240用于存储终端的程序代码和数据,可以为单独的器件或集成在处理器1210中。
具体地,所述处理器1210用于控制收发器与终端进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1200还可以包括输出设备和输入设备。输出设备和处理器1210通信,可以以多种方式来显示信息。例如,输出设备可以是LCD,LED显示设备,CRT显示设备,或投影仪等。输入设备和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图12仅仅示出了波束失败恢复的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的终端都在本申请的保护范围之内。
在一种可能的设计中,该装置1200可以是芯片,例如可以为可用于终端中的通信芯片,用于实现终端中处理器1210的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是终端也可以是电路。该装置可以用于执行上述方法实施例中由终端所执行的动作。
图13示出了本申请实施例的确定天线面板状态的装置1300的示意性框图。
应理解,该装置1300可以对应于图6所示的实施例中的网络设备,可以具有方法中的网络设备的任意功能。该装置1300,包括收发模块1310和处理模块1320。该收发模块可以包括发送模块和/或接收模块。
该收发模块1310,用于发送第一配置信息,该第一配置信息包括至少一个上行信号资源集合;
该处理模块1320,用于检测该至少一个上行信号资源集合中的第一上行信号资源集合中的第一资源对应的第一参考信号;
该处理模块1320,还用于根据该第一参考信号的接收情况,确定该第一上行信号资源集合对应的第一天线面板开启或关闭。
可选地,该至少一个上行信号资源集合和至少一个天线面板具有第一映射关系,该第一天线面板为该至少一个天线面板中对应于该第一上行信号资源集合的天线面板。
可选地,该处理模块1320具体用于:在没有接收到该第一参考信号的情况下,确定该第一天线面板关闭;或在接收到的该第一参考信号的质量小于或等于预设质量阈值的情况下,确定该第一天线面板关闭;或在接收到的该第一参考信号的质量大于该预设质量阈值的情况下,确定该第一天线面板开启。
可选地,该收发模块1310,还用于在所述第一天线面板关闭的情况下,向终端发送 第二配置信息,该第二配置信息用于调整该第一天线面板的配置参数。
可选地,该第二配置信息包括重配的配置参数,该配置参数包括测量上报相关配置,测量资源相关配置,传输配置编号TCI状态,空间关系,上行调度请求SR资源,物理上行控制信道资源中的至少一项。
图14示出了本申请实施例提供的波束失败恢复的装置1400,该装置1400可以为图6中所述的网络设备。该装置可以采用如图14所示的硬件架构。该装置可以包括处理器1410和收发器1430。该收发器可以包括发送器和/或接收器。可选地,该装置还可以包括存储器1440,该处理器1410、收发器1430和存储器1440通过内部连接通路互相通信。图13中的处理模块1320所实现的相关功能可以由处理器1410来实现,收发模块1310所实现的相关功能可以由处理器1410控制收发器1430来实现。
可选地,处理器1410可以是一个CPU,微处理器,ASIC,专用处理器,或一个或多个用于执行本申请实施例技术方案的集成电路。或者,处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对波束失败恢复的装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。
可选地,该处理器1410可以包括是一个或多个处理器,例如包括一个或多个CPU,在处理器是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该收发器1430用于发送和接收数据和/或信号,以及接收数据和/或信号。该收发器可以包括发射器和接收器,发射器用于发送数据和/或信号,接收器用于接收数据和/或信号。
该存储器1440包括但不限于是RAM、ROM、EPROM、CD-ROM,该存储器1440用于存储相关指令及数据。
存储器1440用于存储网络设备的程序代码和数据,可以为单独的器件或集成在处理器1410中。
具体地,所述处理器1410用于控制收发器与网络设备进行信息传输。具体可参见方法实施例中的描述,在此不再赘述。
在具体实现中,作为一种实施例,装置1400还可以包括输出设备和输入设备。输出设备和处理器1410通信,可以以多种方式来显示信息。例如,输出设备可以是LCD,LED显示设备,CRT显示设备,或投影仪(projector)等。输入设备和处理器601通信,可以以多种方式接收用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
可以理解的是,图14仅仅示出了波束失败恢复的装置的简化设计。在实际应用中,该装置还可以分别包含必要的其他元件,包含但不限于任意数量的收发器、处理器、控制器、存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
在一种可能的设计中,该装置1400可以是芯片,例如可以为可用于网络设备中的通信芯片,用于实现网络设备中处理器1410的相关功能。该芯片可以为实现相关功能的现场可编程门阵列,专用集成芯片,系统芯片,中央处理器,网络处理器,数字信号处理电路,微控制器,还可以采用可编程控制器或其他集成芯片。该芯片中,可选的可以包括一个或多个存储器,用于存储程序代码,当所述代码被执行时,使得处理器实现相应的功能。
本申请实施例还提供一种装置,该装置可以是网络设备也可以是电路。该装置可以用于执行上述方法实施例中由网络设备所执行的动作。
可选地,本实施例中的装置为终端时,图15示出了一种简化的终端的结构示意图。便于理解和图示方便,图15中,终端以手机作为例子。如图15所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图15中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图15所示,终端包括收发单元1510和处理单元1520。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1510中用于实现接收功能的器件视为接收单元,将收发单元1510中用于实现发送功能的器件视为发送单元,即收发单元1510包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1510用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1520用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1520用于执行终端侧的处理步骤303。收发单元1510,用于执行图3中的步骤301和/或步骤304中的收发操作,和/或收发单元1510还用于执行本申请实施例中终端侧的其他收发步骤。或者处理单元1520用于执行终端侧的处理步骤601和/或602。收发单元1510,用于执行图6中的步骤603中的收发操作,和/或收发单元1510还用于执行本申请实施例中终端侧的其他收发步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
可选地,该装置为终端时,还可以参照图16所示的设备。作为一个例子,该设备可以完成类似于图15中处理器1510的功能。在图16中,该设备包括处理器1601,发送数据处理器1603,接收数据处理器1605。上述实施例中的处理模块可以是图16中的该处理器1601,并完成相应的功能。上述实施例中的收发模块710或收发模块1110可以是图16中的接收数据处理器1605或发送数据处理器1603。虽然图16中示出了信道编码器、信 道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图17示出本实施例的另一种终端的形式。处理装置1700中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信设备可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1703,接口1704。其中处理器1703完成处理模块720或处理模块1120的功能,接口1704完成上述收发模块710或收发模块1110的功能。作为另一种变形,该调制子系统包括存储器1706、处理器1703及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现实施例一至五之一所述方法。需要注意的是,所述存储器1706可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1700中,只要该存储器1706可以连接到所述处理器1703即可。
本实施例中的装置为接入网设备时,该接入网设备可以如图18所示,装置1800包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1810和一个或多个BBU(也可称为数字单元,digital unit,DU)1820。所述RRU 1810可以称为收发模块,与上述接收模块和发送模块对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1811和射频单元1812。所述RRU 1810部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端发送指示信息。所述BBU 1810部分主要用于进行基带处理,对基站进行控制等。所述RRU 1810与BBU 1820可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1820为基站的控制中心,也可以称为处理模块,可以与图9中的处理模块920对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于接入网设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1820可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1820还包括存储器1821和处理器1822。所述存储器1821用以存储必要的指令和数据。所述处理器1822用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于接入网设备的操作流程。所述存储器1821和处理器1822可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
另外,接入网设备不限于上述形态,也可以是其它形态:例如:包括BBU和自适应无线单元(adaptive radio unit,ARU),或BBU和有源天线单元(active antenna unit,AAU);也可以为客户终端(customer premises equipment,CPE),还可以为其它形态,本申请不限定。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,处理器可以是集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、PROM、EPROM、EEPROM或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchronous link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。其中,单独存在A或B,并不限定A或B的数量。以单独存在A为例,可以理解为具有一个或多个A。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种确定天线面板状态的方法,其特征在于,包括:
    接收配置信息,所述配置信息包括至少一个下行信号资源集合;
    在所述至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板开启的情况下,发送第一反馈信息,所述第一反馈信息用于指示所述第一下行信号资源集合中的资源的质量,其中,所述第一下行信号资源集合中的资源的质量是由所述第一天线面板测量下行信号得到的;或
    在所述至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板关闭的情况下,发送第二反馈信息,所述第二反馈信息用于指示所述第一天线面板关闭。
  2. 根据权利要求1所述的方法,其特征在于,在发送所述第一反馈信息或所述第二反馈信息之前,所述方法还包括:
    根据第一映射关系和所述第一下行信号资源集合,确定所述第一下行信号资源集合对应的所述第一天线面板,所述第一映射关系为所述至少一个下行信号资源集合和至少一个天线面板的映射关系。
  3. 根据权利要求1所述的方法,其特征在于,在发送所述第一反馈信息或所述第二反馈信息之前,所述方法还包括:
    根据第二映射关系、第三映射关系和所述第一下行信号资源集合,确定所述第一下行信号资源集合对应的所述第一天线面板,第二映射关系为至少一个上报配置与至少一个下行信号资源集合的映射关系,所述第三映射关系为至少一个上报配置和至少一个天线面板的映射关系。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第二反馈信息包括至少一个字段,所述至少一个字段的取值为预设值时表示所述第一天线面板关闭。
  5. 一种确定天线面板状态的方法,其特征在于,包括:
    发送配置信息,所述配置信息包括至少一个下行信号资源集合;
    接收第一反馈信息或第二反馈信息,所述第一反馈信息用于指示所述至少一个下行信号资源集合中的第一下行信号资源集合中的资源的质量,其中,所述第一下行信号资源集合中的资源的质量为终端根据所述第一下行信号资源集合对应的第一天线面板在开启的状态下测量下行信号得到的,所述第二反馈信息用于指示所述至少一个下行信号资源集合中的第一下行信号资源集合对应的第一天线面板关闭;
    根据所述第一反馈信息或所述第二反馈信息,确定所述第一天线面板开启或关闭。
  6. 根据权利要求5所述的方法,其特征在于,所述至少一个下行信号资源集合和至少一个天线面板具有第一映射关系,所述第一天线面板为所述至少一个天线面板中对应于所述第一下行信号资源集合的天线面板。
  7. 根据权利要求5所述的方法,其特征在于,所述至少一个上报配置与所述至少一个下行信号资源集合具有第二映射关系,所述至少一个上报配置与至少一个天线面板具有第三映射关系,所述第一天线面板为所述至少一个天线面板中对应于第一上报配置的天线面板,所述第一上报配置为所述至少一个上报配置中对应于所述第一下行信号资源集合的 上报配置。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述第二反馈信息包括至少一个字段,所述至少一个字段的取值为预设值时表示所述第一天线面板关闭。
  9. 一种确定天线面板状态的方法,其特征在于,包括:
    接收第一配置信息,所述第一配置信息包括至少一个上行信号资源集合;
    在所述至少一个上行信号资源集合中的第一上行信号资源集合对应的第一天线面板开启的情况下,采用所述第一天线面板发送第一参考信号,所述第一参考信号为所述第一上行信号资源集合中的资源对应的参考信号;或
    在所述至少一个上行信号资源集合中的第一上行信号资源集合对应的第一天线面板关闭的情况下,不发送第一参考信号,所述第一参考信号为所述第一上行信号资源集合中的资源对应的参考信号。
  10. 根据权利要求9所述的方法,其特征在于,所述至少一个上行信号资源集合和至少一个天线面板具有第一映射关系,所述第一天线面板为所述至少一个天线面板中对应于所述第一上行信号资源集合的天线面板。
  11. 根据权利要求9或10所述的方法,其特征在于,所述方法还包括:
    接收第二配置信息;
    根据所述第二配置信息,调整所述第一天线面板的配置参数。
  12. 根据权利要求11所述的方法,其特征在于,所述第二配置信息包括重配的配置参数,所述配置参数包括测量上报相关配置,测量资源相关配置,传输配置编号TCI状态,空间关系,上行调度请求SR资源,物理上行控制信道资源中的至少一项。
  13. 一种确定天线面板状态的方法,其特征在于,包括:
    发送第一配置信息,所述第一配置信息包括至少一个上行信号资源集合;
    检测所述至少一个上行信号资源集合中的第一上行信号资源集合中的第一资源对应的第一参考信号;
    根据所述第一参考信号的接收情况,确定所述第一上行信号资源集合对应的第一天线面板开启或关闭。
  14. 根据权利要求13所述的方法,其特征在于,所述至少一个上行信号资源集合和至少一个天线面板具有第一映射关系,所述第一天线面板为所述至少一个天线面板中对应于所述第一上行信号资源集合的天线面板。
  15. 根据权利要求13或14所述的方法,其特征在于,所述根据所述第一参考信号的接收情况,确定所述第一上行信号资源集合对应的第一天线面板是否开启包括:
    在没有接收到所述第一参考信号的情况下,确定所述第一天线面板关闭;或
    在接收到的所述第一参考信号的质量小于或等于预设质量阈值的情况下,确定所述第一天线面板关闭;或
    在接收到的所述第一参考信号的质量大于所述预设质量阈值的情况下,确定所述第一天线面板开启。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,在所述第一天线面板关闭的情况下,所述方法还包括:
    向终端发送第二配置信息,所述第二配置信息用于调整所述第一天线面板的配置参 数。
  17. 根据权利要求16所述的方法,其特征在于,所述第二配置信息包括重配的配置参数,所述配置参数包括测量上报相关配置,测量资源相关配置,传输配置编号TCI状态,空间关系,上行调度请求SR资源,物理上行控制信道资源中的至少一项。
  18. 一种确定天线面板状态的装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至4中任一项所述的方法或9至12中任一项所述的方法。
  19. 一种确定天线面板状态的装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求5至8中任一项所述的方法或13至17中任一项所述的方法。
  20. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至4中任一项所述的方法或9至12中任一项所述的方法。
  21. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求5至8中任一项所述的方法或13至17中任一项所述的方法。
  22. 一种计算机程序产品,当其在处理器上运行时,使得处理器执行权利要求1至4中任一项所述的方法或9至12中任一项所述的方法。
  23. 一种计算机程序产品,当其在处理器上运行时,使得处理器执行权利要求5至8中任一项所述的方法或13至17中任一项所述的方法。
PCT/CN2020/092929 2019-06-10 2020-05-28 确定天线面板状态的方法和装置 WO2020248825A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20823651.3A EP3952144A4 (en) 2019-06-10 2020-05-28 METHOD AND DEVICE FOR DETERMINING THE CONDITION OF AN ANTENNA PANEL
US17/531,054 US20220077943A1 (en) 2019-06-10 2021-11-19 Method and apparatus for determining status of antenna panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910497847.8A CN112073129B (zh) 2019-06-10 2019-06-10 确定天线面板状态的方法和装置
CN201910497847.8 2019-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/531,054 Continuation US20220077943A1 (en) 2019-06-10 2021-11-19 Method and apparatus for determining status of antenna panel

Publications (1)

Publication Number Publication Date
WO2020248825A1 true WO2020248825A1 (zh) 2020-12-17

Family

ID=73658401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092929 WO2020248825A1 (zh) 2019-06-10 2020-05-28 确定天线面板状态的方法和装置

Country Status (4)

Country Link
US (1) US20220077943A1 (zh)
EP (1) EP3952144A4 (zh)
CN (2) CN112073129B (zh)
WO (1) WO2020248825A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083108A1 (zh) * 2021-11-10 2023-05-19 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086750B (zh) * 2019-06-13 2022-02-08 中国电信股份有限公司 终端天线面板工作状态的方法、系统以及存储介质
CN116337121A (zh) * 2021-12-22 2023-06-27 华为技术有限公司 远距离感知的方法和装置
WO2023173378A1 (en) * 2022-03-17 2023-09-21 Nec Corporation Method, device and computer readable medium of communication
WO2023204465A1 (ko) * 2022-04-21 2023-10-26 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
CN117014120A (zh) * 2022-04-29 2023-11-07 大唐移动通信设备有限公司 测量反馈方法、装置及存储介质
WO2024020811A1 (zh) * 2022-07-26 2024-02-01 北京小米移动软件有限公司 一种传输参考信号测量结果的方法、装置及存储介质
CN117544974A (zh) * 2022-08-01 2024-02-09 华为技术有限公司 一种通信方法和装置
CN117651343A (zh) * 2022-08-12 2024-03-05 华为技术有限公司 一种频域分量上报的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288984A (zh) * 2017-01-09 2018-07-17 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
WO2018141204A1 (en) * 2017-02-03 2018-08-09 Huawei Technologies Co., Ltd. Ue-assisted srs resource allocation
CN109391305A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种通信处理方法及装置
WO2019047965A1 (en) * 2017-09-11 2019-03-14 Qualcomm Incorporated RESTRICTION DESIGN OF MIMO CODES BOOK SUBASSEMBLY

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011115421A2 (en) * 2010-03-17 2011-09-22 Lg Electronics Inc. Method and apparatus for providing channel state information-reference signal (csi-rs) configuration information in a wireless communication system supporting multiple antennas
CN107615677B (zh) * 2015-05-19 2022-10-18 华为技术有限公司 天线阵列的信道信息反馈方法与装置
US20170139520A1 (en) * 2015-11-17 2017-05-18 Jtouch Corporation Metal mesh touch module with transparent antenna and touch display apparatus using same
US10505618B2 (en) * 2016-08-10 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for beam measurement and management in wireless systems
US10163329B1 (en) * 2017-06-24 2018-12-25 Vivint, Inc. Home alarm system
US10972972B2 (en) * 2018-07-17 2021-04-06 FG Innovation Company Limited Methods and apparatuses for operating multiple antenna panels
US11595891B2 (en) * 2019-03-14 2023-02-28 Qualcomm Incorporated Techniques for signaling go-to-sleep for multiple transmission/reception points
US11943030B2 (en) * 2019-05-09 2024-03-26 FG Innovation Company Limited Method and apparatus for antenna panel control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288984A (zh) * 2017-01-09 2018-07-17 华为技术有限公司 一种参数指示及确定方法和接收端设备及发射端设备
WO2018141204A1 (en) * 2017-02-03 2018-08-09 Huawei Technologies Co., Ltd. Ue-assisted srs resource allocation
CN109391305A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 一种通信处理方法及装置
WO2019047965A1 (en) * 2017-09-11 2019-03-14 Qualcomm Incorporated RESTRICTION DESIGN OF MIMO CODES BOOK SUBASSEMBLY

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Support of power efficient panel switch UE feature", 3GPP TSG RAN MEETING 80 RP-180678, 30 June 2018 (2018-06-30), XP051455165, DOI: 20200623145820Y *
See also references of EP3952144A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083108A1 (zh) * 2021-11-10 2023-05-19 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质

Also Published As

Publication number Publication date
CN112073129B (zh) 2022-03-29
EP3952144A1 (en) 2022-02-09
CN112073129A (zh) 2020-12-11
CN114826447A (zh) 2022-07-29
EP3952144A4 (en) 2022-06-22
US20220077943A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2020248825A1 (zh) 确定天线面板状态的方法和装置
WO2020156174A1 (zh) 波束指示的方法和通信装置
WO2020062971A1 (zh) 传输信号的方法和通信装置
WO2020103793A1 (zh) 波束上报的方法和通信装置
WO2021159493A1 (zh) 一种资源配置的方法和装置
WO2021027750A1 (zh) 更新波束信息的方法和通信装置
WO2020083053A1 (zh) 通信方法和通信装置
WO2020238617A1 (zh) 确定小区激活时延的方法和装置
WO2020143647A1 (zh) 传输信道状态信息的方法和装置
WO2020221349A1 (zh) 波束失败上报的方法和装置
WO2020114294A1 (zh) 一种天线面板及波束的管理方法和设备
WO2022007967A1 (zh) 一种参考信号资源的配置方法和装置
WO2021017874A1 (zh) 一种通信方法及通信装置
WO2021073577A1 (zh) 资源测量的方法和装置
WO2020029942A1 (zh) 波束测量的方法和装置
WO2021244201A1 (zh) 波束测量方法和装置
WO2020248779A1 (zh) 更新传输配置指示tci信息的方法与通信装置
WO2021134626A1 (zh) 传输同步信号块的方法和装置
WO2020052443A1 (zh) 管理资源的方法和通信装置
WO2022082386A1 (zh) 一种无线通信的方法与装置
US20220225337A1 (en) Interference measurement reporting method and communications apparatus
WO2021159528A1 (zh) 一种通信方法和装置
US20220140887A1 (en) Method for determining receive parameter used for channel measurement and apparatus
WO2020221040A1 (zh) 通信方法和通信装置
WO2021159398A1 (zh) 波束失败恢复的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020823651

Country of ref document: EP

Effective date: 20211104

NENP Non-entry into the national phase

Ref country code: DE