WO2022218198A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2022218198A1
WO2022218198A1 PCT/CN2022/085478 CN2022085478W WO2022218198A1 WO 2022218198 A1 WO2022218198 A1 WO 2022218198A1 CN 2022085478 W CN2022085478 W CN 2022085478W WO 2022218198 A1 WO2022218198 A1 WO 2022218198A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
information
qcl information
qcl
signal port
Prior art date
Application number
PCT/CN2022/085478
Other languages
English (en)
French (fr)
Inventor
吴晔
纪刘榴
金黄平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22787425.2A priority Critical patent/EP4311341A1/en
Publication of WO2022218198A1 publication Critical patent/WO2022218198A1/zh
Priority to US18/486,283 priority patent/US20240048216A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of wireless communication, and in particular, to a communication method and a communication device.
  • quasi co-located (QCL) of antenna ports is a state assumption between antenna ports. If one antenna port in the transmitting end is QCL with another antenna port, it means that the receiving end can assume the large-scale characteristics (or radio channel characteristics) of the signal received from one antenna port (or the radio channel corresponding to the antenna port). ), in whole or in part the same as the large-scale characteristics of the signal received from another antenna port (or the wireless channel corresponding to the antenna port).
  • the large-scale characteristics of the signal may include Doppler shift, Doppler spread, average delay, delay spread, and the like.
  • QCL can be applied to various signals transmitted by antenna ports, such as demodulation reference signal (DMRS), channel state information reference signal (CSI-RS), etc.
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • the transmitter can make a unified QCL assumption for multiple different DMRS ports (DMRS ports) included in a DMRS code division multiplexing (code division multiplexing, CDM) group.
  • DMRS ports DMRS ports
  • code division multiplexing CDM
  • one DMRS port corresponds to one transport layer. and used for channel estimation for the transport layer.
  • the receiving end can perform channel estimation on multiple transport layers corresponding to multiple DMRS ports in the DMRS CDM group based on the unified QCL assumption, so as to realize data demodulation.
  • the QCLs of DMRSs corresponding to different transmission layers of the same DMRS CDM group are assumed to have may be different, and the way that the receiver performs channel estimation based on the QCL assumption of the DMRS CDM group is likely to cause inaccurate DMRS channel estimation, which in turn affects the effect of data demodulation.
  • Embodiments of the present application provide a communication method and a communication device, which are used to support flexible configuration of QCL information of different reference signal ports, improve the success rate of channel estimation or channel measurement performed by the reference signal ports on the transport layer, and improve communication efficiency.
  • a first aspect of the embodiments of the present application provides a communication method, and the communication method can be executed by a communication device.
  • the communication device can be a transmitter (including network equipment or terminal equipment), or a component of the transmitter (such as a processor, a chip or a chip system, etc.).
  • the transmitter determines the first indication information, the first The indication information is used to configure the first reference signal port, and the configuration is used to indicate the first quasi-co-located QCL information of the first reference signal port; after that, the transmitting end sends the first indication information to the receiving end.
  • the transmitting end sends first indication information for performing QCL configuration on the first reference signal port to the receiving end, and the QCL configuration with the reference signal port as the granularity enables the receiving end to
  • the reference signal port performs channel estimation or channel demodulation at the corresponding transport layer.
  • the configuration granularity of the QCL information is set based on the reference signal port, which is equivalent to configuring the QCL relationship based on the transport layer, which can support the QCL information for different reference signal ports. It can be configured flexibly to improve the success rate of channel estimation or channel measurement performed by the reference signal port on the transport layer, and improve the communication efficiency.
  • the first indication information is further used to configure a second reference signal port, and the configuration is further used to indicate the value of the second reference signal port.
  • Second QCL information is further used to indicate the value of the second reference signal port.
  • the first indication information may further perform QCL configuration on other reference signal ports except the first reference signal port, for example, perform QCL configuration on the second reference signal port.
  • first reference signal port and the second reference signal port are different reference signal ports, and the first reference signal port and the second reference signal port may belong to the same DMRS CDM group, or may belong to the same DMRS CDM group.
  • Different DMRS CDM groups are not limited here.
  • the first QCL information is different from the second QCL information.
  • the first QCL information indicating the characteristics of the wireless channel corresponding to the first reference signal port may be different from the second QCL information indicating the characteristics of the wireless channel corresponding to the second reference signal port, so that the subsequent receiving end can pass different QCL information
  • the information is respectively used for channel estimation or channel demodulation at the transport layers corresponding to different reference signal ports.
  • the first QCL information is the same as the second QCL information.
  • the first QCL information includes QCL information of the first type.
  • the first QCL information of the first reference signal port may represent various wireless channel characteristics corresponding to the first reference signal port by multiple types, wherein the first QCL information is used to configure the first reference signal port Specifically, at least one type of QCL information in the first QCL information can be configured, for example, the first type of QCL information.
  • the first QCL information may further include other types of QCL information, such as second type of QCL information, third type of QCL information, or other types of QCL information, and the like.
  • the second QCL information includes QCL information of the first type.
  • the second QCL information of the second reference signal port can represent various wireless channel characteristics corresponding to the second reference signal port by multiple types, wherein the first QCL information for configuring the second reference signal port
  • the indication information may specifically be configured with at least one type of QCL information in the second QCL information, for example, the first type of QCL information.
  • the second QCL information may further include other types of QCL information, for example, the second type of QCL information, the third type of QCL information, or other types of QCL information.
  • the first type of QCL information in the first QCL information is different from the first type of QCL information in the second QCL information.
  • the first type of QCL information in the first QCL information indicating a certain wireless channel characteristic corresponding to the first reference signal port may be different from the second type of QCL information indicating the same wireless channel characteristic corresponding to the second reference signal port.
  • the second type of QCL information in the QCL information enables the subsequent receiving end to perform channel estimation or channel demodulation at the transmission layer corresponding to different reference signal ports through different QCL information of the first type.
  • the first type of QCL information in the first QCL information is the same as the first type of QCL information in the second QCL information.
  • the first QCL information is determined by QCL information of at least one first signal, where the first signal includes at least one of the following:
  • CSI-RS synchronization signal block (synchronization signal/physical broadcast channel block, SS/PBCH block or SSB), DMRS.
  • the configuration of the first indication information may indicate that the first QCL information can be derived from the QCL information of other signals, that is, the first QCL information can be determined by the QCL information of at least one first signal, and the first signal can be is at least one of CSI-RS, SSB, and DMRS, so that the first QCL information can be flexibly configured in various implementation manners.
  • the first type of QCL information in the first QCL information is determined by QCL information of at least one second signal, where the second signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the configuration of the first indication information may indicate that a certain type of QCL information in the first QCL information can be derived from the QCL information of other signals, for example, the first type of QCL information in the first QCL information, that is, The first type of QCL information in the first QCL information may be determined by the QCL information of at least one second signal, and the second signal may be at least one of CSI-RS, SSB, and DMRS, so that the second QCL information can be passed through
  • the first type of QCL information in the first QCL information may be determined by the QCL information of at least one second signal, and the second signal may be at least one of CSI-RS, SSB, and DMRS, so that the second QCL information can be passed through
  • the method further includes: the transmitting end determines second indication information, where the second indication information is used to indicate the frequency domain resource corresponding to the first QCL information; then , the transmitting end sends the second indication information to the receiving end.
  • the second indication information is preconfigured at the receiving end.
  • the second indication information and the first indication information are carried in the same message (for example, a DCI message), or, the second indication information and the first indication information are carried in different messages.
  • the transmitting end may also send second indication information to the receiving end for indicating the frequency domain resource corresponding to the first QCL information, that is, the transmitting end may configure the corresponding first QCL information for the first reference signal port frequency domain resources, so that the receiving end can subsequently determine to use the first QCL information on the designated frequency domain resources to perform channel estimation or channel measurement on the first reference signal port according to the second indication information.
  • the method further includes: the transmitting end determines third indication information, where the third indication information is used to indicate the first type of QCL information in the first QCL information corresponding frequency domain resources; then, the transmitting end sends the third indication information to the receiving end.
  • the transmitting end may also send third indication information to the receiving end for indicating the frequency domain resources corresponding to the first type of QCL information in the first QCL information, that is, the transmitting end may be the first reference signal port
  • the QCL information of the first type in the first QCL information configures the corresponding frequency domain resources, so that the receiving end can subsequently use the QCL information of the first type in the first QCL information on the specified frequency domain resources according to the third indication information.
  • the third indication information is preconfigured at the receiving end.
  • the third indication information and the first indication information are carried in the same message (for example, a DCI message), or, the third indication information and the first indication information are carried in different messages.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the QCL information of one or more reference signal ports is associated with the first reference signal port group.
  • the same QCL information configuration can be performed for one or more reference signal ports in the same reference signal port group, or, in other words, one or more reference signal ports with the same QCL information are regarded as the same reference signal port group, wherein the QCL information of one or more reference signal ports in the first reference signal port group is associated with the first reference signal port group, for example, associated with the group identifier, group position, group ID of the first reference signal port group number or other information.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the The same type of QCL information for one or more reference signal ports is associated with the first reference signal port group.
  • one or more reference signal ports in the same reference signal port group may be configured with the same QCL information of a certain type, or, in other words, will have one or more QCL information of the same certain type.
  • the reference signal ports are regarded as the same reference signal port group, wherein the same type of QCL information in one or more reference signal ports in the first reference signal port group is associated with the first reference signal port group, for example, associated with the first reference signal port group Refer to the group identification, group location, group number or other information of the signal port group.
  • the method further includes: the transmitting end determines fourth indication information, where the fourth indication information is used to indicate that the QCL information of the first reference signal port group corresponds to frequency domain resources; then, the transmitting end sends the fourth indication information to the receiving end.
  • the fourth indication information is preconfigured at the receiving end.
  • the fourth indication information and the first indication information are carried in the same message (for example, a DCI message), or, the fourth indication information and the first indication information are carried in different messages.
  • the transmitting end may also send fourth indication information to the receiving end for indicating the frequency domain resource corresponding to the QCL information of the first reference signal port group, that is, the transmitting end may be the QCL of the first reference signal port group
  • the information configures frequency domain resources, so that the receiving end can subsequently perform channel estimation or channel measurement on the first reference signal port group using the QCL information of the first reference signal port group on the designated frequency domain resources according to the fourth indication information.
  • the method further includes: the transmitting end determines fifth indication information, where the fifth indication information is used to indicate the first reference signal port group in the QCL information of the first reference signal port group. A frequency domain resource corresponding to one type of QCL information; then, the transmitting end sends the fourth indication information to the receiving end.
  • the fifth indication information is preconfigured at the receiving end.
  • the fifth indication information and the first indication information are carried in the same message (for example, a DCI message), or the fifth indication information and the first indication information are carried in different messages.
  • the transmitting end may also send fifth indication information to the receiving end for indicating the frequency domain resources corresponding to the first type of QCL information in the QCL information of the first reference signal port group, that is, the transmitting end may A certain type of QCL information in a reference signal port group is configured with corresponding frequency domain resources, so that the receiving end can subsequently use the first type of QCL information in the QCL information of the first reference signal port group on the frequency domain resources specified by the fifth indication information. perform channel estimation or channel measurement on the first reference signal port group according to the QCL information.
  • the first reference signal port is a DMRS port or a CSI-RS port.
  • the first reference signal port may be a DMRS port or a CSI-RS port, so that the solution may be suitable for configuring different reference signal ports.
  • a second aspect of the embodiments of the present application provides a communication method, and the communication method can be executed by a communication device.
  • the communication device can be a receiving end (including network equipment or terminal equipment), or a component of the receiving end (such as a processor, a chip or a chip system, etc.).
  • the receiving end receives the first indication information from the transmitting end,
  • the first indication information is used to configure the first reference signal port, and the configuration is used to indicate the first quasi-co-located QCL information of the first reference signal port; after that, the receiving end determines the first reference signal port according to the first indication information QCL information.
  • the receiving end receives the first indication information for performing the QCL configuration on the first reference signal port from the transmitting end, and the QCL configuration with the reference signal port as the granularity enables the receiving end to perform the QCL configuration on the first reference signal port according to the first QCL information
  • the reference signal port performs channel estimation or channel demodulation at the corresponding transport layer.
  • the configuration granularity of the QCL information is set based on the reference signal port, which is equivalent to configuring the QCL relationship based on the transport layer, which can support the QCL information for different reference signal ports. It can be configured flexibly to improve the success rate of channel estimation or channel measurement performed by the reference signal port on the transport layer, and improve the communication efficiency.
  • the first indication information is further used to configure the second reference signal port, and the configuration is further used to indicate second QCL information of the second reference signal port.
  • the receiving end may also determine the second QCL information according to the first indication information.
  • the first indication information may further perform QCL configuration on other reference signal ports except the first reference signal port, for example, perform QCL configuration on the second reference signal port.
  • first reference signal port and the second reference signal port are different reference signal ports, and the first reference signal port and the second reference signal port may belong to the same DMRS CDM group, or may belong to the same DMRS CDM group.
  • Different DMRS CDM groups are not limited here.
  • the first QCL information is different from the second QCL information.
  • the first QCL information indicating the characteristics of the wireless channel corresponding to the first reference signal port may be different from the second QCL information indicating the characteristics of the wireless channel corresponding to the second reference signal port, so that the subsequent receiving end can pass different QCL information
  • the information is respectively used for channel estimation or channel demodulation at the transport layers corresponding to different reference signal ports.
  • the first QCL information is the same as the second QCL information.
  • the first QCL information includes QCL information of the first type.
  • the first QCL information of the first reference signal port may represent various wireless channel characteristics corresponding to the first reference signal port by multiple types, wherein the first QCL information is used to configure the first reference signal port Specifically, at least one type of QCL information in the first QCL information can be configured, for example, the first type of QCL information.
  • the first QCL information may further include other types of QCL information, such as second type of QCL information, third type of QCL information, or other types of QCL information, and the like.
  • the second QCL information includes QCL information of the first type.
  • the second QCL information of the second reference signal port can represent various wireless channel characteristics corresponding to the second reference signal port by multiple types, wherein the first QCL information for configuring the second reference signal port
  • the indication information may specifically be configured with at least one type of QCL information in the second QCL information, for example, the first type of QCL information.
  • the second QCL information may further include other types of QCL information, for example, the second type of QCL information, the third type of QCL information, or other types of QCL information.
  • the first type of QCL information in the first QCL information is different from the first type of QCL information in the second QCL information.
  • the first type of QCL information in the first QCL information indicating a certain wireless channel characteristic corresponding to the first reference signal port may be different from the second type of QCL information indicating the same wireless channel characteristic corresponding to the second reference signal port.
  • the second type of QCL information in the QCL information enables the subsequent receiving end to perform channel estimation or channel demodulation at the transmission layer corresponding to different reference signal ports through different QCL information of the first type.
  • the first type of QCL information in the first QCL information is the same as the first type of QCL information in the second QCL information.
  • the first QCL information is determined by QCL information of at least one first signal, where the first signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the configuration of the first indication information may indicate that the first QCL information can be derived from the QCL information of other signals, that is, the first QCL information can be determined by the QCL information of at least one first signal, and the first signal can be is at least one of CSI-RS, SSB, and DMRS, so that the first QCL information can be flexibly configured in various implementation manners.
  • the first type of QCL information in the first QCL information is determined by QCL information of at least one second signal, and the second signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the configuration of the first indication information may indicate that a certain type of QCL information in the first QCL information can be derived from the QCL information of other signals, for example, the first type of QCL information in the first QCL information, that is,
  • the first type of QCL information in the first QCL information may be determined by the QCL information of at least one second signal, and the first signal may be at least one of CSI-RS, SSB, and DMRS, so that the second QCL information can pass
  • a variety of implementations are flexibly configured.
  • the method further includes: the receiving end receives second indication information from the transmitting end, where the second indication information is used to indicate a frequency domain corresponding to the first QCL information resource; then, the receiving end determines the frequency domain resource corresponding to the first QCL information according to the second indication information.
  • the second indication information is preconfigured at the receiving end.
  • the second indication information and the first indication information are carried in the same message (for example, a DCI message), or, the second indication information and the first indication information are carried in different messages.
  • the receiving end also receives second indication information from the transmitting end for indicating the frequency domain resource corresponding to the first QCL information, that is, the transmitting end can configure the corresponding first QCL information for the first reference signal port frequency domain resources, so that the receiving end can subsequently perform channel estimation or channel measurement on the first reference signal port using the first QCL information on the designated frequency domain resources according to the second indication information.
  • the method further includes: the receiving end receives third indication information from the transmitting end, where the third indication information is used to indicate the first type in the first QCL information The frequency domain resource corresponding to the QCL information of the first QCL information; then, the receiving end determines the frequency domain resource corresponding to the QCL information of the first type in the first QCL information according to the third indication information.
  • the receiving end may also receive third indication information from the transmitting end for indicating the frequency domain resources corresponding to the first type of QCL information in the first QCL information, that is, the transmitting end may be the first reference signal port.
  • the QCL information of the first type in the first QCL information configures the corresponding frequency domain resources, so that the receiving end can subsequently use the QCL information of the first type in the first QCL information on the specified frequency domain resources according to the third indication information.
  • the third indication information is preconfigured at the receiving end.
  • the third indication information and the first indication information are carried in the same message (for example, a DCI message), or, the third indication information and the first indication information are carried in different messages.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the QCL information of one or more reference signal ports is associated with the first reference signal port group.
  • the same QCL information configuration can be performed for one or more reference signal ports in the same reference signal port group, or, in other words, one or more reference signal ports with the same QCL information are regarded as the same reference signal port group, wherein the QCL information of one or more reference signal ports in the first reference signal port group is associated with the first reference signal port group, for example, associated with the group identifier, group position, group ID of the first reference signal port group number or other information.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the The same type of QCL information for one or more reference signal ports is associated with the first reference signal port group.
  • one or more reference signal ports in the same reference signal port group may be configured with the same QCL information of a certain type, or, in other words, will have one or more QCL information of the same certain type.
  • the reference signal ports are regarded as the same reference signal port group, wherein the same type of QCL information in one or more reference signal ports in the first reference signal port group is associated with the first reference signal port group, for example, associated with the first reference signal port group Refer to the group identification, group location, group number or other information of the signal port group.
  • the method further includes: the receiving end receives fourth indication information from the transmitting end, where the fourth indication information is used to indicate the QCL of the first reference signal port group The frequency domain resource corresponding to the information; then, the receiving end determines the frequency domain resource corresponding to the first reference signal port group according to the fourth indication information.
  • the fourth indication information is preconfigured at the receiving end.
  • the fourth indication information and the first indication information are carried in the same message (for example, a DCI message), or, the fourth indication information and the first indication information are carried in different messages.
  • the receiving end may also receive fourth indication information from the transmitting end for indicating the frequency domain resource corresponding to the QCL information of the first reference signal port group, that is, the transmitting end may be the QCL of the first reference signal port group
  • the information configures frequency domain resources, so that the receiving end can subsequently perform channel estimation or channel measurement on the first reference signal port group using the QCL information of the first reference signal port group on the designated frequency domain resources according to the fourth indication information.
  • the method further includes: the receiving end receives fifth indication information from the transmitting end, where the fifth indication information is used to indicate the QCL of the first reference signal port group The frequency domain resources corresponding to the first type of QCL information in the information; then, the receiving end determines, according to the fifth indication information, the frequency domain resources corresponding to the first type of QCL information in the QCL information of the first reference signal port group.
  • the fifth indication information is preconfigured at the receiving end.
  • the fifth indication information and the first indication information are carried in the same message (for example, a DCI message), or the fifth indication information and the first indication information are carried in different messages.
  • the transmitting end may also send fifth indication information to the receiving end for indicating the frequency domain resources corresponding to the first type of QCL information in the QCL information of the first reference signal port group, that is, the transmitting end may
  • a certain type of QCL information in a reference signal port group is configured with corresponding frequency domain resources, so that the receiving end can subsequently use the first reference signal port group QCL information on the specified frequency domain resources according to the fifth indication information.
  • the type of QCL information performs channel estimation or channel measurement for the first reference signal port group.
  • the first reference signal port is a DMRS port or a CSI-RS port.
  • the first reference signal port may be a DMRS port or a CSI-RS port, so that the solution may be suitable for configuring different reference signal ports.
  • a third aspect of the embodiments of the present application provides a communication device, including:
  • a processing unit configured to determine first indication information, where the first indication information is used to configure a first reference signal port, where the configuration is used to indicate first quasi-co-located QCL information of the first reference signal port;
  • a transceiver unit configured to send the first indication information.
  • the first indication information is further used to configure the second reference signal port, and the configuration is further used to indicate second QCL information of the second reference signal port.
  • the first QCL information is different from the second QCL information.
  • the first QCL information includes QCL information of the first type.
  • the second QCL information includes QCL information of the first type.
  • the first type of QCL information in the first QCL information is different from the first type of QCL information in the second QCL information.
  • the first QCL information is determined by QCL information of at least one first signal, and the first signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the QCL information of the first type in the first QCL information is determined by the QCL information of at least one second signal, and the second signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the processing unit is further configured to determine second indication information, where the second indication information is used to indicate the frequency domain resource corresponding to the first QCL information;
  • the transceiver unit is further configured to send the second indication information.
  • the processing unit is further configured to determine third indication information, where the third indication information is used to indicate the frequency domain resource corresponding to the QCL information of the first type in the first QCL information;
  • the transceiver unit is further configured to send the third indication information.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the QCL information of one or more reference signal ports is associated with the first reference signal port group.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the The same type of QCL information for one or more reference signal ports is associated with the first reference signal port group.
  • the processing unit is further configured to determine fourth indication information, where the fourth indication information is used to indicate a frequency domain resource corresponding to the QCL information of the first reference signal port group;
  • the transceiver unit is further configured to send the fourth indication information.
  • the processing unit is further configured to determine fifth indication information, where the fifth indication information is used to indicate a frequency domain resource corresponding to the first type of QCL information in the QCL information of the first reference signal port group;
  • the transceiver unit is further configured to send the fourth indication information.
  • the first reference signal port is a DMRS port or a CSI-RS port.
  • the component modules of the communication device may also be used to perform the steps performed in each possible implementation manner of the first aspect.
  • the first aspect which will not be repeated here.
  • a fourth aspect of the embodiments of the present application provides a communication device, including:
  • a transceiver unit configured to receive first indication information, where the first indication information is used to configure a first reference signal port, where the configuration is used to indicate first quasi-co-located QCL information of the first reference signal port;
  • a processing unit configured to determine the first QCL information according to the first indication information.
  • the first indication information is further used to configure the second reference signal port, and the configuration is further used to indicate the second QCL information of the second reference signal port;
  • the processing unit is further configured to determine the second QCL information according to the first indication information.
  • the first QCL information is different from the second QCL information.
  • the first QCL information includes QCL information of the first type.
  • the second QCL information includes QCL information of the first type.
  • the first type of QCL information in the first QCL information is different from the first type of QCL information in the second QCL information.
  • the first QCL information is determined by QCL information of at least one first signal, and the first signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the first type of QCL information in the first QCL information is determined by QCL information of at least one second signal, where the second signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the transceiver unit is further configured to receive second indication information, where the second indication information is used to indicate a frequency domain resource corresponding to the first QCL information;
  • the processing unit is further configured to determine the frequency domain resource corresponding to the first reference signal port according to the second indication information.
  • the transceiver unit is further configured to receive third indication information, where the third indication information is used to indicate the frequency domain resource corresponding to the QCL information of the first type in the first QCL information;
  • the processing unit is further configured to determine, according to the third indication information, a frequency domain resource corresponding to the first type of QCL information in the first QCL information.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the QCL information of one or more reference signal ports is associated with the first reference signal port group.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the The same type of QCL information for one or more reference signal ports is associated with the first reference signal port group.
  • This transceiver unit is also used for receiving the fourth indication information, and the fourth indication information is used to indicate the frequency domain resources corresponding to the QCL information of the first reference signal port group;
  • the processing unit is further configured to determine frequency domain resources corresponding to the first reference signal port group according to the fourth indication information.
  • the transceiver unit is further configured to receive fifth indication information, where the fifth indication information is used to indicate a frequency domain resource corresponding to the first type of QCL information in the QCL information of the first reference signal port group;
  • the processing unit is further configured to determine, according to the fifth indication information, a frequency domain resource corresponding to the first type of QCL information in the QCL information of the first reference signal port group.
  • the first reference signal port is a DMRS port or a CSI-RS port.
  • the component modules of the communication device may also be used to perform the steps performed in each possible implementation manner of the second aspect.
  • the second aspect which will not be repeated here.
  • a fifth aspect of an embodiment of the present application provides a communication device, including at least one processor, the at least one processor is coupled to a memory;
  • the memory is used to store programs or instructions
  • the at least one processor is configured to execute the program or instructions, so that the apparatus implements the method described in the first aspect or any possible implementation manner of the first aspect, or, enables the apparatus to implement the second aspect or the first aspect.
  • a sixth aspect of the embodiments of the present application provides a communication device, including at least one logic circuit and an input and output interface;
  • the input and output interface is used for outputting the first signal
  • the logic circuit is configured to perform the method described in the first aspect or any one of the possible implementations of the first aspect.
  • a seventh aspect of the embodiments of the present application provides a communication device, including at least one logic circuit and an input and output interface;
  • the input and output interface is used for inputting the first signal
  • the logic circuit is configured to perform the method described in the second aspect or any one of the possible implementations of the second aspect.
  • An eighth aspect of the embodiments of the present application provides a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes the first aspect or any one of the first aspects. a possible implementation of the method described.
  • a ninth aspect of the embodiments of the present application provides a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes any one of the second aspect or the second aspect above. a possible implementation of the method described.
  • a tenth aspect of the embodiments of the present application provides a computer program product (or computer program) that stores one or more computers.
  • the processor executes the first aspect or the first aspect A method of any possible implementation.
  • An eleventh aspect of the embodiments of the present application provides a computer program product that stores one or more computers.
  • the processor may implement the second aspect or any one of the second aspects. way method.
  • a twelfth aspect of an embodiment of the present application provides a chip system, where the chip system includes at least one processor, configured to support the first communication device to implement the first aspect or any of the possible implementation manners of the first aspect. function.
  • the chip system may further include a memory for storing necessary program instructions and data of the first communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • a thirteenth aspect of an embodiment of the present application provides a chip system, where the chip system includes at least one processor configured to support a second communication device to implement the second aspect or any of the possible implementation manners of the second aspect. function.
  • the chip system may further include a memory for storing necessary program instructions and data of the second communication device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • a fourteenth aspect of an embodiment of the present application provides a communication system, where the communication system includes the first communication device of the third aspect and the second communication device of the fourth aspect, and/or the communication system includes the fifth aspect and/or, the communication system includes the first communication device of the sixth aspect and the second communication device of the seventh aspect.
  • the transmitting end first determines the first indication information, and the first indication information is used to perform QCL configuration for the reference signal port; after that, the transmitting end sends the first indication information.
  • each port that can support the reference signal can perform flexible QCL assumption derivation, which is equivalent to configuring the QCL relationship based on the transport layer, enabling accurate matching channel estimation , improve communication efficiency.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is another schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 5a is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 5b is a schematic diagram of a communication method provided by an embodiment of the present application.
  • 6a is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 6b is a schematic diagram of a communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a communication apparatus provided by an embodiment of the present application.
  • Terminal device It can be a wireless terminal device that can receive scheduling and instruction information of network devices.
  • the wireless terminal device can be a device that provides voice and/or data connectivity to users, or a handheld device with wireless connection function, or Other processing equipment connected to the wireless modem.
  • Terminal equipment can communicate with one or more core networks or the Internet via a radio access network (RAN), and the terminal equipment can be a mobile terminal equipment, such as a mobile phone (or "cellular" phone, mobile phone (mobile phone), computer and data cards, for example, may be portable, pocket-sized, hand-held, computer built-in or vehicle mounted mobile devices that exchange language and/or data with the radio access network.
  • a mobile phone or "cellular" phone, mobile phone (mobile phone), computer and data cards
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • Tablet Computer tablet Computer
  • Wireless terminal equipment may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station (MS), a remote station, an access point ( access point (AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), subscriber station (SS), user terminal equipment (customer premises equipment, CPE), terminal (terminal), user equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • the terminal device may also be a wearable device and a next-generation communication system, for example, a terminal device in a 5G communication system or a terminal device in a future evolved public land mobile network (PLMN).
  • PLMN public land mobile network
  • Network device It can be a device in a wireless network.
  • a network device can be a radio access network (RAN) node (or device) that connects a terminal device to a wireless network, also known as a base station.
  • RAN equipment are: generation Node B (gNodeB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), wireless network in the 5G communication system Controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved Node B , or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wi-Fi) access point (access point, AP), etc.
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • base transceiver station base transceiver station
  • BTS
  • the network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • a centralized unit centralized unit, CU
  • a distributed unit distributed unit, DU
  • RAN device including a CU node and a DU node.
  • the network device can send configuration information to the terminal device (for example, carried in a scheduling message and/or an instruction message), and the terminal device further performs network configuration according to the configuration information, so that the network configuration between the network device and the terminal device is aligned; or , through the network configuration preset in the network device and the network configuration preset in the terminal device, the network configuration between the network device and the terminal device is aligned.
  • alignment refers to the determination of the carrier frequency for sending and receiving the interaction message, the determination of the type of the interaction message, the meaning of the field information carried in the interaction message, or the The understanding of other configurations of interactive messages is consistent.
  • the network device may be other devices that provide wireless communication functions for the terminal device.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device. For convenience of description, the embodiments of the present application are not limited.
  • the network equipment may also include core network equipment, which includes, for example, an access and mobility management function (AMF), a user plane function (UPF), or a session management function (SMF) Wait.
  • AMF access and mobility management function
  • UPF user plane function
  • SMF session management function
  • the apparatus for implementing the function of the network device may be the network device, or may be an apparatus capable of supporting the network device to implement the function, such as a chip system, and the apparatus may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the network device being a network device as an example.
  • Configuration and pre-configuration In this application, both configuration and pre-configuration are used.
  • Configuration means that network devices such as base stations or servers send configuration information or parameter values of some parameters to the terminal through messages or signaling, so that the terminal can determine communication parameters or resources during transmission according to these values or information.
  • Pre-configuration is similar to configuration. It can be a way in which network devices such as base stations or servers send parameter information or values to terminals through a communication link or carrier; it can also be a way to define corresponding parameters or parameter values (for example, in the standard The value of the parameter is clearly specified), or the relevant parameter or value is written into the terminal device in advance, which is not limited in this application. Further, these values and parameters can be changed or updated.
  • DMRS port indication When scheduling data, such as physical downlink shared channel (PDSCH) data, the network device needs to indicate the corresponding DMRS port, including the number of DMRS ports and the DMRS port number, different DMRS port numbers
  • the physical resources occupied by the corresponding DMRS ports are orthogonal, and the physical resources include one or more of space resources, time domain resources and frequency domain resources.
  • the number of DMRS ports is equal to the number of transmission layers of PDSCH data, and each DMRS port corresponds to each transmission layer one-to-one.
  • channel estimation needs to be performed on the corresponding DMRS port. If different terminal devices occupy the same time-frequency resources to transmit PDSCH data, the network device needs to allocate different DMRS port numbers to ensure that the DMRSs are orthogonal.
  • a terminal device can communicate with at least one network device at the same time, that is, receive data from multiple network devices at the same time. This transmission mode is called coordinated multiple points transmission/ reception, CoMP).
  • the at least one network device forms a cooperative set to communicate with the terminal device at the same time.
  • the network devices in the cooperation set can each be connected to different control nodes, and each control node can exchange information, such as exchanging scheduling policy information to achieve the purpose of cooperative transmission, or, the network devices in the cooperation set are all connected to the same control node.
  • the control node receives the channel state information (such as CSI or RSRP) reported by the terminal equipment collected by the network equipment in the cooperative set, and performs unified scheduling on the terminal equipment in the cooperative set according to the channel state information of all the terminal equipment in the cooperative set, Then, the scheduling policy is exchanged to the network equipment connected to it, and then each network device notifies the respective terminal equipment through the downlink control information (download control information, DCI) signaling carried by the physical downlink control channel (PDCCH).
  • the CoMP transmission mode may include:
  • DPS Dynamic point switching
  • Non-coherent joint transmission Multiple network devices transmit data for a terminal device at the same time, and the antennas of multiple network devices perform independent precoding, that is, each network device independently selects the optimal precoding.
  • the coding matrix performs joint phase and amplitude weighting between the antennas of the network device. This mechanism does not require phase calibration of the antennas of multiple network devices;
  • Coherent joint transmission Multiple network devices simultaneously transmit data for a terminal device, and the antennas of multiple network devices perform joint precoding, that is, multiple network devices jointly select the optimal precoding matrix for multiple Joint phase and amplitude weighting between network device antennas, this mechanism requires multiple network device antennas for phase calibration;
  • serving network device in the network devices in the cooperation set, such as serving base station (serving TRP)/serving cell (serving cell).
  • Layer and physical layer communication such as determining the time-frequency resources of the control channel (PDCCH) and data channel (PUSCH/PDSCH) of the terminal device according to scheduling decisions, and sending DCI signaling in PDCCH and data in PUSCH/PDSCH, Send a reference signal (RS) and so on.
  • the serving base station in the cooperative set the rest of the network equipment is called the cooperative base station (coordinate TRP)/coordinated cell (coordinate TRP).
  • the role of the cooperative base station is to communicate with the terminal device at the physical layer according to the scheduling decision of the serving base station.
  • DCI signaling is sent in PDCCH, data is sent in PUSCH/PDSCH, RS is sent, and so on.
  • the serving base station is TRP1
  • the cooperating base station is TRP2
  • TRP1 acts as the serving base station to make scheduling decisions for the terminal device and send DCI, which can instruct TRP1/TRP2 to be scheduled for data transmission, that is, the DCI that carries two TRPs scheduling information.
  • the DMRS ports corresponding to the PDSCH transmitted by the two TRPs need to occupy different CDM groups, and each CDM group/each PDSCH corresponds to a transmission configuration indicator (transmission configuration indicator, TCI) state.
  • TCI transmission configuration indicator
  • a TCI state (TCI-state) is used to indicate quasi-co-location (QCL) assumption information (also referred to as QCL information).
  • QCL quasi-co-location
  • the QCL assumption information is used to assist in describing the beamforming information and the receiving process on the receiving side of the terminal equipment.
  • QCL assumption information Four types of QCL assumption information are defined in the current standard.
  • QCL type (types) A: Doppler shift (doppler shift), Doppler spread (doppler spread), Average channel delay (average delay), delay spread (delay spread); QCL type B: doppler shift, doppler spread; QCL type C: average delay, doppler shift; QCL type D: spatial reception parameter (spatial rx parameter).
  • the QCL information indication of the PDSCH or PDCCH is indicated by indicating that the DM-RS port of the PDCCH (or PDSCH) satisfies the QCL assumption relationship with a certain one or more reference signal resources, Therefore, the above-mentioned QCL information can be obtained through the associated one or more reference signal resources, and the PDSCH or PDCCH can be received by using the information.
  • the reference signal may be a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the RSs have the same receive beam, so based on the associated reference signal resource index, the UE can deduce the receive beam information on which the PDCCH (or PDSCH) is received.
  • These QCL information are spatial characteristic parameters, which describe the spatial channel characteristics between the antenna ports included in the two associated reference signals, and help the terminal equipment to complete the beamforming or receiving process on the receiving side according to the QCL information.
  • for indicating may include both for direct instruction and for indirect instruction.
  • indication information When it is described that a certain indication information is used to indicate A, it can be understood that the indication information carries A, directly indicates A, or indicates A indirectly.
  • the information indicated by the indication information is referred to as the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or an index of the information to be indicated.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be implemented by means of a pre-agreed (for example, a protocol stipulated) arrangement order of various information, so as to reduce the indication overhead to a certain extent.
  • the information to be indicated may be sent together as a whole, or may be divided into multiple sub-information and sent separately, and the transmission periods and/or transmission timings of these sub-information may be the same or different.
  • the specific sending method is not limited in this application.
  • the sending period and/or sending timing of these sub-information may be predefined, for example, predefined according to a protocol, or configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example, but not limited to, one or a combination of at least two of radio resource control signaling, media access control (media access control, MAC) layer signaling, and physical layer signaling.
  • the radio resource control signaling such as packet radio resource control (radio resource control, RRC) signaling; MAC layer signaling, for example, includes MAC control element (control element, CE); physical layer signaling, for example, includes downlink control information (downlink control information). information, DCI).
  • RRC radio resource control
  • MAC layer signaling for example, includes MAC control element (control element, CE)
  • CE control element
  • physical layer signaling for example, includes downlink control information (downlink control information). information, DCI).
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or”, which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one of A, B and C includes A, B, C, AB, AC, BC or ABC.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, sequence, priority or importance of multiple objects degree.
  • the present application can be applied to a long term evolution (long term evolution, LTE) system, a new radio (new radio, NR) system, or other communication systems, wherein the communication system includes network equipment and terminal equipment, and the network equipment is used as a configuration
  • the information sending entity, and the terminal device acts as the configuration information receiving entity.
  • an entity in the communication system sends configuration information to another entity, and sends data to another entity, or receives data sent by another entity; another entity receives the configuration information, and sends the configuration information to the configuration information according to the configuration information.
  • the entity sends data, or receives data sent by the configuration information sending entity.
  • the present application can be applied to a terminal device in a connected state or an active state (ACTIVE), and can also be applied to a terminal device in a non-connected state (INACTIVE) or an idle state (IDLE).
  • FIG. 1 is a schematic diagram of the communication system in this application.
  • a network device 101 and 6 terminal devices are exemplarily shown, and the 6 terminal devices are respectively terminal device 1, terminal device 2, terminal device 3, terminal device 4, terminal device 5, and terminal device 6, etc. .
  • terminal device 1 is a smart teacup
  • terminal device 2 is a smart air conditioner
  • terminal device 3 is a smart fuel dispenser
  • terminal device 4 is a vehicle
  • terminal device 5 is a mobile phone
  • terminal device 6 is a Illustrated for the printer.
  • the transmitting end may be a network device or a terminal device
  • the receiving end may be a network device or a terminal device.
  • the configuration information sending entity may be a network device, wherein the network device is described by taking a base station (Base Station) and each terminal device as UE as an example, and the configuration information receiving entities may be UE1-UE6.
  • the base station A communication system is formed with UE1-UE6.
  • UE1-UE6 can send uplink data to network equipment, and network equipment needs to receive uplink data sent by UE1-UE6.
  • the network device may send configuration information to UE1-UE6.
  • UE4-UE6 can also form a communication system.
  • both the configuration information sending entity and the receiving entity can be UEs, wherein UE5 is used as a network device, that is, the configuration information sending entity; UE4 and UE6 are used as terminals.
  • the device that is, the configuration information receiving entity.
  • UE5 sends configuration information to UE4 and UE6 respectively, and receives uplink data sent by UE4 and UE6; correspondingly, UE4 and UE6 receive configuration information sent by UE5 and send uplink data to UE5.
  • quasi co-located (QCL) of antenna ports is a state assumption between antenna ports. If one antenna port in the transmitting end is QCL with another antenna port, it means that the receiving end can assume the large-scale characteristics (or radio channel characteristics) of the signal received from one antenna port (or the radio channel corresponding to the antenna port). ), in whole or in part the same as the large-scale characteristics of the signal received from another antenna port (or the wireless channel corresponding to the antenna port).
  • the large-scale characteristics of the signal may include Doppler shift, Doppler spread, average delay, delay spread, and the like.
  • QCL can be applied to various signals transmitted by antenna ports, such as demodulation reference signal (DMRS), channel state information reference signal (CSI-RS), etc.
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference signal
  • the transmitter can make a unified QCL assumption for multiple different DMRS ports (DMRS ports) included in a DMRS code division multiplexing (code division multiplexing, CDM) group.
  • CDM code division multiplexing
  • one DMRS port corresponds to one transport layer. and used for channel estimation for the transport layer.
  • the receiving end can perform channel estimation on multiple transport layers corresponding to multiple DMRS ports in the DMRS CDM group based on the unified QCL assumption, so as to realize data demodulation.
  • the QCL assumptions of DMRSs corresponding to different transmission layers of the same DMRS CDM group may be different (corresponding to different DMRS CDM groups).
  • the QCL assumptions of different transport layers may also be different), and the following two common scenarios are used as examples to illustrate.
  • the transmitting end is a network device, and the transmitting panel of the network device includes panels numbered A1, A2, and A3, and the receiving end includes terminal devices numbered T1, T2, and T3. (Terminal).
  • VR-A1 indicates that the visible region (VR) of the transmitting panel A1 includes scatterer 1 (cluster 1, denoted as C1) and scatterer 2 ( cluster 2, denoted as C2)
  • VR-A2 indicates that the VR of emission panel A2 includes C2, C3, C4,
  • VR-A3 indicates that the VR of emission panel A3 includes C4, C5
  • VR- T1 indicates that the VR of the terminal device T1 includes C1 and C2
  • VR-T2 indicates that the VR of the terminal device T2 includes C2 and C3
  • VR-T1 indicates that the VR of the terminal device T1 includes C4 and C5.
  • the antenna of the transmitting panel 1 can be regarded as an antenna cluster 1
  • the antenna of the transmitting panel 2 can be regarded as an antenna cluster 2 .
  • the visible scatterers of each antenna cluster are different, resulting in different transmission layers from different antenna clusters, which will lead to different channel characteristics (QCL assumptions) of different DMRS ports.
  • N-JT non-coherent joint transmission
  • CJT coherent joint transmission
  • the way that the receiver performs channel estimation based on the QCL assumption of the DMRS CDM group is likely to cause inaccurate channel estimation of the DMRS port, which in turn affects the effect of data demodulation.
  • the reference signal port is other reference signal port, such as CSI-RS port, in the above scenario, the channel measurement is prone to inaccurate, which in turn affects the effect of data transmission, thereby affecting the communication efficiency.
  • the embodiments of the present application provide a communication method and a communication device, based on the reference signal port for setting the configuration granularity of QCL information, compared with the traditional way of using DMRS CDM group as the configuration granularity of QCL information, can support
  • the QCL information of different reference signal ports is flexibly configured, which improves the success rate of channel estimation or channel measurement performed by the reference signal port on the transmission layer, and improves communication efficiency.
  • FIG. 3 is a schematic diagram of the implementation of a communication method according to an embodiment of the present application. The method includes the following steps.
  • the transmitting end determines the first indication information.
  • the transmitting end determines first indication information in step S101, where the first indication information is used to configure the first reference signal port, where the configuration is used to indicate the first QCL of the first reference signal port information.
  • the first reference signal port is a DMRS port or a CSI-RS port, or other reference signal ports, so that the solution can be applied to configure different reference signal ports.
  • the first QCL information is determined by QCL information of at least one first signal, where the first signal includes at least one of the following: CSI-RS, synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block) broadcast channel block, SS/PBCH block or SSB), DMRS, where SSB can also be referred to as a synchronization signal block or an initial access signal.
  • the first signal includes at least one of the following: CSI-RS, synchronization signal/physical broadcast channel block (synchronization signal/physical broadcast channel block) broadcast channel block, SS/PBCH block or SSB), DMRS, where SSB can also be referred to as a synchronization signal block or an initial access signal.
  • the configuration of the first indication information may indicate that the first QCL information can be derived from the QCL information of other signals, that is, the first QCL information may be determined by the QCL information of at least one first signal, and the first signal may be CSI- At least one of RS, SSB, and DMRS, so that the first QCL information can be flexibly configured in various implementation manners. A number of different implementations of the first signal will be described below.
  • the CSI-RS may be a CSI-RS corresponding to at least one CSI-RS port.
  • the CSI-RS corresponding to at least one CSI-RS port may be part or all of the CSI-RS in a certain CSI-RS resource (CSI-RS resource), or the CSI corresponding to at least one CSI-RS port -RS can be a set of some or all CSI-RSs in a certain CSI-RS resource and some or all CSI-RSs in other CSI-RS resources, or a CSI-RS corresponding to at least one CSI-RS port It may be a set of part or all of the CSI-RS in the multiple CSI-RS resources, which is not limited here.
  • one CSI-RS resource may be indicated by one CSI-RS resource identifier (CSI-RS resource ID).
  • the above at least one CSI-RS port is multiple CSI-RS ports
  • part or all of the CSI-RS ports with the same QCL information in the multiple CSI-RS ports can be regarded as the same CSI-RS port Port group, and some or all of the CSI-RS ports that have the same QCL information of a certain type in the multiple CSI-RS ports can also be regarded as the same CSI-RS port group.
  • the CSI-RS ports with different QCL information in the multiple CSI-RS ports can be regarded as different CSI-RS port groups, or the QCL information of a certain type in the multiple CSI-RS ports can be regarded as different.
  • Different CSI-RS ports are regarded as different CSI-RS port groups.
  • the SSB may be an SSB indicated by a certain synchronization signal block index (SSB index), or may be a set of SSBs indicated by multiple SSB indices.
  • SSB index synchronization signal block index
  • the DMRS may be the DMRS corresponding to at least one DMRS port, wherein the DMRS corresponding to the at least one DMRS port may be a part or all of the DMRS of a certain DMRS port group, or, The DMRS corresponding to at least one DMRS port may be a set of some or all DMRSs of a certain DMRS port group and some or all DMRSs of other DMRS port groups, or, the DMRS corresponding to at least one DMRS port may be multiple DMRS ports A set of part or all of the DMRS of the group, which is not limited here.
  • the DMRS port group may be indicated by a certain index or identifier, for example, the DMRS port group may be a DMRS CDM group.
  • the first indication information in step S101 is further used to configure the second reference signal port, and the configuration is further used to indicate the second QCL information of the second reference signal port. That is, the first indication information may also perform QCL configuration on other reference signal ports other than the first reference signal port, for example, perform QCL configuration on the second reference signal port.
  • first reference signal port and the second reference signal port are different reference signal ports, and the first reference signal port and the second reference signal port may belong to the same DMRS CDM group, or may belong to the same DMRS CDM group.
  • Different DMRS CDM groups are not limited here.
  • the first indication information may also perform QCL configuration for the second reference signal port, and possibly the third reference signal port, the fourth reference signal port, and other reference signal ports, that is, the configuration indicates the second reference signal port
  • the second QCL information of the third reference signal port, the third QCL information of the third reference signal port, the fourth QCL information of the fourth reference signal port, and other QCL information of other reference signal ports Similar to the implementation process in which the first QCL information is determined by the QCL information of at least one first signal, other QCL information corresponding to other reference signal ports can also be determined by at least one target signal. Multiple different implementations of a signal will not be repeated here.
  • the first QCL information is different from the second QCL information.
  • the QCL information of different reference signal ports may be different, wherein the first QCL information indicating the characteristics of the wireless channel corresponding to the first reference signal port may be different from the second information indicating the characteristics of the wireless channel corresponding to the second reference signal port.
  • the QCL information enables the subsequent receiving end to perform channel estimation or channel demodulation at the transmission layer corresponding to different reference signal ports through different QCL information.
  • the QCL information of different reference signal ports may also be the same, that is, the first QCL information is the same as the second QCL information.
  • the first QCL information of the first reference signal port includes the first type of QCL information.
  • the first QCL information of the first reference signal port may represent various types of wireless channel characteristics corresponding to the first reference signal port, wherein the first reference signal port is used to configure the first reference signal port.
  • the indication information may configure at least one type of QCL information in the first QCL information, for example, the first type of QCL information.
  • the first type of QCL information in the first QCL information is determined by QCL information of at least one second signal, where the second signal includes at least one of the following: CSI-RS, SSB, and DMRS.
  • the configuration of the first indication information may indicate that a certain type of QCL information in the first QCL information can be derived from the QCL information of other signals, for example, the first type of QCL information in the first QCL information, that is, the first type of QCL information in the first QCL information.
  • the first type of QCL information in the QCL information may be determined by the QCL information of at least one second signal, and the second signal may be at least one of CSI-RS, SSB, and DMRS, such that the first type of QCL information in the first QCL information
  • the type of QCL information can be flexibly configured through various implementations. Wherein, for the various implementation manners of the second signal, reference may also be made to the foregoing various implementation manners of the first signal, which will not be repeated here.
  • the first QCL information may further include other types of QCL information, such as second type of QCL information, third type of QCL information, or other types of QCL information, and the like.
  • different types of QCL information contained in the first QCL information can be represented in different ways, such as QCL1, QCL2... or QCL type 1, QCL type 2... or QCL type A, QCL type B ...or QCL type a, QCL type b... or other representations, which are not limited here.
  • different types of QCL information may include different combinations of the following at least parameters, including: Doppler shift (doppler shift), Doppler spread (doppler spread), average channel delay (average delay), time Delay spread (delay spread), spatial reception parameter (spatial rx parameter), or other parameters used to indicate wireless channel characteristics, which are not limited here.
  • the second QCL information of the second reference signal port includes the first type of QCL information.
  • the second QCL information of the second reference signal port may represent various wireless channel characteristics corresponding to the second reference signal port through various types, wherein the first indication information used to configure the second reference signal port , specifically, at least one type of QCL information in the second QCL information may be configured, for example, the first type of QCL information.
  • the second QCL information may further include other types of QCL information, for example, the second type of QCL information, the third type of QCL information, or other types of QCL information.
  • the QCL information of other reference signal ports may also include different types of QCL information, for example, the third QCL information of the third reference signal port that may exist, etc., all of which may refer to the different types of the aforementioned first QCL information. The implementation will not be repeated here.
  • the first type of QCL information in the first QCL information is different from the first type of QCL information in the second QCL information.
  • the first type of QCL information in the first QCL information indicating a certain wireless channel characteristic corresponding to the first reference signal port may be different from the second QCL information indicating the same wireless channel characteristic corresponding to the second reference signal port.
  • the first type of QCL information in the first QCL information is the same as the first type of QCL information in the second QCL information.
  • the transmitting end includes three reference signal ports (the reference signal ports are DMRS ports as an example) and two transmitting panels through the specific implementation example shown in FIG. 4 , wherein, in FIG. 4 , the first reference The signal port is denoted as DMRS port a, the second reference signal port is denoted as DMRS port b, and the third reference signal port is denoted as DMRS port c, and the QCL information of different reference signal ports is determined by the implementation process of the aforementioned mode one and mode two.
  • the first reference The signal port is denoted as DMRS port a
  • the second reference signal port is denoted as DMRS port b
  • the third reference signal port is denoted as DMRS port c
  • the QCL information of different reference signal ports is determined by the implementation process of the aforementioned mode one and mode two.
  • each transport layer has its own QCL information (or called QCL hypothesis), and any two QCL information can be the same or different.
  • layer 1 is only transmitted through the port a (port a) formed by the antenna precoding of transmitting panel 1, corresponding to the first QCL information (denoted as QCL1 assumption); layer 2 and layer 3 are transmitted through the antenna of transmitting panel 1 and transmitting panel 2 Transmission is performed on ports b&c (port b&c) formed by common precoding, that is, the QCL information of port b and port c are the same, corresponding to the second QCL information (denoted as QCL2 assumption).
  • the channel characteristics of the corresponding transmission panel 1 of DMRS port a are denoted as the first QCL information; DMRS port b and DMRS port c correspond to the combined channel characteristic panels 1 & 2 of transmission panels 1 & 2, denoted as the second QCL information.
  • the antenna used for antenna precoding in the transmitting panel is a type of antenna cluster, that is, one antenna cluster includes at least one antenna.
  • the first indication information may satisfy the following configuration:
  • the type A QCL of DMRS port a is derived from the QCL of one CSI-RS port group X;
  • the type A QCL of DMRS port b is derived from the QCL of two CSI-RS port groups Y and Z together;
  • the type A QCL of DMRS port c is derived from the QCL of two CSI-RS port groups Y and Z together;
  • the type B QCL of DMRS port b is derived from a CSI-RS port group Y together with the QCL of SSB (SSB-index H);
  • X, Y, Z are different CSI-RS port group numbers/identities, and H is a certain SSB-index.
  • the CSI-RS port group it can have the following characteristics:
  • a CSI-RS port group can be a CSI-RS resource (can be specified by CSI-RS-ResourceId);
  • a CSI-RS port group may be a part of a CSI-RS port (at least one CSI-RS port) in a CSI-RS resource;
  • Multiple CSI-RS port groups for deriving QCL under the same QCL type may come from the same or different CSI-RS resources).
  • the first reference signal port is included in a first reference signal port group
  • the first reference signal port group includes one or more reference signal ports
  • the one or more reference signal ports have The QCL information is associated with the first reference signal port group.
  • the same QCL information configuration may be performed for one or more reference signal ports in the same reference signal port group, or, in other words, one or more reference signal ports with the same QCL information are regarded as the same reference signal port group,
  • the QCL information of one or more reference signal ports in the first reference signal port group is associated with the first reference signal port group, for example, associated with the group identifier, group position, group number or other information, etc.
  • the second reference signal port may also be included in the first reference signal port group, that is, the first QCL information of the first reference signal port and the second QCL information of the second reference signal port are the same, and are the same as the first reference signal port.
  • the QCL information of other reference signal ports that may exist in the reference signal port group is the same.
  • the second reference signal port may be included in other reference signal port groups, for example, the second reference signal port group, that is, the first QCL information of the first reference signal port and the second QCL information of the second reference signal port may be The same or different, depending on the configuration of the QCL information of the first reference signal port group and the QCL information of the second reference signal port group.
  • the receiving end determines the reference signal ports included in different reference signal port groups by means of configuration or pre-configuration.
  • the DMRS port is divided into a DMRS port group A and a DMRS port group B, wherein the DMRS port group A includes One or more DMRS ports (such as DMRS port a) are the first QCL information, and one or more DMRS ports (such as DMRS port b, DMRS port c) contained in the DMRS port group B are the second QCL information .
  • the first reference signal port is included in a first reference signal port group
  • the first reference signal port group includes one or more reference signal ports
  • the one or more reference signal ports have The same type of QCL information is associated with the first reference signal port group.
  • one or more reference signal ports in the same reference signal port group may be configured with the same QCL information of a certain type, or, in other words, one or more reference signals that will have the same QCL information of a certain type
  • the ports are regarded as the same reference signal port group, wherein the same type of QCL information in one or more reference signal ports in the first reference signal port group is associated with the first reference signal port group, for example, associated with the first reference signal
  • the second reference signal port may also be included in the first reference signal port group, that is, the first type of QCL information in the first QCL information of the first reference signal port and the second QCL of the second reference signal port.
  • the first type of QCL information in the information is the same as the first type of QCL information in the QCL information of other reference signal ports that may exist in the first reference signal port group.
  • the second reference signal port may be included in other reference signal port groups, for example, the second reference signal port group, that is, the first type of QCL information and the second reference signal port in the first QCL information of the first reference signal port.
  • the receiving end determines the reference signal ports included in different reference signal port groups by means of configuration or pre-configuration.
  • the DMRS port is divided into a DMRS port group C and a DMRS port group D, wherein the DMRS port group C includes One or more DMRS ports (such as DMRS port a) are type A QCL information in the first QCL information, and one or more DMRS ports (such as DMRS port b, DMRS port c) included in the DMRS port group D are all is the type A QCL information in the second QCL information.
  • the above type A is only an example, and it can also be one or more of other defined types such as type B, type C, type D, etc.
  • type B type C
  • type D type D
  • the corresponding implementation process please refer to the implementation example of the aforementioned type A, which will not be repeated here.
  • the transmitting end sends first indication information to the receiving end.
  • the transmitting end sends the first indication information determined in step S101 to the receiving end in step S102, and correspondingly, the receiving end receives and obtains the first indication information sent by the transmitting end in step S102.
  • the receiving end determines the first QCL information according to the first indication information.
  • the receiving end determines the first QCL information according to the first indication information received in step S102.
  • the configuration is also used to indicate the second QCL information of the second reference signal port. Then, the receiving end may also determine the second QCL information according to the first indication information. The same is true for other embodiments below, and details are not described below.
  • the transmitting end sends the first indication information for performing QCL configuration on the first reference signal port to the receiving end, so that the receiving end can transmit the first reference signal port in the corresponding transmission according to the first QCL information layer for channel estimation or channel demodulation.
  • the configuration granularity of the QCL information is set based on the reference signal port, which is equivalent to configuring the QCL relationship based on the transport layer, which can support the QCL information for different reference signal ports. It can be configured flexibly to improve the success rate of channel estimation or channel measurement performed by the reference signal port on the transport layer, and improve the communication efficiency.
  • the transmitter can also configure frequency domain resources based on the QCL information (or a certain type of QCL information in the QCL information) of multiple reference signal ports in different transport layers, or configure multiple reference signal ports in different transport layers.
  • the QCL information of the group (or a certain type of QCL information in the QCL information) configures frequency domain resources, which will be described in detail below with reference to Figures 5a, 5b, 6a and 6b, respectively.
  • FIG. 5a is another schematic diagram of a communication method according to an embodiment of the present application.
  • the method includes the following steps.
  • the transmitting end determines the first indication information and the second indication information
  • the transmitting end determines first indication information and second indication information in step S201, where the first indication information is used to configure the first reference signal port, where the configuration is used to indicate the first reference signal The first QCL information of the port; the second indication information is used to indicate the frequency domain resource corresponding to the first QCL information.
  • the first indication information in step S201 is further used to configure the second reference signal port, and the configuration is further used to indicate the second reference signal port of the second reference signal port.
  • QCL information may also perform QCL configuration on other reference signal ports other than the first reference signal port, for example, perform QCL configuration on the second reference signal port.
  • the transmitting end sends the first indication information and the second indication information to the receiving end;
  • the transmitting end sends the first indication information and the second indication information determined in step S201 to the receiving end in step S202, and correspondingly, the receiving end receives the first indication information and the second indication information sent by the transmitting end in step S202. second indication information.
  • the receiving end determines the first QCL information according to the first indication information, and determines the frequency domain resource corresponding to the first QCL information according to the second indication information.
  • the receiving end determines the first QCL information according to the first indication information received in step S202, and determines the frequency domain resource corresponding to the first QCL information according to the second indication information received in step S202.
  • steps S201 to S203 is similar to the aforementioned implementation process shown in FIG. 3 , and details are not repeated here.
  • the receiving end may obtain the second indication information through other implementation manners other than FIG. 5a, for example, pre-configuring the second indication information on the receiving end.
  • the second indication information may also indicate the frequency domain resources corresponding to the first QCL information of the first reference signal port, and may also indicate the frequency domain resources corresponding to the QCL information of other reference signal ports, for example, may indicate the second reference signal
  • the frequency domain resource corresponding to the second QCL information of the port may also indicate the frequency domain resource corresponding to the third QCL information of the third reference signal port, and the frequency domain resource corresponding to the QCL information of other reference signal ports that may exist.
  • the second indication information and the first indication information are carried in the same message (for example, radio resource control (radio resource control, RRC)/media access control element (medium access control control element, MAC CE) /DCI message, or, the second indication information and the first indication information are carried in different messages.
  • RRC radio resource control
  • MAC CE medium access control control element
  • At least one of the first indication information and the second indication information may also be implemented in a multi-level indication manner.
  • the at least one indication information is configured in the TCI state, that is, the TCI state may indicate QCL information of one or more reference signal ports, and/or indicate frequency domain resources corresponding to one or more QCL information.
  • the first-level configuration is performed in the manner of carrying multiple TCI states in the RRC message
  • the second-level configuration is performed in the manner of carrying a certain TCI state (or a certain TCI state identifier) in the DCI message, so that the receiving end can be based on the two
  • the QCL information of one or more reference signal ports and the frequency domain resources corresponding to the one or more QCL information are determined by means of level indication.
  • all QCL types can use the same QCL configuration information. That is, different types of QCL information in DMRS port a are used on the frequency domain resources (such as RBG1, partial bandwidth (bandwidth part, BWP, also known as bandwidth part) 1 or other frequency domain resources) indicated by the second indication information.
  • the frequency domain resources such as RBG1, partial bandwidth (bandwidth part, BWP, also known as bandwidth part) 1 or other frequency domain resources
  • different types of QCL information in DMRS port b are used on the frequency domain resources (such as RBG2, BWP2 or other frequency domain resources) indicated by the second indication information, and different types of QCL information in DMRS port c are used in the second
  • the frequency domain resource indicated by the indication information (for example, RBG3, BWP3 or other frequency domain resources) is used.
  • RBG1, RBG2, and RBG3 may be the same frequency domain resources in pairs, or non-overlapping frequency domain resources in pairs, or some of the same frequency domain resources between pairs, which are not limited here; similar , BWP1, BWP2, and BWP3 or other frequency domain resources may also have multiple implementations, which will not be repeated here.
  • the transmitting end may also send second indication information to the receiving end for indicating the frequency domain resource corresponding to the first QCL information, that is, the transmitting end may be the first QCL information of the first reference signal port
  • the corresponding frequency domain resources are configured so that the receiving end can subsequently perform channel estimation or channel measurement on the first reference signal port using the first QCL information on the designated frequency domain resources according to the second indication information. Therefore, the corresponding frequency domain resources are configured for the QCL information of each reference signal port, and the frequency domain resources corresponding to the QCL information of different reference signal ports may be the same or different, which are not limited here.
  • FIG. 5b is another schematic diagram of a communication method according to an embodiment of the present application.
  • the method includes the following steps.
  • the transmitting end determines the first indication information and the third indication information
  • the transmitting end determines first indication information and third indication information in step S301, where the first indication information is used to configure the first reference signal port, where the configuration is used to indicate the first reference signal The first QCL information of the port; the third indication information is used to indicate the frequency domain resource corresponding to the first type of QCL information in the first QCL information.
  • the first indication information in step S301 is further used to configure the second reference signal port, and the configuration is also used to indicate the second reference signal port of the second reference signal port.
  • QCL information may also perform QCL configuration on other reference signal ports other than the first reference signal port, for example, perform QCL configuration on the second reference signal port.
  • the transmitting end sends the first indication information and the third indication information to the receiving end;
  • the transmitting end sends the first indication information and the second indication information determined in step S301 to the receiving end in step S302.
  • the receiving end receives the first indication information and the second indication information sent by the transmitting end in step S302. third indication information.
  • the receiving end determines the first QCL information according to the first indication information, and determines the frequency domain resource corresponding to the QCL information of the first type in the first QCL information according to the third indication information.
  • the receiving end determines the first QCL information according to the first indication information received in step S302, and determines the corresponding QCL information of the first type in the first QCL information according to the third indication information received in step S302 frequency domain resources.
  • steps S301 to S303 are similar to the aforementioned implementation process shown in FIG. 3 , and details are not repeated here.
  • the receiving end may obtain the third indication information through other implementation manners other than FIG. 5b, for example, pre-configuring the third indication information on the receiving end.
  • step S302 the third indication information and the first indication information are carried in the same message (for example, an RRC message/MAC CE/DCI message), or the third indication information and the first indication information are carried in different messages. middle.
  • At least one indication information in the first indication information and the third indication information may also be implemented by means of multi-level indication, and the implementation process may refer to the implementation of the foregoing first indication information and second indication information by means of multi-level indication. method, which will not be repeated here.
  • the third indication information may further indicate that in addition to the frequency domain resources corresponding to the first type in the first QCL information of the first reference signal port, it may also indicate the first type in the QCL information of other reference signal ports.
  • the frequency domain resource corresponding to the type for example, may indicate the frequency domain resource corresponding to the first type in the second QCL information of the second reference signal port, or may indicate the first type corresponding to the first type in the third QCL information of the third reference signal port.
  • the frequency domain resources, and the frequency domain resources corresponding to the QCL information of other reference signal ports that may exist.
  • the configuration similar to the third indication information can also be used to configure the frequency domain resources corresponding to other types in the first QCL information. , and will not be repeated here.
  • all QCL types can use the same QCL configuration information. That is, the QCL information of type A in DMRS port a is used on the frequency domain resources (such as RBG1, BWP1 or other frequency domain resources) indicated by the second indication information, and the QCL information of type A in DMRS port b is all used in the second It is used on the frequency domain resources (such as RBG2, BWP2 or other frequency domain resources) indicated by the indication information, and the QCL information of type A in DMRS port c is all in the frequency domain resources indicated by the second indication information (such as RBG3, BWP3 or is used on other frequency domain resources).
  • the QCL information of type A in DMRS port a is used on the frequency domain resources (such as RBG1, BWP1 or other frequency domain resources) indicated by the second indication information
  • the QCL information of type A in DMRS port b is all used in the second It is used on the frequency domain resources (such as RBG2, BWP2 or other frequency domain resources) indicated by the indication information
  • RBG1, RBG2, and RBG3 may be the same frequency domain resources in pairs, or non-overlapping frequency domain resources in pairs, or some of the same frequency domain resources between pairs, which are not limited here; similar , BWP1, BWP2, and BWP3 or other frequency domain resources may also have multiple implementations, which will not be repeated here.
  • the transmitter may also send third indication information to the receiver to indicate the frequency domain resources corresponding to the first type of QCL information in the first QCL information, that is, the transmitter may be the first reference
  • the first type of QCL information in the first QCL information of the signal port configures the corresponding frequency domain resources, so that the receiving end can subsequently use the first type of QCL in the first QCL information on the specified frequency domain resources according to the third indication information
  • the information performs channel estimation or channel measurement on the first reference signal port.
  • the corresponding frequency domain resources are configured for a certain type of QCL information in the QCL information corresponding to each reference signal port, and the frequency domain resources corresponding to a certain type of QCL information in the QCL information of different reference signal ports may be The same or different, which is not limited here.
  • FIG. 6a is another schematic diagram of a communication method according to an embodiment of the present application.
  • the method includes the following steps.
  • the transmitting end determines the first indication information and the fourth indication information
  • the transmitter determines first indication information and fourth indication information in step S401, where the first indication information is used to configure the first reference signal port, where the configuration is used to indicate the first reference signal The first QCL information of the port; the fourth indication information is used to indicate the frequency domain resource corresponding to the QCL information of the first reference signal port group, wherein the first reference signal port group includes the first reference signal port.
  • the first indication information in step S401 is further used to configure the second reference signal port, and the configuration is further used to indicate the second reference signal port of the second reference signal port.
  • QCL information may also perform QCL configuration on other reference signal ports other than the first reference signal port, for example, perform QCL configuration on the second reference signal port.
  • both the first reference signal port and the second reference signal port correspond to the first reference signal port group, that is, the fourth indication information It is used to indicate the frequency domain resources corresponding to the QCL information of at least the first reference signal port and the second reference signal included in the first reference signal port group.
  • the first reference signal port and the second reference signal port respectively correspond to different reference signal port groups, for example, the second reference signal corresponds to The second reference signal port group, and the first reference signal port group is different from the second reference signal port group, that is, the fourth indication information is used to indicate the frequency domain resource corresponding to the QCL information of the first reference signal port group, The frequency domain resource corresponding to the QCL information of the second reference signal port group may also be indicated.
  • the transmitting end sends the first indication information and the fourth indication information to the receiving end;
  • the transmitting end sends the first indication information and the fourth indication information determined in step S401 to the receiving end in step S402, and correspondingly, the receiving end receives the first indication information and the fourth indication information sent by the transmitting end in step S402. Fourth instruction information.
  • the receiving end determines the first QCL information according to the first indication information, and determines the frequency domain resources corresponding to the QCL information of the first reference signal port group according to the fourth indication information.
  • the receiving end determines the first QCL information according to the first indication information received in step S402, and determines the frequency corresponding to the QCL information of the first reference signal port group according to the fourth indication information received in step S402 domain resources.
  • steps S401 to S403 are similar to the aforementioned implementation process shown in FIG. 3 , and details are not repeated here.
  • the receiving end may obtain the fourth indication information through other implementation manners other than FIG. 6a, for example, pre-configuring the fourth indication information on the receiving end.
  • step S402 the fourth indication information and the first indication information are carried in the same message (for example, an RRC message/MAC CE/DCI message), or, the fourth indication information and the first indication information are carried in different messages. middle.
  • At least one of the first indication information and the fourth indication information may also be implemented by means of multi-level indication, and the implementation process may refer to the implementation of the foregoing first indication information and second indication information by means of multi-level indication. method, which will not be repeated here.
  • the fourth indication information may also indicate the frequency domain resources corresponding to the QCL information of the first reference signal port group, and may also indicate the frequency domain resources corresponding to the QCL information of other reference signal port groups, for example, may indicate the second reference signal
  • the frequency domain resources corresponding to the QCL information of the port group may also indicate the frequency domain resources corresponding to the QCL information of the third reference signal port group, and the frequency domain resources corresponding to the QCL information of other reference signal port groups that may exist.
  • all QCL types can use the same QCL configuration information. That is, different types of QCL information in DMRS port a in DMRS port group A are used on the frequency domain resources (such as RBG1, BWP1 or other frequency domain resources) indicated by the fourth indication information, and DMRS port b in DMRS port group B Different types of QCL information in and DMRS port c are used on the frequency domain resources (for example, RBG2, BWP2 or other frequency domain resources) indicated by the fourth indication information.
  • RBG1 and RBG2 may be the same frequency domain resources, or non-overlapping frequency domain resources, or some of the same frequency domain resources, which are not limited here; similarly, BWP1, BWP2 or other frequency domain resources There may also be multiple implementations, which will not be repeated here.
  • the transmitting end may also send fourth indication information to the receiving end for indicating the frequency domain resources corresponding to the QCL information of the first reference signal port group, that is, the transmitting end may be the first reference signal port group
  • the QCL information configures frequency domain resources, so that the receiving end can subsequently perform channel estimation or channel measurement on the first reference signal port group using the QCL information of the first reference signal port group on the designated frequency domain resources according to the fourth indication information. Therefore, the corresponding frequency domain resources are configured for the QCL information of each reference signal port group, and the frequency domain resources corresponding to the QCL information of different reference signal port groups may be the same or different. limited.
  • FIG. 6b is another schematic diagram of a communication method according to an embodiment of the present application.
  • the method includes the following steps.
  • the transmitting end determines the first indication information and the fifth indication information
  • the transmitter determines first indication information and fifth indication information in step S501, where the first indication information is used to configure the first reference signal port, where the configuration is used to indicate the first reference signal The first QCL information of the port; the fifth indication information is used to indicate the frequency domain resource corresponding to the first type of QCL information in the QCL information of the first reference signal port group.
  • the first indication information in step S501 is further used to configure the second reference signal port, and the configuration is further used to indicate the second reference signal port of the second reference signal port.
  • QCL information may also perform QCL configuration on other reference signal ports other than the first reference signal port, for example, perform QCL configuration on the second reference signal port.
  • both the first reference signal port and the second reference signal port correspond to the first reference signal port and the second reference signal port.
  • a reference signal port group that is, the fifth indication information is used to indicate at least the first reference signal port included in the first reference signal port group and the frequency domain resources corresponding to the QCL information of the second reference signal.
  • the first reference signal port and the second reference signal port respectively correspond to different
  • the reference signal port group for example, the second reference signal corresponds to the second reference signal port group, and the first reference signal port group is different from the second reference signal port group, that is, the fifth indication information is used to indicate the first reference signal port.
  • the frequency domain resources corresponding to the QCL information of the group may also be indicated.
  • the transmitting end sends the first indication information and the fifth indication information to the receiving end;
  • the transmitting end sends the first indication information and the fifth indication information determined in step S501 to the receiving end in step S502.
  • the receiving end receives the first indication information and the fifth indication information sent by the transmitting end in step S502. Fifth indication information.
  • the receiving end determines the first QCL information according to the first indication information, and determines the frequency domain resource corresponding to the first type of QCL information in the QCL information of the first reference signal port group according to the fifth indication information.
  • the receiving end determines the first QCL information according to the first indication information received in step S502, and determines the first QCL information in the QCL information of the first reference signal port group according to the fifth indication information received in step S502
  • the frequency domain resource corresponding to the type of QCL information.
  • steps S501 to S503 are similar to the aforementioned implementation process shown in FIG. 3 , and details are not repeated here.
  • the receiving end may obtain the fifth indication information through other implementation manners other than FIG. 6a, for example, pre-configuring the fifth indication information on the receiving end.
  • step S502 the fifth indication information and the first indication information are carried in the same message (for example, an RRC message/MAC CE/DCI message), or, the fifth indication information and the first indication information are carried in different messages. middle.
  • At least one of the first indication information and the fourth indication information may also be implemented by means of multi-level indication, and the implementation process may refer to the implementation of the foregoing first indication information and second indication information by means of multi-level indication. method, which will not be repeated here.
  • the fifth indication information may also indicate the frequency domain resources corresponding to the first type of QCL information in the QCL information of the first reference signal port group, and may also indicate the first type of QCL information in the QCL information of other reference signal port groups
  • the corresponding frequency domain resource may indicate the frequency domain resource corresponding to the first type of QCL information in the QCL information of the second reference signal port group, or may indicate the first type of QCL information in the QCL information of the third reference signal port group.
  • the frequency domain resources corresponding to the information, and the frequency domain resources corresponding to the QCL information of other reference signal port groups that may exist.
  • the first type of QCL information may use the same QCL configuration information. That is, the QCL information of the first type in the DMRS port a in the DMRS port group A is used on the frequency domain resources (such as RBG1, BWP1 or other frequency domain resources) indicated by the fifth indication information, and the DMRS port in the DMRS port group B is used. Both the QCL information of the first type in b and DMRS port c are used on the frequency domain resources (for example, RBG2, BWP2 or other frequency domain resources) indicated by the fifth indication information.
  • RBG1 and RBG2 may be the same frequency domain resources, or non-overlapping frequency domain resources, or some of the same frequency domain resources, which are not limited here; similarly, BWP1, BWP2 or other frequency domain resources There may also be multiple implementations, which will not be repeated here.
  • the transmitting end may also send fifth indication information to the receiving end for indicating the frequency domain resources corresponding to the first type of QCL information in the QCL information of the first reference signal port group, that is, the transmitting end may be based on A certain type of QCL information in the first reference signal port group is configured with corresponding frequency domain resources, so that the receiving end can subsequently use the first reference signal port group in the QCL information of the first reference signal port group on the specified frequency domain resources according to the fifth indication information.
  • One type of QCL information performs channel estimation or channel measurement for the first reference signal port group.
  • the corresponding frequency domain resources are configured for a certain type of QCL information in the QCL information of each reference signal port group, and the frequency domain resources corresponding to a certain type of QCL information in the QCL information of different reference signal port groups may be The same or different, which is not limited here.
  • an embodiment of the present application provides a communication apparatus.
  • the communication apparatus 700 can implement the function of the transmitter in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device 700 includes a processing unit 701 and a transceiver unit 702;
  • a processing unit 701 configured to determine first indication information, where the first indication information is used to configure a first reference signal port, where the configuration is used to indicate first quasi-co-located QCL information of the first reference signal port;
  • the transceiver unit 702 is configured to send the first indication information.
  • the first indication information is further used to configure the second reference signal port, and the configuration is further used to indicate the second QCL information of the second reference signal port.
  • the first QCL information is different from the second QCL information.
  • the first QCL information includes QCL information of the first type.
  • the second QCL information includes QCL information of the first type.
  • the first type of QCL information in the first QCL information is different from the first type of QCL information in the second QCL information.
  • the first QCL information is determined by QCL information of at least one first signal, and the first signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the first type of QCL information in the first QCL information is determined by QCL information of at least one second signal, where the second signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the processing unit 701 is further configured to determine second indication information, where the second indication information is used to indicate the frequency domain resource corresponding to the first QCL information;
  • the transceiver unit 702 is further configured to send the second indication information.
  • the processing unit 701 is further configured to determine third indication information, where the third indication information is used to indicate the frequency domain resource corresponding to the QCL information of the first type in the first QCL information;
  • the transceiver unit 702 is further configured to send the third indication information.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the one or more reference signal ports have The QCL information is associated with the first reference signal port group.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the one or more reference signal ports have The same type of QCL information is associated with the first reference signal port group.
  • the processing unit 701 is further configured to determine fourth indication information, where the fourth indication information is used to indicate a frequency domain resource corresponding to the QCL information of the first reference signal port group;
  • the transceiver unit 702 is further configured to send the fourth indication information.
  • the processing unit 701 is further configured to determine fifth indication information, where the fifth indication information is used to indicate a frequency domain resource corresponding to the first type of QCL information in the QCL information of the first reference signal port group;
  • the transceiver unit 702 is further configured to send the fourth indication information.
  • the first reference signal port is a DMRS port or a CSI-RS port.
  • an embodiment of the present application provides a communication apparatus.
  • the communication apparatus 800 can implement the function of the receiving end in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the communication device 800 includes a processing unit 801 and a transceiver unit 802;
  • a transceiver unit 802 configured to receive first indication information, where the first indication information is used to configure a first reference signal port, where the configuration is used to indicate first quasi-co-located QCL information of the first reference signal port;
  • the processing unit 801 is configured to determine the first QCL information according to the first indication information.
  • the first indication information is further used to configure the second reference signal port, and the configuration is further used to indicate the second QCL information of the second reference signal port;
  • the processing unit 801 is further configured to determine the second QCL information according to the first indication information.
  • the first QCL information is different from the second QCL information.
  • the first QCL information includes QCL information of the first type.
  • the second QCL information includes QCL information of the first type.
  • the first type of QCL information in the first QCL information is different from the first type of QCL information in the second QCL information.
  • the first QCL information is determined by QCL information of at least one first signal, where the first signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the first type of QCL information in the first QCL information is determined by QCL information of at least one second signal, where the second signal includes at least one of the following:
  • CSI-RS CSI-RS
  • SSB SSB
  • DMRS DMRS
  • the transceiver unit 802 is further configured to receive second indication information, where the second indication information is used to indicate a frequency domain resource corresponding to the first QCL information;
  • the processing unit 801 is further configured to determine the frequency domain resource corresponding to the first reference signal port according to the second indication information.
  • the transceiver unit 802 is further configured to receive third indication information, where the third indication information is used to indicate the frequency domain resource corresponding to the QCL information of the first type in the first QCL information;
  • the processing unit 801 is further configured to determine, according to the third indication information, a frequency domain resource corresponding to the first type of QCL information in the first QCL information.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the one or more reference signal ports have The QCL information is associated with the first reference signal port group.
  • the first reference signal port is included in a first reference signal port group, the first reference signal port group includes one or more reference signal ports, and the one or more reference signal ports have The same type of QCL information is associated with the first reference signal port group.
  • the transceiver unit 802 is further configured to receive fourth indication information, where the fourth indication information is used to indicate a frequency domain resource corresponding to the QCL information of the first reference signal port group;
  • the processing unit 801 is further configured to determine frequency domain resources corresponding to the first reference signal port group according to the fourth indication information.
  • the transceiver unit 802 is further configured to receive fifth indication information, where the fifth indication information is used to indicate a frequency domain resource corresponding to the first type of QCL information in the QCL information of the first reference signal port group;
  • the processing unit 801 is further configured to determine, according to the fifth indication information, a frequency domain resource corresponding to the first type of QCL information in the QCL information of the first reference signal port group.
  • the first reference signal port is a DMRS port or a CSI-RS port.
  • the communication apparatus involved in the above-mentioned embodiment is provided for the embodiment of the present application.
  • the communication apparatus may specifically be the terminal device in the above-mentioned embodiment, wherein a possible logical structure of the communication apparatus 900 is
  • the communication apparatus 900 may include, but is not limited to, at least one processor 901 and a communication port 902 . Further optionally, the apparatus may further include at least one of the memory 903 and the bus 904 .
  • the at least one processor 901 is configured to control and process the actions of the communication apparatus 900 .
  • the processor 901 may be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It may implement or execute the various exemplary logical blocks, modules and circuits described in connection with this disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination comprising one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • the communication apparatus shown in FIG. 9 can be specifically used to implement other steps implemented by the terminal equipment in the corresponding method embodiments described above, and realize the technical effects corresponding to the terminal equipment.
  • the specific implementation of the communication apparatus shown in FIG. 9 Reference may be made to the descriptions in the foregoing method embodiments, which will not be repeated here.
  • FIG. 10 is a schematic structural diagram of the communication device involved in the above-mentioned embodiment provided by the embodiment of the present application.
  • the communication device may specifically be the network device in the above-mentioned embodiment, and the structure of the communication device may refer to FIG. 10 shows the structure.
  • the communication device includes at least one processor 1011 and at least one network interface 1014 . Further optionally, the communication apparatus further includes at least one memory 1012 , at least one transceiver 1013 and one or more antennas 1015 .
  • the processor 1011, the memory 1012, the transceiver 1013 and the network interface 1014 are connected, for example, through a bus. In this embodiment of the present application, the connection may include various interfaces, transmission lines, or buses, which are not limited in this embodiment. .
  • the antenna 1015 is connected to the transceiver 1013 .
  • the network interface 1014 is used to enable the communication device to communicate with other communication devices through the communication link.
  • the network interface 1014 may include a network interface between the communication apparatus and core network equipment, such as an S1 interface, and the network interface may include a network interface between the communication apparatus and other communication apparatuses (eg, other network equipment or core network equipment), such as X2 Or Xn interface.
  • the network interface 1014 may include a network interface between the communication apparatus and core network equipment, such as an S1 interface, and the network interface may include a network interface between the communication apparatus and other communication apparatuses (eg, other network equipment or core network equipment), such as X2 Or Xn interface.
  • the processor 1011 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs, for example, to support the communication device to perform the actions described in the embodiments.
  • the communication device may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal equipment, execute software programs, and process data of software programs.
  • the processor 1011 in FIG. 10 may integrate the functions of a baseband processor and a central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit may also be independent processors, interconnected by technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data may be built in the processor, or may be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the memory is mainly used to store software programs and data.
  • the memory 1012 may exist independently and be connected to the processor 1011 .
  • the memory 1012 may be integrated with the processor 1011, for example, in one chip.
  • the memory 1012 can store program codes for implementing the technical solutions of the embodiments of the present application, and is controlled and executed by the processor 1011 .
  • Figure 10 shows only one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device or the like.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in this embodiment of the present application.
  • the transceiver 1013 may be used to support the reception or transmission of radio frequency signals between the communication device and the terminal, and the transceiver 1013 may be connected to the antenna 1015 .
  • the transceiver 1013 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 1015 can receive radio frequency signals
  • the receiver Rx of the transceiver 1013 is configured to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or the digital intermediate frequency signal is provided to the processor 1011, so that the processor 1011 performs further processing on the digital baseband signal or the digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 1013 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 1011, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a or multiple antennas 1015 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal. The order of precedence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal, and the up-mixing processing and digital-to-analog conversion processing
  • the sequence of s is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • a transceiver may also be referred to as a transceiver unit, a transceiver, a transceiver, or the like.
  • the device used to implement the receiving function in the transceiver unit may be regarded as a receiving unit
  • the device used to implement the transmitting function in the transceiver unit may be regarded as a transmitting unit, that is, the transceiver unit includes a receiving unit and a transmitting unit, and the receiving unit also It can be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit can be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the communication apparatus shown in FIG. 10 can be specifically used to implement the steps implemented by the network equipment in the foregoing method embodiments, and realize the technical effects corresponding to the network equipment.
  • the specific implementation manner of the communication apparatus shown in FIG. 10 can be Referring to the descriptions in the foregoing method embodiments, details are not repeated here.
  • Embodiments of the present application also provide a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes the communication apparatus (when implemented by a terminal device) as in the foregoing embodiments. ) methods described in possible implementations.
  • Embodiments of the present application also provide a computer-readable storage medium that stores one or more computer-executable instructions.
  • the processor executes the communication apparatus (when implemented through a network device) as in the foregoing embodiments. ) methods described in possible implementations.
  • Embodiments of the present application also provide a computer program product (or computer program) that stores one or more computers.
  • the processor executes the above communication apparatus (when implemented by a terminal device) methods of possible implementations.
  • Embodiments of the present application also provide a computer program product that stores one or more computers.
  • the processor executes the method for possible implementations of the communication apparatus (when implemented through a network device).
  • An embodiment of the present application further provides a chip system, where the chip system includes at least one processor, and is configured to support the terminal device to implement the functions involved in the possible implementation manners of the above communication apparatus (when implemented by the terminal device).
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the chip system may further include a memory for storing necessary program instructions and data of the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Embodiments of the present application further provide a chip system, where the chip system includes at least one processor, and is configured to support a network device to implement the functions involved in the possible implementation manners of the foregoing communication apparatus (when implemented through a network device).
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the chip system may further include a memory for storing necessary program instructions and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices, wherein the network device may specifically be the network device in the foregoing method embodiments.
  • An embodiment of the present application further provides a communication system, and the network system architecture includes the communication apparatus (including a terminal device and a network device) in any of the foregoing embodiments.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit, if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法及通信装置,用于支持对不同的参考信号端口的QCL信息进行灵活地配置,提升参考信号端口对传输层进行信道估计或信道测量的成功率,提升通信效率。在该方法中,发射端确定第一指示信息,该第一指示信息用于对第一参考信号端口进行配置,该配置用于指示该第一参考信号端口的第一准共址QCL信息;此后,该发射端向接收端发送该第一指示信息。

Description

一种通信方法及通信装置
本申请要求于2021年04月16日提交中国国家知识产权局,申请号为202110414165.3,发明名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,尤其涉及一种通信方法及通信装置。
背景技术
在通信系统中,天线端口准共址(quasi co-loacted,QCL)是一种天线端口之间的状态假设。如果发射端中的一个天线端口与另一个天线端口QCL,即意味着接收端可以假设从一个天线端口(或者与天线端口对应的无线电信道)接收的信号的大规模特性(或称为无线信道特征),与从另一个天线端口(或者对应于天线端口的无线信道)接收的信号的大规模特性之间,整体或部分地相同。其中,信号的大规模特性可以包括多普勒偏移、多普勒扩展、平均时延、时延扩展等。
目前,QCL可以应用到天线端口所发射的多种信号中,例如解调参考信号(demodulation deference signal,DMRS),信道状态信息参考信号(channel state information reference signal,CSI-RS)等。
以DMRS为例,发射端可以对DMRS码分复用(code division multiplexing,CDM)组所包含多个不同的DMRS端口(DMRS port)进行统一的QCL假设,一般地,一个DMRS port对应一个传输层且用于对该传输层进行信道估计。接收端可以基于该统一的QCL假设对该DMRS CDM组中多个DMRS port对应的多个传输层进行信道估计,以实现数据解调。
然而,当接收端设备和发射端设备处于信道具有空间非平稳特征的场景或者多传输点(transmission and reception point,TRP)传输场景时,同一DMRS CDM组的不同传输层对应的DMRS的QCL假设有可能不同,而接收端基于DMRS CDM组的QCL假设进行信道估计的方式,容易造成DMRS的信道估计不准确,继而影响数据解调的效果。
发明内容
本申请实施例提供了一种通信方法及通信装置,用于支持对不同的参考信号端口的QCL信息进行灵活地配置,提升参考信号端口对传输层进行信道估计或信道测量的成功率,提升通信效率。
本申请实施例第一方面提供了一种通信方法,该通信方法可以由通信装置执行。该通信装置可以为发射端(包括网络设备或终端设备),也可以为发射端的部件(例如处理器、芯片或芯片系统等),在该方法中,发射端确定第一指示信息,该第一指示信息用于对第一参考信号端口进行配置,该配置用于指示该第一参考信号端口的第一准共址QCL信息;此后,该发射端向接收端发送该第一指示信息。
基于上述技术方案,发射端向接收端发送用于对第一参考信号端口进行QCL配置的第 一指示信息,以参考信号端口为粒度的QCL配置,使得接收端可以根据第一QCL信息在第一参考信号端口在对应的传输层进行信道估计或信道解调。相比于传统的以DMRS CDM组为QCL信息的配置粒度的方式,基于参考信号端口为设置QCL信息的配置粒度,相当于基于传输层配置QCL关系,可以支持对不同的参考信号端口的QCL信息进行灵活地配置,提升参考信号端口对传输层进行信道估计或信道测量的成功率,提升通信效率。
在本申请实施例第一方面的一种可能的实现方式中,所述第一指示信息还用于对第二参考信号端口进行配置,所述配置还用于指示所述第二参考信号端口的第二QCL信息。
基于上述技术方案,第一指示信息还可以对除了第一参考信号端口之外的其它参考信号端口进行QCL配置,例如对第二参考信号端口进行QCL配置。
需要说明的是,第一参考信号端口和第二参考信号端口是不同的参考信号端口,且第一参考信号端口和第二参考信号端口可以是归属于同一个DMRS CDM组,也可以是归属于不同的DMRS CDM组,此处不做限定。
在本申请实施例第一方面的一种可能的实现方式中,该第一QCL信息不同于该第二QCL信息。
基于上述技术方案,指示第一参考信号端口所对应无线信道特征的第一QCL信息可以不同于指示第二参考信号端口所对应无线信道特征的第二QCL信息,使得后续接收端可以通过不同的QCL信息分别在不同的参考信号端口对应的传输层进行信道估计或信道解调。
可选地,第一QCL信息与第二QCL信息相同。
在本申请实施例第一方面的一种可能的实现方式中,该第一QCL信息包括第一类型的QCL信息。
基于上述技术方案,第一参考信号端口的第一QCL信息可以通过多种类型(type)表示第一参考信号端口所对应的多种无线信道特征,其中,用于对第一参考信号端口进行配置的第一指示信息,具体可以配置第一QCL信息中的至少一个类型的QCL信息,例如第一类型的QCL信息。
可选地,第一QCL信息还可以包括其它类型的QCL信息,例如第二类型的QCL信息、第三类型的QCL信息或者其它类型的QCL信息等。
在本申请实施例第一方面的一种可能的实现方式中,该第二QCL信息包括第一类型的QCL信息。
基于上述技术方案,第二参考信号端口的第二QCL信息可以通过多种类型表示第二参考信号端口所对应的多种无线信道特征,其中,用于对第二参考信号端口进行配置的第一指示信息,具体可以配置第二QCL信息中的至少一个类型的QCL信息,例如第一类型的QCL信息。
可选地,第二QCL信息还可以包括其它类型的QCL信息,例如第二类型的QCL信息、第三类型的QCL信息或者其它类型的QCL信息等。
在本申请实施例第一方面的一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息不同于该第二QCL信息中第一类型的QCL信息。
基于上述技术方案,指示第一参考信号端口所对应的某一无线信道特征的第一QCL信 息中第一类型的QCL信息,可以不同于指示第二参考信号端口所对应相同无线信道特征的第二QCL信息中第二类型的QCL信息,使得后续接收端可以通过第一类型的不同的QCL信息分别在不同的参考信号端口对应的传输层进行信道估计或信道解调。
可选地,该第一QCL信息中第一类型的QCL信息与该第二QCL信息中第一类型的QCL信息相同。
在本申请实施例第一方面的一种可能的实现方式中,第一QCL信息由至少一个第一信号的QCL信息确定,该第一信号包括以下至少一项:
CSI-RS、同步信号块(synchronization signal/physical broadcast channel block,SS/PBCH block或SSB)、DMRS。
基于上述技术方案,第一指示信息的配置可以指示第一QCL信息可以由其它信号的QCL信息推到得到,即第一QCL信息可以由至少一个第一信号的QCL信息确定,该第一信号可以为CSI-RS、SSB、DMRS中的至少一项,使得第一QCL信息可以通过多种实现方式灵活配置。
在本申请实施例第一方面的一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息由至少一个第二信号的QCL信息确定,该第二信号包括以下至少一项:
CSI-RS、SSB、DMRS。
基于上述技术方案,第一指示信息的配置可以指示第一QCL信息中某一类型的QCL信息可以由其它信号的QCL信息推到得到,例如第一QCL信息中的第一类型的QCL信息,即第一QCL信息中的第一类型的QCL信息可以由至少一个第二信号的QCL信息确定,该第二信号可以为CSI-RS、SSB、DMRS中的至少一项,使得第二QCL信息可以通过多种实现方式灵活配置。
在本申请实施例第一方面的一种可能的实现方式中,该方法还包括:发射端确定第二指示信息,该第二指示信息用于指示该第一QCL信息对应的频域资源;然后,发射端向接收端发送该第二指示信息。
可选地,第二指示信息预配置于接收端。
可选地,第二指示信息和第一指示信息承载于同一消息(例如DCI消息)中,或者,第二指示信息和第一指示信息承载于不同消息中。
基于上述技术方案,发射端还可以向接收端发送用于指示该第一QCL信息对应的频域资源的第二指示信息,即发射端可以为第一参考信号端口的第一QCL信息配置对应的频域资源,使得接收端后续可以根据该第二指示信息确定在指定的频域资源上使用第一QCL信息对第一参考信号端口进行信道估计或信道测量。
在本申请实施例第一方面的一种可能的实现方式中,该方法还包括:发射端确定第三指示信息,该第三指示信息用于指示该第一QCL信息中第一类型的QCL信息对应的频域资源;然后,发射端向接收端发送该第三指示信息。
基于上述技术方案,发射端还可以向接收端发送用于指示该第一QCL信息中第一类型的QCL信息对应的频域资源的第三指示信息,即发射端可以为第一参考信号端口的第一QCL信息中第一类型的QCL信息配置对应的频域资源,使得接收端后续可以根据该第三指示信 息在指定的频域资源上使用第一QCL信息中第一类型的QCL信息对第一参考信号端口进行信道估计或信道测量。
可选地,第三指示信息预配置于接收端。
可选地,第三指示信息和第一指示信息承载于同一消息(例如DCI消息)中,或者,第三指示信息和第一指示信息承载于不同消息中。
在本申请实施例第一方面的一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的QCL信息关联于该第一参考信号端口组。
基于上述技术方案,针对同一参考信号端口组内的一个或多个参考信号端口可以进行相同的QCL信息配置,或者说,将具备相同QCL信息的一个或多个参考信号端口视为同一参考信号端口组,其中,第一参考信号端口组中的一个或多个参考信号端口的QCL信息关联于该第一参考信号端口组,例如关联于该第一参考信号端口组的组标识、组位置、组编号或者其他的信息等。
在本申请实施例第一方面的一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的同一类型的QCL信息关联于该第一参考信号端口组。
基于上述技术方案,针对同一参考信号端口组内的一个或多个参考信号端口可以进行相同的某一类型的QCL信息配置,或者说,将具备相同的某一类型的QCL信息的一个或多个参考信号端口视为同一参考信号端口组,其中,第一参考信号端口组中的一个或多个参考信号端口中同一类型的QCL信息关联于该第一参考信号端口组,例如关联于该第一参考信号端口组的组标识、组位置、组编号或者其他的信息等。
在本申请实施例第一方面的一种可能的实现方式中,该方法还包括:发射端确定第四指示信息,该第四指示信息用于指示该第一参考信号端口组的QCL信息对应的频域资源;然后,发射端向接收端发送该第四指示信息。
可选地,第四指示信息预配置于接收端。
可选地,第四指示信息和第一指示信息承载于同一消息(例如DCI消息)中,或者,第四指示信息和第一指示信息承载于不同消息中。
基于上述技术方案,发射端还可以向接收端发送用于指示该第一参考信号端口组的QCL信息对应的频域资源的第四指示信息,即发射端可以为第一参考信号端口组的QCL信息配置频域资源,使得接收端后续可以根据该第四指示信息在指定的频域资源上使用第一参考信号端口组的QCL信息对第一参考信号端口组进行信道估计或信道测量。
在本申请实施例第一方面的一种可能的实现方式中,该方法还包括:发射端确定第五指示信息,该第五指示信息用于指示该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源;然后,发射端向接收端发送该第四指示信息。
可选地,第五指示信息预配置于接收端。
可选地,第五指示信息和第一指示信息承载于同一消息(例如DCI消息)中,或者,第五指示信息和第一指示信息承载于不同消息中。
基于上述技术方案,发射端还可以向接收端发送用于指示该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源的第五指示信息,即发射端可以基于第一参考信号端口组中某一类型的QCL信息配置对应的频域资源,使得接收端后续可以根据该第五指示信息指定的频域资源上使用第一参考信号端口组的QCL信息中第一类型的QCL信息对第一参考信号端口组进行信道估计或信道测量。
在本申请实施例第一方面的一种可能的实现方式中,该第一参考信号端口为DMRS端口或CSI-RS端口。
基于上述技术方案,第一参考信号端口可以为DMRS端口或CSI-RS端口,使得方案可以适用于对不同的参考信号端口进行配置。
本申请实施例第二方面提供了一种通信方法,该通信方法可以由通信装置执行。该通信装置可以为接收端(包括网络设备或终端设备),也可以为接收端的部件(例如处理器、芯片或芯片系统等),在该方法中,接收端接收来自发射端的第一指示信息,该第一指示信息用于对第一参考信号端口进行配置,该配置用于指示该第一参考信号端口的第一准共址QCL信息;此后,接收端根据该第一指示信息确定该第一QCL信息。
基于上述技术方案,接收端接收来自发射端的用于对第一参考信号端口进行QCL配置的第一指示信息,以参考信号端口为粒度的QCL配置,使得接收端可以根据第一QCL信息在第一参考信号端口在对应的传输层进行信道估计或信道解调。相比于传统的以DMRS CDM组为QCL信息的配置粒度的方式,基于参考信号端口为设置QCL信息的配置粒度,相当于基于传输层配置QCL关系,可以支持对不同的参考信号端口的QCL信息进行灵活地配置,提升参考信号端口对传输层进行信道估计或信道测量的成功率,提升通信效率。
在本申请实施例第二方面的一种可能的实现方式中,第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息。接收端根据该第一指示信息还可以确定该第二QCL信息。
基于上述技术方案,第一指示信息还可以对除了第一参考信号端口之外的其它参考信号端口进行QCL配置,例如对第二参考信号端口进行QCL配置。
需要说明的是,第一参考信号端口和第二参考信号端口是不同的参考信号端口,且第一参考信号端口和第二参考信号端口可以是归属于同一个DMRS CDM组,也可以是归属于不同的DMRS CDM组,此处不做限定。
在本申请实施例第二方面的一种可能的实现方式中,该第一QCL信息不同于该第二QCL信息。
基于上述技术方案,指示第一参考信号端口所对应无线信道特征的第一QCL信息可以不同于指示第二参考信号端口所对应无线信道特征的第二QCL信息,使得后续接收端可以通过不同的QCL信息分别在不同的参考信号端口对应的传输层进行信道估计或信道解调。
可选地,第一QCL信息与第二QCL信息相同。
在本申请实施例第二方面的一种可能的实现方式中,该第一QCL信息包括第一类型的QCL信息。
基于上述技术方案,第一参考信号端口的第一QCL信息可以通过多种类型(type)表 示第一参考信号端口所对应的多种无线信道特征,其中,用于对第一参考信号端口进行配置的第一指示信息,具体可以配置第一QCL信息中的至少一个类型的QCL信息,例如第一类型的QCL信息。
可选地,第一QCL信息还可以包括其它类型的QCL信息,例如第二类型的QCL信息、第三类型的QCL信息或者其它类型的QCL信息等。
在本申请实施例第二方面的一种可能的实现方式中,该第二QCL信息包括第一类型的QCL信息。
基于上述技术方案,第二参考信号端口的第二QCL信息可以通过多种类型表示第二参考信号端口所对应的多种无线信道特征,其中,用于对第二参考信号端口进行配置的第一指示信息,具体可以配置第二QCL信息中的至少一个类型的QCL信息,例如第一类型的QCL信息。
可选地,第二QCL信息还可以包括其它类型的QCL信息,例如第二类型的QCL信息、第三类型的QCL信息或者其它类型的QCL信息等。
在本申请实施例第二方面的一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息不同于该第二QCL信息中第一类型的QCL信息。
基于上述技术方案,指示第一参考信号端口所对应的某一无线信道特征的第一QCL信息中第一类型的QCL信息,可以不同于指示第二参考信号端口所对应相同无线信道特征的第二QCL信息中第二类型的QCL信息,使得后续接收端可以通过第一类型的不同的QCL信息分别在不同的参考信号端口对应的传输层进行信道估计或信道解调。
可选地,该第一QCL信息中第一类型的QCL信息与该第二QCL信息中第一类型的QCL信息相同。
在本申请实施例第二方面的一种可能的实现方式中,第一QCL信息由至少一个第一信号的QCL信息确定,该第一信号包括以下至少一项:
CSI-RS、SSB、DMRS。
基于上述技术方案,第一指示信息的配置可以指示第一QCL信息可以由其它信号的QCL信息推到得到,即第一QCL信息可以由至少一个第一信号的QCL信息确定,该第一信号可以为CSI-RS、SSB、DMRS中的至少一项,使得第一QCL信息可以通过多种实现方式灵活配置。
在本申请实施例第二方面的一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息由至少一个第二信号的QCL信息确定,该第二信号包括以下至少一项:
CSI-RS、SSB、DMRS。
基于上述技术方案,第一指示信息的配置可以指示第一QCL信息中某一类型的QCL信息可以由其它信号的QCL信息推到得到,例如第一QCL信息中的第一类型的QCL信息,即第一QCL信息中的第一类型的QCL信息可以由至少一个第二信号的QCL信息确定,该第一信号可以为CSI-RS、SSB、DMRS中的至少一项,使得第二QCL信息可以通过多种实现方式灵活配置。
在本申请实施例第二方面的一种可能的实现方式中,该方法还包括:接收端接收来自 发射端的第二指示信息,该第二指示信息用于指示该第一QCL信息对应的频域资源;然后,接收端根据该第二指示信息确定该第一QCL信息对应的频域资源。
可选地,第二指示信息预配置于接收端。
可选地,第二指示信息和第一指示信息承载于同一消息(例如DCI消息)中,或者,第二指示信息和第一指示信息承载于不同消息中。
基于上述技术方案,接收端还接收来自于发射端的用于指示该第一QCL信息对应的频域资源的第二指示信息,即发射端可以为第一参考信号端口的第一QCL信息配置对应的频域资源,使得接收端后续可以根据该第二指示信息在指定的频域资源上使用第一QCL信息对第一参考信号端口进行信道估计或信道测量。
在本申请实施例第二方面的一种可能的实现方式中,该方法还包括:接收端接收来自发射端的第三指示信息,该第三指示信息用于指示该第一QCL信息中第一类型的QCL信息对应的频域资源;然后,接收端根据该第三指示信息确定该第一QCL信息中第一类型的QCL信息对应的频域资源。
基于上述技术方案,接收端还可以接收来自发射端的用于指示该第一QCL信息中第一类型的QCL信息对应的频域资源的第三指示信息,即发射端可以为第一参考信号端口的第一QCL信息中第一类型的QCL信息配置对应的频域资源,使得接收端后续可以根据该第三指示信息在指定的频域资源上使用第一QCL信息中第一类型的QCL信息对第一参考信号端口进行信道估计或信道测量。
可选地,第三指示信息预配置于接收端。
可选地,第三指示信息和第一指示信息承载于同一消息(例如DCI消息)中,或者,第三指示信息和第一指示信息承载于不同消息中。
在本申请实施例第二方面的一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的QCL信息关联于该第一参考信号端口组。
基于上述技术方案,针对同一参考信号端口组内的一个或多个参考信号端口可以进行相同的QCL信息配置,或者说,将具备相同QCL信息的一个或多个参考信号端口视为同一参考信号端口组,其中,第一参考信号端口组中的一个或多个参考信号端口的QCL信息关联于该第一参考信号端口组,例如关联于该第一参考信号端口组的组标识、组位置、组编号或者其他的信息等。
在本申请实施例第二方面的一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的同一类型的QCL信息关联于该第一参考信号端口组。
基于上述技术方案,针对同一参考信号端口组内的一个或多个参考信号端口可以进行相同的某一类型的QCL信息配置,或者说,将具备相同的某一类型的QCL信息的一个或多个参考信号端口视为同一参考信号端口组,其中,第一参考信号端口组中的一个或多个参考信号端口中同一类型的QCL信息关联于该第一参考信号端口组,例如关联于该第一参考信号端口组的组标识、组位置、组编号或者其他的信息等。
在本申请实施例第二方面的一种可能的实现方式中,该方法还包括:接收端接收来自发射端的第四指示信息,该第四指示信息用于指示该第一参考信号端口组的QCL信息对应的频域资源;然后,接收端根据该第四指示信息确定该第一参考信号端口组对应的频域资源。
可选地,第四指示信息预配置于接收端。
可选地,第四指示信息和第一指示信息承载于同一消息(例如DCI消息)中,或者,第四指示信息和第一指示信息承载于不同消息中。
基于上述技术方案,接收端还可以接收来自发射端的用于指示该第一参考信号端口组的QCL信息对应的频域资源的第四指示信息,即发射端可以为第一参考信号端口组的QCL信息配置频域资源,使得接收端后续可以根据该第四指示信息在指定的频域资源上使用第一参考信号端口组的QCL信息对第一参考信号端口组进行信道估计或信道测量。
在本申请实施例第二方面的一种可能的实现方式中,该方法还包括:接收端接收来自发射端的第五指示信息,该第五指示信息用于指示该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源;然后,接收端根据该第五指示信息确定该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源。
可选地,第五指示信息预配置于接收端。
可选地,第五指示信息和第一指示信息承载于同一消息(例如DCI消息)中,或者,第五指示信息和第一指示信息承载于不同消息中。
基于上述技术方案,发射端还可以向接收端发送用于指示该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源的第五指示信息,即发射端可以基于第一参考信号端口组中某一类型的QCL信息配置对应的频域资源,使得接收端后续可以根据该第五指示信息在指定的频域资源上使用第一参考信号端口组的QCL信息中第一类型的QCL信息对第一参考信号端口组进行信道估计或信道测量。
在本申请实施例第二方面的一种可能的实现方式中,该第一参考信号端口为DMRS端口或CSI-RS端口。
基于上述技术方案,第一参考信号端口可以为DMRS端口或CSI-RS端口,使得方案可以适用于对不同的参考信号端口进行配置。
本申请实施例第三方面提供了一种通信装置,包括:
处理单元,用于确定第一指示信息,该第一指示信息用于对第一参考信号端口进行配置,该配置用于指示该第一参考信号端口的第一准共址QCL信息;
收发单元,用于发送该第一指示信息。
在本申请实施例第三方面的一种可能的实现方式中,第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息。
在本申请实施例第三方面的一种可能的实现方式中,该第一QCL信息不同于该第二QCL信息。
在本申请实施例第三方面的一种可能的实现方式中,该第一QCL信息包括第一类型的QCL信息。
在本申请实施例第三方面的一种可能的实现方式中,该第二QCL信息包括第一类型的QCL信息。
在本申请实施例第三方面的一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息不同于该第二QCL信息中第一类型的QCL信息。
在本申请实施例第三方面的一种可能的实现方式中,该第一QCL信息由至少一个第一信号的QCL信息确定,该第一信号包括以下至少一项:
CSI-RS、SSB、DMRS。
在本申请实施例第三方面的一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息由至少一个第二信号的QCL信息确定,该第二信号包括以下至少一项:
CSI-RS、SSB、DMRS。
在本申请实施例第三方面的一种可能的实现方式中,
该处理单元,还用于确定第二指示信息,该第二指示信息用于指示该第一QCL信息对应的频域资源;
该收发单元,还用于发送该第二指示信息。
在本申请实施例第三方面的一种可能的实现方式中,
该处理单元,还用于确定第三指示信息,该第三指示信息用于指示该第一QCL信息中第一类型的QCL信息对应的频域资源;
该收发单元,还用于发送该第三指示信息。
在本申请实施例第三方面的一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的QCL信息关联于该第一参考信号端口组。
在本申请实施例第三方面的一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的同一类型的QCL信息关联于该第一参考信号端口组。
在本申请实施例第三方面的一种可能的实现方式中,
该处理单元,还用于确定第四指示信息,该第四指示信息用于指示该第一参考信号端口组的QCL信息对应的频域资源;
该收发单元,还用于发送该第四指示信息。
在本申请实施例第三方面的一种可能的实现方式中,
该处理单元,还用于确定第五指示信息,该第五指示信息用于指示该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源;
该收发单元,还用于发送该第四指示信息。
在本申请实施例第三方面的一种可能的实现方式中,该第一参考信号端口为DMRS端口或CSI-RS端口。
本申请实施例第三方面中,通信装置的组成模块还可以用于执行第一方面的各个可能实现方式中所执行的步骤,具体均可以参阅第一方面,此处不再赘述。
本申请实施例第四方面提供了一种通信装置,包括:
收发单元,用于接收第一指示信息,该第一指示信息用于对第一参考信号端口进行配置,该配置用于指示该第一参考信号端口的第一准共址QCL信息;
处理单元,用于根据该第一指示信息确定该第一QCL信息。
在本申请实施例第四方面的一种可能的实现方式中,第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息;该处理单元,还用于根据该第一指示信息确定该第二QCL信息。
在本申请实施例第四方面的一种可能的实现方式中,该第一QCL信息不同于该第二QCL信息。
在本申请实施例第四方面的一种可能的实现方式中,该第一QCL信息包括第一类型的QCL信息。
在本申请实施例第四方面的一种可能的实现方式中,该第二QCL信息包括第一类型的QCL信息。
在本申请实施例第四方面的一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息不同于该第二QCL信息中第一类型的QCL信息。
在本申请实施例第四方面的一种可能的实现方式中,第一QCL信息由至少一个第一信号的QCL信息确定,该第一信号包括以下至少一项:
CSI-RS、SSB、DMRS。
在本申请实施例第四方面的一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息由至少一个第二信号的QCL信息确定,该第二信号包括以下至少一项:
CSI-RS、SSB、DMRS。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于接收第二指示信息,该第二指示信息用于指示该第一QCL信息对应的频域资源;
该处理单元,还用于根据该第二指示信息确定该第一参考信号端口对应的频域资源。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于接收第三指示信息,该第三指示信息用于指示该第一QCL信息中第一类型的QCL信息对应的频域资源;
该处理单元,还用于根据该第三指示信息确定该第一QCL信息中第一类型的QCL信息对应的频域资源。
在本申请实施例第四方面的一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的QCL信息关联于该第一参考信号端口组。
在本申请实施例第四方面的一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的同一类型的QCL信息关联于该第一参考信号端口组。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于接收第四指示信息,该第四指示信息用于指示该第一参考信号端 口组的QCL信息对应的频域资源;
该处理单元,还用于根据该第四指示信息确定该第一参考信号端口组对应的频域资源。
在本申请实施例第四方面的一种可能的实现方式中,
该收发单元,还用于接收第五指示信息,该第五指示信息用于指示该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源;
该处理单元,还用于根据该第五指示信息确定该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源。
在本申请实施例第四方面的一种可能的实现方式中,该第一参考信号端口为DMRS端口或CSI-RS端口。
本申请实施例第四方面中,通信装置的组成模块还可以用于执行第二方面的各个可能实现方式中所执行的步骤,具体均可以参阅第二方面,此处不再赘述。
本申请实施例第五方面提供了一种通信装置,包括至少一个处理器,所述至少一个处理器与存储器耦合;
该存储器用于存储程序或指令;
该至少一个处理器用于执行该程序或指令,以使该装置实现前述第一方面或第一方面任意一种可能的实现方式所述的方法,或者,以使该装置实现前述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第六方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;
该输入输出接口用于输出第一信号;
该逻辑电路用于执行如前述第一方面或第一方面任意一种可能的实现方式所述的方法。
本申请实施例第七方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;
该输入输出接口用于输入第一信号;
该逻辑电路用于执行如前述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第八方面提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如上述第一方面或第一方面任意一种可能的实现方式所述的方法。
本申请实施例第九方面提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第十方面提供一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述第一方面或第一方面任意一种可能实现方式的方法。
本申请实施例第十一方面提供一种存储一个或多个计算机的计算机程序产品,当计算机程序产品被该处理器执行时,该处理器执行上述第二方面或第二方面任意一种可能实现方式的方法。
本申请实施例第十二方面提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持第一通信装置实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功 能。
在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存该第一通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。可选的,所述芯片系统还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。
本申请实施例第十三方面提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持第二通信装置实现上述第二方面或第二方面任意一种可能的实现方式中所涉及的功能。
在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存该第二通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。可选的,所述芯片系统还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。
本申请实施例第十四方面提供了一种通信系统,该通信系统包括上述第三方面的第一通信装置和第四方面的第二通信装置,和/或,该通信系统包括上述第五方面的第一通信装置,和/或,该通信系统包括上述第六方面的第一通信装置和第七方面的第二通信装置。
其中,第三方面至第十四方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同实现方式所带来的技术效果,在此不再赘述。
应理解,对于设备中的部件来说,上文所述的“发送”可以称为“输出”,“接收”可以称为“输入”。
从以上技术方案可以看出,发射端首先确定第一指示信息,该第一指示信息用于针对参考信号端口进行QCL配置;此后,该发射端发送该第一指示信息。相比于传统的以DMRS CDM组为设置QCL关系的粒度的方式,可以支持参考信号的每个端口可以进行灵活的QCL假设推导,相当于基于传输层配置QCL关系,使能准确匹配的信道估计,提升通信效率。
附图说明
图1为本申请实施例提供的通信系统的一个示意图;
图2为本申请实施例提供的通信系统的另一个示意图;
图3为本申请实施例提供的通信方法的一个示意图;
图4为本申请实施例提供的通信方法的一个示意图;
图5a为本申请实施例提供的通信方法的一个示意图;
图5b为本申请实施例提供的通信方法的一个示意图;
图6a为本申请实施例提供的通信方法的一个示意图;
图6b为本申请实施例提供的通信方法的一个示意图;
图7为本申请实施例提供的通信装置的一个示意图;
图8为本申请实施例提供的通信装置的一个示意图;
图9为本申请实施例提供的通信装置的一个示意图;
图10为本申请实施例提供的通信装置的一个示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网或者互联网进行通信,终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G通信系统中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
(2)网络设备:可以是无线网络中的设备,例如网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN设备的举例为:5G通信系统中的新一代基站(generation Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
其中,网络设备能够向终端设备发送配置信息(例如承载于调度消息和/或指示消息中),终端设备进一步根据该配置信息进行网络配置,使得网络设备与终端设备之间的网络配置 对齐;或者,通过预设于网络设备的网络配置以及预设于终端设备的网络配置,使得网络设备与终端设备之间的网络配置对齐。具体来说,“对齐”是指网络设备与终端设备之间存在交互消息时,两者对于交互消息收发的载波频率、交互消息类型的确定、交互消息中所承载的字段信息的含义、或者是交互消息的其它配置的理解一致。
此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)、用户面功能(user plane function,UPF)或会话管理功能(session management function,SMF)等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
(3)配置与预配置:在本申请中,会同时用到配置与预配置。配置是指基站或服务器等网络设备通过消息或信令将一些参数的配置信息或参数的取值发送给终端,以便终端根据这些取值或信息来确定通信的参数或传输时的资源。预配置与配置类似,它可以是基站或服务器等网络设备通过通信链路或载波把参数信息或取值发送给终端的方式;也可以是将相应的参数或参数值定义(例如,在标准中明确规定参数的取值)出来,或通过提前将相关的参数或取值写到终端设备中的方式,本申请对此不做限定。进一步地,这些取值和参数,是可以变化或更新的。
(4)DMRS端口指示:网络设备在调度数据,如调度物理下行共享信道(physical downlink shared channel,PDSCH)数据时,需要指示相应的DMRS端口,包括DMRS端口数以及DMRS端口号,不同DMRS端口号对应的DMRS端口所占用的物理资源是正交的,物理资源包括空间资源、时域资源和频域资源中的一个或者多个。其中,DMRS端口数等于PDSCH数据的传输层数,且各个DMRS端口与各个传输层一一对应,解调某个传输层需要在相对应的DMRS端口上执行信道估计。不同的终端设备若占用相同时频资源传输PDSCH数据,则需要网络设备分配不同的DMRS端口号保证DMRS正交。
(5)多站点协作传输机制:下行传输中,终端设备可以同时与至少一个网络设备通信,即同时接收多个网络设备的数据,该传输模式被称为多站点协作传输(coordinated multiple points transmission/reception,CoMP)。所述至少一个网络设备组成一个协作集与该终端设备同时进行通信。协作集内的网络设备可以各自连接不同的控制节点,各个控制节点之间可以进行信息交互,比如交互调度策略信息以达成协作传输的目的,或者,协作集内的网络设备均连接同一个控制节点,该控制节点接收协作集内的网络设备收集的终端设备上报的信道状态信息(比如CSI或者RSRP),并根据协作集内所有终端设备的信道状态信息对协作集内的终端设备进行统一调度,再将调度策略交互给与其连接的网络设备,再由各个网络设通过物理下行控制信道(physical downlink control channel,PDCCH) 承载的下行控制信息(download control information,DCI)信令分别通知各自的终端设备。根据协作集内多个网络设备的对某个终端设备的传输策略,CoMP传输模式可以包括:
动态传输节点切换(dynamic point switching,DPS):针对某个终端设备进行数据传输的网络设备动态变化,尽量选择信道条件较好的网络设备进行当前终端设备的数据调度,即多个网络设备分时为某个终端设备传输数据;
非相干传输(non-coherent joint transmission,NC-JT):多个网络设备同时为某个终端设备传输数据,且多个网络设备的天线进行独立预编码,即每个网络设备独立选择最优预编码矩阵进行该网络设备天线之间的联合相位和幅度加权,此机制不需要多个网络设备的天线进行相位校准;
相干传输(coherent joint transmission,CJT):多个网络设备同时为某个终端设备传输数据,且多个网络设备的天线进行联合预编码,即多个网络设备联合选择最优预编码矩阵进行多个网络设备天线之间的联合相位和幅度加权,此机制需要多个网络设备的天线进行相位校准;
协作集内的网络设备中存在一个服务网络设备,例如服务基站(serving TRP)/服务小区(serving cell),服务基站的作用是对该终端设备进行数据通信的调度决策,与该终端设备进行MAC层和物理层通信,比如根据调度决策确定该终端设备的控制信道(PDCCH)和数据信道(PUSCH/PDSCH)的时频资源,并在PDCCH中发送DCI信令,在PUSCH/PDSCH中发送数据,发送参考信号(reference signal,RS)等等。协作集内除了服务基站之外,其余的网络设备被称为协作基站(coordinate TRP)/协作小区(coordinate TRP),协作基站的作用是根据服务基站的调度决策与该终端设备进行物理层通信,比如根据服务基站的调度决策在PDCCH中发送DCI信令,在PUSCH/PDSCH中发送数据,发送RS等等。例如,服务基站为TRP1,协作基站为TRP2,TRP1作为服务基站进行该终端设备的调度决策并发送DCI,所述DCI可以指示调度TRP1/TRP2进行数据传输,也就是该DCI中携带两个TRP的调度信息。
其中,2个TRP传输的PDSCH对应的DMRS端口需要占用不同的CDM组,且每个CDM组/每个PDSCH对应一个传输配置指示(transmission configuration indicator,TCI)状态。TCI状态(TCI-state)用于指示准共站(quasi-co-location,QCL)假设信息(也称为QCL信息)。QCL假设信息用于辅助描述终端设备接收侧波束赋形信息以及接收流程。当前标准中定义了四种类型的QCL假设信息,所述四种类型的QCL假设信息为:QCL类型(types)A:多普勒偏移(doppler shift)、多普勒扩展(doppler spread)、平均信道时延(average delay)、时延扩展(delay spread);QCL types B:doppler shift、doppler spread;QCL types C:average delay、doppler shift;QCL types D:空间接收参数(spatial rx parameter)。其中,为了节省网络设备对终端设备的QCL信息指示开销,PDSCH或者PDCCH的QCL信息指示是通过指示PDCCH(或者PDSCH)的DM-RS端口与某一个或多个参考信号资源中满足QCL假设关系,从而可以通过该关联的一个或者多个参考信号资源获得上述QCL信息并采用该信息接收PDSCH或者PDCCH。如,该参考信号可以是信道状态信息参考信号(channel state information reference signal,CSI-RS),同时,上述DM-RS和CSI-RS具有相同的QCLType D假设,则此时上述DM-RS和CSI-RS具有相同的接收波束,从而基于 关联的参考信号资源索引,UE可推断出接收PDCCH(或者PDSCH)的接收波束信息。这些QCL信息为空间特性参数,描述了相关联的两种参考信号包含的天线端口间的空间信道特性,有助于终端设备根据该QCL信息完成接收侧波束赋形或接收处理过程。
(6)在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以理解为该指示信息携带A、直接指示A或间接指示A。
本申请中,指示信息所指示的信息,称为待指示信息。在具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、媒体接入控制(media access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括下行控制信息(downlink control information,DCI)。
(7)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本申请可以应用于长期演进(long term evolution,LTE)系统、新无线(new radio,NR)系统,或者是其它的通信系统,其中,该通信系统中包括网络设备和终端设备,网络设备作为配置信息发送实体,终端设备作为配置信息接收实体。具体来说,该通信系统中存在实体向另一实体发送配置信息,并向另一实体发送数据、或接收另一实体发送的数据;另一个实体接收配置信息,并根据配置信息向配置信息发送实体发送数据、或接收配置信息发送实体发送的数据。其中,本申请可应用于处于连接状态或激活状态(ACTIVE)的终端设备、也可以应用于处于非连接状态(INACTIVE)或空闲态(IDLE)的终端设备。
请参阅图1,为本申请中通信系统的一种示意图。图1中,示例性的示出了一个网络设备101和6个终端设备,6个终端设备分别为终端设备1、终端设备2、终端设备3、终端设备4、终端设备5以及终端设备6等。在图1所示的示例中,是以终端设备1为智能 茶杯,终端设备2为智能空调,终端设备3为智能加油机,终端设备4为交通工具,终端设备5为手机,终端设备6为为打印机进行举例说明的。其中,发射端可以为网络设备也可以为终端设备,接收端可以为网络设备也可以为终端设备。
如图1所示,配置信息发送实体可以为网络设备,其中,网络设备以基站(Base Station)、各个终端设备为UE为例进行说明,配置信息接收实体可以为UE1-UE6,此时,基站和UE1-UE6组成一个通信系统,在该通信系统中,UE1-UE6可以发送上行数据给网络设备,网络设备需要接收UE1-UE6发送的上行数据。同时,网络设备可以向UE1-UE6发送配置信息。
此外,在图1中,UE4-UE6也可以组成一个通信系统,此时,配置信息发送实体和接收实体可以都是UE,其中,UE5作为网络设备,即配置信息发送实体;UE4和UE6作为终端设备,即配置信息接收实体。例如车联网系统中,UE5分别向UE4和UE6发送配置信息,并且接收UE4和UE6发送的上行数据;相应的,UE4和UE6接收UE5发送的配置信息,并向UE5发送上行数据。
以图1所示通信系统为例,在通信系统中,天线端口准共址(quasi co-loacted,QCL)是一种天线端口之间的状态假设。如果发射端中的一个天线端口与另一个天线端口QCL,即意味着接收端可以假设从一个天线端口(或者与天线端口对应的无线电信道)接收的信号的大规模特性(或称为无线信道特征),与从另一个天线端口(或者对应于天线端口的无线信道)接收的信号的大规模特性之间,整体或部分地相同。其中,信号的大规模特性可以包括多普勒偏移、多普勒扩展、平均时延、时延扩展等。
目前,QCL可以应用到天线端口所发射的多种信号中,例如解调参考信号(demodulation deference signal,DMRS),信道状态信息参考信号(channel state information reference signal,CSI-RS)等。以DMRS为例,发射端可以对DMRS码分复用(code division multiplexing,CDM)组所包含多个不同的DMRS端口(DMRS port)进行统一的QCL假设,一般地,一个DMRS port对应一个传输层且用于对该传输层进行信道估计。接收端可以基于该统一的QCL假设对该DMRS CDM组中多个DMRS port对应的多个传输层进行信道估计,以实现数据解调。
然而,当接收端设备和发射端设备处于信道具有空间非平稳特征的场景或者多TRP传输场景时,同一DMRS CDM组的不同传输层对应的DMRS的QCL假设有可能不同(对应不同的DMRS CDM组的不同传输层的QCL假设也有可能不同),下面将以常见的两种场景作为示例进行性说明。
例如,在超大孔径阵列(extremely large aperture array,ELAA)中,由于天线孔径较大,不同的信道之间具有空间非平稳特征,这使每个天线看到的散射体(多径)不完全相同。
以图2作为ELAA的实现示例,在图2中,发射端为网络设备且该网络设备的发射面板包括编号为A1、A2、A3的面板,接收端包括编号为T1、T2、T3的终端设备(Terminal)。当发射端和接收端处于ELAA场景下时,图示中“VR-A1”指示发射面板A1的可见区域(visible region,VR)包括散射体1(cluster 1,记为C1)和散射体2(cluster 2,记为C2),类似地,“VR-A2”指示发射面板A2的VR包括C2、C3、C4,“VR-A3”指示发射 面板A3的VR包括C4、C5;此外,“VR-T1”指示终端设备T1的VR包括C1、C2,“VR-T2”指示终端设备T2的VR包括C2、C3,“VR-T1”指示终端设备T1的VR包括C4、C5。发射面板1的天线可以看成天线簇1,发射面板2的天线可以看成天线簇2。对于ELAA的数据传输,由于空间非平稳特性,每个天线簇可见的散射体不同,造成不同传输层来自不同的天线簇,这会出现不同DMRS port的信道特征(QCL假设)不同。
又如,在多TRP联合传输的场景,例如非相干传输(non-coherent joint transmission,NC-JT)、相干传输(coherent joint transmission,CJT)场景下,由于资源调度等原因,会出现在调度的频域资源(如资源块组(resource block group,RBG))上,出现不同的传输层从不完全相同的TRP进行联合预编码发出。此时,不同的数据layer对应的DMRS port的QCL假设(信道特征)也会出现不同的情况。
显然,接收端基于DMRS CDM组的QCL假设进行信道估计的方式,容易造成DMRS port的信道估计不准确,继而影响数据解调的效果。类似地,当参考信号端口为其它参考信号端口,例如CSI-RS port时,在上述场景中容易出现信道测量不准确,继而影响数据传输的效果,从而影响通信效率。
为此,本申请实施例提供了一种通信方法及通信装置,基于参考信号端口为设置QCL信息的配置粒度,相比于传统的以DMRS CDM组为QCL信息的配置粒度的方式,可以支持对不同的参考信号端口的QCL信息进行灵活地配置,提升参考信号端口对传输层进行信道估计或信道测量的成功率,提升通信效率。
请参阅图3,为本申请实施例提供的一种通信方法实现的一个示意图,该方法包括如下步骤。
S101.发射端确定第一指示信息。
本实施例中,发射端在步骤S101中确定第一指示信息,该第一指示信息用于对第一参考信号端口进行配置,其中,该配置用于指示该第一参考信号端口的第一QCL信息。
在一种可能的实现方式中,该第一参考信号端口为DMRS端口或CSI-RS端口,或者是其它的参考信号端口,使得方案可以适用于对不同的参考信号端口进行配置。
在一种可能的实现方式中,第一QCL信息由至少一个第一信号的QCL信息确定,该第一信号包括以下至少一项:CSI-RS、同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block或SSB)、DMRS,其中,SSB也可以简称为同步信号块或初始接入信号。其中,第一指示信息的配置可以指示第一QCL信息可以由其它信号的QCL信息推到得到,即第一QCL信息可以由至少一个第一信号的QCL信息确定,该第一信号可以为CSI-RS、SSB、DMRS中的至少一项,使得第一QCL信息可以通过多种实现方式灵活配置。下面将对该第一信号的多种不同实现方式进行描述。
方式一、当第一信号包含CSI-RS时,该CSI-RS可以是至少一个CSI-RS port所对应的CSI-RS。其中,至少一个CSI-RS port所对应的CSI-RS可以为某一个CSI-RS资源(CSI-RS resource)中的部分或全部CSI-RS,或者是,至少一个CSI-RS port所对应的CSI-RS可以为某一个CSI-RS资源中的部分或全部CSI-RS与其它CSI-RS资源中的部分或全部CSI-RS的集合,或者是,至少一个CSI-RS port所对应的CSI-RS可以为多个CSI-RS资源中的部 分或全部CSI-RS的集合,此处不做限定。其中,一个CSI-RS资源可以由一个CSI-RS resource标识(CSI-RS resource ID)指示。
在方式一中,如果上述至少一个CSI-RS port为多个CSI-RS port时,可以将该多个CSI-RS port中QCL信息相同的部分或全部CSI-RS port视为同一个CSI-RS port组,也可以将该多个CSI-RS port中某一类型的QCL信息相同的部分或全部CSI-RS port视为同一个CSI-RS port组。相应的,可以将该多个CSI-RS port中QCL信息不同的CSI-RS port之间视为不同的CSI-RS port组,也可以将该多个CSI-RS port中某一类型的QCL信息不同的CSI-RS port之间视为不同的CSI-RS port组。
方式二、当第一信号包含SSB时,该SSB可以是某一个同步信号块索引(SSB index)所指示的SSB,也可以是多个SSB index所指示的SSB集合。
方式三、当第一信号包含DMRS时,该DMRS可以是至少一个DMRS port所对应的DMRS,其中,至少一个DMRS port所对应的DMRS可以为某一个DMRS端口组的部分或全部DMRS,或者是,至少一个DMRS port所对应的DMRS可以为某一个DMRS端口组的部分或全部DMRS与其它DMRS端口组的部分或全部DMRS的集合,或者是,至少一个DMRS port所对应的DMRS可以为多个DMRS端口组的部分或全部DMRS的集合,此处不做限定。其中,DMRS端口组可以是由某个索引或标识指示的,例如,DMRS端口组可以是DMRS CDM组。
在一种可能的实现方式中,步骤S101中的第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息。即,第一指示信息还可以对除了第一参考信号端口之外的其它参考信号端口进行QCL配置,例如对第二参考信号端口进行QCL配置。
需要说明的是,第一参考信号端口和第二参考信号端口是不同的参考信号端口,且第一参考信号端口和第二参考信号端口可以是归属于同一个DMRS CDM组,也可以是归属于不同的DMRS CDM组,此处不做限定。
此外,第一指示信息还可以为第二参考信号端口,以及可能存在的第三参考信号端口、第四参考信号端口和其它的参考信号端口进行QCL配置,即该配置指示该第二参考信号端口的第二QCL信息、该第三参考信号端口的第三QCL信息、该第四参考信号端口的第四QCL信息以及其它参考信号端口的其它QCL信息。其中,类似于第一QCL信息由至少一个第一信号的QCL信息确定的实现过程,其它参考信号端口对应的其它QCL信息也可以由至少一个目标信号确定,该目标信号的实现过程可以参考前述第一信号的多种不同实现方式,此处不再赘述。
在一种可能的实现方式中,该第一QCL信息不同于该第二QCL信息。具体地,不同参考信号端口的QCL信息可以是不同的,其中,指示第一参考信号端口所对应无线信道特征的第一QCL信息可以不同于指示第二参考信号端口所对应无线信道特征的第二QCL信息,使得后续接收端可以通过不同的QCL信息分别在不同的参考信号端口对应的传输层进行信道估计或信道解调。
可选地,不同参考信号端口的QCL信息也可以是相同的,即第一QCL信息与第二QCL信息相同。
在一种可能的实现方式中,第一参考信号端口的第一QCL信息包括第一类型的QCL信息。具体地,第一参考信号端口的第一QCL信息可以通过多种类型(type)表示第一参考信号端口所对应的多种无线信道特征,其中,用于对第一参考信号端口进行配置的第一指示信息,具体可以配置第一QCL信息中的至少一个类型的QCL信息,例如第一类型的QCL信息。
类似地,该第一QCL信息中第一类型的QCL信息由至少一个第二信号的QCL信息确定,该第二信号包括以下至少一项:CSI-RS、SSB、DMRS。具体地,第一指示信息的配置可以指示第一QCL信息中某一类型的QCL信息可以由其它信号的QCL信息推到得到,例如第一QCL信息中的第一类型的QCL信息,即第一QCL信息中的第一类型的QCL信息可以由至少一个第二信号的QCL信息确定,该第二信号可以为CSI-RS、SSB、DMRS中的至少一项,使得第一QCL信息中的第一类型的QCL信息可以通过多种实现方式灵活配置。其中,第二信号的多种不同实现方式还可以参考前述第一信号的多种不同实现方式,此处不再赘述。
可选地,第一QCL信息还可以包括其它类型的QCL信息,例如第二类型的QCL信息、第三类型的QCL信息或者其它类型的QCL信息等。其中,第一QCL信息所包含的不同类型的QCL信息可以通过不同的方式进行表示,例如QCL1、QCL2...或者是QCL type 1、QCL type 2...或者是QCL type A、QCL type B...或者是QCL type a、QCL type b...或者是其它方式表示,此处不做限定。
示例性的,不同类型的QCL信息可以包括以下至少参数的不同组合实现,包括:多普勒偏移(doppler shift)、多普勒扩展(doppler spread)、平均信道时延(average delay)、时延扩展(delay spread)、空间接收参数(spatial rx parameter),或者是其它用于指示无线信道特征的参数,此处不做限定。
在一种可能的实现方式中,第二参考信号端口的第二QCL信息包括第一类型的QCL信息。具体地,第二参考信号端口的第二QCL信息可以通过多种类型表示第二参考信号端口所对应的多种无线信道特征,其中,用于对第二参考信号端口进行配置的第一指示信息,具体可以配置第二QCL信息中的至少一个类型的QCL信息,例如第一类型的QCL信息。
可选地,第二QCL信息还可以包括其它类型的QCL信息,例如第二类型的QCL信息、第三类型的QCL信息或者其它类型的QCL信息等。类似地,其它参考信号端口的QCL信息也可以包含有不同的类型QCL信息,例如可能存在的第三参考信号端口的第三QCL信息等,均可以参考前述第一QCL信息的不同类型的多种实现,此处不再赘述。
在一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息不同于该第二QCL信息中第一类型的QCL信息。具体地,指示第一参考信号端口所对应的某一无线信道特征的第一QCL信息中第一类型的QCL信息,可以不同于指示第二参考信号端口所对应相同无线信道特征的第二QCL信息中第一类型的QCL信息,使得后续接收端可以通过第一类型的不同的QCL信息分别在不同的参考信号端口对应的传输层进行信道估计或信道解调。
可选地,该第一QCL信息中第一类型的QCL信息与该第二QCL信息中第一类型的QCL信息相同。
下面将通过图4所示具体的实现示例对发射端包含有三个参考信号端口(参考信号端 口以DMRS port为示例)以及两个发射面板的场景进行描述,其中,在图4中,第一参考信号端口记为DMRS port a、第二参考信号端口记为DMRS port b、第三参考信号端口记为DMRS port c,且不同参考信号端口的QCL信息通过前述方式一和方式二的实现过程确定。
如图4所示,在发射端中,码字(codeword)经过层映射得到三个传输层,即层1、层2和层3。针对每个传输层有各自的QCL信息(或称为QCL假设),任意两个QCL信息之间可以相同或不同。其中,层1只通过发射面板1天线预编码形成的端口a(port a)上进行传输,对应第一QCL信息(记为QCL1假设);层2与层3通过发射面板1与发射面板2天线共同预编码形成的端口b&c(port b&c)上进行传输,即端口b和端口c的QCL信息相同,对应第二QCL信息(记为QCL2假设)。即,DMRS port a的对应发射面板1的信道特征,记为第一QCL信息;DMRS port b和DMRS port c对应发射面板1&2的合信道特征面板1&2,记为第二QCL信息。
需要说明的是,广义上发射面板中用于天线预编码的天线为天线簇的一种,即一个天线簇包含至少一个天线。
在图4中,三个传输层通过DMRS port a、DMRS port b与DMRS port c进行传输,且不同的DMRS port的(某一类型)QCL信息通过其它参考信号的QCL推导得到。示例性的,第一指示信息可以满足如下配置方式:
1)DMRS port a的type A QCL由1个CSI-RS port组X的QCL推导获得;
2)DMRS port b的type A QCL由2个CSI-RS port组Y、Z的QCL一起推导获得;
3)DMRS port c的type A QCL由2个CSI-RS port组Y、Z的QCL一起推导获得;
4)DMRS port b的type B QCL由1个CSI-RS port组Y与SSB(SSB-index H)的QCL一起推导获得;
其中,X、Y、Z为不同的CSI-RS port组编号/标识,H为某一个SSB-index。
此外,对于CSI-RS port组,可以有如下特点:
1)一个CSI-RS port组可以是一个CSI-RS resource(可以由CSI-RS-ResourceId指定);
2)一个CSI-RS port组可以是一个CSI-RS resource中的一部分CSI-RS port(至少一个CSI-RS port);
3)同一个QCL type下的用于推导QCL的多个CSI-RS port组可以来自同一或不同的CSI-RS resource)。
在一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的QCL信息关联于该第一参考信号端口组。具体地,针对同一参考信号端口组内的一个或多个参考信号端口可以进行相同的QCL信息配置,或者说,将具备相同QCL信息的一个或多个参考信号端口视为同一参考信号端口组,其中,第一参考信号端口组中的一个或多个参考信号端口的QCL信息关联于该第一参考信号端口组,例如关联于该第一参考信号端口组的组标识、组位置、组编号或者其他的信息等。
可选地,第二参考信号端口也可以包含于该第一参考信号端口组中,即第一参考信号 端口的第一QCL信息和第二参考信号端口的第二QCL信息相同,并且与第一参考信号端口组内可能存在的其它参考信号端口的QCL信息相同。
可选地,第二参考信号端口可以包含于其它参考信号端口组,例如第二参考信号端口组,即第一参考信号端口的第一QCL信息和第二参考信号端口的第二QCL信息可以是相同的,也可以是不同的,具体取决于第一参考信号端口组的QCL信息和第二参考信号端口组的QCL信息的配置。
此处仍以图4所示场景作为示例进行说明。
具体地,接收端通过配置或者预配置的方式确定不同参考信号端口组各自所包含的参考信号端口,例如,DMRS port分成DMRS port组A与DMRS port组B,其中,DMRS port组A中所包含的一个或多个DMRS port(例如DMRS port a)均为第一QCL信息,DMRS port组B中所包含的一个或多个DMRS port(例如DMRS port b、DMRS port c)均为第二QCL信息。
在一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的同一类型的QCL信息关联于该第一参考信号端口组。具体地,针对同一参考信号端口组内的一个或多个参考信号端口可以进行相同的某一类型的QCL信息配置,或者说,将具备相同的某一类型的QCL信息的一个或多个参考信号端口视为同一参考信号端口组,其中,第一参考信号端口组中的一个或多个参考信号端口中同一类型的QCL信息关联于该第一参考信号端口组,例如关联于该第一参考信号端口组的组标识、组位置、组编号或者其他的信息等。
可选地,第二参考信号端口也可以包含于该第一参考信号端口组中,即第一参考信号端口的第一QCL信息中第一类型的QCL信息和第二参考信号端口的第二QCL信息中第一类型的QCL信息相同,并且与第一参考信号端口组内可能存在的其它参考信号端口的QCL信息中第一类型的QCL信息相同。
可选地,第二参考信号端口可以包含于其它参考信号端口组,例如第二参考信号端口组,即第一参考信号端口的第一QCL信息中第一类型的QCL信息和第二参考信号端口的第二QCL信息中第一类型的QCL信息可以是相同的,也可以是不同的,具体取决于第一参考信号端口组的QCL信息中第一类型的QCL信息和第二参考信号端口组的QCL信息中第一类型的QCL信息的配置。
此处仍以图4所示场景作为示例进行说明。
具体地,接收端通过配置或者预配置的方式确定不同参考信号端口组各自所包含的参考信号端口,例如,DMRS port分成DMRS port组C与DMRS port组D,其中,DMRS port组C中所包含的一个或多个DMRS port(例如DMRS port a)均为第一QCL信息中type A QCL信息,DMRS port组D中所包含的一个或多个DMRS port(例如DMRS port b、DMRS port c)均为第二QCL信息中type A QCL信息。
以上type A仅为示例,还可以是type B,type C,type D等其他定义的类型中的一个或多个,对应的实现过程可以参考前述type A的实现示例,此处不再赘述。
S102.发射端向接收端发送第一指示信息。
本实施例中,发射端在步骤S102中向接收端发送步骤S101确定得到的第一指示信息,相应的,接收端在步骤S102中接收得到发射端发送的第一指示信息。
S103.接收端根据第一指示信息确定第一QCL信息。
本实施例中,接收端根据步骤S102中接收得到的第一指示信息确定该第一QCL信息。
在一种可能的实现方式中,如果第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息。那么接收端还可以根据第一指示信息确定第二QCL信息。下文其他实施例皆同理,下文不再赘述。
基于图3所示实现方式,发射端向接收端发送用于对第一参考信号端口进行QCL配置的第一指示信息,使得接收端可以根据第一QCL信息在第一参考信号端口在对应的传输层进行信道估计或信道解调。相比于传统的以DMRS CDM组为QCL信息的配置粒度的方式,基于参考信号端口为设置QCL信息的配置粒度,相当于基于传输层配置QCL关系,可以支持对不同的参考信号端口的QCL信息进行灵活地配置,提升参考信号端口对传输层进行信道估计或信道测量的成功率,提升通信效率。
进一步地,发射端还可以基于不同的传输层中多个参考信号端口的QCL信息(或者QCL信息中某一类型的QCL信息)配置频域资源,或者为不同的传输层中多个参考信号端口组的QCL信息(或者QCL信息中某一类型的QCL信息)配置频域资源,下面将分别通过图5a、图5b、图6a和图6b进行详细介绍。
请参阅图5a,为本申请实施例提供的一种通信方法的另一种示意图,该方法包括如下步骤。
S201.发射端确定第一指示信息和第二指示信息;
本实施例中,发射端在步骤S201中确定第一指示信息和第二指示信息,该第一指示信息用于对第一参考信号端口进行配置,其中,该配置用于指示该第一参考信号端口的第一QCL信息;该第二指示信息用于指示该第一QCL信息对应的频域资源。
在一种可能的实现方式中,类似图3的实施例,步骤S201中的第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息。即,第一指示信息还可以对除了第一参考信号端口之外的其它参考信号端口进行QCL配置,例如对第二参考信号端口进行QCL配置。
S202.发射端向接收端发送第一指示信息和第二指示信息;
本实施例中,发射端在步骤S202中向接收端发送步骤S201确定得到的第一指示信息和第二指示信息,相应的,接收端在步骤S202中接收得到发射端发送的第一指示信息和第二指示信息。
S203.接收端根据第一指示信息确定第一QCL信息,并根据第二指示信息确定第一QCL信息对应的频域资源。
本实施例中,接收端根据步骤S202中接收得到的第一指示信息确定该第一QCL信息,并根据步骤S202中接收得到的第二指示信息确定第一QCL信息对应的频域资源。
需要说明的是,步骤S201至步骤S203中对于第一指示信息的处理过程与前述图3所示实现过程类似,此处不再赘述。
可选地,接收端可以通过图5a之外的其它的实现方式获取得到该第二指示信息,例如将第二指示信息预配置于接收端。
此外,第二指示信息还可以指示除了第一参考信号端口的第一QCL信息对应的频域资源,还可以指示其它参考信号端口的QCL信息对应的频域资源,例如,可以指示第二参考信号端口的第二QCL信息对应的频域资源,也可以指示第三参考信号端口的第三QCL信息对应的频域资源,以及可能存在的其它参考信号端口的QCL信息对应的频域资源。
可选地,在步骤S202中,第二指示信息和第一指示信息承载于同一消息(例如无线资源控制(radio resource control,RRC)/媒体接入控制单元(medium access control control element,MAC CE)/DCI消息中,或者,第二指示信息和第一指示信息承载于不同消息中。
示例性的,第一指示信息和第二指示信息中的至少一个指示信息还可以通过多级指示的方式实现。例如,将该至少一个指示信息配置于TCI状态中,即该TCI状态可以指示一个或多个参考信号端口的QCL信息,和/或,指示一个或多个QCL信息对应的频域资源。其中,通过RRC消息承载多个TCI状态的方式进行第一级配置,然后,通过DCI消息承载某一个TCI状态(或某一个TCI状态标识)的方式进行第二级配置,使得接收端可以根据两级指示的方式确定一个或多个参考信号端口的QCL信息以及一个或多个QCL信息对应的频域资源。
此处仍以图4所示场景作为示例进行说明。
具体地,图5a所示实施例中,对同一个参考信号端口的频域资源范围而言,所有的QCL类型可以使用相同QCL配置信息。即DMRS port a中不同类型的QCL信息均在第二指示信息所指示的频域资源(例如RBG1、部分带宽(bandwidth part,BWP,又称为带宽部分)1或者是其它频域资源)上使用,DMRS port b中不同类型的QCL信息均在第二指示信息所指示的频域资源(例如RBG2、BWP2或者是其它频域资源)上使用,DMRS port c中不同类型的QCL信息均在第二指示信息所指示的频域资源(例如RBG3、BWP3或者是其它频域资源)上使用。其中,RBG1、RBG2和RBG3可以是两两相同的频域资源,或者是两两互不重叠的频域资源,或者时两两之间部分相同的频域资源,此处不做限定;类似的,BWP1、BWP2和BWP3或者其他的频域资源也可以存在多种实现,此处不再赘述。
基于图5a所示实现方案,发射端还可以向接收端发送用于指示该第一QCL信息对应的频域资源的第二指示信息,即发射端可以为第一参考信号端口的第一QCL信息配置对应的频域资源,使得接收端后续可以根据该第二指示信息在指定的频域资源上使用第一QCL信息对第一参考信号端口进行信道估计或信道测量。从而,实现对每一个参考信号端口的QCL信息配置对应的频域资源,且不同参考信号端口的QCL信息所对应的频域资源可以是相同的,也可以是不同的,此处不做限定。
请参阅图5b,为本申请实施例提供的一种通信方法的另一种示意图,该方法包括如下步骤。
S301.发射端确定第一指示信息和第三指示信息;
本实施例中,发射端在步骤S301中确定第一指示信息和第三指示信息,该第一指示信 息用于对第一参考信号端口进行配置,其中,该配置用于指示该第一参考信号端口的第一QCL信息;该第三指示信息用于指示该第一QCL信息中第一类型的QCL信息对应的频域资源。
在一种可能的实现方式中,类似图3的实施例,步骤S301中的第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息。即,第一指示信息还可以对除了第一参考信号端口之外的其它参考信号端口进行QCL配置,例如对第二参考信号端口进行QCL配置。
S302.发射端向接收端发送第一指示信息和第三指示信息;
本实施例中,发射端在步骤S302中向接收端发送步骤S301确定得到的第一指示信息和第二指示信息,相应的,接收端在步骤S302中接收得到发射端发送的第一指示信息和第三指示信息。
S303.接收端根据第一指示信息确定第一QCL信息,并根据第三指示信息确定第一QCL信息中第一类型的QCL信息对应的频域资源。
本实施例中,接收端根据步骤S302中接收得到的第一指示信息确定该第一QCL信息,并根据步骤S302中接收得到的第三指示信息确定第一QCL信息中第一类型的QCL信息对应的频域资源。
需要说明的是,步骤S301至步骤S303中对于第一指示信息的处理过程与前述图3所示实现过程类似,此处不再赘述。
可选地,接收端可以通过图5b之外的其它的实现方式获取得到该第三指示信息,例如将第三指示信息预配置于接收端。
可选地,在步骤S302中,第三指示信息和第一指示信息承载于同一消息(例如RRC消息/MAC CE/DCI消息)中,或者,第三指示信息和第一指示信息承载于不同消息中。
示例性的,第一指示信息和第三指示信息中的至少一个指示信息还可以通过多级指示的方式实现,该实现过程可以参考前述第一指示信息和第二指示信息通过多级指示的实现方式,此处不再赘述。
在一种可能的实现方式中,第三指示信息还可以指示除了第一参考信号端口的第一QCL信息中第一类型对应的频域资源,还可以指示其它参考信号端口的QCL信息中第一类型对应的频域资源,例如,可以指示第二参考信号端口的第二QCL信息中第一类型对应的频域资源,也可以指示第三参考信号端口的第三QCL信息中第一类型对应的频域资源,以及可能存在的其它参考信号端口的QCL信息对应的频域资源。显然,对于第一参考信号端口中的第一QCL信息中其它类型对应的频域资源也可以通过类似于第三指示信息的配置,实现对第一QCL信息中其它类型对应的频域资源进行配置,此处不再赘述。
此处仍以图4所示场景作为示例进行说明。
具体地,图5a所示实施例中,对同一个参考信号端口的频域资源范围而言,所有的QCL类型可以使用相同QCL配置信息。即DMRS port a中type A的QCL信息均在第二指示信息所指示的频域资源(例如RBG1、BWP1或者是其它频域资源)上使用,DMRS port b中type A的QCL信息均在第二指示信息所指示的频域资源(例如RBG2、BWP2或者是其它频 域资源)上使用,DMRS port c中type A的QCL信息均在第二指示信息所指示的频域资源(例如RBG3、BWP3或者是其它频域资源)上使用。其中,RBG1、RBG2和RBG3可以是两两相同的频域资源,或者是两两互不重叠的频域资源,或者时两两之间部分相同的频域资源,此处不做限定;类似的,BWP1、BWP2和BWP3或者其他的频域资源也可以存在多种实现,此处不再赘述。
基于图5b所示技术方案,发射端还可以向接收端发送用于指示该第一QCL信息中第一类型的QCL信息对应的频域资源的第三指示信息,即发射端可以为第一参考信号端口的第一QCL信息中第一类型的QCL信息配置对应的频域资源,使得接收端后续可以根据该第三指示信息在指定的频域资源上使用第一QCL信息中第一类型的QCL信息对第一参考信号端口进行信道估计或信道测量。从而,实现对每一个参考信号端口对应的QCL信息中某一类型的QCL信息配置对应的频域资源,且不同参考信号端口的QCL信息中某一类型的QCL信息所对应的频域资源可以是相同的,也可以是不同的,此处不做限定。
请参阅图6a,为本申请实施例提供的一种通信方法的另一种示意图,该方法包括如下步骤。
S401.发射端确定第一指示信息和第四指示信息;
本实施例中,发射端在步骤S401中确定第一指示信息和第四指示信息,该第一指示信息用于对第一参考信号端口进行配置,其中,该配置用于指示该第一参考信号端口的第一QCL信息;该第四指示信息用于指示第一参考信号端口组的QCL信息对应的频域资源,其中,第一参考信号端口组包括该第一参考信号端口。
在一种可能的实现方式中,类似图3的实施例,步骤S401中的第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息。即,第一指示信息还可以对除了第一参考信号端口之外的其它参考信号端口进行QCL配置,例如对第二参考信号端口进行QCL配置。
在一种可能的实现方式中,当第一QCL信息和第二QCL信息相同时,第一参考信号端口和第二参考信号端口均对应于该第一参考信号端口组,即该第四指示信息用于指示第一参考信号端口组中至少包含的第一参考信号端口和第二参考信号的QCL信息对应的频域资源。
在一种可能的实现方式中,当第一QCL信息和第二QCL信息不同时,第一参考信号端口和第二参考信号端口分别对应于不同的参考信号端口组,例如第二参考信号对应于第二参考信号端口组,且第一参考信号端口组不同于第二参考信号端口组,即该第四指示信息除了用于指示第一参考信号端口组的QCL信息对应的频域资源之外,还可以指示第二参考信号端口组的QCL信息对应的频域资源。
S402.发射端向接收端发送第一指示信息和第四指示信息;
本实施例中,发射端在步骤S402中向接收端发送步骤S401确定得到的第一指示信息和第四指示信息,相应的,接收端在步骤S402中接收得到发射端发送的第一指示信息和第四指示信息。
S403.接收端根据第一指示信息确定第一QCL信息,并根据第四指示信息确定第一参考 信号端口组的QCL信息对应的频域资源。
本实施例中,接收端根据步骤S402中接收得到的第一指示信息确定该第一QCL信息,并根据步骤S402中接收得到的第四指示信息确定第一参考信号端口组的QCL信息对应的频域资源。
需要说明的是,步骤S401至步骤S403中对于第一指示信息的处理过程与前述图3所示实现过程类似,此处不再赘述。
可选地,接收端可以通过图6a之外的其它的实现方式获取得到该第四指示信息,例如将第四指示信息预配置于接收端。
可选地,在步骤S402中,第四指示信息和第一指示信息承载于同一消息(例如RRC消息/MAC CE/DCI消息)中,或者,第四指示信息和第一指示信息承载于不同消息中。
示例性的,第一指示信息和第四指示信息中的至少一个指示信息还可以通过多级指示的方式实现,该实现过程可以参考前述第一指示信息和第二指示信息通过多级指示的实现方式,此处不再赘述。
此外,第四指示信息还可以指示除了第一参考信号端口组的QCL信息对应的频域资源,还可以指示其它参考信号端口组的QCL信息对应的频域资源,例如,可以指示第二参考信号端口组的QCL信息对应的频域资源,也可以指示第三参考信号端口组的QCL信息对应的频域资源,以及可能存在的其它参考信号端口组的QCL信息对应的频域资源。
此处仍以图4所示场景作为示例进行说明。
具体地,图6a所示实施例中,对同一个参考信号端口组的频域资源范围而言,所有的QCL类型可以使用相同QCL配置信息。即DMRS port组A中DMRS port a中不同类型的QCL信息均在第四指示信息所指示的频域资源(例如RBG1、BWP1或者是其它频域资源)上使用,DMRS port组B中DMRS port b和DMRS port c中不同类型的QCL信息均在第四指示信息所指示的频域资源(例如RBG2、BWP2或者是其它频域资源)上使用。其中,RBG1、RBG2可以是相同的频域资源,或者是互不重叠的频域资源,或者时部分相同的频域资源,此处不做限定;类似的,BWP1、BWP2或者其他的频域资源也可以存在多种实现,此处不再赘述。
基于图6a技术方案,发射端还可以向接收端发送用于指示该第一参考信号端口组的QCL信息对应的频域资源的第四指示信息,即发射端可以为第一参考信号端口组的QCL信息配置频域资源,使得接收端后续可以根据该第四指示信息在指定的频域资源上使用第一参考信号端口组的QCL信息对第一参考信号端口组进行信道估计或信道测量。从而,实现对每一个参考信号端口组的QCL信息配置对应的频域资源,且不同参考信号端口组的QCL信息所对应的频域资源可以是相同的,也可以是不同的,此处不做限定。
请参阅图6b,为本申请实施例提供的一种通信方法的另一种示意图,该方法包括如下步骤。
S501.发射端确定第一指示信息和第五指示信息;
本实施例中,发射端在步骤S501中确定第一指示信息和第五指示信息,该第一指示信息用于对第一参考信号端口进行配置,其中,该配置用于指示该第一参考信号端口的第一QCL信息;该第五指示信息用于指示第一参考信号端口组的QCL信息中第一类型的QCL信 息对应的频域资源。
在一种可能的实现方式中,类似图3的实施例,步骤S501中的第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息。即,第一指示信息还可以对除了第一参考信号端口之外的其它参考信号端口进行QCL配置,例如对第二参考信号端口进行QCL配置。
在一种可能的实现方式中,当第一QCL信息中第一类型QCL信息和第二QCL信息中第一类型QCL信息相同时,第一参考信号端口和第二参考信号端口均对应于该第一参考信号端口组,即该第五指示信息用于指示第一参考信号端口组中至少包含的第一参考信号端口和第二参考信号的QCL信息对应的频域资源。
在一种可能的实现方式中,当第一QCL信息中第一类型QCL信息和第二QCL信息中第一类型QCL信息不同时,第一参考信号端口和第二参考信号端口分别对应于不同的参考信号端口组,例如第二参考信号对应于第二参考信号端口组,且第一参考信号端口组不同于第二参考信号端口组,即该第五指示信息除了用于指示第一参考信号端口组的QCL信息对应的频域资源之外,还可以指示第二参考信号端口组的QCL信息对应的频域资源。
S502.发射端向接收端发送第一指示信息和第五指示信息;
本实施例中,发射端在步骤S502中向接收端发送步骤S501确定得到的第一指示信息和第五指示信息,相应的,接收端在步骤S502中接收得到发射端发送的第一指示信息和第五指示信息。
S503.接收端根据第一指示信息确定第一QCL信息,并根据第五指示信息确定第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源。
本实施例中,接收端根据步骤S502中接收得到的第一指示信息确定该第一QCL信息,并根据步骤S502中接收得到的第五指示信息确定第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源。
需要说明的是,步骤S501至步骤S503中对于第一指示信息的处理过程与前述图3所示实现过程类似,此处不再赘述。
可选地,接收端可以通过图6a之外的其它的实现方式获取得到该第五指示信息,例如将第五指示信息预配置于接收端。
可选地,在步骤S502中,第五指示信息和第一指示信息承载于同一消息(例如RRC消息/MAC CE/DCI消息)中,或者,第五指示信息和第一指示信息承载于不同消息中。
示例性的,第一指示信息和第四指示信息中的至少一个指示信息还可以通过多级指示的方式实现,该实现过程可以参考前述第一指示信息和第二指示信息通过多级指示的实现方式,此处不再赘述。
此外,第五指示信息还可以指示除了第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源,还可以指示其它参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源,例如,可以指示第二参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源,也可以指示第三参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源,以及可能存在的其它参考信号端口组的QCL信息对应的频域资源。
此处仍以图4所示场景作为示例进行说明。
具体地,图6b所示实施例中,对同一个参考信号端口组的频域资源范围而言,第一类型的QCL信息可以使用相同QCL配置信息。即DMRS port组A中DMRS port a中第一类型的QCL信息均在第五指示信息所指示的频域资源(例如RBG1、BWP1或者是其它频域资源)上使用,DMRS port组B中DMRS port b和DMRS port c中第一类型的QCL信息均在第五指示信息所指示的频域资源(例如RBG2、BWP2或者是其它频域资源)上使用。其中,RBG1、RBG2可以是相同的频域资源,或者是互不重叠的频域资源,或者时部分相同的频域资源,此处不做限定;类似的,BWP1、BWP2或者其他的频域资源也可以存在多种实现,此处不再赘述。
基于图6b技术方案,发射端还可以向接收端发送用于指示该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源的第五指示信息,即发射端可以基于第一参考信号端口组中某一类型的QCL信息配置对应的频域资源,使得接收端后续可以根据该第五指示信息在指定的频域资源上使用第一参考信号端口组的QCL信息中第一类型的QCL信息对第一参考信号端口组进行信道估计或信道测量。从而,实现对每一个参考信号端口组的QCL信息某一类型的QCL信息配置对应的频域资源,且不同参考信号端口组的QCL信息中某一类型的QCL信息所对应的频域资源可以是相同的,也可以是不同的,此处不做限定。
请参阅图7,本申请实施例提供了一种通信装置,该通信装置700可以实现上述方法实施例中发射端的功能,因此也能实现上述方法实施例所具备的有益效果。
该通信装置700包括处理单元701和收发单元702;
处理单元701,用于确定第一指示信息,该第一指示信息用于对第一参考信号端口进行配置,该配置用于指示该第一参考信号端口的第一准共址QCL信息;
收发单元702,用于发送该第一指示信息。
在一种可能的实现方式中,第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息。
在一种可能的实现方式中,该第一QCL信息不同于该第二QCL信息。
在一种可能的实现方式中,该第一QCL信息包括第一类型的QCL信息。
在一种可能的实现方式中,该第二QCL信息包括第一类型的QCL信息。
在一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息不同于该第二QCL信息中第一类型的QCL信息。
在一种可能的实现方式中,该第一QCL信息由至少一个第一信号的QCL信息确定,该第一信号包括以下至少一项:
CSI-RS、SSB、DMRS。
在一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息由至少一个第二信号的QCL信息确定,该第二信号包括以下至少一项:
CSI-RS、SSB、DMRS。
在一种可能的实现方式中,
该处理单元701,还用于确定第二指示信息,该第二指示信息用于指示该第一QCL信息对应的频域资源;
该收发单元702,还用于发送该第二指示信息。
在一种可能的实现方式中,
该处理单元701,还用于确定第三指示信息,该第三指示信息用于指示该第一QCL信息中第一类型的QCL信息对应的频域资源;
该收发单元702,还用于发送该第三指示信息。
在一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的QCL信息关联于该第一参考信号端口组。
在一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的同一类型的QCL信息关联于该第一参考信号端口组。
在一种可能的实现方式中,
该处理单元701,还用于确定第四指示信息,该第四指示信息用于指示该第一参考信号端口组的QCL信息对应的频域资源;
该收发单元702,还用于发送该第四指示信息。
在一种可能的实现方式中,
该处理单元701,还用于确定第五指示信息,该第五指示信息用于指示该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源;
该收发单元702,还用于发送该第四指示信息。
在一种可能的实现方式中,该第一参考信号端口为DMRS端口或CSI-RS端口。
需要说明的是,上述通信装置700的单元的信息执行过程等内容,具体可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
请参阅图8,本申请实施例提供了一种通信装置,该通信装置800可以实现上述方法实施例中接收端的功能,因此也能实现上述方法实施例所具备的有益效果。
该通信装置800包括处理单元801和收发单元802;
收发单元802,用于接收第一指示信息,该第一指示信息用于对第一参考信号端口进行配置,该配置用于指示该第一参考信号端口的第一准共址QCL信息;
处理单元801,用于根据该第一指示信息确定该第一QCL信息。
在一种可能的实现方式中,第一指示信息还用于对第二参考信号端口进行配置,该配置还用于指示第二参考信号端口的第二QCL信息;
处理单元801,还用于根据该第一指示信息确定该第二QCL信息。
在一种可能的实现方式中,该第一QCL信息不同于该第二QCL信息。
在一种可能的实现方式中,该第一QCL信息包括第一类型的QCL信息。
在一种可能的实现方式中,该第二QCL信息包括第一类型的QCL信息。
在一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息不同于该第二QCL 信息中第一类型的QCL信息。
在一种可能的实现方式中,第一QCL信息由至少一个第一信号的QCL信息确定,该第一信号包括以下至少一项:
CSI-RS、SSB、DMRS。
在一种可能的实现方式中,该第一QCL信息中第一类型的QCL信息由至少一个第二信号的QCL信息确定,该第二信号包括以下至少一项:
CSI-RS、SSB、DMRS。
在一种可能的实现方式中,
该收发单元802,还用于接收第二指示信息,该第二指示信息用于指示该第一QCL信息对应的频域资源;
该处理单元801,还用于根据该第二指示信息确定该第一参考信号端口对应的频域资源。
在一种可能的实现方式中,
该收发单元802,还用于接收第三指示信息,该第三指示信息用于指示该第一QCL信息中第一类型的QCL信息对应的频域资源;
该处理单元801,还用于根据该第三指示信息确定该第一QCL信息中第一类型的QCL信息对应的频域资源。
在一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的QCL信息关联于该第一参考信号端口组。
在一种可能的实现方式中,该第一参考信号端口包含于第一参考信号端口组,该第一参考信号端口组包括一个或多个参考信号端口,且该一个或多个参考信号端口的同一类型的QCL信息关联于该第一参考信号端口组。
在一种可能的实现方式中,
该收发单元802,还用于接收第四指示信息,该第四指示信息用于指示该第一参考信号端口组的QCL信息对应的频域资源;
该处理单元801,还用于根据该第四指示信息确定该第一参考信号端口组对应的频域资源。
在一种可能的实现方式中,
该收发单元802,还用于接收第五指示信息,该第五指示信息用于指示该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源;
该处理单元801,还用于根据该第五指示信息确定该第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源。
在一种可能的实现方式中,该第一参考信号端口为DMRS端口或CSI-RS端口。
需要说明的是,上述通信装置800的单元的信息执行过程等内容,具体可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
请参阅图9,为本申请的实施例提供的上述实施例中所涉及的通信装置,该通信装置 具体可以为上述实施例中的终端设备,其中,该通信装置900的一种可能的逻辑结构示意图,该通信装置900可以包括但不限于至少一个处理器901以及通信端口902。进一步可选的,所述装置还可以包括存储器903、总线904中的至少一个,在本申请的实施例中,所述至少一个处理器901用于对通信装置900的动作进行控制处理。
此外,处理器901可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
需要说明的是,图9所示通信装置具体可以用于实现前述对应方法实施例中终端设备所实现的其它步骤,并实现终端设备对应的技术效果,图9所示通信装置的具体实现方式,均可以参考前述各个方法实施例中的叙述,此处不再一一赘述。
请参阅图10,为本申请的实施例提供的上述实施例中所涉及的通信装置的结构示意图,该通信装置具体可以为上述实施例中的网络设备,其中,该通信装置的结构可以参考图10所示的结构。
通信装置包括至少一个处理器1011以及至少一个网络接口1014。进一步可选的,所述通信装置还包括至少一个存储器1012、至少一个收发器1013和一个或多个天线1015。处理器1011、存储器1012、收发器1013和网络接口1014相连,例如通过总线相连,在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线1015与收发器1013相连。网络接口1014用于使得通信装置通过通信链路,与其它通信设备通信。例如网络接口1014可以包括通信装置与核心网设备之间的网络接口,例如S1接口,网络接口可以包括通信装置和其他通信装置(例如其他网络设备或者核心网设备)之间的网络接口,例如X2或者Xn接口。
处理器1011主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据,例如用于支持通信装置执行实施例中所描述的动作。通信装置可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图10中的处理器1011可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器主要用于存储软件程序和数据。存储器1012可以是独立存在,与处理器1011相连。可选的,存储器1012可以和处理器1011集成在一起,例如集成在一个芯片之内。其中,存储器1012能够存储执行本申请实施例的技术方案的程序代码,并由处理器1011来控制执行,被执行的各类计算机程序代码也可被视为是处理器1011的驱动程序。
图10仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
收发器1013可以用于支持通信装置与终端之间射频信号的接收或者发送,收发器1013可以与天线1015相连。收发器1013包括发射机Tx和接收机Rx。具体地,一个或多个天线1015可以接收射频信号,该收发器1013的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器1011,以便处理器1011对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器1013中的发射机Tx还用于从处理器1011接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线1015发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器也可以称为收发单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
需要说明的是,图10所示通信装置具体可以用于实现前述方法实施例中网络设备所实现的步骤,并实现网络设备对应的技术效果,图10所示通信装置的具体实现方式,均可以参考前述的各个方法实施例中的叙述,此处不再一一赘述。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如前述实施例中通信装置(通过终端设备实现时)可能的实现方式所述的方法。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如前述实施例中通信装置(通过网络设备实现时)可能的实现方式所述的方法。
本申请实施例还提供一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述通信装置(通过终端设备实现时)可能实现方式的方法。
本申请实施例还提供一种存储一个或多个计算机的计算机程序产品,当计算机程序产品被该处理器执行时,该处理器执行上述通信装置(通过网络设备实现时)可能实现方式的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持终端设备实现上述通信装置(通过终端设备实现时)可能的实现方式中所涉及的功能。可选的,所述芯片系统还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存该终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持网络设备实现上述通信装置(通过网络设备实现时)可能的实现方式中所涉0及的功能。可选的,所述芯片系统还包括接口电路,所述接口电路为所述至少一个处理器提供程序指令和/或数据。在一种可能的设计中,芯片系统还可以包括存储器,存储器,用于保存该网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,其中,该网络设备具体可以为前述前述方法实施例中网络设备。
本申请实施例还提供了一种通信系统,该网络系统架构包括上述任一实施例中的通信装置(包括终端设备和网络设备)。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (47)

  1. 一种通信方法,其特征在于,包括:
    确定第一指示信息,所述第一指示信息用于对第一参考信号端口进行配置,所述配置用于指示所述第一参考信号端口的第一准共址QCL信息;
    发送所述第一指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息还用于对第二参考信号端口进行配置,所述配置还用于指示所述第二参考信号端口的第二QCL信息。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一QCL信息不同于所述第二QCL信息。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,
    所述第一QCL信息包括第一类型的QCL信息。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第二QCL信息包括第一类型的QCL信息。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一QCL信息中第一类型的QCL信息不同于所述第二QCL信息中第一类型的QCL信息。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一QCL信息由至少一个第一信号的QCL信息确定,所述第一信号包括以下至少一项:
    信道状态信息参考信号CSI-RS、同步信号块SSB、解调参考信号DMRS。
  8. 根据权利要求4至7任一项所述的方法,其特征在于,所述第一QCL信息中第一类型的QCL信息由至少一个第二信号的QCL信息确定,所述第二信号包括以下至少一项:
    CSI-RS、SSB、DMRS。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述方法还包括:
    确定第二指示信息,所述第二指示信息用于指示所述第一QCL信息对应的频域资源;
    发送所述第二指示信息。
  10. 根据权利要求4至9任一项所述的方法,其特征在于,所述方法还包括:
    确定第三指示信息,所述第三指示信息用于指示所述第一QCL信息中第一类型的QCL信息对应的频域资源;
    发送所述第三指示信息。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,
    所述第一参考信号端口包含于第一参考信号端口组,所述第一参考信号端口组包括一个或多个参考信号端口,且所述一个或多个参考信号端口的QCL信息关联于所述第一参考信号端口组。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,
    所述第一参考信号端口包含于第一参考信号端口组,所述第一参考信号端口组包括一个或多个参考信号端口,且所述一个或多个参考信号端口的同一类型的QCL信息关联于所述第一参考信号端口组。
  13. 根据权利要求11或12所述的方法,其特征在于,所述方法还包括:
    确定第四指示信息,所述第四指示信息用于指示所述第一参考信号端口组的QCL信息对应的频域资源;
    发送所述第四指示信息。
  14. 根据权利要求11至13任一项所述的方法,其特征在于,所述方法还包括:
    确定第五指示信息,所述第五指示信息用于指示所述第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源;
    发送所述第四指示信息。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,所述第一参考信号端口为DMRS端口或CSI-RS端口。
  16. 一种通信方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于对第一参考信号端口进行配置,所述配置用于指示所述第一参考信号端口的第一准共址QCL信息;
    根据所述第一指示信息确定所述第一QCL信息。
  17. 根据权利要求16所述的方法,其特征在于,所述第一指示信息还用于对第二参考信号端口进行配置,所述配置还用于指示所述第二参考信号端口的第二QCL信息;所述方法还包括:
    根据所述第一指示信息确定所述第二QCL信息。
  18. 根据权利要求17所述的方法,其特征在于,
    所述第一QCL信息不同于所述第二QCL信息。
  19. 根据权利要求16至18任一项所述的方法,其特征在于,
    所述第一QCL信息包括第一类型的QCL信息。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第二QCL信息包括第一类型的QCL信息。
  21. 根据权利要求20所述的方法,其特征在于,
    所述第一QCL信息中第一类型的QCL信息不同于所述第二QCL信息中第一类型的QCL信息。
  22. 根据权利要求16至21任一项所述的方法,其特征在于,所述第一QCL信息由至少一个第一信号的QCL信息确定,所述第一信号包括以下至少一项:
    CSI-RS、SSB、DMRS。
  23. 根据权利要求19至22任一项所述的方法,其特征在于,所述第一QCL信息中第一类型的QCL信息由至少一个第二信号的QCL信息确定,所述第二信号包括以下至少一项:
    CSI-RS、SSB、DMRS。
  24. 根据权利要求16至23任一项所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述第一QCL信息对应的频域资源;
    根据所述第二指示信息确定所述第一参考信号端口对应的频域资源。
  25. 根据权利要求19至24任一项所述的方法,其特征在于,所述方法还包括:
    接收第三指示信息,所述第三指示信息用于指示所述第一QCL信息中第一类型的QCL信息对应的频域资源;
    根据所述第三指示信息确定所述第一QCL信息中第一类型的QCL信息对应的频域资源。
  26. 根据权利要求16至25任一项所述的方法,其特征在于,
    所述第一参考信号端口包含于第一参考信号端口组,所述第一参考信号端口组包括一个或多个参考信号端口,且所述一个或多个参考信号端口的QCL信息关联于所述第一参考信号端口组。
  27. 根据权利要求16至26任一项所述的方法,其特征在于,
    所述第一参考信号端口包含于第一参考信号端口组,所述第一参考信号端口组包括一个或多个参考信号端口,且所述一个或多个参考信号端口的同一类型的QCL信息关联于所述第一参考信号端口组。
  28. 根据权利要求26或27所述的方法,其特征在于,所述方法还包括:
    接收第四指示信息,所述第四指示信息用于指示所述第一参考信号端口组的QCL信息对应的频域资源;
    根据所述第四指示信息确定所述第一参考信号端口组对应的频域资源。
  29. 根据权利要求26至28任一项所述的方法,其特征在于,所述方法还包括:
    接收第五指示信息,所述第五指示信息用于指示所述第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源;
    根据所述第五指示信息确定所述第一参考信号端口组的QCL信息中第一类型的QCL信息对应的频域资源。
  30. 根据权利要求16至29任一项所述的方法,其特征在于,所述第一参考信号端口为DMRS端口或CSI-RS端口。
  31. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一指示信息,所述第一指示信息用于对第一参考信号端口进行配置,所述配置用于指示所述第一参考信号端口的第一准共址QCL信息;
    收发单元,用于发送所述第一指示信息。
  32. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一指示信息,所述第一指示信息用于对第一参考信号端口进行配置,所述配置用于指示所述第一参考信号端口的第一准共址QCL信息;
    处理单元,用于根据所述第一指示信息确定所述第一QCL信息。
  33. 根据权利要求31或32所述的装置,其特征在于,所述第一指示信息还用于对第二参考信号端口进行配置,所述配置还用于指示所述第二参考信号端口的第二QCL信息。
  34. 根据权利要求33所述的装置,其特征在于,
    所述第一QCL信息不同于所述第二QCL信息。
  35. 根据权利要求31至34任一项所述的装置,其特征在于,
    所述第一QCL信息包括第一类型的QCL信息。
  36. 根据权利要求35所述的装置,其特征在于,
    所述第二QCL信息包括第一类型的QCL信息。
  37. 根据权利要求36所述的装置,其特征在于,
    所述第一QCL信息中第一类型的QCL信息不同于所述第二QCL信息中第一类型的QCL信息。
  38. 根据权利要求31至37任一项所述的装置,其特征在于,所述第一QCL信息由至少一个第一信号的QCL信息确定,所述第一信号包括以下至少一项:
    信道状态信息参考信号CSI-RS、同步信号块SSB、解调参考信号DMRS。
  39. 根据权利要求35至38任一项所述的装置,其特征在于,所述第一QCL信息中第一类型的QCL信息由至少一个第二信号的QCL信息确定,所述第二信号包括以下至少一项:
    CSI-RS、SSB、DMRS。
  40. 根据权利要求31至39任一项所述的装置,其特征在于,
    所述第一参考信号端口包含于第一参考信号端口组,所述第一参考信号端口组包括一个或多个参考信号端口,且所述一个或多个参考信号端口的QCL信息关联于所述第一参考信号端口组。
  41. 根据权利要求31至40任一项所述的装置,其特征在于,
    所述第一参考信号端口包含于第一参考信号端口组,所述第一参考信号端口组包括一个或多个参考信号端口,且所述一个或多个参考信号端口的同一类型的QCL信息关联于所述第一参考信号端口组。
  42. 根据权利要求31至41任一项所述的装置,其特征在于,所述第一参考信号端口为DMRS端口或CSI-RS端口。
  43. 一种通信装置,其特征在于,包括至少一个处理器,与存储器耦合,
    所述存储器用于存储程序或指令;
    所述至少一个处理器用于执行所述程序或指令,以使所述装置实现如权利要求1至15所述的方法。
  44. 一种通信装置,其特征在于,包括至少一个处理器,与存储器耦合,
    所述存储器用于存储程序或指令;
    所述至少一个处理器用于执行所述程序或指令,以使所述装置实现如权利要求16至30所述的方法。
  45. 一种通信系统,其特征在于,
    所述通信系统包括如权利要求31,33至42中任一项的所述通信装置,以及如权利要求32至42中任一项的所述通信装置;或者,
    所述通信系统包括如权利要求43中的所述通信装置和44的所述通信装置。
  46. 一种计算机可读存储介质,其特征在于,所述介质存储有指令,当所述指令被计算机执行时,实现权利要求1至30中任一项所述的方法。
  47. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至30中任一项所述的方法。
PCT/CN2022/085478 2021-04-16 2022-04-07 一种通信方法及通信装置 WO2022218198A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22787425.2A EP4311341A1 (en) 2021-04-16 2022-04-07 Communication method and communication device
US18/486,283 US20240048216A1 (en) 2021-04-16 2023-10-13 Communication method and communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110414165.3A CN115226210A (zh) 2021-04-16 2021-04-16 一种通信方法及通信装置
CN202110414165.3 2021-04-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/486,283 Continuation US20240048216A1 (en) 2021-04-16 2023-10-13 Communication method and communication apparatus

Publications (1)

Publication Number Publication Date
WO2022218198A1 true WO2022218198A1 (zh) 2022-10-20

Family

ID=83605391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085478 WO2022218198A1 (zh) 2021-04-16 2022-04-07 一种通信方法及通信装置

Country Status (4)

Country Link
US (1) US20240048216A1 (zh)
EP (1) EP4311341A1 (zh)
CN (1) CN115226210A (zh)
WO (1) WO2022218198A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391890A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 一种确定准共址参考信号集合的方法和装置
CN111436147A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 传输信号的方法和装置
US20210058113A1 (en) * 2019-08-23 2021-02-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving multiple pieces of data in wireless cooperative communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110391890A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 一种确定准共址参考信号集合的方法和装置
CN111436147A (zh) * 2019-01-11 2020-07-21 华为技术有限公司 传输信号的方法和装置
US20210058113A1 (en) * 2019-08-23 2021-02-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting or receiving multiple pieces of data in wireless cooperative communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Evaluation of enhancements for multi-TRP", 3GPP DRAFT; R1-2100350, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051970953 *

Also Published As

Publication number Publication date
EP4311341A1 (en) 2024-01-24
US20240048216A1 (en) 2024-02-08
CN115226210A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2019029662A1 (zh) 信息传输的方法和通信装置
WO2020155849A1 (zh) 发送和接收指示的方法和装置
WO2018137450A1 (zh) 用于无线通信的方法及装置
JP2013524646A (ja) ノンサービングセルに対するセル固有参照シンボルローケーションでの物理的ダウンリンク共用チャネルミュート
WO2019137441A1 (zh) 一种通信方法及装置
WO2018137675A1 (zh) 通信方法和网络设备
JP2023526735A (ja) Tci状態のアクティブ化及びコードポイントからtci状態へのマッピングのためのシステム及び方法
WO2018126944A1 (zh) 信道状态信息测量的配置方法及相关设备
US20240155371A1 (en) Communication method and communication apparatus
WO2020057375A1 (zh) 一种资源配置方法及通信装置
WO2021062689A1 (zh) 一种上行传输的方法及装置
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
EP3937410A1 (en) Method and device for communication processing
US20230140502A1 (en) Beam indication method and communications apparatus
US10419097B2 (en) CSI receiving method and access network device
WO2018202168A1 (zh) 信息传输方法及装置
WO2022218198A1 (zh) 一种通信方法及通信装置
WO2023160692A1 (zh) 一种通信方法及通信装置
WO2018126894A1 (zh) 一种功率配置方法及相关设备
WO2023030032A1 (zh) 信道状态信息的获取方法和装置
WO2024093646A1 (zh) 一种资源配置的方法和装置
US11985661B2 (en) Systems and methods for PDSCH based CSI measurement
WO2023207744A1 (zh) 资源调度方法、设备、装置及存储介质
WO2024002004A1 (zh) 一种参考信号的指示方法及装置
WO2023125125A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787425

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022787425

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022787425

Country of ref document: EP

Effective date: 20231018

NENP Non-entry into the national phase

Ref country code: DE