WO2023160692A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2023160692A1
WO2023160692A1 PCT/CN2023/078366 CN2023078366W WO2023160692A1 WO 2023160692 A1 WO2023160692 A1 WO 2023160692A1 CN 2023078366 W CN2023078366 W CN 2023078366W WO 2023160692 A1 WO2023160692 A1 WO 2023160692A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
rss
pdsch
configuration information
cqi
Prior art date
Application number
PCT/CN2023/078366
Other languages
English (en)
French (fr)
Inventor
李茜
刘显达
高翔
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023160692A1 publication Critical patent/WO2023160692A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of wireless technologies, and in particular to a communication method and a communication device.
  • a network device can determine downlink channel quality information through channel state information (CSI) sent by a terminal device.
  • CSI includes a channel quality indicator (CQI) and a precoding matrix indicator (precoding matrix indicator). , PMI) and so on.
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • the network device can further determine the code rate, modulation and coding scheme (modulation and coding scheme, MCS) or spectrum efficiency according to the CQI.
  • MCS modulation and coding scheme
  • the terminal device After receiving the channel state information reference signal (channel state information reference signal, CSI-RS), the terminal device needs to clarify the relationship between the data flow transmitted on the downlink channel and the CSI-RS during the process of measuring the CQI of the downlink channel. Mapping relationship between RS ports. Taking the single station communication scenario as an example, after receiving the CSI-RS from a certain network device, the terminal device can perform CQI measurement based on the mapping relationship between the data stream transmitted on the downlink channel and the CSI-RS port of the network device.
  • channel state information reference signal channel state information reference signal
  • the scenario may include a non-coherent joint transmission (NCJT) communication scenario
  • NJT non-coherent joint transmission
  • a certain A data stream only comes from a certain network device, so that after the terminal device receives CSI-RSs from different network devices, the terminal device can follow the mapping relationship in the above-mentioned single station communication scenario to perform CQI measurement.
  • the terminal device needs to be based on the mapping relationship between the data stream transmitted on the downlink channel between the network device 1 and the CSI-RS port of the network device 1, And report a CQI based on the mapping relationship between the data stream transmitted on the downlink channel with the network device 2 and the CSI-RS port of the network device 2 .
  • the data streams transmitted between different network devices and terminal devices are no longer independent scenarios (for example, the scenario may include a coherent joint transmission (CJT) communication scenario), because the received A certain data stream comes from multiple different network devices.
  • CJT coherent joint transmission
  • the terminal device continues to perform CQI measurement in the above-mentioned single station communication scenario, it is easy to cause inaccurate CQI measurement, resulting in a decrease in the accuracy of the downlink channel quality obtained by the network device based on CQI. , thereby affecting the communication efficiency.
  • the first aspect of the present application provides a communication method, the method is executed by a terminal device, or the method is executed by some components in the terminal device (such as a processor, a chip or a chip system, etc.), or the method can also be executed by A logic module or software implementation that realizes all or part of the functions of a terminal device.
  • the communication method is executed by a terminal device as an example for description.
  • the terminal device receives first configuration information, and the first configuration information includes configuration information of n CSI-RSs, where n is an integer greater than 1; the terminal device receives n CSI-RSs based on the first configuration information ; The terminal device determines the CQI according to the m CSI-RS and the mapping relationship, and the CQI is used to indicate the channel quality of the physical downlink shared channel (physical downlink shared channel, PDSCH); wherein, the mapping relationship is the data flow of the PDSCH and the A mapping relationship between CSI-RS ports corresponding to m CSI-RSs; wherein, the m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m is less than or equal to n.
  • the first configuration information includes configuration information of n CSI-RSs, where n is an integer greater than 1; the terminal device receives n CSI-RSs based on the first configuration information ;
  • the terminal device determines the CQI according to the
  • the terminal device determines CQI based on m CSI-RSs among the n CSI-RSs and the mapping relationship.
  • the CQI is used to indicate the channel quality of the PDSCH
  • the mapping relationship used to determine the CQI is the mapping relationship between the data stream of the PDSCH and the CSI-RS port corresponding to the m CSI-RS
  • m is greater than 1
  • the terminal device in the process of the terminal device determining the CQI, the terminal device thinks/assumes (assume) that the PDSCH data stream corresponds to different network devices
  • the mapping relationship exists between the CSI-RS ports, so that the terminal equipment can clarify the corresponding relationship between the PDSCH data flow and different network equipment based on the mapping relationship, and determine and send the CQI. Therefore, in an application scenario where the data streams received by the terminal device come from different network devices, the accuracy of the CQI determined by the terminal device is improved, so that the subsequent accuracy of the downlink channel quality obtained by the network device based on the CQI is improved, Thereby improving communication efficiency.
  • the n CSI-RSs received by the terminal device come from n different network devices respectively, and this application does not limit the cooperative relationship between the n different network devices and the network device sending the first configuration information.
  • the n different network devices may include a primary network device (or service transmission reception point (transmission reception point, TRP)) and n-1 secondary network devices (or cooperative TRP), in this case , the network device that sends the first configuration information may be the primary network device or any secondary network device; for another example, the n different network devices may include a primary network device and a secondary network device that do not distinguish, in this case, The network device sending the first configuration information may be any one of the n network devices.
  • the mapping relationship is that each data stream of the PDSCH is mapped to all CSI-RS ports corresponding to the m CSI-RS according to the precoding matrix corresponding to the data stream superior.
  • the mapping relationship is used to indicate that each data stream of the PDSCH is mapped to all CSI-RS ports corresponding to the m CSI-RSs according to the precoding matrix corresponding to the data stream.
  • a certain data flow of PDSCH can be mapped to ports of multiple CSI-RSs. Since each CSI-RS can correspond to a network device (such as a TRP), a certain data flow of PDSCH can pass through multiple CSI-RS ports. TRPs are jointly sent. The precoding matrix corresponding to the data stream can ensure phase coherence among multiple TRPs.
  • the method before determining the CQI according to the m CSI-RSs and the mapping relationship, the method further includes: determining the m CSI-RSs from the n CSI-RSs.
  • the terminal device determines the CQI based on some or all of the CSI-RSs in the n CSI-RSs (that is, m CSI-RSs). In other words, after the terminal device selects some or all of the CSI-RSs (that is, m CSI-RSs) based on the pre-configured selection mechanism, the terminal device further determines the CQI based on the selected m CSI-RSs. . Therefore, the terminal device can flexibly select m CSI-RSs satisfying the pre-configured selection mechanism among the n CSI-RSs, so as to improve the flexibility of solution implementation.
  • determining the m CSI-RSs from the n CSI-RSs includes: determining the m CSI-RSs based on the first parameter and the n CSI-RSs, the The first parameter includes the value of m or the first threshold.
  • the first parameter is preconfigured on the terminal device.
  • the first parameter is sent by the network device to the terminal device, and the first parameter may be included in first configuration information or other information.
  • the first threshold may indicate a transmission performance threshold, such as a reference signal received power (reference signal received power, RSRP) threshold, a reference signal received quality (reference signal received quality, RSRQ) threshold or other performance parameter thresholds, where No limit.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the n CSI-RSs correspond to various measurement hypotheses, and the measurement hypotheses are used to determine the m CSI-RSs corresponding to the CQI.
  • the n CSI-RSs respectively correspond to n different network devices, and any two or more network devices among the n different network devices can form a cooperative set for providing communication services.
  • each cooperative set can be called a measurement hypothesis, that is, n CSI-RSs correspond to multiple measurement hypotheses, and one of the multiple measurement hypotheses corresponds to m CSI-RSs, so that the measurement It is assumed that m CSI-RSs corresponding to the CQI can be determined.
  • the method further includes: receiving first indication information, where the first indication information indicates at least one measurement hypothesis among the various measurement hypotheses; from the at least one measurement hypothesis A measurement hypothesis is determined in , and the measurement hypothesis corresponds to the m CSI-RSs.
  • the first indication information is included in the first configuration information, or the first indication information is included in other information, which is not limited here.
  • the terminal device may also determine one of the various measurement hypotheses corresponding to the n CSI-RS based on at least one measurement hypothesis indicated by the first indication information, and based on the one measurement hypothesis
  • the corresponding network device determines m CSI-RSs corresponding to the CQI.
  • the first indication information may be used to include the index of the network device corresponding to the at least one measurement hypothesis, and the first indication information may also include the index of the CSI-RS corresponding to the at least one measurement hypothesis.
  • the first indication The information may also include the index of the CSI-RS port set of the network device corresponding to the at least one measurement hypothesis, and the first indication information may also indicate at least one of the various measurement assumptions in other ways, which is not described here Do limited.
  • the method further includes: receiving second indication information, where the second indication information is used to indicate that each CSI-RS in at least one measurement hypothesis among the multiple measurement hypotheses Corresponding power offset; wherein, the power offset is used to indicate the ratio between the first signal energy and the second signal energy, and the first signal energy is mapped to the CSI-RS port corresponding to each CSI-RS
  • the energy per resource element (EPRE) on each resource element of the PDSCH data stream, the second signal energy is the EPRE of each CSI-RS;
  • the terminal device determines the CQI according to the m CSI-RS and the mapping relationship includes : The terminal device determines the CQI according to the second indication information, the m CSI-RSs and the mapping relationship.
  • the second indication information is included in the first configuration information, or the second indication information is included in other information, which is not limited here.
  • the second indication information is used to indicate the power offset corresponding to each CSI-RS in at least one of the various measurement hypotheses, in other words, the power offset received by the terminal device Quantities can be configured for configuration granularity based on measurement assumptions.
  • different measurement assumptions correspond to different network devices participating in the cooperation, so that the power offset corresponding to the same CSI-RS under different measurement assumptions may be different, through the configuration based on the measurement assumption as the configuration granularity In this way, the accuracy of the CQI obtained based on the power offset can be further improved.
  • the method further includes: receiving second indication information, where the second indication information is used to indicate the power offset corresponding to each CSI-RS in the n CSI-RSs ; Wherein, the power offset is used to indicate the ratio between the first signal energy and the second signal energy, and the first signal energy is mapped to the data flow of the PDSCH of the CSI-RS port corresponding to each CSI-RS EPRE, the second signal energy is the EPRE of each CSI-RS; determining the CQI by the terminal device according to the m CSI-RS and the mapping relationship includes: the terminal device according to the second indication information, the m CSI-RS and the mapping The relationship determines the CQI.
  • the second indication information is included in the first configuration information, or the second indication information is included in other information, which is not limited here.
  • the terminal device can reduce or eliminate the deviation based on the power offset in the process of determining the CQI. influence, so as to further improve the accuracy of the CQI determined by the terminal device.
  • the second indication information is used to indicate the power offset corresponding to each CSI-RS in the n CSI-RS, in other words, the power offset received by the terminal device may be in the form of CSI - the RS is configured at a configuration granularity, that is, the second indication information is used to indicate power offsets corresponding to n CSI-RSs respectively.
  • the terminal equipment determines the m CSI-RSs corresponding to the CQI, it can determine the power offsets corresponding to the m CSI-RSs respectively from the power offsets corresponding to the n CSI-RSs, which is easy to implement.
  • the power offset is used to indicate a ratio between the energy of the first signal and the energy of the second signal.
  • the first signal energy and the second signal energy are except the above "the first signal energy is the EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS, and the second signal energy is the EPRE of each CSI-RS port
  • the power offset corresponding to each CSI-RS in m (or n) CSI-RSs examples are as follows:
  • Example 1 the first signal energy is the energy of each data stream of the PDSCH mapped on the CSI-RS, and the second signal energy is the energy of a CSI-RS port in the CSI-RS.
  • the first signal energy is the sum of the energy of all data streams mapped to the PDSCH of the CSI-RS on one RE
  • the second signal energy is the sum of the energy of each CSI-RS port of the CSI-RS .
  • Example 3 The energy of the first signal is the sum of the energies of all data streams mapped on the CSI-RSPDSCH, the second The signal energy is the EPRE of the CSI-RS.
  • the power offsets corresponding to each CSI-RS indicated by the second indication information are the same.
  • the power offsets corresponding to each CSI-RS indicated by the second indication information are the same, which can simplify the configuration of the second indication information, save overhead and be easy to implement.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set; the CSI-RS port set includes a CSI-RS resources, the n CSI-RS resources belong to the same CSI-RS resource set; or, the one CSI-RS port set includes at least one port, and the ports included in the n CSI-RS port sets belong to the same CSI-RS resource.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set, that is, the n CSI-RSs come from n different CSI-RS port sets respectively.
  • n different sets of CSI-RS ports belong to the same CSI-RS resource set or n different sets of CSI-RS ports belong to the same CSI-RS resource.
  • Make n network devices participating in the cooperation send n CSI-RS based on the same CSI-RS resource set or the same CSI-RS resource, which is easy to realize the signal transmission and reception of n CSI-RS, and also saves the configuration of n CSI-RS information overhead.
  • the CQI is included in the CSI, and the CSI further includes at least one of the following:
  • the index of the CSI-RS port set corresponding to the m CSI-RS is the index of the CSI-RS port set corresponding to the m CSI-RS.
  • precoding matrix indicator (precoding matrix indicator, PMI), where the PMI is used to indicate the precoding matrix corresponding to the CSI-RS port set corresponding to the m CSI-RSs.
  • the terminal device After the terminal device receives n CSI-RSs, the CQI sent by the terminal device is determined based on some or all of the CSI-RSs in the n CSI-RSs (that is, m CSI-RSs), To this end, the terminal device may carry at least one item of the above information in the CSI, so that the receiver of the CSI can specify the m CSI-RSs corresponding to the CQI.
  • mapping relationship satisfies:
  • j 0,1,...,n-1
  • m 0,...P j -1
  • W j (i) indicates that the data stream of the PDSCH is mapped to the precoding matrix corresponding to the jth CSI-RS.
  • n CSI -n port sets corresponding to the RS and n precoding matrices, so that the mapping relationship will not be due to the value of the CSI-RS corresponding to the CQI (ie The value of m) changes.
  • the number of non-zero matrices is m.
  • mapping relationship satisfies:
  • the n precoding matrices in this implementation method are non-zero matrices.
  • the other n-m matrices can be zero matrices, so as to simplify the calculation complexity and more accurately Reflect the mapping relationship.
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • a specific implementation method for determining the mapping relationship between the PDSCH data stream and the CSI-RS ports corresponding to the m CSI-RSs is provided.
  • it is used to determine m of CQI
  • the m port sets and m precoding matrices corresponding to the CSI-RS can more accurately reflect the mapping relationship while simplifying the calculation complexity.
  • the second aspect of the present application provides a communication method, the method is executed by a network device, or the method is executed by some components in the network device (such as a processor, a chip or a chip system, etc.), or the method can also be executed by A logic module or software implementation that realizes all or part of network device functions.
  • the communication method is executed by a network device as an example for description.
  • the network device determines first configuration information, where the first configuration information includes configuration information of n CSI-RSs, where n is an integer greater than 1; the network device sends the n CSI-RSs based on the first configuration information One CSI-RS in the RS; the network device receives the CQI, which is determined based on m CSI-RSs and the mapping relationship; wherein, the CQI is used to indicate the channel quality of the physical downlink shared channel PDSCH, and the mapping relationship is the PDSCH The mapping relationship between the data streams and the CSI-RS ports corresponding to the m CSI-RSs; the m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m is less than or equal to n.
  • the network device After the network device sends one CSI-RS among the n CSI-RSs based on the first configuration information, the network device receives the CQI.
  • the CQI is used to indicate the channel quality of the PDSCH, and there is a mapping relationship between the data stream of the PDSCH indicated by the CQI and the CSI-RS ports corresponding to the m CSI-RSs, and m is an integer greater than 1, That is, the m CSI-RSs come from different network devices.
  • the terminal device in the process of determining the CQI of the terminal device, the terminal device believes/assume (assume) that the data stream of PDSCH is different from the CSI-RS ports corresponding to different network devices.
  • the mapping relationship exists among them, so that the terminal equipment can clarify the corresponding relationship between the PDSCH data flow and different network equipment based on the mapping relationship, and determine and send the CQI. Therefore, in an application scenario where the data streams received by the terminal device come from different network devices, the accuracy of the CQI determined by the terminal device is improved, so that the subsequent accuracy of the downlink channel quality obtained by the network device based on the CQI is improved, Thereby improving communication efficiency.
  • the n CSI-RSs received by the terminal device come from n different network devices respectively, and the network device implementing the second aspect and its possible implementation in this application may be any one of the n different network devices
  • the network device is not limited in this application.
  • the n different network devices may include a primary network device (or service transmission reception point (transmission reception point, TRP)) and n-1 secondary network devices (or cooperative TRP), in this case , the network device that executes the second aspect and its possible implementations may be the primary network device or any secondary network device; for another example, the n different network devices may include a primary network device and a secondary network device that do not distinguish between them.
  • the network device implementing the second aspect and its possible implementation manners may be any one of the n network devices.
  • the mapping relationship is that each data stream of the PDSCH is mapped to all CSI-RS ports corresponding to the m CSI-RS according to the precoding matrix corresponding to the data stream superior.
  • the mapping relationship is used to indicate that each data stream of the PDSCH is mapped to all CSI-RS ports corresponding to the m CSI-RSs according to the precoding matrix corresponding to the data stream.
  • a certain data flow of PDSCH can be mapped to ports of multiple CSI-RSs. Since each CSI-RS can correspond to a network device (such as a TRP), a certain data flow of PDSCH can pass through multiple CSI-RS ports. TRP Joint send. The precoding matrix corresponding to the data stream can ensure phase coherence among multiple TRPs.
  • the n CSI-RSs correspond to various measurement hypotheses, and the measurement hypotheses are used to determine the m CSI-RSs corresponding to the CQI.
  • the n CSI-RSs respectively correspond to n different network devices, and any two or more network devices among the n different network devices can form a cooperative set for providing communication services.
  • each cooperative set can be called a measurement hypothesis, that is, n CSI-RSs correspond to multiple measurement hypotheses, and one of the multiple measurement hypotheses corresponds to m CSI-RSs, so that the measurement It is assumed that m CSI-RSs corresponding to the CQI can be determined.
  • the method further includes: sending first indication information, where the first indication information indicates at least one measurement hypothesis among the various measurement hypotheses; wherein, the at least one measurement hypothesis One of the measurement hypotheses corresponds to the m CSI-RSs.
  • the first indication information is included in the first configuration information, or the first indication information is included in other information, which is not limited here.
  • the network device may also send the first indication information, so that the terminal device may determine one of the measurement hypotheses corresponding to n CSI-RS based on at least one measurement hypothesis indicated by the first indication information. a measurement hypothesis, and determine m CSI-RSs corresponding to the CQI based on the network device corresponding to the measurement hypothesis.
  • the first indication information may be used to include the index of the network device corresponding to the at least one measurement hypothesis, and the first indication information may also include the index of the CSI-RS corresponding to the at least one measurement hypothesis.
  • the first indication The information may also include the index of the CSI-RS port set of the network device corresponding to the at least one measurement hypothesis, and the first indication information may also indicate at least one of the various measurement assumptions in other ways, which is not described here Do limited.
  • the method further includes: sending second indication information, where the second indication information is used to indicate that each CSI-RS in at least one measurement hypothesis among the multiple measurement hypotheses Corresponding power offset; wherein, the power offset is used to indicate the ratio between the first signal energy and the second signal energy, and the first signal energy is mapped to the CSI-RS port corresponding to each CSI-RS
  • the EPRE of the data stream of the PDSCH, the second signal energy is the EPRE of each CSI-RS.
  • the second indication information is included in the first configuration information, or the second indication information is included in other information, which is not limited here.
  • the power offset indicated by the second indication information sent by the network device is used to indicate the deviation, so that the terminal device can reduce or eliminate the deviation based on the power offset in the process of determining the CQI. influence, so as to further improve the accuracy of the CQI determined by the terminal device.
  • the second indication information is used to indicate the power offset corresponding to each CSI-RS in at least one of the various measurement hypotheses, in other words, the power offset sent by the network device Quantities can be configured for configuration granularity based on measurement assumptions.
  • different measurement assumptions correspond to different network devices participating in the cooperation, so that the power offset corresponding to the same CSI-RS under different measurement assumptions may be different, through the configuration based on the measurement assumption as the configuration granularity In this way, the accuracy of the CQI obtained based on the power offset can be further improved.
  • the method further includes: sending second indication information, where the second indication information
  • the display information is used to indicate the power offset corresponding to each CSI-RS in the n CSI-RS; wherein, the power offset is used to indicate the ratio between the first signal energy and the second signal energy, and the first
  • the first signal energy is the EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS
  • the second signal energy is the EPRE of each CSI-RS.
  • the second indication information is included in the first configuration information, or the second indication information is included in other information, which is not limited here.
  • the power offset indicated by the second indication information sent by the network device is used to indicate the deviation, so that the terminal device can reduce or eliminate the deviation based on the power offset in the process of determining the CQI. influence, so as to further improve the accuracy of the CQI determined by the terminal device.
  • the second indication information is used to indicate the power offset corresponding to each CSI-RS in the n CSI-RSs.
  • the power offset sent by the network device may be in the form of CSI - the RS is configured at a configuration granularity, that is, the second indication information is used to indicate power offsets corresponding to n CSI-RSs respectively.
  • the terminal equipment determines the m CSI-RSs corresponding to the CQI, it can determine the power offsets corresponding to the m CSI-RSs respectively from the power offsets corresponding to the n CSI-RSs, which is easy to implement.
  • the power offset is used to indicate a ratio between the energy of the first signal and the energy of the second signal.
  • the first signal energy and the second signal energy are except the above "the first signal energy is the EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS, and the second signal energy is the EPRE of each CSI-RS port
  • the power offset corresponding to each CSI-RS in m (or n) CSI-RSs examples are as follows:
  • Example 1 the first signal energy is the energy of each data stream of the PDSCH mapped on the CSI-RS, and the second signal energy is the energy of a CSI-RS port in the CSI-RS.
  • the first signal energy is the sum of the energy of all data streams mapped to the PDSCH of the CSI-RS on one RE
  • the second signal energy is the sum of the energy of each CSI-RS port of the CSI-RS .
  • Example 3 the first signal energy is the sum of the energy of all data streams mapped on the CSI-RSPDSCH, and the second signal energy is the EPRE of the CSI-RS.
  • the power offsets corresponding to each CSI-RS indicated by the second indication information are the same.
  • the power offsets corresponding to each CSI-RS indicated by the second indication information are the same, which can simplify the configuration of the second indication information, save overhead and be easy to implement.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set; the CSI-RS port set includes a CSI-RS resources, the n CSI-RS resources belong to the same CSI-RS resource set; or, the one CSI-RS port set includes at least one port, and the ports included in the n CSI-RS port sets belong to the same CSI-RS resource.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set, that is, the n CSI-RSs come from n different CSI-RS port sets respectively.
  • n different sets of CSI-RS ports belong to the same CSI-RS resource set or n different sets of CSI-RS ports belong to the same CSI-RS resource.
  • the CQI is included in the CSI, and the CSI further includes at least one of the following:
  • the index of the CSI-RS port set corresponding to the m CSI-RS is the index of the CSI-RS port set corresponding to the m CSI-RS.
  • the precoding matrix indicates the PMI, and the PMI is used to indicate the precoding matrix of the CSI-RS port set corresponding to the m CSI-RSs.
  • the terminal device After the terminal device receives n CSI-RSs, the CQI sent by the terminal device is determined based on some or all of the CSI-RSs in the n CSI-RSs (that is, m CSI-RSs), To this end, the terminal device may carry at least one item of the above information in the CSI, so that the receiver of the CSI can specify the m CSI-RSs corresponding to the CQI.
  • mapping relationship satisfies:
  • n CSI - n port sets and n precoding matrices corresponding to the RS, so that the mapping relationship will not change due to the change of the value of the CSI-RS corresponding to the CQI (that is, the value of m).
  • the n precoding matrices in this implementation method are non-zero matrices.
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • a specific implementation method for determining the mapping relationship between the PDSCH data stream and the CSI-RS ports corresponding to the m CSI-RSs is provided.
  • it is used to determine The m port sets and m precoding matrices corresponding to the m CSI-RSs of the CQI can more accurately reflect the mapping relationship while simplifying the calculation complexity.
  • the third aspect of the present application provides a communication method, the method is executed by a terminal device, or the method is executed by some components in the terminal device (such as a processor, a chip or a chip system, etc.), or the method can also be executed by A logic module or software implementation that realizes all or part of the functions of a terminal device.
  • the communication method is executed by a terminal device as an example for description.
  • the terminal device receives first configuration information, the first configuration information includes configuration information of n CSI-RSs, and codebook subset restriction (codebook subset restriction, CBSR) corresponding to the n CSI-RSs Configuration information, the CBSR configuration information is used to configure multiple CBSRs, n is an integer greater than 1; the terminal device receives the n CSI-RSs based on the first configuration information; the terminal device receives the n CSI-RSs based on the m CSI-RSs and the multiple The m CBSRs in the CBSRs determine the PMI; the m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m is less than or equal to n; the m CSI-RSs and the m CBSRs One-to-one correspondence of information; the terminal device sends the PMI.
  • codebook subset restriction codebook subset restriction
  • the first configuration information received by the terminal device includes configuration information of n CSI-RSs and CBSR configuration information corresponding to the n CSI-RSs, and the CBSR configuration information is used to configure multiple CBSRs.
  • the terminal device determines the PMI based on the multiple CBSRs configured in the CBSR configuration information in the first configuration information , and m is an integer greater than 1, that is, the m CSI-RSs come from different network devices.
  • the configuration information of the terminal device for receiving CSI-RSs from different network devices and the configuration information of the CBSR corresponding to the different network devices are located in the first configuration information.
  • the terminal device needs to receive configuration information from different network devices separately to determine the configuration information of CSI-RS of different network devices and the configuration information of CBSR corresponding to different network devices, the overhead can be saved. Improve communication efficiency.
  • the above technical solution can be applied in the application scenario where the data stream received by the terminal device comes from different network devices, and realizes the configuration of the CBSR of different network devices in this scenario, so that the terminal device can clearly understand that in this application scenario, it can
  • the CBSRs corresponding to different network devices are acquired based on the first configuration information, and the PMI is sent based on the CBSR configuration information.
  • the n CSI-RSs received by the terminal device come from n different network devices respectively, and this application does not limit the cooperative relationship between the n different network devices and the network device sending the first configuration information.
  • the n different network devices may include a primary network device (or service transmission reception point (transmission reception point, TRP)) and n-1 secondary network devices (or cooperative TRP), in this case , the network device that sends the first configuration information may be the primary network device or any secondary network device; for another example, the n different network devices may include a primary network device and a secondary network device that do not distinguish, in this case, The network device sending the first configuration information may be any one of the n network devices.
  • the matrix dimension of each piece of CBSR information is determined based on the number of CSI-RS ports corresponding to the CSI-RS.
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure at least one group of CBSRs, and each group of CBSRs includes at least two CBSRs; the terminal device Before determining the PMI based on the m CSI-RSs and the m CBSRs in the plurality of CBSRs, the method further includes: the terminal device determines a group of CBSRs from the at least one group of CBSRs, and the group of CBSRs includes the m CBSRs.
  • the CBSR configuration information in the first configuration information is used to configure at least one group of CBSRs, so that before the terminal device determines the PMI, the m CBSRs included in the group of CBSRs determined by the terminal device in the at least one group of CBSRs CBSR is used as one of the basis for determining PMI.
  • the CBSR configuration information in the first configuration information configures CBSRs at the granularity of "group", so that after the terminal device determines a certain group of CBSRs according to the pre-configured selection mechanism, it then selects the m CBSRs included in the group of CBSRs As one of the basis for determining PMI.
  • At least one set of CBSRs configured by the CBSR configuration information includes multiple sets of CBSRs
  • different sets of CBSRs may correspond to different measurement assumptions.
  • the n CSI-RSs respectively correspond to n different network devices, and any two or more network devices among the n different network devices may form a cooperative set for providing communication services.
  • each cooperative set can be called a measurement hypothesis, that is, n CSI-RSs correspond to multiple measurement hypotheses, and one of the multiple measurement hypotheses corresponds to m CSI-RSs, so that the measurement It is assumed that m CSI-RSs corresponding to the PMI can be determined.
  • the CBSR configuration information is used to configure multiple sets of CBSR information, and the multiple sets of CBSR information are in one-to-one correspondence with the various measurement hypotheses, and one set of CBSR information in the multiple sets of CBSR information includes the m pieces of CBSR information.
  • the CBSR configuration information in the first configuration information configures the CBSR in a granular configuration manner of "measurement hypothesis".
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure n CBSRs; Before the m CBSRs determine the PMI, the method further includes: the terminal device determines the m CBSRs from the n CBSRs.
  • the CBSR configuration information in the first configuration information is used to configure n CBSRs, so that before the terminal device determines the PMI, the terminal device uses the m CBSRs included in the n CBSRs as one of the basis for determining the PMI .
  • the CBSR configuration information in the first configuration information configures CBSRs in a granularity of "CSI-RS", so that the terminal device can use the m CBSRs included in the n CBSRs as one of the basis for determining the PMI.
  • one piece of configuration information among the n pieces of CSI-RS configuration information is used to indicate a set of CSI-RS ports; the set of CSI-RS ports includes one CSI-RS resource , the n CSI-RS resources belong to the same CSI-RS resource set; or, the one CSI-RS port set includes at least one port, and the ports included in the n CSI-RS port sets belong to the same CSI-RS resource.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set, that is, the n CSI-RSs come from n different CSI-RS port sets respectively.
  • n different sets of CSI-RS ports belong to the same CSI-RS resource set or n different sets of CSI-RS ports belong to the same CSI-RS resource.
  • Make n network devices participating in the cooperation send n CSI-RS based on the same CSI-RS resource set or the same CSI-RS resource, which is easy to realize the signal transmission and reception of n CSI-RS, and also saves the configuration of n CSI-RS information overhead.
  • the PMI is included in the channel state information CSI
  • the CSI further includes at least one of the following items: the index of the CSI-RS port set corresponding to the m CSI-RSs; or, the Indexes of m CSI-RSs.
  • the terminal device After the terminal device receives n CSI-RSs, the PMI sent by the terminal device is determined based on some or all of the CSI-RSs in the n CSI-RSs (that is, m CSI-RSs), To this end, the terminal device may carry at least one item of the above information in the CSI, so that the receiver of the CSI can specify the m CSI-RSs corresponding to the PMI.
  • the fourth aspect of the present application provides a communication method, the method is executed by a network device, or the method is executed by some components in the network device (such as a processor, a chip or a chip system, etc.), or the method can also be executed by A logic module or software implementation that realizes all or part of network device functions.
  • the communication method is executed by a network device as an example for description.
  • the network device determines first configuration information, the first configuration information includes configuration information of n CSI-RSs, and CBSR configuration information corresponding to the n CSI-RSs, and the CBSR configuration information is used to configure multiple CBSR, n is an integer greater than 1; the network device sends a CSI-RS of the n CSI-RS based on the first configuration information; the network device receives PMI, and the PMI corresponds to m CSI-RS; wherein, The m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m is less than or equal to n; the m CSI-RSs are in one-to-one correspondence with the m CBSR information configured in the CBSR configuration information .
  • the first configuration information sent by the network device includes configuration information of n CSI-RSs, to and CBSR configuration information corresponding to the n CSI-RSs, and the CBSR configuration information is used to configure multiple CBSRs.
  • the terminal device receives n CSI-RSs based on the n CSI-RS configuration information in the first configuration information, the terminal device determines the PMI based on the multiple CBSRs configured in the CBSR configuration information in the first configuration information , and m is an integer greater than 1, that is, the m CSI-RSs come from different network devices.
  • the configuration information of the terminal device for receiving CSI-RSs from different network devices and the configuration information of the CBSR corresponding to the different network devices are located in the first configuration information.
  • the terminal device needs to receive configuration information from different network devices separately to determine the configuration information of CSI-RS of different network devices and the configuration information of CBSR corresponding to different network devices, the overhead can be saved. Improve communication efficiency.
  • the above technical solution can be applied in an application scenario where the data streams received by the terminal device come from different network devices, realizing the configuration of CBSR of different network devices in this scenario, and making the terminal device clear that in this application scenario,
  • the CBSRs corresponding to different network devices may be acquired based on the first configuration information, and the PMI is sent based on the CBSR configuration information.
  • the n CSI-RSs received by the terminal device come from n different network devices respectively, and the network device implementing the fourth aspect and its possible implementation in this application may be any one of the n different network devices
  • the network equipment is not limited in this application.
  • the n different network devices may include a primary network device (or service transmission reception point (transmission reception point, TRP)) and n-1 secondary network devices (or cooperative TRP), in this case , the network device that executes the fourth aspect and its possible implementations may be the primary network device or any secondary network device; for another example, the n different network devices may include a primary network device and a secondary network device that do not distinguish between them.
  • the network device implementing the fourth aspect and its possible implementation manners may be any one of the n network devices.
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure at least one group of CBSRs, and each group of CBSRs includes at least two CBSRs; wherein, the A group of CBSRs in at least one group of CBSRs includes the m CBSRs.
  • the CBSR configuration information in the first configuration information is used to configure at least one group of CBSRs, so that before the terminal device determines the PMI, the m CBSRs included in the group of CBSRs determined by the terminal device in the at least one group of CBSRs CBSR is one of the basis for determining PMI.
  • the CBSR configuration information in the first configuration information configures CBSRs at the granularity of "group", so that after the terminal device determines a certain group of CBSRs according to the pre-configured selection mechanism, it then selects the m CBSRs included in the group of CBSRs As one of the basis for determining PMI.
  • At least one set of CBSRs configured by the CBSR configuration information includes multiple sets of CBSRs
  • different sets of CBSRs may correspond to different measurement assumptions.
  • the n CSI-RSs respectively correspond to n different network devices, and any two or more network devices among the n different network devices may form a cooperative set for providing communication services.
  • each cooperative set can be called a measurement hypothesis, that is, n CSI-RSs correspond to multiple measurement hypotheses, and one of the multiple measurement hypotheses corresponds to m CSI-RSs, so that the measurement It is assumed that m CSI-RSs corresponding to the PMI can be determined.
  • the CBSR configuration information is used to configure multiple sets of CBSR information, and the multiple sets of CBSR information are in one-to-one correspondence with the various measurement assumptions, and one set of CBSR information in the multiple sets of CBSR information includes the m CBSR information.
  • the CBSR configuration information in the first configuration information configures the CBSR in a granular configuration manner of "measurement hypothesis".
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information used to configure n CBSRs; wherein the n CBSRs include the m CBSRs.
  • the CBSR configuration information in the first configuration information is used to configure n CBSRs, so that before the terminal device determines the PMI, the terminal device uses the m CBSRs included in the n CBSRs as one of the basis for determining the PMI .
  • the CBSR configuration information in the first configuration information configures CBSRs in a granularity of "CSI-RS", so that the terminal device can use the m CBSRs included in the n CBSRs as one of the basis for determining the PMI.
  • one piece of configuration information among the n pieces of CSI-RS configuration information is used to indicate a set of CSI-RS ports; the set of CSI-RS ports includes one CSI-RS resource , the n CSI-RS resources belong to the same CSI-RS resource set; or, the one CSI-RS port set includes at least one port, and the ports included in the n CSI-RS port sets belong to the same CSI-RS resource.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set, that is, the n CSI-RSs come from n different CSI-RS port sets respectively.
  • n different sets of CSI-RS ports belong to the same CSI-RS resource set or n different sets of CSI-RS ports belong to the same CSI-RS resource.
  • Make n network devices participating in the cooperation send n CSI-RS based on the same CSI-RS resource set or the same CSI-RS resource, which is easy to realize the signal transmission and reception of n CSI-RS, and also saves the configuration of n CSI-RS information overhead.
  • the PMI is included in the channel state information CSI
  • the CSI also includes at least one of the following items: the index of the CSI-RS port set corresponding to the m CSI-RSs; or, the Indexes of m CSI-RSs.
  • the terminal device After the terminal device receives n CSI-RSs, the PMI sent by the terminal device is determined based on some or all of the CSI-RSs in the n CSI-RSs (that is, m CSI-RSs), To this end, the terminal device may carry at least one item of the above information in the CSI, so that the receiver of the CSI can specify the m CSI-RSs corresponding to the PMI.
  • a fifth aspect of the present application provides a communications device, which can implement the method in the first aspect or any possible implementation manner of the first aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by means of software and/or hardware.
  • the device may be a terminal device, or the device may be a component in the terminal device (such as a processor, a chip or a chip system, etc.), or the device may also be a logic module or logic module capable of realizing all or part of the functions of the terminal device. software.
  • the device includes a transceiver unit and a processing unit;
  • the transceiver unit is configured to receive first configuration information, where the first configuration information includes configuration information of n channel state information reference signals CSI-RS, where n is an integer greater than 1;
  • the transceiver unit is further configured to receive n CSI-RSs based on the first configuration information
  • the processing unit is configured to determine the channel quality indicator CQI according to the m CSI-RS and the mapping relationship, and the CQI is used to indicate the channel quality of the physical downlink shared channel PDSCH; wherein, the mapping relationship is the data flow of the PDSCH and the m A mapping relationship between CSI-RS ports corresponding to the CSI-RS; wherein, the m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m is less than or equal to n;
  • the transceiver unit is also used to send the CQI.
  • the processing unit is further configured to determine the m CSI-RSs from the n CSI-RSs.
  • the processing unit is specifically configured to determine the m CSI-RSs based on a first parameter and the n CSI-RSs, where the first parameter includes the value of m or first threshold.
  • the n CSI-RSs correspond to various measurement hypotheses, and the measurement hypotheses are used to determine the m CSI-RSs corresponding to the CQI.
  • the transceiving unit is further configured to receive first indication information, where the first indication information indicates at least one measurement hypothesis among the multiple measurement hypotheses;
  • a measurement hypothesis is determined from the at least one measurement hypothesis, and the one measurement hypothesis corresponds to the m CSI-RSs.
  • the transceiving unit is further configured to receive second indication information, where the second indication information is used to indicate that each CSI in at least one measurement hypothesis among the various measurement hypotheses - the power offset corresponding to RS;
  • the power offset is used to indicate the ratio between the first signal energy and the second signal energy
  • the first signal energy is the EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS
  • the second signal energy is the EPRE of each CSI-RS
  • the processing unit is specifically configured to determine the CQI according to the second indication information, the m CSI-RSs and the mapping relationship.
  • the transceiving unit is further configured to receive second indication information, where the second indication information is used to indicate the power offset corresponding to each CSI-RS in the n CSI-RSs. Set amount; Wherein, the power offset amount is used to indicate the ratio between the first signal energy and the second signal energy, and the first signal energy is the data of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS.
  • the EPRE of the stream, the second signal energy is the EPRE of each CSI-RS; the processing unit is specifically configured to determine the CQI according to the second indication information, the m CSI-RSs and the mapping relationship.
  • the power offsets corresponding to each CSI-RS indicated by the second indication information are the same.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set
  • the one CSI-RS port set includes one CSI-RS resource, and the n CSI-RS resources belong to the same CSI-RS resource set;
  • the one CSI-RS port set includes at least one port, and the ports included in the n CSI-RS port sets belong to the same CSI-RS resource.
  • the CQI is included in the CSI, and the CSI further includes at least one of the following:
  • the index of the CSI-RS port set corresponding to the m CSI-RS is the index of the CSI-RS port set corresponding to the m CSI-RS.
  • PMI where the PMI is used to indicate the precoding matrix corresponding to the CSI-RS port set corresponding to the m CSI-RSs.
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • the components of the communication device can also be used to execute the steps performed in each possible implementation of the first aspect, and achieve corresponding technical effects.
  • the first aspect here No longer.
  • a sixth aspect of the present application provides a communications device, which can implement the method in the second aspect or any possible implementation manner of the second aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by means of software and/or hardware.
  • the device may be a network device, or the device may be a component in the network device (such as a processor, a chip or a chip system, etc.), or the device may also be a logic module or logic module capable of realizing all or part of the functions of the network device. software.
  • the device includes a transceiver unit and a processing unit;
  • the processing unit is configured to determine first configuration information, where the first configuration information includes configuration information of n channel state information reference signals CSI-RS, where n is an integer greater than 1;
  • the transceiving unit is configured to send one CSI-RS among the n CSI-RSs based on the first configuration information
  • the transceiver unit is also used to receive a channel quality indication CQI, which is determined based on m CSI-RSs and a mapping relationship; wherein, the CQI is used to indicate the channel quality of the physical downlink shared channel PDSCH, and the mapping relationship is the PDSCH A mapping relationship between data streams and CSI-RS ports corresponding to m CSI-RSs; the m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m is less than or equal to n.
  • the n CSI-RSs correspond to various measurement hypotheses, and the measurement hypotheses are used to determine the m CSI-RSs corresponding to the CQI.
  • the transceiving unit is further configured to send first indication information, where the first indication information indicates at least one measurement hypothesis among the multiple measurement hypotheses;
  • one of the at least one measurement hypothesis corresponds to the m CSI-RSs.
  • the transceiving unit is further configured to send second indication information, where the second indication information is used to indicate that each CSI in at least one measurement hypothesis among the various measurement hypotheses - the power offset corresponding to RS;
  • the power offset is used to indicate the ratio between the first signal energy and the second signal energy
  • the first signal energy is the EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS
  • the second signal energy is the EPRE of each CSI-RS.
  • the transceiver unit is further configured to send second indication information, where the second indication information is used to indicate the power offset corresponding to each CSI-RS in the n CSI-RSs. Set amount;
  • the power offset is used to indicate the ratio between the first signal energy and the second signal energy
  • the first signal energy is the EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS
  • the second signal energy is the EPRE of each CSI-RS.
  • the power offsets corresponding to each CSI-RS indicated by the second indication information are the same.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set
  • the one CSI-RS port set includes one CSI-RS resource, and the n CSI-RS resources belong to the same CSI-RS resource set;
  • the one CSI-RS port set includes at least one port, and the ports included in the n CSI-RS port sets belong to the same CSI-RS resource.
  • the CQI is included in the CSI, and the CSI further includes at least one of the following:
  • the index of the CSI-RS port set corresponding to the m CSI-RS is the index of the CSI-RS port set corresponding to the m CSI-RS.
  • PMI where the PMI is used to indicate the precoding matrix of the CSI-RS port set corresponding to the m CSI-RSs.
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • the components of the communication device can also be used to execute the steps performed in each possible implementation of the second aspect, and achieve corresponding technical effects.
  • the second aspect here No longer
  • a seventh aspect of the present application provides a communications device, which can implement the method in the above third aspect or any possible implementation manner of the third aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by means of software and/or hardware.
  • the device may be a terminal device, or the device may be a component in the terminal device (such as a processor, a chip or a chip system, etc.), or the device may also be a logic module or logic module capable of realizing all or part of the functions of the terminal device. software.
  • the device includes a processing unit and a transceiver unit;
  • the transceiver unit is configured to receive first configuration information, the first configuration information includes configuration information of n CSI-RSs, and CBSR configuration information corresponding to the n CSI-RSs, and the CBSR configuration information is used to configure multiple CBSR, n is an integer greater than 1;
  • the transceiver unit is further configured to receive the n CSI-RSs based on the first configuration information
  • the processing unit is configured to determine PMI based on m CSI-RSs and m CBSRs in the plurality of CBSRs; the m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m is less than or equal to n; the m CSI-RSs are in one-to-one correspondence with the m CBSR information;
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure at least one group of CBSRs, and each group of CBSRs includes at least two CBSRs;
  • the device Before determining the PMI based on the m CSI-RSs and the m CBSRs in the multiple CBSRs, the device further includes:
  • a group of CBSRs is determined from the at least one group of CBSRs, and the group of CBSRs includes the m CBSRs.
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure n CBSRs;
  • the device Before determining the PMI based on the m CSI-RSs and the m CBSRs in the multiple CBSRs, the device further includes:
  • the m CBSRs are determined from the n CBSRs.
  • the constituent modules of the communication device can also be used to implement various possibilities of the third aspect
  • the steps executed in the implementation manner and the realization of corresponding technical effects can be referred to the third aspect for details, and will not be repeated here.
  • the eighth aspect of the present application provides a communications device, which can implement the method in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the apparatus includes corresponding units or modules for performing the above method.
  • the units or modules included in the device can be realized by means of software and/or hardware.
  • the device may be a network device, or the device may be a component in the network device (such as a processor, a chip or a chip system, etc.), or the device may also be a logic module or logic module capable of realizing all or part of the functions of the network device. software.
  • the device includes a processing unit and a transceiver unit;
  • the processing unit is configured to determine first configuration information, where the first configuration information includes configuration information of n CSI-RSs and CBSR configuration information corresponding to the n CSI-RSs, where the CBSR configuration information is used to configure multiple CBSR, n is an integer greater than 1;
  • the transceiver unit is configured to send one CSI-RS of the n CSI-RSs based on the first configuration information
  • the transceiver unit is also used to receive PMI, where the PMI corresponds to m CSI-RSs; wherein, the m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m is less than or equal to n ;
  • the m CSI-RSs are in one-to-one correspondence with the m pieces of CBSR information configured in the CBSR configuration information.
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure at least one group of CBSRs, and each group of CBSRs includes at least two CBSRs;
  • a group of CBSRs in the at least one group of CBSRs includes the m CBSRs.
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure n CBSRs;
  • the n CBSRs include the m CBSRs.
  • the components of the communication device can also be used to execute the steps performed in each possible implementation of the fourth aspect, and achieve corresponding technical effects.
  • the fourth aspect here No longer.
  • a ninth aspect of the embodiment of the present application provides a communication device, including at least one processor, and the at least one processor is coupled to a memory;
  • the memory is used to store programs or instructions
  • the at least one processor is used to execute the program or instructions, so that the device implements the method described in the first aspect or any possible implementation manner of the first aspect, or enables the device to implement the second aspect or the first aspect
  • the tenth aspect of the embodiment of the present application provides a communication device, including at least one logic circuit and an input and output interface;
  • the input and output interface is used to input the first configuration information and n CSI-RSs;
  • the input and output interface is used to output channel state information CSI, where the CSI includes a channel quality indicator CQI;
  • the logic circuit is configured to execute the method described in the foregoing first aspect or any possible implementation manner of the first aspect.
  • the eleventh aspect of the embodiment of the present application provides a communication device, including at least one logic circuit and an input/output interface mouth;
  • the input and output interface is used to output one CSI-RS among the n CSI-RSs;
  • the input and output interface is used to input channel state information CSI, where the CSI includes a channel quality indicator CQI;
  • the logic circuit is configured to execute the method described in the foregoing second aspect or any possible implementation manner of the second aspect.
  • the twelfth aspect of the embodiment of the present application provides a communication device, including at least one logic circuit and an input and output interface;
  • the input and output interface is used to input the first configuration information and n CSI-RSs;
  • the input and output interface is used to output channel state information CSI, where the CSI includes PMI;
  • the logic circuit is configured to execute the method described in the foregoing third aspect or any possible implementation manner of the third aspect.
  • the thirteenth aspect of the embodiment of the present application provides a communication device, including at least one logic circuit and an input and output interface;
  • the input and output interface is used to output one CSI-RS among the n CSI-RSs;
  • the input and output interface is used to input channel state information CSI, where the CSI includes PMI;
  • the logic circuit is configured to execute the method described in the foregoing fourth aspect or any possible implementation manner of the fourth aspect.
  • the fourteenth aspect of the embodiments of the present application provides a computer-readable storage medium, the computer-readable storage medium is used to store one or more computer-executable instructions, and when the computer-executable instructions are executed by a processor, the processor executes the above-mentioned The method described in the first aspect or any possible implementation manner of the first aspect, or, the processor executes the method described in the above second aspect or any possible implementation manner of the second aspect, or, the processing The processor executes the method described in the third aspect or any possible implementation manner of the third aspect, or the processor executes the method described in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the fifteenth aspect of the embodiments of the present application provides a computer program product (or called a computer program).
  • the processor executes the above-mentioned first aspect or any possible implementation manner of the first aspect. or, the processor executes the method of the above second aspect or any possible implementation of the second aspect, or, the processor executes the above third aspect or the method of any possible implementation of the third aspect, or , the processor executes the fourth aspect or the method in any possible implementation manner of the fourth aspect.
  • the sixteenth aspect of the embodiment of the present application provides a chip system, the chip system includes at least one processor, configured to support the communication device to implement the functions involved in the first aspect or any possible implementation of the first aspect , or, used to support the communication device to realize the functions involved in the above-mentioned second aspect or any possible implementation of the second aspect, or, used to support the communication device to realize the above-mentioned third aspect or any one of the possibilities of the third aspect.
  • system-on-a-chip may further include a memory, and the memory is used for storing necessary program instructions and data of the communication device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the seventeenth aspect of the embodiment of the present application provides a communication system
  • the communication system includes the communication device of the fifth aspect and the communication device of the sixth aspect, and/or, the communication system includes the communication device of the seventh aspect and Eighth aspect communication device, and/or, the communication system includes the communication device of the ninth aspect above, and/or, the communication system includes the communication device of the tenth aspect and the communication device of the eleventh aspect, and/or, the communication The system includes the above-mentioned communication device of the twelfth aspect and the communication device of the thirteenth aspect.
  • the technical effects brought about by any one of the design methods in the fifth aspect to the seventeenth aspect can refer to the technical effects brought about by the different implementation methods in the above-mentioned first aspect to the fourth aspect, and will not be repeated here.
  • sending may be called “output”
  • receiving may be called “input”.
  • the terminal device determines the CQI based on the m CSI-RSs in the n CSI-RSs and the mapping relationship.
  • the CQI is used to indicate the channel quality of the PDSCH
  • the mapping relationship used to determine the CQI is the mapping relationship between the data stream of the PDSCH and the CSI-RS port corresponding to the m CSI-RS
  • m is greater than 1
  • the terminal device in the process of determining the CQI of the terminal device, the terminal device thinks/assume (assume) that there is a gap between the data streams of PDSCH and the CSI-RS ports corresponding to different network devices
  • the mapping relationship exists, so that the terminal device specifies the corresponding relationship between the data flow of the PDSCH and different network devices based on the mapping relationship, and determines and sends the CQI.
  • the accuracy of the CQI determined by the terminal device is improved, so that the subsequent accuracy of the downlink channel quality obtained by the network device based on the CQI is improved, Thereby improving communication efficiency.
  • the first configuration information received by the terminal device includes configuration information of n CSI-RSs and CBSR configuration information corresponding to the n CSI-RSs, and the CBSR configuration information is used to configure multiple CBSR.
  • the terminal device determines the PMI based on the multiple CBSRs configured in the CBSR configuration information in the first configuration information , and m is an integer greater than 1, that is, the m CSI-RSs come from different network devices.
  • the configuration information of the terminal device for receiving CSI-RSs from different network devices and the configuration information of the CBSR corresponding to the different network devices are located in the first configuration information.
  • the terminal device needs to receive configuration information from different network devices separately to determine the configuration information of CSI-RS of different network devices and the configuration information of CBSR corresponding to different network devices, the overhead can be saved. Improve communication efficiency.
  • the above technical solution can be applied in an application scenario where the data streams received by the terminal device come from different network devices, realizing the configuration of CBSR of different network devices in this scenario, and making the terminal device clear that in this application scenario, The CBSRs corresponding to different network devices may be acquired based on the first configuration information, and the PMI is sent based on the CBSR configuration information.
  • Fig. 1 is a schematic diagram of the communication system involved in the present application
  • Fig. 2 is another schematic diagram of the communication system involved in the present application.
  • Fig. 3 is a schematic diagram of the communication method provided by the present application.
  • Fig. 4 is another schematic diagram of the communication system involved in the present application.
  • Fig. 5 is another schematic diagram of the communication system involved in the present application.
  • FIG. 6 is another schematic diagram of the communication method provided by the present application.
  • FIG. 7 is a schematic diagram of a communication device provided by the present application.
  • FIG. 8 is another schematic diagram of the communication device provided by the present application.
  • FIG. 9 is another schematic diagram of the communication device provided by the present application.
  • Terminal equipment it can be a wireless terminal equipment that can communicate with network equipment, and the wireless terminal equipment can provide voice and/or data to users.
  • devices or handheld devices with wireless connectivity, or other processing devices connected to a wireless modem.
  • the terminal can communicate with one or more core networks or the Internet via a radio access network (radio access network, RAN).
  • the terminal can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone, mobile phone), a computer or a data card, for example, it can be a portable, pocket, hand-held, computer built-in or vehicle-mounted mobile phone.
  • a terminal may be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), tablet computer (Pad), computer with wireless transceiver function and other equipment.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Pad tablet computer
  • a terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station (MS), a remote station, or an access point. , AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), customer premises equipment (CPE), terminal (terminal), user Equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • the terminal device may also be a wearable device and a next-generation communication system, for example, a terminal device in a fifth generation (5th generation, 5G) communication system or a terminal device in a network that will evolve in the future.
  • 5G fifth generation
  • terminals involved in this application can be widely used in various scenarios, for example, device to device (device to device, D2D), vehicle to everything (vehicle to everything, V2X) communication, machine type communication (machine-type communication, MTC), thing Internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Network device it may be a device in a wireless network.
  • a network device may be a radio access network (radio access network, RAN) node (or device) that connects a terminal device to a wireless network, and may be called a wireless access network.
  • RAN radio access network
  • a network access device may generally also be referred to as a base station.
  • RAN devices are: a new generation base station (generation Node B, gNodeB), a transmission reception point (transmission reception point, TRP), an evolved Node B (evolved Node B, eNB), a radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved Node B, or home Node B, HNB), base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wi-Fi) access point (access point, AP) and so on.
  • the network device may include a centralized unit (centralized unit, CU) node and/or a distributed unit (distributed unit, DU) node.
  • the network device may also include a core network device, and the core network device includes, for example, an access and mobility management function (access and mobility management function, AMF), a user plane function (user plane function, UPF) or a session management function (session management function, SMF) etc.
  • AMF access and mobility management function
  • UPF user plane function
  • SMF session management function
  • the network device may also be other devices that provide wireless communication functions for the terminal device.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the device for realizing the function of the network device may be a network device, or may be a device capable of supporting the network device to realize the function, such as a chip system.
  • a terminal device can communicate with at least one network device at the same time, that is, receive data from multiple network devices at the same time. This transmission mode is called coordinated multiple points transmission/ reception, CoMP).
  • the at least one network device forms a cooperative set to communicate with the terminal device simultaneously.
  • the network devices in the cooperative set can be connected to different control nodes, and information can be exchanged between control nodes, such as exchanging scheduling policy information to achieve the purpose of cooperative transmission, or the network devices in the cooperative set are all connected to the same control node , the control node receives the channel state information (such as CSI or RSRP) reported by the terminal devices collected by the network devices in the cooperative set, and performs unified scheduling on the terminal devices in the cooperative set according to the channel state information of all terminal devices in the cooperative set, Then the scheduling policy is exchanged with the network devices connected to it, and then each network device notifies the respective terminal devices through the downlink control information (DCI) signaling carried by the physical downlink control channel (PDCCH) .
  • DCI downlink control information
  • the CoMP transmission mode may include:
  • Dynamic point switching (dynamic point switching, DPS): The network equipment for data transmission of a certain terminal equipment changes dynamically, and try to select the network equipment with better channel conditions for data scheduling of the current terminal equipment, that is, multiple network equipment time-sharing transmit data for a terminal device;
  • Non-coherent joint transmission Multiple network devices transmit data for a certain terminal device at the same time, and the antennas of multiple network devices perform independent precoding and then send independent data streams to the terminal device, that is, each Each network device independently selects the optimal precoding matrix for joint phase and amplitude weighting between the antennas of the network device.
  • This mechanism does not require multiple network device antennas for phase calibration; assume that TRP1 and TRP2 do joint transmission and each has M The transmitting antennas each transmit N streams of data, then the precoding matrix for joint transmission is: The first M rows of the matrix correspond to the transmitting antennas of TRP1, the last M rows correspond to the transmitting antennas of TRP2, and the dimensions of B1 and B2 are both M*N.
  • Coherent joint transmission Multiple network devices transmit data for a certain terminal device at the same time, and the antennas of multiple network devices perform joint precoding and then send the same data stream to the terminal device at the same time, that is, multiple network devices jointly Select the optimal precoding matrix for joint phase and amplitude weighting between antennas of multiple network devices.
  • This mechanism requires antennas of multiple network devices to perform phase calibration; assume that TRP1 and TRP2 do joint transmission and each has M transmit antennas, each transmitting N streams of data, then the precoding matrix for joint transmission is: The first M rows of the matrix correspond to the transmitting antennas of TRP1, and the last M rows correspond to the transmitting antennas of TRP2, and the dimensions of B1, B2, B3, and B4 are all M*N.
  • a serving network device among the network devices in the cooperative set such as a serving base station (serving TRP)/serving cell (serving cell).
  • a serving base station serving TRP
  • serving cell serving cell
  • Perform MAC layer and physical layer communication with the terminal device such as determining the time-frequency resources of the control channel (PDCCH) and data channel (PUSCH/PDSCH) of the terminal device according to the scheduling decision, and sending DCI signaling in the PDCCH, and sending DCI signaling in the PUSCH Send data in /PDSCH, send reference signal (reference signal, RS) and so on.
  • the other network devices in the cooperative set are called coordinated base station (coordinate TRP)/coordinated cell (coordinate TRP).
  • the role of the coordinated base station is to communicate with the terminal device on the physical layer according to the scheduling decision of the serving base station.
  • DCI signaling is sent in the PDCCH
  • data is sent in the PUSCH/PDSCH
  • RS is sent, and so on.
  • the serving base station is TRP1
  • the coordinating base station is TRP2.
  • TRP1 makes the scheduling decision of the terminal device and sends DCI.
  • the DCI can indicate the scheduling of TRP1/TRP2 for data transmission, that is, the scheduling of two TRPs in the DCI information.
  • Antenna port It can be referred to as port for short. It can be understood as a transmitting antenna identified by a receiving device, or a transmitting antenna that can be distinguished in space.
  • An antenna port can be pre-configured for each virtual antenna, and each virtual antenna can be a weighted combination of multiple physical antennas, and each antenna port can correspond to a reference signal. Therefore, each antenna port can be called a reference signal A port, for example, a CSI-RS port, a sounding reference signal (sounding reference signal, SRS) port, and the like.
  • a CSI-RS port may correspond to a transmitting antenna of a base station, and may be one-to-one or many-to-one. Different CSI-RS ports occupy orthogonal resources, and the orthogonal mode may be time division, frequency division or code division.
  • the DMRS port corresponds to the data transmission stream one by one, and each DMRS port is a demodulation reference signal of the corresponding transmission stream.
  • Channel state information (CSI) report (report):
  • the information used to describe the channel properties of the communication link is reported by the receiving end (such as a terminal device) to the sending end (such as a network device).
  • the CSI report may include but not limited to, precoding matrix indication (PMI), rank indication (RI), channel quality indication (CQI), channel state information reference signal (channel state information reference signal, CSI-RS), CSI- RS resource indicator (CSI-RS resource indicator, CRI) and layer indicator (layer indicator, LI), etc.
  • the CSI may include one or more items listed above, and may also include other information used to characterize the CSI other than the above-listed information, which is not limited in this application.
  • Precoding Matrix Indication It can be used to indicate the precoding matrix.
  • the precoding matrix may be, for example, a precoding matrix determined by the terminal device based on a channel matrix of a frequency domain unit.
  • the channel matrix may be determined by the terminal device through channel estimation or based on channel reciprocity.
  • the specific method for the terminal device to determine the precoding matrix is not limited to the above, and the specific implementation manner may refer to the prior art, and for the sake of brevity, it is not listed here one by one.
  • the rows of the precoding matrix correspond to the CSI-RS ports one-to-one
  • the columns of the precoding matrix correspond to the corresponding data transmission streams.
  • the precoding matrix can be obtained by performing singular value decomposition (singular value decomposition, SVD) on the channel matrix or the covariance matrix of the channel matrix, or by performing eigenvalue decomposition (eigenvalue decomposition) on the covariance matrix of the channel matrix. decopomsition, EVD).
  • singular value decomposition singular value decomposition
  • eigenvalue decomposition eigenvalue decomposition
  • decopomsition EVD
  • Configuration and pre-configuration In the application, both configuration and pre-configuration will be used.
  • Configuration means that the base station/server sends some parameter configuration information or parameter values to the terminal through messages or signaling, so that the terminal can determine communication parameters or transmission resources according to these values or information.
  • CSI-RS resources may be configured through RRC signaling, including ports included in the CSI-RS resources, time-frequency resources occupied, and the like.
  • Pre-configuration is similar to configuration.
  • It can be the parameter information or parameter value negotiated by the base station/server and the terminal device in advance, or it can be the parameter information or parameter value adopted by the base station/server or terminal device specified in the standard protocol, or it can be a pre-stored Parameter information or parameter values at the base station/server or terminal equipment. This application does not limit this. Furthermore, these values and parameters can be changed or updated.
  • for indication may include both for direct indication and for indirect indication.
  • certain indication information is used to indicate A, it may be understood that the indication information carries A, indicates A directly, or indicates A indirectly.
  • the information indicated by the indication information is referred to as information to be indicated.
  • the information to be indicated may be directly indicated, such as the information to be indicated itself or an index of the information to be indicated.
  • the information to be indicated may also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be realized by means of a pre-agreed (for example, protocol-specified) arrangement order of each information, thereby reducing the indication overhead to a certain extent.
  • the information to be indicated can be sent together as a whole, or can be divided into multiple sub-information and sent separately, and the sending periods and/or sending timings of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending cycle and/or sending timing of these sub-information may be predefined, for example, pre-defined according to a protocol, or may be configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example but not limited to, one or a combination of at least two of radio resource control signaling, media access control (media access control, MAC) layer signaling, and physical layer signaling.
  • the radio resource control signaling includes, for example, radio resource control (RRC) signaling; the MAC layer signaling includes, for example, MAC control elements (control element, CE); the physical layer signaling includes, for example, downlink control information (downlink control) information, DCI).
  • RRC radio resource control
  • CE MAC control elements
  • CE control element
  • DCI downlink control information
  • This application can be applied to a long term evolution (long term evolution, LTE) system, a new radio (new radio, NR) system, or other communication systems, wherein the communication system includes network equipment and terminal equipment, and the network equipment is used as a configuration
  • the information sending entity and the terminal device as the configuration information receiving entity.
  • there is an entity in the communication system that sends configuration information to another entity, and sends data to another entity, or receives data sent by another entity; another entity receives configuration information, and sends configuration information to the configuration information according to the configuration information.
  • the entity sends data, or receives data sent by the configuration information sending entity.
  • the present application can be applied to a terminal device in a connected state or an active state (ACTIVE), and can also be applied to a terminal device in an unconnected state (INACTIVE) or an idle state (IDLE).
  • FIG. 1 is a schematic diagram of a communication system in this application.
  • a network device 101 and 6 terminal devices are exemplarily shown, and the 6 terminal devices are respectively terminal device 1, terminal device 2, terminal device 3, terminal device 4, terminal device 5 and terminal device 6, etc.
  • terminal device 1 is a smart teacup
  • terminal device 2 is a smart air conditioner
  • terminal device 3 is a smart fuel dispenser
  • terminal device 4 is a vehicle
  • terminal device 5 is a mobile phone
  • terminal device 6 is a The printer is given as an example.
  • the transmitting end may be a network device or a terminal device
  • the receiving end may be a network device or a terminal device.
  • the configuration information sending entity may be a network device, wherein, the network device is described by taking a base station (Base Station) and each terminal device as an example, and the configuration information receiving entity may be Terminal equipment 1-terminal equipment 6.
  • the base station and terminal equipment 1-terminal equipment 6 form a communication system.
  • terminal equipment 1-terminal equipment 6 can send uplink data to the network equipment.
  • the network equipment needs Receive uplink data sent by terminal device 1-terminal device 6.
  • the network device can send configuration information to the terminal device 1 - the terminal device 6 .
  • terminal equipment 4-terminal equipment 6 can also form a communication system, at this moment, configuration information sending entity and receiving entity can both be terminal equipment, wherein, terminal equipment 5 is as network equipment, namely configuration information sending entity Entities: terminal device 4 and terminal device 6 are used as terminal devices, that is, configuration information receiving entities.
  • terminal device 5 sends configuration information to terminal device 4 and terminal device 6 respectively, and receives uplink data sent by terminal device 4 and terminal device 6; correspondingly, terminal device 4 and terminal device 6 receive terminal device 5 configuration information sent, and send uplink data to the terminal device 5.
  • FIG. 2 is another schematic diagram of the communication system in this application.
  • the network equipment includes TRP1, TRP2, and the terminal equipment includes UE1-UE5 as an example for illustration, where TRP1, TRP2 and UE1-UE5 can form a communication system to form a communication system.
  • UE1-UE5 can send uplink data, and the uplink data sent by UE1-UE5 can be received by one of the TRPs (the uplink data sent by UE1 and UE2 in Figure 2 is received by TRP1, and the uplink data sent by UE5 in Figure 2
  • the sent uplink data is received by TRP2), or it can be jointly received by two TRPs (as shown in Figure 2, the uplink data sent by UE3 is received by TRP1 and TRP2, and the uplink data sent by UE4 in Figure 2 is received by TRP1 and TRP2 received).
  • network devices (such as TRP1 and TRP2 in FIG. 2 ) can send downlink information to terminal devices (such as UE1 to UE5 in FIG. 2 ).
  • the communication scenarios where UEs connected to TRP1 but not connected to TRP2 (UE1 and UE2 in FIG. 2 ) are located, and connected to TRP2 but not connected to TRP1
  • the communication scenario where the UE (UE5 in FIG. 2 ) is located may be referred to as a single station communication scenario.
  • the communication scenario where UEs connected to TRP1 and TRP2 (UE3 and UE4 in FIG. 2 ) are located may be referred to as a multi-station communication scenario, or as Multi-transmission receiving point (Multi-TRP) cooperative transmission scenario.
  • Multi-TRP Multi-transmission receiving point
  • TRP1 and TRP2 there may be multiple communication modes between UE3 and multiple TRPs (that is, TRP1 and TRP2).
  • TRP1 and TRP2 transmit independent data streams with the UE3 respectively, that is, a certain data stream received by UE3 comes from TRP1 or TRP2.
  • This communication mode can also be called non-coherent joint transmission (NCJT);
  • NJT non-coherent joint transmission
  • TRP1 and TRP2 jointly transmit the data stream of UE3, that is, a certain data stream received by UE3 comes from TRP1 and TRP2, and this communication manner may also be called coherent joint transmission (CJT).
  • CJT coherent joint transmission
  • the network device can determine the downlink channel quality information through the channel state information (channel state information, CSI) sent by the terminal device, and the CSI includes a channel quality indicator (channel quality indicator) , CQI) and precoding matrix indicator (precoding matrix indicator, PMI), etc.
  • the network device can further determine the code rate, modulation and coding scheme (modulation and coding scheme, MCS) or spectrum efficiency according to the CQI.
  • the terminal device After receiving the channel state information reference signal (CSI-RS), the terminal device needs to clarify the data stream transmitted on the downlink channel and the network device in the process of measuring the CQI of the downlink channel.
  • the mapping relationship between CSI-RS ports Taking the single-site communication scenario as an example, after receiving the CSI-RS from a certain network device, the terminal device can perform CQI measurement based on the mapping relationship between the data stream transmitted on the downlink channel and the CSI-RS port of the network device, and obtain the CQI and report to the network device.
  • the terminal device may obtain an intermediate quantity based on the CSI-RS and the mapping relationship, and further determine the CQI to be reported based on the intermediate quantity.
  • the intermediate quantity may include signal to interference noise ratio (signal to interference noise ratio, SINR), signal leakage plus noise ratio (signal to leakage plus noise ratio, SLNR), signal to noise ratio (signal to noise ratio, SNR) or other Parameters are not limited here.
  • the intermediate quantity is SINR as an example for description here.
  • the relationship between the value of SINR and the value of CQI can be determined by the following method: under certain conditions, one CQI value is taken each time, and the SINR value is adjusted under the corresponding modulation mode and code rate to make the block error
  • the block error rate (BLER) is 10%, and at this time, the SINR value corresponds to the determined CQI value. Since there is often a certain deviation between the downlink data transmission power and the power of the CSI-RS, it is necessary to comprehensively consider the strength of the known reference signal received by the terminal device, the power control offset (denoted as Pc ratio) and the received The interference signal strength and noise signal strength are used to calculate the SINR, which satisfies:
  • P PDSCH represents PDSCH data transmission power
  • P CSI-RS represents CSI-RS reference signal power
  • P interference and P noise represent interference signal power and noise signal power measured by terminal equipment, respectively.
  • P C represents the deviation between the downlink PDSCH data transmission power and the CSI-RS reference signal power, and usually a Pc ratio is configured in each NZP (Non-Zero Power) CSI-RS resource for CQI measurement.
  • the terminal device and the network device are in the NR system as an example.
  • the end-device will be based on The preset relationship between SINR and CQI, the CQI value is determined according to the CQI quantization table.
  • the CQI quantization table will be exemplarily described below based on the implementation manners of Tables 1 to 3.
  • the description below assumes that the PDSCH transmission stream corresponds to the same CQI, that is, multiple PDSCH transmission streams should be considered comprehensively during CQI measurement and feedback.
  • the present application does not exclude the case that the PDSCH transmission stream corresponds to multiple CQIs, and at this time, the PDSCH transmission stream corresponding to the same CQI feedback is used to determine the value of the CQI.
  • the terminal device needs channel measurement resource (channel measurement resource, CMR), interference measurement resource (interference measurement resource, IMR), and CSI reference resource (CSI reference resource) to determine RI, PMI, CQI, etc.
  • CMR is usually a non-zero power CSI-RS
  • IMR can be It is a non-zero-power CSI-RS or a zero-power CSI-RS
  • the terminal device needs to assume a CSI reference resource for calculating RI, PMI, and CQI.
  • the CSI reference resource includes: the time-frequency resource occupied by the PDSCH, the PDSCH transmission mechanism, or the mapping relationship between the CSI-RS port corresponding to the CMR and the PDSCH transmission stream.
  • the terminal device assumes (assume) that the v-layer PDSCH signal transmitted on the PDSCH port [1000,...,1000+ ⁇ -1] can be mapped to the CSI-RS port [3000,...,3000+ P-1] for equivalent transmission, that is, the above mapping relationship satisfies:
  • W(i) represents the precoding matrix
  • Pc ratio the power control offset
  • the scenario may include NCJT communication scenarios
  • a certain data stream received by the terminal device only comes from a certain network device, so that After the terminal device receives CSI-RSs from different network devices, the terminal device may follow the mapping relationship in the above single station communication scenario to perform CQI measurement.
  • the NCJT scenario different data streams can be mapped to the antenna ports of two TRPs with different large-scale parameters, and transmitted to the same designated terminal device at the same time to effectively improve the data transmission rate and reliability.
  • the terminal device needs to be based on the mapping relationship between the data stream transmitted on the downlink channel between the network device 1 and the CSI-RS port of the network device 1, And report the CQI based on the mapping relationship between the data stream transmitted on the downlink channel with the network device 2 and the CSI-RS port of the network device 2 .
  • the terminal device When performing CQI calculation, the terminal device assumes that the v1 layer PDSCH signal transmitted on the PDSCH port [1000,...,1000+ ⁇ 1-1] can be mapped to the first group of CSI-RS ports [3000,...,3000 indicated by CRI +P-1] for equivalent transmission; layer v2 PDSCH signals transmitted on PDSCH ports [1000,...,1000+ ⁇ 1+ ⁇ 2-1] can be mapped to the second set of CSI-RS ports indicated by CRI [3000 ,...,3000+P-1] for equivalent transmission.
  • the mapping relationship satisfies:
  • the ratio of the signal power to the CSI-RS reference signal power is equal to the Pc ratio configured in the corresponding CSI-RS resource.
  • each data layer will pass through the weighted vector map to On multiple TRPs participating in the collaboration. If the channel large-scale parameters of each TRP are the same, and the same frequency source is used, then coherent transmission is equivalent to splicing multiple sub-arrays into a higher-dimensional virtual array, so that higher shaping/precoding/multiplexing can be obtained. Use buffs.
  • the terminal device needs to comprehensively process the reference signal power and power control deviation from multiple different TRPs Perform SINR measurement and finally determine the CQI value to be reported.
  • the above CQI measurement method is not applicable to the CJT scenario.
  • the present application provides a communication method and a communication device, which will be described below with reference to the accompanying drawings.
  • FIG. 3 is a schematic diagram of the communication method provided by this application.
  • the terminal device and the network device are taken as the execution subjects of the interaction demonstration to illustrate the method, but the present application does not limit the execution subjects of the interaction demonstration.
  • the terminal device in FIG. 3 may also be a chip, a chip system, or a processor that supports the terminal device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the terminal device.
  • the network device in FIG. 3 may also be a chip, a chip system, or a processor that supports the network device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the network device.
  • the method shown in Fig. 3 includes steps S301, S302, S303 and S304. Each step will be described below.
  • the network device sends first configuration information.
  • the network device sends the first configuration information in step S301, and correspondingly, the terminal device receives the first configuration information in step S301.
  • the first configuration information includes configuration information of n CSI-RSs, where n is an integer greater than 1.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set; the CSI-RS port set includes one CSI-RS resource, n The CSI-RS resources belong to the same CSI-RS resource set; or, the one CSI-RS port set includes at least one port, and the ports included in the n CSI-RS port sets belong to the same CSI-RS resource.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set, that is, the n CSI-RSs come from n different CSI-RS port sets respectively.
  • n different sets of CSI-RS ports belong to the same CSI-RS resource set or n different sets of CSI-RS ports belong to the same CSI-RS resource.
  • Make n network devices participating in the cooperation send n CSI-RS based on the same CSI-RS resource set or the same CSI-RS resource, which is easy to realize the signal transmission and reception of n CSI-RS, and also saves the configuration of n CSI-RS information overhead.
  • the above implementation manner can also be expressed as: divide a CSI-RS resource set into n groups, and the CSI-RS resources in each group in the n groups are used to carry the CSI-RS resources sent by a certain network device to the terminal device.
  • RS or, divide the multiple CSI-RS ports contained in one CSI-RS resource into n groups, and the CSI-RS ports in each group in the n groups are used to bear the information sent by a certain network device to the terminal device CSI-RS.
  • the configuration information of n CSI-RS is n CSI-RS resource configurations, and each CSI-RS resource configuration includes the number of ports corresponding to CSI-RS resources, time-frequency resource locations, period type, QCL assumptions and other information.
  • the configuration information of n CSI-RS is a CSI-RS resource configuration
  • the ports in the CSI-RS resource are divided into n groups of port sets, and n groups of port sets are related to n CSI-RS resource configurations.
  • -RS one-to-one correspondence
  • each port set corresponds to a specific QCL assumption configuration.
  • CSI-RS ports of different groups cannot belong to the same code-division multiplexing (code-division multiplexing, CDM) group.
  • the network device sends the CSI-RS.
  • the n CSI-RS configuration information in the first configuration information corresponds to n different network devices respectively, and for one network device among the n different network devices, the network device in step In S302, one CSI-RS among the n CSI-RSs is sent, that is, n different network devices send n CSI-RSs in step S302; correspondingly, the terminal device receives n CSI-RSs in step S302.
  • the n CSI-RSs received by the terminal device come from n different network devices, and this application is concerned with the cooperative relationship between the n different network devices and the network device that sends the first configuration information in step S301 No limit.
  • the n different network devices may include a primary network device (or service transmission reception point (transmission reception point, TRP)) and n-1 secondary network devices (or cooperative TRP), in this case
  • the network device that sends the first configuration information in step S301 may be the primary network device or any secondary network device; for another example, the n different network devices may include a primary network device and a secondary network device that do not distinguish, here In this case, the network device sending the first configuration information in step S301 may be any one of the n network devices.
  • the terminal device determines the CQI.
  • the terminal device determines the CQI based on the m CSI-RSs and the mapping relationship among the n CSI-RSs received in step S302, and the CQI is used to indicate the channel quality of the PDSCH; wherein, the mapping relationship is the PDSCH A mapping relationship between data streams and CSI-RS ports corresponding to the m CSI-RSs, m is an integer greater than 1, and m is less than or equal to n.
  • the CQI report corresponds to a CSI report configuration information
  • the CSI report configuration information is configured with the currently reported information including CQI
  • the CSI report configuration information is associated with n CSI-RS configuration information
  • n CSI - The configuration information of the RS corresponds to the CMR of the configuration information reported by the CSI.
  • m is equal to n, and the CMRs reported by the CQI at this time are n CSI-RSs.
  • m is less than n
  • the CMR reported by the CQI at this time is a part of CSI-RS selected from n CSI-RSs.
  • the network device configures the terminal device to select some CSI-RSs from the n CSI-RSs as CMRs. Specifically, the network device will pre-configure multiple measurement hypotheses, and the CMRs in each measurement hypothesis include part/all of the n CSI-RSs. The terminal device determines to report one of the measurement assumptions according to the multiple measurement assumptions, and the CQI is determined according to the measurement assumption.
  • the terminal device reports the measurement hypothesis along with the CQI; or, the terminal device reports the indices of the m CSI-RSs corresponding to the CQI along with the CQI.
  • the method before the terminal device determines the CQI according to the m CSI-RSs and the mapping relationship in step S303, the method further includes: determining the m CSI-RSs from the n CSI-RSs.
  • the terminal device determines the CQI based on part or all of the n CSI-RSs (that is, the m CSI-RSs). In other words, after the terminal device selects some or all of the CSI-RSs (that is, m CSI-RSs) based on the pre-configured selection mechanism, the terminal device further determines the CQI based on the selected m CSI-RSs. . Therefore, the terminal device can flexibly select m CSI-RSs satisfying the pre-configured selection mechanism among the n CSI-RSs, so as to improve the flexibility of solution implementation.
  • the process for the terminal device to determine the m CSI-RSs from the n CSI-RSs includes: determining the m CSI-RSs based on a first parameter and the n CSI-RSs, where the first parameter includes the m value or the first threshold.
  • the first parameter is preconfigured on the terminal device.
  • the first parameter is sent by the network device to the terminal device, and the first parameter may be included in first configuration information or other information.
  • the first threshold may indicate a transmission performance threshold, such as an RSRP threshold, an RSRQ threshold, an SINR threshold, an SNR threshold, or other performance parameter thresholds, which is not limited here.
  • a transmission performance threshold such as an RSRP threshold, an RSRQ threshold, an SINR threshold, an SNR threshold, or other performance parameter thresholds, which is not limited here.
  • the first threshold is used to define selection criteria for m CSI-RSs or measurement hypotheses. Specifically, consider that the first measurement assumption corresponds to k1 CSI-RSs in the two measurement assumptions, and the second measurement assumption corresponds to k2 CSI-RSs, k1 ⁇ k2, only when the transmission performance determined based on the second measurement assumption (such as SINR ), and when the difference between the transmission performance determined based on the first measurement assumption is greater than the first threshold, the second measurement assumption is reported; otherwise, the first measurement assumption is reported. In this way, the number of cooperating network devices (such as TRPs) can be reasonably controlled to reduce complexity on the network side.
  • the second measurement assumption such as SINR
  • the n CSI-RSs correspond to various measurement hypotheses, and the measurement hypotheses are used to determine the m CSI-RSs corresponding to the CQI.
  • the n CSI-RSs respectively correspond to n different network devices, and any two or more network devices among the n different network devices may form a cooperative set for providing communication services.
  • each cooperative set can be called a measurement hypothesis, that is, n CSI-RSs correspond to multiple measurement hypotheses, and one of the multiple measurement hypotheses corresponds to m CSI-RSs, so that the measurement It is assumed that m CSI-RSs corresponding to the CQI can be determined.
  • the method further includes: the terminal device receives first indication information, where the first indication information indicates at least one measurement hypothesis among the various measurement hypotheses; the terminal device receives from One measurement hypothesis is determined in the at least one measurement hypothesis, and the one measurement hypothesis corresponds to the m CSI-RSs.
  • the first indication information is included in the first configuration information, or the first indication information is included in other information, which is not limited here.
  • the terminal device may also determine one of the measurement hypotheses corresponding to the n CSI-RS based on at least one measurement hypothesis indicated by the first indication information, and based on the measurement hypothesis corresponding to the one measurement hypothesis
  • the network device of determines m CSI-RSs corresponding to the CQI. Therefore, after determining the m CSI-RSs, the terminal device executes the process of determining CQI based on the m CSI-RSs in step S303.
  • the first indication information may be used to include the index of the network device corresponding to the at least one measurement hypothesis, and the first indication information may also include the index of the CSI-RS corresponding to the at least one measurement hypothesis.
  • the first indication The information may also include the index of the CSI-RS port set of the network device corresponding to the at least one measurement hypothesis, and the first indication information may also indicate at least one of the various measurement assumptions in other ways, which is not described here Do limited.
  • the terminal device may also receive the second indication information from the network device before step S303 to indicate A power offset, and the power offset is used to indicate the deviation, so that the terminal device can reduce or eliminate the influence of the deviation based on the power offset in the process of determining the CQI, so as to further improve the CQI determined by the terminal device.
  • the accuracy of the CQI The implementation manner of the second indication information will be described below.
  • each CSI-RS among the n CSI-RSs corresponds to a power offset under different measurement assumptions.
  • the method further includes: the terminal device receives second indication information, where the second indication information is used to indicate the power offset corresponding to each CSI-RS in at least one of the various measurement assumptions , that is to say, each CSI-RS corresponds to one or more independently configured power offsets, and the same CSI-RS corresponds to an independently configured power offset under different measurement assumptions; where, for a A specific CSI-RS under a specific measurement assumption, the power offset corresponding to the CSI-RS is used to indicate the ratio between the first signal energy and the second signal energy, and the first signal energy is mapped to each CSI
  • the EPRE of the data flow of the PDSCH of the CSI-RS port corresponding to the RS, the second signal energy is the EPRE of the CSI-RS; the terminal device determines the CQI according to the m CSI-RS and the mapping relationship in step S303.
  • the process includes: The terminal device determines the CQI according to the second indication information, the m CSI-RSs and the mapping relationship.
  • the second indication information is used to indicate that the CSI-RS RS1 corresponds to the power offset in measurement assumption 1 (denoted as power offset 1) and the power offset of the CSI-RS1 in measurement assumption 2 (denoted as power offset 2).
  • the power offset 1 corresponds to measurement hypothesis 1, that is, if the terminal device selects measurement hypothesis 1 in step S303, the terminal device determines that the power offset 1 is the power offset of the CSI-RS1; the power offset 2 and the measurement hypothesis 2 corresponds, that is, if the terminal device selects measurement assumption 2 in step S303, the terminal device determines that the power offset 2 is the power offset of the CSI-RS1.
  • all the data streams corresponding to the PDSCH transmission correspond to one CQI report
  • the first signal energy is the EPRE that all the data streams corresponding to the PDSCH transmission are mapped to the CSI-RS port corresponding to the CSI-RS.
  • each measurement hypothesis can adopt a power offset configuration strategy independently, thereby supporting flexible power allocation, and can ensure that a relatively fair power allocation strategy is adopted for different measurement assumptions, that is, ensure that the EPRE of PDSCH transmission is in different The measurement assumes the same.
  • the method further includes: the terminal device receives second indication information, where the second indication information is used to indicate the power offset corresponding to each CSI-RS in the n CSI-RSs, that is, each Each CSI-RS corresponds to an independently configured power offset, and the same CSI-RS corresponds to the independently configured power offset under different measurement assumptions.
  • the terminal device receives second indication information, where the second indication information is used to indicate the power offset corresponding to each CSI-RS in the n CSI-RSs, that is, each Each CSI-RS corresponds to an independently configured power offset, and the same CSI-RS corresponds to the independently configured power offset under different measurement assumptions.
  • the corresponding power offsets of the CSI-RSs under different measurement assumptions are the same.
  • the terminal device may specify based on the second indication information that the power offset corresponding to the CSI-RS is used to indicate the ratio between the first signal energy and the second signal energy, and the first signal energy is The EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS, the second signal energy is the EPRE of CSI-RS: the terminal device determining the CQI according to the m CSI-RSs and the mapping relationship in step S303 includes: the terminal device determining the CQI according to the second indication information, the m CSI-RSs and the mapping relationship.
  • the second indication information is used to indicate that the CSI-RS
  • the power offset corresponding to RS1 (denoted as power offset 1), wherein, measurement assumption 1 and measurement assumption 2 both correspond to power offset 1, that is, in step S303, whether the terminal device selects measurement assumption 1 or
  • the corresponding CSI-RS is m CSI-RS, or the CSI-RS corresponding to measurement hypothesis 2 is selected to be m CSI-RS
  • the terminal device will determine the power offset 1 as the power offset of the CSI-RS1 quantity.
  • the same power offset configuration strategy can be adopted for the CSI-RS in different measurement assumptions, so as to realize the Simplification of configuration modes of power offsets of different CSI-RSs.
  • the method further includes: the terminal device receives second indication information, where the second indication information is used to indicate the same power offset corresponding to each CSI-RS in the n CSI-RSs, that is to say , n CSI-RSs are configured with only one power offset, that is, different CSI-RSs among the n CSI-RSs all correspond to the power offset under different measurement assumptions.
  • the power offsets corresponding to different CSI-RSs among the n CSI-RSs under different measurement assumptions are the same.
  • the terminal device may specify based on the second indication information that the power offset corresponding to the CSI-RS is used to indicate the ratio between the first signal energy and the second signal energy, and the first signal energy is The EPRE of the PDSCH data stream mapped on the CSI-RS port corresponding to each CSI-RS, the second signal energy is the EPRE of the CSI-RS; the terminal device determines in step S303 according to the m CSI-RS and the mapping relationship
  • the CQI includes: the terminal device determines the CQI according to the second indication information, the m CSI-RSs and the mapping relationship.
  • the second indication information is used to indicate that the n CSI-RSs all correspond to the same power offset (denoted as power offset 1).
  • measurement hypothesis 1 and measurement hypothesis 2 both correspond to power offset 1, that is, in step S303, whether the terminal device selects the CSI-RS corresponding to measurement hypothesis 1 as m CSI-RSs, or selects measurement hypothesis 2
  • the corresponding CSI-RSs are m CSI-RSs, and the terminal device will determine the power offset amount 1 as the power offset amount of the CSI-RS1.
  • the same power offset configuration strategy can be adopted for different CSI-RSs in different measurement assumptions, so as to realize the Simplification of configuration modes of power offsets of different CSI-RSs.
  • the second indication information is included in the first configuration information, or the second indication information is included in other information, which is not limited here.
  • the power offset indicated by the second indication information corresponds to the power offset corresponding to each CSI-RS in at least one measurement hypothesis indicated by the first indication information. or, the power offset indicated by the second indication information may correspond to each CSI-RS in various measurement hypotheses corresponding to n CSI-RS Corresponding power offset.
  • the deviation of the power offset indicated by the second indication information received by the terminal device is used to indicate the deviation, so that the terminal device can reduce or eliminate the influence of the deviation based on the power offset in the process of determining the CQI, In order to further improve the accuracy of the CQI determined by the terminal device.
  • the second indication information is used to indicate the power offset corresponding to each CSI-RS in at least one of the various measurement hypotheses, in other words, the power offset received by the terminal device Quantities may be configured for configuration granularity based on measurement assumptions.
  • different measurement assumptions correspond to different network devices participating in the cooperation, so that the power offset corresponding to the same CSI-RS under different measurement assumptions may be different, through the configuration based on the measurement assumption as the configuration granularity In this way, the accuracy of the CQI obtained based on the power offset can be further improved.
  • the second indication information is used to indicate the power offset corresponding to each CSI-RS in the n CSI-RS, in other words, the power offset received by the terminal device may be in the form of CSI-RS
  • the RS is configured at a configuration granularity, that is, the second indication information is used to indicate power offsets corresponding to n CSI-RSs respectively.
  • the power offsets corresponding to each CSI-RS indicated by the second indication information are the same, which can simplify the configuration of the second indication information, save overhead and be easy to implement.
  • mapping relationship satisfies:
  • the above implementation method provides a specific implementation method for determining the mapping relationship between the PDSCH data stream and the CSI-RS ports corresponding to the m CSI-RSs.
  • n The n port sets and n precoding matrices corresponding to the CSI-RS make the mapping relationship not change due to the change of the value of the CSI-RS corresponding to the CQI (that is, the value of m).
  • the number of non-zero matrices is m.
  • the n precoding matrices are non-zero matrices.
  • mapping relationship satisfies:
  • the other n-m matrices may be zero matrices, so as to simplify the calculation complexity and make more In order to accurately reflect the mapping relationship.
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • the above implementation method provides a specific implementation method for determining the mapping relationship between the data stream of the PDSCH and the CSI-RS ports corresponding to the m CSI-RSs.
  • this implementation method includes using The m port sets and m precoding matrices corresponding to the m CSI-RSs of the CQI are determined, so as to simplify the calculation complexity and reflect the mapping relationship more accurately.
  • each measurement assumption independently corresponds to a mapping relationship.
  • the power offset is used to indicate a ratio between the energy of the first signal and the energy of the second signal.
  • the first signal energy and the second signal energy are except the above-mentioned "the first signal energy is the EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS, and the second signal energy is each
  • the power offset corresponding to each CSI-RS in m (or n) CSI-RSs examples are as follows (in the following example , record the power bias as Pc ratio):
  • Example 1 the first signal energy is the energy of each data stream of the PDSCH mapped on the CSI-RS, and the second signal energy is the energy of a CSI-RS port in the CSI-RS.
  • the Pc ratio configured in the jth group of CSI-RS resources can be expressed as:
  • the total PDSCH transmission power on one subcarrier can be expressed as:
  • 2 ⁇ m ⁇ 4 represents the number of TRPs participating in the coherent joint transmission under the measurement assumption m, that is, the number of CSI-RS resource groups.
  • the first signal energy is the sum of the energy of all data streams mapped to the PDSCH of the CSI-RS on one RE
  • the second signal energy is the sum of the energy of each CSI-RS port of the CSI-RS .
  • the Pc ratio configured in the jth group of CSI-RS resources can be expressed as:
  • the total PDSCH transmission power on a subcarrier can be expressed as:
  • 2 ⁇ m ⁇ 4 represents the number of TRPs participating in the coherent joint transmission under the measurement assumption m, that is, the number of CSI-RS resource groups.
  • Example 3 the first signal energy is the sum of the energy of all data streams mapped on the CSI-RSPDSCH, and the second signal energy is the EPRE of the CSI-RS.
  • the Pc ratio configured in the jth group of CSI-RS resources can be expressed as:
  • two CSI-RS ports are multiplexed on two REs through time-domain/frequency-domain OCC;
  • 4 CSI-RS ports are multiplexed through time-frequency two-dimensional OCC or time-domain/frequency-domain OCC on 4 REs;
  • 8 CSI-RS ports are multiplexed on 8 REs through time-frequency two-dimensional OCC.
  • 2 ⁇ m ⁇ 4 represents the number of TRPs participating in the coherent joint transmission under the measurement assumption m, that is, the number of CSI-RS resource groups.
  • the terminal device sends the CQI.
  • the terminal device sends the CQI in step S304, and correspondingly, the network device receives the CQI in step S304.
  • the CQI sent by the terminal device in step S304 is included in the CSI, and the CSI also includes at least one of the following:
  • the index of the CSI-RS port set corresponding to the m CSI-RS is the index of the CSI-RS port set corresponding to the m CSI-RS.
  • PMI where the PMI is used to indicate the precoding matrix corresponding to the CSI-RS port set corresponding to the m CSI-RSs.
  • the terminal device After the terminal device receives n CSI-RSs, the CQI sent by the terminal device is determined based on some or all of the CSI-RSs in the n CSI-RSs (that is, m CSI-RSs). , the terminal device may carry at least one item of the above information in the CSI, so that the receiver of the CSI can specify the m CSI-RSs corresponding to the CQI.
  • the terminal device after the terminal device receives n CSI-RSs based on the first configuration information in step S302, the terminal device in step S303 based on the m CSI-RSs and the mapping relationship among the n CSI-RSs Determine the CQI.
  • the CQI is used to indicate the channel quality of the PDSCH
  • the mapping relationship used to determine the CQI is the mapping relationship between the data stream of the PDSCH and the CSI-RS port corresponding to the m CSI-RS
  • m is greater than 1
  • the terminal device in the process of determining the CQI of the terminal device, the terminal device thinks/assume (assume) that there is a gap between the data streams of PDSCH and the CSI-RS ports corresponding to different network devices
  • the mapping relationship exists, so that the terminal device specifies the corresponding relationship between the data flow of the PDSCH and different network devices based on the mapping relationship, and determines and sends the CQI.
  • the accuracy of the CQI determined by the terminal device is improved, so that the subsequent accuracy of the downlink channel quality obtained by the network device based on the CQI is improved, Thereby improving communication efficiency.
  • TRP1 and TRP2 form a cooperating set and apply the NCJT transmission mode as an example.
  • the beams b1 and b2 of TRP1 and the beam b0 of TRP2 will affect the adjacent cells outside the cooperation set (in the figure (not shown) cause strong interference, but the beam b0 of TRP1 and the beam b1 of TRP2 will not cause strong interference to neighboring cells outside the cooperating set.
  • TRP1 sends the determined CBSR configuration to the terminal device (such as UE0) connected to TRP1
  • TRP2 sends the determined CBSR configuration to the terminal device (such as UE0) connected to TRP2, so that UE0 sends the CBSR configuration based on TRP1 CBSR configuration and TRP2 delivery
  • the CBSR configuration of the CBSR specifies the codebook subsets allowed to be used in the cooperating set, which can meet the requirements of TRPs in the cooperating set for non-coherent joint transmission while avoiding strong interference to neighboring cells.
  • the data streams sent by different TRPs for the same terminal device are not sent independently.
  • CJT coherent joint transmission
  • the data streams sent by different TRPs for the same terminal device are not sent independently.
  • beams b0 and b1 need to be constrained to avoid causing strong interference to neighboring cells; and when TRP1, TRP2, and TRP3 are simultaneously selected for coherent joint transmission, Only beam b0 needs to be constrained to avoid strong interference to neighboring cells. This makes the above-mentioned NCJT scenario where different TRPs independently determine and deliver the CBSR configuration no longer applicable.
  • FIG. 6 is a schematic diagram of the communication method provided by this application.
  • the terminal device and the network device are taken as the execution subjects of the interaction demonstration to illustrate the method, but the present application does not limit the execution subjects of the interaction demonstration.
  • the terminal device in FIG. 6 may also be a chip, a chip system, or a processor that supports the terminal device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the terminal device.
  • the network device in FIG. 6 may also be a chip, a chip system, or a processor that supports the network device to implement the method, and may also be a logic module or software that can realize all or part of the functions of the network device.
  • the method shown in Fig. 3 includes steps S601, S602, S603 and S604. Each step will be described below.
  • the network device sends first configuration information.
  • the network device sends the first configuration information in step S601, and correspondingly, the terminal device receives the first configuration information in step S601.
  • the first configuration information includes configuration information of n CSI-RSs and CBSR configuration information corresponding to the n CSI-RSs
  • the CBSR configuration information is used to configure multiple CBSRs
  • n is an integer greater than 1.
  • one piece of configuration information among the n pieces of CSI-RS configuration information is used to indicate a set of CSI-RS ports; the set of CSI-RS ports includes one CSI-RS resource, and n pieces of the The CSI-RS resources belong to the same CSI-RS resource set; or, the one CSI-RS port set includes at least one port, and the ports included in the n CSI-RS port sets belong to the same CSI-RS resource.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set, that is, the n CSI-RSs come from n different CSI-RS port sets respectively.
  • n different sets of CSI-RS ports belong to the same CSI-RS resource set or n different sets of CSI-RS ports belong to the same CSI-RS resource.
  • Make n network devices participating in the cooperation send n CSI-RS based on the same CSI-RS resource set or the same CSI-RS resource, which is easy to realize the signal transmission and reception of n CSI-RS, and also saves the configuration of n CSI-RS information overhead.
  • the matrix dimension of each piece of CBSR information is determined based on the number of CSI-RS ports corresponding to the CSI-RS.
  • the network device sends the CSI-RS.
  • the n CSI-RS configuration information in the first configuration information corresponds to n different network devices respectively, and for one network device among the n different network devices, the network device in step In S602, one CSI-RS among the n CSI-RSs is sent, that is, n different network devices send n CSI-RSs in step S602; correspondingly, the terminal device receives n CSI-RSs in step S602.
  • n CSI-RSs received by the terminal device in step S602 are from n different network devices respectively, and this application is concerned with the cooperative relationship between the n different network devices and the sending of the first configuration information in step S601 network of Equipment is not limited.
  • the n different network devices may include a primary network device (or called a service transmission reception point (transmission reception point, TRP)) and n-1 secondary network devices (or called a cooperative TRP), in this case
  • the network device that sends the first configuration information in step S601 may be the primary network device or any secondary network device; for another example, the n different network devices may include a primary network device and a secondary network device that do not distinguish, here In this case, the network device sending the first configuration information in step S601 may be any one of the n network devices.
  • the terminal device determines the PMI.
  • the terminal device determines the PMI based on the m CSI-RSs among the n CSI-RSs received in step S602 and the m CBSRs among the multiple CBSRs.
  • m is an integer greater than 1, and m is less than or equal to n, and the m CSI-RSs are in one-to-one correspondence with the m CBSR information.
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure at least one group of CBSRs, and each group of CBSRs includes at least two CBSRs; the terminal device in step S603 Before determining the PMI based on the m CSI-RSs and the m CBSRs in the plurality of CBSRs, the method further includes: the terminal device determines a group of CBSRs from the at least one group of CBSRs, and the group of CBSRs includes the m CBSRs.
  • the CBSR configuration information in the first configuration information is used to configure at least one group of CBSRs, so that before the terminal device determines the PMI, the terminal device uses the m CBSRs included in the group of CBSRs determined in the at least one group of CBSRs as One of the basis for determining PMI.
  • the CBSR configuration information in the first configuration information configures CBSRs at the granularity of "group", so that after the terminal device determines a certain group of CBSRs according to the pre-configured selection mechanism, it then selects the m CBSRs included in the group of CBSRs As one of the basis for determining PMI.
  • At least one set of CBSRs configured by the CBSR configuration information includes multiple sets of CBSRs
  • different sets of CBSRs may correspond to different measurement assumptions.
  • the n CSI-RSs respectively correspond to n different network devices, and any two or more network devices among the n different network devices may form a cooperative set for providing communication services.
  • each cooperative set can be called a measurement hypothesis, that is, n CSI-RSs correspond to multiple measurement hypotheses, and one of the multiple measurement hypotheses corresponds to m CSI-RSs, so that the measurement It is assumed that m CSI-RSs corresponding to the PMI can be determined.
  • the CBSR configuration information is used to configure multiple sets of CBSR information, and the multiple sets of CBSR information are in one-to-one correspondence with the various measurement assumptions, and one set of CBSR information in the multiple sets of CBSR information includes the m CBSR information.
  • the CBSR configuration information in the first configuration information configures the CBSR in a granular configuration manner of "measurement hypothesis".
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure n CBSRs; the terminal device in step S603 based on m CSI-RS and the multiple CBSR Before the m CBSRs among the n CBSRs determine the PMI, the method further includes: the terminal device determines the m CBSRs from the n CBSRs.
  • the CBSR configuration information in the first configuration information is used to configure n CBSRs, so that before the terminal device determines the PMI, the terminal device uses the m CBSRs included in the n CBSRs as one of the basis for determining the PMI.
  • the CBSR configuration information in the first configuration information configures CBSRs in a granularity of "CSI-RS", so that the terminal device can use the m CBSRs included in the n CBSRs as one of the basis for determining the PMI.
  • the terminal device sends the PMI.
  • the terminal device sends the PMI in step S604, and correspondingly, the network device receives the PMI in step S604.
  • the PMI sent by the terminal device in step S604 is included in the CSI, and the CSI also includes at least one of the following items: the index of the CSI-RS port set corresponding to the m CSI-RSs; or, the Indexes of m CSI-RSs.
  • the terminal device may carry at least one item of the above information in the CSI, so that the receiver of the CSI can specify the m CSI-RSs corresponding to the PMI.
  • the first configuration information received by the terminal device in step S601 includes configuration information of n CSI-RSs and CBSR configuration information corresponding to the n CSI-RSs, and the CBSR configuration information is used It is used to configure multiple CBSRs.
  • the terminal device receives n CSI-RSs based on the n CSI-RS configuration information in the first configuration information in step S602
  • the terminal device in step S603 based on the CBSR configuration information in the first configuration information
  • the PMI is determined, and m is an integer greater than 1, that is, the m CSI-RSs come from different network devices.
  • the configuration information of the terminal device for receiving CSI-RSs from different network devices and the configuration information of the CBSR corresponding to the different network devices are located in the first configuration information.
  • the terminal device needs to receive configuration information from different network devices separately to determine the configuration information of CSI-RS of different network devices and the configuration information of CBSR corresponding to different network devices, the overhead can be saved. Improve communication efficiency.
  • the above technical solution can be applied in an application scenario where the data streams received by the terminal device come from different network devices, realizing the configuration of CBSR of different network devices in this scenario, and making the terminal device clear that in this application scenario,
  • the CBSRs corresponding to different network devices may be acquired based on the first configuration information, and the PMI is sent based on the CBSR configuration information.
  • FIG. 7 is a schematic diagram of a communication device 700 provided in this application.
  • the communication device 700 can realize the functions of the terminal device/network device in the above method embodiment, and therefore can also realize the beneficial effects of the above method embodiment.
  • the transceiver unit 701 is configured to receive first configuration information, where the first configuration information includes configuration information of n channel state information reference signals CSI-RS, where n is an integer greater than 1;
  • the transceiving unit 701 is further configured to receive n CSI-RSs based on the first configuration information
  • the processing unit 702 is configured to determine the channel quality indicator CQI according to the m CSI-RS and the mapping relationship, and the CQI is used to indicate the channel quality of the physical downlink shared channel PDSCH; wherein, the mapping relationship is the data flow of the PDSCH and the m A mapping relationship between CSI-RS ports corresponding to the CSI-RSs; wherein, the m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m is less than or equal to n;
  • the transceiving unit 701 is also configured to send the CQI.
  • the processing unit 702 is further configured to determine the m CSI-RSs from the n CSI-RSs.
  • the processing unit 702 is specifically configured to determine the m CSI-RSs based on a first parameter and the n CSI-RSs, where the first parameter includes the value of m or a first threshold .
  • the n CSI-RSs correspond to various measurement hypotheses, and the measurement hypotheses are used to determine the m CSI-RSs corresponding to the CQI.
  • the transceiving unit 701 is further configured to receive first indication information, where the first indication information indicates at least one measurement hypothesis among the various measurement hypotheses;
  • a measurement hypothesis is determined from the at least one measurement hypothesis, and the one measurement hypothesis corresponds to the m CSI-RSs.
  • the transceiving unit 701 is further configured to receive second indication information, where the second indication information is used to indicate that each CSI-RS in at least one of the various measurement hypotheses corresponds to The power offset amount; wherein, the power offset amount is used to indicate the ratio between the first signal energy and the second signal energy, and the first signal energy is mapped to the CSI-RS port corresponding to each CSI-RS EPRE of the data stream of the PDSCH, where the second signal energy is the EPRE of each CSI-RS;
  • the processing unit 702 is specifically configured to determine the CQI according to the second indication information, the m CSI-RSs and the mapping relationship.
  • the transceiving unit 701 is further configured to receive second indication information, where the second indication information is used to indicate a power offset corresponding to each CSI-RS in the n CSI-RSs;
  • the power offset is used to indicate the ratio between the first signal energy and the second signal energy, and the first signal energy is the EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS , the second signal energy is the EPRE of each CSI-RS;
  • the processing unit 702 is specifically configured to determine the CQI according to the second indication information, the m CSI-RSs and the mapping relationship.
  • the power offsets corresponding to each CSI-RS indicated by the second indication information are the same.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set
  • the one CSI-RS port set includes one CSI-RS resource, and the n CSI-RS resources belong to the same CSI-RS resource set;
  • the one CSI-RS port set includes at least one port, and the ports included in the n CSI-RS port sets belong to the same CSI-RS resource.
  • the CQI is included in the CSI, and the CSI further includes at least one of the following:
  • the index of the CSI-RS port set corresponding to the m CSI-RS is the index of the CSI-RS port set corresponding to the m CSI-RS.
  • PMI where the PMI is used to indicate the precoding matrix corresponding to the CSI-RS port set corresponding to the m CSI-RSs.
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • the processing unit 702 is configured to determine first configuration information, where the first configuration information includes configuration information of n channel state information reference signals CSI-RS, where n is an integer greater than 1;
  • the transceiving unit 701 is configured to send one CSI-RS among the n CSI-RSs based on the first configuration information
  • the transceiver unit 701 is also used to receive a channel quality indication CQI, which is determined based on m CSI-RSs and a mapping relationship; wherein, the CQI is used to indicate the channel quality of the physical downlink shared channel PDSCH, and the mapping relationship is the PDSCH.
  • CQI channel quality indication
  • the n CSI-RSs correspond to various measurement hypotheses, and the measurement hypotheses are used to determine the m CSI-RSs corresponding to the CQI.
  • the transceiving unit 701 is further configured to send first indication information, and the first indication the information indicates at least one measurement assumption of the plurality of measurement assumptions;
  • one of the at least one measurement hypothesis corresponds to the m CSI-RSs.
  • the transceiving unit 701 is further configured to send second indication information, where the second indication information is used to indicate that each CSI-RS in at least one of the various measurement hypotheses corresponds to power bias;
  • the power offset is used to indicate the ratio between the first signal energy and the second signal energy
  • the first signal energy is the EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS
  • the second signal energy is the EPRE of each CSI-RS.
  • the transceiving unit 701 is further configured to send second indication information, where the second indication information is used to indicate the power offset corresponding to each CSI-RS in the n CSI-RSs;
  • the power offset is used to indicate the ratio between the first signal energy and the second signal energy
  • the first signal energy is the EPRE of the data stream of the PDSCH mapped on the CSI-RS port corresponding to each CSI-RS
  • the second signal energy is the EPRE of each CSI-RS.
  • the power offsets corresponding to each CSI-RS indicated by the second indication information are the same.
  • each configuration information of the n CSI-RS configuration information is used to indicate a CSI-RS port set
  • the one CSI-RS port set includes one CSI-RS resource, and the n CSI-RS resources belong to the same CSI-RS resource set;
  • the one CSI-RS port set includes at least one port, and the ports included in the n CSI-RS port sets belong to the same CSI-RS resource.
  • the CQI is included in the CSI, and the CSI further includes at least one of the following:
  • the index of the CSI-RS port set corresponding to the m CSI-RS is the index of the CSI-RS port set corresponding to the m CSI-RS.
  • PMI where the PMI is used to indicate the precoding matrix of the CSI-RS port set corresponding to the m CSI-RSs.
  • mapping relationship satisfies:
  • mapping relationship satisfies:
  • the transceiver unit 701 is configured to receive first configuration information, the first configuration information includes configuration information of n CSI-RSs, and CBSR configuration information corresponding to the n CSI-RSs, and the CBSR configuration information is used to configure multiple A CBSR, n is an integer greater than 1;
  • the transceiving unit 701 is further configured to receive the n CSI-RSs based on the first configuration information
  • the processing unit 702 is configured to determine PMI based on m CSI-RSs and m CBSRs in the plurality of CBSRs; the m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m Less than or equal to n; the m CSI-RSs are in one-to-one correspondence with the m CBSR information;
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure at least one group of CBSRs, and each group of CBSRs includes at least two CBSRs;
  • the device Before determining the PMI based on the m CSI-RSs and the m CBSRs in the multiple CBSRs, the device further includes:
  • a group of CBSRs is determined from the at least one group of CBSRs, and the group of CBSRs includes the m CBSRs.
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure n CBSRs;
  • the device Before determining the PMI based on the m CSI-RSs and the m CBSRs in the multiple CBSRs, the device further includes:
  • the m CBSRs are determined from the n CBSRs.
  • the processing unit 702 is configured to determine first configuration information, where the first configuration information includes configuration information of n CSI-RSs and CBSR configuration information corresponding to the n CSI-RSs, where the CBSR configuration information is used to configure multiple A CBSR, n is an integer greater than 1;
  • the transceiving unit 701 is configured to send one CSI-RS of the n CSI-RSs based on the first configuration information
  • the transceiver unit 701 is also used to receive PMI, where the PMI corresponds to m CSI-RSs; wherein, the m CSI-RSs are included in the n CSI-RSs, m is an integer greater than 1, and m is less than or equal to n: the m CSI-RSs are in one-to-one correspondence with the m pieces of CBSR information configured in the CBSR configuration information.
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure at least one group of CBSRs, and each group of CBSRs includes at least two CBSRs;
  • a group of CBSRs in the at least one group of CBSRs includes the m CBSRs.
  • the CBSR configuration information used to configure multiple CBSRs includes: the CBSR configuration information is used to configure n CBSRs;
  • the n CBSRs include the m CBSRs.
  • FIG. 8 is a schematic diagram of a possible logical structure of the terminal device 800, which is the terminal device involved in the above-mentioned embodiments provided by the embodiment of the present application.
  • the terminal device 800 may include but not limited to at least one processing device 801 and communication port 802. Further optionally, the apparatus may further include at least one of a memory 803 and a bus 804. In the embodiment of the present application, the at least one processor 801 is configured to control and process actions of the terminal device 800.
  • the processor 801 may be a central processing unit, a general processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination that realizes computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and the like.
  • terminal device 800 shown in FIG. 8 can specifically be used to implement other steps implemented by the terminal device in the foregoing corresponding method embodiments, and realize the corresponding technical effects of the terminal device.
  • the specific implementation manner of the terminal device shown in FIG. 8 can refer to the descriptions in the foregoing method embodiments, and details will not be repeated here.
  • FIG. 9 is a schematic structural diagram of a network device involved in the above-mentioned embodiments provided for an embodiment of the present application, wherein the structure of the network device may refer to the structure shown in FIG. 9 .
  • the network device includes at least one processor 911 and at least one network interface 914 . Further optionally, the network device further includes at least one memory 912 , at least one transceiver 913 and one or more antennas 915 .
  • the processor 911, the memory 912, the transceiver 913 and the network interface 914 are connected, for example, through a bus. In this embodiment of the application, the connection may include various interfaces, transmission lines or buses, which are not limited in this embodiment.
  • the antenna 915 is connected to the transceiver 913 .
  • the network interface 914 is used to enable network devices to communicate with other communication devices through communication links.
  • the network interface 914 may include a network interface between a network device and a core network device, such as an S1 interface, and the network interface may include a network device A network interface with other network devices (such as other network devices or core network devices), such as X2 or Xn interfaces.
  • a network device such as an S1 interface
  • the network interface may include a network device A network interface with other network devices (such as other network devices or core network devices), such as X2 or Xn interfaces.
  • the processor 911 is mainly used to process communication protocols and communication data, control the entire network device, execute software programs, and process data of the software programs, for example, to support network devices to perform actions described in the embodiments.
  • a network device may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processor is mainly used to control the entire terminal device, execute software programs, and process data of the software programs.
  • the processor 911 in FIG. 9 can integrate the functions of the baseband processor and the central processing unit. Those skilled in the art can understand that the baseband processor and the central processing unit can also be independent processors, interconnected through technologies such as a bus.
  • a terminal device may include multiple baseband processors to adapt to different network standards, a terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • Memory is primarily used to store software programs and data.
  • the memory 912 may exist independently and be connected to the processor 911 .
  • the memory 912 may be integrated with the processor 911, for example, integrated into one chip.
  • the memory 912 can store the program codes for executing the technical solutions of the embodiments of the present application, and the execution is controlled by the processor 911 , and various types of computer program codes to be executed can also be regarded as drivers for the processor 911 .
  • Figure 9 shows only one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • a memory may also be called a storage medium or a storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in this embodiment of the present application.
  • the transceiver 913 may be used to support receiving or sending radio frequency signals between the network device and the terminal, and the transceiver 913 may be connected to the antenna 915 .
  • the transceiver 913 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 915 can receive radio frequency signals
  • the receiver Rx of the transceiver 913 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital baseband
  • the signal or the digital intermediate frequency signal is provided to the processor 911, so that the processor 911 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 913 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 911, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a One or more antennas 915 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal.
  • the order of the down-mixing processing and analog-to-digital conversion processing The order is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal.
  • the up-mixing processing and digital-to-analog conversion processing The sequence is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • a transceiver may also be called a transceiver unit, a transceiver, a transceiver device, and the like.
  • the device used to realize the receiving function in the transceiver unit can be regarded as a receiving unit
  • the device used to realize the sending function in the transceiver unit can be regarded as a sending unit
  • the transceiver unit includes a receiving unit and a sending unit.
  • the receiving unit can also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit can be called a transmitter, a transmitter, or a transmitting circuit.
  • the network device shown in FIG. 9 can specifically be used to implement the steps implemented by the network device in the foregoing method embodiments, and realize the corresponding technical effects of the network device.
  • the specific implementation manner of the network device shown in FIG. 9 can be Reference is made to the descriptions in the foregoing method embodiments, and details are not repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium storing one or more computer-executable instructions.
  • the processor executes the Methods.
  • Embodiments of the present application also provide a computer-readable storage medium storing one or more computer-executable instructions.
  • the processor executes the network device as described in the possible implementation manners of the foregoing embodiments. Methods.
  • the embodiment of the present application also provides a computer program product (or computer program) storing one or more computers, and when the computer program product is executed by the processor, the processor executes the method of the above-mentioned possible implementation manner of the terminal device.
  • the embodiment of the present application also provides a computer program product storing one or more computers, and when the computer program product is executed by the processor, the processor executes the method of the above-mentioned possible implementation manner of the network device.
  • An embodiment of the present application further provides a chip system, where the chip system includes at least one processor, configured to support a terminal device in implementing the functions involved in the foregoing possible implementation manners of the terminal device.
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the system-on-a-chip may further include a memory, and the memory is used for storing necessary program instructions and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • An embodiment of the present application further provides a chip system, where the chip system includes at least one processor, configured to support a network device to implement the functions involved in the foregoing possible implementation manners of the network device.
  • the chip system further includes an interface circuit, and the interface circuit provides program instructions and/or data for the at least one processor.
  • the chip system may further include a memory, and the memory is used for storing necessary program instructions and data of the network device.
  • the system-on-a-chip may consist of a chip, or may include a chip and other discrete devices, wherein the network device may specifically be the network device in the aforementioned method embodiments.
  • An embodiment of the present application also provides a communication system, where the network system architecture includes the terminal device and the network device in any of the foregoing embodiments.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or can be Integrate into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units. If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法及通信装置,用于在终端设备所接收的数据流来自不同的网络设备的应用场景中,提升终端设备所确定的CQI的准确度,使得网络设备后续基于该CQI所获得的下行信道质量的准确度得以提升,进而提升通信效率。在该方法中,终端设备接收第一配置信息,该第一配置信息包括n个CSI-RS的配置信息,n为大于1的整数;该终端设备基于该第一配置信息接收n个CSI-RS;该终端设备根据m个CSI-RS和映射关系确定CQI,该CQI用于指示PDSCH的信道质量;其中,该映射关系为该PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系;其中,该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n。

Description

一种通信方法及通信装置
本申请要求于2022年02月28日提交中国国家知识产权局,申请号为202210193794.2,发明名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线技术领域,尤其涉及一种通信方法及通信装置。
背景技术
在通信系统中,网络设备可以通过终端设备发送的信道状态信息(channel state information,CSI)确定下行信道质量信息,CSI包括信道质量指示(channel quality indicator,CQI)和预编码矩阵指示(precoding matrix indicator,PMI)等。以CQI为例,网络设备还可以根据CQI进一步确定码率、调制与编码策略(modulation and coding scheme,MCS)或频谱效率等。
目前,在接收信道状态信息参考信号(channel state information reference signal,CSI-RS)之后,终端设备在进行下行信道的CQI测量过程中,该终端设备需要明确在该下行信道传输的数据流与CSI-RS端口之间的映射关系。以单站通信场景为例,终端设备接收来自某一个网络设备的CSI-RS之后,可以基于下行信道传输的数据流与该网络设备的CSI-RS端口之间的映射关系执行CQI测量。
此外,在不同的网络设备分别与该终端设备传输独立的数据流的场景下(例如该场景可以包括非相干联合传输(non-coherent joint transmission,NCJT)的通信场景),终端设备所接收的某个数据流仅来自于某一个网络设备,使得终端设备接收来自不同的网络设备的CSI-RS之后,该终端设备可以沿用上述单站通信场景中的映射关系执行CQI测量。以该不同的网络设备包括网络设备1和网络设备2为例,终端设备需要基于与网络设备1之间的下行信道传输的数据流与该网络设备1的CSI-RS端口之间的映射关系,并基于与网络设备2之间的下行信道传输的数据流与该网络设备2的CSI-RS端口之间的映射关系上报一个CQI。
然而,在不同的网络设备与终端设备之间传输的数据流不再是独立的场景下(例如,该场景可以包括相干传输(coherent joint transmission,CJT)的通信场景),由于终端设备所接收的某个数据流来自多个不同的网络设备,在终端设备沿用上述单站通信场景执行CQI测量的情况下,容易造成CQI测量不准,导致网络设备基于CQI所获得的下行信道质量的准确度降低,进而影响通信效率。
发明内容
本申请第一方面提供了一种通信方法,该方法由终端设备执行,或者,该方法由终端设备中的部分组件(例如处理器、芯片或芯片系统等)执行,或者该方法还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。在第一方面及其可能的实现方式中,以 该通信方法由终端设备执行为例进行描述。在该方法中,终端设备接收第一配置信息,该第一配置信息包括n个CSI-RS的配置信息,n为大于1的整数;该终端设备基于该第一配置信息接收n个CSI-RS;该终端设备根据m个CSI-RS和映射关系确定CQI,该CQI用于指示物理下行共享信道(physical downlink shared channel,PDSCH)的信道质量;其中,该映射关系为该PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系;其中,该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n。
基于上述技术方案,终端设备在基于第一配置信息接收n个CSI-RS之后,该终端设备基于n个CSI-RS中的m个CSI-RS和映射关系确定CQI。其中,该CQI用于指示PDSCH的信道质量,且用于确定CQI的映射关系为该PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系,且m为大于1的整数,即m个CSI-RS来自于不同的网络设备。换言之,在PDSCH的数据流中的单个数据流来自于多个不同的网络设备的场景下,终端设备确定CQI的过程中,终端设备认为/假设(assume)PDSCH的数据流与不同的网络设备对应的CSI-RS端口之间存在该映射关系,使得终端设备基于该映射关系明确PDSCH的数据流与不同网络设备之间的对应关系,并确定和发送CQI。从而,在终端设备所接收的数据流来自不同的网络设备的应用场景中,提升终端设备所确定的CQI的准确度,使得网络设备后续基于该CQI所获得的下行信道质量的准确度得以提升,进而提升通信效率。
应理解,终端设备所接收的n个CSI-RS分别来自n个不同的网络设备,本申请对于该n个不同的网络设备之间的协作关系以及发送第一配置信息的网络设备不做限定。例如,该n个不同的网络设备可以包括一个主网络设备(或称服务传输接收点(transmission reception point,TRP))以及n-1个辅网络设备(或称协作TRP),在这种情况下,发送第一配置信息的网络设备可以为该主网络设备或任一辅网络设备;又如,该n个不同的网络设备可以包括不区分主网络设备和辅网络设备,在这种情况下,发送第一配置信息的网络设备可以为该n个网络设备中的任意一个网络设备。
应理解,在第一方面的一种可能的实现方式中,该映射关系为PDSCH的每个数据流根据该数据流对应的预编码矩阵映射到该m个CSI-RS对应的所有CSI-RS端口上。或者说,该映射关系用于指示PDSCH的每个数据流根据该数据流对应的预编码矩阵映射到该m个CSI-RS对应的所有CSI-RS端口上。
通过这个映射关系,可以将PDSCH的某个数据流映射到多个CSI-RS的端口上,由于每个CSI-RS可以对应一个网络设备(例如TRP),这样PDSCH的某个数据流可以通过多个TRP联合发送。该数据流对应的预编码矩阵可以保证多个TRP间的相位相干性。
在第一方面的一种可能的实现方式中,在根据m个CSI-RS和映射关系确定CQI之前,该方法还包括:从该n个CSI-RS中确定该m个CSI-RS。
基于上述技术方案,终端设备在接收n个CSI-RS之后,该终端设备基于n个CSI-RS中的部分或全部CSI-RS(即m个CSI-RS)确定该CQI。换言之,终端设备可以基于预配置的选择机制在n个CSI-RS选择部分或全部CSI-RS(即m个CSI-RS)之后,该终端设备再进一步基于所选择的m个CSI-RS确定CQI。从而,终端设备能够在n个CSI-RS中灵活地选择满足该预配置的选择机制的m个CSI-RS,以提升方案实现的灵活性。
在第一方面的一种可能的实现方式中,从该n个CSI-RS中确定该m个CSI-RS包括:基于第一参数和该n个CSI-RS确定该m个CSI-RS,该第一参数包括该m的取值或第一阈值。
可选地,该第一参数预配置于该终端设备。
可选地,该第一参数为网络设备向该终端设备发送的,该第一参数可以包含于第一配置信息或者其它信息中。
应理解,该第一阈值可以指示传输性能阈值,例如参考信号接收功率(reference signal received power,RSRP)阈值,参考信号接收质量(reference signal received quality,RSRQ)阈值或者其他的性能参数阈值,此处不做限定。
在第一方面的一种可能的实现方式中,该n个CSI-RS对应多种测量假设,该测量假设用于确定该CQI对应的该m个CSI-RS。
基于上述技术方案,该n个CSI-RS分别对应于n个不同的网络设备,而n个不同的网络设备中任意两个或两个以上的网络设备可以组成提供通信服务的协作集。其中,每一种协作集可以称为一种测量假设,即n个CSI-RS对应多种测量假设,且多种测量假设中的某一种测量假设对应该m个CSI-RS,使得该测量假设能够确定CQI对应的m个CSI-RS。
在第一方面的一种可能的实现方式中,该方法还包括:接收第一指示信息,该第一指示信息指示该多种测量假设中的至少一种测量假设;从该至少一种测量假设中确定一种测量假设,该一种测量假设对应该m个CSI-RS。
可选地,第一指示信息包含于第一配置信息,或者,第一指示信息包含于其它信息,此处不做限定。
基于上述技术方案,该终端设备还可以基于第一指示信息所指示的至少一种测量假设在n个CSI-RS所对应的多种测量假设确定其中一种测量假设,并基于该一种测量假设所对应的网络设备确定CQI对应的m个CSI-RS。
应理解,第一指示信息可以用于包括该至少一种测量假设所对应的网络设备的索引,第一指示信息也可以包括该至少一种测量假设所对应的CSI-RS的索引,第一指示信息还可以包括该至少一种测量假设所对应的网络设备的CSI-RS端口集合的索引,第一指示信息还可以通过其它方式指示该多种测量假设中的至少一种测量假设,此处不做限定。
在第一方面的一种可能的实现方式中,该方法还包括:接收第二指示信息,该第二指示信息用于指示该多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量;其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的每个资源单元上的能量(energy per resource element,EPRE),该第二信号能量为每个CSI-RS的EPRE;终端设备根据m个CSI-RS和映射关系确定CQI包括:该终端设备根据该第二指示信息,该m个CSI-RS和该映射关系确定该CQI。
可选地,第二指示信息包含于第一配置信息,或者,第二指示信息包含于其它信息,此处不做限定。
基于上述技术方案,在CQI所指示的PDSCH中,由于在计算CQI时所假设的PDSCH的 数据流映射在每个CSI-RS对应的CSI-RS端口上的EPRE与CSI-RS的EPRE之间往往存在一定的偏差,终端设备所接收的第二指示信息所指示的功率偏置量用于指示该偏差,使得终端设备在确定CQI的过程中可以基于该功率偏置量减小或消除该偏差的影响,以进一步提升该终端设备所确定的CQI的准确度。
此外,在该实现方式中,该第二指示信息用于指示该多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量,换言之,终端设备所接收的功率偏置量可以是基于测量假设为配置粒度所配置的。其中,不同的测量假设对应参与协作的网络设备是不同的,使得同一个CSI-RS在不同的测量假设下所对应的功率偏置量有可能是不同的,通过基于测量假设为配置粒度的配置方式,可以进一步提升基于该功率偏置量所获得的CQI的准确度。
在第一方面的一种可能的实现方式中,该方法还包括:接收第二指示信息,该第二指示信息用于指示该n个CSI-RS中每个CSI-RS对应的功率偏置量;其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE;终端设备根据m个CSI-RS和映射关系确定CQI包括:该终端设备根据该第二指示信息,该m个CSI-RS和该映射关系确定该CQI。
可选地,第二指示信息包含于第一配置信息,或者,第二指示信息包含于其它信息,此处不做限定。
基于上述技术方案,在CQI所指示的PDSCH中,由于在计算CQI时所假设的PDSCH的数据流映射在每个CSI-RS对应的CSI-RS端口上的EPRE与CSI-RS的EPRE之间往往存在一定的偏差,终端设备所接收的第二指示信息所指示的功率偏置量用于指示该偏差,使得终端设备在确定CQI的过程中可以基于该功率偏置量减小或消除该偏差的影响,以进一步提升该终端设备所确定的CQI的准确度。
此外,在该实现方式中,该第二指示信息用于指示该n个CSI-RS中每个CSI-RS对应的功率偏置量,换言之,终端设备所接收的功率偏置量可以是以CSI-RS为配置粒度所配置的,即第二指示信息用于指示n个CSI-RS分别对应的功率偏置量。使得终端设备在确定CQI对应的m个CSI-RS之后,即可在该n个CSI-RS分别对应的功率偏置量中确定m个CSI-RS分别对应的功率偏置量,易于实现。
可选地,由上述两种可能的实现方式可知,功率偏置量用于指示第一信号能量和第二信号能量之间的比值。其中,第一信号能量和第二信号能量除了上述“第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE”的定义之外,对于m个(或n个)CSI-RS中的每个CSI-RS对应的功率偏置量,还可以存在其它的定义,示例如下:
示例一:第一信号能量为映射在该CSI-RS的PDSCH的每个数据流的能量,该第二信号能量为该CSI-RS中一个CSI-RS端口的能量。
示例二:第一信号能量为映射在该CSI-RS的PDSCH的所有数据流在一个RE上的能量的总和,该第二信号能量为该CSI-RS的每个CSI-RS端口的能量的总和。
示例三:第一信号能量为映射在该CSI-RSPDSCH的所有数据流的能量的总和,该第二 信号能量为该CSI-RS的EPRE。
在第一方面的一种可能的实现方式中,该第二指示信息所指示的该每个CSI-RS对应的功率偏置量相同。
基于上述技术方案,该第二指示信息所指示的该每个CSI-RS对应的功率偏置量相同,可以简化该第二指示信息的配置,节省开销且易于实现。
在第一方面的一种可能的实现方式中,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;该一个CSI-RS端口集合包括一个CSI-RS资源,n个该CSI-RS资源属于同一CSI-RS资源集;或,该一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的该端口属于同一CSI-RS资源。
基于上述技术方案,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合,即n个CSI-RS分别来自于n个不同的CSI-RS端口集合。并且,n个不同的CSI-RS端口集合属于同一CSI-RS资源集或n个不同的CSI-RS端口集合属于同一CSI-RS资源。使得参与协作的n个网络设备基于同一CSI-RS资源集或同一CSI-RS资源发送n个CSI-RS,易于实现n个CSI-RS的信号收发的同时,也节省n个CSI-RS的配置信息的开销。
在第一方面的一种可能的实现方式中,该CQI包含于CSI,该CSI还包括以下至少一项:
该m个CSI-RS对应的CSI-RS端口集合的索引;或,
该m个CSI-RS的索引;或,
预编码矩阵指示(precoding matrix indicator,PMI),该PMI用于指示该m个CSI-RS对应的CSI-RS端口集合对应的预编码矩阵。
基于上述技术方案,终端设备在接收n个CSI-RS之后,该终端设备所发送的CQI为基于n个CSI-RS中的部分或全部CSI-RS(即m个CSI-RS)所确定的,为此,该终端设备可以在CSI中携带上述信息中的至少一项,以便于该CSI的接收方明确CQI所对应的m个CSI-RS。
在第一方面的一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个OFDM符号上的PDSCH的第k个数据流,j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第m个CSI-RS端口上传输的该PDSCH的数据流,m=0,…Pj-1,Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
基于上述技术方案,提供了用于确定PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系的一种具体的实现方式,在该实现方式中,包括n个CSI-RS对应的n个端口集合以及n个预编码矩阵,使得该映射关系不会由于CQI对应的CSI-RS的取值(即 m的取值)的改变而产生变化。
在第一方面的一种可能的实现方式中,在W0(i)...Wn-1(i)中,非零矩阵的个数为m。
可选的,对于n个CSI-RS中的第j个CSI-RS,j=0...j=n-1,其映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
基于上述技术方案,在上述用于确定CQI的映射关系的实现方式中,由于CQI为基于n个CSI-RS中的m个CSI-RS所确定的,使得该实现方式中的n个预编码矩阵中的m个预编码矩阵为非零矩阵。
此外,在上述实现方式中,除了m个CSI-RS所对应的m个预编码矩阵为非零矩阵之外,其它n-m个矩阵可以为零矩阵,以简化计算复杂度的同时可以更为准确地体现该映射关系。
在第一方面的一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
可选的,对于m个CSI-RS中的第j个CSI-RS,j=0...j=n-1,其映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
基于上述技术方案,提供了用于确定PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系的一种具体的实现方式,在该实现方式中,包括用于确定CQI的m个 CSI-RS对应的m个端口集合以及m个预编码矩阵,以简化计算复杂度的同时可以更为准确地体现该映射关系。
本申请第二方面提供了一种通信方法,该方法由网络设备执行,或者,该方法由网络设备中的部分组件(例如处理器、芯片或芯片系统等)执行,或者该方法还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。在第二方面及其可能的实现方式中,以该通信方法由网络设备执行为例进行描述。在该方法中,网络设备确定第一配置信息,该第一配置信息包括n个CSI-RS的配置信息,n为大于1的整数;该网络设备基于该第一配置信息发送该n个CSI-RS中的一个CSI-RS;该网络设备接收CQI,该CQI为基于m个CSI-RS与映射关系确定;其中,该CQI用于指示物理下行共享信道PDSCH的信道质量,该映射关系为该PDSCH的数据流与m个CSI-RS对应的CSI-RS端口之间的映射关系;该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n。
基于上述技术方案,网络设备在基于第一配置信息发送n个CSI-RS中的一个CSI-RS之后,该网络设备接收CQI。其中,该CQI用于指示PDSCH的信道质量,且该CQI所指示的该PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间存在映射关系,且m为大于1的整数,即m个CSI-RS来自于不同的网络设备。换言之,在PDSCH的数据流来自于不同的网络设备的场景下,终端设备确定CQI的过程中,该终端设备认为/假设(assume)PDSCH的数据流与不同的网络设备对应的CSI-RS端口之间存在该映射关系,使得终端设备基于该映射关系明确PDSCH的数据流与不同网络设备之间的对应关系,并确定和发送CQI。从而,在终端设备所接收的数据流来自不同的网络设备的应用场景中,提升终端设备所确定的CQI的准确度,使得网络设备后续基于该CQI所获得的下行信道质量的准确度得以提升,进而提升通信效率。
应理解,终端设备所接收的n个CSI-RS分别来自n个不同的网络设备,本申请中执行第二方面及其可能的实现方式的网络设备可以是该n个不同的网络设备的任意一个网络设备,本申请不做限定。例如,该n个不同的网络设备可以包括一个主网络设备(或称服务传输接收点(transmission reception point,TRP))以及n-1个辅网络设备(或称协作TRP),在这种情况下,执行第二方面及其可能的实现方式的网络设备可以为该主网络设备或任意一个辅网络设备;又如,该n个不同的网络设备可以包括不区分主网络设备和辅网络设备,在这种情况下,执行第二方面及其可能的实现方式的网络设备可以为该n个网络设备中的任意一个网络设备。
应理解,在第二方面的一种可能的实现方式中,该映射关系为PDSCH的每个数据流根据该数据流对应的预编码矩阵映射到该m个CSI-RS对应的所有CSI-RS端口上。或者说,该映射关系用于指示PDSCH的每个数据流根据该数据流对应的预编码矩阵映射到该m个CSI-RS对应的所有CSI-RS端口上。
通过这个映射关系,可以将PDSCH的某个数据流映射到多个CSI-RS的端口上,由于每个CSI-RS可以对应一个网络设备(例如TRP),这样PDSCH的某个数据流可以通过多个TRP 联合发送。该数据流对应的预编码矩阵可以保证多个TRP间的相位相干性。
在第二方面的一种可能的实现方式中,该n个CSI-RS对应多种测量假设,该测量假设用于确定该CQI对应的该m个CSI-RS。
基于上述技术方案,该n个CSI-RS分别对应于n个不同的网络设备,而n个不同的网络设备中任意两个或两个以上的网络设备可以组成提供通信服务的协作集。其中,每一种协作集可以称为一种测量假设,即n个CSI-RS对应多种测量假设,且多种测量假设中的某一种测量假设对应该m个CSI-RS,使得该测量假设能够确定CQI对应的m个CSI-RS。
在第二方面的一种可能的实现方式中,该方法还包括:发送第一指示信息,该第一指示信息指示该多种测量假设中的至少一种测量假设;其中,该至少一种测量假设中的一种测量假设对应该m个CSI-RS。
可选地,第一指示信息包含于第一配置信息,或者,第一指示信息包含于其它信息,此处不做限定。
基于上述技术方案,网络设备还可以发送该第一指示信息,使得该终端设备可以基于第一指示信息所指示的至少一种测量假设在n个CSI-RS所对应的多种测量假设确定其中一种测量假设,并基于该一种测量假设所对应的网络设备确定CQI对应的m个CSI-RS。
应理解,第一指示信息可以用于包括该至少一种测量假设所对应的网络设备的索引,第一指示信息也可以包括该至少一种测量假设所对应的CSI-RS的索引,第一指示信息还可以包括该至少一种测量假设所对应的网络设备的CSI-RS端口集合的索引,第一指示信息还可以通过其它方式指示该多种测量假设中的至少一种测量假设,此处不做限定。
在第二方面的一种可能的实现方式中,该方法还包括:发送第二指示信息,该第二指示信息用于指示该多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量;其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE。
可选地,第二指示信息包含于第一配置信息,或者,第二指示信息包含于其它信息,此处不做限定。
基于上述技术方案,在CQI所指示的PDSCH中,由于在计算CQI时所假设的PDSCH的数据流映射在每个CSI-RS对应的CSI-RS端口上的EPRE与CSI-RS的EPRE之间往往存在一定的偏差,网络设备所发送的第二指示信息所指示的功率偏置量用于指示该偏差,使得终端设备在确定CQI的过程中可以基于该功率偏置量减小或消除该偏差的影响,以进一步提升该终端设备所确定的CQI的准确度。
此外,在该实现方式中,该第二指示信息用于指示该多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量,换言之,网络设备所发送的功率偏置量可以是基于测量假设为配置粒度所配置的。其中,不同的测量假设对应参与协作的网络设备是不同的,使得同一个CSI-RS在不同的测量假设下所对应的功率偏置量有可能是不同的,通过基于测量假设为配置粒度的配置方式,可以进一步提升基于该功率偏置量所获得的CQI的准确度。
在第二方面的一种可能的实现方式中,该方法还包括:发送第二指示信息,该第二指 示信息用于指示该n个CSI-RS中每个CSI-RS对应的功率偏置量;其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE。
可选地,第二指示信息包含于第一配置信息,或者,第二指示信息包含于其它信息,此处不做限定。
基于上述技术方案,在CQI所指示的PDSCH中,由于在计算CQI时所假设的PDSCH的数据流映射在每个CSI-RS对应的CSI-RS端口上的EPRE与CSI-RS的EPRE之间往往存在一定的偏差,网络设备所发送的第二指示信息所指示的功率偏置量用于指示该偏差,使得终端设备在确定CQI的过程中可以基于该功率偏置量减小或消除该偏差的影响,以进一步提升该终端设备所确定的CQI的准确度。
此外,在该实现方式中,该第二指示信息用于指示该n个CSI-RS中每个CSI-RS对应的功率偏置量,换言之,网络设备所发送的功率偏置量可以是以CSI-RS为配置粒度所配置的,即第二指示信息用于指示n个CSI-RS分别对应的功率偏置量。使得终端设备在确定CQI对应的m个CSI-RS之后,即可在该n个CSI-RS分别对应的功率偏置量中确定m个CSI-RS分别对应的功率偏置量,易于实现。
可选地,由上述两种可能的实现方式可知,功率偏置量用于指示第一信号能量和第二信号能量之间的比值。其中,第一信号能量和第二信号能量除了上述“第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE”的定义之外,对于m个(或n个)CSI-RS中的每个CSI-RS对应的功率偏置量,还可以存在其它的定义,示例如下:
示例一:第一信号能量为映射在该CSI-RS的PDSCH的每个数据流的能量,该第二信号能量为该CSI-RS中一个CSI-RS端口的能量。
示例二:第一信号能量为映射在该CSI-RS的PDSCH的所有数据流在一个RE上的能量的总和,该第二信号能量为该CSI-RS的每个CSI-RS端口的能量的总和。
示例三:第一信号能量为映射在该CSI-RSPDSCH的所有数据流的能量的总和,该第二信号能量为该CSI-RS的EPRE。
在第二方面的一种可能的实现方式中,该第二指示信息所指示的该每个CSI-RS对应的功率偏置量相同。
基于上述技术方案,该第二指示信息所指示的该每个CSI-RS对应的功率偏置量相同,可以简化该第二指示信息的配置,节省开销且易于实现。
在第二方面的一种可能的实现方式中,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;该一个CSI-RS端口集合包括一个CSI-RS资源,n个该CSI-RS资源属于同一CSI-RS资源集;或,该一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的该端口属于同一CSI-RS资源。
基于上述技术方案,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合,即n个CSI-RS分别来自于n个不同的CSI-RS端口集合。并且,n个不同的CSI-RS端口集合属于同一CSI-RS资源集或n个不同的CSI-RS端口集合属于同一CSI-RS资源。使 得参与协作的n个网络设备基于同一CSI-RS资源集或同一CSI-RS资源发送n个CSI-RS,易于实现n个CSI-RS的信号收发的同时,也节省n个CSI-RS的配置信息的开销。
在第二方面的一种可能的实现方式中,该CQI包含于CSI,该CSI还包括以下至少一项:
该m个CSI-RS对应的CSI-RS端口集合的索引;或,
该m个CSI-RS的索引;或,
预编码矩阵指示PMI,该PMI用于指示该m个CSI-RS对应的CSI-RS端口集合的预编码矩阵。
基于上述技术方案,终端设备在接收n个CSI-RS之后,该终端设备所发送的CQI为基于n个CSI-RS中的部分或全部CSI-RS(即m个CSI-RS)所确定的,为此,该终端设备可以在CSI中携带上述信息中的至少一项,以便于该CSI的接收方明确CQI所对应的m个CSI-RS。
在第二方面的一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
基于上述技术方案,提供了用于确定PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系的一种具体的实现方式,在该实现方式中,包括n个CSI-RS对应的n个端口集合以及n个预编码矩阵,使得该映射关系不会由于CQI对应的CSI-RS的取值(即m的取值)的改变而产生变化。
在第二方面的一种可能的实现方式中,
在W0(i)...Wn-1(i)中,非零矩阵的个数为m。
基于上述技术方案,在上述用于确定CQI的映射关系的实现方式中,由于CQI为基于n个CSI-RS中的m个CSI-RS所确定的,使得该实现方式中的n个预编码矩阵中的m个预编码矩阵为非零矩阵。
可选的,对于n个CSI-RS中的第j个CSI-RS,j=0...j=n-1,其映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k 个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
在第二方面的一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
可选的,对于m个CSI-RS中的第j个CSI-RS,j=0...j=n-1,其映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
基于上述技术方案,提供了用于确定PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系的一种具体的实现方式,在该实现方式中,包括用于确定CQI的m个CSI-RS对应的m个端口集合以及m个预编码矩阵,以简化计算复杂度的同时可以更为准确地体现该映射关系。
本申请第三方面提供了一种通信方法,该方法由终端设备执行,或者,该方法由终端设备中的部分组件(例如处理器、芯片或芯片系统等)执行,或者该方法还可以由能实现全部或部分终端设备功能的逻辑模块或软件实现。在第一方面及其可能的实现方式中,以该通信方法由终端设备执行为例进行描述。在该方法中,终端设备接收第一配置信息,该第一配置信息包括n个CSI-RS的配置信息,以及与该n个CSI-RS对应的码本子集限制(codebook subset restriction,CBSR)配置信息,该CBSR配置信息用于配置多个CBSR,n为大于1的整数;该终端设备基于该第一配置信息接收该n个CSI-RS;该终端设备基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI;该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n;该m个CSI-RS与该m个CBSR信息一一对应;该终端设备发送该PMI。
基于上述技术方案,终端设备所接收的第一配置信息包括n个CSI-RS的配置信息,以及与该n个CSI-RS对应的CBSR配置信息,且该CBSR配置信息用于配置多个CBSR。此后,该终端设备基于该第一配置信息中的n个CSI-RS的配置信息接收n个CSI-RS之后,该终端设备基于第一配置信息中的CBSR配置信息所配置的多个CBSR确定PMI,且m为大于1的整数,即m个CSI-RS来自于不同的网络设备。换言之,终端设备用于接收来自不同的网络设备的CSI-RS的配置信息以及不同的网络设备所对应的CBSR的配置信息均位于该第一配置信息。相比于终端设备需要分别接收来自不同网络设备的配置信息,用以分别确定不同网络设备的CSI-RS的配置信息以及不同的网络设备所对应的CBSR的配置信息的实现方式,可以节省开销,提升通信效率。
此外,上述技术方案可以应用在终端设备所接收的数据流来自不同的网络设备的应用场景中,实现了该场景下对不同网络设备的CBSR进行配置,使得终端设备明确在该应用场景下,可以基于第一配置信息获取不同网络设备对应的CBSR,并基于该CBSR配置信息发送PMI。
应理解,终端设备所接收的n个CSI-RS分别来自n个不同的网络设备,本申请对于该n个不同的网络设备之间的协作关系以及发送第一配置信息的网络设备不做限定。例如,该n个不同的网络设备可以包括一个主网络设备(或称服务传输接收点(transmission reception point,TRP))以及n-1个辅网络设备(或称协作TRP),在这种情况下,发送第一配置信息的网络设备可以为该主网络设备或任一辅网络设备;又如,该n个不同的网络设备可以包括不区分主网络设备和辅网络设备,在这种情况下,发送第一配置信息的网络设备可以为该n个网络设备中的任意一个网络设备。
此外,CBSR配置信息所配置多个CBSR信息中,每一个CBSR信息的矩阵维度是基于CSI-RS对应的CSI-RS端口数确定的。
在第三方面的一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置至少一组CBSR,每组该CBSR包括至少两个该CBSR;该终端设备基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI之前,该方法还包括:该终端设备从该至少一组CBSR中确定一组CBSR,该一组CBSR包括该m个CBSR。
基于上述技术方案,第一配置信息中的CBSR配置信息用于配置至少一组CBSR,使得终端设备在确定PMI之前,该终端设备在该至少一组CBSR中确定的一组CBSR所包含的m个CBSR作为确定PMI的依据之一。换言之,第一配置信息中的CBSR配置信息以“组”为粒度的配置方式配置CBSR,使得终端设备根据预配置的选择机制确定某一组CBSR之后,再将该组CBSR所包含的m个CBSR作为PMI的确定依据之一。
可选地,CBSR配置信息所配置的至少一组CBSR中包含有多组CBSR的情况下,不同组CBSR可以对应于不同的测量假设。
示例性的,该n个CSI-RS分别对应于n个不同的网络设备,而n个不同的网络设备中任意两个或两个以上的网络设备可以组成提供通信服务的协作集。其中,每一种协作集可以称为一种测量假设,即n个CSI-RS对应多种测量假设,且多种测量假设中的某一种测量假设对应该m个CSI-RS,使得该测量假设能够确定PMI对应的m个CSI-RS。此外,在该 实现方式中,该CBSR配置信息用于配置多组CBSR信息,该多组CBSR信息与该多种测量假设一一对应,且该多组CBSR信息中的一组CBSR信息包括该m个CBSR信息。换言之,第一配置信息中的CBSR配置信息以“测量假设”为粒度的配置方式配置CBSR。
在第三方面的一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置n个CBSR;该终端设备基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI之前,该方法还包括:该终端设备从该n个CBSR中确定该m个CBSR。
基于上述技术方案,第一配置信息中的CBSR配置信息用于配置n个CBSR,使得终端设备在确定PMI之前,该终端设备在该n个CBSR所包含的m个CBSR作为确定PMI的依据之一。换言之,第一配置信息中的CBSR配置信息以“CSI-RS”为粒度的配置方式配置CBSR,使得终端设备可以将该n个CBSR所包含的m个CBSR作为PMI的确定依据之一。
在第三方面的一种可能的实现方式中,该n个CSI-RS的配置信息中的一个配置信息用于指示一个CSI-RS端口集合;该一个CSI-RS端口集合包括一个CSI-RS资源,n个该CSI-RS资源属于同一CSI-RS资源集;或,该一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的该端口属于同一CSI-RS资源。
基于上述技术方案,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合,即n个CSI-RS分别来自于n个不同的CSI-RS端口集合。并且,n个不同的CSI-RS端口集合属于同一CSI-RS资源集或n个不同的CSI-RS端口集合属于同一CSI-RS资源。使得参与协作的n个网络设备基于同一CSI-RS资源集或同一CSI-RS资源发送n个CSI-RS,易于实现n个CSI-RS的信号收发的同时,也节省n个CSI-RS的配置信息的开销。
在第三方面的一种可能的实现方式中,该PMI包含于信道状态信息CSI,该CSI还包括以下至少一项:该m个CSI-RS对应的CSI-RS端口集合的索引;或,该m个CSI-RS的索引。
基于上述技术方案,终端设备在接收n个CSI-RS之后,该终端设备所发送的PMI为基于n个CSI-RS中的部分或全部CSI-RS(即m个CSI-RS)所确定的,为此,该终端设备可以在CSI中携带上述信息中的至少一项,以便于该CSI的接收方明确PMI所对应的m个CSI-RS。
本申请第四方面提供了一种通信方法,该方法由网络设备执行,或者,该方法由网络设备中的部分组件(例如处理器、芯片或芯片系统等)执行,或者该方法还可以由能实现全部或部分网络设备功能的逻辑模块或软件实现。在第二方面及其可能的实现方式中,以该通信方法由网络设备执行为例进行描述。在该方法中,网络设备确定第一配置信息,该第一配置信息包括n个CSI-RS的配置信息,以及与该n个CSI-RS对应的CBSR配置信息,该CBSR配置信息用于配置多个CBSR,n为大于1的整数;该网络设备基于该第一配置信息发送该n个CSI-RS的一个CSI-RS;该网络设备接收PMI,该PMI对应于m个CSI-RS;其中,该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n;该m个CSI-RS与该CBSR配置信息所配置的m个CBSR信息一一对应。
基于上述技术方案,网络设备所发送的第一配置信息包括n个CSI-RS的配置信息,以 及与该n个CSI-RS对应的CBSR配置信息,且该CBSR配置信息用于配置多个CBSR。此后,该终端设备基于该第一配置信息中的n个CSI-RS的配置信息接收n个CSI-RS之后,该终端设备基于第一配置信息中的CBSR配置信息所配置的多个CBSR确定PMI,且m为大于1的整数,即m个CSI-RS来自于不同的网络设备。换言之,终端设备用于接收来自不同的网络设备的CSI-RS的配置信息以及不同的网络设备所对应的CBSR的配置信息均位于该第一配置信息。相比于终端设备需要分别接收来自不同网络设备的配置信息,用以分别确定不同网络设备的CSI-RS的配置信息以及不同的网络设备所对应的CBSR的配置信息的实现方式,可以节省开销,提升通信效率。
此外,上述技术方案可以应用在终端设备所接收的数据流来自不同的网络设备的应用场景中,实现了该场景下对不同网络设备的CBSR进行配置,并使得终端设备明确在该应用场景下,可以基于第一配置信息获取不同网络设备对应的CBSR,并基于该CBSR配置信息发送PMI。
应理解,终端设备所接收的n个CSI-RS分别来自n个不同的网络设备,本申请中执行第四方面及其可能的实现方式的网络设备可以是该n个不同的网络设备的任意一个网络设备,本申请不做限定。例如,该n个不同的网络设备可以包括一个主网络设备(或称服务传输接收点(transmission reception point,TRP))以及n-1个辅网络设备(或称协作TRP),在这种情况下,执行第四方面及其可能的实现方式的网络设备可以为该主网络设备或任意一个辅网络设备;又如,该n个不同的网络设备可以包括不区分主网络设备和辅网络设备,在这种情况下,执行第四方面及其可能的实现方式的网络设备可以为该n个网络设备中的任意一个网络设备。
在第四方面的一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置至少一组CBSR,每组该CBSR包括至少两个该CBSR;其中,该至少一组CBSR中的一组CBSR包括该m个CBSR。
基于上述技术方案,第一配置信息中的CBSR配置信息用于配置至少一组CBSR,使得终端设备在确定PMI之前,该终端设备在该至少一组CBSR中确定的一组CBSR所包含的m个CBSR作为确定PMI的依据之一。换言之,第一配置信息中的CBSR配置信息以“组”为粒度的配置方式配置CBSR,使得终端设备根据预配置的选择机制确定某一组CBSR之后,再将该组CBSR所包含的m个CBSR作为PMI的确定依据之一。
可选地,CBSR配置信息所配置的至少一组CBSR中包含有多组CBSR的情况下,不同组CBSR可以对应于不同的测量假设。
示例性的,该n个CSI-RS分别对应于n个不同的网络设备,而n个不同的网络设备中任意两个或两个以上的网络设备可以组成提供通信服务的协作集。其中,每一种协作集可以称为一种测量假设,即n个CSI-RS对应多种测量假设,且多种测量假设中的某一种测量假设对应该m个CSI-RS,使得该测量假设能够确定PMI对应的m个CSI-RS。此外,在该实现方式中,该CBSR配置信息用于配置多组CBSR信息,该多组CBSR信息与该多种测量假设一一对应,且该多组CBSR信息中的一组CBSR信息包括该m个CBSR信息。换言之,第一配置信息中的CBSR配置信息以“测量假设”为粒度的配置方式配置CBSR。
在第四方面的一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置n个CBSR;其中,该n个CBSR包括该m个CBSR。
基于上述技术方案,第一配置信息中的CBSR配置信息用于配置n个CBSR,使得终端设备在确定PMI之前,该终端设备在该n个CBSR所包含的m个CBSR作为确定PMI的依据之一。换言之,第一配置信息中的CBSR配置信息以“CSI-RS”为粒度的配置方式配置CBSR,使得终端设备可以将该n个CBSR所包含的m个CBSR作为PMI的确定依据之一。
在第四方面的一种可能的实现方式中,该n个CSI-RS的配置信息中的一个配置信息用于指示一个CSI-RS端口集合;该一个CSI-RS端口集合包括一个CSI-RS资源,n个该CSI-RS资源属于同一CSI-RS资源集;或,该一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的该端口属于同一CSI-RS资源。
基于上述技术方案,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合,即n个CSI-RS分别来自于n个不同的CSI-RS端口集合。并且,n个不同的CSI-RS端口集合属于同一CSI-RS资源集或n个不同的CSI-RS端口集合属于同一CSI-RS资源。使得参与协作的n个网络设备基于同一CSI-RS资源集或同一CSI-RS资源发送n个CSI-RS,易于实现n个CSI-RS的信号收发的同时,也节省n个CSI-RS的配置信息的开销。
在第四方面的一种可能的实现方式中,该PMI包含于信道状态信息CSI,该CSI还包括以下至少一项:该m个CSI-RS对应的CSI-RS端口集合的索引;或,该m个CSI-RS的索引。
基于上述技术方案,终端设备在接收n个CSI-RS之后,该终端设备所发送的PMI为基于n个CSI-RS中的部分或全部CSI-RS(即m个CSI-RS)所确定的,为此,该终端设备可以在CSI中携带上述信息中的至少一项,以便于该CSI的接收方明确PMI所对应的m个CSI-RS。
本申请第五方面提供了一种通信装置,该装置可以实现上述第一方面或第一方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为终端设备,或者,该装置可以为终端设备中的组件(例如处理器、芯片或芯片系统等),或者该装置还可以为能实现全部或部分终端设备功能的逻辑模块或软件。
其中,该装置包括收发单元和处理单元;
该收发单元,用于接收第一配置信息,该第一配置信息包括n个信道状态信息参考信号CSI-RS的配置信息,n为大于1的整数;
该收发单元,还用于基于该第一配置信息接收n个CSI-RS;
该处理单元,用于根据m个CSI-RS和映射关系确定信道质量指示CQI,该CQI用于指示物理下行共享信道PDSCH的信道质量;其中,该映射关系为该PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系;其中,该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n;
该收发单元,还用于发送该CQI。
在第五方面的一种可能的实现方式中,该处理单元,还用于从该n个CSI-RS中确定该m个CSI-RS。
在第五方面的一种可能的实现方式中,该处理单元,具体用于基于第一参数和该n个CSI-RS确定该m个CSI-RS,该第一参数包括该m的取值或第一阈值。
在第五方面的一种可能的实现方式中,该n个CSI-RS对应多种测量假设,该测量假设用于确定该CQI对应的该m个CSI-RS。
在第五方面的一种可能的实现方式中,该收发单元,还用于接收第一指示信息,该第一指示信息指示该多种测量假设中的至少一种测量假设;
从该至少一种测量假设中确定一种测量假设,该一种测量假设对应该m个CSI-RS。
在第五方面的一种可能的实现方式中,该收发单元,还用于接收第二指示信息,该第二指示信息用于指示该多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量;
其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE;该处理单元,具体用于根据该第二指示信息,该m个CSI-RS和该映射关系确定该CQI。
在第五方面的一种可能的实现方式中,该收发单元,还用于接收第二指示信息,该第二指示信息用于指示该n个CSI-RS中每个CSI-RS对应的功率偏置量;其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE;该处理单元,具体用于根据该第二指示信息,该m个CSI-RS和该映射关系确定该CQI。
在第五方面的一种可能的实现方式中,该第二指示信息所指示的该每个CSI-RS对应的功率偏置量相同。
在第五方面的一种可能的实现方式中,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;
该一个CSI-RS端口集合包括一个CSI-RS资源,n个该CSI-RS资源属于同一CSI-RS资源集;
或,
该一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的该端口属于同一CSI-RS资源。
在第五方面的一种可能的实现方式中,该CQI包含于CSI,该CSI还包括以下至少一项:
该m个CSI-RS对应的CSI-RS端口集合的索引;或,
该m个CSI-RS的索引;或,
PMI,该PMI用于指示该m个CSI-RS对应的CSI-RS端口集合对应的预编码矩阵。
在第五方面的一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
在第五方面的一种可能的实现方式中,
在W0(i)...Wn-1(i)中,非零矩阵的个数为m。
可选的,对于n个CSI-RS中的第j个CSI-RS,j=0...j=n-1,其映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
在第五方面的一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
可选的,对于m个CSI-RS中的第j个CSI-RS,j=0...j=n-1,其映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第 j个CSI-RS对应的预编码矩阵。
本申请实施例第五方面中,通信装置的组成模块还可以用于执行第一方面的各个可能实现方式中所执行的步骤,并实现相应的技术效果,具体均可以参阅第一方面,此处不再赘述。
本申请第六方面提供了一种通信装置,该装置可以实现上述第二方面或第二方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为网络设备,或者,该装置可以为网络设备中的组件(例如处理器、芯片或芯片系统等),或者该装置还可以为能实现全部或部分网络设备功能的逻辑模块或软件。
其中,该装置包括收发单元和处理单元;
该处理单元,用于确定第一配置信息,该第一配置信息包括n个信道状态信息参考信号CSI-RS的配置信息,n为大于1的整数;
该收发单元,用于基于该第一配置信息发送该n个CSI-RS中的一个CSI-RS;
该收发单元,还用于接收信道质量指示CQI,该CQI为基于m个CSI-RS与映射关系确定;其中,该CQI用于指示物理下行共享信道PDSCH的信道质量,该映射关系为该PDSCH的数据流与m个CSI-RS对应的CSI-RS端口之间的映射关系;该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n。
在第六方面的一种可能的实现方式中,该n个CSI-RS对应多种测量假设,该测量假设用于确定该CQI对应的该m个CSI-RS。
在第六方面的一种可能的实现方式中,该收发单元,还用于发送第一指示信息,该第一指示信息指示该多种测量假设中的至少一种测量假设;
其中,该至少一种测量假设中的一种测量假设对应该m个CSI-RS。
在第六方面的一种可能的实现方式中,该收发单元,还用于发送第二指示信息,该第二指示信息用于指示该多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量;
其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE。
在第六方面的一种可能的实现方式中,该收发单元,还用于发送第二指示信息,该第二指示信息用于指示该n个CSI-RS中每个CSI-RS对应的功率偏置量;
其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE。
在第六方面的一种可能的实现方式中,该第二指示信息所指示的该每个CSI-RS对应的功率偏置量相同。
在第六方面的一种可能的实现方式中,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;
该一个CSI-RS端口集合包括一个CSI-RS资源,n个该CSI-RS资源属于同一CSI-RS 资源集;
或,
该一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的该端口属于同一CSI-RS资源。
在第六方面的一种可能的实现方式中,该CQI包含于CSI,该CSI还包括以下至少一项:
该m个CSI-RS对应的CSI-RS端口集合的索引;或,
该m个CSI-RS的索引;或,
PMI,该PMI用于指示该m个CSI-RS对应的CSI-RS端口集合的预编码矩阵。
在第六方面的一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
在第六方面的一种可能的实现方式中,
在W0(i)...Wn-1(i)中,非零矩阵的个数为m。
可选的,对于n个CSI-RS中的第j个CSI-RS,j=0...j=n-1,其映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
在第六方面的一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
可选的,对于m个CSI-RS中的第j个CSI-RS,j=0...j=n-1,其映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
本申请实施例第六方面中,通信装置的组成模块还可以用于执行第二方面的各个可能实现方式中所执行的步骤,并实现相应的技术效果,具体均可以参阅第二方面,此处不再赘述
本申请第七方面提供了一种通信装置,该装置可以实现上述第三方面或第三方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为终端设备,或者,该装置可以为终端设备中的组件(例如处理器、芯片或芯片系统等),或者该装置还可以为能实现全部或部分终端设备功能的逻辑模块或软件。
其中,该装置包括处理单元和收发单元;
该收发单元,用于接收第一配置信息,该第一配置信息包括n个CSI-RS的配置信息,以及与该n个CSI-RS对应的CBSR配置信息,该CBSR配置信息用于配置多个CBSR,n为大于1的整数;
该收发单元,还用于基于该第一配置信息接收该n个CSI-RS;
该处理单元,用于基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI;该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n;该m个CSI-RS与该m个CBSR信息一一对应;
发送该PMI。
在第七方面的一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置至少一组CBSR,每组该CBSR包括至少两个该CBSR;
该基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI之前,该装置还包括:
从该至少一组CBSR中确定一组CBSR,该一组CBSR包括该m个CBSR。
在第七方面的一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置n个CBSR;
该基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI之前,该装置还包括:
从该n个CBSR中确定该m个CBSR。
本申请实施例第七方面中,通信装置的组成模块还可以用于执行第三方面的各个可能 实现方式中所执行的步骤,并实现相应的技术效果,具体均可以参阅第三方面,此处不再赘述。
本申请第八方面提供了一种通信装置,该装置可以实现上述第四方面或第四方面任一种可能的实现方式中的方法。该装置包括用于执行上述方法的相应的单元或模块。该装置包括的单元或模块可以通过软件和/或硬件方式实现。例如,该装置可以为网络设备,或者,该装置可以为网络设备中的组件(例如处理器、芯片或芯片系统等),或者该装置还可以为能实现全部或部分网络设备功能的逻辑模块或软件。
其中,该装置包括处理单元和收发单元;
该处理单元,用于确定第一配置信息,该第一配置信息包括n个CSI-RS的配置信息,以及与该n个CSI-RS对应的CBSR配置信息,该CBSR配置信息用于配置多个CBSR,n为大于1的整数;
该收发单元,用于基于该第一配置信息发送该n个CSI-RS的一个CSI-RS;
该收发单元,还用于接收PMI,该PMI对应于m个CSI-RS;其中,该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n;该m个CSI-RS与该CBSR配置信息所配置的m个CBSR信息一一对应。
在第八方面的一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置至少一组CBSR,每组该CBSR包括至少两个该CBSR;
其中,该至少一组CBSR中的一组CBSR包括该m个CBSR。
在第八方面的一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置n个CBSR;
其中,该n个CBSR包括该m个CBSR。
本申请实施例第八方面中,通信装置的组成模块还可以用于执行第四方面的各个可能实现方式中所执行的步骤,并实现相应的技术效果,具体均可以参阅第四方面,此处不再赘述。
本申请实施例第九方面提供了一种通信装置,包括至少一个处理器,该至少一个处理器与存储器耦合;
该存储器用于存储程序或指令;
该至少一个处理器用于执行该程序或指令,以使该装置实现前述第一方面或第一方面任意一种可能的实现方式所述的方法,或者,以使该装置实现前述第二方面或第二方面任意一种可能的实现方式所述的方法,或者,以使该装置实现前述第三方面或第三方面任意一种可能的实现方式所述的方法,或者,以使该装置实现前述第四方面或第四方面任意一种可能的实现方式所述的方法。
本申请实施例第十方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;
该输入输出接口用于输入第一配置信息和n个CSI-RS;
该输入输出接口用于输出信道状态信息CSI,该CSI包括信道质量指示CQI;
该逻辑电路用于执行如前述第一方面或第一方面任意一种可能的实现方式所述的方法。
本申请实施例第十一方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接 口;
该输入输出接口用于输出n个CSI-RS中的一个CSI-RS;
该输入输出接口用于输入信道状态信息CSI,该CSI包括信道质量指示CQI;
该逻辑电路用于执行如前述第二方面或第二方面任意一种可能的实现方式所述的方法。
本申请实施例第十二方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;
该输入输出接口用于输入第一配置信息和n个CSI-RS;
该输入输出接口用于输出信道状态信息CSI,该CSI包括PMI;
该逻辑电路用于执行如前述第三方面或第三方面任意一种可能的实现方式所述的方法。
本申请实施例第十三方面提供了一种通信装置,包括至少一个逻辑电路和输入输出接口;
该输入输出接口用于输出n个CSI-RS中的一个CSI-RS;
该输入输出接口用于输入信道状态信息CSI,该CSI包括PMI;
该逻辑电路用于执行如前述第四方面或第四方面任意一种可能的实现方式所述的方法。
本申请实施例第十四方面提供一种计算机可读存储介质,该计算机可读存储介质用于存储一个或多个计算机执行指令,当计算机执行指令被处理器执行时,该处理器执行如上述第一方面或第一方面任意一种可能的实现方式所述的方法,或,该处理器执行如上述第二方面或第二方面任意一种可能的实现方式所述的方法,或,该处理器执行如上述第三方面或第三方面任意一种可能的实现方式所述的方法,或,该处理器执行如上述第四方面或第四方面任意一种可能的实现方式所述的方法。
本申请实施例第十五方面提供一种计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述第一方面或第一方面任意一种可能实现方式的方法,或,该处理器执行上述第二方面或第二方面任意一种可能实现方式的方法,或,该处理器执行上述第三方面或第三方面任意一种可能实现方式的方法,或,该处理器执行上述第四方面或第四方面任意一种可能实现方式的方法。
本申请实施例第十六方面提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持通信装置实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能,或,用于支持通信装置实现上述第二方面或第二方面任意一种可能的实现方式中所涉及的功能,或,用于支持通信装置实现上述第三方面或第三方面任意一种可能的实现方式中所涉及的功能,或,用于支持通信装置实现上述第四方面或第四方面任意一种可能的实现方式中所涉及的功能。
在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存该通信装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。可选的,该芯片系统还包括接口电路,该接口电路为该至少一个处理器提供程序指令和/或数据。
本申请实施例第十七方面提供了一种通信系统,该通信系统包括上述第五方面的通信装置和第六方面的通信装置,和/或,该通信系统包括上述第七方面的通信装置和第八方面 的通信装置,和/或,该通信系统包括上述第九方面的通信装置,和/或,该通信系统包括上述第十方面的通信装置和第十一方面的通信装置,和/或,该通信系统包括上述第十二方面的通信装置和第十三方面的通信装置。
其中,第五方面至第十七方面中任一种设计方式所带来的技术效果可参见上述第一方面至第四方面中不同实现方式所带来的技术效果,在此不再赘述。
应理解,对于设备中的部件来说,上文该的“发送”可以称为“输出”,“接收”可以称为“输入”。
从以上技术方案可以看出,本申请实施例包括如下有益效果:
在一些实现方式中,终端设备在基于第一配置信息接收n个CSI-RS之后,该终端设备基于n个CSI-RS中的m个CSI-RS和映射关系确定CQI。其中,该CQI用于指示PDSCH的信道质量,且用于确定CQI的映射关系为该PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系,且m为大于1的整数,即m个CSI-RS来自于不同的网络设备。换言之,在PDSCH的数据流来自于不同的网络设备的场景下,终端设备确定CQI的过程中,终端设备认为/假设(assume)PDSCH的数据流与不同的网络设备对应的CSI-RS端口之间存在该映射关系,使得终端设备基于该映射关系明确PDSCH的数据流与不同网络设备之间的对应关系,并确定和发送CQI。从而,在终端设备所接收的数据流来自不同的网络设备的应用场景中,提升终端设备所确定的CQI的准确度,使得网络设备后续基于该CQI所获得的下行信道质量的准确度得以提升,进而提升通信效率。
在另一些实现方式中,终端设备所接收的第一配置信息包括n个CSI-RS的配置信息,以及与该n个CSI-RS对应的CBSR配置信息,且该CBSR配置信息用于配置多个CBSR。此后,该终端设备基于该第一配置信息中的n个CSI-RS的配置信息接收n个CSI-RS之后,该终端设备基于第一配置信息中的CBSR配置信息所配置的多个CBSR确定PMI,且m为大于1的整数,即m个CSI-RS来自于不同的网络设备。换言之,终端设备用于接收来自不同的网络设备的CSI-RS的配置信息以及不同的网络设备所对应的CBSR的配置信息均位于该第一配置信息。相比于终端设备需要分别接收来自不同网络设备的配置信息,用以分别确定不同网络设备的CSI-RS的配置信息以及不同的网络设备所对应的CBSR的配置信息的实现方式,可以节省开销,提升通信效率。此外,上述技术方案可以应用在终端设备所接收的数据流来自不同的网络设备的应用场景中,实现了该场景下对不同网络设备的CBSR进行配置,并使得终端设备明确在该应用场景下,可以基于第一配置信息获取不同网络设备对应的CBSR,并基于该CBSR配置信息发送PMI。
附图说明
图1为本申请涉及的通信系统的一个示意图;
图2为本申请涉及的通信系统的另一个示意图;
图3为本申请提供的通信方法的一个示意图;
图4为本申请涉及的通信系统的另一个示意图;
图5为本申请涉及的通信系统的另一个示意图;
图6为本申请提供的通信方法的另一个示意图;
图7为本申请提供的通信装置的一个示意图;
图8为本申请提供的通信装置的另一个示意图;
图9为本申请提供的通信装置的另一个示意图。
具体实施方式
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备(或称为终端、用户、用户终端、终端用户、用户设备等):可以是能够与网络设备进行通信的无线终端设备,无线终端设备可以是向用户提供语音和/或数据的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。
终端可以经无线接入网(radio access network,RAN)与一个或多个核心网或者互联网进行通信。终端可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机或数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,终端可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。终端也可以称为系统、订阅单元(subscriber unit)、订阅站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备也可以是可穿戴设备以及下一代通信系统,例如,第五代(5th generation,5G)通信系统中的终端设备或者未来演进的网络中的终端设备等。
此外,本申请所涉及的终端可以广泛应用于各种场景,例如,设备到设备(devicetodevice,D2D)、车物(vehicleto everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
(2)网络设备:可以是无线网络中的设备,例如网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),可以称为无线接入网设备,一般也可以称为基站。目前,一些RAN设备的举例为:新一代基站(generation Node B,gNodeB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver  station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点和/或分布单元(distributed unit,DU)节点。
此外,网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)、用户面功能(user plane function,UPF)或会话管理功能(session management function,SMF)等。
可以理解,网络设备还可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
本申请中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。
(3)多站点协作传输机制:下行传输中,终端设备可以同时与至少一个网络设备通信,即同时接收多个网络设备的数据,该传输模式被称为多站点协作传输(coordinated multiple points transmission/reception,CoMP)。该至少一个网络设备组成一个协作集与该终端设备同时进行通信。协作集内的网络设备可以各自连接不同的控制节点,各个控制节点之间可以进行信息交互,比如交互调度策略信息以达成协作传输的目的,或者,协作集内的网络设备均连接同一个控制节点,该控制节点接收协作集内的网络设备收集的终端设备上报的信道状态信息(比如CSI或者RSRP),并根据协作集内所有终端设备的信道状态信息对协作集内的终端设备进行统一调度,再将调度策略交互给与其连接的网络设备,再由各个网络设通过物理下行控制信道(physical downlink control channel,PDCCH)承载的下行控制信息(download control information,DCI)信令分别通知各自的终端设备。根据协作集内多个网络设备的对某个终端设备的传输策略,CoMP传输模式可以包括:
动态传输节点切换(dynamic point switching,DPS):针对某个终端设备进行数据传输的网络设备动态变化,尽量选择信道条件较好的网络设备进行当前终端设备的数据调度,即多个网络设备分时为某个终端设备传输数据;
非相干传输(non-coherent joint transmission,NCJT):多个网络设备同时为某个终端设备传输数据,且多个网络设备的天线进行独立预编码后各自向终端设备发送独立的数据流,即每个网络设备独立选择最优预编码矩阵进行该网络设备天线之间的联合相位和幅度加权,此机制不需要多个网络设备的天线进行相位校准;假设TRP1和TRP2做联合传输且各具备M个发送天线,各自传输N流数据,则联合发送的预编码矩阵为:矩阵前M行对应TRP1的发送天线,后M行对应TRP2的发送天线,B1和B2的维度均是M*N。
相干传输(coherent joint transmission,CJT):多个网络设备同时为某个终端设备传输数据,且多个网络设备的天线进行联合预编码后同时向终端设备发送同一数据流,即多个网络设备联合选择最优预编码矩阵进行多个网络设备天线之间的联合相位和幅度加权,此机制需要多个网络设备的天线进行相位校准;假设TRP1和TRP2做联合传输且各具备M 个发送天线,各自传输N流数据,则联合发送的预编码矩阵为:矩阵前M行对应TRP1的发送天线,后M行对应TRP2的发送天线,B1、B2、B3、B4的维度均是M*N。
一种CRAN架构示例,协作集内的网络设备中存在一个服务网络设备,例如服务基站(serving TRP)/服务小区(serving cell),服务基站的作用是对该终端设备进行数据通信的调度决策,与该终端设备进行MAC层和物理层通信,比如根据调度决策确定该终端设备的控制信道(PDCCH)和数据信道(PUSCH/PDSCH)的时频资源,并在PDCCH中发送DCI信令,在PUSCH/PDSCH中发送数据,发送参考信号(reference signal,RS)等等。协作集内除了服务基站之外,其余的网络设备被称为协作基站(coordinate TRP)/协作小区(coordinate TRP),协作基站的作用是根据服务基站的调度决策与该终端设备进行物理层通信,比如根据服务基站的调度决策在PDCCH中发送DCI信令,在PUSCH/PDSCH中发送数据,发送RS等等。例如,服务基站为TRP1,协作基站为TRP2,TRP1作为服务基站进行该终端设备的调度决策并发送DCI,该DCI可以指示调度TRP1/TRP2进行数据传输,也就是该DCI中携带两个TRP的调度信息。
(4)天线端口:可简称端口。可以理解为被接收设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以预配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号对应,因此,每个天线端口可以称为一个参考信号的端口,例如,CSI-RS端口、探测参考信号(sounding reference signal,SRS)端口等。
示例性的,在新无线(new radio,NR)系统中,CSI-RS端口可以和基站的发送天线相对应,可以是一对一的,也可以是多对一的。不同CSI-RS端口占用正交资源,正交方式可以为时分、频分或者码分。DMRS端口和数据传输流一一对应相对应,每个DMRS端口是相应传输流的解调参考信号。
(5)信道状态信息(CSI)报告(report):在无线通信系统中,由接收端(如终端设备)向发送端(如网络设备)上报的用于描述通信链路的信道属性的信息。CSI报告中例如可以包括但不限于,预编码矩阵指示(PMI)、秩指示(RI)、信道质量指示(CQI)、信道状态信息参考信号(channel state information reference signal,CSI-RS),CSI-RS资源指示(CSI-RS resource indicator,CRI)以及层指示(layer indicator,LI)等。
应理解,以上列举的CSI的具体内容仅为示例性说明,不应对本申请构成任何限定。CSI可以包括上文所列举的一项或多项,也可以包括除上述列举之外的其他用于表征CSI的信息,本申请对此不作限定。
(6)预编码矩阵指示(PMI):可用于指示预编码矩阵。其中,预编码矩阵例如可以是终端设备基于一个频域单元的信道矩阵确定的预编码矩阵。该信道矩阵可以是终端设备通过信道估计等方式或者基于信道互易性确定。但应理解,终端设备确定预编码矩阵的具体方法并不限于上文所述,具体实现方式可参考现有技术,为了简洁,这里不再一一列举。通常,预编码矩阵的行与CSI-RS端口一一对应,预编码矩阵的列与相应数据传输流一一对应。
例如,预编码矩阵可以通过对信道矩阵或信道矩阵的协方差矩阵进行奇异值分解(singular value decomposition,SVD)的方式获得,或者,也可以通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decopomsition,EVD)的方式获得。应理解,上文中列举的预编码矩阵的确定方式仅为示例,不应对本申请构成任何限定。预编码矩阵的确定方式可以参考现有技术,为了简洁,这里不再一一列举。
(7)配置与预配置:在申请中,会同时用到配置与预配置。配置是指基站/服务器通过消息或信令将一些参数的配置信息或参数的取值发送给终端,以便终端根据这些取值或信息来确定通信的参数或传输时的资源。例如,CSI-RS的资源可以通过RRC信令配置,包括CSI-RS资源包括的端口,占用的时频资源等。预配置与配置类似,可以是基站/服务器预先与终端设备协商好的参数信息或参数值,也可以是标准协议规定的基站/服务器或终端设备采用的参数信息或参数值,还可以是预先存储在基站/服务器或终端设备的参数信息或参数值。本申请对此不做限定。进一步地,这些取值和参数,是可以变化或更新的。
(8)在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以理解为该指示信息携带A、直接指示A或间接指示A。
本申请中,指示信息所指示的信息,称为待指示信息。在具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、媒体接入控制(media access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括下行控制信息(downlink control information,DCI)。
(9)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本申请可以应用于长期演进(long term evolution,LTE)系统、新无线(new radio,NR)系统,或者是其它的通信系统,其中,该通信系统中包括网络设备和终端设备,网络设备作为配置信息发送实体,终端设备作为配置信息接收实体。具体来说,该通信系统中存在实体向另一实体发送配置信息,并向另一实体发送数据、或接收另一实体发送的数据;另一个实体接收配置信息,并根据配置信息向配置信息发送实体发送数据、或接收配置信息发送实体发送的数据。其中,本申请可应用于处于连接状态或激活状态(ACTIVE)的终端设备、也可以应用于处于非连接状态(INACTIVE)或空闲态(IDLE)的终端设备。
请参阅图1,为本申请中通信系统的一种示意图。图1中,示例性的示出了一个网络设备101和6个终端设备,6个终端设备分别为终端设备1、终端设备2、终端设备3、终端设备4、终端设备5以及终端设备6等。在图1所示的示例中,是以终端设备1为智能茶杯,终端设备2为智能空调,终端设备3为智能加油机,终端设备4为交通工具,终端设备5为手机,终端设备6为打印机进行举例说明的。其中,发射端可以为网络设备也可以为终端设备,接收端可以为网络设备也可以为终端设备。
如图1所示,以配置信息的收发过程为例,配置信息发送实体可以为网络设备,其中,网络设备以基站(Base Station)、各个终端设备为UE为例进行说明,配置信息接收实体可以为终端设备1-终端设备6,此时,基站和终端设备1-终端设备6组成一个通信系统,在该通信系统中,终端设备1-终端设备6可以发送上行数据给网络设备,网络设备需要接收终端设备1-终端设备6发送的上行数据。同时,网络设备可以向终端设备1-终端设备6发送配置信息。
此外,在图1中,终端设备4-终端设备6也可以组成一个通信系统,此时,配置信息发送实体和接收实体可以都是终端设备,其中,终端设备5作为网络设备,即配置信息发送实体;终端设备4和终端设备6作为终端设备,即配置信息接收实体。例如车联网系统中,终端设备5分别向终端设备4和终端设备6发送配置信息,并且接收终端设备4和终端设备6发送的上行数据;相应的,终端设备4和终端设备6接收终端设备5发送的配置信息,并向终端设备5发送上行数据。
请参阅图2,为本申请中通信系统的另一个示意图。如图2所示,以网络设备包括TRP1、TRP2,终端设备包括UE1~UE5为例进行说明,其中,TRP1、TRP2和UE1~UE5可以组成一个通信系统组成一个通信系统。在该通信系统中,UE1~UE5可以发送上行数据,UE1~UE5发送的上行数据可由其中一个TRP接收(如图2中UE1和UE2所发送的上行数据由TRP1所接收,如图2中UE5所发送的上行数据由TRP2所接收),也可以由两个TRP联合接收(如图2中UE3所发送的上行数据由TRP1和TRP2所接收,如图2中UE4所发送的上行数据由TRP1和TRP2所接收)。此外,网络设备(如图2中TRP1、TRP2)可以发送下行信息给终端设备(如图2中的UE1~UE5)。
可选地,本申请中,对于图2所示示例中,连接至TRP1而未连接至TRP2的UE(如图2中UE1、UE2)所处的通信场景,以及连接至TRP2而未连接至TRP1的UE(如图2中UE5)所处的通信场景,可以称为单站通信场景。
可选地,本申请中,对于图2所示示例中,连接至TRP1且连接至TRP2的UE(如图2中UE3、UE4)所处的通信场景可以称为多站通信场景,或称为多传输接收点(Multi-TRP)协作传输场景。
进一步可选地,以图2中的UE3的通信过程为例,UE3与多个TRP(即TRP1和TRP2)之间可以存在多种通信方式。在一种通信方式中,TRP1和TRP2分别与该UE3传输独立的数据流,即UE3所接收的某一数据流来自TRP1或TRP2,该通信方式也可以称为非相干联合传输(NCJT);在另一种通信方式中,TRP1和TRP2联合传输该UE3的数据流,即UE3所接收的某一数据流来自TRP1和TRP2,该通信方式也可以称为相干联合传输(CJT)。
在通信系统中,例如前述图1或图2所示通信系统,网络设备可以通过终端设备发送的信道状态信息(channel state information,CSI)确定下行信道质量信息,CSI包括信道质量指示(channel quality indicator,CQI)和预编码矩阵指示(precoding matrix indicator,PMI)等。以CQI为例,网络设备还可以根据CQI进一步确定码率、调制与编码策略(modulation and coding scheme,MCS)或频谱效率等。
目前,在接收信道状态信息参考信号(channel state information reference signal,CSI-RS)之后,终端设备在进行下行信道的CQI测量过程中,该终端设备需要明确在该下行信道传输的数据流与网络设备的CSI-RS端口之间的映射关系。以单站通信场景为例,终端设备接收来自某一个网络设备的CSI-RS之后,可以基于下行信道传输的数据流与该网络设备的CSI-RS端口之间的映射关系执行CQI测量,得到CQI并上报至网络设备。
可选地,终端设备在接收CSI-RS之后,终端设备可以基于该CSI-RS和该映射关系得到中间量,再进一步基于该中间量确定需要上报的CQI。其中,该中间量可以包括信干扰噪声比(signal to interference noise ratio,SINR)、信泄露噪声比(signal to leakage plus noise ratio,SLNR)、信噪比(signal to noise ratio,SNR)或者其他的参数,此处不做限定。
示例性的,此处以该中间量为SINR为例进行说明。SINR的取值与CQI的取值之间的关联关系可以由下述方法确定:在特定条件下,每次取定一个CQI值,并在对应的调制方式和码率下调整SINR值使得误块率(block error rate,BLER)为10%,此时该SINR值即与取定的CQI值对应。由于下行数据传输功率和CSI-RS的功率间往往存在一定的偏差,因此需要综合考虑终端设备接收到的已知参考信号的强度、功率控制偏差(power control offset,记为Pc ratio)以及接收到的干扰信号强度和噪声信号强度进行SINR测算,满足:
其中,PPDSCH表示PDSCH数据传输功率,PCSI-RS表示CSI-RS参考信号功率,Pinterference和Pnoise分别表示终端设备测得的干扰信号功率和噪声信号功率。PC表示下行PDSCH数据传输功率与CSI-RS参考信号功率之间的偏差,通常在每个NZP(Non-Zero Power)CSI-RS资源中均配置一个Pc ratio用于CQI的测量。
示例性的,此处以终端设备和网络设备处于NR系统为例。在NR中,终端设备会根据 SINR与CQI的预设关系,根据CQI量化表格确定CQI取值。下面将基于表1至表3的实现方式,对CQI量化表格进行示例性描述。
表1
表2

表3
需要说明的是,下文的阐述假设了PDSCH传输流对应同一个CQI,也就是CQI测量和反馈时要综合考虑多个PDSCH传输流。本申请也不排除PDSCH传输流对应多个CQI的情况,此时,对应同一个CQI反馈的PDSCH传输流用于确定该CQI取值。
此外,在NR系统中,终端设备需要信道测量资源(channel measurement resource,CMR),干扰测量资源(interference measurement resource,IMR),以及CSI参考资源(CSI reference resource)确定RI、PMI、CQI等。其中,CMR通常为非零功率CSI-RS,IMR可 以为非零功率CSI-RS或者零功率CSI-RS,同时终端设备需要假设一个CSI参考资源用于计算RI、PMI、CQI。具体的,CSI参考资源包括:PDSCH占用的时频资源,PDSCH传输机制,或者说CMR对应的CSI-RS端口到PDSCH传输流之间的映射关系。
示例性的,进行CQI测算时,终端设备假设(assume)在PDSCH端口[1000,…,1000+ν-1]上传输的v层PDSCH信号可以映射到CSI-RS端口[3000,…,3000+P-1]上进行等效传输,即上述映射关系满足:
其中,W(i)表示预编码矩阵,并且,映射到[3000,…,3000+P-1]端口上传输的PDSCH信号的每个资源单元上的能量(energy per resource element,EPRE)与CSI-RS的EPRE的比值等于功率控制偏差(power control offset,记为Pc ratio)。
此外,在不同的网络设备分别与该终端设备传输独立的数据流的场景下(例如该场景可以包括NCJT的通信场景),终端设备所接收的某个数据流仅来自于某一个网络设备,使得终端设备接收来自不同的网络设备的CSI-RS之后,该终端设备可以沿用上述单站通信场景中的映射关系执行CQI测量。例如,在NCJT场景下,不同的数据流可以被映射到大尺度参数不同的两个TRP的天线端口上,并同时传输给同一个指定终端设备来有效提升数据传输速率和可靠性。
由于上述针对单站通信场景所定义的Pc ratio和CQI的测量方法(包括前述式(1)和式(2)的计算过程)并不直接适用于NCJT场景,而需要对上述Pc ratio的概念和CQI的测量方法进行改进,下面将进一步描述。
以该不同的网络设备包括网络设备1和网络设备2为例,终端设备需要基于与网络设备1之间的下行信道传输的数据流与该网络设备1的CSI-RS端口之间的映射关系,并基于与网络设备2之间的下行信道传输的数据流与该网络设备2的CSI-RS端口之间的映射关系上报CQI。在进行CQI测算时,终端设备假设在PDSCH端口[1000,…,1000+ν1-1]上传输的v1层PDSCH信号可以映射到由CRI指示的第一组CSI-RS端口[3000,…,3000+P-1]上进行等效传输;在PDSCH端口[1000,…,1000+ν1+ν2-1]上传输的v2层PDSCH信号可以映射到由CRI指示的第二组CSI-RS端口[3000,…,3000+P-1]上进行等效传输。在这种情况下,该映射关系满足:
其中,j=1,2,表示对应上报的第j个PMI的预编码矩阵,并且,映射到第j(j=1,2)组CSI-RS资源的P个天线端口上传输的层的PDSCH信号功率与CSI-RS参考信号功率的比值等于在相应的CSI-RS资源中配置的Pc ratio。
进一步地,在不同的网络设备与终端设备之间传输的数据流不再是独立的场景下(例如,该场景可以包括CJT的通信场景),在CJT场景下,每个数据层会通过加权向量映射到 参与协作的多个TRP上。如果各个TRP的信道大尺度参数相同,而且使用了相同的频率源,那么相干传输等效于将多个子阵拼接成更高维度的虚拟阵列,从而能够获得更高的赋形/预编码/复用增益。与此同时,由于相同的数据流通过加权向量映射到参与协作的多个TRP上并同时传输给同一个指定终端设备,因此终端设备需要综合处理来自多个不同TRP的参考信号功率以及功率控制偏差进行SINR的测算并最终确定进行上报的CQI值。而上述单站通信场景以及NCJT场景下的计算过程(包括前述式(1),式(2)和式(3)的计算过程)中,由于每个数据流本质上仍由单个TRP传输,因此,上述CQI的测量方法并不适用于CJT场景。
综上所述,由于终端设备所接收的某个数据流有可能来自不同的网络设备的通信场景中,在终端设备沿用上述单站通信场景执行CQI测量的情况下,容易造成CQI测量不准,导致网络设备基于CQI所获得的下行信道质量的准确度降低,进而影响通信效率。
为了解决上述问题,本申请提供了一种通信方法及通信装置,下面将结合附图进行介绍。
请参阅图3,为本申请提供的通信方法的一个示意图。
需要说明的是,图3中以终端设备和网络设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图3中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。图3中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分网络设备功能的逻辑模块或软件。
图3示意的方法包括步骤S301、S302、S303和S304。下面将分别介绍各个步骤。
S301.网络设备发送第一配置信息。
本实施例中,网络设备在步骤S301中发送第一配置信息,相应的,终端设备在步骤S301中接收第一配置信息。其中,该第一配置信息包括n个CSI-RS的配置信息,n为大于1的整数。
在一种可能的实现方式中,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;该一个CSI-RS端口集合包括一个CSI-RS资源,n个该CSI-RS资源属于同一CSI-RS资源集;或,该一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的该端口属于同一CSI-RS资源。
具体地,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合,即n个CSI-RS分别来自于n个不同的CSI-RS端口集合。并且,n个不同的CSI-RS端口集合属于同一CSI-RS资源集或n个不同的CSI-RS端口集合属于同一CSI-RS资源。使得参与协作的n个网络设备基于同一CSI-RS资源集或同一CSI-RS资源发送n个CSI-RS,易于实现n个CSI-RS的信号收发的同时,也节省n个CSI-RS的配置信息的开销。
应理解,上述实现方式也可以表述为:将一个CSI-RS资源集分成n组,且n组中的每组中的CSI-RS资源用于承载某一网络设备向该终端设备发送的CSI-RS,或,将一个CSI-RS资源所包含的多个CSI-RS端口分称n组,且n组中的每组中的CSI-RS端口用于承载某一网络设备向该终端设备发送的CSI-RS。
在一种可能的实现方式中,n个CSI-RS的配置信息为n个CSI-RS资源配置,每个CSI-RS资源配置中包括CSI-RS资源对应的端口数,时频资源位置,周期类型,QCL假设等信息。
在另一种可能的实现方式中,n个CSI-RS的配置信息为一个CSI-RS资源配置,该CSI-RS资源中的端口被分为n组端口集合,n组端口集合与n个CSI-RS一一对应,每组端口集合对应特定的QCL假设配置。
可选地,当n个CSI-RS配置信息为一个CSI-RS资源配置时,不同组的CSI-RS端口不能属于同一个码分复用(code-division multiplexing,CDM)组。
S302.网络设备发送CSI-RS。
本实施例中,第一配置信息中的n个CSI-RS的配置信息分别对应于n个不同的网络设备,对于n个不同的网络设备中的一个网络设备而言,该一个网络设备在步骤S302中发送n个CSI-RS中的一个CSI-RS,即n个不同的网络设备在步骤S302中发送n个CSI-RS;相应的,终端设备在步骤S302中接收n个CSI-RS。
应理解,终端设备所接收的n个CSI-RS分别来自n个不同的网络设备,本申请对于该n个不同的网络设备之间的协作关系以及在步骤S301中发送第一配置信息的网络设备不做限定。例如,该n个不同的网络设备可以包括一个主网络设备(或称服务传输接收点(transmission reception point,TRP))以及n-1个辅网络设备(或称协作TRP),在这种情况下,在步骤S301中发送第一配置信息的网络设备可以为该主网络设备或任一辅网络设备;又如,该n个不同的网络设备可以包括不区分主网络设备和辅网络设备,在这种情况下,在步骤S301中发送第一配置信息的网络设备可以为该n个网络设备中的任意一个网络设备。
S303.终端设备确定CQI。
本实施例中,终端设备基于步骤S302所接收的n个CSI-RS中的m个CSI-RS和映射关系确定CQI,该CQI用于指示PDSCH的信道质量;其中,该映射关系为该PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系,m为大于1的整数,且m小于或等于n。
可选的,该CQI上报对应了一个CSI上报配置信息,CSI上报配置信息中配置了当前上报的信息包括CQI,且该CSI上报配置信息与n个CSI-RS的配置信息相关联,n个CSI-RS的配置信息对应该CSI上报配置信息的CMR。
一种方式,m等于n,此时CQI上报的CMR为n个CSI-RS。
另一种方式,m小于n,此时CQI上报的CMR为从n个CSI-RS中选择的部分CSI-RS。
可选的,网络设备配置终端设备从n个CSI-RS中选择部分CSI-RS作为CMR。具体的,网络设备会预先配置多个测量假设,每个测量假设中的CMR包括n个CSI-RS中的部分/全部CSI-RS。终端设备根据多个测量假设确定上报其中的一个测量假设,CQI根据该测量假设确定。
可选的,终端设备随该CQI上报测量假设;或者,终端设备随该CQI上报该CQI对应的m个CSI-RS的索引。
在一种可能的实现方式中,终端设备在步骤S303中根据m个CSI-RS和映射关系确定CQI之前,该方法还包括:从该n个CSI-RS中确定该m个CSI-RS。
具体地,终端设备在步骤S302中接收n个CSI-RS之后,该终端设备基于n个CSI-RS中的部分或全部CSI-RS(即m个CSI-RS)确定该CQI。换言之,终端设备可以基于预配置的选择机制在n个CSI-RS选择部分或全部CSI-RS(即m个CSI-RS)之后,该终端设备再进一步基于所选择的m个CSI-RS确定CQI。从而,终端设备能够在n个CSI-RS中灵活地选择满足该预配置的选择机制的m个CSI-RS,以提升方案实现的灵活性。
进一步地,终端设备从该n个CSI-RS中确定该m个CSI-RS的过程包括:基于第一参数和该n个CSI-RS确定该m个CSI-RS,该第一参数包括该m的取值或第一阈值。
可选地,该第一参数预配置于该终端设备。
可选地,该第一参数为网络设备向该终端设备发送的,该第一参数可以包含于第一配置信息或者其它信息中。
应理解,该第一阈值可以指示传输性能阈值,例如RSRP阈值,RSRQ阈值,SINR阈值,SNR阈值或者其他的性能参数阈值,此处不做限定。
在一种实现方式中,第一阈值用于定义m个CSI-RS或者测量假设的选取准则。具体的,考虑两种测量假设中的第一测量假设对应k1个CSI-RS,第二测量假设对应k2个CSI-RS,k1<k2,只有当基于第二测量假设确定的传输性能(例如SINR),与基于第一测量假设确定的传输性能之间的差值大于第一阈值时,才上报第二测量假设,否则,上报第一测量假设。通过这种方式,可以合理控制协作网络设备(例如TRP)的数量从而降低网络侧复杂度。
在一种可能的实现方式中,该n个CSI-RS对应多种测量假设,该测量假设用于确定该CQI对应的该m个CSI-RS。具体地,该n个CSI-RS分别对应于n个不同的网络设备,而n个不同的网络设备中任意两个或两个以上的网络设备可以组成提供通信服务的协作集。其中,每一种协作集可以称为一种测量假设,即n个CSI-RS对应多种测量假设,且多种测量假设中的某一种测量假设对应该m个CSI-RS,使得该测量假设能够确定CQI对应的m个CSI-RS。
在一种可能的实现方式中,在步骤S303之前,该方法还包括:终端设备接收第一指示信息,该第一指示信息指示该多种测量假设中的至少一种测量假设;该终端设备从该至少一种测量假设中确定一种测量假设,该一种测量假设对应该m个CSI-RS。
可选地,第一指示信息包含于第一配置信息,或者,第一指示信息包含于其它信息,此处不做限定。
具体地,该终端设备还可以基于第一指示信息所指示的至少一种测量假设在n个CSI-RS所对应的多种测量假设确定其中一种测量假设,并基于该一种测量假设所对应的网络设备确定CQI对应的m个CSI-RS。从而,在确定m个CSI-RS之后,该终端设备执行步骤S303中基于该m个CSI-RS确定CQI的过程。
应理解,第一指示信息可以用于包括该至少一种测量假设所对应的网络设备的索引,第一指示信息也可以包括该至少一种测量假设所对应的CSI-RS的索引,第一指示信息还可以包括该至少一种测量假设所对应的网络设备的CSI-RS端口集合的索引,第一指示信息还可以通过其它方式指示该多种测量假设中的至少一种测量假设,此处不做限定。
在一种可能的实现方式中,由于在计算CQI时所假设的PDSCH的数据流映射在每个 CSI-RS对应的CSI-RS端口上的EPRE与CSI-RS的EPRE之间往往存在一定的偏差,为此,终端设备在步骤S303之前还可以接收来自网络设备的第二指示信息,用以指示功率偏置量,且该功率偏置量用于指示该偏差,使得终端设备在确定CQI的过程中可以基于该功率偏置量减小或消除该偏差的影响,以进一步提升该终端设备所确定的CQI的准确度。下面将对第二指示信息的实现方式进行说明。
实现方式一,n个CSI-RS中的每个CSI-RS在不同的测量假设下分别对应一个功率偏置量。
在步骤S303之前,该方法还包括:终端设备接收第二指示信息,该第二指示信息用于指示该多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量,也就是说,每个CSI-RS分别对应一个或多个独立配置的功率偏置量,同一个CSI-RS在不同的测量假设下分别对应一个独立配置的功率偏置量;其中,对于一个特定测量假设下的一个特定的CSI-RS,该CSI-RS对应的功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为该CSI-RS的EPRE;终端设备在步骤S303中根据m个CSI-RS和映射关系确定CQI的过程包括:该终端设备根据该第二指示信息,该m个CSI-RS和该映射关系确定该CQI。
示例性的,假设n个CSI-RS中的某一个CSI-RS(记为CSI-RS1)对应测量假设1和测量假设2,则在实现方式一中,第二指示信息用于指示该CSI-RS1在测量假设1中对应功率偏置量(记为功率偏置量1)和该CSI-RS1在测量假设2中功率偏置量(记为功率偏置量2).其中,功率偏置量1与测量假设1相对应,即终端设备若在步骤S303中选择测量假设1,则该终端设备确定功率偏置量1为该CSI-RS1的功率偏置量;功率偏置量2与测量假设2相对应,即终端设备若在步骤S303中选择测量假设2,则该终端设备确定功率偏置量2为该CSI-RS1的功率偏置量。
示例性的,PDSCH传输对应的所有数据流对应一个CQI上报,则第一信号能量为PDSCH传输对应的所有数据流映射在CSI-RS对应的CSI-RS端口的EPRE。
通过实现方式一,可以每个测量假设独立采用功率偏置量配置策略,从而支持灵活的功率分配,并且,可以保证对于不同测量假设采用相对公平的功率分配策略,即保证PDSCH传输的EPRE在不同测量假设下相同。
实现方式二,对于n个CSI-RS中的任一CSI-RS而言,该CSI-RS在不同的测量假设下对应于同一个功率偏置量。
在步骤S303之前,该方法还包括:终端设备接收第二指示信息,该第二指示信息用于指示该n个CSI-RS中每个CSI-RS对应的功率偏置量,也就是说,每个CSI-RS分别对应一个独立配置的功率偏置量,同一个CSI-RS在不同的测量假设下均对应于该独立配置的功率偏置量。其中,对于n个CSI-RS中的任意一个CSI-RS,该CSI-RS在不同的测量假设下对应的功率偏置量相同。在实现方式二中,终端设备可以基于该第二指示信息明确,该CSI-RS对应的功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为该 CSI-RS的EPRE;终端设备在步骤S303中根据m个CSI-RS和映射关系确定CQI包括:该终端设备根据该第二指示信息,该m个CSI-RS和该映射关系确定该CQI。
示例性的,假设n个CSI-RS中的某一个CSI-RS(记为CSI-RS1)对应测量假设1和测量假设2,则在实现方式二中,第二指示信息用于指示该CSI-RS1对应的功率偏置量(记为功率偏置量1),其中,测量假设1和测量假设2均对应于功率偏置量1,即终端设备在步骤S303中,无论是选择测量假设1所对应的CSI-RS为m个CSI-RS,还是选择测量假设2所对应的CSI-RS为m个CSI-RS,该终端设备都会将功率偏置量1确定为该CSI-RS1的功率偏置量。
通过实现方式二,对于n个CSI-RS中的任一CSI-RS,可以在不同测量假设中对该CSI-RS采用相同的功率偏置量的配置策略,从而实现对n个CSI-RS中不同CSI-RS的功率偏置量的配置方式的简化。
实现方式三,n个CSI-RS中的不同CSI-RS而言,不同的CSI-RS在不同的测量假设下均对应于同一功率偏置量。
在步骤S303之前,该方法还包括:终端设备接收第二指示信息,该第二指示信息用于指示该n个CSI-RS中每个CSI-RS对应的同一个功率偏置量,也就是说,n个CSI-RS仅配置一个功率偏置量,即n个CSI-RS中的不同CSI-RS在不同的测量假设下均对应于该功率偏置量。其中,对于n个CSI-RS中的不同CSI-RS在不同的测量假设下对应的功率偏置量均是相同的。在实现方式二中,终端设备可以基于该第二指示信息明确,该CSI-RS对应的功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为该CSI-RS的EPRE;终端设备在步骤S303中根据m个CSI-RS和映射关系确定CQI包括:该终端设备根据该第二指示信息,该m个CSI-RS和该映射关系确定该CQI。
示例性的,假设n个CSI-RS中的某一个CSI-RS(记为CSI-RS1)对应测量假设1,n个CSI-RS中的另一个CSI-RS(记为CSI-RS2)对应测量假设2,则在实现方式三中,第二指示信息用于指示该n个CSI-RS均对应同一个功率偏置量(记为功率偏置量1)。其中,测量假设1和测量假设2均对应于功率偏置量1,即终端设备在步骤S303中,无论是选择测量假设1所对应的CSI-RS为m个CSI-RS,还是选择测量假设2所对应的CSI-RS为m个CSI-RS,该终端设备都会将功率偏置量1确定为该CSI-RS1的功率偏置量。
通过实现方式三,对于n个CSI-RS中的不同CSI-RS,可以在不同测量假设中对该不同CSI-RS采用相同的功率偏置量的配置策略,从而实现对n个CSI-RS中不同CSI-RS的功率偏置量的配置方式的简化。
可选地,在上述实现方式一和实现方式二中,第二指示信息包含于第一配置信息,或者,第二指示信息包含于其它信息,此处不做限定。
可选地,在上述实现方式一和实现方式二中,第二指示信息所指示的功率偏置量对应于第一指示信息所指示的至少一种测量假设中每个CSI-RS对应的功率偏置量,或,第二指示信息所指示的功率偏置量可以对应于n个CSI-RS所对应的多种测量假设中每个CSI-RS 对应的功率偏置量。
具体地,在CQI所指示的PDSCH中,由于在计算CQI时所假设的PDSCH的数据流映射在每个CSI-RS对应的CSI-RS端口上的EPRE与CSI-RS的EPRE之间往往存在一定的偏差,终端设备所接收的第二指示信息所指示的功率偏置量用于指示该偏差,使得终端设备在确定CQI的过程中可以基于该功率偏置量减小或消除该偏差的影响,以进一步提升该终端设备所确定的CQI的准确度。
在上述实现方式一中,该第二指示信息用于指示该多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量,换言之,终端设备所接收的功率偏置量可以是基于测量假设为配置粒度所配置的。其中,不同的测量假设对应参与协作的网络设备是不同的,使得同一个CSI-RS在不同的测量假设下所对应的功率偏置量有可能是不同的,通过基于测量假设为配置粒度的配置方式,可以进一步提升基于该功率偏置量所获得的CQI的准确度。
在上述实现方式二中,该第二指示信息用于指示该n个CSI-RS中每个CSI-RS对应的功率偏置量,换言之,终端设备所接收的功率偏置量可以是以CSI-RS为配置粒度所配置的,即第二指示信息用于指示n个CSI-RS分别对应的功率偏置量。使得终端设备在确定CQI对应的m个CSI-RS之后,即可在该n个CSI-RS分别对应的功率偏置量中确定m个CSI-RS分别对应的功率偏置量,易于实现。
可选地,该第二指示信息所指示的该每个CSI-RS对应的功率偏置量相同,可以简化该第二指示信息的配置,节省开销且易于实现。
在一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
具体地,上述实现方式提供了用于确定PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系的一种具体的实现方式,在该实现方式中,包括n个CSI-RS对应的n个端口集合以及n个预编码矩阵,使得该映射关系不会由于CQI对应的CSI-RS的取值(即m的取值)的改变而产生变化。
可选地,在W0(i)...Wn-1(i)中,非零矩阵的个数为m。具体地,在上述用于确定CQI的映射关系的实现方式中,由于CQI为基于n个CSI-RS中的m个CSI-RS所确定的,使得该实现方式中的n个预编码矩阵中的m个预编码矩阵为非零矩阵。
可选的,对于n个CSI-RS中的第j个CSI-RS,j=0...j=n-1,其映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
进一步可选地,在上述实现方式中,除了m个CSI-RS所对应的m个预编码矩阵为非零矩阵之外,其它n-m个矩阵可以为零矩阵,以简化计算复杂度的同时可以更为准确地体现该映射关系。
在另一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
可选的,对于m个CSI-RS中的第j个CSI-RS,j=0...j=n-1,其映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
具体地,上述实现方式,提供了用于确定PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系的一种具体的实现方式,在该实现方式中,包括用于确定CQI的m个CSI-RS对应的m个端口集合以及m个预编码矩阵,以简化计算复杂度的同时可以更为准确地体现该映射关系。
可选的,每个测量假设独立对应一个映射关系。
可选地,由前述实现方式一和实现方式二可知,功率偏置量用于指示第一信号能量和第二信号能量之间的比值。其中,第一信号能量和第二信号能量除了上述“第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个 CSI-RS的EPRE”的定义之外,对于m个(或n个)CSI-RS中的每个CSI-RS对应的功率偏置量,还可以存在其它的定义,示例如下(在下述示例中,将功率偏置量记为Pc ratio):
示例一:第一信号能量为映射在该CSI-RS的PDSCH的每个数据流的能量,该第二信号能量为该CSI-RS中一个CSI-RS端口的能量。
在该示例一中,在第j组CSI-RS资源中配置的Pc ratio可以表示为:
其中,表示第j组CSI-RS资源的单端口功率,|xp(i)|2表示PDSCH单端口功率。
在m个CSI-RS对应的测量假设下,一个子载波上的总的PDSCH传输功率即可表示为:
其中,2≤m≤4表示测量假设m下参与相干联合传输的TRP数目,也即CSI-RS资源分组数。
示例二:第一信号能量为映射在该CSI-RS的PDSCH的所有数据流在一个RE上的能量的总和,该第二信号能量为该CSI-RS的每个CSI-RS端口的能量的总和。
在该示例二中,在第j组CSI-RS资源中配置的Pc ratio可以表示为:
其中,表示第j组CSI-RS资源的单端口功率,P表示CSI-RS端口数,|xp(i)|2表示PDSCH单端口功率。在测量假设m下,一个子载波上的总的PDSCH传输功率即可表示为:
其中,2≤m≤4表示测量假设m下参与相干联合传输的TRP数目,也即CSI-RS资源分组数。
示例三:第一信号能量为映射在该CSI-RSPDSCH的所有数据流的能量的总和,该第二信号能量为该CSI-RS的EPRE。
在该示例三中,在第j组CSI-RS资源中配置的Pc ratio可以表示为:
其中,表示第j组CSI-RS资源的单端口功率,|xp(i)|2表示PDSCH单端口功率,表示复用在一个子载波上的第j组CSI-RS端口数。在测量假设m下,一个子载波上的总的PDSCH传输功率即可表示为:
可选地,与CSI-RS资源配置相关,比如,与CSI-RS资源中的端口数,以及各个端口之间的复用方式有关。具体的,时,2个CSI-RS端口通过时域/频域OCC复用在两个RE上;时,4个CSI-RS端口通过时频二维OCC或者时域/频域OCC复用 在4个RE上;时,8个CSI-RS端口通过时频二维OCC复用在8个RE上。
其中,2≤m≤4表示测量假设m下参与相干联合传输的TRP数目,也即CSI-RS资源分组数。
S304.终端设备发送CQI。
本实施例中,终端设备在步骤S304中发送CQI,相应的,网络设备在步骤S304中接收CQI。
在一种可能的实现方式中,终端设备在步骤S304中发送的CQI包含于CSI,该CSI还包括以下至少一项:
该m个CSI-RS对应的CSI-RS端口集合的索引;或,
该m个CSI-RS的索引;或,
PMI,该PMI用于指示该m个CSI-RS对应的CSI-RS端口集合对应的预编码矩阵。
具体地,终端设备在接收n个CSI-RS之后,该终端设备所发送的CQI为基于n个CSI-RS中的部分或全部CSI-RS(即m个CSI-RS)所确定的,为此,该终端设备可以在CSI中携带上述信息中的至少一项,以便于该CSI的接收方明确CQI所对应的m个CSI-RS。
基于图3所示技术方案,终端设备在步骤S302中基于第一配置信息接收n个CSI-RS之后,该终端设备在步骤S303中基于n个CSI-RS中的m个CSI-RS和映射关系确定CQI。其中,该CQI用于指示PDSCH的信道质量,且用于确定CQI的映射关系为该PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系,且m为大于1的整数,即m个CSI-RS来自于不同的网络设备。换言之,在PDSCH的数据流来自于不同的网络设备的场景下,终端设备确定CQI的过程中,终端设备认为/假设(assume)PDSCH的数据流与不同的网络设备对应的CSI-RS端口之间存在该映射关系,使得终端设备基于该映射关系明确PDSCH的数据流与不同网络设备之间的对应关系,并确定和发送CQI。从而,在终端设备所接收的数据流来自不同的网络设备的应用场景中,提升终端设备所确定的CQI的准确度,使得网络设备后续基于该CQI所获得的下行信道质量的准确度得以提升,进而提升通信效率。
在前述图3所示方案之前所介绍的NCJT场景中,还可以通过在码本配置(CodebookConfig)中为每个TRP配置一个码本子集限制(CBSR),能有效控制波束方向避免对邻区造成强干扰,并保证了每个TRP波束选择的灵活性。
示例性的,如图4所示,以TRP1和TRP2组成协作集,并应用NCJT传输方式为例。在图4中,以TRP1和TRP2这一协作集的协作范围包括两个椭圆形的覆盖区域作为示例,TRP1的波束b1和b2以及TRP2的波束b0会对协作集外的相邻小区(图中未画出)造成强干扰,而TRP1的波束b0以及TRP2的波束b1则不会对协作集外的相邻小区造成强干扰。由于TRP1和TRP2之间的协作方式为NCJT,即TRP1和TRP2为同一个终端设备所发送的数据流为独立发送的,这就使得TRP1和TRP2可以分别确定各自的CBSR配置,即CBSR1={b0},CBSR2={b1}。并且,TRP1将所确定的CBSR配置下发给连接至TRP1的终端设备(例如UE0),TRP2将所确定的CBSR配置下发给连接至TRP2的终端设备(例如UE0),使得UE0基于TRP1下发的CBSR配置和TRP2下发 的CBSR配置明确在该协作集内所允许使用的码本子集,能够在避免对邻区造成强干扰的同时,满足协作集内的TRP进行非相干联合传输的需求。
区别于NCJT场景,在相干联合传输(CJT)场景下,不同的TRP为同一个终端设备所发送的数据流并非独立发送的。以图5为例,当TRP1和TRP2被选择进行相干联合传输时,波束b0和b1需要被约束来避免对邻区造成强干扰;而当TRP1、TRP2和TRP3同时被选择进行相干联合传输时,只有波束b0需要被约束来避免对邻区造成强干扰。这就使得上述NCJT场景中,不同的TRP分别独立确定并下发CBSR配置的方式不再适用。
为此,在终端设备所接收的数据流来自不同的网络设备的应用场景(例如CJT场景)中,对于终端设备而言,如何实现CBSR配置信息的确定,是一个亟待解决的技术问题。
请参阅图6,为本申请提供的通信方法的一个示意图。
需要说明的是,图6中以终端设备和网络设备作为该交互示意的执行主体为例来示意该方法,但本申请并不限制该交互示意的执行主体。例如,图6中的终端设备也可以是支持该终端设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分终端设备功能的逻辑模块或软件。图6中的网络设备也可以是支持该网络设备实现该方法的芯片、芯片系统、或处理器,还可以是能实现全部或部分网络设备功能的逻辑模块或软件。
图3示意的方法包括步骤S601、S602、S603和S604。下面将分别介绍各个步骤。
S601.网络设备发送第一配置信息。
本实施例中,网络设备在步骤S601中发送第一配置信息,相应的,终端设备在步骤S601中接收第一配置信息。其中,该第一配置信息包括n个CSI-RS的配置信息,以及与该n个CSI-RS对应的CBSR配置信息,该CBSR配置信息用于配置多个CBSR,n为大于1的整数。
在一种可能的实现方式中,该n个CSI-RS的配置信息中的一个配置信息用于指示一个CSI-RS端口集合;该一个CSI-RS端口集合包括一个CSI-RS资源,n个该CSI-RS资源属于同一CSI-RS资源集;或,该一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的该端口属于同一CSI-RS资源。具体地,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合,即n个CSI-RS分别来自于n个不同的CSI-RS端口集合。并且,n个不同的CSI-RS端口集合属于同一CSI-RS资源集或n个不同的CSI-RS端口集合属于同一CSI-RS资源。使得参与协作的n个网络设备基于同一CSI-RS资源集或同一CSI-RS资源发送n个CSI-RS,易于实现n个CSI-RS的信号收发的同时,也节省n个CSI-RS的配置信息的开销。
需要说明的是,CBSR配置信息所配置多个CBSR信息中,每一个CBSR信息的矩阵维度是基于CSI-RS对应的CSI-RS端口数确定的。
S602.网络设备发送CSI-RS。
本实施例中,第一配置信息中的n个CSI-RS的配置信息分别对应于n个不同的网络设备,对于n个不同的网络设备中的一个网络设备而言,该一个网络设备在步骤S602中发送n个CSI-RS中的一个CSI-RS,即n个不同的网络设备在步骤S602中发送n个CSI-RS;相应的,终端设备在步骤S602中接收n个CSI-RS。
应理解,终端设备在步骤S602中接收的n个CSI-RS分别来自n个不同的网络设备,本申请对于该n个不同的网络设备之间的协作关系以及在步骤S601中发送第一配置信息的网络 设备不做限定。例如,该n个不同的网络设备可以包括一个主网络设备(或称服务传输接收点(transmission reception point,TRP))以及n-1个辅网络设备(或称协作TRP),在这种情况下,在步骤S601中发送第一配置信息的网络设备可以为该主网络设备或任一辅网络设备;又如,该n个不同的网络设备可以包括不区分主网络设备和辅网络设备,在这种情况下,在步骤S601中发送第一配置信息的网络设备可以为该n个网络设备中的任意一个网络设备。
S603.终端设备确定PMI。
本实施例中,终端设备基于步骤S602所接收的n个CSI-RS中的m个CSI-RS和该多个CBSR中的m个CBSR确定PMI。其中,m为大于1的整数,且m小于或等于n,该m个CSI-RS与该m个CBSR信息一一对应。
在一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置至少一组CBSR,每组该CBSR包括至少两个该CBSR;该终端设备在步骤S603中基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI之前,该方法还包括:该终端设备从该至少一组CBSR中确定一组CBSR,该一组CBSR包括该m个CBSR。
具体地,第一配置信息中的CBSR配置信息用于配置至少一组CBSR,使得终端设备在确定PMI之前,该终端设备在该至少一组CBSR中确定的一组CBSR所包含的m个CBSR作为确定PMI的依据之一。换言之,第一配置信息中的CBSR配置信息以“组”为粒度的配置方式配置CBSR,使得终端设备根据预配置的选择机制确定某一组CBSR之后,再将该组CBSR所包含的m个CBSR作为PMI的确定依据之一。
可选地,CBSR配置信息所配置的至少一组CBSR中包含有多组CBSR的情况下,不同组CBSR可以对应于不同的测量假设。
示例性的,该n个CSI-RS分别对应于n个不同的网络设备,而n个不同的网络设备中任意两个或两个以上的网络设备可以组成提供通信服务的协作集。其中,每一种协作集可以称为一种测量假设,即n个CSI-RS对应多种测量假设,且多种测量假设中的某一种测量假设对应该m个CSI-RS,使得该测量假设能够确定PMI对应的m个CSI-RS。此外,在该实现方式中,该CBSR配置信息用于配置多组CBSR信息,该多组CBSR信息与该多种测量假设一一对应,且该多组CBSR信息中的一组CBSR信息包括该m个CBSR信息。换言之,第一配置信息中的CBSR配置信息以“测量假设”为粒度的配置方式配置CBSR。
在另一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置n个CBSR;该终端设备在步骤S603中基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI之前,该方法还包括:该终端设备从该n个CBSR中确定该m个CBSR。
具体地,第一配置信息中的CBSR配置信息用于配置n个CBSR,使得终端设备在确定PMI之前,该终端设备在该n个CBSR所包含的m个CBSR作为确定PMI的依据之一。换言之,第一配置信息中的CBSR配置信息以“CSI-RS”为粒度的配置方式配置CBSR,使得终端设备可以将该n个CBSR所包含的m个CBSR作为PMI的确定依据之一。
S604.终端设备发送PMI。
本实施例中,终端设备在步骤S604中发送PMI,相应的,网络设备在步骤S604中接收PMI。
在一种可能的实现方式中,终端设备在步骤S604中发送的PMI包含于CSI,该CSI还包括以下至少一项:该m个CSI-RS对应的CSI-RS端口集合的索引;或,该m个CSI-RS的索引。具体地,终端设备在接收n个CSI-RS之后,该终端设备所发送的PMI为基于n个CSI-RS中的部分或全部CSI-RS(即m个CSI-RS)所确定的,为此,该终端设备可以在CSI中携带上述信息中的至少一项,以便于该CSI的接收方明确PMI所对应的m个CSI-RS。
基于图6所示技术方案,终端设备在步骤S601中接收的第一配置信息包括n个CSI-RS的配置信息,以及与该n个CSI-RS对应的CBSR配置信息,且该CBSR配置信息用于配置多个CBSR。此后,该终端设备在步骤S602中基于该第一配置信息中的n个CSI-RS的配置信息接收n个CSI-RS之后,该终端设备在步骤S603中基于第一配置信息中的CBSR配置信息确定PMI,且m为大于1的整数,即m个CSI-RS来自于不同的网络设备。换言之,终端设备用于接收来自不同的网络设备的CSI-RS的配置信息以及不同的网络设备所对应的CBSR的配置信息均位于该第一配置信息。相比于终端设备需要分别接收来自不同网络设备的配置信息,用以分别确定不同网络设备的CSI-RS的配置信息以及不同的网络设备所对应的CBSR的配置信息的实现方式,可以节省开销,提升通信效率。
此外,上述技术方案可以应用在终端设备所接收的数据流来自不同的网络设备的应用场景中,实现了该场景下对不同网络设备的CBSR进行配置,并使得终端设备明确在该应用场景下,可以基于第一配置信息获取不同网络设备对应的CBSR,并基于该CBSR配置信息发送PMI。
上面从方法的角度对本申请进行了说明,下面将对本申请所涉及的装置进行介绍。
请参阅图7,为本申请提供的通信装置700的一个示意图,该通信装置700可以实现上述方法实施例中终端设备/网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。
当该通信装置700用于实现前述图3所示实施例及其任一可选实施例中的终端设备的功能的情况下,该通信装置700所包含的收发单元701和处理单元702用于执行如下实现过程。
该收发单元701,用于接收第一配置信息,该第一配置信息包括n个信道状态信息参考信号CSI-RS的配置信息,n为大于1的整数;
该收发单元701,还用于基于该第一配置信息接收n个CSI-RS;
该处理单元702,用于根据m个CSI-RS和映射关系确定信道质量指示CQI,该CQI用于指示物理下行共享信道PDSCH的信道质量;其中,该映射关系为该PDSCH的数据流与该m个CSI-RS对应的CSI-RS端口之间的映射关系;其中,该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n;
该收发单元701,还用于发送该CQI。
在一种可能的实现方式中,该处理单元702,还用于从该n个CSI-RS中确定该m个CSI-RS。
在一种可能的实现方式中,该处理单元702,具体用于基于第一参数和该n个CSI-RS确定该m个CSI-RS,该第一参数包括该m的取值或第一阈值。
在一种可能的实现方式中,该n个CSI-RS对应多种测量假设,该测量假设用于确定该CQI对应的该m个CSI-RS。
在一种可能的实现方式中,该收发单元701,还用于接收第一指示信息,该第一指示信息指示该多种测量假设中的至少一种测量假设;
从该至少一种测量假设中确定一种测量假设,该一种测量假设对应该m个CSI-RS。
在一种可能的实现方式中,该收发单元701,还用于接收第二指示信息,该第二指示信息用于指示该多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量;其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE;
该处理单元702,具体用于根据该第二指示信息,该m个CSI-RS和该映射关系确定该CQI。
在一种可能的实现方式中,该收发单元701,还用于接收第二指示信息,该第二指示信息用于指示该n个CSI-RS中每个CSI-RS对应的功率偏置量;其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE;
该处理单元702,具体用于根据该第二指示信息,该m个CSI-RS和该映射关系确定该CQI。
在一种可能的实现方式中,该第二指示信息所指示的该每个CSI-RS对应的功率偏置量相同。
在一种可能的实现方式中,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;
该一个CSI-RS端口集合包括一个CSI-RS资源,n个该CSI-RS资源属于同一CSI-RS资源集;
或,
该一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的该端口属于同一CSI-RS资源。
在一种可能的实现方式中,该CQI包含于CSI,该CSI还包括以下至少一项:
该m个CSI-RS对应的CSI-RS端口集合的索引;或,
该m个CSI-RS的索引;或,
PMI,该PMI用于指示该m个CSI-RS对应的CSI-RS端口集合对应的预编码矩阵。
在一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
在一种可能的实现方式中,
在W0(i)...Wn-1(i)中,非零矩阵的个数为m。
在一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
当该通信装置700用于实现前述图3所示实施例及其任一可选实施例中的网络设备的功能的情况下,该通信装置700所包含的收发单元701和处理单元702用于执行如下实现过程。
该处理单元702,用于确定第一配置信息,该第一配置信息包括n个信道状态信息参考信号CSI-RS的配置信息,n为大于1的整数;
该收发单元701,用于基于该第一配置信息发送该n个CSI-RS中的一个CSI-RS;
该收发单元701,还用于接收信道质量指示CQI,该CQI为基于m个CSI-RS与映射关系确定;其中,该CQI用于指示物理下行共享信道PDSCH的信道质量,该映射关系为该PDSCH的数据流与m个CSI-RS对应的CSI-RS端口之间的映射关系;该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n。
在一种可能的实现方式中,该n个CSI-RS对应多种测量假设,该测量假设用于确定该CQI对应的该m个CSI-RS。
在一种可能的实现方式中,该收发单元701,还用于发送第一指示信息,该第一指示 信息指示该多种测量假设中的至少一种测量假设;
其中,该至少一种测量假设中的一种测量假设对应该m个CSI-RS。
在一种可能的实现方式中,该收发单元701,还用于发送第二指示信息,该第二指示信息用于指示该多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量;
其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE。
在一种可能的实现方式中,该收发单元701,还用于发送第二指示信息,该第二指示信息用于指示该n个CSI-RS中每个CSI-RS对应的功率偏置量;
其中,该功率偏置量用于指示第一信号能量和第二信号能量之间的比值,该第一信号能量为映射在每个CSI-RS对应的CSI-RS端口的PDSCH的数据流的EPRE,该第二信号能量为每个CSI-RS的EPRE。
在一种可能的实现方式中,该第二指示信息所指示的该每个CSI-RS对应的功率偏置量相同。
在一种可能的实现方式中,该n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;
该一个CSI-RS端口集合包括一个CSI-RS资源,n个该CSI-RS资源属于同一CSI-RS资源集;
或,
该一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的该端口属于同一CSI-RS资源。
在一种可能的实现方式中,该CQI包含于CSI,该CSI还包括以下至少一项:
该m个CSI-RS对应的CSI-RS端口集合的索引;或,
该m个CSI-RS的索引;或,
PMI,该PMI用于指示该m个CSI-RS对应的CSI-RS端口集合的预编码矩阵。
在一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,n-1,p=3000,…,3000+Pn-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
在一种可能的实现方式中,
在W0(i)...Wn-1(i)中,非零矩阵的个数为m。
在一种可能的实现方式中,该映射关系满足:
其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;j=0,1,…,m-1,p=3000,…,3000+Pm-1,表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
当该通信装置700用于实现前述图6所示实施例及其任一可选实施例中的终端设备的功能的情况下,该通信装置700所包含的收发单元701和处理单元702用于执行如下实现过程。
该收发单元701,用于接收第一配置信息,该第一配置信息包括n个CSI-RS的配置信息,以及与该n个CSI-RS对应的CBSR配置信息,该CBSR配置信息用于配置多个CBSR,n为大于1的整数;
该收发单元701,还用于基于该第一配置信息接收该n个CSI-RS;
该处理单元702,用于基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI;该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n;该m个CSI-RS与该m个CBSR信息一一对应;
发送该PMI。
在一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置至少一组CBSR,每组该CBSR包括至少两个该CBSR;
该基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI之前,该装置还包括:
从该至少一组CBSR中确定一组CBSR,该一组CBSR包括该m个CBSR。
在一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置n个CBSR;
该基于m个CSI-RS和该多个CBSR中的m个CBSR确定PMI之前,该装置还包括:
从该n个CBSR中确定该m个CBSR。
当该通信装置700用于实现前述图6所示实施例及其任一可选实施例中的网络设备的功能的情况下,该通信装置700所包含的收发单元701和处理单元702用于执行如下实现过程。
该处理单元702,用于确定第一配置信息,该第一配置信息包括n个CSI-RS的配置信息,以及与该n个CSI-RS对应的CBSR配置信息,该CBSR配置信息用于配置多个CBSR,n为大于1的整数;
该收发单元701,用于基于该第一配置信息发送该n个CSI-RS的一个CSI-RS;
该收发单元701,还用于接收PMI,该PMI对应于m个CSI-RS;其中,该m个CSI-RS包含于该n个CSI-RS,m为大于1的整数,且m小于或等于n;该m个CSI-RS与该CBSR配置信息所配置的m个CBSR信息一一对应。
在一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置至少一组CBSR,每组该CBSR包括至少两个该CBSR;
其中,该至少一组CBSR中的一组CBSR包括该m个CBSR。
在一种可能的实现方式中,该CBSR配置信息用于配置多个CBSR包括:CBSR配置信息用于配置n个CBSR;
其中,该n个CBSR包括该m个CBSR。
需要说明的是,上述通信装置700的单元的信息执行过程等内容,具体可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
请参阅图8,为本申请的实施例提供的上述实施例中所涉及的终端设备,其中,该终端设备800的一种可能的逻辑结构示意图,该终端设备800可以包括但不限于至少一个处理器801以及通信端口802。进一步可选的,该装置还可以包括存储器803、总线804中的至少一个,在本申请的实施例中,该至少一个处理器801用于对终端设备800的动作进行控制处理。
此外,处理器801可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。该处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
需要说明的是,图8所示终端设备800具体可以用于实现前述对应方法实施例中终端设备所实现的其它步骤,并实现终端设备对应的技术效果,图8所示终端设备的具体实现方式,均可以参考前述各个方法实施例中的叙述,此处不再一一赘述。
请参阅图9,为本申请的实施例提供的上述实施例中所涉及的网络设备的结构示意图,其中,该网络设备的结构可以参考图9所示的结构。
网络设备包括至少一个处理器911以及至少一个网络接口914。进一步可选的,该网络设备还包括至少一个存储器912、至少一个收发器913和一个或多个天线915。处理器911、存储器912、收发器913和网络接口914相连,例如通过总线相连,在本申请实施例中,该连接可包括各类接口、传输线或总线等,本实施例对此不做限定。天线915与收发器913相连。网络接口914用于使得网络设备通过通信链路,与其它通信设备通信。例如网络接口914可以包括网络设备与核心网设备之间的网络接口,例如S1接口,网络接口可以包括网络设备 和其他网络设备(例如其他网络设备或者核心网设备)之间的网络接口,例如X2或者Xn接口。
处理器911主要用于对通信协议以及通信数据进行处理,以及对整个网络设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持网络设备执行实施例中所描述的动作。网络设备可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图9中的处理器911可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
存储器主要用于存储软件程序和数据。存储器912可以是独立存在,与处理器911相连。可选的,存储器912可以和处理器911集成在一起,例如集成在一个芯片之内。其中,存储器912能够存储执行本申请实施例的技术方案的程序代码,并由处理器911来控制执行,被执行的各类计算机程序代码也可被视为是处理器911的驱动程序。
图9仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
收发器913可以用于支持网络设备与终端之间射频信号的接收或者发送,收发器913可以与天线915相连。收发器913包括发射机Tx和接收机Rx。具体地,一个或多个天线915可以接收射频信号,该收发器913的接收机Rx用于从天线接收该射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给该处理器911,以便处理器911对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器913中的发射机Tx还用于从处理器911接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线915发送该射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,该下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,该上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
收发器也可以称为收发单元、收发机、收发装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元, 即收发单元包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
需要说明的是,图9所示网络设备具体可以用于实现前述方法实施例中网络设备所实现的步骤,并实现网络设备对应的技术效果,图9所示网络设备的具体实现方式,均可以参考前述的各个方法实施例中的叙述,此处不再一一赘述。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如前述实施例中终端设备可能的实现方式所述的方法。
本申请实施例还提供一种存储一个或多个计算机执行指令的计算机可读存储介质,当计算机执行指令被处理器执行时,该处理器执行如前述实施例中网络设备可能的实现方式所述的方法。
本申请实施例还提供一种存储一个或多个计算机的计算机程序产品(或称计算机程序),当计算机程序产品被该处理器执行时,该处理器执行上述终端设备可能实现方式的方法。
本申请实施例还提供一种存储一个或多个计算机的计算机程序产品,当计算机程序产品被该处理器执行时,该处理器执行上述网络设备可能实现方式的方法。
本申请实施例还提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持终端设备实现上述终端设备可能的实现方式中所涉及的功能。可选的,该芯片系统还包括接口电路,该接口电路为该至少一个处理器提供程序指令和/或数据。在一种可能的设计中,该芯片系统还可以包括存储器,存储器,用于保存该终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例还提供了一种芯片系统,该芯片系统包括至少一个处理器,用于支持网络设备实现上述网络设备可能的实现方式中所涉及的功能。可选的,该芯片系统还包括接口电路,该接口电路为该至少一个处理器提供程序指令和/或数据。在一种可能的设计中,芯片系统还可以包括存储器,存储器,用于保存该网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,其中,该网络设备具体可以为前述前述方法实施例中网络设备。
本申请实施例还提供了一种通信系统,该网络系统架构包括上述任一实施例中的终端设备和网络设备。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (53)

  1. 一种通信方法,其特征在于,包括:
    接收第一配置信息,所述第一配置信息包括n个信道状态信息参考信号CSI-RS的配置信息,n为大于1的整数;
    基于所述第一配置信息接收n个CSI-RS;
    根据m个CSI-RS和映射关系确定信道质量指示CQI,所述CQI用于指示物理下行共享信道PDSCH的信道质量;其中,所述映射关系为所述PDSCH的数据流与所述m个CSI-RS对应的CSI-RS端口之间的映射关系;其中,所述m个CSI-RS包含于所述n个CSI-RS,m为大于1的整数,且m小于或等于n;
    发送所述CQI。
  2. 根据权利要求1所述的方法,其特征在于,在所述根据m个CSI-RS和映射关系确定CQI之前,所述方法还包括:
    从所述n个CSI-RS中确定所述m个CSI-RS。
  3. 根据权利要求2所述的方法,其特征在于,所述从所述n个CSI-RS中确定所述m个CSI-RS包括:
    基于第一参数和所述n个CSI-RS确定所述m个CSI-RS,所述第一参数包括所述m的取值或第一阈值。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述n个CSI-RS对应多种测量假设,所述测量假设用于确定所述CQI对应的所述m个CSI-RS。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息指示所述多种测量假设中的至少一种测量假设;
    从所述至少一种测量假设中确定一种测量假设,所述一种测量假设对应所述m个CSI-RS。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:接收第二指示信息,所述第二指示信息用于指示所述多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量;
    其中,所述功率偏置量用于指示第一信号能量和第二信号能量之间的比值,所述第一信号能量为映射在所述每个CSI-RS对应的CSI-RS端口的所述PDSCH的数据流的每个资源单元上的能量EPRE,所述第二信号能量为所述每个CSI-RS的EPRE;
    所述根据m个CSI-RS和映射关系确定CQI包括:
    所述根据所述第二指示信息,所述m个CSI-RS和所述映射关系确定所述CQI。
  7. 根据权利要求1-3任意一项所述的方法,其特征在于,所述方法还包括:接收第二指示信息,所述第二指示信息用于指示所述n个CSI-RS中每个CSI-RS对应的功率偏置量;
    其中,所述功率偏置量用于指示第一信号能量和第二信号能量之间的比值,所述第一信号能量为映射在所述每个CSI-RS对应的CSI-RS端口的所述PDSCH的数据流的EPRE,所述第二信号能量为所述每个CSI-RS的EPRE;
    所述根据m个CSI-RS和映射关系确定CQI包括:
    所述根据所述第二指示信息,所述m个CSI-RS和所述映射关系确定所述CQI。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第二指示信息所指示的所述每个CSI-RS对应的功率偏置量相同。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;
    所述一个CSI-RS端口集合包括一个CSI-RS资源,n个所述CSI-RS资源属于同一CSI-RS资源集;
    或,
    所述一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的所述端口属于同一CSI-RS资源。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述CQI包含于信道状态信息CSI,所述CSI还包括以下至少一项:
    所述m个CSI-RS对应的CSI-RS端口集合的索引;或,
    所述m个CSI-RS的索引;或,
    预编码矩阵指示PMI,所述PMI用于指示所述m个CSI-RS对应的CSI-RS端口集合对应的预编码矩阵。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述映射关系满足:
    其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
  12. 根据权利要求11所述的方法,其特征在于,
    在W0(i)...Wn-1(i)中,非零矩阵的个数为m。
  13. 根据权利要求1至10任一项所述的方法,其特征在于,所述映射关系满足:
    其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
  14. 一种通信方法,其特征在于,包括:
    确定第一配置信息,所述第一配置信息包括n个信道状态信息参考信号CSI-RS的配置信息,n为大于1的整数;
    基于所述第一配置信息发送所述n个CSI-RS中的一个CSI-RS;
    接收信道质量指示CQI,所述CQI为基于m个CSI-RS与映射关系确定,所述CQI用于指示物理下行共享信道PDSCH的信道质量;其中,所述映射关系为所述PDSCH的数据流与所述m个CSI-RS对应的CSI-RS端口之间的映射关系;所述m个CSI-RS包含于所述n个CSI-RS,m为大于1的整数,且m小于或等于n。
  15. 根据权利要求14所述的方法,其特征在于,所述n个CSI-RS对应多种测量假设,所述测量假设用于确定所述CQI对应的所述m个CSI-RS。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:发送第一指示信息,所述第一指示信息指示所述多种测量假设中的至少一种测量假设;
    其中,所述至少一种测量假设中的一种测量假设对应所述m个CSI-RS。
  17. 根据权利要求15或16所述的方法,其特征在于,所述方法还包括:发送第二指示信息,所述第二指示信息用于指示所述多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量;
    其中,所述功率偏置量用于指示第一信号能量和第二信号能量之间的比值,所述第一信号能量为映射在所述每个CSI-RS对应的CSI-RS端口的所述PDSCH的数据流的EPRE,所述第二信号能量为所述每个CSI-RS的EPRE。
  18. 根据权利要求14-17任意一项所述的方法,其特征在于,所述方法还包括:发送第二指示信息,所述第二指示信息用于指示所述n个CSI-RS中每个CSI-RS对应的功率偏置量;
    其中,所述功率偏置量用于指示第一信号能量和第二信号能量之间的比值,所述第一信号能量为映射在所述每个CSI-RS对应的CSI-RS端口的所述PDSCH的数据流的EPRE,所述第二信号能量为所述每个CSI-RS的EPRE。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第二指示信息所指示的所述每个CSI-RS对应的功率偏置量相同。
  20. 根据权利要求14至19任一项所述的方法,其特征在于,所述n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;
    所述一个CSI-RS端口集合包括一个CSI-RS资源,n个所述CSI-RS资源属于同一CSI-RS资源集;
    或,
    所述一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的所述端口属于同一CSI-RS资源。
  21. 根据权利要求14至20任一项所述的方法,其特征在于,所述CQI包含于信道状态信息CSI,所述CSI还包括以下至少一项:
    所述m个CSI-RS对应的CSI-RS端口集合的索引;或,
    所述m个CSI-RS的索引;或,
    预编码矩阵指示PMI,所述PMI用于指示所述m个CSI-RS对应的CSI-RS端口集合的预编码矩阵。
  22. 根据权利要求14至21任一项所述的方法,其特征在于,所述映射关系满足:
    其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
  23. 根据权利要求22所述的方法,其特征在于,
    在W0(i)...Wn-1(i)中,非零矩阵的个数为m。
  24. 根据权利要求14至21任一项所述的方法,其特征在于,所述映射关系满足:
    其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
  25. 一种通信装置,其特征在于,包括收发单元和处理单元;
    所述收发单元,用于接收第一配置信息,所述第一配置信息包括n个信道状态信息参考信号CSI-RS的配置信息,n为大于1的整数;
    所述收发单元,还用于基于所述第一配置信息接收n个CSI-RS;
    所述处理单元,用于根据m个CSI-RS和映射关系确定信道质量指示CQI,所述CQI用于指示物理下行共享信道PDSCH的信道质量;其中,所述映射关系为所述PDSCH的数据流 与所述m个CSI-RS对应的CSI-RS端口之间的映射关系;其中,所述m个CSI-RS包含于所述n个CSI-RS,m为大于1的整数,且m小于或等于n;
    所述收发单元,还用于发送所述CQI。
  26. 根据权利要求25所述的装置,其特征在于,所述处理单元,还用于从所述n个CSI-RS中确定所述m个CSI-RS。
  27. 根据权利要求26所述的装置,其特征在于,所述处理单元,具体用于基于第一参数和所述n个CSI-RS确定所述m个CSI-RS,所述第一参数包括所述m的取值或第一阈值。
  28. 根据权利要求25-27任意一项所述的装置,其特征在于,所述n个CSI-RS对应多种测量假设,所述测量假设用于确定所述CQI对应的所述m个CSI-RS。
  29. 根据权利要求28所述的装置,其特征在于,
    所述收发单元,还用于接收第一指示信息,所述第一指示信息指示所述多种测量假设中的至少一种测量假设;
    所述处理单元,还用于从所述至少一种测量假设中确定一种测量假设,所述一种测量假设对应所述m个CSI-RS。
  30. 根据权利要求28或29所述的装置,其特征在于,所述收发单元,还用于接收第二指示信息,所述第二指示信息用于指示所述多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量;
    其中,所述功率偏置量用于指示第一信号能量和第二信号能量之间的比值,所述第一信号能量为映射在所述每个CSI-RS对应的CSI-RS端口的所述PDSCH的数据流的EPRE,所述第二信号能量为所述每个CSI-RS的EPRE;
    所述处理单元,具体用于根据所述第二指示信息,所述m个CSI-RS和所述映射关系确定所述CQI。
  31. 根据权利要求25-27任意一项所述的装置,其特征在于,所述收发单元,还用于接收第二指示信息,所述第二指示信息用于指示所述n个CSI-RS中每个CSI-RS对应的功率偏置量;
    其中,所述功率偏置量用于指示第一信号能量和第二信号能量之间的比值,所述第一信号能量为映射在所述每个CSI-RS对应的CSI-RS端口的所述PDSCH的数据流的EPRE,所述第二信号能量为所述每个CSI-RS的EPRE;
    所述处理单元,具体用于根据所述第二指示信息,所述m个CSI-RS和所述映射关系确定所述CQI。
  32. 根据权利要求30或31所述的装置,其特征在于,所述第二指示信息所指示的所述每个CSI-RS对应的功率偏置量相同。
  33. 根据权利要求25至32任一项所述的装置,其特征在于,所述n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;
    所述一个CSI-RS端口集合包括一个CSI-RS资源,n个所述CSI-RS资源属于同一CSI-RS资源集;
    或,
    所述一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的所述端口属于同一CSI-RS资源。
  34. 根据权利要求25至33任一项所述的装置,其特征在于,所述CQI包含于信道状态信息CSI,所述CSI还包括以下至少一项:
    所述m个CSI-RS对应的CSI-RS端口集合的索引;或,
    所述m个CSI-RS的索引;或,
    预编码矩阵指示PMI,所述PMI用于指示所述m个CSI-RS对应的CSI-RS端口集合对应的预编码矩阵。
  35. 根据权利要求25至34任一项所述的装置,其特征在于,所述映射关系满足:
    其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
  36. 根据权利要求35所述的装置,其特征在于,
    在W0(i)...Wn-1(i)中,非零矩阵的个数为m。
  37. 根据权利要求25至34任一项所述的装置,其特征在于,所述映射关系满足:
    其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
  38. 一种通信装置,其特征在于,包括处理单元和收发单元;
    所述处理单元,用于确定第一配置信息,所述第一配置信息包括n个信道状态信息参 考信号CSI-RS的配置信息,n为大于1的整数;
    所述收发单元,用于基于所述第一配置信息发送所述n个CSI-RS中的一个CSI-RS;
    所述收发单元,还用于接收信道质量指示CQI;所述CQI为基于m个CSI-RS与映射关系确定,其中,所述CQI用于指示物理下行共享信道PDSCH的信道质量,所述映射关系为所述PDSCH的数据流与所述m个CSI-RS对应的CSI-RS端口之间的映射关系;所述m个CSI-RS包含于所述n个CSI-RS,m为大于1的整数,且m小于或等于n。
  39. 根据权利要求38所述的装置,其特征在于,所述n个CSI-RS对应多种测量假设,所述测量假设用于确定所述CQI对应的所述m个CSI-RS。
  40. 根据权利要求39所述的装置,其特征在于,所述收发单元,还用于发送第一指示信息,所述第一指示信息指示所述多种测量假设中的至少一种测量假设;
    其中,所述至少一种测量假设中的一种测量假设对应所述m个CSI-RS。
  41. 根据权利要求39或40所述的装置,其特征在于,所述收发单元,还用于发送第二指示信息,所述第二指示信息用于指示所述多种测量假设中的至少一种测量假设中每个CSI-RS对应的功率偏置量;
    其中,所述功率偏置量用于指示第一信号能量和第二信号能量之间的比值,所述第一信号能量为映射在所述每个CSI-RS对应的CSI-RS端口的所述PDSCH的数据流的EPRE,所述第二信号能量为所述每个CSI-RS的EPRE。
  42. 根据权利要求38-40任意一项所述的装置,其特征在于,所述收发单元,还用于发送第二指示信息,所述第二指示信息用于指示所述n个CSI-RS中每个CSI-RS对应的功率偏置量;
    其中,所述功率偏置量用于指示第一信号能量和第二信号能量之间的比值,所述第一信号能量为映射在所述每个CSI-RS对应的CSI-RS端口的所述PDSCH的数据流的EPRE,所述第二信号能量为所述每个CSI-RS的EPRE。
  43. 根据权利要求41或42所述的装置,其特征在于,所述第二指示信息所指示的所述每个CSI-RS对应的功率偏置量相同。
  44. 根据权利要求38至43任一项所述的装置,其特征在于,所述n个CSI-RS的配置信息中的每个配置信息用于指示一个CSI-RS端口集合;
    所述一个CSI-RS端口集合包括一个CSI-RS资源,n个所述CSI-RS资源属于同一CSI-RS资源集;
    或,
    所述一个CSI-RS端口集合包括至少一个端口,n个CSI-RS端口集合所包含的所述端口属于同一CSI-RS资源。
  45. 根据权利要求38至44任一项所述的装置,其特征在于,所述CQI包含于信道状态信息CSI,所述CSI还包括以下至少一项:
    所述m个CSI-RS对应的CSI-RS端口集合的索引;或,
    所述m个CSI-RS的索引;或,
    预编码矩阵指示PMI,所述PMI用于指示所述m个CSI-RS对应的CSI-RS端口集合的 预编码矩阵。
  46. 根据权利要求38至45任一项所述的装置,其特征在于,所述映射关系满足:
    其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
  47. 根据权利要求46所述的装置,其特征在于,
    在W0(i)...Wn-1(i)中,非零矩阵的个数为m。
  48. 根据权利要求38至47任一项所述的装置,其特征在于,所述映射关系满足:
    其中,x(k)(i),k=0,1,…,v-1,表示第i个正交频分复用OFDM符号上的PDSCH的第k个数据流;表示第j个CSI-RS的第q个CSI-RS端口上传输的该PDSCH的数据流,q=0,…Pj-1;Wj(i)表示该PDSCH的数据流映射在第j个CSI-RS对应的预编码矩阵。
  49. 一种通信装置,其特征在于,包括至少一个逻辑电路和输入输出接口;
    所述输入输出接口用于输入第一配置信息和n个信道状态信息参考信号CSI-RS;
    所述输入输出接口还用于输出信道状态信息CSI,所述CSI包括信道质量指示CQI;
    所述逻辑电路用于执行如权利要求1至13中任一项所述的方法。
  50. 一种通信装置,其特征在于,包括至少一个逻辑电路和输入输出接口;
    所述输入输出接口用于输出n个信道状态信息参考信号CSI-RS中的一个CSI-RS;
    所述输入输出接口还用于输入信道状态信息CSI,所述CSI包括信道质量指示CQI;
    所述逻辑电路用于执行如权利要求14至24中任一项所述的方法。
  51. 一种通信系统,其特征在于,
    所述通信系统包括如权利要求25至37中任一项的所述通信装置,以及如权利要求38至48中任一项的所述通信装置;
    或者,
    所述通信系统包括权利要求49的所述通信装置和权利要求50的所述通信装置。
  52. 一种计算机可读存储介质,其特征在于,所述介质存储有指令,当所述指令被计算机执行时,实现权利要求1至24中任一项所述的方法。
  53. 一种计算机程序产品,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至24中任一项所述的方法。
PCT/CN2023/078366 2022-02-28 2023-02-27 一种通信方法及通信装置 WO2023160692A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210193794.2A CN116709366A (zh) 2022-02-28 2022-02-28 一种通信方法及通信装置
CN202210193794.2 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023160692A1 true WO2023160692A1 (zh) 2023-08-31

Family

ID=87764869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078366 WO2023160692A1 (zh) 2022-02-28 2023-02-27 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN116709366A (zh)
WO (1) WO2023160692A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204794A (zh) * 2016-03-18 2017-09-26 电信科学技术研究院 一种csi反馈方法、预编码方法及装置
CN109151887A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法和通信装置
CN113810090A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 通信方法和通信装置
CN114071535A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种通信方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107204794A (zh) * 2016-03-18 2017-09-26 电信科学技术研究院 一种csi反馈方法、预编码方法及装置
CN109151887A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法和通信装置
CN113810090A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 通信方法和通信装置
CN114071535A (zh) * 2020-08-07 2022-02-18 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN116709366A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US11750250B2 (en) Communications method and device
WO2021254305A1 (zh) 通信方法和通信装置
CN109495879B (zh) 一种资源配置方法、基站和终端
WO2020143647A1 (zh) 传输信道状态信息的方法和装置
WO2020207369A1 (zh) 一种信道测量方法和通信装置
WO2021017874A1 (zh) 一种通信方法及通信装置
WO2020057375A1 (zh) 一种资源配置方法及通信装置
WO2020233500A1 (zh) 一种通信方法及通信装置
WO2023109647A1 (zh) 信道状态信息的反馈方法及装置
WO2023030032A1 (zh) 信道状态信息的获取方法和装置
US20230078895A1 (en) Uplink reference signal sending method, uplink reference signal receiving method, and communication apparatus
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
WO2019219022A1 (zh) 通信方法、终端设备和网络设备
WO2023160692A1 (zh) 一种通信方法及通信装置
US20220321175A1 (en) CRI Extension for Multi-TRP CSI Enhancement
WO2022218198A1 (zh) 一种通信方法及通信装置
WO2023273969A1 (zh) 资源测量方法和通信装置
WO2024032241A1 (zh) 一种频域分量上报的方法及装置
WO2023208045A1 (zh) Csi上报的方法、终端、网络设备、装置及存储介质
WO2024067251A1 (zh) 一种通信方法及相关设备
WO2023125125A1 (zh) 一种通信方法及通信装置
WO2023005904A1 (zh) 一种信息传输方法及装置
WO2023011570A1 (zh) 一种信道信息反馈的方法及通信装置
WO2023202338A1 (zh) 信息传输方法、装置、终端、网络侧设备及介质
EP4277149A1 (en) Precoding method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759313

Country of ref document: EP

Kind code of ref document: A1