WO2023125296A1 - 用于传输参考信号的方法和装置 - Google Patents

用于传输参考信号的方法和装置 Download PDF

Info

Publication number
WO2023125296A1
WO2023125296A1 PCT/CN2022/141480 CN2022141480W WO2023125296A1 WO 2023125296 A1 WO2023125296 A1 WO 2023125296A1 CN 2022141480 W CN2022141480 W CN 2022141480W WO 2023125296 A1 WO2023125296 A1 WO 2023125296A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm symbol
symbols
ofdm
symbol groups
groups
Prior art date
Application number
PCT/CN2022/141480
Other languages
English (en)
French (fr)
Inventor
刘显达
蔡世杰
胡辰
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125296A1 publication Critical patent/WO2023125296A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a method and an apparatus for transmitting a reference signal.
  • T SLOT represents the duration of a time slot (slot)
  • n is 5 or an integer multiple of 5.
  • T RS is the minimum interval slot number between two adjacent RS transmissions
  • n f represents the sequence number of the system frame
  • n f represents the sequence number of the time slot in the system frame
  • the same RS resource occupies OFDM symbols with the same sequence number in the slot meeting the above conditions.
  • the period of the RS corresponds to the time-domain density of channel estimation, that is, the sampling frequency in the domain.
  • the sampling frequency in the time domain may not be able to meet the channel measurement requirements.
  • the embodiment of the present application provides a method for transmitting a reference signal, by designing a more flexible time-domain RS configuration method, so that the sampling frequency in the time domain can meet the channel measurement requirements.
  • a method for transmitting a reference signal is provided, and the method may be executed by a network device, or may also be executed by a chip, a chip system or a circuit in the network device, which is not limited in the present application.
  • the method includes:
  • the time-domain resources include at least a plurality of first OFDM symbol groups and a plurality of second OFDM symbol groups; receiving or sending reference signals through the first antenna group on the plurality of first OFDM symbol groups; in the Receive or send reference signals through the second antenna group on multiple second OFDM symbol groups;
  • the number of symbols spaced between any two first OFDM symbol groups is an integer multiple of T RS1
  • the number of symbols spaced between at least two of the first OFDM symbol groups in the plurality of first OFDM symbol groups is A non-integer multiple of
  • the number of symbols spaced between any two of the second OFDM symbol groups is an integer multiple of T RS2
  • the number of symbols is non-integer multiples
  • the T RS1 and the T RS2 are Non-integer multiples of
  • the Indicates the number of OFDM symbols included in a slot slot, the first OFDM symbol group and the second OFDM symbol group do not overlap
  • the first OFDM symbol group includes a first OFDM symbol or a plurality of consecutive first OFDM symbols
  • the second OFDM symbol group includes one second OFDM symbol or multiple consecutive second OFDM symbols.
  • the non-overlapping of the first OFDM symbol group and the second OFDM symbol group means that the OFDM symbols included in any first OFDM symbol group and the OFDM symbols included in the second OFDM symbol group are different from each other.
  • the first antenna group may also be the first antenna port group or the first beam group; the second antenna group may also be the second antenna port group or the second beam group.
  • antennas/antenna ports/beams included in the first antenna group and the second antenna group are different from each other.
  • the first OFDM symbol group and the second OFDM symbol group correspond to different reference signal resource ports of the same reference signal resource.
  • the reference signal received or sent by the first antenna group is of the same type as the reference signal received or sent by the second antenna group.
  • both are sounding reference signals (sounding reference signal, SRS); for example, both are channel state information reference signals (channel state information reference signal, CSI-RS); for example, both are demodulation reference signals (demodulation reference signal , DMRS).
  • the reference signal received or sent by the first antenna group and the reference signal received or sent by the second antenna group are reference signals required in one channel measurement.
  • a time-domain reference signal design takes the time length of the OFDM symbol as the time granularity and flexibly configures the time-domain interval of the reference signal for different antenna groups, so that the sampling frequency of the time domain corresponding to each antenna group can meet the requirements of mobile scenarios.
  • T RS1 and T RS2 are OFDM symbols or OFDM symbol groups.
  • the adjacent first OFDM symbol groups may represent the first OFDM symbol groups with adjacent sequence numbers, and are not limited to adjacent time domain positions, and the sequence numbers are arranged in order according to the time domain positions.
  • a plurality of first OFDM symbol groups include a first OFDM symbol group #1, a first OFDM symbol group #2 and a first OFDM symbol group #3, wherein the first OFDM symbol group #1 is the first in the time domain position
  • the first OFDM symbol group, the sequence number is 1, the first OFDM symbol group #2 is the second first OFDM symbol group on the time domain position, the sequence number is 2, then the first OFDM symbol group #1 and the first OFDM symbol group #2 is the first adjacent OFDM symbol group.
  • the adjacent second OFDM symbol groups may represent the second OFDM symbol groups with adjacent sequence numbers, which are not limited to adjacent time domain positions, and the sequence numbers are arranged in sequence according to the time domain positions.
  • the first OFDM symbol group there is a second OFDM symbol group between any two adjacent first OFDM symbol groups in the plurality of first OFDM symbol groups; or in other words, the There is one first OFDM symbol group between any two adjacent second OFDM symbol groups in the plurality of second OFDM symbol groups.
  • n is the number of the first OFDM symbol group.
  • the way that the first OFDM symbol group and the second OFDM symbol group do not overlap can be that a first OFDM symbol group and a second OFDM symbol group appear alternately in sequence, or that multiple first OFDM symbol groups and Multiple second OFDM symbol groups appear alternately, that is, there are multiple ways to realize that the first OFDM symbol group and the second OFDM symbol group do not overlap, which improves the flexibility of the solution.
  • the time domain position of the OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • n s indicates the serial number of the time slot in the system frame
  • n o, s indicates the serial number of OFDM symbols in the slot
  • T offset indicates the time corresponding to the first antenna group domain offset number of OFDM symbols
  • the time domain position of the OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • T offset,2 represents the number of OFDM symbols corresponding to the time domain offset of the second antenna group.
  • the signal when considering the scenario of repeated transmission in the first OFDM symbol group or the second OFDM symbol group, for example, there are multiple consecutive OFDM symbols used for transmission reference
  • the signal can be regarded as one repeated transmission of these multiple OFDM symbols.
  • the time domain position of the k1th OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • n s, f indicates the serial number of the time slot in the system frame
  • n o indicates the serial number of OFDM symbols in the slot
  • T offset indicates the time corresponding to the first antenna group Domain offset OFDM symbol number
  • the k1 is an integer
  • the time domain position of the k2th OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • T offset, 2 represents the number of OFDM symbols corresponding to the time domain offset of the second antenna group
  • the k2 is an integer
  • the T RS1 is less than Alternatively, the T RS1 is greater than or equal to the The T RS2 is less than Alternatively, the T RS2 is greater than or equal to the
  • T RS1 and T RS2 are the same as The size of is irrelevant and can be less than, greater than, or equal to the value of The value of will not limit the value of T RS1 and T RS2 , and Decoupling the value of to avoid being limited by value of .
  • the T RS1 is equal to the T RS2 .
  • the values of T RS1 and T RS2 may be the same or different, and the value relationship between T RS1 and T RS2 is not limited, and reference signal configurations corresponding to different antenna groups are independently designed.
  • the method further includes: sending first configuration information, where the first configuration information is used to indicate the time-domain resource.
  • the first configuration information includes an indication of T RS1 and an indication of T offset1 , an indication of T RS2 and an indication of T offset2 , and the first configuration information includes downlink Control information DCI and/or MAC CE.
  • the reference signal configuration corresponding to different antenna groups can be indicated through the first configuration information, and the first configuration information can be DCI and/or MAC CE, and the specific message type is not limited, so as to improve the flexibility of the solution.
  • the determining the time domain resource includes: determining the time domain resource according to second configuration information, where the second configuration information is used to indicate the time slot where the time domain resource is located range and/or the range of OFDM symbols in which the time domain resource is located in the slot.
  • the location of the time-domain resource can be roughly determined through the second configuration information, and the accuracy of determining the time-domain resource can be improved.
  • a method for transmitting a reference signal is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip, a chip system or a circuit in the terminal device, which is not limited in the present application.
  • the method includes:
  • Receive first configuration information where the first configuration information is used to indicate time-domain resources, and the time-domain resources include at least a plurality of first OFDM symbol groups and a plurality of second OFDM symbol groups; on the plurality of first OFDM symbol groups receiving or sending a reference signal through a third antenna group; receiving or sending a reference signal through a fourth antenna group on the plurality of second OFDM symbol groups;
  • the number of symbols spaced between any two first OFDM symbol groups is an integer multiple of T RS1
  • the number of symbols spaced between at least two of the first OFDM symbol groups in the plurality of first OFDM symbol groups is A non-integer multiple of
  • the number of symbols spaced between any two of the second OFDM symbol groups is an integer multiple of T RS2
  • the number of symbols is non-integer multiples
  • the T RS1 and the T RS2 are Non-integer multiples of
  • the Indicates the number of OFDM symbols included in a slot slot, the first OFDM symbol group and the second OFDM symbol group do not overlap
  • the first OFDM symbol group includes a first OFDM symbol or a plurality of consecutive first OFDM symbols
  • the second OFDM symbol group includes one second OFDM symbol or multiple consecutive second OFDM symbols.
  • a time-domain reference signal design takes the time length of the OFDM symbol as the time granularity and flexibly configures the time-domain interval of the reference signal for different antenna groups, so that the sampling frequency of the time domain corresponding to each antenna group can meet the requirements of mobile scenarios.
  • the way that the first OFDM symbol group and the second OFDM symbol group do not overlap can be that a first OFDM symbol group and a second OFDM symbol group appear alternately in sequence, or that multiple first OFDM symbol groups and Multiple second OFDM symbol groups appear alternately, that is, there are multiple ways to realize that the first OFDM symbol group and the second OFDM symbol group do not overlap, which improves the flexibility of the solution.
  • the time domain position of the OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • n s, f indicates the serial number of the time slot in the system frame
  • n o, s indicates the serial number of the OFDM symbol in the slot
  • T offset indicates the time corresponding to the third antenna group domain offset number of OFDM symbols
  • the time domain position of the OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • T offset,2 represents the number of OFDM symbols corresponding to the time domain offset of the fourth antenna group.
  • the signal when considering the scenario of repeated transmission in the first OFDM symbol group or the second OFDM symbol group, for example, there are multiple consecutive OFDM symbols used for transmission reference
  • the signal can be regarded as one repeated transmission of these multiple OFDM symbols.
  • the time domain position of the k1th OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • n s, f indicates the serial number of the time slot in the system frame
  • n o, s indicates the serial number of OFDM symbols in the slot
  • T offset 1 indicates the time corresponding to the first antenna group Domain offset OFDM symbol number
  • the k1 is an integer
  • the time domain position of the k2th OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • T offset, 2 represents the number of OFDM symbols corresponding to the time domain offset of the second antenna group
  • the k2 is an integer
  • the T RS1 is less than Alternatively, the T RS1 is greater than or equal to the The T RS2 is less than Alternatively, the T RS2 is greater than or equal to the
  • T RS1 and T RS2 are the same as The size of is irrelevant and can be less than, greater than, or equal to the value of The value of will not limit the value of T RS1 and T RS2 , and Decoupling the value of to avoid being limited by value of .
  • the T RS1 is equal to the T RS2 .
  • the values of T RS1 and T RS2 may be the same or different, and the value relationship between T RS1 and T RS2 is not limited, and reference signal configurations corresponding to different antenna groups are independently designed.
  • the first configuration information includes an indication of T RS1 and an indication of T offset1 , an indication of T RS2 and an indication of T offset2 , and the first configuration information includes downlink Control information DCI and/or MAC CE.
  • the reference signal configuration corresponding to different antenna groups can be indicated through the first configuration information, and the first configuration information can be DCI and/or MAC CE, and the specific message type is not limited, so as to improve the flexibility of the solution.
  • a method for transmitting a reference signal is provided, and the method may be executed by a network device, or may also be executed by a chip, a chip system or a circuit in the network device, which is not limited in the present application.
  • the method includes:
  • the time-frequency resource at least including a first frequency hopping bandwidth on a plurality of first OFDM symbol groups and a second frequency hopping bandwidth on a plurality of second OFDM symbol groups;
  • the number of symbols spaced between any two first OFDM symbol groups is an integer multiple of T RS1
  • the number of symbols spaced between at least two of the first OFDM symbol groups in the plurality of first OFDM symbol groups is A non-integer multiple of
  • the number of symbols spaced between any two of the second OFDM symbol groups is an integer multiple of T RS2
  • the number of symbols is non-integer multiples
  • the T RS1 and the T RS2 are Non-integer multiples of
  • the Indicates the number of OFDM symbols included in a slot slot, the first OFDM symbol group and the second OFDM symbol group do not overlap
  • the first OFDM symbol group includes a first OFDM symbol or a plurality of consecutive first OFDM symbols
  • the second OFDM symbol group includes one second OFDM symbol or multiple consecutive second OFDM symbols.
  • a time-domain reference signal design takes the time length of the OFDM symbol as the time granularity and flexibly configures the time-domain interval of the reference signal for different frequency-hopping bandwidths, so that the sampling frequency in the time-domain corresponding to each frequency-hopping bandwidth satisfies Channel measurement requirements in mobile scenarios.
  • T RS1 and T RS2 are OFDM symbols or OFDM symbol groups.
  • the adjacent first OFDM symbol groups may represent the first OFDM symbol groups with adjacent sequence numbers, and are not limited to adjacent time domain positions, and the sequence numbers are arranged in order according to the time domain positions.
  • a plurality of first OFDM symbol groups include a first OFDM symbol group #1, a first OFDM symbol group #2 and a first OFDM symbol group #3, wherein the first OFDM symbol group #1 is the first in the time domain position
  • the first OFDM symbol group, the sequence number is 1, the first OFDM symbol group #2 is the second first OFDM symbol group on the time domain position, the sequence number is 2, then the first OFDM symbol group #1 and the first OFDM symbol group #2 is the first adjacent OFDM symbol group.
  • the adjacent second OFDM symbol groups may represent the second OFDM symbol groups with adjacent sequence numbers, which are not limited to adjacent time domain positions, and the sequence numbers are arranged in sequence according to the time domain positions.
  • there is at least one second OFDM symbol group between the ith OFDM symbol group and the i+1th OFDM symbol group among the plurality of first OFDM symbol groups, where i ⁇ 1,2,...n- 1 ⁇ , n is the number of the first OFDM symbol group.
  • the way that the first OFDM symbol group and the second OFDM symbol group do not overlap can be that a first OFDM symbol group and a second OFDM symbol group appear alternately in sequence, or that multiple first OFDM symbol groups and Multiple second OFDM symbol groups appear alternately, that is, there are multiple ways to realize that the first OFDM symbol group and the second OFDM symbol group do not overlap, which improves the flexibility of the solution.
  • the time domain position of the OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • n s Indicates the number of OFDM symbols in a slot
  • n s, f indicates the serial number of the time slot in the system frame
  • n o, s indicates the serial number of OFDM symbols in the time slot
  • T offset 1 indicates the corresponding to the first frequency hopping bandwidth Time domain offset OFDM symbol number
  • the time domain position of the OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • T offset,2 represents the number of OFDM symbols in the time domain offset corresponding to the second frequency hopping bandwidth.
  • the third aspect when considering a scenario where repeated transmission is included in the first OFDM symbol group or the second OFDM symbol group, for example, there are multiple consecutive OFDM symbols used for transmission reference The signal can be regarded as one repeated transmission of these multiple OFDM symbols.
  • the time domain position of the k1th OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • n s, f indicates the serial number of the time slot in the system frame
  • n o, s indicates the serial number of OFDM symbols in the time slot
  • T offset 1 indicates the corresponding to the first frequency hopping bandwidth
  • the time domain position of the k2th OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • the k2 is an integer
  • the T RS1 is less than Alternatively, the T RS1 is greater than or equal to the The T RS2 is less than Alternatively, the T RS2 is greater than or equal to the
  • T RS1 and T RS2 are the same as The size of is irrelevant and can be less than, greater than, or equal to the value of The value of will not limit the value of T RS1 and T RS2 , and Decoupling the value of to avoid being limited by value of .
  • the T RS1 is equal to the T RS2 .
  • the values of T RS1 and T RS2 may be the same or different, and the value relationship between T RS1 and T RS2 is not limited, and reference signal configurations corresponding to different frequency hopping bandwidths are independently designed.
  • the method further includes: sending third configuration information, where the first configuration information is used to indicate the time-frequency resource.
  • the third configuration information includes an indication of T RS1 and an indication of T offset1 , an indication of T RS2 and an indication of T offset2 , and the third configuration information includes downlink Control information DCI and/or MAC CE.
  • the reference signal configuration corresponding to different frequency hopping bandwidths can be indicated through the third configuration information, and the third configuration information can be DCI and/or MAC CE, and the specific message type is not limited, so as to improve the flexibility of the solution.
  • a method for transmitting a reference signal is provided.
  • the method may be executed by a terminal device, or may also be executed by a chip, a chip system or a circuit in the terminal device, which is not limited in the present application.
  • the method includes:
  • the third configuration information is used to indicate time-frequency resources of the reference signal port, where the time-frequency resources include at least the first frequency hopping bandwidth on multiple first OFDM symbol groups and the first frequency hopping bandwidth on multiple second OFDM symbol groups a second frequency hopping bandwidth on the symbol group;
  • the number of symbols spaced between any two first OFDM symbol groups is an integer multiple of T RS1
  • the number of symbols spaced between at least two of the first OFDM symbol groups in the plurality of first OFDM symbol groups is A non-integer multiple of
  • the number of symbols spaced between any two of the second OFDM symbol groups is an integer multiple of T RS2
  • the number of symbols is non-integer multiples
  • the T RS1 and the T RS2 are Non-integer multiples of
  • the Indicates the number of OFDM symbols included in a slot slot, the first OFDM symbol group and the second OFDM symbol group do not overlap
  • the first OFDM symbol group includes a first OFDM symbol or a plurality of consecutive first OFDM symbols
  • the second OFDM symbol group includes one second OFDM symbol or multiple consecutive second OFDM symbols.
  • a time-domain reference signal design takes the time length of the OFDM symbol as the time granularity and flexibly configures the time-domain interval of the reference signal for different frequency-hopping bandwidths, so that the sampling frequency in the time-domain corresponding to each frequency-hopping bandwidth satisfies Channel measurement requirements in mobile scenarios.
  • the way that the first OFDM symbol group and the second OFDM symbol group do not overlap can be that a first OFDM symbol group and a second OFDM symbol group appear alternately in sequence, or that multiple first OFDM symbol groups and Multiple second OFDM symbol groups appear alternately, that is, there are multiple ways to realize that the first OFDM symbol group and the second OFDM symbol group do not overlap, which improves the flexibility of the solution.
  • the time domain position of the OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • n s Indicates the number of OFDM symbols in a slot
  • n s, f indicates the serial number of the time slot in the system frame
  • n o, s indicates the serial number of OFDM symbols in the time slot
  • T offset 1 indicates the corresponding to the first frequency hopping bandwidth Time domain offset OFDM symbol number
  • the time domain position of the OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • T offset,2 represents the number of OFDM symbols in the time domain offset corresponding to the second frequency hopping bandwidth.
  • the signal when considering the scenario of repeated transmission in the first OFDM symbol group or the second OFDM symbol group, for example, there are multiple consecutive OFDM symbols used for transmission reference
  • the signal can be regarded as one repeated transmission of these multiple OFDM symbols.
  • the time domain position of the k1th OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • n s, f indicates the serial number of the time slot in the system frame
  • n o, s indicates the serial number of OFDM symbols in the time slot
  • T fffset, 1 indicates the number corresponding to the first frequency hopping bandwidth
  • the time domain position of the k2th OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • the k2 is an integer
  • the T RS1 is less than Alternatively, the T RS1 is greater than or equal to the The T RS2 is less than Alternatively, the T RS2 is greater than or equal to the
  • T RS1 and T RS2 are the same as The size of is irrelevant and can be less than, greater than, or equal to the value of The value of will not limit the value of T RS1 and T RS2 , and Decoupling the value of to avoid being limited by value of .
  • the T RS1 is equal to the T RS2 .
  • the values of T RS1 and T RS2 may be the same or different, and the value relationship between T RS1 and T RS2 is not limited, and reference signal configurations corresponding to different frequency hopping bandwidths are independently designed.
  • the third configuration information includes an indication of T RS1 and an indication of T offset1 , an indication of T RS2 and an indication of T offset2 , and the third configuration information includes downlink Control information DCI and/or MAC CE.
  • the reference signal configuration corresponding to different frequency hopping bandwidths can be indicated through the third configuration information, and the third configuration information can be DCI and/or MAC CE, and the specific message type is not limited, so as to improve the flexibility of the solution.
  • an apparatus for transmitting a reference signal includes a processor, configured to implement the functions of the network device in the methods described in the first and third aspects above.
  • the apparatus for transmitting a reference signal may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the functions of the network device in the methods described in the first and third aspects above.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the functions of the network device in the methods described in the first and third aspects above.
  • the device for transmitting a reference signal may further include a communication interface, where the communication interface is used for the device for transmitting a reference signal to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the device for transmitting a reference signal includes: a processor and a communication interface, configured to implement the functions of the network device in the methods described in the first and third aspects above, specifically including:
  • the processor communicates with the outside through the communication interface
  • the processor is used to run a computer program, so that the device implements any one of the methods described in the first and third aspects above.
  • the external may be an object other than the processor, or an object other than the device.
  • the device for transmitting the reference signal is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • an apparatus for transmitting a reference signal includes a processor configured to implement functions of the terminal device in the methods described in the second and fourth aspects above.
  • the apparatus for transmitting a reference signal may further include a memory, the memory is coupled to the processor, and the processor is configured to implement functions of the terminal device in the methods described in the second and fourth aspects above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute the program instructions stored in the memory, so as to implement the functions of the terminal device in the methods described in the second and fourth aspects above.
  • the device for transmitting a reference signal may further include a communication interface, where the communication interface is used for the device for transmitting a reference signal to communicate with other devices.
  • the transceiver may be a communication interface, or an input/output interface.
  • the device for transmitting a reference signal includes: a processor and a communication interface, configured to implement the functions of the terminal device in the methods described in the second and fourth aspects above, specifically including:
  • the processor communicates with the outside through the communication interface
  • the processor is used to run a computer program, so that the device implements any one of the methods described in the second and fourth aspects above.
  • the external may be an object other than the processor, or an object other than the device.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pipe feet or related circuits, etc.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes any of the possible implementation manners of the first aspect to the fourth aspect. method.
  • a computer program product including an instruction is provided, and when the instruction is executed by a computer, the communication device implements the method in any possible implementation manner of the first aspect to the fourth aspect.
  • a communication system including the device for transmitting a reference signal in the fifth aspect and the device for transmitting a reference signal in the sixth aspect.
  • Fig. 1 is a schematic diagram of a communication system 100 applicable to the method for transmitting a reference signal according to the embodiment of the present application.
  • Fig. 2 is a schematic diagram of the relationship between a system frame, time slots in the system frame, and OFDM symbols in the time slots.
  • Fig. 3 is a configuration method of uplink and downlink frames.
  • Fig. 4 is a schematic flowchart of a method for transmitting a reference signal provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the positions of two first OFDM symbol groups.
  • Fig. 6 is a schematic diagram of an interval between two first OFDM symbol groups.
  • Fig. 7 is a schematic diagram of positions of multiple first OFDM symbol groups.
  • FIG. 8 are schematic diagrams of a relationship between multiple first OFDM symbol groups and time slots.
  • FIG. 9 is a schematic diagram of locations of OFDM symbols for transmitting reference signals by different antenna groups according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of another OFDM symbol position for transmitting reference signals by different antenna groups according to an embodiment of the present application.
  • Fig. 11 is a schematic flowchart of another method for transmitting a reference signal provided by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of locations of OFDM symbols for transmitting reference signals with different frequency hopping bandwidths according to an embodiment of the present application.
  • Fig. 13 is a schematic diagram of another OFDM symbol position for transmitting reference signals with different frequency hopping bandwidths according to an embodiment of the present application.
  • Fig. 14 is a schematic diagram of a device 400 for transmitting a reference signal proposed in the present application.
  • Fig. 15 is a schematic structural diagram of a terminal device 500 applicable to the embodiment of the present application.
  • Fig. 16 is a schematic diagram of an apparatus 600 for transmitting a reference signal proposed in the present application.
  • FIG. 17 is a schematic structural diagram of a network device 700 applicable to the embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex) , TDD), global interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, fifth generation (5th generation, 5G) system, new radio (new radio, NR) or future network, etc., as described in this application
  • the 5G mobile communication system includes a non-standalone (NSA) 5G mobile communication system or a standalone (standalone, SA) 5G mobile communication system.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system may also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, an object Internet of Things (IoT) communication system or other communication systems.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT object Internet of Things
  • the terminal equipment (terminal equipment) in the embodiment of the present application may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal (user terminal), a user equipment (user equipment, UE), terminal (terminal), wireless communication device, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminals in the future evolution of public land mobile network (PLMN) Devices or terminal devices in the future Internet of Vehicles are not limited in this embodiment of the present application.
  • PLMN public land mobile network
  • wearable devices can also be referred to as wearable smart devices, which is a general term for intelligently designing daily wear and developing wearable devices by applying wearable technology, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device can also be the terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize Interconnection, an intelligent network that interconnects things.
  • the IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • the terminal device may also include a sensor, and its main functions include collecting data (part of the terminal device), receiving control information and downlink data of the network device, and sending electromagnetic waves to transmit uplink data to the network device.
  • the network device in this embodiment of the present application may be any communication device with a wireless transceiver function for communicating with a terminal device.
  • the device includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), access point (access point, AP) in wireless fidelity (wireless fidelity, WIFI) system, wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc.
  • the network device in this embodiment of the present application may refer to a central unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the network device includes a CU and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in the access network (radio access network, RAN), and the CU can also be divided into network devices in the core network (core network, CN), which is not limited in this application.
  • the CU can also be divided into a central unit of the control plane (CU-CP) and a central unit of the user plane (CU-UP).
  • the CU-CP and CU-UP can also be deployed on different physical devices, and the CU-CP is responsible for the control plane function, mainly including the RRC layer and the PDCP-C layer.
  • the PDCP-C layer is mainly responsible for encryption and decryption of data on the control plane, integrity protection, and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP layer and PDCP-U layer.
  • the SDAP layer is mainly responsible for processing core network data and mapping flows to bearers.
  • the PDCP-U layer is mainly responsible for at least one function such as encryption and decryption of the data plane, integrity protection, header compression, serial number maintenance, and data transmission.
  • the CU-CP and the CU-UP are connected through a communication interface (for example, an E1 interface).
  • the CU-CP represents that the network device is connected to the core network device through a communication interface (for example, an Ng interface), and is connected to a DU through a communication interface (for example, an F1-C (control plane) interface).
  • CU-UP is connected to DU through a communication interface (for example, F1-U (User Plane) interface).
  • the PDCP-C layer is also included in the CU-UP.
  • the network device mentioned in the embodiment of this application may be a device including CU, or DU, or a device including CU and DU, or a control plane CU node (CU-CP node) and a user plane CU node (CU-UP node) and DU Node's device.
  • CU-CP node control plane CU node
  • CU-UP node user plane CU node
  • Network equipment and terminal equipment can be deployed on land, including indoors or outdoors, hand-held or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the scenarios where the network device and the terminal device are located are not limited.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disk, floppy disk, or tape, etc.), optical disks (e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disk, floppy disk, or tape, etc.
  • optical disks e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the communication system shown in FIG. 1 is taken as an example to describe in detail the communication system applicable to the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 101 shown in FIG. 1 .
  • the communication system 100 may further include at least one terminal device, such as the terminal devices 102 to 107 shown in FIG. 1 .
  • the terminal devices 102 to 107 may be mobile or fixed.
  • Each of the network device 101 and one or more of the terminal devices 102 to 107 may communicate via a wireless link.
  • Each network device can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • terminal devices can communicate directly with each other.
  • a device to device (device to device, D2D) technology may be used to realize direct communication between terminal devices.
  • D2D device to device
  • FIG. 1 between terminal devices 105 and 106 , and between terminal devices 105 and 107 , direct communication can be made using the D2D technology.
  • Terminal device 106 and terminal device 107 may communicate with terminal device 105 individually or simultaneously.
  • Terminals 105 to 107 can also each communicate with network device 101 .
  • it can directly communicate with the network device 101, as shown in the figure, the terminal devices 105 and 106 can directly communicate with the network device 101; it can also communicate with the network device 101 indirectly, as shown in the figure, the terminal device 107 communicates with the network device via the terminal device 105 101 communications.
  • Each communication device may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmitting antenna for sending signals and at least one receiving antenna for receiving signals. Therefore, the communication devices in the communication system 100 can communicate through the multi-antenna technology.
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • the terminal device can process the signal to be transmitted with the help of the precoding matrix that matches the channel state, so that the precoded signal to be transmitted is adapted to the channel, so that the received signal of the receiving device Increased strength and reduced interference to other receiving devices. Therefore, through precoding processing on the signal to be transmitted, the quality of the received signal (for example, signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), etc.) can be improved.
  • signal to interference plus noise ratio signal to interference plus noise ratio, SINR
  • the sending device may also perform precoding in other ways. For example, in a case where channel information (such as but not limited to a channel matrix) cannot be obtained, a pre-set precoding matrix or a weighting processing manner is used to perform precoding and the like. For the sake of brevity, its specific content will not be repeated in this application.
  • the precoding matrix may be, for example, a precoding matrix determined by the terminal device based on the channel matrix of each frequency domain unit.
  • the precoding matrix may be determined by the terminal device through channel estimation or based on channel reciprocity.
  • the specific method for the terminal device to determine the precoding matrix is not limited to the above, and the specific implementation manner may refer to the prior art, and for the sake of brevity, it is not listed here one by one.
  • the precoding matrix can be obtained by performing singular value decomposition (singular value decomposition, SVD) on the channel matrix or the covariance matrix of the channel matrix, or by performing eigenvalue decomposition (eigenvalue decomposition) on the covariance matrix of the channel matrix. decomposition, EVD).
  • singular value decomposition singular value decomposition
  • eigenvalue decomposition eigenvalue decomposition
  • uplink and downlink channels transmit signals on different time domain resources on the same frequency domain resources.
  • TDD time division duplexing
  • the channels experienced by the signals on the uplink and downlink channels are the same, and the uplink and downlink channels can be equivalently obtained from each other.
  • This is the reciprocity of the uplink and downlink channels.
  • network devices can measure uplink channels according to uplink reference signals, such as sounding reference signals (sounding reference signal, SRS). And the downlink channel can be estimated according to the uplink channel, so that the precoding matrix for downlink transmission can be determined.
  • uplink reference signals such as sounding reference signals (sounding reference signal, SRS).
  • a reference signal port is a granularity of resources occupied by a terminal device for sending a reference signal.
  • one reference signal port may correspond to one transmit antenna of the terminal device, and in this implementation manner, the number of reference signal ports of the terminal device may be the number of transmit antennas of the terminal device.
  • a reference signal port can correspond to a precoding vector of the transmit antenna, that is, it can correspond to a spatial beamforming direction.
  • the number of reference signal ports of the terminal device can be smaller than that of the terminal The number of transmit antennas for the device.
  • multiple reference signals corresponding to multiple reference signal ports on one reference signal resource occupy one or more time-frequency resources, and multiple reference signals occupying the same time-frequency resource are multiplexed by code division .
  • reference signals of different reference signal ports use different cyclic shifts (cyclic shift, CS) to occupy the same time-frequency resource.
  • different reference signals of different reference signal ports can avoid interference with each other in an orthogonal manner of code division multiplexing, and the orthogonal manner can be realized by cyclic shifting.
  • the CS can basically realize code division orthogonality.
  • the receiving end can eliminate signals using other CSs and retain only signals using a specific CS, thereby implementing code division multiplexing.
  • the reference signal port may be an SRS port, or may be a CSI-RS port.
  • Reference signal reference signal (reference signal, RS).
  • the RS may also be called a pilot (pilot), a reference sequence, and the like.
  • the reference signal may be a reference signal used for channel measurement.
  • the reference signal may be a channel state information reference signal (channel state information reference signal, CSI-RS) used for downlink channel measurement, or may be a sounding reference signal (sounding reference signal, SRS) used for uplink channel measurement.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • the reference signal is an SRS as an example for description below.
  • SRS is used to estimate channel quality in different frequency bands.
  • FIG. 2 is a schematic diagram of the relationship between a system frame, time slots in the system frame, and OFDM symbols in the time slots.
  • n f represents the serial number of the system frame
  • n s represents the serial number of the time slot in the system frame
  • n o represents the serial number of the OFDM symbol in the time slot
  • a system frame may also be called a frame, or a radio frame, and the like.
  • the time slots involved in this application include flexible (flexible) time slots, downlink (downlink) time slots and uplink (uplink) time slots.
  • S flexible
  • D downlink
  • U uplink
  • T SRS n*T SLOT , where T SLOT is the duration of a time slot (slot), and n is 5 or an integer multiple of 5.
  • T SLOT is the duration of a time slot (slot)
  • n is 5 or an integer multiple of 5.
  • T SRS is the minimum interval slot number between two adjacent SRS transmissions.
  • FIG. 3 is an uplink and downlink frame configuration manner.
  • the reference signal resource can be used to configure the transmission attribute of the reference signal, for example, time-frequency resource position, port mapping relationship, power factor, and scrambling code, etc. For details, refer to the prior art.
  • the sending end device can send the reference signal based on the reference signal resource, and the receiving end device can receive the reference signal based on the reference signal resource.
  • One reference signal resource may include one or more RBs.
  • the reference signal resources may be, for example, SRS resources.
  • the embodiments of the present application involve antenna switching scenarios and non-antenna switching scenarios, wherein the antenna switching scenario indicates that the number of transmitting antennas of the terminal device is less than the number of receiving antennas; the non-antenna switching scenario indicates that the number of transmitting antennas of the terminal device is equal to the number of receiving antennas number.
  • the number of antennas of the terminal device is expressed as NTMR, where N indicates the number of transmitting antennas, T indicates the number of transmitting (transmit, T), M indicates the number of receiving antennas, and R indicates receiving (receive, R).
  • the terminal device is understood as a terminal device in an antenna switching scenario, and it can be understood that the terminal device needs to perform antenna switching in the process of sending an SRS.
  • antenna switching may also be referred to as antenna selection, which is not limited in this application.
  • the relative moving speed v of the terminal device and the network device determines the maximum Doppler spread of the channel:
  • f c is the carrier frequency
  • c is the speed of light
  • the minimum time interval is 2.5ms; when the speed increases to 300km/, the minimum required SRS time interval is 0.5ms.
  • for indication may include both direct indication and indirect indication.
  • indication information for indicating A it may include that the indication information directly indicates A or indirectly indicates A, but it does not mean that A must be included in the indication information.
  • the information indicated by the indication information is referred to as information to be indicated, and there are many ways to indicate the information to be indicated during the specific implementation process.
  • the information to be indicated may be directly indicated, such as the information to be indicated itself or an index of the information to be indicated.
  • the information to be indicated may also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be realized by means of a pre-agreed (for example, protocol-specified) arrangement order of each information, thereby reducing the indication overhead to a certain extent.
  • each piece of information can also be identified and indicated in a unified manner, so as to reduce the indication overhead caused by individually indicating the same information.
  • a precoding matrix is composed of precoding vectors, and each precoding vector in the precoding matrix may have the same part in composition or other attributes.
  • specific indication manners may also be various existing indication manners, such as but not limited to, the above indication manners and various combinations thereof.
  • various indication manners reference may be made to the prior art, which will not be repeated herein. It can be known from the above that, for example, when multiple pieces of information of the same type need to be indicated, there may be a situation where different information is indicated in different ways.
  • the required indication method can be selected according to the specific needs.
  • the embodiment of the present application does not limit the selected indication method. In this way, the indication method involved in the embodiment of the present application should be understood as covering the There are various methods by which a party can obtain the information to be indicated.
  • a row vector can be expressed as a column vector
  • a matrix can be represented by the transposed matrix of the matrix
  • a matrix can also be expressed as a vector or an array.
  • the vector or array It can be formed by connecting each row vector or column vector of the matrix, etc.
  • the information to be indicated can be sent together as a whole, or can be divided into multiple sub-information and sent separately, and the sending periods and/or sending timings of these sub-information can be the same or different.
  • the specific sending method is not limited in this application.
  • the sending cycle and/or sending timing of these sub-information may be predefined, for example, pre-defined according to a protocol, or may be configured by the transmitting end device by sending configuration information to the receiving end device.
  • the configuration information may include, for example but not limited to, one or a combination of at least two of radio resource control signaling, media access control (media access control, MAC) layer signaling, and physical layer signaling.
  • the radio resource control signaling includes, for example, radio resource control (radio resource control, RRC) signaling;
  • the MAC layer signaling includes, for example, a MAC control element (control element, CE);
  • the physical layer signaling includes, for example, DCI.
  • the "protocol” involved in this embodiment of the application may refer to a standard protocol in the communication field, for example, it may include LTE protocol, NR protocol and related protocols applied in future communication systems, which is not limited in this application.
  • the minimum SRS period is limited by the frame structure
  • the minimum SRS interval is limited by the slot duration, and must be configured as an integer multiple of the slot duration.
  • LoS Line-of-Sight
  • the embodiment of the present application provides a method for transmitting reference signals.
  • the sampling frequency in the time domain can meet the channel measurement requirements, for example, It meets the above-mentioned requirements of channel measurement and Doppler estimation under different mobility scenarios and different channel conditions.
  • the method for transmitting a reference signal may be applied to a system that communicates through a multi-antenna technology, for example, the communication system 100 shown in FIG. 1 .
  • the communication system may include at least one network device and at least one terminal device. Network devices and terminal devices can communicate through multi-antenna technology.
  • the embodiments shown below do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be executed according to this application.
  • the method provided by the embodiment of the application is sufficient for communication.
  • the execution subject of the method provided by the embodiment of the application may be a terminal device or a network device, or a functional module in a terminal device or a network device that can call a program and execute the program.
  • the method for transmitting reference signals is described by taking the "reference signal” as SRS as an example.
  • SRS can also be replaced by other reference signals. No limit.
  • Fig. 4 is a schematic flowchart of a method for transmitting a reference signal provided by an embodiment of the present application. Include the following steps:
  • the network device determines time domain resources.
  • the time-domain resource includes at least a plurality of first OFDM symbol groups and a plurality of second OFDM symbol groups, the first OFDM symbol group and the second OFDM symbol group do not overlap, and the first OFDM symbol group includes a The first OFDM symbol or multiple consecutive first OFDM symbols, the second OFDM symbol group includes one second OFDM symbol or multiple consecutive second OFDM symbols.
  • the number of symbols spaced between any two first OFDM symbol groups in the above multiple first OFDM symbol groups is an integer multiple of T RS1 .
  • the unit of T RS1 is an OFDM symbol or an OFDM symbol group.
  • T RS1 is equal to 12, indicating 12 OFDM symbols.
  • the above two first OFDM symbol groups may refer to two first OFDM symbol groups with adjacent sequence numbers.
  • the serial numbers are arranged in sequence according to the positions in the time domain.
  • a plurality of first OFDM symbol groups include a first OFDM symbol group #1, a first OFDM symbol group #2 and a first OFDM symbol group #3, wherein the first OFDM symbol group #1 is the first first OFDM symbol group #1 Symbol group, the sequence number is 1, the first OFDM symbol group #2 is the second first OFDM symbol group, the sequence number is 2, then the first OFDM symbol group #1 and the first OFDM symbol group #2 are two adjacent A first OFDM symbol group.
  • FIG. 5 is a schematic diagram of the positions of two first OFDM symbol groups.
  • a plurality of first OFDM symbol groups include the first OFDM symbol group #1, the first OFDM symbol group #2 and the first OFDM symbol group #3, wherein the first OFDM symbol group #1 and the first OFDM symbol group #1
  • An OFDM symbol group #2 may be referred to as two adjacent first OFDM symbol groups
  • the first OFDM symbol group #2 and the first OFDM symbol group #3 may be referred to as two adjacent first OFDM symbol groups. Therefore, according to FIG.
  • the adjacent two first OFDM symbol groups mean that when multiple symbol groups are arranged in order in the time domain, the two symbol groups are adjacent in the time domain position, and adjacent does not mean Continuous in the time domain, there may be other OFDM symbols between the two adjacent symbol groups, and there may be other OFDM symbol groups between the two adjacent first OFDM symbol groups.
  • the number of symbols spaced between any two first OFDM symbol groups is an integer multiple of T RS1
  • the number of symbols spaced between the first OFDM symbol group and the second OFDM symbol group is T RS1 Integer multiples of
  • the number of symbols spaced between the first OFDM symbol group and the third OFDM symbol group is an integer multiple of T RS1
  • T RS1 is 4 symbols
  • the first OFDM symbol group and the third OFDM symbol group The interval between two OFDM symbol groups may be 4 OFDM symbols
  • the interval between the second OFDM symbol group and the third OFDM symbol group may also be 4 OFDM symbols.
  • the interval between any two adjacent first OFDM symbols may be T RS1 , as in the above example.
  • the interval between the first OFDM symbol group and the second OFDM symbol group may be It is 4 OFDM symbols, which is one time of T RS1 at this time, and there can be 8 OFDM symbols between the second OFDM symbol group and the third OFDM symbol group, which is twice of T RS1 at this time, the third OFDM symbol group and The interval between the fourth OFDM symbol groups is 4 OFDM symbols.
  • the interval between the two first OFDM symbol groups may be the interval between the N1 first OFDM symbols included in the two first OFDM symbol groups respectively, and the N1 is less than or equal to a positive integer, the Indicates the number of first OFDM symbols included in the first OFDM symbol group, It can be understood as the number of OFDM symbols included in one repeated transmission in the first OFDM symbol group.
  • the first OFDM symbol group includes two consecutive first OFDM symbols (for example, the first OFDM symbol is the first OFDM symbol #1, and the second OFDM symbol is the first OFDM symbol #2), then the two The interval between the first OFDM symbol groups can be the interval between the first OFDM symbol #2 respectively included in the two first OFDM symbol groups, or the interval between the two first OFDM symbol groups can be two first OFDM symbol groups There is an interval between the first OFDM symbols #2 respectively included in the OFDM symbol groups.
  • the first OFDM symbol group includes one first OFDM symbol
  • the interval between two first OFDM symbol groups may be the interval between two first OFDM symbol groups.
  • the interval between the two first OFDM symbol groups may be represented by the interval between the N1 th first OFDM symbols respectively included in the two first OFDM symbol groups.
  • FIG. 6 is a schematic diagram of an interval between two first OFDM symbol groups.
  • two first OFDM symbol groups (such as, the first OFDM symbol group #1 and the first OFDM symbol group #2 shown in Fig. 6) respectively include OFDM symbols (such as OFDM symbol #1, OFDM symbol #2, ..., OFDM symbol # shown in Figure 6 ).
  • the interval between the first OFDM symbol group #1 and the first OFDM symbol group #2 can be represented by the interval L between two OFDM symbols #1, or can also be represented by the interval L between two OFDM symbols #2 Indicates, ..., or, can also be represented by two OFDM symbols#
  • the interval between L indicates.
  • the interval between two N1-th first OFDM symbols is specifically expressed as:
  • the number of symbols spaced between the N1th OFDM symbols included in the above two first OFDM symbol groups is an integer multiple of TRS1 , which can be expressed as:
  • the number of symbols spaced between the N1th OFDM symbols included in the above two adjacent first OFDM symbol groups respectively is an integer multiple of TRS1 , which can be expressed as:
  • the space between the N1th OFDM symbols included in two adjacent first OFDM symbol groups is G1 OFDM symbols, and the G1 satisfies n1 is a positive integer.
  • the number of symbols spaced between the N1th OFDM symbols included in the above-mentioned two adjacent first OFDM symbol groups respectively is an integer multiple of TRS1 , which can be expressed as:
  • the ratio of the number of symbols spaced between the N1 th OFDM symbols respectively included in two adjacent first OFDM symbol groups to T RS1 is a positive integer.
  • T RS1 is greater than or equal to 2
  • T RS1 is non-integer multiples, or that T RS1 is not Integer multiples, the T RS1 is less than
  • the T RS is greater than or equal to the
  • T RS1 is Non-integer multiples of can be expressed as:
  • T RS1 is Non-integer multiples of can be expressed as:
  • n2 is a non-integer.
  • T RS1 is Non-integer multiples of can be expressed as:
  • T RS1 with The ratio of is non-integer.
  • the number of symbols at least two intervals between the first OFDM symbol groups is Non-integer multiples of . That is to say, there is at least one G1 in the above G1 that satisfies: G 1mod
  • FIG. 7 is a schematic diagram of positions of multiple first OFDM symbol groups.
  • a plurality of first OFDM symbol groups include a first OFDM symbol group #1, a first OFDM symbol group #2 and a first OFDM symbol group #3, wherein the first OFDM symbol group #1 and the first OFDM symbol group #1
  • the interval L1 between an OFDM symbol group #2 is an integer multiple of T RS1
  • the interval L2 between the first OFDM symbol group #2 and the first OFDM symbol group #3 is an integer multiple of T RS1
  • the interval L3 between #1 and the first OFDM symbol group #3 is an integer multiple of T RS1 .
  • L1, L2 and L3 are Non-integer multiples of (eg, L1 and L2 shown in Figure 7 are non-integer multiples).
  • the two first OFDM symbol groups are respectively located in different time slots.
  • a plurality of first OFDM symbol groups include a first OFDM symbol group #1 and a first OFDM symbol group #2, wherein the first OFDM symbol group #1 is located at SLOT #1, and the first OFDM symbol group #2 is located at SLOT # 2.
  • SLOT#1 and SLOT#2 are different time slots.
  • multiple first OFDM symbol groups including two first OFDM symbol groups is just an example, and the multiple first OFDM symbol groups may also include three or more first OFDM symbol groups;
  • the first OFDM symbol group includes at least three first OFDM symbol groups, the at least three first OFDM symbol groups include the first OFDM symbol group located in the same time slot.
  • a plurality of first OFDM symbol groups include a first OFDM symbol group #1, a first OFDM symbol group #2, and a first OFDM symbol group #3, wherein the first OFDM symbol group #1 is located at SLOT #1, and the first OFDM symbol group #1 is located at SLOT #1.
  • OFDM symbol group #2 and the first OFDM symbol group #3 are located in SLOT #2, and SLOT #1 and SLOT #2 are different time slots.
  • FIG. 8 are schematic diagrams of a relationship between multiple first OFDM symbol groups and time slots.
  • a plurality of first OFDM symbol groups include two first OFDM symbol groups (the first OFDM symbol group #1 and the first OFDM symbol group #2), wherein the first OFDM symbol Group #1 is located in SLOT #1, the first OFDM symbol group #2 is located in SLOT #2, and SLOT #1 and SLOT #2 are different time slots.
  • a plurality of first OFDM symbol groups include a first OFDM symbol group #1, a first OFDM symbol group #2 and a first OFDM symbol group #3, wherein the first OFDM symbol group #1 is located in SLOT #1, the first OFDM symbol group #2 and the first OFDM symbol group #3 are located in SLOT #2, and SLOT #1 and SLOT #2 are different time slots.
  • the number of symbols spaced between any two second OFDM symbol groups in the plurality of second OFDM symbol groups is an integer multiple of T RS2 .
  • the unit of T RS2 is OFDM symbol.
  • T RS2 is equal to 12, indicating 12 OFDM symbols.
  • positions of the OFDM symbols included in each of the second OFDM symbol groups in the plurality of second OFDM symbol groups and the positional relationship between different second OFDM symbol groups in the plurality of second OFDM symbol groups are the same as those described above
  • the multiple first OFDM symbol groups of are similar.
  • the above-mentioned two second OFDM symbol groups can refer to two second OFDM symbol groups with adjacent sequence numbers, and the positional relationship of the adjacent second OFDM symbol groups can refer to the positional relationship of the above-mentioned two first OFDM symbol groups Description (for example, as shown in FIG. 5 , the first OFDM symbol group may be replaced by the second OFDM symbol group), which will not be repeated here.
  • the interval between two second OFDM symbol groups can be the interval between the N2th second OFDM symbols included in the two second OFDM symbol groups respectively, and the N2 is less than or equal to a positive integer
  • the Indicates the number of OFDM symbols included in the second OFDM symbol group, and the interval between two second OFDM symbols can refer to the description of the interval between the above two first OFDM symbols (such as, the first OFDM shown in Figure 6 can be The symbol group is replaced by the second OFDM symbol group), which will not be repeated here.
  • the interval between multiple second OFDM symbol groups can refer to the description of the interval between the above-mentioned multiple first OFDM symbol groups (for example, as shown in Figure 7, the first OFDM symbol group can be replaced by the second OFDM symbol group), which will not be repeated here.
  • the relationship between multiple second OFDM symbol groups and time slots can refer to the description of the relationship between the above-mentioned multiple second OFDM symbol groups and time slots (such as shown in (a) and (b) in Figure 8
  • the first OFDM symbol group may be replaced by the second OFDM symbol group), which will not be repeated here.
  • first OFDM symbol group there is no overlap between the above-mentioned first OFDM symbol group and the second OFDM symbol group. It can be understood that the first OFDM symbols included in the multiple first OFDM symbol groups, the second OFDM symbols included in the multiple second OFDM symbol groups, and the first OFDM symbols and the second OFDM symbols are different OFDM symbols.
  • a certain time-domain resource for receiving or sending a reference signal includes M symbols, and the first M1 symbols in the M symbols include the first first OFDM symbol group among the above-mentioned multiple first OFDM symbol groups ;
  • the M1+1th symbol to the M2th symbol in the M symbols include the first second OFDM symbol group in the above-mentioned plurality of second OFDM symbol groups;
  • the M2+1th symbol in the M symbols The symbols up to M3 include the second second OFDM symbol group among the above-mentioned plurality of first OFDM symbol groups...
  • the first OFDM symbol group and the second OFDM symbol group are located in alternate time domain positions in turn.
  • a certain time-domain resource used to receive or send a reference signal includes M symbols, and the first M1 symbols in the M symbols include the first first OFDM symbol in the above-mentioned multiple first OFDM symbol groups group and the second first OFDM symbol group; the M1+1th symbol to M2 symbols in the M symbols include the first second OFDM symbol group in the above-mentioned plurality of second OFDM symbol groups; the M Symbols M2+1 to M3 in symbols include the third second OFDM symbol group in the above-mentioned multiple first OFDM symbol groups... It can be understood as: multiple first OFDM symbol groups and multiple The second OFDM symbol groups are alternately located at successive time domain positions.
  • the reference signal may be received or sent on the time domain resource.
  • receiving or sending the reference signal on the time domain resource includes:
  • receiving or sending a reference signal on the time domain resource includes:
  • multiple antennas are divided into multiple groups of antenna groups, and different antenna groups occupy different resources to receive or send reference signals.
  • the method flow shown in FIG. 4 also includes:
  • a reference signal is received or transmitted by a second antenna group on the plurality of second OFDM symbol groups.
  • the reference signal received or sent by the first antenna group is of the same type as the reference signal received or sent by the second antenna group.
  • both are SRS; for example, both are CSI-RS.
  • the reference signal received or sent by the first antenna group and the reference signal received or sent by the second antenna group are reference signals required in one channel measurement.
  • the number of antenna groups can be more than two groups, and the above-mentioned time-domain resources can include OFDM symbol groups other than the above-mentioned multiple first OFDM symbol groups and multiple second OFDM symbol groups (such as, Also includes a plurality of third OFDM symbol groups and a plurality of fourth OFDM symbol groups).
  • the reference signals sent by each antenna group in different antenna groups occupy exactly the same one or more OFDM symbols, and the OFDM symbols occupied by RSs sent by different groups of antenna groups in the time domain do not overlap with each other.
  • the first OFDM symbol group included in the above time domain resource corresponds to the same antenna or the same group of antennas, or corresponds to the same or the same group of antenna ports.
  • the sending antennas used for sending SRS on each of the first OFDM symbol groups in the multiple first OFDM symbol groups included in the time-domain resources are the same; carrying CSI on time-domain resources
  • the receiving antennas used to receive the CSI-RS on each first OFDM symbol group among the multiple OFDM symbols included in the time domain resource are the same.
  • the second OFDM symbol group included in the above time domain resource corresponds to the same antenna or the same group of antennas, or corresponds to the same or the same group of antenna ports.
  • the transmitting antennas used for sending SRS on each of the second OFDM symbol groups in the multiple second OFDM symbol groups included in the time-domain resources are the same; carrying CSI on time-domain resources
  • the receiving antennas used to receive the CSI-RS on each second OFDM symbol group among the multiple OFDM symbols included in the time domain resource are the same.
  • the reference signal is received or sent through the first antenna group on the multiple first OFDM symbol groups, and the reference signal is received or sent through the second antenna group on the multiple second OFDM symbol groups.
  • Signal, the first OFDM symbol group and the second OFDM symbol group do not overlap, including the following two ways:
  • Mode 1 a first OFDM symbol group and a second OFDM symbol group appear alternately in sequence.
  • FIG. 9 is a schematic diagram of locations of OFDM symbols for different antenna groups transmitting reference signals.
  • a first OFDM symbol group and a second OFDM symbol group appear alternately in sequence (for example, the positions of multiple first OFDM symbol groups and multiple second OFDM symbol groups shown in Figure 9 are sequentially the first OFDM symbol group #1, second OFDM symbol group #1, first OFDM symbol group #2, second OFDM symbol group #2).
  • a first OFDM symbol group and a second OFDM symbol group appearing alternately in sequence means that different antenna groups send reference signals occupying the same time period, and different antenna groups alternately send reference signals within the same time period.
  • one or more OFDM symbols are respectively designated for different groups of antenna groups as starting OFDM symbols, and the starting OFDM symbols designated by different groups of antenna groups are different.
  • Each group of antenna groups transmits reference signals on one or more continuous OFDM symbols after the designated start OFDM symbol (or sends reference signals on the designated start OFDM symbol), while other groups of antennas group sends an all-zero signal.
  • the time domain position of the OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • n s, f represent the sequence number of the time slot in the system frame
  • n o, s represent the sequence number of the OFDM symbol in the time slot
  • T offset, 1 represents the time domain offset OFDM corresponding to the first antenna group number of symbols
  • the time domain position of the k1th OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • the time domain position of the OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • T offset,2 represents the number of OFDM symbols corresponding to the time domain offset of the second antenna group.
  • the time domain position of the k2th OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • the UE uses the first antenna respectively through antenna switching.
  • One group eg, antenna #1 and antenna #2
  • the second antenna group eg, antenna #3 and antenna #4
  • the UE alternately uses the first antenna group and the second antenna group to send SRS, for example, in multiple first OFDM symbol groups (the first OFDM symbol and the second OFDM symbol shown in Figure 5 consist of The first OFDM symbol group, and the first OFDM symbol group composed of the thirteenth OFDM symbol and the fourteenth OFDM symbol) use the first antenna group to send SRS; in a plurality of second OFDM symbol groups (as shown in Figure 6 The second OFDM symbol group composed of the fourth OFDM symbol shown in , and the second OFDM symbol group composed of the sixteenth OFDM symbol) use the second antenna group to transmit the SRS.
  • first OFDM symbol groups the first OFDM symbol and the second OFDM symbol shown in Figure 5 consist of The first OFDM symbol group, and the first OFDM symbol group composed of the thirteenth OFDM symbol and the fourteenth OFDM symbol
  • second OFDM symbol groups as shown in Figure 6
  • Mode 2 At least two first OFDM symbol groups and at least two second OFDM symbol groups appear alternately in sequence.
  • FIG. 10 is a schematic diagram of another OFDM symbol position for different antenna groups transmitting reference signals.
  • the two first OFDM symbol groups and the two second OFDM symbol groups appear alternately in turn (such as, the positions of the first OFDM symbol groups and the second OFDM symbol groups shown in Figure 10 are the first OFDM symbol group #1, first OFDM symbol group #2, second OFDM symbol group #1, second OFDM symbol group #2).
  • At least two first OFDM symbol groups and at least two second OFDM symbol groups appear alternately in sequence, which means that different antenna groups send reference signals occupying different time periods, and each group of antenna groups allocates time for the antenna group Reference signals are sent on one or more OFDM symbols in the period, and the antenna groups of other groups do not send reference signals in this period.
  • each group of antenna groups is allocated a time period, the positions of the beginning and end OFDM symbols are specified for the time period, and one or more OFDM symbols are designated as the starting OFDM symbols in the time period, and the antenna group is in
  • the reference signal is sent on multiple continuous OFDM symbols after the specified start OFDM symbol (or the reference signal is sent on the specified start OFDM symbol), and the antenna groups of other groups send all-zero signals.
  • the time domain position of the OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • T begin,1 represents the start time of the multiple first OFDM symbol groups
  • T end,1 represents the end time of the multiple first OFDM symbol groups
  • the time domain position of the k1th OFDM symbol in the first OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • the time domain position of the OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • T begin,2 represents the start time of the multiple second OFDM symbol groups
  • T end,2 represents the end time of the multiple second OFDM symbol groups
  • the time domain position of the k2th OFDM symbol in the second OFDM symbol group is represented by the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot;
  • the first antenna group for example, antenna #1 and antenna #2
  • the second antenna group for example, antenna #3 and antenna #4
  • SRS represents a flexible (flexible ) time slot.
  • the UE successively uses the first antenna group and the second antenna group to send SRS, for example, in multiple first OFDM symbol groups (the first OFDM symbol and the second OFDM symbol shown in Figure 10 consist of The first OFDM symbol group of the first OFDM symbol group, and the first OFDM symbol group formed by the sixth OFDM symbol and the seventh OFDM symbol) use the first antenna group to send SRS;
  • the second OFDM symbol group consisting of the ninth OFDM symbol and the tenth OFDM symbol shown, and the second OFDM symbol group consisting of the fifteenth OFDM symbol and the sixteenth OFDM symbol are sent using the second antenna group SRS.
  • FIG. 9 and FIG. 10 are only examples to illustrate how to alternately use different antenna groups to send reference signals, and do not constitute any limitation to the protection scope of the present application.
  • different antenna groups may correspond to different T RSs .
  • the above method 1 and method 2 can exist at the same time.
  • the configuration method of method 1 can be used to configure resources for different antenna groups.
  • Domain resources can be configured for different antenna groups in the configuration mode 2.
  • the number of time-domain offset OFDM symbols corresponding to the antennas in the first antenna group is T offset,1 .
  • the number of time-domain offset OFDM symbols corresponding to the antennas in the second antenna group is T offset,2 .
  • different antenna groups correspond to different numbers of OFDM symbols in the time domain offset, for example, T offset,1 ⁇ T offset,2 .
  • the number of OFDM symbols included in the OFDM symbol groups corresponding to different antenna groups may be the same or different, for example, or,
  • the range of resources occupied by sending reference signals may be further restricted.
  • the time domain resource is determined according to second configuration information, where the second configuration information is used to indicate the time slot range where the time domain resource is located and/or where the time domain resource is located in the time slot The range of OFDM symbols.
  • the transmission is limited to one/multiple time slots, wherein some time slots can be further limited to the transmission of some OFDM symbols, and the OFDM symbols satisfying the above formula within the limited range transmit reference signals;
  • each group of DDDDDDSUUs is limited to one/multiple time slots for transmission, wherein some time slots may be further limited to part of OFDM symbol transmission, and OFDM symbols satisfying the above formula within the limited range are used to transmit reference signals.
  • sequence number of the system frame, the sequence number of the time slot in the system frame and the sequence number of the OFDM symbol in the time slot can determine the positions of OFDM symbols that may transmit reference signals corresponding to different antenna groups.
  • the UE for the downlink reference signal, the UE only receives the reference signal at the position belonging to the downlink OFDM symbol; for the uplink reference signal, the UE only receives the reference signal at the position belonging to the The reference signal is sent at the position of the uplink OFDM symbol.
  • the receiving end can obtain more accurate Doppler information according to the measurement of the reference signal.
  • the terminal can obtain channel state information according to the measurement of the downlink reference signal and feed it back to the base station;
  • uplink reference signal SRS
  • the base station can directly obtain channel state information according to the measurement of the uplink reference signal, so that in the high-speed mobile scene, the base station can do more accurate channel prediction and data scheduling.
  • the method flow shown in FIG. 4 also includes:
  • the network device sends first configuration information to the terminal device.
  • the first configuration information is used to indicate the above-mentioned time domain resource.
  • the first configuration information is used to indicate the aforementioned multiple first OFDM symbol groups and multiple second OFDM symbol groups.
  • the multiple first OFDM symbol groups and the multiple second OFDM symbol groups are included in reference signal resources, and the first configuration information is used to indicate the reference signal resources.
  • the network device configures a reference signal resource
  • the configuration information of the reference signal resource includes first configuration information indicating T RS1 and/or T offset,1 and T RS2 and/or T offset,2, and the terminal device
  • the configuration information of the reference source and the above formulas (1-1) and (1-3) or (2-1) and (2-3)
  • the time domain positions that may be used for different antenna groups to send reference signals can be determined .
  • the terminal device After receiving the first configuration information, the terminal device can determine multiple first OFDM symbol groups and multiple second OFDM symbol groups based on the first configuration information, and pass the third OFDM symbol group on the multiple first OFDM symbol groups
  • the antenna group receives or sends the reference signal, and the reference signal is received or sent by the fourth antenna group on the plurality of second OFDM symbol groups.
  • the first configuration information is RRC signaling or MAC CE signaling or DCI signaling.
  • the method flow shown in Figure 4 introduces in detail how to determine the OFDM symbols included in the OFDM symbol groups corresponding to different antenna groups.
  • different frequency hopping bandwidths can also correspond to different OFDM symbol groups.
  • the method of determining the OFDM symbols included in the OFDM symbol groups corresponding to different frequency hopping bandwidths is introduced.
  • Fig. 11 is a schematic flowchart of another method for transmitting a reference signal provided by an embodiment of the present application. Include the following steps:
  • the network device determines the time-frequency resource of the reference signal port.
  • the time-frequency resource includes at least a first frequency hopping bandwidth on multiple first OFDM symbol groups and a second frequency hopping bandwidth on multiple second OFDM symbol groups.
  • the transmission bandwidth of the reference signal includes the above-mentioned first frequency hopping bandwidth and the second frequency hopping bandwidth, and there is no overlap between the first frequency hopping bandwidth and the second frequency hopping bandwidth.
  • the transmission bandwidth of the reference signal includes the above-mentioned first frequency hopping bandwidth and the second frequency hopping bandwidth as an example.
  • the transmission bandwidth of the reference signal may also include other first frequency hopping bandwidths.
  • the frequency hopping bandwidth does not overlap with the second frequency hopping bandwidth (for example, the third frequency hopping bandwidth).
  • the reference signal can be received or sent on the time-frequency resource.
  • the reference signal is received or sent in combination with the frequency hopping technology.
  • the frequency hopping technology refers to dividing the entire working bandwidth into multiple hops. Frequency bandwidth, receiving or sending reference signals on different frequency hopping bandwidths at different times, the method flow shown in Figure 11 also includes:
  • the transmission bandwidth of the reference signal includes the above-mentioned first frequency hopping bandwidth and the second frequency hopping bandwidth.
  • the reference signal is received or transmitted at a first frequency hopping bandwidth over a plurality of first OFDM symbol groups, and the reference signal is received or transmitted at a second frequency hopping bandwidth over a plurality of second OFDM symbol groups.
  • the type of the reference signal sent in the first frequency hopping bandwidth on the plurality of first OFDM symbol groups is the same as that of the reference signal sent in the second frequency hopping bandwidth on the second plurality of OFDM symbol groups.
  • both are SRS; for example, both are CSI-RS.
  • the reference signal received or sent by the first antenna group and the reference signal received or sent by the second antenna group are reference signals required in one channel measurement.
  • FIG. 4 mainly introduces receiving or sending reference signals through different antenna groups, and configuring resources for different antenna groups.
  • FIG. 11 mainly introduces receiving or sending reference signals in different frequency hopping bandwidths, and configuring resources for different frequency hopping bandwidths.
  • Mode 1 a first OFDM symbol group and a second OFDM symbol group appear alternately in sequence.
  • FIG. 12 is a schematic diagram of locations of OFDM symbols for transmitting reference signals with different frequency hopping bandwidths according to an embodiment of the present application.
  • the time-frequency resources used to receive or send reference signals (such as the last 2 uplink OFDM symbols of the S slot shown in FIG. 12 and the 14 OFDM symbols included in the U slot, and On the first frequency hopping bandwidth, the second frequency hopping bandwidth, the third frequency hopping bandwidth and the fourth frequency hopping bandwidth), for different frequency hopping bandwidths, OFDM symbol groups corresponding to different frequency hopping bandwidths appear alternately at intervals one by one , in Figure 12, it can be considered that the behavior of the first OFDM symbol group is the first frequency hopping bandwidth, the behavior of the second OFDM symbol group is the second frequency hopping bandwidth, the group of the third OFDM symbol is the third frequency hopping bandwidth, and the fourth OFDM symbol group is the third frequency hopping bandwidth. The group it belongs to is the fourth frequency hopping bandwidth.
  • the plurality of first OFDM symbol groups and the plurality of second OFDM symbol groups are located at alternate time domain positions, which means that sending reference signals in different frequency hopping bandwidths occupies the same time period, in the same
  • the reference signals are alternately sent in different frequency hopping bandwidths within a time period.
  • each SLOT for sending reference signals specifies one or more OFDM symbols for each frequency hopping bandwidth as the initial OFDM symbol, and the specified initial OFDM symbols are different for different frequency hopping bandwidths.
  • Each frequency hopping bandwidth sends a reference signal on one or more consecutive OFDM symbols after the specified start OFDM symbol for the frequency hopping bandwidth (or sends a reference signal on the specified start OFDM symbol), while other An all-zero signal is sent on the frequency hopping bandwidth.
  • the formulas satisfied by the time domain position of the k1th OFDM symbol in the first OFDM symbol group in this embodiment can refer to the above formulas (1-1) and (1-2), the difference is that in this embodiment In T offset, 1 represents the time domain offset OFDM symbol number corresponding to the first frequency hopping bandwidth; similarly, the formula satisfied by the time domain position of the k2th OFDM symbol in the second OFDM symbol group in this embodiment
  • T offset,2 in this embodiment represents the number of OFDM symbols in the time domain offset corresponding to the second frequency hopping bandwidth.
  • the UE alternately sends SRS on the first frequency hopping bandwidth, the second frequency hopping bandwidth, the third frequency hopping bandwidth and the fourth frequency hopping bandwidth, for example, in the first frequency hopping bandwidth and the first OFDM symbol group (The first OFDM symbol group formed by the first OFDM symbol as shown in Figure 12, and the first OFDM symbol group formed by the thirteenth OFDM symbol) to send SRS; in the second frequency hopping bandwidth and the second OFDM symbol SRS is sent on the group (the second OFDM symbol group composed of the third OFDM symbol shown in Figure 12, and the second OFDM symbol group composed of the fifteenth OFDM symbol); in the third frequency hopping bandwidth and the third SRS is sent on the OFDM symbol group (the third OFDM symbol group formed by the second OFDM symbol shown in Figure 12, and the third OFDM symbol group formed by
  • Mode 2 At least two first OFDM symbol groups and at least two second OFDM symbol groups appear alternately in sequence.
  • FIG. 13 is a schematic diagram of locations of OFDM symbols for transmitting reference signals with different frequency hopping bandwidths according to an embodiment of the present application.
  • the time-frequency resources used to receive or send reference signals (such as the last 2 uplink OFDM symbols of the S slot shown in FIG. 13 and the 14 OFDM symbols included in the U slot, and On the first frequency hopping bandwidth, the second frequency hopping bandwidth, the third frequency hopping bandwidth and the fourth frequency hopping bandwidth), for different frequency hopping bandwidths, OFDM symbol groups corresponding to different frequency hopping bandwidths appear alternately at intervals one by one .
  • the plurality of first OFDM symbol groups and the plurality of second OFDM symbol groups are located in successive time domain positions, which means that sending reference signals in different frequency hopping bandwidths occupies different time periods, and in different Select one or more OFDM symbols to send reference signals on different frequency hopping bandwidths within a time period.
  • each frequency hopping bandwidth corresponds to a time period, specify the position of the OFDM symbol at the beginning and end of the time period, and specify one or more OFDM symbols as the starting OFDM symbol in the time period, and in the time domain, these starting OFDM symbols
  • a plurality of time-domain OFDM symbols (reference signals (or the specified start OFDM symbols in the time domain) and frequency domains transmit reference signals within the frequency hopping bandwidth after the initial OFDM symbol, while other frequency hopping
  • the bandwidth sends all zeros.
  • the formulas satisfied by the time-domain position of the k1th OFDM symbol in the first OFDM symbol group in this embodiment can refer to the above-mentioned formulas (2-1) and (2-2), the difference is that in this embodiment In T offset, 1 represents the time domain offset OFDM symbol number corresponding to the first frequency hopping bandwidth; similarly, the formula satisfied by the time domain position of the k2th OFDM symbol in the second OFDM symbol group in this embodiment
  • T offset,2 in this embodiment represents the number of OFDM symbols in the time domain offset corresponding to the second frequency hopping bandwidth.
  • the UE sends SRS on the first frequency hopping bandwidth, the second frequency hopping bandwidth, the third frequency hopping bandwidth and the fourth frequency hopping bandwidth successively.
  • a certain frame structure such as DSUDD
  • the UE sends SRS on the first frequency hopping bandwidth, the second frequency hopping bandwidth, the third frequency hopping bandwidth and the fourth frequency hopping bandwidth successively.
  • the frequency hopping is completed within 10 slots, and the time domain resources within the 10 slots include two groups of S-U uplink slots.
  • the first group of S-U is divided into two sections, the 8 OFDM symbols in the first section are allocated to the first frequency hopping bandwidth, and the 8 OFDM symbols in the latter section are allocated to the third frequency hopping bandwidth;
  • the second group of S-U is divided into two sections, 8 in the first section
  • the OFDM symbols are allocated to the second frequency hopping bandwidth, and the last 8 OFDM symbols are allocated to the fourth frequency hopping bandwidth.
  • the seventh OFDM symbol group SRS is sent on the first OFDM symbol group consisting of symbol and the eighth OFDM symbol
  • SRS is sent on the second frequency hopping bandwidth and the second OFDM symbol group (the first OFDM symbol in the second group S-U as shown in Figure 13 and the second OFDM symbol group composed of the second OFDM symbol, and the second OFDM symbol group composed of the seventh OFDM symbol and the eighth OFDM symbol) to send SRS;
  • the third frequency hopping bandwidth and the third OFDM symbol group the third OFDM symbol group formed by the ninth OFDM symbol and the tenth OFDM symbol in the first group S-U shown in Figure 13, and the fifth OFDM symbol group formed by the fifteenth OFDM symbol and the sixteenth OFDM symbol SRS is sent on three OFDM symbol groups
  • the fourth frequency hopping bandwidth and the fourth OFDM symbol group (the ninth OFDM symbol and the tenth
  • the first OFDM symbol in the first two adjacent OFDM symbol groups (the first OFDM symbol and the seventh OFDM symbol in the first group SU shown in Figure 13)
  • the first OFDM symbol in two adjacent second OFDM symbol groups (the first OFDM symbol and the first OFDM symbol in the second group SU shown in Figure 13
  • the first OFDM symbol in the adjacent two third OFDM symbol groups (the ninth in the first group SU shown in Figure 10
  • the first OFDM symbol in two adjacent fourth OFDM symbol groups (the second as shown in Figure 13
  • Fig. 12 and Fig. 13 are just examples to illustrate how to alternately send reference signals in different frequency hopping bandwidths, which do not constitute any limitation to the protection scope of the present application, for example, T RSs corresponding to different frequency hopping bandwidths may be different.
  • the above-mentioned method 1 and method 2 can exist at the same time, for example, for some time domain resources in the time domain resources, the configuration method of method 1 can be used to configure resources for different frequency hopping bandwidths, and the other The time-domain resources can be configured in the configuration mode 2 for different frequency hopping bandwidths.
  • the number of time domain offset OFDM symbols corresponding to different frequency hopping bandwidths is different, for example, T offset,1 ⁇ T offset,2 .
  • the number of OFDM symbols included in the OFDM symbol groups corresponding to different frequency hopping bandwidths may be the same or different, for example, or,
  • the method flow shown in FIG. 11 also includes:
  • the network device sends third configuration information to the terminal device.
  • the third configuration information is used to indicate the above-mentioned time-frequency resources.
  • the third configuration information is used to indicate the aforementioned first frequency hopping bandwidth on multiple first OFDM symbol groups and the second frequency hopping bandwidth on multiple second OFDM symbol groups.
  • the multiple first OFDM symbol groups and the multiple second OFDM symbol groups are included in reference signal resources, and the third configuration information is used to indicate the reference signal resources.
  • the network device configures a reference signal resource
  • the configuration information of the reference signal resource includes third configuration information indicating T RS1 and/or T offset,1 and T RS2 and/or T offset,2, and the terminal device
  • the time domains that may be used to send reference signals with different frequency hopping bandwidths can be determined Location.
  • the terminal device can determine the first frequency hopping bandwidth on multiple first OFDM symbol groups and the second frequency hopping bandwidth on multiple second OFDM symbol groups based on the third configuration information , and receive or send the reference signal at a first frequency hopping bandwidth on multiple first OFDM symbol groups, and receive or send the reference signal at a second frequency hopping bandwidth on multiple second OFDM symbol groups.
  • the third configuration information is RRC signaling or MAC CE signaling or DCI signaling.
  • sequence numbers of the above processes do not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • time domain resources can be configured for different antenna groups and different frequency hopping bandwidths, and different antenna groups correspond to different frequency hopping bandwidths. resources meet the requirements in the embodiments described above in Figure 4 and Figure 11 respectively.
  • the equipment in the existing network architecture is used as an example for illustration (such as network equipment, terminal equipment, etc.). Examples are not limited. For example, devices that can implement the same function in the future are applicable to this embodiment of the application.
  • the methods and operations implemented by devices may also be implemented by components of the devices (eg, chips or circuits).
  • each network element includes a corresponding hardware structure and/or software module for performing each function.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • FIG. 14 is a schematic diagram of an apparatus 400 for transmitting a reference signal proposed in the present application.
  • the device 400 includes a processing unit 410 and a transceiver unit 420 .
  • the transceiving unit 420 is configured to receive first configuration information, where the first configuration information is used to indicate time domain resources, where the time domain resources at least include multiple first OFDM symbol groups and multiple second OFDM symbol groups;
  • the processing unit 410 determines a plurality of first OFDM symbol groups and a plurality of second OFDM symbol groups according to the first configuration information
  • the transceiving unit 420 is configured to receive or send a reference signal through a third antenna group on the plurality of first OFDM symbol groups;
  • the transceiving unit 420 is configured to receive or send a reference signal through a fourth antenna group on the plurality of second OFDM symbol groups;
  • the number of symbols spaced between any two first OFDM symbol groups is an integer multiple of T RS1
  • the number of symbols spaced between at least two of the first OFDM symbol groups in the plurality of first OFDM symbol groups is A non-integer multiple of
  • the number of symbols spaced between any two of the second OFDM symbol groups is an integer multiple of T RS2
  • the number of symbols is non-integer multiples
  • the T RS1 and the T RS2 are Non-integer multiples of
  • the Indicates the number of OFDM symbols included in a slot slot, the first OFDM symbol group and the second OFDM symbol group do not overlap
  • the first OFDM symbol group includes a first OFDM symbol or a plurality of consecutive first OFDM symbols
  • the second OFDM symbol group includes one second OFDM symbol or multiple consecutive second OFDM symbols.
  • the transceiver unit 420 is configured to receive third configuration information, where the third configuration information is used to indicate the time-frequency resource of the reference signal port, and the time-frequency resource includes at least the first OFDM symbol group on the plurality of first OFDM symbol groups. a frequency hopping bandwidth and a second frequency hopping bandwidth over a plurality of second OFDM symbol groups;
  • the processing unit 410 determines the first frequency hopping bandwidth on multiple first OFDM symbol groups and the second frequency hopping bandwidth on multiple second OFDM symbol groups according to the third configuration information;
  • a transceiver unit 420 configured to receive or send a reference signal on the time-frequency resource
  • the number of symbols spaced between any two first OFDM symbol groups is an integer multiple of T RS1
  • the number of symbols spaced between at least two of the first OFDM symbol groups in the plurality of first OFDM symbol groups is A non-integer multiple of
  • the number of symbols spaced between any two of the second OFDM symbol groups is an integer multiple of T RS2
  • the number of symbols is non-integer multiples
  • the T RS1 and the T RS2 are Non-integer multiples of
  • the Indicates the number of OFDM symbols included in a slot slot, the first OFDM symbol group and the second OFDM symbol group do not overlap
  • the first OFDM symbol group includes a first OFDM symbol or a plurality of consecutive first OFDM symbols
  • the second OFDM symbol group includes one second OFDM symbol or multiple consecutive second OFDM symbols.
  • the apparatus 400 corresponds to the terminal device in the method embodiment, and the apparatus 400 may be the terminal device in the method embodiment, or a chip or a functional module inside the terminal device in the method embodiment. Corresponding units of the apparatus 400 are configured to perform corresponding steps performed by the terminal device in the method embodiments shown in FIG. 4 and FIG. 11 .
  • the processing unit 410 in the apparatus 400 is configured to execute steps related to processing corresponding to the terminal device in the method embodiment.
  • the transceiving unit 420 in the apparatus 400 is configured to perform the steps of transceiving by the terminal device in the method embodiment. For example, execute steps S421 and S420 in FIG. 4 , and execute steps S721 and S720 in FIG. 11 .
  • the processing unit 410 may be at least one processor.
  • the transceiver unit 420 may be a transmitter or an interface circuit
  • the receiving unit 410 may be a receiver or an interface circuit.
  • the receiver and transmitter can be integrated together to form a transceiver or an interface circuit.
  • the device 400 may also include a storage unit for storing data and/or signaling, and the processing unit 410 and the transceiver unit 420 may interact or be coupled with the storage unit, for example, reading or calling data in the storage unit and/or Signaling, so that the methods in the foregoing embodiments are executed.
  • a storage unit for storing data and/or signaling
  • the processing unit 410 and the transceiver unit 420 may interact or be coupled with the storage unit, for example, reading or calling data in the storage unit and/or Signaling, so that the methods in the foregoing embodiments are executed.
  • Each of the above units can exist independently, or can be fully or partially integrated.
  • FIG. 15 is a schematic structural diagram of a terminal device 500 applicable to the embodiment of the present application.
  • the terminal device 500 can be applied to the system shown in FIG. 1 .
  • FIG. 15 only shows main components of the terminal device.
  • the terminal device 500 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is used to control the antenna and the input and output devices to send and receive signals
  • the memory is used to store the computer program
  • the processor is used to call and run the computer program from the memory to execute the corresponding functions performed by the terminal device in the registration method proposed by this application. process and/or operation. I won't repeat them here.
  • FIG. 15 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • a storage may also be called a storage medium or a storage device, etc., which is not limited in this embodiment of the present application.
  • FIG. 16 is a schematic diagram of an apparatus 600 for transmitting a reference signal proposed in the present application.
  • the device 600 includes a processing unit 610 and a transceiver unit 620 .
  • the processing unit 610 is configured to determine a time domain resource, where the time domain resource includes at least a plurality of first OFDM symbol groups and a plurality of second OFDM symbol groups;
  • a transceiver unit 620 configured to receive or send reference signals through the first antenna group on the plurality of first OFDM symbol groups
  • the transceiving unit 620 is configured to receive or send reference signals through the second antenna group on the plurality of second OFDM symbol groups;
  • the number of symbols spaced between any two first OFDM symbol groups is an integer multiple of T RS1
  • the number of symbols spaced between at least two of the first OFDM symbol groups in the plurality of first OFDM symbol groups is A non-integer multiple of
  • the number of symbols spaced between any two of the second OFDM symbol groups is an integer multiple of T RS2
  • the number of symbols is non-integer multiples
  • the T RS1 and the T RS2 are Non-integer multiples of
  • the Indicates the number of OFDM symbols included in a slot slot, the first OFDM symbol group and the second OFDM symbol group do not overlap
  • the first OFDM symbol group includes a first OFDM symbol or a plurality of consecutive first OFDM symbols
  • the second OFDM symbol group includes one second OFDM symbol or multiple consecutive second OFDM symbols.
  • the processing unit 610 determining the time domain resource includes: the processing unit 610 determining the time domain resource according to second configuration information, where the second configuration information is used to indicate the time slot range where the time domain resource is located and/or the time domain resource.
  • the OFDM symbol range where the time domain resource is located in this slot includes: the processing unit 610 determining the time domain resource according to second configuration information, where the second configuration information is used to indicate the time slot range where the time domain resource is located and/or the time domain resource.
  • the OFDM symbol range where the time domain resource is located in this slot is used to indicate the time slot range where the time domain resource is located and/or the time domain resource.
  • the processing unit 610 is configured to determine the time-frequency resource of the reference signal port, where the time-frequency resource at least includes a first frequency hopping bandwidth on multiple first OFDM symbol groups and a first frequency hopping bandwidth on multiple second OFDM symbol groups The second frequency hopping bandwidth on;
  • a transceiver unit 620 configured to receive or send a reference signal on the time-frequency resource
  • the number of symbols spaced between any two first OFDM symbol groups is an integer multiple of T RS1
  • the number of symbols spaced between at least two of the first OFDM symbol groups in the plurality of first OFDM symbol groups is A non-integer multiple of
  • the number of symbols spaced between any two of the second OFDM symbol groups is an integer multiple of T RS2
  • the number of symbols is non-integer multiples
  • the T RS1 and the T RS2 are Non-integer multiples of
  • the Indicates the number of OFDM symbols included in a slot slot, the first OFDM symbol group and the second OFDM symbol group do not overlap
  • the first OFDM symbol group includes a first OFDM symbol or a plurality of consecutive first OFDM symbols
  • the second OFDM symbol group includes one second OFDM symbol or multiple consecutive second OFDM symbols.
  • the transceiving unit 620 is further configured to send third configuration information, where the third configuration information is used to indicate the time-frequency resource.
  • the apparatus 600 corresponds to the network device in the method embodiment, and the apparatus 600 may be the network device in the method embodiment, or a chip or a functional module inside the network device in the method embodiment. Corresponding units of the apparatus 600 are configured to perform corresponding steps performed by the network device in the method embodiments shown in FIG. 4 and FIG. 11 .
  • the processing unit 610 in the apparatus 600 is configured to execute the corresponding processing-related steps inside the network device in the method embodiment. For example, execute step S410 in FIG. 4 and execute step S710 in FIG. 11 .
  • the transceiver unit 620 in the apparatus 600 is configured to perform steps related to network equipment transceiver. For example, execute steps S421 and S420 in FIG. 4 , and execute steps S721 and S720 in FIG. 11 .
  • the device 600 may also include a storage unit for storing data and/or signaling, and the processing unit 610 and the transceiver unit 620 may interact or be coupled with the storage unit, for example, reading or calling data in the storage unit and/or Signaling, so that the methods in the foregoing embodiments are executed.
  • a storage unit for storing data and/or signaling
  • the processing unit 610 and the transceiver unit 620 may interact or be coupled with the storage unit, for example, reading or calling data in the storage unit and/or Signaling, so that the methods in the foregoing embodiments are executed.
  • Each of the above units can exist independently, or can be fully or partially integrated.
  • FIG. 17 is a schematic structural diagram of a network device 700 applicable to the embodiment of the present application, which can be used to realize the functions of the network device in the above method for channel measurement. It may be a schematic structural diagram of a network device.
  • the network device 700 may include CU, DU and AAU, compared to the access network device in the LTE communication system consisting of one or more radio frequency units , such as the remote radio unit (remote radio unit, RRU) 701 and one or more base band units (base band unit, BBU), the non-real-time part of the original BBU will be separated and redefined as CU, responsible for processing non-real-time protocols And service, some physical layer processing functions of BBU are merged with the original RRU and passive antenna into AAU, and the remaining functions of BBU are redefined as DU, which is responsible for processing physical layer protocols and real-time services.
  • CU and DU are distinguished by the real-time nature of processing content
  • AAU is a combination of RRU and antenna.
  • CU, DU, and AAU can be separated or combined. Therefore, there will be various network deployment forms.
  • One possible deployment form is consistent with traditional 4G access network equipment, and CU and DU share hardware deployment.
  • Figure 14 is just an example, and does not limit the scope of protection of this application.
  • the deployment form can also be that DUs are deployed in the 5G BBU equipment room, CUs are deployed in a centralized manner or DUs are deployed in a centralized manner, and CUs are centralized at a higher level.
  • the AAU 701 that can realize the transceiver function is called the transceiver unit 701.
  • the transceiver unit 701 may also be called a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 7011 and a radio frequency unit 707 .
  • the transceiver unit 701 may include a receiving unit and a sending unit, the receiving unit may correspond to a receiver (or receiver, receiving circuit), and the sending unit may correspond to a transmitter (or transmitter, transmitting circuit).
  • the CU and DU 702 that can implement internal processing functions are referred to as processing units 702.
  • the processing unit 702 may control the access network device, etc., and may be called a controller.
  • the AAU 701, the CU and the DU 702 can be physically set together, or physically separated.
  • the access network equipment is not limited to the form shown in FIG. 17 , and may also be in other forms: for example: include BBU and ARU, or include BBU and AAU; it may also be CPE, or other forms, which are not limited in this application.
  • the network device 700 shown in FIG. 17 can implement the functions of the network device involved in the method embodiments in FIG. 4 and FIG. 11 .
  • the operations and/or functions of each unit in the network device 700 are respectively to implement the corresponding processes executed by the network device in the method embodiments of the present application. To avoid repetition, detailed descriptions are appropriately omitted here.
  • the structure of the network device illustrated in FIG. 17 is only a possible form, and should not constitute any limitation to this embodiment of the present application. This application does not exclude the possibility of other forms of network equipment structures that may appear in the future.
  • An embodiment of the present application further provides a communication system, which includes the aforementioned terminal device and network device.
  • the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are run on the computer, the computer executes the terminal device in the method shown in Figure 4 and Figure 11 steps performed.
  • the present application also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when the instructions are run on a computer, the computer executes the network device in the method shown in Figure 4 and Figure 11 steps performed.
  • the present application also provides a computer program product containing instructions.
  • the computer program product is run on a computer, the computer is made to execute each step performed by the terminal device in the method shown in FIG. 4 and FIG. 11 .
  • the present application also provides a computer program product containing instructions.
  • the computer program product When the computer program product is run on a computer, the computer is made to execute each step performed by the network device in the method shown in FIG. 4 and FIG. 11 .
  • the present application also provides a chip, including a processor.
  • the processor is used to read and execute the computer program stored in the memory, so as to execute the corresponding operations and/or processes performed by the terminal device in the method for channel measurement provided in the present application.
  • the chip further includes a memory, the memory is connected to the processor through a circuit or wires, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • the present application also provides a chip, including a processor.
  • the processor is used to read and execute the computer program stored in the memory, so as to execute the corresponding operations and/or procedures performed by the network device in the method for channel measurement provided in the present application.
  • the chip further includes a memory, the memory is connected to the processor through a circuit or wires, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive processed data and/or information, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • the above-mentioned chip can also be replaced by a system-on-a-chip, which will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to the actual situation to realize the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .
  • the term "and/or” in this application is only an association relationship describing associated objects, indicating that there may be three relationships, for example, A and/or B may indicate: A exists alone, and A and B exist simultaneously , there are three cases of B alone.
  • the character "/" in this article generally means that the contextual objects are an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of , B, and C can mean: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, A and C exist simultaneously, C and B exist simultaneously, and A, B, and C exist simultaneously, which Seven situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种用于传输参考信号的方法和装置,该方法包括:确定时域资源,在该时域资源的多个第一OFDM符号组上通过第一天线组接收或发送参考信号,在该时域资源的多个第二OFDM符号组上通过第二天线组接收或发送参考信号,任意两个第一OFDM符号组之间间隔的符号数量为TRS1的整数倍,任意两个第二OFDM符号组之间间隔的符号数量为TRS2的整数倍,多个第一或第二OFDM符号组中至少存在两个符号组之间间隔的符号数量为Nslot os的非整数倍,TRS1和TRS2是Nslot os的非整数倍,第一OFDM符号组和第二OFDM符号组不重叠。设计符号级别的参考信号配置,以期提高参考信号配置灵活性。

Description

用于传输参考信号的方法和装置
本申请要求于2021年12月31日提交中国专利局、申请号为202111673073.3、申请名称为“用于传输参考信号的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种用于传输参考信号的方法和装置。
背景技术
目前协议规定可配置的参考信号(reference signal,RS)的周期为T RS=n*T SLOT,T SLOT表示时隙(slot)的时长,n为5或者5的整倍数。在每个RS周期内的一部分上行slot上,触发RS发送。可以用于RS发送的候选上行slot须满足:
Figure PCTCN2022141480-appb-000001
其中,T RS是相邻两次RS发送的最小间隔slot数,n f表示系统帧的序号、n f,f表示所述系统帧内时隙的序号、
Figure PCTCN2022141480-appb-000002
表示所述系统帧内的时隙数,并且同一个RS资源在满足上述条件的slot中,占据相同序号的OFDM符号。
具体地,RS的周期对应信道估计的时域密度,即时域采样频率。上述的RS周期设计方式,时域的采样频率可能无法满足信道测量需求。
因此如何设计RS的周期,以使得时域的采样频率能够满足信道测量需求,成为亟待解决的问题。
发明内容
本申请实施例提供一种用于传输参考信号的方法,通过设计更灵活的时域RS配置方法,以期时域的采样频率满足信道测量需求。
第一方面,提供了一种用于传输参考信号的方法,该方法可以由网络设备执行,或者,也可以由网络设备中的芯片、芯片系统或电路执行,本申请对此不作限定。
该方法包括:
确定时域资源,该时域资源至少包括多个第一OFDM符号组和多个第二OFDM符号组;在该多个第一OFDM符号组上通过第一天线组接收或发送参考信号;在该多个第二OFDM符号组上通过第二天线组接收或发送参考信号;
其中,任意两个该第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,该多个第一OFDM符号组中至少存在两个该第一OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000003
的非整数倍,任意两个该第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,该多个第二OFDM符号组中至少存在两个该第二OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000004
的非整数倍,该T RS1和该T RS2
Figure PCTCN2022141480-appb-000005
的非整数倍,该
Figure PCTCN2022141480-appb-000006
表示一个时隙slot所包括的OFDM符号数 量,该第一OFDM符号组和该第二OFDM符号组不重叠,该第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,该第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
其中,第一OFDM符号组和第二OFDM符号组不重叠是指,任意第一OFDM符号组中包括的OFDM符号和第二OFDM符号组中包括的OFDM符号互不相同。
可选的,第一天线组也可以是第一天线端口组或者第一波束组;第二天线组也可以是第二天线端口组或者第二波束组。
可选的,第一天线组和第二天线组中包括的天线/天线端口/波束互不相同。
可选的,第一OFDM符号组和第二OFDM符号组对应同一个参考信号资源的不同参考信号资源端口。
示例性地,第一天线组接收或发送的参考信号和第二天线组接收或发送的参考信号的类型一致。例如,均为探测参考信号(sounding reference signal,SRS);还例如,均为信道状态信息参考信号(channel state information reference signal,CSI-RS);又例如,均为解调参考信号(demodulation reference signal,DMRS)。
示例性地,第一天线组接收或发送的参考信号和第二天线组接收或发送的参考信号为一次信道测量中所需的参考信号。
基于上述技术方案,提供以OFDM符号的时间长度为时间粒度且针对不同的天线组灵活配置参考信号的时域间隔的时域参考信号设计,以期各个天线组对应的时域的采样频率满足移动场景下的信道测量需求。
示例性的,T RS1和T RS2的单位是OFDM符号或者是OFDM符号组。
结合第一方面,在第一方面的某些实现方式中,该多个第一OFDM符号组中存在至少两个相邻的第一OFDM符号组之间有至少一个第二OFDM符号组;或者说,该多个第二OFDM符号组中存在至少两个相邻的第二OFDM符号组,该两个相邻的第二OFDM符号组之间存在至少一个第一OFDM符号组。
通过这种方式,可以保证不同天线组各自对应的测量周期都相对较短,从而保证测量精度。
示例性地,相邻的第一OFDM符号组可以表示序号相邻的第一OFDM符号组,而不限制为时域位置相邻,序号是根据时域位置顺序排列的。
例如,多个第一OFDM符号组包括第一OFDM符号组#1、第一OFDM符号组#2和第一OFDM符号组#3,其中,第一OFDM符号组#1为时域位置上第一个第一OFDM符号组,序号为1,第一OFDM符号组#2为时域位置上第二个第一OFDM符号组,序号为2,则第一OFDM符号组#1和第一OFDM符号组#2为相邻的第一OFDM符号组。
示例性地,相邻的第二OFDM符号组可以表示序号相邻的第二OFDM符号组,而不限制为时域位置相邻,序号是根据时域位置顺序排列的。
结合第一方面,在第一方面的某些实现方式中,该多个第一OFDM符号组中任意两个相邻的第一OFDM符号组之间存在一个第二OFDM符号组;或者说,该多个第二OFDM符号组中任意两个相邻的第二OFDM符号组之间存在一个第一OFDM符号组。
示例性地,多个第一OFDM符号组中第i个OFDM符号组和第i+1个OFDM符号组之间存在一个第二OFDM符号组,其中,i={1,2,…n-1},n为该第一OFDM符号组数。
结合第一方面,在第一方面的某些实现方式中,该多个第一OFDM符号组中至少有两个相邻的第一OFDM符号组之间不存在第二OFDM符号组;该多个第二OFDM符号组中至少有两个相邻的第二OFDM符号组之间不存在第一OFDM符号组。
基于上述技术方案,第一OFDM符号组和第二OFDM符号组不重叠的方式可以是一个第一OFDM符号组和一个第二OFDM符号组依次交替出现,还可以是多个第一OFDM符号组和多个第二OFDM符号组交替出现,也就是第一OFDM符号组和第二OFDM符号组不重叠的实现方式有多种,提高方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,该第一OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000007
其中,
Figure PCTCN2022141480-appb-000008
表示一个slot内的OFDM符号数,n s,f表示该系统帧内时隙的序号、n o,s表示该时隙内OFDM符号的序号、T offset,1表示该第一天线组对应的时域偏移OFDM符号数、;
该第二OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000009
其中,T offset,2表示该第二天线组对应的时域偏移OFDM符号数。
结合第一方面,在第一方面的某些实现方式中,考虑在第一OFDM符号组或第二OFDM符号组中包括重复传输的场景时,比如,存在多个连续的OFDM符号用于传输参考信号可以认为这多个OFDM符号是一次重复传输。
该第一OFDM符号组中的第k1个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000010
其中,
Figure PCTCN2022141480-appb-000011
表示一个slot内的OFDM符号数,n s,f表示该系统帧内时隙的序号、n o,S表示该时隙内OFDM符号的序号、T offset,1表示该第一天线组对应的时域偏移OFDM符号数、该k1为整数,k1的取值为1至
Figure PCTCN2022141480-appb-000012
中任意值,该
Figure PCTCN2022141480-appb-000013
表示该第一OFDM符号组包括的OFDM符号数;
Figure PCTCN2022141480-appb-000014
可以理解为在第一OFDM符号组中一次重复传输包括的OFDM符号数量,k1可以理解为在一次重复传输中OFDM符号的相对位置,例如,在一次重复传输中的第一个OFDM符号对应的k1=1。
该第二OFDM符号组中的第k2个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000015
其中,T offset,2表示该第二天线组对应的时域偏移OFDM符号数、该k2为整数,k2的取值为1至
Figure PCTCN2022141480-appb-000016
中任意值,该
Figure PCTCN2022141480-appb-000017
表示该第二OFDM符号组包括的OFDM符号数;
Figure PCTCN2022141480-appb-000018
可以理解为在第二OFDM符号组中一次重复传输包括的OFDM符号数量,k2可以理解为在一次重复传输中OFDM符号的相对位置,例如,在一次重复传输中的第一个OFDM符号对应的k2=1。
结合第一方面,在第一方面的某些实现方式中,该T RS1小于
Figure PCTCN2022141480-appb-000019
或者,该T RS1大于或者等于该
Figure PCTCN2022141480-appb-000020
该T RS2小于
Figure PCTCN2022141480-appb-000021
或者,该T RS2大于或者等于该
Figure PCTCN2022141480-appb-000022
基于上述技术方案,T RS1和T RS2的具体取值与
Figure PCTCN2022141480-appb-000023
的大小无关,可以是小于、大于或者等于
Figure PCTCN2022141480-appb-000024
的值,也就是说
Figure PCTCN2022141480-appb-000025
的取值不会限制T RS1和T RS2的取值,与
Figure PCTCN2022141480-appb-000026
的取值解耦,避免受限于
Figure PCTCN2022141480-appb-000027
的取值。
结合第一方面,在第一方面的某些实现方式中,该T RS1等于该T RS2
基于上述技术方案,T RS1和T RS2的取值可以一样,也可以不一样,不限制T RS1和T RS2的取值关系,独立设计不同天线组对应的参考信号配置。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:发送第一配置信息,该第一配置信息用于指示该时域资源。
结合第一方面,在第一方面的某些实现方式中,该第一配置信息包括T RS1的指示和T offset1的指示,以及T RS2的指示和T offset2的指示,该第一配置信息包括下行控制信息DCI和/或MAC CE。
基于上述技术方案,可以通过第一配置信息指示不同天线组对应的参考信号配置,而第一配置信息可以为DCI和/或MAC CE,具体消息类型不做限定,提高方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,该确定时域资源包括:根据第二配置信息确定该时域资源,该第二配置信息用于指示该时域资源位于的时隙范围和/或该时域资源在该时隙中位于的OFDM符号范围。
基于上述技术方案,可以通过第二配置信息粗略确定出时域资源的位置,提高确定时域资源的准确性。
第二方面,提供了一种用于传输参考信号的方法,该方法可以由终端设备执行,或者,也可以由终端设备中的芯片、芯片系统或电路执行,本申请对此不作限定。
该方法包括:
接收第一配置信息,该第一配置信息用于指示时域资源,该时域资源至少包括多个第一OFDM符号组和多个第二OFDM符号组;在该多个第一OFDM符号组上通过第三天线组接收或发送参考信号;在该多个第二OFDM符号组上通过第四天线组接收或发送参考信号;
其中,任意两个该第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,该多个第一OFDM符号组中至少存在两个该第一OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000028
的非整数倍,任意两个该第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,该多个第二OFDM符号组中至少存在两个该第二OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000029
的非整数倍,该T RS1和该T RS2
Figure PCTCN2022141480-appb-000030
的非整数倍,该
Figure PCTCN2022141480-appb-000031
表示一个时隙slot所包括的OFDM符号数量,该第一OFDM符号组和该第二OFDM符号组不重叠,该第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,该第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
基于上述技术方案,提供以OFDM符号的时间长度为时间粒度且针对不同的天线组灵活配置参考信号的时域间隔的时域参考信号设计,以期各个天线组对应的时域的采样频率满足移动场景下的信道测量需求。
结合第二方面,在第二方面的某些实现方式中,该多个第一OFDM符号组中存在至 少两个相邻的第一OFDM符号组之间有至少一个第二OFDM符号组;或者说,该多个第二OFDM符号组中存在至少两个相邻的第二OFDM符号组,该两个相邻的第二OFDM符号组之间存在至少一个第一OFDM符号组。
结合第二方面,在第二方面的某些实现方式中,该多个第一OFDM符号组中任意两个相邻的第一OFDM符号组之间存在一个第二OFDM符号组;或者说,该多个第二OFDM符号组中任意两个相邻的第二OFDM符号组之间存在一个第一OFDM符号组。
通过这种方式,可以保证不同天线组各自对应的测量周期都相对较短,从而保证测量精度。
结合第二方面,在第二方面的某些实现方式中,该多个第一OFDM符号组中至少有两个相邻的第一OFDM符号组之间不存在第二OFDM符号组;该多个第二OFDM符号组中至少有两个相邻的第二OFDM符号组之间不存在第一OFDM符号组。
基于上述技术方案,第一OFDM符号组和第二OFDM符号组不重叠的方式可以是一个第一OFDM符号组和一个第二OFDM符号组依次交替出现,还可以是多个第一OFDM符号组和多个第二OFDM符号组交替出现,也就是第一OFDM符号组和第二OFDM符号组不重叠的实现方式有多种,提高方案的灵活性。
结合第二方面,在第二方面的某些实现方式中,该第一OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000032
其中,
Figure PCTCN2022141480-appb-000033
表示一个slot内的OFDM符号数,n s,f表示该系统帧内时隙的序号、n o,s表示该时隙内OFDM符号的序号、T offset,1表示该第三天线组对应的时域偏移OFDM符号数;
该第二OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000034
其中,T offset,2表示该第四天线组对应的时域偏移OFDM符号数。
结合第二方面,在第二方面的某些实现方式中,考虑在第一OFDM符号组或第二OFDM符号组中包括重复传输的场景时,比如,存在多个连续的OFDM符号用于传输参考信号可以认为这多个OFDM符号是一次重复传输。
该第一OFDM符号组中的第k1个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000035
其中,
Figure PCTCN2022141480-appb-000036
表示一个slot内的OFDM符号数,n s,f表示该系统帧内时隙的序号、n o,s表示该时隙内OFDM符号的序号、T offset,1表示该第一天线组对应的时域偏移OFDM符号数、该k1为整数,k1的取值为1至
Figure PCTCN2022141480-appb-000037
中任意值,该
Figure PCTCN2022141480-appb-000038
表示该第一OFDM符号组包括的OFDM符号数;
Figure PCTCN2022141480-appb-000039
可以理解为在第一OFDM符号组中一次重复传输包括的OFDM符号数量,k1可以理解为在一次重复传输中OFDM符号的相对位置,例如,在一次重复传输中的第一个OFDM符号对应的k1=1。
该第二OFDM符号组中的第k2个OFDM符号的时域位置由系统帧内时隙的序号和 时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000040
其中,T offset,2表示该第二天线组对应的时域偏移OFDM符号数、该k2为整数,k2的取值为1至
Figure PCTCN2022141480-appb-000041
中任意值,该
Figure PCTCN2022141480-appb-000042
表示该第二OFDM符号组包括的OFDM符号数;
Figure PCTCN2022141480-appb-000043
可以理解为在第二OFDM符号组中一次重复传输包括的OFDM符号数量,k2可以理解为在一次重复传输中OFDM符号的相对位置,例如,在一次重复传输中的第一个OFDM符号对应的k2=1。
结合第二方面,在第二方面的某些实现方式中,该T RS1小于
Figure PCTCN2022141480-appb-000044
或者,该T RS1大于或者等于该
Figure PCTCN2022141480-appb-000045
该T RS2小于
Figure PCTCN2022141480-appb-000046
或者,该T RS2大于或者等于该
Figure PCTCN2022141480-appb-000047
基于上述技术方案,T RS1和T RS2的具体取值与
Figure PCTCN2022141480-appb-000048
的大小无关,可以是小于、大于或者等于
Figure PCTCN2022141480-appb-000049
的值,也就是说
Figure PCTCN2022141480-appb-000050
的取值不会限制T RS1和T RS2的取值,与
Figure PCTCN2022141480-appb-000051
的取值解耦,避免受限于
Figure PCTCN2022141480-appb-000052
的取值。
结合第二方面,在第二方面的某些实现方式中,该T RS1等于该T RS2
基于上述技术方案,T RS1和T RS2的取值可以一样,也可以不一样,不限制T RS1和T RS2的取值关系,独立设计不同天线组对应的参考信号配置。
结合第二方面,在第二方面的某些实现方式中,该第一配置信息包括T RS1的指示和T offset1的指示,以及T RS2的指示和T offset2的指示,该第一配置信息包括下行控制信息DCI和/或MAC CE。
基于上述技术方案,可以通过第一配置信息指示不同天线组对应的参考信号配置,而第一配置信息可以为DCI和/或MAC CE,具体消息类型不做限定,提高方案的灵活性。
第三方面,提供了一种用于传输参考信号的方法,该方法可以由网络设备执行,或者,也可以由网络设备中的芯片、芯片系统或电路执行,本申请对此不作限定。
该方法包括:
确定参考信号端口的时频资源,该时频资源至少包括在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽;
在该时频资源上接收或发送参考信号;
其中,任意两个该第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,该多个第一OFDM符号组中至少存在两个该第一OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000053
的非整数倍,任意两个该第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,该多个第二OFDM符号组中至少存在两个该第二OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000054
的非整数倍,该T RS1和该T RS2
Figure PCTCN2022141480-appb-000055
的非整数倍,该
Figure PCTCN2022141480-appb-000056
表示一个时隙slot所包括的OFDM符号数量,该第一OFDM符号组和该第二OFDM符号组不重叠,该第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,该第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
基于上述技术方案,提供以OFDM符号的时间长度为时间粒度且针对不同的跳频带宽灵活配置参考信号的时域间隔的时域参考信号设计,以期各个跳频带宽对应的时域的采样频率满足移动场景下的信道测量需求。
示例性的,T RS1和T RS2的单位是OFDM符号或者是OFDM符号组。
结合第三方面,在第三方面的某些实现方式中,该多个第一OFDM符号组中存在至少两个相邻的第一OFDM符号组之间有至少一个第二OFDM符号组;或者说,该多个第二OFDM符号组中存在至少两个相邻的第二OFDM符号组,该两个相邻的第二OFDM符号组之间存在至少一个第一OFDM符号组。
示例性地,相邻的第一OFDM符号组可以表示序号相邻的第一OFDM符号组,而不限制为时域位置相邻,序号是根据时域位置顺序排列的。
例如,多个第一OFDM符号组包括第一OFDM符号组#1、第一OFDM符号组#2和第一OFDM符号组#3,其中,第一OFDM符号组#1为时域位置上第一个第一OFDM符号组,序号为1,第一OFDM符号组#2为时域位置上第二个第一OFDM符号组,序号为2,则第一OFDM符号组#1和第一OFDM符号组#2为相邻的第一OFDM符号组。
示例性地,相邻的第二OFDM符号组可以表示序号相邻的第二OFDM符号组,而不限制为时域位置相邻,序号是根据时域位置顺序排列的。
结合第三方面,在第三方面的某些实现方式中,该多个第一OFDM符号组中任意两个相邻的第一OFDM符号组之间存在一个第二OFDM符号组;或者说,该多个第二OFDM符号组中任意两个相邻的第二OFDM符号组之间存在一个第一OFDM符号组。
示例性地,多个第一OFDM符号组中第i个OFDM符号组和第i+1个OFDM符号组之间存在至少一个第二OFDM符号组,其中,i={1,2,…n-1},n为该第一OFDM符号组数。
结合第三方面,在第三方面的某些实现方式中,该多个第一OFDM符号组中至少有两个相邻的第一OFDM符号组之间不存在第二OFDM符号组;该多个第二OFDM符号组中至少有两个相邻的第二OFDM符号组之间不存在第一OFDM符号组。
基于上述技术方案,第一OFDM符号组和第二OFDM符号组不重叠的方式可以是一个第一OFDM符号组和一个第二OFDM符号组依次交替出现,还可以是多个第一OFDM符号组和多个第二OFDM符号组交替出现,也就是第一OFDM符号组和第二OFDM符号组不重叠的实现方式有多种,提高方案的灵活性。
结合第三方面,在第三方面的某些实现方式中,该第一OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000057
其中,
Figure PCTCN2022141480-appb-000058
表示一个slot内的OFDM符号数,n s,f表示该系统帧内时隙的序号、n o,s表示该时隙内OFDM符号的序号、T offset,1表示该第一跳频带宽对应的时域偏移OFDM符号数;
该第二OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000059
其中,T offset,2表示该第二跳频带宽对应的时域偏移OFDM符号数。
结合第三方面,在第三方面的某些实现方式中,考虑在第一OFDM符号组或第二OFDM符号组中包括重复传输的场景时,比如,存在多个连续的OFDM符号用于传输参考信号可以认为这多个OFDM符号是一次重复传输。
该第一OFDM符号组中的第k1个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000060
其中,
Figure PCTCN2022141480-appb-000061
表示一个slot内的OFDM符号数,n s,f表示该系统帧内时隙的序号、n o,s表示该时隙内OFDM符号的序号、T offset,1表示该第一跳频带宽对应的时域偏移OFDM符号数、该k1为整数,k1的取值为1至
Figure PCTCN2022141480-appb-000062
中任意值,该
Figure PCTCN2022141480-appb-000063
表示该第一OFDM符号组包括的OFDM符号数;
Figure PCTCN2022141480-appb-000064
可以理解为在第一OFDM符号组中一次重复传输包括的OFDM符号数量,k1可以理解为在一次重复传输中OFDM符号的相对位置,例如,在一次重复传输中的第一个OFDM符号对应的k1=1。
该第二OFDM符号组中的第k2个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000065
其中,T offset,2表示该第二跳频带宽对应的时域偏移OFDM符号数、该k2为整数,k2的取值为1至
Figure PCTCN2022141480-appb-000066
中任意值,该
Figure PCTCN2022141480-appb-000067
表示该第二OFDM符号组包括的OFDM符号数;
Figure PCTCN2022141480-appb-000068
可以理解为在第二OFDM符号组中一次重复传输包括的OFDM符号数量,k2可以理解为在一次重复传输中OFDM符号的相对位置,例如,在一次重复传输中的第一个OFDM符号对应的k2=1。
结合第三方面,在第三方面的某些实现方式中,该T RS1小于
Figure PCTCN2022141480-appb-000069
或者,该T RS1大于或者等于该
Figure PCTCN2022141480-appb-000070
该T RS2小于
Figure PCTCN2022141480-appb-000071
或者,该T RS2大于或者等于该
Figure PCTCN2022141480-appb-000072
基于上述技术方案,T RS1和T RS2的具体取值与
Figure PCTCN2022141480-appb-000073
的大小无关,可以是小于、大于或者等于
Figure PCTCN2022141480-appb-000074
的值,也就是说
Figure PCTCN2022141480-appb-000075
的取值不会限制T RS1和T RS2的取值,与
Figure PCTCN2022141480-appb-000076
的取值解耦,避免受限于
Figure PCTCN2022141480-appb-000077
的取值。
结合第三方面,在第三方面的某些实现方式中,该T RS1等于该T RS2
基于上述技术方案,T RS1和T RS2的取值可以一样,也可以不一样,不限制T RS1和T RS2的取值关系,独立设计不同跳频带宽对应的参考信号配置。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:发送第三配置信息,该第一配置信息用于指示该时频资源。
结合第三方面,在第三方面的某些实现方式中,该第三配置信息包括T RS1的指示和T offset1的指示,以及T RS2的指示和T offset2的指示,该第三配置信息包括下行控制信息DCI和/或MAC CE。
基于上述技术方案,可以通过第三配置信息指示不同跳频带宽对应的参考信号配置,而第三配置信息可以为DCI和/或MAC CE,具体消息类型不做限定,提高方案的灵活性。
第四方面,提供了一种用于传输参考信号的方法,该方法可以由终端设备执行,或者,也可以由终端设备中的芯片、芯片系统或电路执行,本申请对此不作限定。
该方法包括:
接收第三配置信息,该第三配置信息用于指示参考信号端口的时频资源,该时频资源至少包括在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽;
在该时频资源上接收或发送参考信号;
其中,任意两个该第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,该多个第一OFDM符号组中至少存在两个该第一OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000078
的非整数倍,任意两个该第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,该多个第二OFDM符号组中至少存在两个该第二OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000079
的非整数倍,该T RS1和该T RS2
Figure PCTCN2022141480-appb-000080
的非整数倍,该
Figure PCTCN2022141480-appb-000081
表示一个时隙slot所包括的OFDM符号数量,该第一OFDM符号组和该第二OFDM符号组不重叠,该第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,该第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
基于上述技术方案,提供以OFDM符号的时间长度为时间粒度且针对不同的跳频带宽灵活配置参考信号的时域间隔的时域参考信号设计,以期各个跳频带宽对应的时域的采样频率满足移动场景下的信道测量需求。
结合第四方面,在第四方面的某些实现方式中,该多个第一OFDM符号组中存在至少两个相邻的第一OFDM符号组之间有至少一个第二OFDM符号组;或者说,该多个第二OFDM符号组中存在至少两个相邻的第二OFDM符号组,该两个相邻的第二OFDM符号组之间存在至少一个第一OFDM符号组。
结合第四方面,在第四方面的某些实现方式中,该多个第一OFDM符号组中任意两个相邻的第一OFDM符号组之间存在一个第二OFDM符号组;或者说,该多个第二OFDM符号组中任意两个相邻的第二OFDM符号组之间存在一个第一OFDM符号组。
结合第四方面,在第四方面的某些实现方式中,该多个第一OFDM符号组中至少有两个相邻的第一OFDM符号组之间不存在第二OFDM符号组;该多个第二OFDM符号组中至少有两个相邻的第二OFDM符号组之间不存在第一OFDM符号组。
基于上述技术方案,第一OFDM符号组和第二OFDM符号组不重叠的方式可以是一个第一OFDM符号组和一个第二OFDM符号组依次交替出现,还可以是多个第一OFDM符号组和多个第二OFDM符号组交替出现,也就是第一OFDM符号组和第二OFDM符号组不重叠的实现方式有多种,提高方案的灵活性。
结合第四方面,在第四方面的某些实现方式中,该第一OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000082
其中,
Figure PCTCN2022141480-appb-000083
表示一个slot内的OFDM符号数,n s,f表示该系统帧内时隙的序号、n o,s表示该时隙内OFDM符号的序号、T offset,1表示该第一跳频带宽对应的时域偏移OFDM符号数;
该第二OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000084
其中,T offset,2表示该第二跳频带宽对应的时域偏移OFDM符号数。
结合第四方面,在第四方面的某些实现方式中,考虑在第一OFDM符号组或第二 OFDM符号组中包括重复传输的场景时,比如,存在多个连续的OFDM符号用于传输参考信号可以认为这多个OFDM符号是一次重复传输。
该第一OFDM符号组中的第k1个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000085
其中,
Figure PCTCN2022141480-appb-000086
表示一个slot内的OFDM符号数,n s,f表示该系统帧内时隙的序号、n o,s表示该时隙内OFDM符号的序号、T fffset,1表示该第一跳频带宽对应的时域偏移OFDM符号数、该k1为整数,k1的取值为1至
Figure PCTCN2022141480-appb-000087
中任意值,该
Figure PCTCN2022141480-appb-000088
表示该第一OFDM符号组包括的OFDM符号数;
Figure PCTCN2022141480-appb-000089
可以理解为在第一OFDM符号组中一次重复传输包括的OFDM符号数量,k1可以理解为在一次重复传输中OFDM符号的相对位置,例如,在一次重复传输中的第一个OFDM符号对应的k1=1。
该第二OFDM符号组中的第k2个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000090
其中,T offset,2表示该第二跳频带宽对应的时域偏移OFDM符号数、该k2为整数,k2的取值为1至
Figure PCTCN2022141480-appb-000091
中任意值,该
Figure PCTCN2022141480-appb-000092
表示该第二OFDM符号组包括的OFDM符号数;
Figure PCTCN2022141480-appb-000093
可以理解为在第二OFDM符号组中一次重复传输包括的OFDM符号数量,k2可以理解为在一次重复传输中OFDM符号的相对位置,例如,在一次重复传输中的第一个OFDM符号对应的k2=1。
结合第四方面,在第四方面的某些实现方式中,该T RS1小于
Figure PCTCN2022141480-appb-000094
或者,该T RS1大于或者等于该
Figure PCTCN2022141480-appb-000095
该T RS2小于
Figure PCTCN2022141480-appb-000096
或者,该T RS2大于或者等于该
Figure PCTCN2022141480-appb-000097
基于上述技术方案,T RS1和T RS2的具体取值与
Figure PCTCN2022141480-appb-000098
的大小无关,可以是小于、大于或者等于
Figure PCTCN2022141480-appb-000099
的值,也就是说
Figure PCTCN2022141480-appb-000100
的取值不会限制T RS1和T RS2的取值,与
Figure PCTCN2022141480-appb-000101
的取值解耦,避免受限于
Figure PCTCN2022141480-appb-000102
的取值。
结合第四方面,在第四方面的某些实现方式中,该T RS1等于该T RS2
基于上述技术方案,T RS1和T RS2的取值可以一样,也可以不一样,不限制T RS1和T RS2的取值关系,独立设计不同跳频带宽对应的参考信号配置。
结合第四方面,在第四方面的某些实现方式中,该第三配置信息包括T RS1的指示和T offset1的指示,以及T RS2的指示和T offset2的指示,该第三配置信息包括下行控制信息DCI和/或MAC CE。
基于上述技术方案,可以通过第三配置信息指示不同跳频带宽对应的参考信号配置,而第三配置信息可以为DCI和/或MAC CE,具体消息类型不做限定,提高方案的灵活性。
第五方面,提供一种用于传输参考信号的装置,该用于传输参考信号的装置包括处理器,用于实现上述第一和第三方面描述的方法中网络设备的功能。
可选地,该用于传输参考信号的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第一和第三方面描述的方法中网络设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一和第三方面描述 的方法中网络设备的功能。可选地,该用于传输参考信号的装置还可以包括通信接口,该通信接口用于该用于传输参考信号的装置与其它设备进行通信。当该用于传输参考信号的装置为网络设备时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该用于传输参考信号的装置包括:处理器和通信接口,用于实现上述第一和第三方面描述的方法中网络设备的功能,具体地包括:
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该装置实现上述第一和第三方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该用于传输参考信号的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第六方面,提供一种用于传输参考信号的装置,该用于传输参考信号的装置包括处理器,用于实现上述第二和第四方面描述的方法中终端设备的功能。
可选地,该用于传输参考信号的装置还可以包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第二和第四方面描述的方法中终端设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第二和第四方面描述的方法中终端设备的功能。
可选地,该用于传输参考信号的装置还可以包括通信接口,该通信接口用于该用于传输参考信号的装置与其它设备进行通信。当该用于传输参考信号的装置为终端设备时,该收发器可以是通信接口,或,输入/输出接口。
在一种可能的设计中,该用于传输参考信号的装置包括:处理器和通信接口,用于实现上述第二和第四方面描述的方法中终端设备的功能,具体地包括:
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该装置实现上述第二和第四方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种实现方式中,该用于传输参考信号的装置为芯片或芯片系统时,该通信接口可以是是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被通信装置执行时,使得该通信装置实现第一方面至第四方面的任一可能的实现方式中的方法。
第八方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得通信装置实现第一方面至第四方面的任一可能的实现方式中的方法。
第九方面,提供了一种通信系统,包括第五方面所示的用于传输参考信号的装置和第六方面所示的用于传输参考信号的装置。
附图说明
图1是适用于本申请实施例的用于传输参考信号的方法的通信系统100的示意图。
图2是一种系统帧、系统帧内时隙和时隙内OFDM符号之间的关系示意图。
图3是一种上下行帧配置方式。
图4是本申请实施例提供的一种传输参考信号的方法的示意性流程图。
图5是一种两个第一OFDM符号组的位置示意图。
图6是一种两个第一OFDM符号组之间的间隔示意图。
图7是一种多个第一OFDM符号组的位置示意图。
图8中的(a)和(b)是一种多个第一OFDM符号组与时隙的关系的示意图。
图9是本申请实施例提供的一种不同天线组传输参考信号的OFDM符号的位置示意图。
图10是本申请实施例提供的另一种不同天线组传输参考信号的OFDM符号的位置示意图。
图11是本申请实施例提供的另一种传输参考信号的方法的示意性流程图。
图12是本申请实施例提供的一种不同跳频带宽传输参考信号的OFDM符号的位置示意图。
图13是本申请实施例提供的另一种不同跳频带宽传输参考信号的OFDM符号的位置示意图。
图14是本申请提出的用于传输参考信号的装置400的示意图。
图15是适用于本申请实施例的终端设备500的结构示意图。
图16是本申请提出的用于传输参考信号的装置600的示意图。
图17是适用于本申请实施例的网络设备700的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统、新无线(new radio,NR)或未来网络等,本申请中所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of Things,IoT)通信系统或者其他通信系统。
本申请实施例中的终端设备(terminal equipment)可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol, SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备或者未来车联网中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G系统,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,本申请实施例中的网络设备可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU)或者,网络设备包括CU和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将 CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
进一步地,CU还可以划分为控制面的中央单元(CU-CP)和用户面的中央单元(CU-UP)。其中,CU-CP和CU-UP也可以部署在不同的物理设备上,CU-CP负责控制面功能,主要包含RRC层和PDCP-C层。PDCP-C层主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含SDAP层和PDCP-U层。其中SDAP层主要负责将核心网的数据进行处理并将流(flow)映射到承载。PDCP-U层主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等至少一种功能。具体地,CU-CP和CU-UP通过通信接口(例如,E1接口)连接。CU-CP代表网络设备通过通信接口(例如,Ng接口)和核心网设备连接,通过通信接口(例如,F1-C(控制面)接口)和DU连接。CU-UP通过通信接口(例如,F1-U(用户面)接口)和DU连接。
还有一种可能的实现,PDCP-C层也包含在CU-UP中。
可以理解的是,以上关于CU和DU,以及CU-CP和CU-UP的协议层划分仅为示例,也可能有其他的划分方式,本申请实施例对此不做限定。
本申请实施例所提及的网络设备可以为包括CU、或DU、或包括CU和DU的设备、或者控制面CU节点(CU-CP节点)和用户面CU节点(CU-UP节点)以及DU节点的设备。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备101。该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备102至107。其中,该终端设备102至107可以是移动的或固定的。网络设备101 和终端设备102至107中的一个或多个均可以通过无线链路通信。每个网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
可选地,终端设备之间可以直接通信。例如可以利用设备到设备(device to device,D2D)技术等实现终端设备之间的直接通信。如图1中所示,终端设备105与106之间、终端设备105与107之间,可以利用D2D技术直接通信。终端设备106和终端设备107可以单独或同时与终端设备105通信。
终端设备105至107也可以分别与网络设备101通信。例如可以直接与网络设备101通信,如图中的终端设备105和106可以直接与网络设备101通信;也可以间接地与网络设备101通信,如图中的终端设备107经由终端设备105与网络设备101通信。
各通信设备,均可以配置多个天线。对于该通信系统100中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信系统100中的各通信设备之间,可通过多天线技术通信。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
为便于理解本申请实施例,对本申请实施例中涉及的几个基本概念做简单说明。应理解,下文中所介绍的基本概念是以NR协议中规定的基本概念为例进行简单说明,但并不限定本申请实施例只能够应用于NR系统。因此,以NR系统为例描述时出现的标准名称,都是功能性描述,具体名称并不限定,仅表示设备的功能,可以对应的扩展到未来的其它系统。
1、预编码技术。
终端设备可以在已知信道状态的情况下,借助与信道状态相匹配的预编码矩阵来对待发送信号进行处理,使得经过预编码的待发送信号与信道相适配,从而使得接收设备的接收信号强度提升,并降低对其他接收设备的干扰。因此,通过对待发送信号的预编码处理,接收信号质量(例如,信号与干扰加噪声比(signal to interference plus noise ratio,SINR)等)得以提升。
应理解,本申请中有关预编码技术的相关描述仅为便于理解而示例,并非用于限制本申请实施例的保护范围。在具体实现过程中,发送设备还可以通过其他方式进行预编码。例如,在无法获知信道信息(例如但不限于信道矩阵)的情况下,采用预先设置的预编码矩阵或者加权处理方式进行预编码等。为了简洁,其具体内容本申请不再赘述。
2、预编码矩阵
预编码矩阵例如可以是终端设备基于各个频域单元的信道矩阵确定的预编码矩阵。该预编码矩阵可以是终端设备通过信道估计等方式或者基于信道互易性确定。但应理解,终端设备确定预编码矩阵的具体方法并不限于上文所述,具体实现方式可参考现有技术,为了简洁,这里不再一一列举。
例如,预编码矩阵可以通过对信道矩阵或信道矩阵的协方差矩阵进行奇异值分解(singular value decomposition,SVD)的方式获得,或者,也可以通过对信道矩阵的协方差矩阵进行特征值分解(eigenvalue decomposition,EVD)的方式获得。应理解,上文中列举的预编码矩阵的确定方式仅为示例,不应对本申请构成任何限定。预编码矩阵的确定方式可以参考现有技术,为了简洁,这里不再一一列举。
3、信道互易性。
在时分双工(time division duplexing,TDD)模式下,上下行信道在相同的频域资源上不同的时域资源上传输信号。在相对较短的时间(如,信道传播的相干时间)之内,可以认为上、下行信道上的信号所经历的信道是相同的,上下行信道可互相等价获取。这就是上下行信道的互易性。基于上下行信道的互易性,网络设备可以根据上行参考信号,如探测参考信号(sounding reference signal,SRS),测量上行信道。并可以根据上行信道来估计下行信道,从而可以确定用于下行传输的预编码矩阵。
4、参考信号端口(SRS port)。
参考信号端口为一种终端设备发送参考信号占用的资源粒度。
作为一种可能的实现方式,一个参考信号端口可以对应一个终端设备的发送天线,在该实现方式下,终端设备的参考信号端口数量可以为终端设备的发送天线数量。
作为另一种可能的实现方式,一个参考信号端口可以对应发送天线的一个预编码向量,也就是可以对应一个空间波束赋形方向,在该实现方式下,终端设备的参考信号端口数量可以小于终端设备的发送天线数量。
通常情况下,与一个参考信号资源上的多个参考信号端口对应的多个参考信号占用一份或多份的时频资源,占用同一份时频资源的多个参考信号通过码分方式复用。例如,不同参考信号端口的参考信号使用不同的循环移位(cyclic shift,CS)占用同一份时频资源。
具体地,同一个时频资源上,不同参考信号端口的不同参考信号可以通过码分复用的正交方式,避免彼此的干扰,该正交方式可以通过循环移位实现。当信道的时延扩展很小时,CS可以基本实现码分正交。接收端通过特定操作可以消除采用其他CS的信号而仅保留采用特定CS的信号,从而实现码分复用。
本申请实施例中,参考信号端口可以是SRS端口,也可以是CSI-RS端口。
5、参考信号(reference signal,RS)。
RS也可以称为导频(pilot)、参考序列等。在本申请实施例中,参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是用于下行信道测量的信道状态信息参考信号(channel state information reference signal,CSI-RS),也可以是用于上行信道测量的探测参考信号(sounding reference signal,SRS)。
应理解,上文列举的参考信号仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能,也不排除在未来的协议中定义其他参考信号实现不同功能的可能。
为了便于描述,下文中以参考信号为SRS为例进行说明。在5G NR通信系统中,SRS用于估计不同频段的信道质量。
具体地,SRS的周期配置与帧结构相关。在介绍SRS的周期配置之前,首先结合图2简单说明一下帧,图2是一种系统帧、系统帧内时隙和时隙内OFDM符号之间的关系示意图。
从图2中可以看出n f表示所述系统帧的序号、n s,f表示所述系统帧内时隙的序号、n o,s表示所述时隙内OFDM符号的序号、
Figure PCTCN2022141480-appb-000103
表示一个所述系统帧所包括的时隙数量,
Figure PCTCN2022141480-appb-000104
表示一个时隙slot所包括的OFDM符号数量。
可选地,系统帧也可以称为帧,或无线帧等。示例性地,本申请中涉及的时隙包括灵 活(flexible)时隙、下行(downlink)时隙和上行(uplink)时隙。为了便于描述,下文中用“S”表示灵活时隙、“D”表示下行时隙、“U”表示上行时隙。
目前协议中可配置的SRS的周期为T SRS=n*T SLOT,T SLOT为时隙(slot)的时长,n为5或者5的整倍数。在每个SRS周期内的一部分上行slot上,触发SRS发送,可以用于SRS发送的候选上行slot须满足:
Figure PCTCN2022141480-appb-000105
其中,T SRS是相邻两次SRS发送的最小间隔slot数。
具体地,同一个SRS资源在满足上述条件的slot中,占据相同序号的OFDM符号。如图3所示,图3是一种上下行帧配置方式。
从图3中可以看出,SRS的周期为T SRS=n*T SLOT,n仅能取5或者5的整倍数。
示例性地,SRS周期为5个slot,配置T SRS=5*T SLOT,在每个“S”类型的slot中,相同序号的OFDM符号的资源用于配置SRS;或者,也可以配置T SRS=1*T SLOT,但是由于上述的T SRS=n*T SLOT,n仅能取5或者5的整倍数的限制,即使T SRS=1*T SLOT,SRS也无法占用每个slot,也就是说SRS周期依然是5个slot,每5个slot中,在“S”和“U”类型的两个slot的相同序号的OFDM符号的资源上配置SRS。
应理解,上文列举的参考信号为SRS仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能。
6、参考信号资源。
参考信号资源可用于配置参考信号的传输属性,例如,时频资源位置、端口映射关系、功率因子以及扰码等,具体可参考现有技术。发送端设备可基于参考信号资源发送参考信号,接收端设备可基于参考信号资源接收参考信号。一个参考信号资源可以包括一个或多个RB。
在本申请实施例中,参考信号资源例如可以是SRS资源。
7、天线切换。
本申请实施例中涉及天线切换场景和非天线切换场景,其中,天线切换场景指示终端设备的发送天线个数小于接收天线个数;非天线切换场景指示终端设备的发送天线个数等于接收天线个数。
例如,终端设备的天线数表示为NTMR,其中,N表示发送天线个数,T表示发送(transmit,T),M表示接收天线个数,R表示接收(receive,R)。
若N小于M,该终端设备理解为天线切换场景中的终端设备,可理解为终端设备发送SRS的流程中需要进行天线切换,例如,N=2,M=4,那么终端设备的天线数可以表示为2T4R;
若N等于M该终端设备理解为非天线切换场景中的终端设备,可理解为终端设备发送SRS的流程中不需要进行天线切换,例如,N=M=4,那么终端设备的天线数可以表示为4T4R。
上述的天线切换还可以称为天线选择,本申请中对此不做限定。
8、多普勒测量需求。
在移动性场景下,终端设备与网络设备的相对移动速度v决定了信道的最大多普勒扩展:
Figure PCTCN2022141480-appb-000106
其中,f c为载波频率,c为光速,
Figure PCTCN2022141480-appb-000107
表示信道的最大多普勒扩展。由于信道的时域和多普勒域是傅里叶变换对,根据奈奎斯特采样定理,通过SRS对信道进行测量的最小时间间隔小于或等于
Figure PCTCN2022141480-appb-000108
当f c=3.5GHz,v=60km/时,最小时间间隔为2.5ms;当速度提高到300km/时,所需的SRS最小时间间隔为0.5ms。
此外,为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定包括有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种。例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。例如,本领域的技术人员应当明白,预编码矩阵是由预编码向量组成的,预编码矩阵中的各个预编码向量,在组成或者其他属性方面,可能存在相同的部分。
此外,具体的指示方式还可以是现有各种指示方式,例如但不限于,上述指示方式及其各种组合等。各种指示方式的具体细节可以参考现有技术,本文不再赘述。由上文所述可知,举例来说,当需要指示相同类型的多个信息时,可能会出现不同信息的指示方式不相同的情形。具体实现过程中,可以根据具体的需要选择所需的指示方式,本申请实施例对选择的指示方式不做限定,如此一来,本申请实施例涉及的指示方式应理解为涵盖可以使得待指示方获知待指示信息的各种方法。
此外,待指示信息可能存在其他等价形式,例如行向量可以表现为列向量,一个矩阵可以通过该矩阵的转置矩阵来表示,一个矩阵也可以表现为向量或者数组的形式,该向量或者数组可以由该矩阵的各个行向量或者列向量相互连接而成,等。本申请实施例提供的技术方案应理解为涵盖各种形式。举例来说,本申请实施例涉及的部分或者全部特性,应理解为涵盖该特性的各种表现形式。
待指示信息可以作为一个整体一起发送,也可以分成多个子信息分开发送,而且这些子信息的发送周期和/或发送时机可以相同,也可以不同。具体发送方法本申请不进行限定。其中,这些子信息的发送周期和/或发送时机可以是预先定义的,例如根据协议预先定义的,也可以是发射端设备通过向接收端设备发送配置信息来配置的。其中,该配置信息可以例如但不限于包括无线资源控制信令、媒体接入控制(media access control,MAC)层信令和物理层信令中的一种或者至少两种的组合。其中,无线资源控制信令例如包无线资源控制(radio resource control,RRC)信令;MAC层信令例如包括MAC控制元素(control element,CE);物理层信令例如包括DCI。
第二,在本申请中第一、第二以及各种数字编号(例如,“#1”、“#2”)仅为描述方便 进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信息等。
第三,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
上文结合图1简单介绍了本申请实施例提供的用于传输参考信号的方法能够应用的场景,以及介绍了本申请实施例中可能涉及到的基本概念,下面将结合附图详细说明本申请实施例提供的用于传输参考信号的方法。
由上述图3所示的SRS时域配置可知,该SRS时域配置方式下,最小SRS周期受限于帧结构,最小SRS间隔受限于slot时长,且必须配置成slot时长的整数倍。
为了便于理解,以30kHz子载波间隔、“DSUDD”时隙配比为例进行说明。最小SRS周期为2.5ms,单个slot时长0.5ms。如果配置T RS=5,则相邻SRS最小间隔为2.5ms,仅能支持最高60km/h的移动速度。如果配置T RS=1,相邻SRS最小间隔为0.5ms,在视线(Line-of-Sight,LoS)信道下能满足中高速场景(最高300km/h)下的LoS径多普勒估计的需求,但是无法满足300km/h以上速度的多普勒估计的需求。同时,即便在中高速场景(最高300km/h)下,由于帧结构的限制,下行的“D”类型的slot内无法进行RS的发送,所以无法实现每隔0.5ms发送一次RS,在非视线(Non-Line-of-Sight,NLoS)信道下无法准确获取下行信道。最后,固定的0.5ms RS间隔的配置灵活性不足,不能按需配置以满足各种不同移动性场景、不同信道条件下信道测量与多普勒估计的需求。
为了解决目前SRS时域配置存在的问题,本申请实施例提供一种用于传输参考信号的方法,通过设计更灵活的时域RS配置方法,以期时域的采样频率满足信道测量需求,例如,满足上述的不同移动性场景、不同信道条件下信道测量与多普勒估计的需求。
应理解,本申请实施例提供的用于传输参考信号的方法可以应用于通过多天线技术通信的系统,例如,图1中所示的通信系统100。该通信系统可以包括至少一个网络设备和至少一个终端设备。网络设备和终端设备之间可通过多天线技术通信。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
以下,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的用于传输参考信号的方法。
需要说明的是,下文实施例中以“参考信号”为SRS为例对用于传输参考信号的方法进行了说明,在实际应用中,SRS也可以被替换为其他的参考信号,本申请对此不做限定。
图4是本申请实施例提供的一种传输参考信号的方法的示意性流程图。包括以下步骤:
S410,网络设备确定时域资源。
该时域资源包括至少包括多个第一OFDM符号组和多个第二OFDM符号组,所述第一OFDM符号组和所述第二OFDM符号组不重叠,所述第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,所述第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
具体地,上述的多个第一OFDM符号组中任意两个第一OFDM符号组之间间隔的符 号数量为T RS1的整数倍。其中,T RS1的单位是OFDM符号或者是OFDM符号组。如,T RS1等于12,表示12个OFDM符号。
可选地,上述的两个第一OFDM符号组可以指两个序号相邻的第一OFDM符号组。其中,序号是根据时域位置顺序排列的。
例如,多个第一OFDM符号组包括第一OFDM符号组#1、第一OFDM符号组#2和第一OFDM符号组#3,其中,第一OFDM符号组#1为第一个第一OFDM符号组,序号为1,第一OFDM符号组#2为第二个第一OFDM符号组,序号为2,则第一OFDM符号组#1和第一OFDM符号组#2为相邻的两个第一OFDM符号组。
为了便于理解,结合图5简单说明两个第一OFDM符号组在上述的多个第一OFDM符号组中的位置。图5是一种两个第一OFDM符号组的位置示意图。
从图5中可以看出多个第一OFDM符号组包括第一OFDM符号组#1、第一OFDM符号组#2和第一OFDM符号组#3,其中,第一OFDM符号组#1和第一OFDM符号组#2可以称为相邻的两个第一OFDM符号组,第一OFDM符号组#2和第一OFDM符号组#3可以称为相邻的两个第一OFDM符号组。因此,根据图5可以理解,相邻的两个第一OFDM符号组是指当多个符号组在时域上按顺序排列,这两个符号组在时域位置上相邻,相邻不代表时域上连续,相邻的这两个符号组之间可以具有其他OFDM符号,相邻的这两个第一OFDM符号组之间也可以有其他OFDM符号组。
进一步结合图5,任意两个第一OFDM符号组之间间隔的符号数量为T RS1的整数倍可以理解为,第一OFDM符号组和第二OFDM符号组之间间隔的符号个数为T RS1的整数倍,第一OFDM符号组和第三OFDM符号组之间间隔的符号个数为T RS1的整数倍,进一步举例而言,假设T RS1为4个符号,那么第一OFDM符号组和第二OFDM符号组之间的间隔可以为4个OFDM符号,第二OFDM符号组和第三OFDM符号组之间也可以为4个OFDM符号。
可选的,在多个第一OFDM符号组中,任意相邻的两个第一OFDM符号之间的间隔可以都是T RS1,如上示例中。
可选的,在多个第一OFDM符号组中,可以存在相邻的两个第一OFDM符号之间的间隔不相等,例如,第一OFDM符号组和第二OFDM符号组之间的间隔可以为4个OFDM符号,此时是T RS1的一倍,第二OFDM符号组和第三OFDM符号组之间可以为8个OFDM符号,此时是T RS1的两倍,第三OFDM符号组和第四OFDM符号组之间的间隔为4个OFDM符号。
示例性地,两个第一OFDM符号组之间的间隔可以为两个第一OFDM符号组分别包括的第N1个第一OFDM符号之间间隔,所述N1为小于或者等于
Figure PCTCN2022141480-appb-000109
的正整数,所述
Figure PCTCN2022141480-appb-000110
表示所述第一OFDM符号组包括的第一OFDM符号数,
Figure PCTCN2022141480-appb-000111
可以理解为在第一OFDM符号组中一次重复传输包括的OFDM符号数量。
例如,第一OFDM符号组中包括连续的两个第一OFDM符号(如,第一个OFDM符号为第一OFDM符号#1,第二个OFDM符号为第一OFDM符号#2),则两个第一OFDM符号组之间的间隔可以为两个第一OFDM符号组分别包括的第一OFDM符号#2之间间隔,或者,两个第一OFDM符号组之间的间隔可以为两个第一OFDM符号组分别包括的第一OFDM符号#2之间间隔。
例如,第一OFDM符号组中包括一个第一OFDM符号,则两个第一OFDM符号组之间的间隔可以为两个第一OFDM符号之间的间隔。
综上所述,两个第一OFDM符号组之间的间隔可以由两个第一OFDM符号组中分别包括的第N1个第一OFDM符号之间的间隔表示。
为了便于理解,结合图6简单说明两个第一OFDM符号组之间的间隔。图6是一种两个第一OFDM符号组之间的间隔示意图。
从图6中可以看出两个第一OFDM符号组(如,图6所示的第一OFDM符号组#1和第一OFDM符号组#2)分别包括
Figure PCTCN2022141480-appb-000112
个OFDM符号(如,图6所示的OFDM符号#1、OFDM符号#2、…,OFDM符号#
Figure PCTCN2022141480-appb-000113
)。
第一OFDM符号组#1和第一OFDM符号组#2之间的间隔可以由两个OFDM符号#1之间的间隔L表示,或者,还可以由两个OFDM符号#2之间的间隔L表示,…,或者,还可以由两个OFDM符号#
Figure PCTCN2022141480-appb-000114
之间的间隔L表示。
示例性地,两个第N1个第一OFDM符号之间的间隔具体表示为:
两个第N1个第一OFDM符号所在位置之间的差值,例如,两个第N1个第一OFDM符号之间间隔的符号数量满足以下表达式:
Figure PCTCN2022141480-appb-000115
其中,
Figure PCTCN2022141480-appb-000116
标识一个第一OFDM符号组中的第N1个第一OFDM符号所在的位置,
Figure PCTCN2022141480-appb-000117
标识另一个第一OFDM符号组中的第N1个第一OFDM符号所在的位置。
作为一种可能的实现方式,上述两个所述第一OFDM符号组分别包括的第N1个OFDM符号之间间隔的符号数量为T RS1的整数倍可以表示为:
相邻两个所述第一OFDM符号组分别包括的第N1个OFDM符号之间间隔的为G1个OFDM符号,该G1满足:G1 mod T RS1=0。
作为另一种可能的实现方式,上述的相邻两个所述第一OFDM符号组分别包括的第N1个OFDM符号之间间隔的符号数量为T RS1的整数倍可以表示为:
相邻两个所述第一OFDM符号组分别包括的第N1个OFDM符号之间间隔的为G1个OFDM符号,该G1满足
Figure PCTCN2022141480-appb-000118
n1为正整数。
作为又一种可能的实现方式,上述的相邻两个所述第一OFDM符号组分别包括的第N1个OFDM符号之间间隔的符号数量为T RS1的整数倍可以表示为:
相邻两个所述第一OFDM符号组分别包括的第N1个OFDM符号之间间隔的符号数量与T RS1的比值为正整数。
具体地,上述的T RS1大于或者等于2,且T RS1
Figure PCTCN2022141480-appb-000119
的非整数倍,或者说,T RS1不是
Figure PCTCN2022141480-appb-000120
的整数倍,所述T RS1小于
Figure PCTCN2022141480-appb-000121
或者,所述T RS大于或者等于所述
Figure PCTCN2022141480-appb-000122
可选的,
Figure PCTCN2022141480-appb-000123
作为一种可能的实现方式,上述的T RS1
Figure PCTCN2022141480-appb-000124
的非整数倍可以表示为:
Figure PCTCN2022141480-appb-000125
作为另一种可能的实现方式,上述的T RS1
Figure PCTCN2022141480-appb-000126
的非整数倍可以表示为:
Figure PCTCN2022141480-appb-000127
n2为非整数。
作为又一种可能的实现方式,上述的T RS1
Figure PCTCN2022141480-appb-000128
的非整数倍可以表示为:
T RS1
Figure PCTCN2022141480-appb-000129
的比值为非整数。
需要说明的是,上述的多个第一OFDM符号组中至少存在两个第一OFDM符号组间隔的符号数量是
Figure PCTCN2022141480-appb-000130
的非整数倍。也就是说上述G1中存在至少一个G1满足:G 1mod
Figure PCTCN2022141480-appb-000131
为了便于理解,结合图7简单说明多个第一OFDM符号组之间的间隔。图7是一种多个第一OFDM符号组的位置示意图。
从图7中可以看出多个第一OFDM符号组包括第一OFDM符号组#1、第一OFDM符号组#2和第一OFDM符号组#3,其中,第一OFDM符号组#1和第一OFDM符号组#2之间的间隔L1为T RS1的整数倍、第一OFDM符号组#2和第一OFDM符号组#3之间的间隔L2为T RS1的整数倍、第一OFDM符号组#1和第一OFDM符号组#3之间的间隔L3为T RS1的整数倍。
其中,L1、L2和L3中的至少一个是
Figure PCTCN2022141480-appb-000132
的非整数倍(如,图7中所示的L1和L2是
Figure PCTCN2022141480-appb-000133
的非整数倍)。
例如,T RS1=7,
Figure PCTCN2022141480-appb-000134
L1=7,L2=7,L3=14。
进一步地,在上述的多个第一OFDM符号组包括两个第一OFDM符号组的情况下,该两个第一OFDM符号组分别位于不同的时隙。
例如,多个第一OFDM符号组包括第一OFDM符号组#1和第一OFDM符号组#2,其中,第一OFDM符号组#1位于SLOT#1,第一OFDM符号组#2位于SLOT#2,SLOT#1和SLOT#2为不同的时隙。
需要说明的是,上述的多个第一OFDM符号组包括两个第一OFDM符号组只是举例,多个第一OFDM符号组还可以包括三个及三个以上的第一OFDM符号组;在多个第一OFDM符号组包括至少三个第一OFDM符号组的情况下,该至少三个第一OFDM符号组中包括位于相同时隙的第一OFDM符号组。
例如,多个第一OFDM符号组包括第一OFDM符号组#1、第一OFDM符号组#2和第一OFDM符号组#3,其中,第一OFDM符号组#1位于SLOT#1,第一OFDM符号组#2和第一OFDM符号组#3位于SLOT#2,SLOT#1和SLOT#2为不同的时隙。
为了便于理解,结合图8中的(a)和(b)简单说明多个第一OFDM符号组与时隙的关系。图8中的(a)和(b)是一种多个第一OFDM符号组与时隙的关系的示意图。
从图8中的(a)可以看出多个第一OFDM符号组包括两个第一OFDM符号组(第一OFDM符号组#1和第一OFDM符号组#2),其中,第一OFDM符号组#1位于SLOT#1,第一OFDM符号组#2位于SLOT#2,SLOT#1和SLOT#2为不同的时隙。
从图8中的(b)可以看出多个第一OFDM符号组包括第一OFDM符号组#1、第一OFDM符号组#2和第一OFDM符号组#3,其中,第一OFDM符号组#1位于SLOT#1,第一OFDM符号组#2和第一OFDM符号组#3位于SLOT#2,SLOT#1和SLOT#2为不同的时隙。
具体地,上述的多个第二OFDM符号组中任意两个第二OFDM符号组之间间隔的符号数量为T RS2的整数倍。其中,T RS2的单位是OFDM符号。如,T RS2等于12,表示12个OFDM符号。
需要说明的是,多个第二OFDM符号组中的每个第二OFDM符号组中包括的OFDM符号的位置以及多个第二OFDM符号组中的不同第二OFDM符号组的位置关系,与上述的多个第一OFDM符号组类似。
例如,上述的两个第二OFDM符号组可以指两个序号相邻的第二OFDM符号组,相邻的第二OFDM符号组的位置关系可以参考上述两个第一OFDM符号组的位置关系的描述(如,图5所示的可以将第一OFDM符号组替换为第二OFDM符号组),这里不再赘述。
还例如,两个第二OFDM符号组之间的间隔可以为两个第二OFDM符号组分别包括的第N2个第二OFDM符号之间间隔,所述N2为小于或者等于
Figure PCTCN2022141480-appb-000135
的正整数,所述
Figure PCTCN2022141480-appb-000136
表示所述第二OFDM符号组包括的OFDM符号数,两个第二OFDM符号之间间隔可以参考上述两个第一OFDM符号之间间隔的描述(如,图6所示的可以将第一OFDM符号组替换为第二OFDM符号组),这里不再赘述。
又例如,多个第二OFDM符号组之间的间隔可以参考上述多个第一OFDM符号组之间间隔的描述(如,图7所示的可以将第一OFDM符号组替换为第二OFDM符号组),这里不再赘述。
又例如,多个第二OFDM符号组与时隙的关系可以参考上述多个第二一OFDM符号组与时隙的关系的描述(如,图8中的(a)和(b)所示的可以将第一OFDM符号组替换为第二OFDM符号组),这里不再赘述。
具体地,上述的第一OFDM符号组和第二OFDM符号组之间不重叠。可以理解为,多个第一OFDM符号组包括的第一OFDM符号,多个第二OFDM符号组包括的第二OFDM符号,第一OFDM符号和第二OFDM符号为不同的OFDM符号。
例如,用于接收或发送参考信号的某个时域资源包括M个符号,该M个符号中的前M1个符号包括上述的多个第一OFDM符号组中的第一个第一OFDM符号组;该M个符号中的第M1+1个符号至M2个符号包括上述的多个第二OFDM符号组中的第一个第二OFDM符号组;该M个符号中的第M2+1个符号至M3个符号包括上述的多个第一OFDM符号组中的第二个第二OFDM符号组……以此类推,第一OFDM符号组和第二OFDM符号组依次位于交替的时域位置上。
又例如,用于接收或发送参考信号的某个时域资源包括M个符号,该M个符号中的前M1个符号包括上述的多个第一OFDM符号组中的第一个第一OFDM符号组和第二个第一OFDM符号组;该M个符号中的第M1+1个符号至M2个符号包括上述的多个第二OFDM符号组中的第一个第二OFDM符号组;该M个符号中的第M2+1个符号至M3个符号包括上述的多个第一OFDM符号组中的第三个第二OFDM符号组……可以理解为:多个第一OFDM符号组和多个第二OFDM符号组交替位于先后的时域位置上。
进一步地,在确定时域资源之后,可以在时域资源上接收或者发送参考信号,例如,对于网络设备来说,在所述时域资源上接收或者发送参考信号包括:
在所述时域资源上接收SRS;或者,
在所述时域资源上发送CSI-RS。
例如,对于终端设备来说,在所述时域资源上接收或者发送参考信号包括:
在所述时域资源上发送SRS;或者,
在所述时域资源上接收CSI-RS。
该实施例中,多个天线(或者称为发送端口)分为多组天线组,不同的天线组占用不同的资源接收或发送参考信号,图4所示的方法流程还包括:
S420,在所述时域资源上通过不同的天线组接收或发送参考信号。
为了便于描述,以通过两组不同的天线组接收或发送参考信号为例进行说明。
在所述多个第一OFDM符号组上通过第一天线组接收或发送参考信号;
在所述多个第二OFDM符号组上通过第二天线组接收或发送参考信号。
示例性地,第一天线组接收或发送的参考信号和第二天线组接收或发送的参考信号的类型一致。例如,均为SRS;还例如,均为CSI-RS。
示例性地,第一天线组接收或发送的参考信号和第二天线组接收或发送的参考信号为一次信道测量中所需的参考信号。
需要说明的是,天线组的组数可以为两组以上,上述的时域资源可以包括除上述的多个第一OFDM符号组和多个第二OFDM符号组之外的OFDM符号组(如,还包括多个第三OFDM符号组和多个第四OFDM符号组)。
不同天线组中每组天线组发送参考信号占用完全相同的一个或多个OFDM符号,不同组天线组发送RS在时域上占用的OFDM符号互不重叠。
作为一种可能的实现方式,上述的时域资源包括的第一OFDM符号组对应同一根或者说同一组天线,或者说对应同一个或同一组天线端口。
例如,在时域资源上承载SRS的情况下,时域资源包括的多个第一OFDM符号组中每个第一OFDM符号组上发送SRS所采用的发送天线相同;在时域资源上承载CSI-RS的情况下,时域资源包括的多个OFDM符号中每个第一OFDM符号组上接收CSI-RS所采用的接收天线相同。
同理,上述的时域资源包括的第二OFDM符号组对应同一根或者说同一组天线,或者说对应同一个或同一组天线端口。
例如,在时域资源上承载SRS的情况下,时域资源包括的多个第二OFDM符号组中每个第二OFDM符号组上发送SRS所采用的发送天线相同;在时域资源上承载CSI-RS的情况下,时域资源包括的多个OFDM符号中每个第二OFDM符号组上接收CSI-RS所采用的接收天线相同。
作为一种可能的实现方式,在所述多个第一OFDM符号组上通过第一天线组接收或发送参考信号,在所述多个第二OFDM符号组上通过第二天线组接收或发送参考信号,第一OFDM符号组和第二OFDM符号组不重叠,包括以下两种方式:
方式一:一个第一OFDM符号组和一个第二OFDM符号组依次交替出现。
例如,所述多个第一OFDM符号组中任意两个相邻的第一OFDM符号组之间存在一个第二OFDM符号组,且多个第二OFDM符号组中任意两个相邻的第二OFDM符号组之间存在一个第一OFDM符号组。
为了便于理解,结合图9进行说明。图9是一种不同天线组传输参考信号的OFDM符号的位置示意图。
从图9中可以看出在用于接收或发送参考信号的时域资源(如,图9中所示的S时隙的最后2个上行OFDM符号和U时隙包括的14个OFDM符号)上,一个第一OFDM符 号组和一个第二OFDM符号组依次交替出现(如,图9中所示的多个第一OFDM符号组和多个第二OFDM符号组的位置依次为第一OFDM符号组#1、第二OFDM符号组#1、第一OFDM符号组#2、第二OFDM符号组#2)。
示例性地,一个第一OFDM符号组和一个第二OFDM符号组依次交替出现指不同天线组发送参考信号占用相同的时间段,在相同时间段内不同天线组交替发送参考信号。具体地,在该时间段内每个发送参考信号的时隙,为不同组天线组分别指定一个或多个OFDM符号作为起始OFDM符号,不同组天线组指定的起始OFDM符号不同。每一组天线组在为其指定的起始OFDM符号之后连续的一个或者多个OFDM符号上发送参考信号(或者在该指定的起始OFDM符号上发送参考信号),与此同时其它组的天线组发送全零信号。
所述第一OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
所述系统帧内时隙的序号和所述时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000137
其中,n s,f表示所述系统帧内时隙的序号、n o,s表示所述时隙内OFDM符号的序号、T offset,1表示所述第一天线组对应的时域偏移OFDM符号数;
考虑在第一OFDM符号组中包括重复传输的场景时,比如,存在多个连续的OFDM符号用于传输参考信号可以认为这多个OFDM符号是一次重复传输。
该第一OFDM符号组中的第k1个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000138
其中,该k1为整数,k1的取值为1至
Figure PCTCN2022141480-appb-000139
中任意值,该
Figure PCTCN2022141480-appb-000140
表示该第一OFDM符号组包括的OFDM符号数;
Figure PCTCN2022141480-appb-000141
可以理解为在第一OFDM符号组中一次重复传输包括的OFDM符号数量,k1可以理解为在一次重复传输中OFDM符号的相对位置,例如,在一次重复传输中的第一个OFDM符号对应的k1=1。
所述第二OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
所述系统帧内时隙的序号和所述时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000142
其中,T offset,2表示所述第二天线组对应的时域偏移OFDM符号数。
考虑在第二OFDM符号组中包括重复传输的场景时,比如,存在多个连续的OFDM符号用于传输参考信号可以认为这多个OFDM符号是一次重复传输。
该第二OFDM符号组中的第k2个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000143
其中,该k2为整数,k2的取值为1至
Figure PCTCN2022141480-appb-000144
中任意值,该
Figure PCTCN2022141480-appb-000145
表示该第二OFDM符号组包括的OFDM符号数;
Figure PCTCN2022141480-appb-000146
可以理解为在第二OFDM符号组中一次重复传输包括的OFDM符号数量,k2可以理解为在一次重复传输中OFDM符号的相对位置,例如, 在一次重复传输中的第一个OFDM符号对应的k2=1。
在图9中所示的情况下,上述的T RS1=T RS2=12,在参考信号为上行参考信号(如,SRS)时,UE通过天线选择(antenna switching)的方式,分别用第一天线组(如,天线#1和天线#2)或第二天线组(如,天线#3和天线#4)发送SRS。
从图9中可以看出,在某个帧结构(如,DSUDD)中的用于发送SRS的16个OFDM符号上(如,S时隙的最后2个上行OFDM符号和U时隙包括的14个OFDM符号),UE交替使用第一天线组和第二天线组发送SRS,如,在多个第一OFDM符号组(如图5中所示的第一个OFDM符号和第二个OFDM符号组成的第一OFDM符号组,和第十三个OFDM符号和第十四个OFDM符号组成的第一OFDM符号组)上使用第一天线组发送SRS;在多个第二OFDM符号组(如图6中所示的第四个OFDM符号组成的第二OFDM符号组,和第十六个OFDM符号组成的第二OFDM符号组)上使用第二天线组发送SRS。
从图5中可以看出,相邻两个第一OFDM符号组中的第一个OFDM符号(如图5中所示的第一个OFDM符号和第十三个OFDM符号)之间的间隔为T RS1,T RS1=12;相邻两个第二OFDM符号组中的第一个OFDM符号(如图5中所示的第四个OFDM符号和第十六个OFDM符号)之间的间隔为T RS2,T RS2=12。
方式二:至少两个第一OFDM符号组和至少两个第二OFDM符号组依次交替出现。
例如,所述多个第一OFDM符号组中至少有两个相邻的第一OFDM符号组之间不存在第二OFDM符号组,或者其他用于接收或发送参考信号的OFDM符号组;所述多个第二OFDM符号组中至少有两个相邻的第二OFDM符号组之间不存在第一OFDM符号组或者其他用于接收或发送参考信号的OFDM符号组。
为了便于理解,结合图10进行说明。图10是另一种不同天线组传输参考信号的OFDM符号的位置示意图。
从图10中可以看出在用于接收或发送参考信号的时域资源(如,图10中所示的S时隙的最后2个上行OFDM符号和U时隙包括的14个OFDM符号)上,两个第一OFDM符号组和两个第二OFDM符号组依次交替出现(如,图10中所示的多个第一OFDM符号组和多个第二OFDM符号组的位置依次为第一OFDM符号组#1、第一OFDM符号组#2、第二OFDM符号组#1、第二OFDM符号组#2)。
示例性地,至少两个第一OFDM符号组和至少两个第二OFDM符号组依次交替出现指不同天线组发送参考信号占用不同的时间段,每一组天线组在为该天线组分配的时间段内的一个或多个OFDM符号上发送参考信号,其它组的天线组在此时间段不发送参考信号。具体地,每一组天线组分配一个时间段,为该时间段指定开始和结束的OFDM符号的位置,并在该时间段内指定一个或多个OFDM符号作为起始OFDM符号,该天线组在为其指定的起始OFDM符号之后连续的多个OFDM符号上发送参考信号(或者在该指定的起始OFDM符号上发送参考信号),其它组的天线组发送全零信号。
所述第一OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
所述系统帧内时隙的序号和所述时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000147
其中,T begin,1表示所述多个第一OFDM符号组的开始时刻,T end,1表示所述多个第一OFDM符号组的结束时刻。
考虑在第一OFDM符号组中包括重复传输的场景时,比如,存在多个连续的OFDM符号用于传输参考信号可以认为这多个OFDM符号是一次重复传输。
该第一OFDM符号组中的第k1个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000148
所述第二OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
所述系统帧内时隙的序号和所述时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000149
其中,T begin,2表示所述多个第二OFDM符号组的开始时刻,T end,2表示所述多个第二OFDM符号组的结束时刻。
考虑在第二OFDM符号组中包括重复传输的场景时,比如,存在多个连续的OFDM符号用于传输参考信号可以认为这多个OFDM符号是一次重复传输。
该第二OFDM符号组中的第k2个OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
该系统帧内时隙的序号和该时隙内OFDM符号的序号满足:
Figure PCTCN2022141480-appb-000150
在图10中所示的情况下,上述的T RS1=5,T RS2=6为,在参考信号为上行参考信号(如,SRS)时,UE通过天线选择(antenna switching)的方式,分别用第一天线组(如,天线#1和天线#2)或第二天线组(如,天线#3和天线#4)发送SRS,其中,D表示下行(downlink)时隙,S表示灵活(flexible)时隙。
从图10中可以看出,在某个帧结构(如,DSUDD)中的用于发送SRS的16个OFDM符号上(如,S时隙的最后2个上行OFDM符号和U时隙包括的14个OFDM符号),UE先后使用第一天线组和第二天线组发送SRS,如,在多个第一OFDM符号组(如图10中所示的第一个OFDM符号和第二个OFDM符号组成的第一OFDM符号组,和第六个OFDM符号和第七个OFDM符号组成的第一OFDM符号组)上使用第一天线组发送SRS;在多个第二OFDM符号组(如图10中所示的第九个OFDM符号和第十个OFDM符号组成的第二OFDM符号组,和第十五个OFDM符号和第十六个OFDM符号组成的第二OFDM符号组)上使用第二天线组发送SRS。
从图10中可以看出,相邻两个第一OFDM符号组中的第一个OFDM符号(如图10中所示的第一个OFDM符号和第六个OFDM符号)之间的间隔为T RS1,T RS1=5;相邻两个第二OFDM符号组中的第一个OFDM符号(如图10中所示的第九个OFDM符号和第十五个OFDM符号)之间的间隔为T RS2,T RS2=6。
应理解,图9和图10只是举例说明如何交替使用不同的天线组发送参考信号,对本申请的保护范围不构成任何的限定,例如,不同的天线组对应的T RS可以不同。
作为另一种可能的实现方式,上述的方式一和方式二可以同时存在,例如,对于时域资源中的部分时域资源可以采用方式一的配置方式为不同的天线组配置资源,另外的时域资源可以采用方式二的配置方式为不同的天线组配置资源。
需要说明的是,同一组天线组中的不同天线对应的时域偏移OFDM符号数相同。
例如,第一天线组中的天线对应的时域偏移OFDM符号数均为T offset,1
还例如,第二天线组中的天线对应的时域偏移OFDM符号数均为T offset,2
还需要说明的是,不同天线组对应的时域偏移OFDM符号数不同,例如,T offset,1≠T offset,2
示例性地,不同天线组对应的OFDM符号组包括的OFDM符号数可以相同也可以不同,例如,
Figure PCTCN2022141480-appb-000151
或者,
Figure PCTCN2022141480-appb-000152
示例性地,不同天线组对应的OFDM符号组对应的T RS可以相同也可以不同,例如,T RS1=T RS2,或者,T RS1≠T RS2
作为一种可能的实现方式,可以进一步限制发送参考信号占用的资源范围。
示例性地,根据第二配置信息确定所述时域资源,所述第二配置信息用于指示所述时域资源位于的时隙范围和/或所述时域资源在所述时隙中位于的OFDM符号范围。
例如,每组DSUDD中限制在一个/多个时隙发送,其中,某些时隙可以进一步限制在部分OFDM符号发送,在所限范围内满足上述公式的OFDM符号发送参考信号;
还例如,每组DDDDDDDSUU中限制在一个/多个时隙发送,其中,某些时隙可以进一步限制在部分OFDM符号发送,在所限范围内满足上述公式的OFDM符号发送参考信号。
应理解,上述只是举例说明不同天线组对应的每个OFDM符号的位置如何基于系统帧的序号、该系统帧内时隙的序号和该时隙内OFDM符号的序号确定,对本申请的保护范围不构成任何的限定,其他确定方式能够使得任意两个第一OFDM符号组之间的间隔为T RS1的整数倍,任意两个第二OFDM符号组之间的间隔为T RS2的整数倍也在本申请的保护范围之内,这里不再赘述。
由上述可知,系统帧的序号、该系统帧内时隙的序号和该时隙内OFDM符号的序号能够确定不同天线组对应的可能传输参考信号的OFDM符号的位置。
可选的,在不同天线组对应的所有可能传输参考信号的OFDM符号的位置中,对于下行参考信号,UE仅在属于下行OFDM符号的位置上接收参考信号;对于上行参考信号,UE仅在属于上行OFDM符号的位置上发送参考信号。
通过上述方法,可以使得接收端根据该参考信号测量获得更为精确的多普勒信息,对于下行参考信号(CSI-RS),终端可以根据下行参考信号的测量获取信道状态信息反馈给基站;对于上行参考信号(SRS),基站可以直接根据上行参考信号的测量获取信道状态信息,从而在高速移动的场景中,基站可以做更为精确的信道预测以及数据调度。
进一步地,网络设备确定不同天线组对应的OFDM符号组之后,可以通过第一配置信息通知终端设备不同天线组对应的OFDM符号组,图4所示的方法流程还包括:
S421,网络设备向终端设备发送第一配置信息。
该第一配置信息用于指示上述的时域资源。
具体地,该第一配置信息用于指示上述的多个第一OFDM符号组和多个第二OFDM符号组。
可选地,该多个第一OFDM符号组和多个第二OFDM符号组包含于参考信号资源,第一配置信息用于指示该参考信号资源。
可选的,网络设备配置一个参考信号资源,该参考信号资源的配置信息中包括指示T RS1和/或T offset,1,以及T RS2和/或T offset,2的第一配置信息,终端设备根据该参考信源的配置信息和上述公式(1-1)和(1-3)或者(2-1)和(2-3),可以确定可能用于不同天线组发送参考信号的时域位置。
终端设备在接收到第一配置信息之后,能够基于该第一配置信息确定多个第一OFDM符号组和多个第二OFDM符号组,并且在所述多个第一OFDM符号组上通过第三天线组接收或发送参考信号,在所述多个第二OFDM符号组上通过第四天线组接收或发送参考信号。
示例性地,第一配置信息为RRC信令或者MAC CE信令或者DCI信令。
具体地,多个第一OFDM符号组和多个第二OFDM符号组中包括的多个OFDM符号之间的关系,参考上述描述,这里不再赘述。
图4所示的方法流程详细介绍了不同天线组分别对应的OFDM符号组中包括的OFDM符号的确定方式,另外,不同的跳频带宽也可以对应不同的OFDM符号组,下面将结合图11详细介绍跳频方式下,不同的跳频带宽对应的OFDM符号组中包括的OFDM符号的确定方式。
图11是本申请实施例提供的另一种传输参考信号的方法的示意性流程图。包括以下步骤:
S710,网络设备确定参考信号端口的时频资源。
时频资源至少包括在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽。
示例性地,参考信号的发送带宽包括上述的第一跳频带宽和第二跳频带宽,第一跳频带宽和第二跳频带宽之间不重叠。
需要说明的是,该实施例中只是为了便于描述以参考信号的发送带宽包括上述的第一跳频带宽和第二跳频带宽为例进行说明,参考信号的发送带宽还可以包括其他的第一跳频带宽和第二跳频带宽不重叠的跳频带宽(如,第三跳频带宽)。
多个第一OFDM符号组和多个第二OFDM符号组的描述可以参考上述的S410中关于多个第一OFDM符号组和多个第二OFDM符号组的描述,这里不再赘述。
进一步地,在确定时频资源之后,可以在时频资源上接收或者发送参考信号,该实施例中,结合跳频技术接收或者发送参考信号,跳频技术是指将整个工作带宽分成多个跳频带宽,不同的时刻在不同的跳频带宽上接收或者发送参考信号,图11所示的方法流程还包括:
S720,在所述时频资源上接收或发送参考信号。
为了便于描述,以参考信号的发送带宽包括上述的第一跳频带宽和第二跳频带宽为例进行说明。
在多个第一OFDM符号组上的第一跳频带宽接收或发送参考信号,以及在多个第二OFDM符号组上的第二跳频带宽接收或发送参考信号。
示例性地,在多个第一OFDM符号组上的第一跳频带宽发送的参考信号和第在多个第二OFDM符号组上的第二跳频带宽发送的参考信号的类型一致。例如,均为SRS;还例如,均为CSI-RS。
示例性地,第一天线组接收或发送的参考信号和第二天线组接收或发送的参考信号为一次信道测量中所需的参考信号。
图11所示的方法流程与图4所示的方法流程不同的是,图4主要介绍的是通过不同的天线组接收或发送参考信号,针对不同的天线组配置资源。而图11主要介绍的是在不同的跳频带宽接收或发送参考信号,针对不同的跳频带宽配置资源。
由上述图4所示的方法流程针对多个第一OFDM符号组以及多个第二OFDM符号组的介绍可知,第一OFDM符号组和所述第二OFDM符号组不重叠,包括以下两种方式:
方式一:一个第一OFDM符号组和一个第二OFDM符号组依次交替出现。
为了便于理解,结合图12进行说明。图12是本申请实施例提供的一种不同跳频带宽传输参考信号的OFDM符号的位置示意图。
从图12中可以看出在用于接收或发送参考信号的时频资源(如,图12中所示的S时隙的最后2个上行OFDM符号和U时隙包括的14个OFDM符号,以及第一跳频带宽、第二跳频带宽、第三跳频带宽和第四跳频带宽)上,针对不同的跳频带宽,不同的跳频带宽对应的OFDM符号组一个间隔一个地依次交替出现,在图12中可以认为第一OFDM符号组所在行为第一跳频带宽,第二OFDM符号组所在的行为第二跳频带宽,第三OFDM所在的组为第三跳频带宽,第四OFDM所在的组为第四跳频带宽。
示例性地,在该实施例中多个第一OFDM符号组和所述多个第二OFDM符号组位于交替的时域位置上指在不同跳频带宽发送参考信号占用相同的时间段,在相同时间段内在不同跳频带宽交替发送参考信号。具体地,在该时间段内每个发送参考信号的SLOT,为每一个跳频带宽各指定一个或多个OFDM符号作为起始OFDM符号,不同跳频带宽指定的起始OFDM符号不同。每一个跳频带宽在为该跳频带宽指定的起始OFDM符号之后连续的一个或者多个OFDM符号上发送参考信号(或者在该指定的起始OFDM符号上发送参考信号),与此同时其它跳频带宽上发送全零信号。
示例性地,该实施例中第一OFDM符号组中的第k1个OFDM符号的时域位置所满足的公式可以参考上述的公式(1-1)和(1-2),区别在于该实施例中T offset,1表示所述第一跳频带宽对应的时域偏移OFDM符号数;同理,该实施例中第二OFDM符号组中的第k2个OFDM符号的时域位置所满足的公式可以参考上述的公式(1-3)和(1-4),区别在于该实施例中T offset,2表示所述第二跳频带宽对应的时域偏移OFDM符号数。
从图12中可以看出,在某个帧结构(如,DSUDD)中的用于发送SRS的16个OFDM符号上(如,S时隙的最后2个上行OFDM符号和U时隙包括的14个OFDM符号),UE交替在第一跳频带宽、第二跳频带宽、第三跳频带宽和第四跳频带宽上发送SRS,如,在第一跳频带宽和第一OFDM符号组(如图12中所示的第一个OFDM符号组成的第一OFDM符号组,和第十三个OFDM符号组成的第一OFDM符号组)上发送SRS;在第二跳频带宽和第二OFDM符号组(如图12中所示的第三个OFDM符号组成的第二OFDM 符号组,和第十五个OFDM符号组成的第二OFDM符号组)上发送SRS;在第三跳频带宽和第三OFDM符号组(如图12中所示的第二个OFDM符号组成的第三OFDM符号组,和第十四个OFDM符号组成的第三OFDM符号组)上发送SRS;在第四跳频带宽和第四OFDM符号组(如图12中所示的第四个OFDM符号组成的第四OFDM符号组,和第十六个OFDM符号组成的第四OFDM符号组)上发送SRS。
从图12中可以看出,相邻两个第一OFDM符号组中的第一个OFDM符号(如图12中所示的第一个OFDM符号和第十三个OFDM符号)之间的间隔为T RS1,T RS1=12;相邻两个第二OFDM符号组中的第一个OFDM符号(如图12中所示的第三个OFDM符号和第十五个OFDM符号)之间的间隔为T RS2,T RS2=12,相邻两个第三OFDM符号组中的第一个OFDM符号(如图12中所示的第二个OFDM符号和第十四个OFDM符号)之间的间隔为T RS3,T RS3=12;相邻两个第四OFDM符号组中的第一个OFDM符号(如图12中所示的第四个OFDM符号和第十六个OFDM符号)之间的间隔为T RS4,T RS4=12。
方式二:至少两个第一OFDM符号组和至少两个第二OFDM符号组依次交替出现。
为了便于理解,结合图13进行说明。图13是本申请实施例提供的一种不同跳频带宽传输参考信号的OFDM符号的位置示意图。
从图13中可以看出在用于接收或发送参考信号的时频资源(如,图13中所示的S时隙的最后2个上行OFDM符号和U时隙包括的14个OFDM符号,以及第一跳频带宽、第二跳频带宽、第三跳频带宽和第四跳频带宽)上,针对不同的跳频带宽,不同的跳频带宽对应的OFDM符号组一个间隔一个地依次交替出现。
示例性地,在该实施例中多个第一OFDM符号组和所述多个第二OFDM符号组位于先后的时域位置上指在不同跳频带宽发送参考信号占用不同的时间段,在不同的时间段内选取一个或多个OFDM符号在不同的跳频带宽上发送参考信号。具体地,每一个跳频带宽对应一个时间段,指定时间段开始和结束的OFDM符号的位置,并在该时间段内指定一个或多个OFDM符号作为起始OFDM符号,时域上在这些起始OFDM符号之后连续的多个时域OFDM符号(参考信号(或者时域上在在该指定的起始OFDM符号)、频域上在该跳频带宽内发送参考信号,与此同时其它跳频带宽发送全零信号。
示例性地,该实施例中第一OFDM符号组中的第k1个OFDM符号的时域位置所满足的公式可以参考上述的公式(2-1)和(2-2),区别在于该实施例中T offset,1表示所述第一跳频带宽对应的时域偏移OFDM符号数;同理,该实施例中第二OFDM符号组中的第k2个OFDM符号的时域位置所满足的公式可以参考上述的公式(2-3)和(2-4),区别在于该实施例中T offset,2表示所述第二跳频带宽对应的时域偏移OFDM符号数。
从图13中可以看出,在某个帧结构(如,DSUDD)中的用于发送SRS的16个OFDM符号上(如,S时隙的最后2个上行OFDM符号和U时隙包括的14个OFDM符号),UE先后在第一跳频带宽、第二跳频带宽、第三跳频带宽和第四跳频带宽上发送SRS。
具体地,在10个slot内完成跳频,10个slot内的时域资源包含两组S-U上行slot。第一组S-U分为两段,前一段8个OFDM符号配置给第一跳频带宽,后一段8个OFDM符号配置给第三跳频带宽;第二组S-U分为两段,前一段8个OFDM符号配置给第二跳频带宽,后一段8个OFDM符号配置给第四跳频带宽。
在第一跳频带宽和第一OFDM符号组(如图13中所示的第一组S-U中的第一个 OFDM符号和第二个OFDM符号组成的第一OFDM符号组,和第七个OFDM符号和第八个OFDM符号组成的第一OFDM符号组)上发送SRS;在第二跳频带宽和第二OFDM符号组(如图13中所示的第二组S-U中的第一个OFDM符号和第二个OFDM符号组成的第二OFDM符号组,和第七个OFDM符号和第八个OFDM符号组成的第二OFDM符号组)上发送SRS;在第三跳频带宽和第三OFDM符号组(如图13中所示的第一组S-U中的第九个OFDM符号和第十个OFDM符号组成的第三OFDM符号组,和第十五个OFDM符号和第十六个OFDM符号组成的第三OFDM符号组)上发送SRS;在第四跳频带宽和第四OFDM符号组(如图13中所示的第二组S-U中的第九个OFDM符号和第十个OFDM符号组成的第四OFDM符号组,和第十五个OFDM符号和第十六个OFDM符号组成的第四OFDM符号组)上发送SRS。
从图13中可以看出,相邻两个第一OFDM符号组中的第一个OFDM符号(如图13中所示的第一组S-U中的第一个OFDM符号和第七个OFDM符号)之间的间隔为T RS1,T RS1=6;相邻两个第二OFDM符号组中的第一个OFDM符号(如图13中所示的第二组S-U中的第一个OFDM符号和第七个OFDM符号)之间的间隔为T RS2,T RS2=12,相邻两个第三OFDM符号组中的第一个OFDM符号(如图10中所示的第一组S-U中的第九个OFDM符号和第十五个OFDM符号)之间的间隔为T RS3,T RS3=6;相邻两个第四OFDM符号组中的第一个OFDM符号(如图13中所示的第二组S-U中的第九个OFDM符号和第十五个OFDM符号)之间的间隔为T RS4,T RS4=6。
应理解,图12和图13只是举例说明如何交替在不同的跳频带宽发送参考信号,对本申请的保护范围不构成任何的限定,例如,不同的跳频带宽对应的T RS可以不同。
作为另一种可能的实现方式,上述的方式一和方式二可以同时存在,例如,对于时域资源中的部分时域资源可以采用方式一的配置方式为不同的跳频带宽配置资源,另外的时域资源可以采用方式二的配置方式为不同的跳频带宽配置资源。
不同跳频带宽对应的时域偏移OFDM符号数不同,例如,T offset,1≠T offset,2
示例性地,不同跳频带宽对应的OFDM符号组包括的OFDM符号数可以相同也可以不同,例如,
Figure PCTCN2022141480-appb-000153
或者,
Figure PCTCN2022141480-appb-000154
示例性地,不同跳频带宽对应的OFDM符号组对应的T RS可以相同也可以不同,例如,T RS1=T RS2,或者,T RS1≠T RS2
进一步地,网络设备确定不同跳频带宽对应的OFDM符号组之后,可以通过第三配置信息通知终端设备不同跳频带宽对应的OFDM符号组,图11所示的方法流程还包括:
S721,网络设备向终端设备发送第三配置信息。
第三配置信息用于指示上述的时频资源。
具体地,该第三配置信息用于指示上述的在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽。
可选地,该多个第一OFDM符号组和多个第二OFDM符号组包含于参考信号资源,第三配置信息用于指示该参考信号资源。
可选的,网络设备配置一个参考信号资源,该参考信号资源的配置信息中包括指示T RS1和/或T offset,1,以及T RS2和/或T offset,2的第三配置信息,终端设备根据该参考信源的配置信息和上述公式(1-1)和(1-3)或者(2-1)和(2-3),可以确定可能用于不同跳频 带宽发送参考信号的时域位置。
终端设备在接收到第三配置信息之后,能够基于该第三配置信息确定在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽,并且在多个第一OFDM符号组上的第一跳频带宽接收或发送参考信号,以及在在多个第二OFDM符号组上的第二跳频带宽接收或发送参考信号。
示例性地,第三配置信息为RRC信令或者MAC CE信令或者DCI信令。
具体地,多个第一OFDM符号组和多个第二OFDM符号组中包括的多个OFDM符号之间的关系,参考上述描述,这里不再赘述。
上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
例如,图4所示的方法流程和图11所示的方法流程可以结合,即可以针对不同的天线组和不同的跳频带宽配置时域资源,且不同的天线组和不同的跳频带宽对应的资源分别满足上述图4和图11所述的实施例中的要求.
还应理解,在上述一些实施例中,主要以现有的网络架构中的设备为例进行了示例性说明(如网络设备、终端设备等等),应理解,对于设备的具体形式本申请实施例不作限定。例如,在未来可以实现同样功能的设备都适用于本申请实施例。
可以理解的是,上述各个方法实施例中,由设备(如网络设备、终端设备)实现的方法和操作,也可以由设备的部件(例如芯片或者电路)实现。
以上,结合图4和图11详细说明了本申请实施例提供的用于传输参考信号的方法。上述用于传输参考信号的方法主要从各个网元之间交互的角度进行了介绍。可以理解的是,各个网元,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以下,结合图14至图17详细说明本申请实施例提供的用于传输参考信号的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
参见图14,图14是本申请提出的用于传输参考信号的装置400的示意图。如图14 所示,装置400包括处理单元410和收发单元420。
作为一个示例,收发单元420,用于接收第一配置信息,该第一配置信息用于指示时域资源,该时域资源至少包括多个第一OFDM符号组和多个第二OFDM符号组;
处理单元410根据第一配置信息确定多个第一OFDM符号组和多个第二OFDM符号组;
该收发单元420,用于在该多个第一OFDM符号组上通过第三天线组接收或发送参考信号;
该收发单元420,用于在该多个第二OFDM符号组上通过第四天线组接收或发送参考信号;
其中,任意两个该第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,该多个第一OFDM符号组中至少存在两个该第一OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000155
的非整数倍,任意两个该第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,该多个第二OFDM符号组中至少存在两个该第二OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000156
的非整数倍,该T RS1和该T RS2
Figure PCTCN2022141480-appb-000157
的非整数倍,该
Figure PCTCN2022141480-appb-000158
表示一个时隙slot所包括的OFDM符号数量,该第一OFDM符号组和该第二OFDM符号组不重叠,该第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,该第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
作为另一个示例,收发单元420,用于接收第三配置信息,该第三配置信息用于指示参考信号端口的时频资源,该时频资源至少包括在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽;
处理单元410根据第三配置信息确定在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽;
收发单元420,用于在该时频资源上接收或发送参考信号;
其中,任意两个该第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,该多个第一OFDM符号组中至少存在两个该第一OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000159
的非整数倍,任意两个该第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,该多个第二OFDM符号组中至少存在两个该第二OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000160
的非整数倍,该T RS1和该T RS2
Figure PCTCN2022141480-appb-000161
的非整数倍,该
Figure PCTCN2022141480-appb-000162
表示一个时隙slot所包括的OFDM符号数量,该第一OFDM符号组和该第二OFDM符号组不重叠,该第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,该第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
装置400和方法实施例中的终端设备对应,装置400可以是方法实施例中的终端设备,或者方法实施例中的终端设备内部的芯片或功能模块。装置400的相应单元用于执行图4和图11所示的方法实施例中由终端设备执行的相应步骤。
其中,装置400中的处理单元410用于执行方法实施例中终端设备对应与处理相关的步骤。
装置400中的收发单元420,用于执行方法实施例中终端设备收发的步骤。例如,执行图4中步骤S421和S420、执行图11中步骤S721和S720。
其中,处理单元410可以是至少一个处理器。收发单元420可以是发射器或者接口电 路,接收单元410可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
可选的,装置400还可以包括存储单元,用于存储数据和/或信令,处理单元410、收发单元420可以与存储单元交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图15,图15是适用于本申请实施例的用终端设备500的结构示意图。该终端设备500可应用于图1所示出的系统中。为了便于说明,图15仅示出了终端设备的主要部件。如图15所示,终端设备500包括处理器、存储器、控制电路、天线以及输入输出装置。处理器用于控制天线以及输入输出装置收发信号,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请提出的用于注册的方法中由终端设备执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图15仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
参见图16,图16是本申请提出的用于传输参考信号的装置600的示意图。如图16所示,装置600包括处理单元610和收发单元620。
作为一个示例,处理单元610,用于确定时域资源,该时域资源至少包括多个第一OFDM符号组和多个第二OFDM符号组;
收发单元620,用于在该多个第一OFDM符号组上通过第一天线组接收或发送参考信号;
该收发单元620,用于在该多个第二OFDM符号组上通过第二天线组接收或发送参考信号;
其中,任意两个该第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,该多个第一OFDM符号组中至少存在两个该第一OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000163
的非整数倍,任意两个该第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,该多个第二OFDM符号组中至少存在两个该第二OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000164
的非整数倍,该T RS1和该T RS2
Figure PCTCN2022141480-appb-000165
的非整数倍,该
Figure PCTCN2022141480-appb-000166
表示一个时隙slot所包括的OFDM符号数量,该第一OFDM符号组和该第二OFDM符号组不重叠,该第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,该第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
可选地,该处理单元610确定时域资源包括:该处理单元610根据第二配置信息确定该时域资源,该第二配置信息用于指示该时域资源位于的时隙范围和/或该时域资源在该时隙中位于的OFDM符号范围。
作为另一个示例,处理单元610,用于确定参考信号端口的时频资源,该时频资源至少包括在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽;
收发单元620,用于在该时频资源上接收或发送参考信号;
其中,任意两个该第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,该多个第 一OFDM符号组中至少存在两个该第一OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000167
的非整数倍,任意两个该第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,该多个第二OFDM符号组中至少存在两个该第二OFDM符号组之间间隔的符号数量为
Figure PCTCN2022141480-appb-000168
的非整数倍,该T RS1和该T RS2
Figure PCTCN2022141480-appb-000169
的非整数倍,该
Figure PCTCN2022141480-appb-000170
表示一个时隙slot所包括的OFDM符号数量,该第一OFDM符号组和该第二OFDM符号组不重叠,该第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,该第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
可选地,该收发单元620还用于,发送第三配置信息,该第三配置信息用于指示该时频资源。
装置600和方法实施例中的网络设备对应,装置600可以是方法实施例中的网络设备,或者方法实施例中的网络设备内部的芯片或功能模块。装置600的相应单元用于执行图4和图11所示的方法实施例中由网络设备执行的相应步骤。
其中,装置600中的处理单元610用于执行方法实施例中网络设备内部对应于处理相关的步骤。例如,执行图4中步骤S410、执行图11中步骤S710。
装置600中的收发单元620,用于执行网络设备收发相关的步骤。例如,执行图4中步骤S421和S420、执行图11中步骤S721和S720。
可选的,装置600还可以包括存储单元,用于存储数据和/或信令,处理单元610、收发单元620可以与存储单元交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图17,图17是适用于本申请实施例的网络设备700的结构示意图,可以用于实现上述用于信道测量的方法中的网络设备的功能。可以为网络设备的结构示意图。
一种可能的方式中,例如在5G通信系统中的某些实现方案中,网络设备700可以包括CU、DU和AAU,相比于LTE通信系统中的接入网设备由一个或多个射频单元,如远端射频单元(remote radio unit,RRU)701和一个或多个基带单元(base band unit,BBU)来说原BBU的非实时部分将分割出来,重新定义为CU,负责处理非实时协议和服务、BBU的部分物理层处理功能与原RRU及无源天线合并为AAU、BBU的剩余功能重新定义为DU,负责处理物理层协议和实时服务。简而言之,CU和DU,以处理内容的实时性进行区分、AAU为RRU和天线的组合。
CU、DU、AAU可以采取分离或合设的方式,所以,会出现多种网络部署形态,一种可能的部署形态与传统4G接入网设备一致,CU与DU共硬件部署。应理解,图14只是一种示例,对本申请的保护范围并不限制,例如,部署形态还可以是DU部署在5G BBU机房,CU集中部署或DU集中部署,CU更高层次集中等。
该AAU 701可以实现收发功能称为收发单元701。可选地,该收发单元701还可以称为收发机、收发电路、或者收发器等,其可以包括至少一个天线7011和射频单元707。可选地,收发单元701可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。该CU和DU 702可以实现内部处理功能称为处理单元702。可选地,该处理单元702可以对接入网设备进行控制等,可以称为控制器。该AAU 701与CU和DU 702可以是物理上设置在一 起,也可以物理上分离设置的。
另外,接入网设备不限于图17所示的形态,也可以是其它形态:例如:包括BBU和ARU,或者包括BBU和AAU;也可以为CPE,还可以为其它形态,本申请不限定。
应理解,图17所示的网络设备700能够实现图4和图11的方法实施例中涉及的网络设备的功能。网络设备700中的各个单元的操作和/或功能,分别为了实现本申请方法实施例中由网络设备执行的相应流程。为避免重复,此处适当省略详述描述。图17示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
本申请实施例还提供一种通信系统,其包括前述的终端设备和网络设备。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图4和图11所示的方法中终端设备执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图4和图11所示的方法中网络设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图4和图11所示的方法中终端设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图4和图11所示的方法中网络设备执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的用于信道测量的方法中由终端设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的用于信道测量的方法中由网络设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
上述的芯片也可以替换为芯片系统,这里不再赘述。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有 的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种用于传输参考信号的方法,其特征在于,包括:
    确定时域资源,所述时域资源至少包括多个第一OFDM符号组和多个第二OFDM符号组;在所述多个第一OFDM符号组上通过第一天线组接收或发送参考信号;
    在所述多个第二OFDM符号组上通过第二天线组接收或发送参考信号;
    其中,任意两个所述第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,所述多个第一OFDM符号组中至少存在两个所述第一OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100001
    的非整数倍,任意两个所述第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,所述多个第二OFDM符号组中至少存在两个所述第二OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100002
    的非整数倍,所述T RS1和所述T RS2
    Figure PCTCN2022141480-appb-100003
    的非整数倍,所述
    Figure PCTCN2022141480-appb-100004
    表示一个时隙slot所包括的OFDM符号数量,所述第一OFDM符号组和所述第二OFDM符号组不重叠,所述第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,所述第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    发送第一配置信息,所述第一配置信息用于指示所述时域资源。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定时域资源包括:
    根据第二配置信息确定所述时域资源,所述第二配置信息用于指示所述时域资源位于的时隙范围和/或所述时域资源在所述时隙中位于的OFDM符号范围。
  4. 一种用于传输参考信号的方法,其特征在于,包括:
    确定参考信号端口的时频资源,所述时频资源至少包括在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽;
    在所述时频资源上接收或发送参考信号;
    其中,任意两个所述第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,所述多个第一OFDM符号组中至少存在两个所述第一OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100005
    的非整数倍,任意两个所述第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,所述多个第二OFDM符号组中至少存在两个所述第二OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100006
    的非整数倍,所述T RS1和所述T RS2
    Figure PCTCN2022141480-appb-100007
    的非整数倍,所述
    Figure PCTCN2022141480-appb-100008
    表示一个时隙slot所包括的OFDM符号数量,所述第一OFDM符号组和所述第二OFDM符号组不重叠,所述第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,所述第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    发送第三配置信息,所述第三配置信息用于指示所述时频资源。
  6. 一种用于传输参考信号的方法,其特征在于,包括:
    接收第一配置信息,所述第一配置信息用于指示时域资源,所述时域资源至少包括多个第一OFDM符号组和多个第二OFDM符号组;
    在所述多个第一OFDM符号组上通过第三天线组接收或发送参考信号;
    在所述多个第二OFDM符号组上通过第四天线组接收或发送参考信号;
    其中,任意两个所述第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,所述多个第一OFDM符号组中至少存在两个所述第一OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100009
    的非整数倍,任意两个所述第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,所述多个第二OFDM符号组中至少存在两个所述第二OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100010
    的非整数倍,所述T RS1和所述T RS2
    Figure PCTCN2022141480-appb-100011
    的非整数倍,所述
    Figure PCTCN2022141480-appb-100012
    表示一个时隙slot所包括的OFDM符号数量,所述第一OFDM符号组和所述第二OFDM符号组不重叠,所述第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,所述第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
  7. 一种用于传输参考信号的方法,其特征在于,包括:
    接收第三配置信息,所述第三配置信息用于指示参考信号端口的时频资源,所述时频资源至少包括在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽;
    在所述时频资源上接收或发送参考信号;
    其中,任意两个所述第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,所述多个第一OFDM符号组中至少存在两个所述第一OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100013
    的非整数倍,任意两个所述第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,所述多个第二OFDM符号组中至少存在两个所述第二OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100014
    的非整数倍,所述T RS1和所述T RS2
    Figure PCTCN2022141480-appb-100015
    的非整数倍,所述
    Figure PCTCN2022141480-appb-100016
    表示一个时隙slot所包括的OFDM符号数量,所述第一OFDM符号组和所述第二OFDM符号组不重叠,所述第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,所述第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,
    所述多个第一OFDM符号组中存在至少两个相邻的第一OFDM符号组之间有至少一个第二OFDM符号组。
  9. 根据权利要求8所述的方法,其特征在于,
    所述多个第一OFDM符号组中任意两个相邻的第一OFDM符号组之间存在一个第二OFDM符号组。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,
    所述多个第一OFDM符号组中至少有两个相邻的第一OFDM符号组之间不存在第二OFDM符号组;
    所述多个第二OFDM符号组中至少有两个相邻的第二OFDM符号组之间不存在第一OFDM符号组。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
    所述系统帧内时隙的序号和所述时隙内OFDM符号的序号满足:
    Figure PCTCN2022141480-appb-100017
    其中,
    Figure PCTCN2022141480-appb-100018
    表示一个slot内的OFDM符号数,n s,f表示所述系统帧内时隙的序号、n o,s表示所述时隙内OFDM符号的序号、T offset,1表示所述第一OFDM符号组对应的时域偏移OFDM符号数;
    所述第二OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
    所述系统帧内时隙的序号和所述时隙内OFDM符号的序号满足:
    Figure PCTCN2022141480-appb-100019
    其中,T offset,2表示所述第二OFDM符号组对应的时域偏移OFDM符号数、所述k2为整数。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述T RS1小于
    Figure PCTCN2022141480-appb-100020
    或者,所述T RS1大于或者等于所述
    Figure PCTCN2022141480-appb-100021
    所述T RS2小于
    Figure PCTCN2022141480-appb-100022
    或者,所述T RS2大于或者等于所述
    Figure PCTCN2022141480-appb-100023
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述T RS1等于所述T RS2
  14. 一种用于传输参考信号的装置,其特征在于,包括:
    处理单元,用于确定时域资源,所述时域资源至少包括多个第一OFDM符号组和多个第二OFDM符号组;
    收发单元,用于在所述多个第一OFDM符号组上通过第一天线组接收或发送参考信号;
    所述收发单元,用于在所述多个第二OFDM符号组上通过第二天线组接收或发送参考信号;
    其中,任意两个所述第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,所述多个第一OFDM符号组中至少存在两个所述第一OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100024
    的非整数倍,任意两个所述第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,所述多个第二OFDM符号组中至少存在两个所述第二OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100025
    的非整数倍,所述T RS1和所述T RS2
    Figure PCTCN2022141480-appb-100026
    的非整数倍,所述
    Figure PCTCN2022141480-appb-100027
    表示一个时隙slot所包括的OFDM符号数量,所述第一OFDM符号组和所述第二OFDM符号组不重叠,所述第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,所述第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
  15. 根据权利要求14所述的装置,其特征在于,所述收发单元还用于,发送第一配置信息,所述第一配置信息用于指示所述时域资源。
  16. 根据权利要求14或15所述的装置,其特征在于,所述处理单元确定时域资源包括:
    所述处理单元根据第二配置信息确定所述时域资源,所述第二配置信息用于指示所述时域资源位于的时隙范围和/或所述时域资源在所述时隙中位于的OFDM符号范围。
  17. 一种用于传输参考信号的装置,其特征在于,包括:
    处理单元,用于确定参考信号端口的时频资源,所述时频资源至少包括在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽;
    收发单元,用于在所述时频资源上接收或发送参考信号;
    其中,任意两个所述第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,所述多个第一OFDM符号组中至少存在两个所述第一OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100028
    的非整数倍,任意两个所述第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,所述多个第二OFDM符号组中至少存在两个所述第二OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100029
    的非整数倍,所述T RS1和所述T RS2
    Figure PCTCN2022141480-appb-100030
    的非整数倍,所述
    Figure PCTCN2022141480-appb-100031
    表示一个时隙slot所包括的OFDM符号数量,所述第一OFDM符号组和所述第二OFDM符号组不重叠,所述第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,所述第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
  18. 根据权利要求17所述的装置,其特征在于,所述收发单元还用于,发送第三配置信息,所述第三配置信息用于指示所述时频资源。
  19. 一种用于传输参考信号的装置,其特征在于,包括:
    收发单元,用于接收第一配置信息,所述第一配置信息用于指示时域资源,所述时域资源至少包括多个第一OFDM符号组和多个第二OFDM符号组;
    所述收发单元,用于在所述多个第一OFDM符号组上通过第三天线组接收或发送参考信号;
    所述收发单元,用于在所述多个第二OFDM符号组上通过第四天线组接收或发送参考信号;
    其中,任意两个所述第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,所述多个第一OFDM符号组中至少存在两个所述第一OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100032
    的非整数倍,任意两个所述第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,所述多个第二OFDM符号组中至少存在两个所述第二OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100033
    的非整数倍,所述T RS1和所述T RS2
    Figure PCTCN2022141480-appb-100034
    的非整数倍,所述
    Figure PCTCN2022141480-appb-100035
    表示一个时隙slot所包括的OFDM符号数量,所述第一OFDM符号组和所述第二OFDM符号组不重叠,所述第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,所述第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
  20. 一种用于传输参考信号的装置,其特征在于,包括:
    收发单元,用于接收第三配置信息,所述第三配置信息用于指示参考信号端口的时频资源,所述时频资源至少包括在多个第一OFDM符号组上的第一跳频带宽和在多个第二OFDM符号组上的第二跳频带宽;
    收发单元,用于在所述时频资源上接收或发送参考信号;
    其中,任意两个所述第一OFDM符号组之间间隔的符号数量为T RS1的整数倍,所述多个第一OFDM符号组中至少存在两个所述第一OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100036
    的非整数倍,任意两个所述第二OFDM符号组之间间隔的符号数量为T RS2的整数倍,所述多个第二OFDM符号组中至少存在两个所述第二OFDM符号组之间间隔的符号数量为
    Figure PCTCN2022141480-appb-100037
    的非整数倍,所述T RS1和所述T RS2
    Figure PCTCN2022141480-appb-100038
    的非整数倍,所述
    Figure PCTCN2022141480-appb-100039
    表示一个时隙slot所包括的OFDM符号数量,所述第一OFDM符号组和所述第二OFDM符号组不重叠,所述第一OFDM符号组包括一个第一OFDM符号或者多个连续的第一OFDM符号,所述第二OFDM符号组包括一个第二OFDM符号或者多个连续的第二OFDM符号。
  21. 根据权利要求14至20中任一项所述的装置,其特征在于,
    所述多个第一OFDM符号组中存在至少两个相邻的第一OFDM符号组之间有至少一个第二OFDM符号组。
  22. 根据权利要求21所述的装置,其特征在于,
    所述多个第一OFDM符号组中任意两个相邻的第一OFDM符号组之间存在一个第二 OFDM符号组。
  23. 根据权利要求14至21中任一项所述的装置,其特征在于,
    所述多个第一OFDM符号组中至少有两个相邻的第一OFDM符号组之间不存在第二OFDM符号组;
    所述多个第二OFDM符号组中至少有两个相邻的第二OFDM符号组之间不存在第一OFDM符号组。
  24. 根据权利要求14至23中任一项所述的装置,其特征在于,所述第一OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
    所述系统帧内时隙的序号和所述时隙内OFDM符号的序号满足:
    Figure PCTCN2022141480-appb-100040
    其中,
    Figure PCTCN2022141480-appb-100041
    表示一个slot内的OFDM符号数,n s,f表示所述系统帧内时隙的序号、n o,s表示所述时隙内OFDM符号的序号、T offset,1表示所述第一OFDM符号组对应的时域偏移OFDM符号数;
    所述第二OFDM符号组中的OFDM符号的时域位置由系统帧内时隙的序号和时隙内OFDM符号的序号表示;
    所述系统帧内时隙的序号和所述时隙内OFDM符号的序号满足:
    Figure PCTCN2022141480-appb-100042
    其中,T offset,2表示所述第二OFDM符号组对应的时域偏移OFDM符号数、所述k2为整数。
  25. 根据权利要求14至24中任一项所述的装置,其特征在于,所述T RS1小于
    Figure PCTCN2022141480-appb-100043
    或者,所述T RS1大于或者等于所述
    Figure PCTCN2022141480-appb-100044
    所述T RS2小于
    Figure PCTCN2022141480-appb-100045
    或者,所述T RS2大于或者等于所述
    Figure PCTCN2022141480-appb-100046
  26. 根据权利要求14至25中任一项所述的装置,其特征在于,所述T RS1等于所述T RS2
  27. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序或指令,以使得所述通信装置执行如权利要求1至13中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1至13中任一项所述的方法被执行。
  29. 一种计算机程序产品,其特征在于,包含指令,当所述计算机指令在计算机上运行时,如权利要求1至13中任一项所述的方法被执行。
PCT/CN2022/141480 2021-12-31 2022-12-23 用于传输参考信号的方法和装置 WO2023125296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111673073.3A CN116437385A (zh) 2021-12-31 2021-12-31 用于传输参考信号的方法和装置
CN202111673073.3 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125296A1 true WO2023125296A1 (zh) 2023-07-06

Family

ID=86997822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141480 WO2023125296A1 (zh) 2021-12-31 2022-12-23 用于传输参考信号的方法和装置

Country Status (2)

Country Link
CN (1) CN116437385A (zh)
WO (1) WO2023125296A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190174525A1 (en) * 2016-08-05 2019-06-06 Lg Electronics Inc. Method for transmitting scheduling request in wireless communication system, and apparatus therefor
CN111295847A (zh) * 2017-11-17 2020-06-16 华为技术有限公司 发送和接收信号的方法、装置和系统
CN113259287A (zh) * 2020-02-13 2021-08-13 华为技术有限公司 一种通信方法及装置
WO2021223084A1 (zh) * 2020-05-06 2021-11-11 华为技术有限公司 一种发送和接收上行参考信号的方法及通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190174525A1 (en) * 2016-08-05 2019-06-06 Lg Electronics Inc. Method for transmitting scheduling request in wireless communication system, and apparatus therefor
CN111295847A (zh) * 2017-11-17 2020-06-16 华为技术有限公司 发送和接收信号的方法、装置和系统
CN113259287A (zh) * 2020-02-13 2021-08-13 华为技术有限公司 一种通信方法及装置
WO2021223084A1 (zh) * 2020-05-06 2021-11-11 华为技术有限公司 一种发送和接收上行参考信号的方法及通信装置

Also Published As

Publication number Publication date
CN116437385A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
US10462795B2 (en) Method, apparatus and computer program for wireless communications
CN111095977B (zh) 用于csi-rs端口子集指示的方法和装置
CN109787664A (zh) 用于无线通信系统的电子设备、方法、装置和存储介质
WO2020052514A1 (zh) 一种信息发送方法,信息接收的方法和装置
WO2020077536A1 (en) Uplink srs with precoding
CN111865855A (zh) 生成参考信号的方法、检测参考信号的方法和通信装置
CN112840587A (zh) 非零功率信道状态信息参考信号端口组的准同位置指示
US20230137907A1 (en) Wireless communication method, terminal device, and network device
WO2018171783A1 (zh) 信号传输方法、装置及系统
WO2021238504A1 (zh) 一种上行传输资源指示方法及装置
WO2021203271A1 (en) Sounding reference signal resource capacity enhancement for wireless communications
CN113632409A (zh) 下行传输方法和终端设备
WO2023125296A1 (zh) 用于传输参考信号的方法和装置
WO2022120855A1 (zh) 确定参考信号序列的方法及装置
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2022032651A1 (en) Physical uplink shared channel with switched antenna and frequency hopping
CN116264475A (zh) 信道状态信息的反馈方法及装置
CN116671055A (zh) 一种通信方法和装置
WO2019170089A1 (zh) 信息传输的方法、装置和通信节点
WO2023030291A1 (zh) 用于传输参考信号的方法和装置
WO2023011613A1 (zh) 无线通信方法和装置
WO2023124995A1 (zh) 通信方法、终端设备、网络设备及通信系统
WO2024093646A1 (zh) 一种资源配置的方法和装置
WO2022040931A1 (zh) 一种干扰控制方法及装置
CN112311484B (zh) 用于信道测量的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914550

Country of ref document: EP

Kind code of ref document: A1