WO2023011613A1 - 无线通信方法和装置 - Google Patents

无线通信方法和装置 Download PDF

Info

Publication number
WO2023011613A1
WO2023011613A1 PCT/CN2022/110422 CN2022110422W WO2023011613A1 WO 2023011613 A1 WO2023011613 A1 WO 2023011613A1 CN 2022110422 W CN2022110422 W CN 2022110422W WO 2023011613 A1 WO2023011613 A1 WO 2023011613A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
cyclic shift
antenna port
sequence
indicates
Prior art date
Application number
PCT/CN2022/110422
Other languages
English (en)
French (fr)
Inventor
吴世娟
余政
龚名新
刘晓晴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111343735.0A external-priority patent/CN115941410A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023011613A1 publication Critical patent/WO2023011613A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the communication field, and more particularly, to a wireless communication method and device.
  • the coverage and capacity of the sounding reference signal (SRS) are improved through partial frequency domain monitoring technology , wherein the partial frequency domain monitoring technology includes partial frequency domain monitoring at resource block (resource block, RB) level.
  • the sequence length of multiple SRS sequences corresponding to at least one SRS at the same comb position cannot be divisible by the maximum cyclic shift number
  • the SRS sequences generated based on different cyclic shifts may not be orthogonal.
  • the present application provides a wireless communication method in order to realize pairwise orthogonality of SRS sequences corresponding to the same comb position.
  • a wireless communication method may be executed by a network device, or may also be executed by a chip or a circuit disposed in the network device, which is not limited in the present application.
  • the wireless communication method includes:
  • the at least one cyclic shift offset value is sent, and the at least one cyclic shift offset value is associated with the SRS sequence, wherein, in the SRS sequence, SRS sequences corresponding to the same comb comb position are orthogonal to each other.
  • the SRS sequences corresponding to at least one SRS have the same sequence length, for example, at least one SRS corresponds to two SRS sequences, and the two SRS sequences have the same sequence length.
  • the network device determines at least one cyclic shift offset value respectively corresponding to the at least one SRS based on the first condition, and the at least one cyclic shift offset value is associated with the SRS sequence, so that in the SRS sequence, the SRS corresponding to the same comb position
  • the sequences are orthogonal to each other, thereby reducing the influence of different SRS sequences on different channel estimates, improving the accuracy of channel estimation, and thus improving system communication performance.
  • the cyclic shift offset value corresponding to the first SRS and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS satisfy the relationship:
  • k is a non-negative integer (or k is an integer greater than or equal to 0), and M represents the length of the sequence.
  • the first condition mentioned above needs to be satisfied (eg, ),Should Based on the cyclic shift offset value corresponding to the first SRS OK (eg, so that the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRS sequences on different channel estimates, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the cyclic shift offset value corresponding to the first SRS and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS satisfy the relationship:
  • k 1 is a positive integer
  • M represents the length of the sequence.
  • a possible implementation manner for the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS in the above at least one SRS And the cyclic shift of the SRS sequence corresponding to the antenna port j corresponding to the first SRS need to satisfy the above first condition (eg, ),Should and Both are based on the cyclic shift offset value corresponding to the first SRS OK (eg, ), so that the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRS sequences on different channel estimates, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the at least one SRS is a plurality of SRSs
  • the cyclic shift offset value corresponding to the first SRS is the SRS sequence corresponding to the antenna port i corresponding to the first SRS
  • k 2 is a positive integer
  • M represents the length of the sequence.
  • a possible implementation manner for the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS in the above at least one SRS And the cyclic shift of the SRS sequence corresponding to the antenna port p corresponding to the second SRS need to satisfy the above first condition (eg, ),Should and Respectively based on the cyclic shift offset value corresponding to the first SRS
  • the cyclic shift offset value corresponding to the second SRS OK eg, so that the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRSs on different channel estimates (including different terminal channel estimates), improving the accuracy of channel estimation, and thus improving system coverage and capacity performance .
  • the cycle corresponding to the first SRS shift offset where the first greatest common divisor is equal to M and greatest common divisor of .
  • the value of the cyclic shift offset value corresponding to the first SRS can be configured by restricting the value so that the antenna ports corresponding to the first SRS correspond to The SRS sequences are orthogonal.
  • the method further includes: determining a second maximum cyclic shift number N′ max , where the N′ max satisfies the first condition, and the first condition satisfies: the The ratio of the sequence length to the N' max is a positive integer.
  • the above-mentioned ratio of M to the first maximum cyclic shift number (the existing protocol, determined based on a predefined method, and related to the Comb number) is a non-integer, it can be defined (such as, protocol pre-configuration) the second maximum cyclic shift number, so that the above-mentioned ratio of M to the second maximum cyclic shift number is an integer, thereby avoiding the possibility of non-orthogonality between SRS sequences from the source.
  • the above method does not require additional conditional restrictions (for example, restricting the configured cyclic shift offset value), and can realize that in the SRS sequence, the SRS sequences corresponding to the same comb position are orthogonal to each other, so as to improve the accuracy of channel estimation and enhance System coverage and capacity performance purposes.
  • defining the maximum cyclic shift number can increase the number of SRS sequences multiplexed at the same comb position, thereby further improving the SRS system capacity.
  • the first condition can be embodied in various forms, which increases the flexibility of the solution.
  • the N′ max belongs to a first set, and the first set includes at least one maximum cyclic shift number.
  • the aforementioned N′ max may be determined from the first set predefined by the protocol.
  • the method further includes: sending first indication information, where the first indication information is used to indicate the N′ max .
  • the method further includes: sending high-level signaling, where the high-level signaling is used to indicate the second set, or the second set is predefined, and the second set The set contains at least one maximum number of cyclic shifts, the N'max belonging to the second set.
  • the above-mentioned second set to which N′ max belongs may be configured by the network device through high-layer signaling, or may be predefined by a protocol, which increases the flexibility of solution implementation.
  • the first condition further satisfies that the ratio of N′ max to the number of antenna ports corresponding to one SRS in the at least one SRS is a positive integer.
  • the first condition is satisfied: the ratio of N′ max corresponding to the first SRS to the number of antenna ports corresponding to the first SRS is a non-integer number, and the first SRS The cyclic shift of the SRS sequence corresponding to the corresponding antenna port i satisfies the relational expression:
  • [] is the rounding function, Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS, Represents the cyclic shift offset value corresponding to the first SRS, p i represents the serial number of the antenna port i, Indicates the number of antenna ports corresponding to the first SRS, where the first SRS is one of the at least one SRS.
  • the mapping relationship between the antenna port and the cyclic shift of the SRS sequence can be adjusted so that N′ max satisfies the SRS Under the condition that the number of corresponding antenna ports cannot be divisible by an integer, the relationship between the antenna ports and the cyclic shift of the SRS sequence is determined.
  • the N′ max 6.
  • the length of the SRS sequence is an integer multiple of 6, and the maximum number of cyclic shifts is limited to 6, which can avoid the situation that the length of the SRS sequence is not divisible by the maximum number of cyclic shifts, but under the condition of 4 antenna ports , the maximum number of cyclic shifts is not divisible by the antenna port, and the corresponding cyclic shift can be determined by modifying the mapping relationship expression between the antenna port i and the cyclic shift.
  • a wireless communication method may be executed by a terminal device, or may also be executed by a chip or a circuit provided in the terminal device, which is not limited in the present application.
  • the wireless communication method includes:
  • the cyclic shift offset value corresponding to the first SRS is determined based on the first condition, generate the SRS sequence corresponding to the first SRS, and the SRS sequence corresponding to the first SRS
  • the cyclic shift offset value is associated with the SRS sequence, wherein the ratio of the sequence length of the SRS sequence corresponding to the first SRS to the first maximum cyclic shift number is a non-integer number, wherein, in the SRS sequence, corresponding to the same comb
  • the SRS sequences at the tooth comb position are orthogonal to each other.
  • the length of the SRS sequence corresponding to the first SRS is M
  • the ratio of M to the first maximum cyclic shift number (the maximum cyclic shift number predefined by the protocol) is a non-integer
  • the terminal device receives the cyclic shift offset value corresponding to the first SRS determined from the network device based on the first condition (condition predefined in the protocol), and based on the cyclic shift offset value corresponding to the first SRS Generate the SRS sequence corresponding to the first SRS, so that among the multiple SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRS sequences on different channel estimates and improving the channel estimation accuracy. This improves the communication performance of the system.
  • the cyclic shift offset value corresponding to the first SRS and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS satisfy the relational expression :
  • k is a non-negative integer
  • M represents the length of the sequence.
  • the first condition mentioned above needs to be satisfied (eg, ),Should Based on the cyclic shift offset value corresponding to the first SRS OK (eg, ), so that the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRS sequences on different channel estimates, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the cyclic shift offset value corresponding to the first SRS and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS satisfy the relational expression :
  • k 1 is a positive integer
  • M represents the length of the sequence.
  • the method further includes: receiving a cyclic shift offset value corresponding to the second SRS, where the cyclic shift offset value corresponding to the second SRS is based on the first The conditions are determined, and the SRS sequence corresponding to the second SRS is generated, and the cyclic shift offset value corresponding to the first SRS is associated with the SRS sequence corresponding to the second SRS, wherein the sequence length of the SRS sequence corresponding to the second SRS is For the M, among the SRS sequences corresponding to the second SRS, the SRS sequences corresponding to the same comb position are orthogonal to each other, or the SRS sequences corresponding to the second SRS corresponding to the same comb position are the same as the SRS sequences corresponding to the first SRS Two pairs of SRS sequences are orthogonal, and the cyclic shift offset value corresponding to the first SRS and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first S
  • k 2 is a positive integer
  • M represents the length of the sequence.
  • the terminal device also receives the cyclic shift offset value corresponding to the second SRS determined from the network device based on the first condition (protocol predefined condition), and generates the SRS sequence corresponding to the second SRS
  • the cyclic shift offset value corresponding to the first SRS is associated with the SRS sequence corresponding to the second SRS, and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the above-mentioned first SRS And the cyclic shift of the SRS sequence corresponding to the antenna port p corresponding to the second SRS need to satisfy the above first condition (eg, Should and Respectively based on the cyclic shift offset value corresponding to the first SRS
  • the cyclic shift offset value corresponding to the second SRS OK (eg, ), so that the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRSs
  • the method further includes: determining a second maximum cyclic shift number N′ max corresponding to the first SRS, where N′ max satisfies the first condition, and the The first condition is met: the ratio of the M to the N′ max is a positive integer.
  • the cycle corresponding to the first SRS shift offset where the first greatest common divisor is equal to M and greatest common divisor of .
  • the value of the cyclic shift offset value corresponding to the first SRS can be configured by restricting the value so that the antenna ports corresponding to the first SRS correspond to The SRS sequences are orthogonal.
  • the above-mentioned ratio of M to the first maximum cyclic shift number (the existing protocol, determined based on a predefined method, and related to the Comb number) is a non-integer, it can be defined (such as, protocol pre-configuration) the second maximum cyclic shift number, so that the above-mentioned ratio of M to the second maximum cyclic shift number is an integer, thereby avoiding the possibility of non-orthogonality between SRS sequences from the source.
  • the above method does not require additional conditional restrictions (for example, restricting the configured cyclic shift offset value), and can realize that in the SRS sequence, the SRS sequences corresponding to the same comb position are orthogonal to each other, so as to improve the accuracy of channel estimation and enhance System coverage and capacity performance purposes.
  • defining the maximum cyclic shift number can increase the number of SRS sequences multiplexed at the same comb position, thereby further improving the SRS system capacity.
  • the first condition can be embodied in various forms, which increases the flexibility of the solution.
  • the method further includes: receiving first indication information, where the first indication information is used to indicate N′ max .
  • the method further includes: receiving high-level signaling, where the high-level signaling is used to configure the second set, or the second set is predefined, and the second set The set contains at least one maximum number of cyclic shifts, the N'max belonging to the second set.
  • the above-mentioned second set to which N′ max belongs may be configured by the network device through high-layer signaling, or may be predefined by a protocol, which increases the flexibility of solution implementation.
  • the first condition is further satisfied: the ratio of N′ max to the number of antenna ports corresponding to the first SRS is a positive integer.
  • the first condition is satisfied: the ratio of N′ max corresponding to the first SRS to the number of antenna ports corresponding to the first SRS is a non-integer number, and the first The cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the SRS satisfies the relational expression:
  • [] represents the rounding function, Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS, Represents the cyclic shift offset value corresponding to the first SRS, p i represents the serial number of the antenna port i, Indicates the number of antenna ports corresponding to the first SRS.
  • the mapping relationship between the antenna port and the cyclic shift of the SRS sequence can be adjusted so that N′ max satisfies the SRS Under the condition that the number of corresponding antenna ports cannot be divisible by an integer, the relationship between the antenna ports and the cyclic shift of the SRS sequence is determined.
  • N′ max 6.
  • the length of the SRS sequence is an integer multiple of 6, and the maximum number of cyclic shifts is limited to 6, which can avoid the situation that the length of the SRS sequence is not divisible by the maximum number of cyclic shifts, but under the condition of 4 antenna ports , the maximum number of cyclic shifts is not divisible by the antenna port, and the corresponding cyclic shift can be determined by modifying the mapping relationship expression between the antenna port i and the cyclic shift.
  • the method before receiving the cyclic shift offset value corresponding to the first sounding reference signal SRS, the method further includes: receiving the first cyclic shift offset value corresponding to the first SRS bit offset value, judging that the first cyclic shift offset value corresponding to the first SRS is not determined based on the preset condition, and sending a first request message, where the first request message is used to request to determine the cyclic shift offset value based on the preset condition A cyclic shift offset value corresponding to the first SRS;
  • receiving the first cyclic shift offset value corresponding to the first SRS, sending first feedback information, and feeding back the first cyclic shift offset value determined based on preset conditions or the first cyclic shift offset value Value is not one of those determined based on preset conditions.
  • the terminal device may actively request the network device to configure an appropriate cyclic shift offset value, which increases the initiative of the terminal device. Whether the received cyclic shift offset value is determined based on preset conditions through feedback will help the network device to predict the accuracy of channel estimation and improve communication efficiency.
  • a wireless communication device in a third aspect, includes a processor, configured to implement the function of the network device in the method described in the first aspect above.
  • the wireless communication apparatus may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the function of the network device in the method described in the first aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to realize the functions of the network device in the method described in the first aspect above.
  • the wireless communication device may further include a communication interface, where the communication interface is used for the wireless communication device to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the wireless communication device includes: a processor and a communication interface, configured to implement the functions of the network device in the method described in the first aspect above, specifically including:
  • the processor communicates with the outside using the communication interface
  • the processor is configured to run a computer program, so that the device implements any method described in the first aspect above.
  • the external may be an object other than the processor, or an object other than the device.
  • the wireless communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • a wireless communication device in a fourth aspect, includes a processor, configured to implement the functions of the terminal device in the method described in the second aspect above.
  • the wireless communication apparatus may further include a memory, the memory is coupled to the processor, and the processor is configured to implement functions of the terminal device in the method described in the second aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to realize the functions of the terminal device in the method described in the second aspect above.
  • the wireless communication device may further include a communication interface, where the communication interface is used for the wireless communication device to communicate with other devices.
  • the transceiver may be a communication interface, or an input/output interface.
  • the wireless communication apparatus includes: a processor and a communication interface, configured to implement functions of the terminal device in the method described in the second aspect above, specifically including:
  • the processor communicates with the outside using the communication interface
  • the processor is configured to run a computer program, so that the device implements any one of the methods described in the second aspect above.
  • the external may be an object other than the processor, or an object other than the device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit etc.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, the communication device realizes the first aspect and any possible implementation manner of the first aspect method in .
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, the communication device realizes the second aspect and any possible implementation manner of the second aspect method in .
  • a computer program product including instructions is provided, and when the instructions are executed by a computer, the communication device implements the first aspect and the method in any possible implementation manner of the first aspect.
  • a computer program product including instructions is provided, and when the instructions are executed by a computer, the communication device implements the second aspect and the method in any possible implementation manner of the second aspect.
  • a ninth aspect provides a communication system, including the wireless communication device described in the third aspect and the wireless communication device described in the fourth aspect.
  • a wireless communication method is provided, and the wireless communication method may be executed by a terminal device, or may also be executed by a chip or a circuit provided in the terminal device, which is not limited in the present application.
  • the wireless communication method includes:
  • the ratio of the first bandwidth corresponding to the SRS to 4 is a non-integer
  • the SRS is sent based on the starting RB position.
  • the wireless communication method in the first bandwidth corresponding to the SRS (for example, based on the configured bandwidth and the partial frequency monitoring coefficient P F determined, or, configure the bandwidth ) and 4 are non-integer cases, determine the starting RB position corresponding to the SRS based on the second condition, and send the SRS based on the starting RB position, which can avoid confusion between the terminal and the network side about the RB starting position corresponding to the SRS Inconsistent understanding, or repeated monitoring at the same RB position, or the situation that some RBs cannot be monitored, will affect the transmission and reception of SRS, reduce the accuracy of channel estimation, and degrade system performance.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • k F ⁇ ⁇ 0,..., PF -1 ⁇ corresponds to the configured bandwidth
  • the subband index in , k F can be obtained by RRC signaling configuration, can also be jointly determined by RRC signaling and protocol predefined offset position, and can also be jointly determined by one or more parameters, all of which are within the protection scope of the scheme of the present invention Inside.
  • the index of the starting RB position needs to meet the above-mentioned second condition (for example, ), so that the terminal and the network side have the same understanding of the starting position of the RB corresponding to the SRS, avoiding the situation that some RBs cannot be monitored, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • k F ⁇ ⁇ 0,...,P F -1 ⁇ Indicates the configuration bandwidth corresponding to the SRS
  • f(n) is a function
  • PF indicates a partial frequency monitoring coefficient
  • m offset indicates an RB offset value.
  • the index of the starting RB position needs to meet the above-mentioned second condition (for example, ), so that the terminal and the network side have the same understanding of the starting position of the RB corresponding to the SRS, avoiding the situation that some RBs cannot be monitored, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • P F represents the partial frequency monitoring coefficient
  • the index of the starting RB position needs to meet the above-mentioned second condition (for example, ), so that the terminal and the network side have the same understanding of the starting position of the RB corresponding to the SRS, avoiding the situation that some RBs cannot be monitored, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the f(n) includes one or more of the following functions:
  • f(n) represents the integer with the largest value among the integers not greater than n and an integral multiple of 4; or,
  • f(n) represents the integer with the smallest value among the integers not less than n and an integral multiple of 4; or,
  • f(n) represents an integer having the smallest absolute value of a difference from n among integers that are multiples of 4.
  • the f i (n) includes one or more of the following functions:
  • f i (n) represents the integer with the largest value among the integers not greater than n and an integral multiple of 4;
  • f i (n) represents the integer with the smallest value among the integers not less than n and an integral multiple of 4;
  • f i (n) represents an integer having the smallest absolute value of a difference from n among integers that are multiples of 4.
  • a wireless communication method may be executed by a network device, or may also be executed by a chip or a circuit disposed in the network device, which is not limited in the present application.
  • the wireless communication method includes:
  • the wireless communication method in the first bandwidth corresponding to the SRS (for example, based on the configured bandwidth and the partial frequency monitoring coefficient P F determined, or, configure the bandwidth ) and 4 are non-integer cases, determine the starting RB position corresponding to the SRS based on the second condition, and send the SRS based on the starting RB position, which can avoid confusion between the terminal and the network side about the RB starting position corresponding to the SRS Inconsistent understanding, or repeated monitoring at the same RB position, or the situation that some RBs cannot be monitored, will affect the transmission and reception of SRS, reduce the accuracy of channel estimation, and degrade system performance.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • k F ⁇ ⁇ 0,..., PF -1 ⁇ corresponds to the configured bandwidth
  • the subband index in , k F can be obtained by RRC signaling configuration, can also be jointly determined by RRC signaling and protocol predefined offset position, and can also be jointly determined by one or more parameters, all of which are within the protection scope of the scheme of the present invention Inside.
  • the index of the starting RB position needs to meet the above-mentioned second condition (for example, ), so that the terminal and the network side have the same understanding of the starting position of the RB corresponding to the SRS, avoiding the situation that some RBs cannot be monitored, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • k F ⁇ ⁇ 0,...,P F -1 ⁇ Indicates the configuration bandwidth corresponding to the SRS
  • f(n) is a function
  • PF indicates a partial frequency monitoring coefficient
  • m offset indicates an RB offset value.
  • the index of the starting RB position needs to meet the above-mentioned second condition (for example, In order to make the terminal and the network side have the same understanding of the RB start position corresponding to the SRS, avoid the situation that some RBs cannot be monitored, improve the channel estimation accuracy, and then improve the system coverage and capacity performance.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • P F represents the partial frequency monitoring coefficient
  • the index of the starting RB position needs to meet the above-mentioned second condition (for example, ), so that the terminal and the network side have the same understanding of the starting position of the RB corresponding to the SRS, avoiding the situation that some RBs cannot be monitored, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the f(n) includes one or more of the following functions:
  • f(n) represents the integer with the largest value among the integers not greater than n and an integral multiple of 4; or,
  • f(n) represents the integer with the smallest value among the integers not less than n and an integral multiple of 4; or,
  • f(n) represents an integer having the smallest absolute value of a difference from n among integers that are multiples of 4.
  • the f i (n) includes one or more of the following functions:
  • f i (n) represents the integer with the largest value among the integers not greater than n and an integral multiple of 4;
  • f i (n) represents the integer with the smallest value among the integers not less than n and an integral multiple of 4;
  • f i (n) represents an integer having the smallest absolute value of a difference from n among integers that are multiples of 4.
  • a wireless communication device which can be used to execute the method shown in the eleventh aspect above.
  • the wireless communication device includes:
  • the processing unit is configured to determine the starting resource block RB position corresponding to the sounding reference signal SRS based on the second condition, the ratio of the first bandwidth corresponding to the SRS to 4 is a non-integer number,
  • a sending unit configured to send the SRS based on the starting RB position.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • k F ⁇ ⁇ 0,...,P F -1 ⁇ Indicates the configuration bandwidth corresponding to SRS
  • f(n) is a function
  • PF indicates the partial frequency monitoring coefficient
  • the ratio of the second bandwidth to 4 is an integer.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • k F ⁇ ⁇ 0,...,P F -1 ⁇ Indicates the configuration bandwidth corresponding to the SRS
  • f(n) is a function
  • PF indicates a partial frequency monitoring coefficient
  • m offset indicates an RB offset value.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • P F represents the partial frequency monitoring coefficient
  • the f(n) includes one or more of the following functions:
  • f(n) represents the integer with the largest value among the integers not greater than n and an integral multiple of 4; or,
  • f(n) represents the integer with the smallest value among the integers not less than n and an integral multiple of 4; or,
  • f(n) represents an integer having the smallest absolute value of a difference from n among integers that are multiples of 4.
  • the f i (n) includes one or more of the following functions:
  • f i (n) represents the integer with the largest value among the integers not greater than n and an integral multiple of 4;
  • f i (n) represents the integer with the smallest value among the integers not less than n and an integral multiple of 4;
  • a thirteenth aspect provides a wireless communication device, which can be used to execute the method shown in the tenth aspect above.
  • the wireless communication device includes:
  • a processing unit configured to determine the starting resource block RB position corresponding to the sounding reference signal SRS based on the second condition, where the ratio of the first bandwidth corresponding to the SRS to 4 is a non-integer;
  • a receiving unit configured to receive the SRS based on the starting RB position.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • k F ⁇ ⁇ 0,...,P F -1 ⁇ Indicates the configuration bandwidth corresponding to the SRS
  • f(n) is a function
  • PF represents a partial frequency monitoring coefficient
  • the ratio of the second bandwidth to 4 is an integer.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • k F ⁇ ⁇ 0,...,P F -1 ⁇ Indicates the configuration bandwidth corresponding to the SRS
  • f(n) is a function
  • PF indicates a partial frequency monitoring coefficient
  • m offset indicates an RB offset value.
  • the index of the starting RB position satisfies the second condition
  • the second condition satisfies:
  • N offset represents the index of the starting RB position
  • P F represents the partial frequency monitoring coefficient
  • the f(n) and the f i (n) include one or more of the following functions:
  • n(n) represents the integer with the largest value among the integers not greater than n and an integral multiple of 4; or,
  • f(n) represents the integer with the smallest value among the integers not less than n and an integral multiple of 4; or,
  • f(n) represents an integer having the smallest absolute value of a difference from n among integers that are multiples of 4.
  • the f i (n) includes one or more of the following functions:
  • f i (n) represents the integer with the largest value among the integers not greater than n and an integral multiple of 4;
  • f i (n) represents the integer with the smallest value among the integers not less than n and an integral multiple of 4;
  • f i (n) represents an integer having the smallest absolute value of a difference from n among integers that are multiples of 4.
  • a fourteenth aspect provides a wireless communication device, where the wireless communication device includes a processor configured to implement the functions of the terminal device in the method described in the tenth aspect above.
  • the wireless communication apparatus may further include a memory, the memory is coupled to the processor, and the processor is configured to implement functions of the terminal device in the method described in the tenth aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to realize the functions of the terminal device in the method described in the tenth aspect above.
  • the wireless communication device may further include a communication interface, where the communication interface is used for the wireless communication device to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the wireless communication apparatus includes: a processor and a communication interface, configured to implement functions of the terminal device in the method described in the tenth aspect above, specifically including:
  • the processor communicates with the outside using the communication interface
  • the processor is configured to run a computer program, so that the device implements any method described in the tenth aspect above.
  • the external may be an object other than the processor, or an object other than the device.
  • the wireless communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • a wireless communication device configured to implement the function of the network device in the method described in the eleventh aspect above.
  • the wireless communication apparatus may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the function of the network device in the method described in the eleventh aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to realize the functions of the network device in the method described in the eleventh aspect above.
  • the wireless communication device may further include a communication interface, where the communication interface is used for the wireless communication device to communicate with other devices.
  • the transceiver may be a communication interface, or an input/output interface.
  • the wireless communication apparatus includes: a processor and a communication interface, configured to implement the functions of the network device in the method described in the eleventh aspect above, specifically including:
  • the processor communicates with the outside using the communication interface
  • the processor is configured to run a computer program, so that the device implements any method described in the eleventh aspect above.
  • the external may be an object other than the processor, or an object other than the device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit etc.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • a sixteenth aspect provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a communication device, the communication device realizes the tenth aspect and any possible implementation of the tenth aspect methods in methods.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a communication device, the communication device realizes any possibility of the eleventh aspect and the eleventh aspect method in the implementation of .
  • a computer program product including instructions is provided, and when the instructions are executed by a computer, the communication device implements the tenth aspect and the method in any possible implementation manner of the tenth aspect.
  • a computer program product including instructions is provided, and when the instructions are executed by a computer, the communication device implements the eleventh aspect and the method in any possible implementation manner of the eleventh aspect.
  • a communication system including the wireless communication device in the twelfth aspect and the wireless communication device in the thirteenth aspect.
  • a wireless communication method is provided.
  • the wireless communication method may be executed by a network device, or may also be executed by a chip or a circuit disposed in the network device, which is not limited in the present application.
  • the wireless communication method includes:
  • the at least one cyclic shift offset value is sent, and the at least one cyclic shift offset value is associated with the SRS sequence, wherein, in the SRS sequence, SRS sequences corresponding to the same comb comb position are orthogonal to each other.
  • the SRS sequences corresponding to at least one SRS have the same sequence length, for example, at least one SRS corresponds to two SRS sequences, and the two SRS sequences have the same sequence length.
  • the network device determines the at least one SRS based on the first condition Corresponding to at least one cyclic shift offset value, the at least one cyclic shift offset value is associated with the SRS sequence, so that in the SRS sequence, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the difference
  • the influence of SRS sequence on different channel estimation can improve the accuracy of channel estimation, and then improve the communication performance of the system.
  • the first maximum cyclic shift number may be a maximum cyclic shift number predefined by the protocol, or may be configured by signaling.
  • the first condition may be a condition predefined by the protocol, or a condition indicated by signaling, which is not limited in this application.
  • the cyclic shift offset value corresponding to the first SRS The first condition is satisfied, the first condition is satisfied:
  • k 4 is a non-negative integer
  • M represents the length of the sequence, Indicates the first maximum cyclic shift number.
  • the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRS sequences on different channel estimates, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the cyclic shift offset value corresponding to the first SRS The first condition is satisfied, the first condition is satisfied:
  • k 5 is a non-negative integer
  • M represents the length of the sequence
  • the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRS sequences on different channel estimates, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the at least one SRS is multiple SRSs, and the cyclic shift offset value corresponding to the first SRS The cyclic shift offset value corresponding to the second SRS The first condition is satisfied, the first condition is satisfied:
  • k 6 is a non-negative integer, represents the first maximum cyclic shift number, and M represents the sequence length.
  • the cyclic shift offset value corresponding to the second SRS need to satisfy the above first condition (eg, ), so that the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRSs on different channel estimates (including different terminal channel estimates), improving the accuracy of channel estimation, and thus improving system coverage and capacity performance .
  • the ratio of the first greatest common divisor to the number of antenna ports corresponding to the first SRS is a non-integer
  • the first greatest common divisor is equal to M and the greatest common divisor of , Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS, Indicates the cyclic shift offset value corresponding to the first SRS, Represents the first maximum cyclic shift number, p i represents the serial number of the antenna port i, Indicates the number of antenna ports corresponding to the first SRS, and K indicates the number of comb teeth corresponding to the first SRS.
  • the antenna ports corresponding to the same comb position may not satisfy the first condition at the same time, that is, the SRS sequences corresponding to the antenna ports corresponding to the same comb position cannot be orthogonal.
  • the SRS sequences corresponding to the ports are orthogonal.
  • the K is related to the second greatest common divisor, and the second greatest common divisor is equal to the first greatest common divisor and greatest common divisor of .
  • the K is related to the second greatest common divisor and satisfies:
  • K represents the number of comb teeth corresponding to the first SRS
  • R represents the second greatest common divisor
  • each of the K comb teeth corresponds to R antenna ports, where the R antenna ports correspond to R cyclic shifts,
  • the R cyclic shifts are cyclic shifts with different values and equal intervals among the first greatest common divisor cyclic shifts, and the reference signal sent on the comb is generated according to the R cyclic shifts of.
  • the K comb teeth are continuous, or the K comb teeth are equally spaced.
  • Multiple comb teeth may be continuous or spaced apart, which increases the flexibility of the scheme.
  • the ratio of the first greatest common divisor to the number of antenna ports corresponding to the first SRS is a non-integer number
  • the The cyclic shift offset value corresponding to the first SRS is equal to the sequence length M and greatest common divisor of .
  • the antenna ports corresponding to the same comb position may not be able to satisfy the first condition at the same time, that is, the SRS sequences corresponding to the antenna ports corresponding to the same comb position cannot Orthogonal.
  • the value of the cyclic shift offset value corresponding to the first SRS may be configured by restricting the values, so that on the same comb, the SRS sequences corresponding to the antenna ports corresponding to the first SRS are orthogonal to each other.
  • a wireless communication method is provided.
  • the wireless communication method may be executed by a terminal device, or may also be executed by a chip or a circuit provided in the terminal device, which is not limited in the present application.
  • the wireless communication method includes:
  • the cyclic shift offset value corresponding to the first SRS is determined based on the first condition, generate the SRS sequence corresponding to the first SRS, and the SRS sequence corresponding to the first SRS
  • the cyclic shift offset value is associated with the SRS sequence, wherein the ratio of the sequence length of the SRS sequence corresponding to the first SRS to the first maximum cyclic shift number is a non-integer number, wherein, in the SRS sequence, corresponding to the same comb
  • the SRS sequences at the tooth comb position are orthogonal to each other.
  • the terminal device when the length of the SRS sequence corresponding to the first SRS is M, and the ratio of M to the first maximum cyclic shift number is non-integer, receives the information from the network device based on The cyclic shift offset value corresponding to the first SRS determined by the first condition (predefined condition of the protocol), and the SRS sequence corresponding to the first SRS is generated based on the cyclic shift offset value corresponding to the first SRS, so as to Among the multiple SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRS sequences on different channel estimates, improving the accuracy of channel estimation, and further improving system communication performance.
  • the first maximum cyclic shift number may be a maximum cyclic shift number predefined by the protocol, or may be configured by signaling.
  • the first condition may be a condition predefined by the protocol, or a condition indicated by signaling, which is not limited in this application.
  • the cyclic shift offset value corresponding to the first SRS The first condition is satisfied, the first condition is satisfied:
  • k 4 is a non-negative integer
  • M represents the length of the sequence, Indicates the first maximum cyclic shift number.
  • the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRS sequences on different channel estimates, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the cyclic shift offset value corresponding to the first SRS The first condition is satisfied, the first condition is satisfied:
  • k 5 is a non-negative integer
  • M represents the length of the sequence
  • the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRS sequences on different channel estimates, improving the accuracy of channel estimation, and further improving system coverage and capacity performance.
  • the at least one SRS is multiple SRSs, and the cyclic shift offset value corresponding to the first SRS The cyclic shift offset value corresponding to the second SRS The first condition is satisfied, the first condition is satisfied:
  • k 6 is a non-negative integer, represents the first maximum cyclic shift number, and M represents the sequence length.
  • the cyclic shift offset value corresponding to the second SRS need to satisfy the above first condition (eg, so that the network device determines the Among the associated SRS sequences, the SRS sequences corresponding to the same comb position are orthogonal to each other, thereby reducing the influence of different SRSs on different channel estimates (including different terminal channel estimates), improving the accuracy of channel estimation, and thus improving system coverage and capacity performance .
  • the first SRS corresponds to The cyclic shift offset value and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS satisfy the relational expression:
  • the first greatest common divisor is equal to M and the greatest common divisor of , Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS, Indicates the cyclic shift offset value corresponding to the first SRS, Represents the first maximum cyclic shift number, p i represents the serial number of the antenna port i, Indicates the number of antenna ports corresponding to the first SRS, and K indicates the number of comb teeth corresponding to the first SRS.
  • the antenna ports corresponding to the same comb position may not satisfy the first condition at the same time, that is, the SRS sequences corresponding to the antenna ports corresponding to the same comb position cannot be orthogonal.
  • the K is related to the second greatest common divisor, and the second greatest common divisor is equal to the first greatest common divisor and greatest common divisor of .
  • the K is related to the second greatest common divisor and satisfies:
  • K represents the number of comb teeth corresponding to the first SRS
  • R represents the second greatest common divisor
  • each of the K comb teeth corresponds to R antenna ports, where the R antenna ports correspond to R cyclic shifts,
  • the R cyclic shifts are cyclic shifts with different values and equal intervals among the first greatest common divisor cyclic shifts, and the reference signal sent on the comb is generated according to the R cyclic shifts of.
  • the K comb teeth are continuous, or the K comb teeth are equally spaced.
  • Multiple comb teeth may be continuous or spaced apart, which increases the flexibility of the scheme.
  • the ratio of the first greatest common divisor to the number of antenna ports corresponding to the first SRS is non-integer
  • the The cyclic shift offset value corresponding to the first SRS is equal to the sequence length M and greatest common divisor of .
  • the antenna ports corresponding to the same comb position may not be able to satisfy the first condition at the same time, that is, the SRS sequences corresponding to the antenna ports corresponding to the same comb position cannot Orthogonal.
  • the value of the cyclic shift offset value corresponding to the first SRS may be configured by restricting, so that at the same comb position, the SRS sequences corresponding to the antenna ports corresponding to the first SRS are orthogonal.
  • a wireless communication device in a twenty-third aspect, includes a processor, configured to implement the function of the network device in the method described in the twenty-first aspect.
  • the wireless communication apparatus may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the function of the network device in the method described in the twenty-first aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to realize the functions of the network device in the method described in the twenty-first aspect above.
  • the wireless communication device may further include a communication interface, where the communication interface is used for the wireless communication device to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the wireless communication device includes: a processor and a communication interface, configured to implement the function of the network device in the method described in the twenty-first aspect above, specifically including:
  • the processor communicates with the outside using the communication interface
  • the processor is configured to run a computer program, so that the device implements any one of the methods described in the twenty-first aspect above.
  • the external may be an object other than the processor, or an object other than the device.
  • the wireless communication device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • a wireless communication device configured to implement the functions of the terminal device in the method described in the twenty-second aspect above.
  • the wireless communication apparatus may further include a memory, the memory is coupled to the processor, and the processor is configured to implement the functions of the terminal device in the method described in the twenty-second aspect above.
  • the memory is used to store program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory, so as to realize the functions of the terminal device in the method described in the twenty-second aspect above.
  • the wireless communication device may further include a communication interface, where the communication interface is used for the wireless communication device to communicate with other devices.
  • the transceiver may be a communication interface, or an input/output interface.
  • the wireless communication apparatus includes: a processor and a communication interface, configured to implement the functions of the terminal device in the method described in the twenty-second aspect above, specifically including:
  • the processor communicates with the outside using the communication interface
  • the processor is configured to run a computer program, so that the device implements any one of the methods described in the twenty-second aspect above.
  • the external may be an object other than the processor, or an object other than the device.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit etc.
  • the processor may also be embodied as a processing circuit or logic circuit.
  • a twenty-fifth aspect provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a communication device, the communication device realizes the aspects of the twenty-first aspect and the twenty-first aspect A method in any possible implementation.
  • a twenty-sixth aspect provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a communication device, the communication device realizes the aspects of the twenty-second aspect and the twenty-second aspect A method in any possible implementation.
  • a twenty-seventh aspect provides a computer program product including instructions, and when the instructions are executed by a computer, the communication device implements the twenty-first aspect and the method in any possible implementation manner of the twenty-first aspect.
  • a computer program product including instructions is provided, and when the instructions are executed by a computer, the communication device implements the twenty-second aspect and the method in any possible implementation manner of the twenty-second aspect.
  • a communication system including the wireless communication device in the twenty-third aspect and the wireless communication device in the twenty-fourth aspect.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an SRS.
  • Fig. 3 is a schematic diagram of the SRS sequence generation method.
  • Fig. 4 is a schematic diagram of a multiplication quantity.
  • Fig. 5 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of another multiplication quantity.
  • Fig. 7 is a schematic diagram of another SRS.
  • Fig. 8 is a schematic diagram of the starting position of RB.
  • FIG. 9 is a schematic flowchart of another wireless communication method provided by an embodiment of the present application;
  • (b) in FIG. 9 is a schematic diagram of a starting RB position.
  • FIG. 10 is a schematic diagram of a wireless communication device 1000 proposed in this application.
  • Fig. 11 is a schematic structural diagram of a terminal device 1100 applicable to this embodiment of the present application.
  • FIG. 12 is a schematic diagram of a wireless communication device 1200 proposed in this application.
  • Fig. 13 is a schematic structural diagram of a network device 1300 applicable to the embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: the fifth generation (5th generation, 5G) system or new radio (new radio, NR), long term evolution (long term evolution, LTE) system, LTE frequency Division duplex (frequency division duplex, FDD) system, LTE time division duplex (time division duplex, TDD), etc.
  • 5G fifth generation
  • NR new radio
  • long term evolution long term evolution
  • LTE frequency Division duplex frequency division duplex
  • FDD frequency division duplex
  • TDD time division duplex
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the technical solution of the embodiment of the present application can also be applied to device to device (device to device, D2D) communication, vehicle-to-everything (V2X) communication, machine to machine (machine to machine, M2M) communication, machine Type communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • MTC machine Type communication
  • IoT Internet of things
  • the terminal equipment (terminal equipment) in the embodiment of the present application may refer to an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal (user terminal), a user equipment (user equipment, UE), terminal (terminal), wireless communication device, user agent or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or future evolutions of public land mobile networks (public land mobile network, PLMN)
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Functional handheld devices computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or future evolutions of public land mobile networks (public land mobile network, PLMN)
  • PLMN public land mobile network
  • wearable devices can also be referred to as wearable smart devices, which is a general term for intelligently designing daily wear and developing wearable devices by applying wearable technology, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device can also be the terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize Interconnection, an intelligent network that interconnects things.
  • the IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrow band (NB) technology.
  • NB narrow band
  • the network device in this embodiment of the present application may be any device with a wireless transceiver function for communicating with a terminal device.
  • the equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), base station controller (base station controller, BSC) , base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be 5G, such as NR , a gNB in the system, or, a transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizing the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this framework, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • a terminal device or a network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also called main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present application does not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in a terminal device or a network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques.
  • article of manufacture covers a computer program accessible from any computer readable device, carrier or media.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disk, floppy disk, or tape, etc.), optical disks (e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disk, floppy disk, or tape, etc.
  • optical disks e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one traditional terminal equipment (legacy UE) supporting an existing protocol mechanism, For example, the terminal equipment 120 shown in FIG. 1; the communication system 100 may also include at least one partial frequency sounding (partial frequency sounding, PFS) terminal equipment (PFS UE), such as the terminal equipment 130 shown in FIG.
  • PFS partial frequency sounding terminal equipment
  • the PFS UE is used to enhance the coverage and capacity of the standby sounding reference signal (SRS).
  • the network device 110 can communicate with the terminal device 120 and the terminal device 130 through a wireless link.
  • Each communication device such as the network device 110, the terminal device 120, or the terminal device 130, may be configured with multiple antennas.
  • the configured multiple antennas may include at least one transmitting antenna for sending signals and at least one receiving antenna for receiving signals. Therefore, the communication devices in the communication system 100, such as between the network device 110 and the terminal device 120, can communicate through multi-antenna technology; .
  • Figure 1 is an example of communication between a network device and a legacy UE and a PFS UE, simply illustrating a communication scenario that this application can apply, and different antenna ports are realized by cyclic shift (CS) and comb teeth (Comb) SRS multiplexing on the same orthogonal frequency division multiplexing (OFDM) symbol.
  • CS cyclic shift
  • Comb comb teeth
  • OFDM orthogonal frequency division multiplexing
  • FIG. 1 is only a simplified schematic diagram for ease of understanding, and the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1 .
  • the communication system 100 may also include core network equipment for managing the terminal equipment 120, data transmission, and configuration of the network equipment 110, such as including an access and mobility management function (access and mobility management function, AMF) network element, Session management function (session management function, SMF) network element, user plane function (user plane function, UPF) network element, policy control function (policy control function, PCF) network element, etc.
  • AMF access and mobility management function
  • SMF Session management function
  • SMF Session management function
  • UPF user plane function
  • policy control function policy control function
  • PCF policy control function
  • Figure 1 is a communication system applicable to the embodiment of the present application.
  • the 5G that may be involved in the embodiment of the present application.
  • Reference signal reference signal (reference signal, RS).
  • the reference signal may also be called a pilot (pilot) or a reference sequence.
  • the reference signal may be a reference signal used for channel measurement.
  • the reference signal may be an SRS used for uplink channel measurement.
  • the reference signal may be a pilot used for uplink channel measurement.
  • the reference signal may be an SRS for positioning measurements.
  • the reference signals listed above are only examples and shall not constitute any limitation to the present application. This application does not exclude the possibility of defining other reference signals in future protocols to achieve the same or similar functions, nor does it exclude the possibility of defining other reference signals in future protocols to achieve different functions.
  • the reference signal is an SRS as an example for description below.
  • SRS is used to estimate channel quality in different frequency bands.
  • the 3GPP TSG RAN Meeting#86 meeting determined the work item description (work item description, WID) to further enhance the multiple input multiple output (MIMO) in the NR system.
  • WID work item description
  • MIMO multiple input multiple output
  • the technologies that may be adopted include: increasing SRS repetition and partial frequency domain monitoring.
  • the embodiments of the present application mainly involve part of the frequency domain monitoring.
  • SRS repetitions reference may be made to the protocol or descriptions in other existing materials, and details will not be described in this application.
  • Partial frequency domain monitoring enables SRS to be sent at part of the frequency domain where the SRS bandwidth is configured.
  • the sending power of SRS on a single resource element (resource element, RE) is increased (power boosting), thereby effectively improving the coverage performance of SRS.
  • the range of the SRS transmission frequency domain is reduced, and the number of UEs that can be multiplexed in the same time slot (slot) increases correspondingly, and the capacity of the SRS system is significantly improved.
  • the channel has a relatively flat characteristic in the frequency domain, that is, the channel has a relatively strong correlation in the frequency domain, other frequency domain ranges can be obtained by means of difference on the basis of monitoring some frequency bands channel estimation information, thereby effectively improving the efficiency of system channel estimation.
  • the exemplification is mainly focused on partial frequency monitoring at the RB level.
  • the solution described in this embodiment can also be adopted if the technical features are consistent with this embodiment. , which will not be described in detail in this application.
  • the partial frequency monitoring at the RB level can be understood as: within the configured bandwidth range, the terminal device sends SRS sequences on the corresponding part and continuous one or more RBs, and improves the SRS coverage performance through power boosting.
  • the above parameters are used to determine the SRS configuration bandwidth and frequency hopping mode. Specifically For the meaning, please refer to Section 6.4.1.4 of Protocol 38.211.
  • Figure 2 is a schematic diagram of SRS.
  • the left side of Figure 2 is a traditional SRS (legacy SRS) schematic diagram, and the right side is an SRS (partial SRS) corresponding to RB-level partial frequency monitoring.
  • SRS is only within half of the configured bandwidth. sent within.
  • the transmission bandwidth of each SRS and the total transmission bandwidth of the SRS are determined through the SRS bandwidth configuration parameter (SRS bandwidth configuration) C SRS and the SRS bandwidth configuration parameter B SRS ; through the SRS frequency modulation configuration parameter b hop and the frequency domain starting position parameter n RRC determines the frequency hopping pattern of SRS.
  • SRS bandwidth configuration SRS bandwidth configuration
  • B SRS SRS bandwidth configuration parameter
  • n RRC frequency domain starting position parameter
  • different SRS sequences are distinguished by different CSs, and the SRS sequences corresponding to different CSs are orthogonal, ⁇ is a cyclic shift, and j is an imaginary unit.
  • Partial frequency monitoring based on RB level was determined at the 104e meeting as one of the ways to improve SRS coverage and capacity performance. And in the 104b-e meeting, the generation of SRS sequences and the corresponding number of RBs in the partial frequency monitoring scenario were discussed. The specific discussion content is as follows:
  • the SRS sequence generation method in the partial frequency monitoring scenario the SRS sequence generation method in the partial frequency monitoring scenario, there may be two schemes in the current standard discussion, as shown in Figure 3, which is a schematic diagram of the SRS sequence generation method, from Figure 3 It can be seen that the leftmost is the generation method of the traditional SRS sequence; the middle is the generation method of the SRS sequence of the first scheme; the far right is the generation method of the SRS sequence of the second scheme.
  • Solution 1 Based on the number of RBs occupied by partial monitoring directly produces a length of Zadoff- sequence, where, Indicates the SRS configuration bandwidth (or the number of RBs configured by SRS), PF is the partial frequency monitoring coefficient, K TC indicates the comb size corresponding to SRS, It can be recorded as the sequence length M of partial frequency monitoring.
  • Solution 2 Same as Legacy SRS, based on the number of RBs configured by SRS The generated length is ZC sequence, and monitor the corresponding position based on part of the frequency, send part of the SRS symbol, It can be denoted as the configured sequence length M ZC .
  • scheme 1 maintains the low peak to average power ratio (PAPR) characteristic of the ZC sequence, and has no impact on hardware implementation.
  • PAPR peak to average power ratio
  • Solution 1 The number of RBs occupied by partial frequency monitoring is an integer.
  • Scenario 2 is an integer greater than or equal to 4.
  • Another direction is to support the partial frequency monitoring scenario where the number of RBs occupied by SRS is an integer multiple of 4.
  • the main consideration is that it is not necessary for all configured SRS bandwidths to support all partial frequency monitoring parameters ( PF ), and the partial frequency monitoring bandwidth is 4.
  • the integer multiple of is consistent with the existing mechanism, and can realize multiplexing with legacy UE. The specific scheme is described as follows:
  • Option 3 is an integer multiple of 4.
  • Option 4 is an integer multiple of 4.
  • round() is an integer multiple of 4 to indicate the parameter Equal to multiples of adjacent 4.
  • the corresponding SRS sequence is:
  • M ZC is the SRS sequence length, determined by the RRC configuration parameters, The number of consecutive OFDM symbols occupied by one SRS resource is configured by the RRC parameter nrofSymbols.
  • log 2 (K TC )
  • K TC ⁇ 2,4,8 ⁇ is the number of multiplexed combs, and the corresponding configuration parameters are included in the RRC parameter transmissionComb.
  • the cyclic shift value ⁇ i of the CS corresponding to the antenna port p i is
  • p i can be understood as the serial number of the antenna port i
  • the corresponding configuration parameters are included in the RRC parameter transmissionComb, corresponding to the maximum number of CSs in MIMO scenarios Indicated by Table 1 below.
  • FIG. 4 is a schematic diagram of a multiplication component.
  • n is a positive integer.
  • Comb-tooth Comb-N refers to selecting a subcarrier to carry SRS among every N subcarriers.
  • N is configured through the high-level parameter transmissionComb
  • combOffset is configured to transmit the comb-tooth offset, which is equivalent to selecting N subcarriers.
  • the SRSs of different UEs can be sent on the same symbol and the same RB, and can be distinguished from each other by using different combs.
  • SRS has three different comb structures: Comb-2, Comb-4 and Comb-8.
  • SRS resource that is, SRS resource
  • SRS resource is one or more of time domain resources, frequency domain resources, and air domain resources for transmitting SRS.
  • time domain resources may refer to time units such as symbols, subframes, and time slots
  • frequency domain resources may refer to frequency domain locations such as subcarriers, RBs, REs, or RGs
  • air domain resources may refer to spatial domains such as antenna ports or codewords.
  • SRS resources are configured by radio resource control (radio resource control, RRC) IE SRS-Resource or SRS-PosResource, wherein SRS-PosResource is used for positioning scenarios.
  • RRC radio resource control
  • the same terminal can activate at most one SRS resource set at the same time, and one SRS resource set can contain one or more SRS resources, and multiple SRS resources are distinguished by resource ID. Different terminal devices configure different SRS resources.
  • SRS SRS resource
  • One SRS is sent on one SRS resource
  • one SRS corresponds to one or more antenna ports
  • each antenna port corresponds to one SRS sequence.
  • one SRS corresponds to one or more SRS sequences, and these sequences are sent on different antenna ports.
  • Antenna port serial number p i 10.
  • the present application provides a wireless communication method in order to realize the orthogonality between SRS sequences.
  • the embodiments shown below do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide the method according to the embodiment of the present application.
  • the execution subject of the method provided in the embodiment of the present application may be a terminal device or an access network device, or a functional module in a terminal device or an access device that can call a program and execute the program.
  • K TC the number of transmission combs (comb), included in the high-layer signaling transmissionComb.
  • the transmission comb offset is configured by the high-level parameter combOffset-n2(4,8).
  • An SRS configures the number of antenna ports, configured by the high-level parameter nrofSRS-Ports, otherwise, the number of antenna ports is 1.
  • the configured bandwidth of the SRS (or called the number of RBs occupied by the SRS) is configured by parameters C SRS and B SRS .
  • PF Partial frequency monitoring coefficient. Identify the same OFDM symbol consecutive SRS is transmitted on RBs.
  • M ZC configured SRS sequence length.
  • K TC Indicates the number of REs corresponding to one RB.
  • SRS sequence length to be sent One SRS corresponds to multiple antenna ports, and different antenna ports transmit corresponding SRS sequences, and the SRS sequences transmitted by different antenna ports have the same length, which should be different from the configured SRS sequence length.
  • n shift frequency domain shift value, configured by high-layer signaling freqDomainShift (RB level).
  • the first maximum number of cyclic shifts corresponds to K TC .
  • N′ max the second maximum cyclic shift number that satisfies the first condition. and different.
  • N offset starting RB index.
  • for indicating can be understood as “enabling”, and “enabling” can include direct enabling and indirect enabling.
  • enabling can include direct enabling and indirect enabling.
  • the information enabled by the information is called the information to be enabled.
  • the information to be enabled can be directly enabled.
  • the to-be-enabled information may also be indirectly enabled by enabling other information, where there is an association relationship between the other information and the to-be-enabled information.
  • specific information can also be enabled by means of a pre-agreed (for example, protocol-specified) arrangement order of each information, thereby reducing the enabling overhead to a certain extent.
  • common parts of each information can be identified and enabled uniformly, so as to reduce the enabling overhead caused by enabling the same information separately.
  • preset may include pre-definition, for example, protocol definition.
  • pre-defined can be realized by pre-saving corresponding codes, tables, or other methods that can be used to indicate related information in equipment (for example, including user equipment or core network equipment). Do limited.
  • the "storage" mentioned in the embodiment of the present application may refer to saving in one or more memories.
  • the one or more memories may be provided independently, or may be integrated in an encoder or decoder, a processor, or a communication device.
  • a part of the one or more memories may also be provided separately, and a part may be integrated in a decoder, a processor, or a communication device.
  • the type of the storage may be any form of storage medium, which is not limited in this application.
  • the "protocol” involved in the embodiment of this application may refer to a standard protocol in the communication field, for example, it may include a 5G protocol, a new radio (new radio, NR) protocol, and related protocols applied to future communication systems. Applications are not limited to this.
  • the wireless communication method provided by the embodiment of the present application is described in detail by taking interaction between a network device and a terminal device as an example.
  • Fig. 5 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application. Include the following steps:
  • S510 Determine at least one cyclic shift offset value respectively corresponding to at least one SRS based on a first condition.
  • the ratio of the sequence length of the SRS sequence corresponding to at least one SRS to the first maximum cyclic shift number is a non-integer.
  • sequence length is recorded as M in this embodiment. It should be noted that M is only used to identify the sequence length, and does not constitute any limitation on the protection scope of the application.
  • the first maximum cyclic shift The possible values of sequence length whose ratio of numbers is non-integer are all within the protection scope of the present application.
  • the number of RBs occupied by the SRS in the partial frequency domain monitoring scenario is a positive integer and not an integer multiple of 4 as an example to illustrate the problems solved by the embodiments of the present application.
  • the corresponding SRS sequence lengths are shown in Table 3:
  • the black bold part in the length of the SRS sequence (the third column in Table 3) is the length of the new SRS sequence (compared to Table 2) in the partial frequency monitoring scenario, and n is a positive integer.
  • SRS sequence corresponding to SRS#1 (or SRS resource#1) is configured with CS index as
  • SRS sequence corresponding to SRS#2 (or SRS resource#2) is configured with CS index as From the relationship in the above formula (1-3):
  • the SRS sequence corresponding to SRS#1 is:
  • SRS sequence corresponding to SRS#2 is:
  • the product of the SRS sequence corresponding to SRS#1 and the SRS sequence corresponding to SRS#2 is equal to:
  • FIG. 6 is a schematic diagram of another multiplication quantity.
  • the schematic diagram of the 8 components of 2, 3, 4, 5, 6, 7 can be obtained from (a) in Figure 6, any one of the 8 components has a symmetrical component;
  • the value of PF is not limited to the above-mentioned 2, 4, and 8.
  • the SRS sequence newly added to the SRS monitored at some frequencies may be Include values not present or present in Table 3 above.
  • the length of the SRS sequence is The length of the corresponding SRS sequence may be 6, 12, 18, 24, 30, ..., 6n, where n is a positive integer.
  • PF may also be 3, 8, 16 or other possible values, which will not be repeated in this application.
  • the aforementioned SRS sequence corresponding to at least one SRS means one SRS or multiple SRS sequences corresponding to multiple SRSs.
  • one SRS corresponds to one or more SRS sequences
  • each SRS corresponds to one or more SRS sequences.
  • the SRS sequence corresponding to the SRS indicates that one SRS may correspond to one or more SRS sequence transmissions.
  • one SRS corresponds to multiple antenna ports, different antenna ports transmit corresponding SRS sequences, and the lengths of the SRS sequences transmitted by different antenna ports are the same.
  • the length of the SRS sequence represented by M in the embodiment of the present application represents the sequence length of the SRS sequence transmitted by the terminal device through one antenna port under the same OFDM symbol, or the length of the SRS sequence represented by M represents the same Under the OFDM symbol, the length of the SRS sequence corresponding to the antenna port corresponding to one SRS is transmitted.
  • M represents the SRS sequence length determined based on the SRS configuration bandwidth.
  • M can be based on OK, among them, is the number of RBs corresponding to the transmission of one SRS under the same OFDM symbol, Configure the number of RBs for the SRS, and PF is the partial frequency monitoring coefficient.
  • M can be configured based on the SRS bandwidth OK, among them, Configure the number of RBs for SRS, indicated by RRC signaling.
  • sequence length M is expressed as or expressed as It can also be expressed as M ZC , which is not limited in this application.
  • At least one cyclic shift offset value corresponding to the at least one SRS may be determined based on the first condition.
  • the cyclic shift offset value is associated with the cyclic shift, and by determining the cyclic shift offset value, the SRS sequences corresponding to the same comb position and corresponding to different cyclic shifts are orthogonal.
  • the first condition is preset, or predefined, or may also be a signaling indication, which is not limited in this application.
  • the "determining at least one cyclic shift offset value corresponding to at least one SRS” involved in the embodiment of the present application can be understood as “generating at least one cyclic shift offset value corresponding to at least one SRS", or it can also be understood It is “obtain at least one cyclic shift offset value corresponding to at least one SRS", or it can also be understood as “the core network configures at least one cyclic shift offset value corresponding to at least one SRS", or it can also be understood as " The protocol predefines at least one cyclic shift offset value respectively corresponding to at least one SRS".
  • the ratio of M to the first maximum cyclic shift number is a non-integer
  • M cannot be divisible by the first maximum cyclic shift number
  • the first maximum cyclic shift number The number of bits cannot be divisible by M
  • the first maximum cyclic shift number is preset, or predefined, and may also be indicated by signaling, which is not limited in the present application.
  • the first condition is satisfied, the first condition is satisfied:
  • the SRS sequence corresponding to the antenna port i is one of the above-mentioned SRS sequences corresponding to at least one SRS, and k is a non-negative integer.
  • the SRS sequence corresponding to the antenna port i is any one of the multiple SRS sequences at the same comb position corresponding to a certain SRS, that is to say, each of the multiple SRS sequences at the same comb position corresponding to the SRS
  • the cyclic shifts of the SRS sequence all satisfy the first condition.
  • cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS, and may also be referred to as: the cyclic shift corresponding to the antenna port i, or the cyclic shift of the SRS sequence mapped to the antenna port i.
  • the cyclic shift offset value corresponding to the first SRS in mode 1 and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS satisfy the relational expression:
  • p i represents the serial number of the antenna port i
  • the above-mentioned relational expression satisfied between the cyclic shift offset value corresponding to the first SRS and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS in the first method is just an example, and the The scope of protection does not constitute any limitation.
  • the cyclic shift offset value corresponding to the first SRS and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS only need to be correlated, and it can also correspond to other The mapping relationship will not be repeated in this application.
  • the first condition corresponding to formula (2-4) is based on M and The greatest common divisor of is different, which can be expanded through the following scenarios:
  • Scenario 1 M is an odd multiple of 6, for 8.
  • t is a positive odd number.
  • the configurable and include:
  • the configurable and include:
  • the configurable include:
  • the antenna port p 0 and the antenna port p 2 correspond to the same comb position
  • antenna ports p 0 , p 2 and antenna ports p 1 , p 3 transmit SRS sequences at different comb positions.
  • t is a positive odd number.
  • the configurable and include:
  • antenna ports p 0 , p 2 and antenna ports p 1 , p 3 transmit SRS sequences at different comb positions.
  • t is a positive odd number.
  • the configurable and include:
  • the configurable and include:
  • antenna ports p 0 , p 2 and antenna ports p 1 , p 3 transmit SRS sequences at different comb positions.
  • n is an odd number
  • the SRS sequence corresponding to the antenna port i and the SRS sequence corresponding to the antenna port j are two SRS sequences corresponding to the same SRS in the SRS sequence, k 1 is a positive integer, and the antenna port i Corresponds to the same comb position as antenna port j.
  • the difference between them is the first difference, and dividing the first difference of M times by the first maximum number of cyclic shifts is a non-zero integer.
  • the product of the difference between the cyclic shift values of CS corresponding to the two reference signal sequences and M is an integer multiple of 2 ⁇ , that is to say, each component has a symmetrical component in polar coordinates , the symmetric component corresponds to a sequence product equal to 0, which corresponds to two sequences being orthogonal.
  • condition described in the formula (2-8) can also be expressed as:
  • M 2 ⁇ k 1 , where ⁇ i represents the cyclic shift value of the SRS sequence corresponding to the antenna port i corresponding to the first SRS, ⁇ j represents the cyclic shift value of the SRS sequence corresponding to the antenna port j corresponding to the first SRS.
  • the SRS sequence corresponding to antenna port i is any one of multiple SRS sequences corresponding to the same comb position corresponding to a certain SRS; the SRS sequence corresponding to antenna port j is multiple SRS sequences corresponding to a certain SRS corresponding to the same comb position Any one of the SRS sequences except the SRS sequence corresponding to the antenna port i, that is, the cyclic shifts of any two different SRS sequences among the multiple SRS sequences corresponding to the SRS all satisfy the first condition.
  • the cyclic shift offset value corresponding to the first SRS in mode 2 and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS satisfy the relational expression:
  • p i represents the serial number of the antenna port i
  • pj represents the serial number of the antenna port j
  • sequence length of the SRS sequence corresponding to the first SRS is an odd multiple of 6, Equal to 12 as an example, for explanation:
  • the cyclic shift offset value corresponding to the first SRS When , the antenna port p 0 and the antenna port p 2 transmit the SRS sequence at the same comb position, and the cyclic shift corresponding to the antenna port p 0 and the cyclic shift corresponding to the antenna port p 2 satisfy the first condition, that is, the sequence orthogonality condition; Antenna port p 1 and antenna port p 3 transmit SRS sequences at the same comb position, and the cyclic shift corresponding to antenna port p 1 and antenna port p 3 satisfy the first condition.
  • it can be restricted by configuration In this way, the SRS sequences corresponding to the 4 antenna ports corresponding to the first SRS are guaranteed to be orthogonal.
  • the orthogonality between the SRS sequences corresponding to different SRSs can be resolved through network device configuration.
  • the first condition corresponding to formula (2-8) is based on M and The greatest common divisor of is different, and can also be expanded through the following scenarios:
  • Scenario 1 M is an odd multiple of 6, for 8.
  • a possible and Configuration can also include: Wait, I won't repeat them here.
  • the cyclic shift offset value corresponding to the SRS is associated with the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS, and the cyclic shift offset value corresponding to the first SRS is related to the antenna corresponding to the first SRS
  • the cyclic shifts of the SRS sequences corresponding to the port j only need to be correlated, and may also correspond to other mapping relationships, which will not be described in detail in this application.
  • the first condition shown in way 2 can be understood as the first condition shown in way 1, then in way 2 when , the scenarios shown in Scenario 1 to Scenario 3 shown in Method 1 above are also applicable, as shown in Table 15 below.
  • m is an odd number, ⁇ 1,5 ⁇ , which means Can take any one of 1 or 5, or, expressed as This application does not limit this.
  • the aforementioned at least one SRS is a plurality of SRSs.
  • the SRS sequence corresponding to the antenna port i and the SRS sequence corresponding to the antenna port p are SRS sequences corresponding to different SRSs in the multiple SRS sequences.
  • different SRSs can also be understood as different SRS resources, and the relationship between SRS and SRS resource can be understood as an SRS is sent on the corresponding SRS resource, and the SRS resource is used to determine the time domain, frequency domain and air domain resources of the SRS one or more of the .
  • SRS resource is configured through RRC IE (information element) SRS-Resource or SRS-PosResource, and SRS-PosResource is used for positioning scenarios.
  • the same terminal device can activate at most one SRS resource set at the same time, and one SRS resource set can contain one or more SRS resources, and multiple SRS resources are distinguished by resource ID; different terminal devices have different SRS resource configurations.
  • the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS in the third method satisfies the relational expression:
  • the cyclic shift offset value corresponding to the SRS is associated with the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS, and the cyclic shift offset value corresponding to the second SRS is associated with the antenna corresponding to the second SRS
  • the cyclic shifts of the SRS sequences corresponding to the port q only need to be correlated, and may also correspond to other mapping relationships, which will not be described in detail in this application.
  • the first condition shown in way 3 can be understood as the first condition shown in way 1, then in way 3 when , the scenarios shown in Scenario 1 to Scenario 3 shown in the above method 1 are also applicable, for example, as shown in Table 17 below.
  • Table 14 Table 15, and Table 17
  • Table 19 Table 19
  • Table 16 and Table 18 can also be defined by the monitoring bandwidth of a part of the frequency corresponding to the SRS, which will not be repeated here.
  • the above first condition can also be configured by directly restricting to fulfill.
  • the specific form of the first condition may also include the following ways:
  • M is the sequence length corresponding to the first SRS
  • k 4 is a non-negative integer
  • the cyclic shift offset value corresponding to the first SRS In the scenario where the first condition shown in formula (2-15a) is met, if M and The greatest common divisor of (can be called the first greatest common divisor) is not divisible by the number of antenna ports, the cyclic shift offset value corresponding to the first SRS
  • the above-mentioned first greatest common divisor can be equal to all the The number, or, the first greatest common divisor is equal to all the network equipment can be configured, or the terminal is expected to be configured or, the first greatest common divisor is equal to the sequence length M of the SRS sequence corresponding to the first SRS and the maximum cyclic shift offset value corresponding to the first SRS.
  • the greatest common divisor of and the definitions are all within the protection scope of the present application.
  • the SRS sequences between different antenna ports corresponding to the same comb position may not be orthogonal.
  • the number of antenna ports corresponding to the first SRS is 4, and the sequence length of the SRS sequence is an odd multiple of 6, Equal to 12 as an example, for explanation:
  • the cyclic shift offset value corresponding to the first SRS When , the antenna port p 0 and the antenna port p 2 transmit the SRS sequence at the same comb position, and the cyclic shift corresponding to the antenna port p 0 and the cyclic shift corresponding to the antenna port p 2 satisfy the first condition, that is, the sequence orthogonality condition; Antenna port p 1 and antenna port p 3 transmit SRS sequences at the same comb position, and the cyclic shift corresponding to antenna port p 1 and antenna port p 3 satisfy the first condition.
  • it can be restricted by configuration In this way, the SRS sequences corresponding to the 4 antenna ports corresponding to the first SRS are guaranteed to be orthogonal.
  • the first SRS corresponds to or, or, by For example, the cyclic shifts corresponding to antenna port p 0 and antenna port p 2 respectively satisfy:
  • the SRS sequences corresponding to the antenna port p 0 and the antenna port p 2 are orthogonal, and the antenna port p 1 and the antenna port p 3 are the same.
  • the first condition corresponding to formula (2-15a) is based on M and The greatest common divisor of is different, which can be expanded through the following scenarios:
  • Scenario 1 M is an odd multiple of 6, for 8.
  • t is a positive odd number. or The above formula (2-15b) is satisfied.
  • the configurable As shown in bold in Table 19c, include:
  • the configurable include:
  • the antenna port p 0 and the antenna port p 2 correspond to the same comb position
  • the antenna port p 1 and the antenna port p 3 correspond to the same comb position
  • t is a positive odd number. and or or or The above formula (2-15c) is satisfied.
  • scenario 2 For ease of understanding, the following describes the options available in scenario 2 for scenarios with different numbers of antenna ports.
  • the configurable and include:
  • t is a positive odd number.
  • the configuration or or or or or or The above formula (2-15d) is satisfied.
  • the configurable and include:
  • the configurable and include:
  • the first condition is met, the first condition is met:
  • k 5 is a non-negative integer, Indicates the cyclic shift offset value corresponding to the first SRS, represents the first maximum cyclic shift number, The difference between q and q is the first difference, and dividing the first difference of M times by the first maximum number of cyclic shifts is a non-zero integer.
  • the cyclic shift offset value corresponding to the first SRS In the scenario where the first condition shown in formula (2-15d) is satisfied, if M and The greatest common divisor of is not divisible by the number of antenna ports, the cyclic shift offset value corresponding to the first SRS
  • the product of the difference between the cyclic shift values of CS corresponding to the two reference signal sequences corresponding to the same comb position and M is an integer multiple of 2 ⁇ , that is to say, each component is in polar coordinates
  • the corresponding sequence product of the symmetrical component is equal to 0, corresponding to the orthogonality of the two sequences.
  • the above at least one SRS is multiple SRSs.
  • the cyclic shift offset value corresponding to the first SRS The cyclic shift offset value corresponding to the second SRS. The first condition is satisfied, the first condition is satisfied:
  • k 6 is a non-negative integer, represents the first maximum cyclic shift number, and M represents the sequence length.
  • different SRSs can also be understood as different SRS resources, and the relationship between SRS and SRS resource can be understood as an SRS is sent on the corresponding SRS resource, and the SRS resource is used to determine the time domain, frequency domain and air domain resources of the SRS one or more of the .
  • SRS resource is configured through RRC IE (information element) SRS-Resource or SRS-PosResource, and SRS-PosResource is used in positioning scenarios.
  • the same terminal device can activate at most one SRS resource set at the same time, and one SRS resource set can contain one or more SRS resources, and multiple SRS resources are distinguished by resource ID; different terminal devices have different SRS resource configurations.
  • the scheme limits the cyclic shift offset value corresponding to the first SRS
  • the configuration realizes that corresponding to the same comb position, SRS sequences corresponding to different antenna ports corresponding to the first SRS are orthogonal. On the basis of following the existing standards as much as possible, the influence of the standards is minimized.
  • the specific form of the first condition may also include the following ways:
  • k 4 is a non-negative integer, Indicates the above-mentioned first maximum cyclic shift number, and M is the sequence length corresponding to the first SRS.
  • the first condition can also satisfy: Wherein, k 5 is a non-negative integer, and M represents the length of the sequence, Indicates the first maximum cyclic shift number,
  • the first condition can also be satisfied: in, Indicates the cyclic shift offset value corresponding to the first SRS, Indicates the cyclic shift offset value corresponding to the second SRS, represents the first maximum cyclic shift number, k 6 is a positive integer, and M represents the length of the sequence.
  • the specific meanings of the first SRS and the second SRS refer to the above description, and will not be repeated here.
  • the first condition may have different expressions, or the first condition may correspond to different rules.
  • the following will take the first condition satisfying the formula (2-15f) as an example to illustrate the specific solution provided by the present application. It can be understood that, when the first condition satisfies other formulas, the specific implementation manner is similar to that of the first condition satisfying the formula (2-15f), and will not be repeated here.
  • the SRS sequence length M and the maximum cyclic shift offset value The greatest common divisor of is not divisible by the number of antenna ports. At the same comb position, the SRS sequences corresponding to different antenna ports corresponding to the first SRS may still not be orthogonal.
  • Table 19b The specific scenarios are shown in Table 19b, and will not be repeated here .
  • the specific implementation method includes that the cyclic shift offset value corresponding to the first SRS In the scenario where the first condition shown in formula (2-15f) is satisfied, if the SRS sequence length M and The greatest common divisor of (may be referred to as the first greatest common divisor) is not divisible by the number of antenna ports, and the cyclic shift offset value corresponding to the first SRS is equal to the SRS sequence corresponding to the antenna port i corresponding to the first SRS Cyclic shift, satisfying the relation:
  • K represents the number of comb teeth corresponding to the first SRS, and may also represent that different SRS sequences corresponding to the first SRS are multiplexed at K comb tooth positions, or that different SRS sequences corresponding to the first SRS Transmission over K comb positions. Corresponding to a specific SRS sequence, it can only be transmitted on one comb position.
  • the sequence length M and the maximum number of cyclic shifts corresponding to the first SRS The greatest common divisor of is not divisible by the number of antenna ports.
  • the first SRS corresponding to Antenna ports are multiplexed on K comb teeth, and the cyclic shift corresponding to different antenna ports of the same comb teeth satisfies the condition shown in formula (2-15f). It can be understood that, in order to achieve reasonable utilization of SRS transmission resources, the number of comb teeth K is related to the second greatest common divisor, and the second greatest common divisor is equal to the first greatest common divisor and greatest common divisor of .
  • the first greatest common divisor is equal to the M and The greatest common divisor of , or, the first greatest common divisor is equal to all the the number of , among them, By determining all the conditions that satisfy the conditions shown in formula (2-15f) The number of and the number of antenna ports The greatest common divisor of , the number of comb teeth corresponding to the first SRS can be determined, thereby determining the number of antenna ports corresponding to the first SRS under a specific comb tooth.
  • K represents the number of comb teeth corresponding to the first SRS, Indicates the number of antenna ports corresponding to the first SRS, and R indicates the second greatest common divisor.
  • the R represents the number of antenna ports corresponding to the first SRS at a specific comb position, or the R represents the number of cyclic shifts corresponding to the first SRS at a specific comb position, and the R cyclic shifts satisfy the formula Conditions shown in (2-15f).
  • the R cyclic shifts are cyclic shifts with different values and equal intervals in the cyclic shift set satisfying the condition shown in formula (2-15f), that is, the R cyclic shifts are the first maximum A common number of cyclic shifts with different median values and equally spaced cyclic shifts.
  • the terminal After determining comb positions corresponding to different antenna ports of the first SRS and corresponding cyclic shifts, the terminal generates an SRS sequence based on the cyclic shift, and transmits the SRS sequence at the corresponding comb position.
  • the above scheme is based on the sequence length M corresponding to the first SRS and and antenna ports Different, the specific description of the solution is given in the following scenarios.
  • the first greatest common divisor can also be understood as equal to satisfying the first condition The number of all possible values.
  • the first greatest common divisor cannot be compared with the number of antenna ports
  • port p 0 and port p 2 transmit SRS sequences at the same comb position, corresponding to The SRS sequences corresponding to port p 0 and port p 2 are orthogonal; similarly, port p 1 and port p 3 transmit SRS sequences at the same comb position, corresponding to The SRS sequences corresponding to port p 1 and port p 3 are orthogonal.
  • the terminal Based on the above mechanism, the terminal generates an SRS sequence based on the cyclic shifts corresponding to different antenna ports, and transmits the SRS sequence at the corresponding comb-tooth frequency domain position through the corresponding antenna port.
  • the corresponding sequence length M is an odd multiple of 6
  • the SRS sequences of different antenna ports corresponding to the same comb position are orthogonal to each other, thereby reducing SRS transmission interference and effectively improving SRS transmission performance.
  • the first greatest common divisor can also be understood as equal to satisfying the first condition The number of all possible values.
  • the first greatest common divisor cannot be compared with the number of antenna ports
  • port p 0 and port p 2 transmit SRS sequences at the same comb position, corresponding to The SRS sequences corresponding to port p 0 and port p 2 are orthogonal; similarly, port p 1 and port p 3 transmit SRS sequences at the same comb position, corresponding to The SRS sequences corresponding to port p 1 and port p 3 are orthogonal.
  • the terminal Based on the above mechanism, the terminal generates an SRS sequence based on the cyclic shifts corresponding to different antenna ports, and transmits the SRS sequence at the corresponding comb-tooth frequency domain position through the corresponding antenna port.
  • the corresponding sequence length M is an odd multiple of 6
  • the SRS sequences of different antenna ports corresponding to the same comb position are orthogonal to each other, thereby reducing SRS transmission interference and effectively improving SRS transmission performance.
  • the above is another scheme to realize the SRS sequence, with the restriction
  • Different schemes the above scheme can be applied to more scenarios, for example,
  • the above solution may also be adopted, by multiplexing different SRS sequences corresponding to the first SRS based on the comb teeth and cyclic shift, so as to realize the orthogonality of the SRS sequences corresponding to the same comb teeth, which has more implementation flexibility.
  • the SRS sequences corresponding to the same comb position are orthogonal to each other, and the standard has little influence, but the same comb
  • the number of SRS sequences for position multiplexing is limited (for example, the number of SRS sequences corresponding to the multiplexable CS is equal to the maximum number of cyclic shifts and the greatest common divisor of the sequence length M).
  • the cyclic shift offset value such as mode 1 to mode 3
  • the second maximum cyclic shift number N′ max so that the ratio of the above-mentioned M to the second maximum cyclic shift number is an integer, thereby avoiding the possibility of non-orthogonality between SRS sequences from the source.
  • the second maximum cyclic shift number N′ max so that the ratio of the above-mentioned M to the second maximum cyclic shift number is an integer, the possibility of non-orthogonality between SRS sequences can be avoided, and the same comb position can be guaranteed to be complex
  • the number of SRS sequences used is equal to the maximum cyclic shift number. The following describes in detail the definition of the second maximum cyclic shift number in combination with the fourth method.
  • N' max satisfies the first condition, and the first condition satisfies: the ratio of M to said N' max is a positive integer.
  • the first condition is met:
  • N′ max is the determined second maximum cyclic shift number
  • k 3 is a positive integer
  • the maximum cyclic shift number can be defined (eg, protocol pre-configuration) as the second maximum cyclic shift number, so that The above-mentioned ratio of M to the second maximum cyclic shift number is an integer.
  • the second maximum cyclic shift number is different from the first cyclic shift number corresponding to the existing protocol, and the existing first maximum cyclic shift number does not meet the requirement that the ratio of M to the maximum cyclic shift number is non-integer orthogonal condition.
  • the product of the difference between the cyclic shift values of CS corresponding to the two SRS sequences and M is 2 ⁇ Integer multiples of , that is to say, each component has a symmetrical component in polar coordinates, and the corresponding sequence product of the symmetrical component is equal to 0, and the corresponding SRS sequence is orthogonal.
  • Mode 4 can define a different maximum number of cyclic shifts in the scenario of monitoring the number of RBs with different combs and partial frequencies.
  • PF partial frequency monitoring coefficient
  • comb the number of combs corresponding to the SRS.
  • the maximum cyclic shift number can be defined (eg, protocol pre-configuration) as the second maximum cyclic shift number, because the first Both the maximum cyclic shift number and the second maximum cyclic shift number represent the maximum cyclic shift number, so the second maximum cyclic shift number in this application can also be recorded as:
  • the network device determines the second maximum cyclic shift number according to a correspondence table, where the correspondence satisfies one or more of the following table 20, and the table 20 is predefined by the protocol.
  • Table 20 includes the following Tables 20a to 20d
  • n is a positive integer and m is an odd number (for example, m is a positive odd number):
  • n is a positive integer and m is an odd number (for example, m is a positive odd number):
  • n is a positive integer:
  • K TC is 2
  • the sequence length is 4n-2
  • n is a positive integer:
  • K TC is 2
  • the sequence length is 4n-2
  • M with the The ratio of is a positive integer, which does not satisfy:
  • the ratio to the number of antenna ports is a positive integer.
  • the mapping relationship between the antenna port and the cyclic shift of the SRS sequence can be adjusted so that the second maximum cyclic shift number does not In the case that the number of antenna ports corresponding to the SRS is divisible by an integer, the relationship between the antenna port and the cyclic shift of the SRS sequence is determined.
  • the aforementioned N′ max is one of the predefined first set, and the first set includes at least one maximum cyclic shift number.
  • the protocol predefines a certain first set including at least one maximum cyclic shift number, and the network device determines N′ max satisfying the first condition from the first set.
  • all or part of at least one maximum cyclic shift number included in the first set satisfies the first condition.
  • N′ max may be notified to the terminal device in a predefined manner or in a manner configured by high-level signaling.
  • the method shown in Figure 5 also includes:
  • the network device sends high-layer signaling to the terminal device, or the terminal device receives the high-layer signaling from the network device.
  • the network device sends the first indication information to the terminal device, or the terminal device receives the first indication information from the network device.
  • the network device and the terminal device determine that N' max is one of ⁇ 6, 8, 12 ⁇ in a predetermined manner, and the N' max can be divisible by the length of the SRS sequence.
  • ⁇ 6, 8, 12 ⁇ is an exemplary description, which is not limited in this embodiment of the present application.
  • the network device indicates that N′ max is one of ⁇ 6, 8, 12 ⁇ through high-level signaling (for example, RRC signaling)
  • the network device configures a set of N′ max optional values through high-level signaling (eg, RRC signaling), and the network device indicates one of them through first indication information (eg, DCI).
  • high-level signaling eg, RRC signaling
  • first indication information eg, DCI
  • the maximum number of cyclic shifts and the number of antenna ports need to be divisible, that is to say, when the N′ max defined (for example, protocol pre-configuration) satisfies the number of antenna ports (which can be any SRS corresponding The number of antenna ports, or the number of antenna ports corresponding to each SRS in the multiple SRSs) When the ratio is a positive integer, other subsequent steps may not be performed;
  • the "first condition also satisfies that the ratio of N'max to the number of antenna ports is a positive integer" involved in the embodiment of the present application can be understood as "the first condition also satisfies:
  • k 4 is a positive integer, Indicates the number of antenna ports corresponding to one SRS in the at least one SRS".
  • N′ max corresponding to the first SRS satisfies the ratio of the number of antenna ports corresponding to the first SRS to a non-integer number (or N′ max corresponding to the first SRS does not satisfy the ratio of the number of antenna ports corresponding to the first SRS
  • the ratio is a positive integer
  • [] is the rounding function, Indicates the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the first SRS, Represents the cyclic shift offset value corresponding to the first SRS, p i represents the serial number of the antenna port i, Indicates the number of antenna ports corresponding to the first SRS, where the first SRS is one of the at least one SRS.
  • the at least one cyclic shift offset value determined by any one or more of the above methods 1 to 4, the at least one cyclic shift offset value is associated with the SRS sequence corresponding to the at least one SRS, wherein , among the SRS sequences corresponding to at least one SRS, the SRS sequences corresponding to the same comb comb position are orthogonal to each other.
  • the pairwise orthogonality between the SRS sequences corresponding to the same comb position may be that among the multiple SRS sequences corresponding to a certain SRS, the pairwise orthogonality between the SRS sequences corresponding to the same comb position; or It may be that among the multiple SRS sequences corresponding to the multiple SRSs, the SRS sequences corresponding to the same comb position are orthogonal to each other.
  • the foregoing association of the cyclic shift offset value with the SRS sequence may be understood as that the cyclic shift offset value is associated with the cyclic shift corresponding to the SRS sequence.
  • the cyclic shift offset value is used to determine the cyclic shift corresponding to the SRS sequence, and the cyclic shift and base sequence of the SRS sequence are used to generate the SRS sequence, or to determine the SRS sequence, so the cyclic shift offset
  • the value can be understood as being used to generate the SRS sequence, or used to determine the SRS sequence.
  • the cyclic shift offset value corresponding to the first SRS is used to generate one or more SRS sequences corresponding to the first SRS, for example, under the condition that the base sequences of the multiple SRS sequences corresponding to the first SRS are the same , the one or more SRS sequences corresponding to the first SRS are distinguished by different CSs.
  • the one or more SRS sequences corresponding to the first SRS can also be distinguished by different comb positions, which is not limited in the present application.
  • the comb position involved in the embodiment of the present application can be understood as the comb position mapped by the antenna port of the SRS, where the comb position can be the RE position, for example, on a certain OFDM symbol, in the first RB where the SRS is located Or the starting position of the RE in a certain RB.
  • the starting position of the RE is a natural number smaller than comb. For example, in the case of comb being 6, the starting position of the RE is 0, 1, 2, 3, 4, 5; also as For the case where the comb is 8, the starting positions of the REs are 0, 1, ..., 7; for another example, when the comb is 12, the starting positions of the REs are 0, 1, ..., 11.
  • mapping to different comb positions it can be understood as mapping to a certain OFDM symbol, mapping to different RE start positions in an RB, and mapping to a different comb position in a certain OFDM symbol, that is, mapping to a frequency Division multiplexed FDM RE.
  • mapping to the same comb position it can be understood as mapping to combs with the same index, or mapping to combs with the same index in the same RB.
  • multiple SRS sequences at the same comb position are not described in detail. It is simply understood as mapping to a certain OFDM symbol, mapping to the same RE start position in an RB, and mapping to a different comb in a certain OFDM symbol The location is mapped to the RE of frequency division multiplexing FDM.
  • mapping to a certain OFDM symbol mapping to the same RE start position in an RB, and mapping to a different comb in a certain OFDM symbol
  • the location is mapped to the RE of frequency division multiplexing FDM.
  • the above-mentioned multiple SRS sequences corresponding to the same comb position corresponding to at least one SRS may be that multiple SRS sequences corresponding to one SRS are located at the same comb position, or that multiple SRS sequences corresponding to multiple SRSs are respectively located at the same comb position, For example, the first SRS sequence corresponding to the first SRS and the second SRS sequence corresponding to the second SRS are located at the same comb position.
  • the network device determines to obtain the at least one cyclic shift offset value, it needs to send the at least one cyclic shift offset value to the corresponding terminal device.
  • the above-mentioned at least one cyclic shift offset value is a cyclic shift offset value corresponding to one SRS, and then the network device sends the one cyclic shift offset value to the terminal device corresponding to the one SRS, wherein , the terminal device corresponding to the SRS may be understood as the terminal device sending the SRS.
  • the above-mentioned at least one cyclic shift offset value is a plurality of cyclic shift offset values corresponding to a plurality of SRSs, and the network device sends the plurality of cyclic shift offset values to the corresponding multiple terminal devices.
  • the above-mentioned at least one cyclic shift offset value is multiple cyclic shift offset values corresponding to multiple SRSs, then the network device sends the multiple cyclic shift offset values to the multiple SRS corresponding a terminal device.
  • the method flow shown in FIG. 5 also includes:
  • the network device sends the cyclic shift offset value corresponding to the first SRS to the terminal device, or the terminal device receives the cyclic shift offset value corresponding to the first SRS from the network device.
  • the cyclic shift offset value corresponding to the first SRS is determined based on the above first condition.
  • the terminal device After receiving the cyclic shift offset value corresponding to the first SRS, the terminal device generates the SRS sequence corresponding to the first SRS, and the method flow shown in FIG. 5 also includes:
  • the terminal device generates an SRS sequence corresponding to the first SRS.
  • the cyclic shift offset value corresponding to the first SRS is associated with the sequence corresponding to the first SRS, the sequence length of one or more SRS sequences corresponding to the first SRS is M, and the M is related to the first
  • the ratio of the maximum cyclic shift number is a non-integer number, wherein, among the SRS sequences, the multiple SRS sequences corresponding to the same comb position are orthogonal to each other.
  • the SRS sequence corresponding to the first SRS may be one or more SRS sequences.
  • k is a non-negative integer.
  • the cyclic shift offset value corresponding to the first SRS and the cyclic shift of the SRS sequence corresponding to the antenna port j corresponding to the first SRS satisfy the relationship:
  • k 1 is a positive integer.
  • the terminal device determines the second maximum cyclic shift number N′ max corresponding to the first SRS.
  • the N′ max satisfies the first condition, and the first condition satisfies: the ratio of the M to the N′ max is an integer.
  • N′ max For a detailed description of N′ max , reference may be made to the description in the fourth manner above, which will not be repeated here.
  • the terminal device may obtain N′ max based on a predefined manner or a manner configured in high-layer signaling.
  • the terminal device may send different SRSs on different SRS resources, or the terminal device may send different SRSs on different OFDM symbols, and the method shown in FIG. 5 may also include:
  • the network device sends the cyclic shift offset value corresponding to the second SRS to the terminal device, or the terminal device receives the cyclic shift offset value corresponding to the second SRS from the network device.
  • the cyclic shift offset value corresponding to the first SRS and the cyclic shift offset value corresponding to the second SRS can be sent to the terminal device through one message or two messages, which is not discussed in this application. Do limited.
  • the cyclic shift offset value corresponding to the second SRS is determined based on the first condition, and the second SRS and the first SRS are different SRSs.
  • the terminal device may generate the SRS sequence corresponding to the second SRS, and the method flow shown in FIG. 5 further includes:
  • the terminal device generates an SRS sequence corresponding to the second SRS.
  • the cyclic shift offset value corresponding to the second SRS is associated with the SRS sequence corresponding to the second SRS
  • the sequence length of the SRS sequence corresponding to the second SRS is the M
  • the SRS sequence corresponding to the second SRS is The multiple SRS sequences corresponding to the same comb position are orthogonal to each other, or the SRS sequences corresponding to the second SRS corresponding to the same comb position are orthogonal to the SRS sequences corresponding to the first SRS.
  • the SRS sequence corresponding to the second SRS may be one or more SRS sequences.
  • k 2 is a positive integer.
  • the first condition when the first condition is met: Under the condition, if the sequence length M corresponding to the SRS (such as the above-mentioned first SRS, or the second SRS) and the maximum cyclic shift number corresponding to the SRS The ratio of the greatest common divisor of and the number of antenna ports corresponding to SRS is non-integer, and the terminal does not expect to be configured except all possibilities other than to ensure that the SRS sequences corresponding to the antenna ports corresponding to the SRS are orthogonal.
  • the sequence length M corresponding to the SRS such as the above-mentioned first SRS, or the second SRS
  • the maximum cyclic shift number corresponding to the SRS The ratio of the greatest common divisor of and the number of antenna ports corresponding to SRS is non-integer, and the terminal does not expect to be configured except all possibilities other than to ensure that the SRS sequences corresponding to the antenna ports corresponding to the SRS are orthogonal.
  • M is the sequence length corresponding to the SRS
  • k 4 is a non-negative integer
  • Conditions are taken as an example to describe the rules for generating the SRS sequence corresponding to the SRS on the terminal side.
  • the first condition is applicable to one or more of the first conditions defined in Ways 1 to 4, which will not be repeated here.
  • the terminal device can correspond to the SRS by limiting the cyclic shift offset value corresponding to the SRS when generating the SRS sequence corresponding to the SRS.
  • the cyclic shift of the SRS sequence corresponding to the antenna port i satisfies the relational expression:
  • M is the sequence length corresponding to the SRS
  • k 4 is a non-negative integer.
  • M is the sequence length corresponding to the SRS
  • k 4 is a non-negative integer.
  • M is the sequence length corresponding to the SRS
  • k 4 is a non-negative integer.
  • p i represents the serial number of the antenna port i
  • p i represents the serial number of the antenna port i
  • K indicates the number of comb teeth corresponding to the SRS.
  • Conditions are taken as an example to describe the rules for generating the SRS sequence corresponding to the SRS on the terminal side.
  • the first condition is applicable to one or more of the first conditions defined in Ways 1 to 4, which will not be repeated here.
  • the first condition when the first condition is met: Under the condition, if the sequence length M and the maximum cyclic shift number corresponding to the SRS (the first SRS and/or the second SRS) The ratio of the greatest common divisor of and the number of antenna ports corresponding to SRS is non-integer, and the terminal does not expect to be configured except all possibilities other than to ensure that the SRS sequences corresponding to the antenna ports corresponding to the SRS are orthogonal.
  • k 6 is a non-negative integer
  • M represents the sequence length
  • the terminal device can correspond to the SRS by limiting the cyclic shift offset value corresponding to the SRS when generating the SRS sequence corresponding to the SRS.
  • the cyclic shift of the SRS sequence corresponding to the antenna port i satisfies the relational expression:
  • M is the sequence length corresponding to the SRS
  • k 4 is a non-negative integer.
  • M is the sequence length corresponding to the SRS
  • k 4 is a non-negative integer.
  • M is the sequence length corresponding to the SRS
  • k 4 is a non-negative integer.
  • p i represents the serial number of the antenna port i
  • p i represents the serial number of the antenna port i
  • K indicates the number of comb teeth corresponding to the SRS.
  • the terminal device may determine whether the cyclic shift offset value corresponding to the received SRS satisfies the first condition.
  • the terminal device determines the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the SRS according to the received cyclic shift offset value corresponding to the SRS. If the cyclic shift of the SRS sequence corresponding to antenna port i satisfies the first condition, the terminal device determines that the cyclic shift offset value corresponding to the received SRS is determined based on the first condition; if the cyclic shift of the SRS sequence corresponding to antenna port i The shift does not satisfy the first condition, and the terminal device determines that the cyclic shift offset value corresponding to the received SRS is not determined based on the first condition.
  • the terminal device may actively request the network device to determine the cyclic shift offset value corresponding to the SRS based on the first condition.
  • the terminal device may feed back information that the received cyclic shift offset value does not satisfy the first condition to the network device.
  • the terminal device sends a request message to the network device, where the request message is used to request to determine the cyclic shift offset value corresponding to the SRS based on the first condition;
  • the terminal device receives the first cyclic shift offset value corresponding to the first SRS, sends first feedback information, and feeds back the first cyclic shift offset value determined based on preset conditions or the first cyclic shift offset value
  • the offset value is not one of those determined based on preset conditions.
  • the length of the SRS sequence corresponding to at least one SRS is M, and the ratio of the M to the first maximum cyclic shift number is a non-integer, different SRSs or different antenna ports are configured differently.
  • the SRS sequences formed by CS are not orthogonal.
  • the network device determines at least one cyclic shift offset value respectively corresponding to the at least one SRS based on the first condition, and the at least one cyclic shift offset value is associated with the SRS sequence, so that in the SRS sequence, the SRS corresponding to the same comb position Two pairs of sequences are orthogonal, so as to realize SRS sequence orthogonality.
  • the present application also provides an embodiment, aiming at: the SRS sequence corresponding to the Legacy SRS and the SRS sequence corresponding to the PF SRS are transmitted in the same comb position and the same OFDM symbol scenario, but the length of the transmission sequence is different, how to realize the correspondence of the Legacy SRS corresponding to the same comb position Orthogonal multiplexing of the SRS sequence of the PF SRS and the SRS sequence corresponding to the PF SRS.
  • a possible implementation considering the new SRS sequence composed of Legacy SRS sequence symbols corresponding to the same RE position under the same OFDM symbol, is orthogonal to the PF SRS sequence.
  • the SRS sequence corresponding to the Legacy SRS is orthogonal to the PF SRS sequence.
  • the new SRS sequence composed of Legacy SRS sequence symbols corresponding to the same RE position as the PF SRS sequence symbol can be expressed as:
  • the SRS sequence corresponding to the Legacy SRS in the same OFDM symbol can be expressed as:
  • the SRS sequence corresponding to PF SRS can be expressed as:
  • FIG. 7 The left figure in Figure 7 is a schematic diagram of Legacy SRS, and the right figure in Figure 7 is PF SRS, and the SRS sequence corresponding to Legacy SRS and the SRS sequence corresponding to PF SRS are multiplexed at the same comb starting position .
  • the sequence ri 0 and the sequence r 1 are orthogonal to satisfy:
  • Sequence r′ 0 and sequence r 1 are orthogonal to satisfy the condition
  • the PF UE configures the cyclic shift index for any Legacy SRS PF SRS Configuration Cyclic Shift Index and By restricting the PF configuration so that it configures a cyclic shift for any Legacy UE, the PF UE satisfies the conditions:
  • k is a positive integer.
  • Implementation mode 1 can be understood as, the length of the part-frequency monitoring SRS sequence is an integer multiple of the first maximum cyclic shift number, or when the ratio of the part-frequency monitoring SRS sequence length to the first maximum cyclic shift number is a positive number, in the same Legacy SRS and PF SRS are orthogonal under OFDM symbols.
  • Implementation 2 is similar to the method shown in Figure 5, by restricting legacy UE and PF UE to configure cyclic shift and To satisfy the orthogonal condition described in formula (3-1), for example, the Legacy SRS configuration cyclic shift index can be restricted and PF SRS configuration cyclic shift index
  • the cyclic shift offset value corresponding to the Legacy SRS and the cyclic shift of the SRS sequence corresponding to the antenna port i corresponding to the Legacy SRS satisfy the relationship:
  • the cyclic shift offset value corresponding to the PF SRS and the cyclic shift of the SRS sequence corresponding to the antenna port q corresponding to the PF SRS satisfy the relationship:
  • k 2 is a positive integer, the Indicates the sequence length.
  • k is a non-negative integer, the Indicates the sequence length.
  • the SRS sequence corresponding to the Legacy SRS corresponding to the same frequency domain position and the SRS corresponding to the PF SRS are realized by limiting the configuration of the cyclic shift offset value, or limiting the partial frequency monitoring coefficient PF
  • the sequence is orthogonal, below, we will introduce the second implementation, namely:
  • the SRS sequences transmitted by different OFDM symbols are combined to form an SRS sequence with a length of M ZC (corresponding to one OFDM symbol, the length of the transmitted SRS sequence is ), based on the existing mechanism, the SRS sequence of length M ZC corresponding to the Legacy SRS can be realized to be orthogonal.
  • the method of combining SRS sequences transmitted by different OFDM symbols to form a new SRS sequence depends on the mechanism of frequency hopping at the starting position in the partial frequency monitoring scenario.
  • the specific background is as follows:
  • the SRS uplink coverage performance is improved through power boosting.
  • the channel corresponding to the RB corresponding to the non-transmitted SRS can obtain the channel estimation result by means of difference, but, compared with the channel estimation method based on the SRS, the accuracy of the corresponding channel estimation is reduced.
  • Figure 8 is a schematic diagram of RB starting position frequency hopping in a partial frequency monitoring scenario, and the corresponding RB starting position pattern is ⁇ 0,2,1,3,0,2,1,3,... ⁇ :
  • the protocol corresponding description groupOrSequenceHopping is equal to 'neither'
  • the corresponding SRS base sequence will not change with time (OFDM symbols)
  • the SRS sequences corresponding to different OFDM symbols can be combined to realize joint channel estimation within the SRS configuration bandwidth.
  • the network device can poll all RB starting positions, that is, after multiple OFDM symbols, the UE can send SRS sequences at all RB positions in the SRS configuration bandwidth.
  • the configuration CS is ⁇ 1
  • SRS In the scenario where the sequence length corresponding to the configured bandwidth is M ZC and the monitoring coefficient of some frequencies is PF , the above SRS sequence can be expressed as:
  • the orthogonal multiplexing of the SRS sequence r 0 corresponding to the Legacy SRS and the SRS sequence r 2 corresponding to the PF SRS is realized.
  • This implementation has no restrictions on the configuration of the cyclic shift offset value and the configuration of partial frequency monitoring coefficients, but it is limited to scenarios where group frequency hopping and sequence frequency hopping are not performed, that is, the base sequence corresponding to the SRS sequence does not change with time.
  • the above implementation manner is applicable to the scenario where the channel does not change significantly during the frequency hopping period of the starting position of the RB. If the channel Doppler spread is large, that is, the channel changes significantly with time, the performance of this embodiment is poor.
  • the present application also provides another embodiment: in the partial frequency monitoring scenario, the starting RB position of the partial frequency monitoring bandwidth is determined by the 104b-e meeting, and its starting RB index satisfies:
  • k F ⁇ ⁇ 0,...,P F -1 ⁇ corresponding to the starting position with SRS configuration bandwidth A position within is the reference point.
  • Exemplary, SRS configuration bandwidth within configure the bandwidth with the SRS
  • the minimum RB position (corresponding to the smallest frequency domain position) is separated from the RB position corresponding to N offset RBs, or the SRS configuration bandwidth
  • the maximum RB position ((corresponding to the largest frequency domain position)) is separated from the RB position corresponding to N offset RBs.
  • PF is the partial frequency monitoring coefficient, which defines the partial frequency monitoring bandwidth satisfy:
  • f(n) represents the largest integer among integers not greater than n and an integer multiple of 4.
  • f(n) represents the smallest integer among the integers not less than n and an integral multiple of 4.
  • f(n) represents an integer that has the smallest absolute difference with n among the integers that are multiples of 4.
  • the starting RB position index corresponding to partial frequency monitoring satisfies:
  • N offset 17k F , (4-2)
  • this embodiment implements the definition of the start RB position index expression or the limitation of the partial frequency monitoring bandwidth to realize that in the scenario where the partial frequency monitoring bandwidth is limited to an integer multiple of 4, the starting RB position index and Corresponding part of the frequency monitoring bandwidth corresponds.
  • FIG. 9 shows the flow of determining the starting RB position.
  • FIG. 9 is a schematic flowchart of another wireless communication method provided by an embodiment of the present application. Include the following steps:
  • the network device determines the starting resource block RB position corresponding to the sounding reference signal SRS based on the second condition.

Abstract

本申请提供了一种无线通信方法和装置,该无线通信方法包括:基于第一条件确定至少一个探测参考信号SRS分别对应的至少一个循环移位偏移值,该至少一个SRS对应的SRS序列的序列长度与第一最大循环移位数的比值为非整数;发送该至少一个循环移位偏移值,该至少一个循环移位偏移值与该SRS序列相关联,该SRS序列中,对应相同梳齿comb位置的SRS序列之间两两正交。通过基于第一条件确定该至少一个SRS与SRS序列相关联的循环移位偏移值,以使得SRS序列中,对应相同comb位置的SRS序列之间两两正交。

Description

无线通信方法和装置
本申请要求于2021年08月06日提交中国专利局、申请号为202110904396.2、申请名称为“无线通信方法和装置”的中国专利申请的优先权,以及于2021年11月13日提交中国专利局、申请号为202111343735.0、申请名称为“无线通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种无线通信方法和装置。
背景技术
为了实现新无线(generation new radio,NR)系统中多输入多输出(multiple input multiple output,MIMO)的进一步增强,通过部分频域监听技术提升探测参考信号(sounding reference signal,SRS)的覆盖和容量,其中,部分频域监听技术包括资源块(resource block,RB)级别的部分频域监听。
在部分频域监听场景下一个SRS对应RB数为整数且不能被4整除的条件下,至少一个SRS对应的相同梳齿(comb)位置的多个SRS序列的序列长度不能整除最大循环移位数,基于不同循环移位(cyclic shift,CS)生成的SRS序列可能不正交。
在相同comb位置,SRS序列不正交会产生严重的干扰,降低信道估计精度,进而降低系统覆盖和容量性能。因此,如何使得在部分频域监听场景下SRS序列正交,成为亟待解决的问题。
发明内容
本申请提供一种无线通信方法,以期实现相同comb位置对应的SRS序列两两正交。
第一方面,提供了一种无线通信方法,该无线通信方法可以由网络设备执行,或者,也可以由设置于网络设备中的芯片或电路执行,本申请对此不作限定。
该无线通信方法包括:
基于第一条件确定至少一个探测参考信号SRS分别对应的至少一个循环移位偏移值,其中,该至少一个SRS对应的SRS序列的序列长度与第一最大循环移位数的比值为非整数;发送该至少一个循环移位偏移值,该至少一个循环移位偏移值与该SRS序列相关联,其中,该SRS序列中,对应相同梳齿comb位置的SRS序列之间两两正交。其中,至少一个SRS对应的SRS序列的序列长度相同,例如,至少一个SRS对应两个SRS序列,该两个SRS序列的序列长度相同。
根据本申请实施例提供的无线通信方法,在至少一个SRS对应的SRS序列的序列长度与第一最大循环移位数(协议预定义的最大循环移位数)的比值为非整数的情况下,网络设备基于第一条件确定该至少一个SRS分别对应的至少一个循环移位偏移值,该至 少一个循环移位偏移值与SRS序列相关联,以使得SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统通信性能。
结合第一方面,在第一方面的某些实现方式中,第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000001
其中,
Figure PCTCN2022110422-appb-000002
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000003
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000004
表示该第一最大循环移位数,p i表示该天线端口i的序号,
Figure PCTCN2022110422-appb-000005
表示该第一SRS对应的天线端口数,该天线端口i对应的SRS序列为该SRS序列中的一个,该
Figure PCTCN2022110422-appb-000006
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000007
其中,k为非负整数(或者说k为大于或等于0的整数),M表示该序列长度。
一种可能的实现方式,针对上述的至少一个SRS中的第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000008
来说,需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000009
),该
Figure PCTCN2022110422-appb-000010
基于第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000011
确定(如,
Figure PCTCN2022110422-appb-000012
Figure PCTCN2022110422-appb-000013
以使得网络设备确定的
Figure PCTCN2022110422-appb-000014
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第一方面,在第一方面的某些实现方式中,第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000015
该第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口j对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000016
其中,
Figure PCTCN2022110422-appb-000017
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000018
表示该第一SRS对应的天线端口j对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000019
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000020
表示该第一最大循环移位数,p i表示该天线端口i的序号,p j表示该天线端口j的序号,
Figure PCTCN2022110422-appb-000021
表示该第一SRS对应的天线端口数,该天线端口i对应的SRS序列与该天线端口j对应的SRS序列为该SRS序列中相同SRS对应的两个SRS序列,该
Figure PCTCN2022110422-appb-000022
Figure PCTCN2022110422-appb-000023
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000024
其中,k 1为正整数,M表示该序列长度。
一种可能的实现方式,针对上述的至少一个SRS中的第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000025
以及第一SRS对应的天线端口j对应的SRS序列的循环 移位
Figure PCTCN2022110422-appb-000026
来说需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000027
),该
Figure PCTCN2022110422-appb-000028
Figure PCTCN2022110422-appb-000029
都是基于第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000030
确定(如,
Figure PCTCN2022110422-appb-000031
Figure PCTCN2022110422-appb-000032
),以使得网络设备确定的
Figure PCTCN2022110422-appb-000033
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统覆盖和容量性能。从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统覆盖和容量性能。若相同SRS的不同天线端口对应的SRS序列在相同comb位置不正交,考虑到不同天线端口对应的信道可能会有很强的相关性,会产生严重的干扰,进而严重影响信道估计性能。
结合第一方面,在第一方面的某些实现方式中,该至少一个SRS为多个SRS,第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000034
第二SRS对应的循环移位偏移值与该第二SRS对应的天线端口q对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000035
其中,
Figure PCTCN2022110422-appb-000036
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000037
表示该第二SRS对应的天线端口q对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000038
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000039
表示该第二SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000040
表示该第一最大循环移位数,
Figure PCTCN2022110422-appb-000041
表示该第一SRS对应的天线端口i的序号,
Figure PCTCN2022110422-appb-000042
表示该第二SRS对应的天线端口q的序号,
Figure PCTCN2022110422-appb-000043
表示该第一SRS对应的天线端口数,
Figure PCTCN2022110422-appb-000044
表示该第二SRS对应的天线端口数,该天线端口i对应的SRS序列与该天线端口q对应的SRS序列为该SRS序列中不同SRS对应的SRS序列,该
Figure PCTCN2022110422-appb-000045
Figure PCTCN2022110422-appb-000046
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000047
其中,k 2为正整数,M表示该序列长度。
一种可能的实现方式,针对上述的至少一个SRS中的第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000048
以及第二SRS对应的天线端口p对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000049
来说需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000050
),该
Figure PCTCN2022110422-appb-000051
Figure PCTCN2022110422-appb-000052
分别基于第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000053
和第二SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000054
确定(如,
Figure PCTCN2022110422-appb-000055
Figure PCTCN2022110422-appb-000056
以使得网络设备确定的
Figure PCTCN2022110422-appb-000057
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS对不同信道估计(包括不同终端信道估计)的影响,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第一方面,在第一方面的某些实现方式中,在第一最大公约数与所述第一SRS对应的天线端口数的比值为非整数的条件下,所述第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000058
其中,所述第一最大公约数等于M和
Figure PCTCN2022110422-appb-000059
的最大公 约数。
在M和
Figure PCTCN2022110422-appb-000060
的最大公约数与第一SRS对应的天线端口数的比值为非整数的情况下,可以通过限制配置第一SRS对应的循环移位偏移值的取值,使得第一SRS对应的天线端口对应的SRS序列正交。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:确定第二最大循环移位数N′ max,该N′ max满足该第一条件,该第一条件满足:该序列长度与该N′ max的比值为正整数。
一种可能的实现方式,针对上述的M与第一最大循环移位数(现有协议,基于预定义方式确定,与Comb数有关)的比值为非整数的情况下,可以通过定义(如,协议预配置)第二最大循环移位数,以使得上述的M与第二最大循环移位数的比值为整数,从而从源头上避免了SRS序列之间不正交的可能性。上述方法不需额外的条件限定(例如,限制配置的循环移位偏移值),即可实现SRS序列中,对应相同comb位置的SRS序列之间两两正交,达到提升信道估计精度,增强系统覆盖和容量性能的目的。同时,与限制最大循环移位偏移值不同,定义最大循环移位数可以增加相同comb位置复用的SRS序列的数量,从而进一步提升SRS系统容量。
由上述的几种可能的实现方式可知,第一条件的具体体现形式有多种,增加了方案的灵活性。
结合第一方面,在第一方面的某些实现方式中,该N′ max属于第一集合,该第一集合包含至少一个最大循环移位数。
上述的N′ max可以是协议预定义的第一集合中确定得到的。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:发送第一指示信息,该第一指示信息用于指示该N′ max
结合第一方面,在第一方面的某些实现方式中,该方法还包括:发送高层信令,该高层信令用于指示第二集合,或者该第二集合为预定义的,该第二集合包含至少一个最大循环移位数,该N′ max属于该第二集合。
针对终端设备来说上述的N′ max所属的第二集合可以是网络设备通过高层信令配置的,还可以是协议预定义,增加了方案实施的灵活性。
结合第一方面,在第一方面的某些实现方式中,该第一条件还满足N′ max与该至少一个SRS中的一个SRS对应的天线端口数的比值为正整数。
结合第一方面,在第一方面的某些实现方式中,该第一条件满足:该第一SRS对应的N′ max与第一SRS对应的天线端口数的比值为非整数,该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000061
其中,[]为取整函数,
Figure PCTCN2022110422-appb-000062
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000063
表示该第一SRS对应的循环移位偏移值,p i表示该天线端口i的序号,
Figure PCTCN2022110422-appb-000064
表示该第一SRS对应的天线端口数,该第一SRS为该至少一个SRS中的一个。
在确定第二最大循环移位数N′ max不满足与SRS对应的天线端口数整除的情况下,可以通过调整天线端口与SRS序列的循环移位的映射关系式,使得在N′ max满足SRS对应的天线端口数不能整除的条件下,确定天线端口与SRS序列的循环移位的关系。
结合第一方面,在第一方面的某些实现方式中,该N′ max=6。
基于现有协议机制,SRS序列的长度为6的整数倍,限制最大循环移位数为6,可以避免出现SRS序列的长度与最大循环移位数不能整除的情况,但在4天线端口条件下, 最大循环移位数与天线端口不能整除,可通过修改天线端口i与循环移位的映射关系表达式,来确定对应循环移位。
第二方面,提供了一种无线通信方法,该无线通信方法可以由终端设备执行,或者,也可以由设置于终端设备中的芯片或电路执行,本申请对此不作限定。
该无线通信方法包括:
接收第一探测参考信号SRS对应的循环移位偏移值,该第一SRS对应的循环移位偏移值基于第一条件确定,生成该第一SRS对应的SRS序列,该第一SRS对应的循环移位偏移值与该SRS序列相关联,其中,该第一SRS对应的SRS序列的序列长度与第一最大循环移位数的比值为非整数,其中,该SRS序列中,对应相同梳齿comb位置的SRS序列之间两两正交。
根据本申请实施例提供的无线通信方法,在第一SRS对应的SRS序列的长度为M,该M与第一最大循环移位数(协议预定义的最大循环移位数)的比值为非整数的情况下,终端设备接收来自网络设备基于第一条件(协议预定义的条件)确定的该第一SRS对应的循环移位偏移值,并基于该第一SRS对应的循环移位偏移值生成该第一SRS对应的SRS序列,以使得该多个SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统通信性能。
结合第二方面,在第二方面的某些实现方式中,该第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000065
其中,
Figure PCTCN2022110422-appb-000066
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000067
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000068
表示该第一最大循环移位数,p i表示该天线端口i的序号,
Figure PCTCN2022110422-appb-000069
表示该第一SRS对应的天线端口数,该天线端口i对应的SRS序列为该SRS序列中的一个,该
Figure PCTCN2022110422-appb-000070
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000071
其中,k为非负整数,M表示该序列长度。
一种可能的实现方式,针对上述的第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000072
来说,需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000073
),该
Figure PCTCN2022110422-appb-000074
基于第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000075
确定(如,
Figure PCTCN2022110422-appb-000076
),以使得网络设备确定的
Figure PCTCN2022110422-appb-000077
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第二方面,在第二方面的某些实现方式中,该第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000078
该第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口j对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000079
其中,
Figure PCTCN2022110422-appb-000080
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000081
表示该第一SRS对应的天线端口j对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000082
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000083
表示该第一最大循环移位数,p i表示该天线端口i的序号,p j表示该天线端口j的序号,
Figure PCTCN2022110422-appb-000084
表示该第一SRS对应的天线端口数,该天线端口i对应的SRS序列与该天线端口j对应的SRS序列为该多个SRS序列中相异的SRS序列,该
Figure PCTCN2022110422-appb-000085
Figure PCTCN2022110422-appb-000086
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000087
其中,k 1为正整数,M表示该序列长度。
一种可能的实现方式,针对上述的第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000088
以及第一SRS对应的天线端口j对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000089
来说需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000090
),该
Figure PCTCN2022110422-appb-000091
Figure PCTCN2022110422-appb-000092
都是基于第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000093
确定(如,
Figure PCTCN2022110422-appb-000094
Figure PCTCN2022110422-appb-000095
以使得网络设备确定的
Figure PCTCN2022110422-appb-000096
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统覆盖和容量性能。从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统覆盖和容量性能。若相同SRS的不同天线端口对应的SRS序列在相同comb位置不正交,考虑到不同天线端口对应的信道可能会有很强的相关性,会产生严重的干扰,进而严重影响信道估计性能。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收第二SRS对应的循环移位偏移值,该第二SRS对应的循环移位偏移值基于该第一条件确定,生成该第二SRS对应的SRS序列,该第一SRS对应的循环移位偏移值与该第二SRS对应的SRS序列相关联,其中,该第二SRS对应的SRS序列的序列长度为该M,该第二SRS对应的SRS序列中,对应相同comb位置的SRS序列之间两两正交,或者,对应相同comb位置的该第二SRS对应的SRS序列与该第一SRS对应的SRS序列之间两两正交,第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000097
第二SRS对应的循环移位偏移值与该第二SRS对应的天线端口q对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000098
其中,
Figure PCTCN2022110422-appb-000099
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000100
表示该第二SRS对应的天线端口q对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000101
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000102
表示该第二SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000103
表示该第一最大循环移位数,
Figure PCTCN2022110422-appb-000104
表示该第一SRS对应的天线端口i的序号,
Figure PCTCN2022110422-appb-000105
表示该第二SRS对应的天线端口q的序号,
Figure PCTCN2022110422-appb-000106
表示该第一SRS对应的天线端口数,
Figure PCTCN2022110422-appb-000107
表示该第二SRS对应的天线端口数,该天线端口i对应的SRS序列与该天线端口q对应的SRS序列 为该SRS序列中不同SRS对应的SRS序列,
Figure PCTCN2022110422-appb-000108
Figure PCTCN2022110422-appb-000109
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000110
其中,k 2为正整数,该M表示该序列长度。
一种可能的实现方式,在该终端设备还接收来自网络设备基于第一条件(协议预定义的条件)确定的第二SRS对应的循环移位偏移值,生成该第二SRS对应的SRS序列的情况下,该第一SRS对应的循环移位偏移值与该第二SRS对应的SRS序列相关联,针对上述的第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000111
以及第二SRS对应的天线端口p对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000112
来说需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000113
Figure PCTCN2022110422-appb-000114
Figure PCTCN2022110422-appb-000115
分别基于第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000116
和第二SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000117
确定(如,
Figure PCTCN2022110422-appb-000118
Figure PCTCN2022110422-appb-000119
),以使得网络设备确定的
Figure PCTCN2022110422-appb-000120
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS对不同信道估计(包括不同终端信道估计)的影响,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:确定该第一SRS对应的第二最大循环移位数N′ max,该N′ max满足该第一条件,该第一条件满足:该M与该N′ max的比值为正整数。
结合第二方面,在第二方面的某些实现方式中,在第一最大公约数与所述第一SRS对应的天线端口数的比值为非整数的条件下,所述第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000121
其中,所述第一最大公约数等于M和
Figure PCTCN2022110422-appb-000122
的最大公约数。
在M和
Figure PCTCN2022110422-appb-000123
的最大公约数与第一SRS对应的天线端口数的比值为非整数的情况下,可以通过限制配置第一SRS对应的循环移位偏移值的取值,使得第一SRS对应的天线端口对应的SRS序列正交。
一种可能的实现方式,针对上述的M与第一最大循环移位数(现有协议,基于预定义方式确定,与Comb数有关)的比值为非整数的情况下,可以通过定义(如,协议预配置)第二最大循环移位数,以使得上述的M与第二最大循环移位数的比值为整数,从而从源头上避免了SRS序列之间不正交的可能性。上述方法不需额外的条件限定(例如,限制配置的循环移位偏移值),即可实现SRS序列中,对应相同comb位置的SRS序列之间两两正交,达到提升信道估计精度,增强系统覆盖和容量性能的目的。同时,与限制最大循环移位偏移值不同,定义最大循环移位数可以增加相同comb位置复用的SRS序列的数量,从而进一步提升SRS系统容量。
由上述的几种可能的实现方式可知,第一条件的具体体现形式有多种,增加了方案的灵活性。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收第一指示信息,该第一指示信息用于指示N′ max
结合第二方面,在第二方面的某些实现方式中,该方法还包括:接收高层信令,该高层信令用于配置第二集合,或者该第二集合为预定义的,该第二集合包含至少一个最大循环移位数,该N′ max属于该第二集合。
针对终端设备来说上述的N′ max所属的第二集合可以是网络设备通过高层信令配置的,还可以是协议预定义,增加了方案实施的灵活性。
结合第二方面,在第二方面的某些实现方式中,该第一条件还满足:N′ max与该第一SRS对应的天线端口数的比值为正整数。
结合第二方面,在第二方面的某些实现方式中,该第一条件满足:该第一SRS对应的N′ max与该第一SRS对应的天线端口数的比值为非整数,该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000124
其中,[]表示取整函数,
Figure PCTCN2022110422-appb-000125
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000126
表示该第一SRS对应的循环移位偏移值,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000127
表示该第一SRS对应的天线端口数。
在确定第二最大循环移位数N′ max不满足与SRS对应的天线端口数整除的情况下,可以通过调整天线端口与SRS序列的循环移位的映射关系式,使得在N′ max满足SRS对应的天线端口数不能整除的条件下,确定天线端口与SRS序列的循环移位的关系。
结合第二方面,在第二方面的某些实现方式中,该N′ max=6。
基于现有协议机制,SRS序列的长度为6的整数倍,限制最大循环移位数为6,可以避免出现SRS序列的长度与最大循环移位数不能整除的情况,但在4天线端口条件下,最大循环移位数与天线端口不能整除,可通过修改天线端口i与循环移位的映射关系表达式,来确定对应循环移位。
结合第二方面,在第二方面的某些实现方式中在接收该第一探测参考信号SRS对应的循环移位偏移值之前,该方法还包括:接收该第一SRS对应的第一循环移位偏移值,判断该第一SRS对应的第一循环移位偏移值不是基于该预设条件确定的,发送第一请求消息,该第一请求消息用于请求基于该预设条件确定该第一SRS对应的循环移位偏移值;
或者,接收该第一SRS对应的第一循环移位偏移值,发送第一反馈信息,反馈该第一循环移位偏移值为基于预设条件确定的或者该第一循环移位偏移值不是基于预设条件确定的中的一种。
示例性地,终端设备可以主动请求网络设备配置合适的循环移位偏移值,增加了终端设备的主动性。通过反馈接收循环移位偏移值是否基于预设条件确定,有助于网络设备对信道估计精度有个预判,提升通信效率。
第三方面,提供一种无线通信装置,所述无线通信装置包括处理器,用于实现上述第一方面描述的方法中网络设备的功能。
可选地,所述无线通信装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第一方面描述的方法中网络设备的功能。
在一种可能的实现中,所述存储器用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第一方面描述的方法中网络设备的功能。可选地,所述无线通信装置还可以包括通信接口,所述通信接口用于所述无线通信装置与其它设备进行通信。当该无线通信装置为网络设备时,所述通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,所述无线通信装置包括:处理器和通信接口,用于实现上述第 一方面描述的方法中网络设备的功能,具体地包括:
所述处理器利用所述通信接口与外部通信;
所述处理器用于运行计算机程序,使得所述装置实现上述第一方面描述的任一种方法。
可以理解,所述外部可以是处理器以外的对象,或者是所述装置以外的对象。
在另一种可能的设计中,该无线通信装置为芯片或芯片系统。所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第四方面,提供一种无线通信装置,所述无线通信装置包括处理器,用于实现上述第二方面描述的方法中终端设备的功能。
可选地,所述无线通信装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第二方面描述的方法中终端设备的功能。
在一种可能的实现中,所述存储器用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第二方面描述的方法中终端设备的功能。
可选地,所述无线通信装置还可以包括通信接口,所述通信接口用于所述无线通信装置与其它设备进行通信。当该无线通信装置为终端设备时,所述收发器可以是通信接口,或,输入/输出接口。
在一种可能的设计中,所述无线通信装置包括:处理器和通信接口,用于实现上述第二方面描述的方法中终端设备的功能,具体地包括:
所述处理器利用所述通信接口与外部通信;
所述处理器用于运行计算机程序,使得所述装置实现上述第二方面描述的任一种方法。
可以理解,所述外部可以是处理器以外的对象,或者是所述装置以外的对象。
在另一种实现方式中,该无线通信装置为芯片或芯片系统时,所述通信接口可以是是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第五方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第一方面以及第一方面的任一可能的实现方式中的方法。
第六方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第二方面以及第二方面的任一可能的实现方式中的方法。
第七方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第一方面以及第一方面的任一可能的实现方式中的方法。
第八方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第二方面以及第二方面的任一可能的实现方式中的方法。
第九方面,提供了一种通信系统,包括第三方面所示的无线通信装置和第四方面所示的无线通信装置。
第十方面,提供了一种无线通信方法,该无线通信方法可以由终端设备执行,或者,也可以由设置于终端设备中的芯片或电路执行,本申请对此不作限定。
该无线通信方法包括:
基于第二条件确定探测参考信号SRS对应的起始资源块RB位置,该SRS对应的第一带宽与4的比值为非整数,
基于该起始RB位置发送该SRS。
该无线通信方法,在SRS对应的第一带宽(如,基于配置带宽
Figure PCTCN2022110422-appb-000128
和部分频率监听系数P F确定的,
Figure PCTCN2022110422-appb-000129
或,配置带宽
Figure PCTCN2022110422-appb-000130
)与4的比值为非整数情况下,基于第二条件确定该SRS对应的起始RB位置,并基于起始RB位置发送该SRS,能够避免终端和网络侧关于SRS对应的RB起始位置的理解不一致,或者在相同RB位置的重复监听,或者部分RB监听不到的情况,影响SRS的发送和接收,降低信道估计精度,损耗系统性能。
结合第十方面,在第十方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000131
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1}对应配置带宽
Figure PCTCN2022110422-appb-000132
内的子带索引,k F可以由RRC信令配置得到,也可由RRC信令以及协议预定义偏移位置联合确定,还可由一个或多个参数联合确定,均在本发明方案的保护范围之内。
Figure PCTCN2022110422-appb-000133
表示SRS对应的配置带宽,f(n)为函数,P F表示部分频率监听系数,
Figure PCTCN2022110422-appb-000134
表示该SRS对应的第二带宽,该第二带宽与4的比值为整数。
一种可能的实现方式,起始RB位置的索引需要满足上述的第二条件(如,
Figure PCTCN2022110422-appb-000135
Figure PCTCN2022110422-appb-000136
),以使终端和网络侧关于SRS对应的RB起始位置的理解一致,避免出现部分RB监听不到的情况,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第十方面,在第十方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000137
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1},
Figure PCTCN2022110422-appb-000138
表示SRS对应的配置带宽,f(n)为函数,P F表示部分频率监听系数,m offset表示RB偏移值。
一种可能的实现方式,起始RB位置的索引需要满足上述的第二条件(如,
Figure PCTCN2022110422-appb-000139
Figure PCTCN2022110422-appb-000140
),以使终端和网络侧关于SRS对应的RB起始位置的理解一致,避免出现部分RB监听不到的情况,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第十方面,在第十方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000141
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1},P F表示部分频率监听系数,
Figure PCTCN2022110422-appb-000142
表示部分频率监听带宽,该
Figure PCTCN2022110422-appb-000143
与SRS对应的配置带
Figure PCTCN2022110422-appb-000144
满足:
Figure PCTCN2022110422-appb-000145
一种可能的实现方式,起始RB位置的索引需要满足上述的第二条件(如,
Figure PCTCN2022110422-appb-000146
Figure PCTCN2022110422-appb-000147
),以使终端和网络侧关于SRS对应的RB起始位置的理解一致,避免出现部分RB监听不到的情况,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第十方面,在第十方面的某些实现方式中,该f(n)包括以下函数中的一种或多种:
f(n)表示不大于n且为4的整数倍的整数中,取值最大的整数;或者,
f(n)表示不小于n且为4的整数倍的整数中,取值最小的整数;或者,
f(n)表示4的整数倍的整数中,与n的差值的绝对值最小的整数。
由上述的几种可能的实现方式可知,f(n)的具体体现形式有多种,增加了方案的灵活性。
结合第十方面,在第十方面的某些实现方式中,该f i(n)包括以下函数中的一种或多种:
f i(n)表示不大于n且为4的整数倍的整数中,取值最大的整数;或者,
f i(n)表示不小于n且为4的整数倍的整数中,取值最小的整数;或者,
f i(n)表示4的整数倍的整数中,与n的差值的绝对值最小的整数。
由上述的几种可能的实现方式可知,f i(n)的具体体现形式有多种,增加了方案的灵活性。
第十一方面,提供了一种无线通信方法,该无线通信方法可以由网络设备执行,或者,也可以由设置于网络设备中的芯片或电路执行,本申请对此不作限定。
该无线通信方法包括:
基于第二条件确定探测参考信号SRS对应的起始资源块RB位置,其中,该SRS对应的第一带宽与4的比值为非整数;基于该起始RB位置接收该SRS。
该无线通信方法,在SRS对应的第一带宽(如,基于配置带宽
Figure PCTCN2022110422-appb-000148
和部分频率监听系数P F确定的,
Figure PCTCN2022110422-appb-000149
或,配置带宽
Figure PCTCN2022110422-appb-000150
)与4的比值为非整数情况下,基于第二条件确定该SRS对应的起始RB位置,并基于起始RB位置发送该SRS,能够避免终端和网络侧关于SRS对应的RB起始位置的理解不一致,或者在相同RB位置的重复监听,或者部分RB监听不到的情况,影响SRS的发送和接收,降低信道估计精度,损耗系统性能。
结合第十一方面,在第十一方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000151
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1}对应配置带宽
Figure PCTCN2022110422-appb-000152
内的子带索引,k F可以由RRC信令配置得到,也可由RRC信令以及协议预定义偏移位置联合确定,还可由一个或多个参数联合确定,均在本发明方案的保护范围之内。
Figure PCTCN2022110422-appb-000153
表示该SRS对应的配置带宽,f(n)为函数,P F表示部分频率监听系数,
Figure PCTCN2022110422-appb-000154
表示该SRS对应的第二带宽,该第二带宽与4的比值为整数。
一种可能的实现方式,起始RB位置的索引需要满足上述的第二条件(如,
Figure PCTCN2022110422-appb-000155
Figure PCTCN2022110422-appb-000156
),以使终端和网络侧关于SRS对应的RB起始位置的理解一致,避免出现部分RB监听不到的情况,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第十一方面,在第十一方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000157
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1},
Figure PCTCN2022110422-appb-000158
表示SRS对应的配置带宽,f(n)为函数,P F表示部分频率监听系数,m offset表示RB偏移值。
一种可能的实现方式,起始RB位置的索引需要满足上述的第二条件(如,
Figure PCTCN2022110422-appb-000159
Figure PCTCN2022110422-appb-000160
以使终端和网络侧关于SRS对应的RB起始位置的理解一致,避免出现部分RB监听不到的情况,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第十一方面,在第十一方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000161
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1},P F表示部分频率监听系数,
Figure PCTCN2022110422-appb-000162
表示部分频率监听带宽,该
Figure PCTCN2022110422-appb-000163
与SRS对应的配置带
Figure PCTCN2022110422-appb-000164
满足:
Figure PCTCN2022110422-appb-000165
一种可能的实现方式,起始RB位置的索引需要满足上述的第二条件(如,
Figure PCTCN2022110422-appb-000166
Figure PCTCN2022110422-appb-000167
),以使终端和网络侧关于SRS对应的RB起始位置的理解一致,避免出现部分RB监听不到的情况,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第十一方面,在第十一方面的某些实现方式中,该f(n)包括以下函数中的一种或多种:
f(n)表示不大于n且为4的整数倍的整数中,取值最大的整数;或者,
f(n)表示不小于n且为4的整数倍的整数中,取值最小的整数;或者,
f(n)表示4的整数倍的整数中,与n的差值的绝对值最小的整数。
由上述的几种可能的实现方式可知,f(n)的具体体现形式有多种,增加了方案的灵活性。
结合第十一方面,在第十一方面的某些实现方式中,该f i(n)包括以下函数中的一种或多种:
f i(n)表示不大于n且为4的整数倍的整数中,取值最大的整数;或者,
f i(n)表示不小于n且为4的整数倍的整数中,取值最小的整数;或者,
f i(n)表示4的整数倍的整数中,与n的差值的绝对值最小的整数。
由上述的几种可能的实现方式可知,f i(n)的具体体现形式有多种,增加了方案的灵活性。
第十二方面,提供了一种无线通信装置,该无线通信装置可以用于执行上述第十一方面所示的方法。
该无线通信装置包括:
处理单元,用于基于第二条件确定探测参考信号SRS对应的起始资源块RB位置,该SRS对应的第一带宽与4的比值为非整数,
发送单元,用于基于所述起始RB位置发送所述SRS。
结合第十二方面,在第十二方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000168
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1},
Figure PCTCN2022110422-appb-000169
表示SRS对应的配置带宽,f(n)为函数,P F表示部分频率监听系数,
Figure PCTCN2022110422-appb-000170
表示该SRS对应的第二带宽,该第二带宽与4的比值为整数。
结合第十二方面,在第十二方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000171
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1},
Figure PCTCN2022110422-appb-000172
表示SRS对应的配置带宽,f(n)为函数,P F表示部分频率监听系数,m offset表示RB偏移值。
结合第十二方面,在第十二方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000173
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1},P F表示部分频率监听系数,
Figure PCTCN2022110422-appb-000174
表示部分频率监听带宽,该
Figure PCTCN2022110422-appb-000175
与SRS对应的配置带
Figure PCTCN2022110422-appb-000176
满足:
Figure PCTCN2022110422-appb-000177
结合第十二方面,在第十二方面的某些实现方式中,该f(n)包括以下函数中的一种或多种:
f(n)表示不大于n且为4的整数倍的整数中,取值最大的整数;或者,
f(n)表示不小于n且为4的整数倍的整数中,取值最小的整数;或者,
f(n)表示4的整数倍的整数中,与n的差值的绝对值最小的整数。
结合第十二方面,在第十二方面的某些实现方式中,该f i(n)包括以下函数中的一种或多种:
f i(n)表示不大于n且为4的整数倍的整数中,取值最大的整数;或者,
f i(n)表示不小于n且为4的整数倍的整数中,取值最小的整数;或者,
f i(n)表示4的整数倍的整数中,与n的差值的绝对值最小的整数。第十三方面,提供了一种无线通信装置,该无线通信装置可以用于执行上述第十方面所示的方法。
该无线通信装置包括:
处理单元,用于基于第二条件确定探测参考信号SRS对应的起始资源块RB位置,其中,该SRS对应的第一带宽与4的比值为非整数;
接收单元,用于基于该起始RB位置接收该SRS。
结合第十三方面,在第十三方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000178
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1},
Figure PCTCN2022110422-appb-000179
表示该SRS对应的配置带宽,f(n)为函数,P F表示部分频率监听系数,
Figure PCTCN2022110422-appb-000180
表示该SRS对应的第二带宽,该第二带宽与4的比值为整数。
结合第十三方面,在第十三方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000181
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1},
Figure PCTCN2022110422-appb-000182
表示SRS对应的配置带宽,f(n)为函数,P F表示部分频率监听系数,m offset表示RB偏移值。
结合第十三方面,在第十三方面的某些实现方式中,该起始RB位置的索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000183
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1},P F表示部分频率监听系数,
Figure PCTCN2022110422-appb-000184
表示部分频率监听带宽,该
Figure PCTCN2022110422-appb-000185
与SRS对应的配置带
Figure PCTCN2022110422-appb-000186
满足:
Figure PCTCN2022110422-appb-000187
结合第十三方面,在第十三方面的某些实现方式中,该f(n)与该f i(n)包括以下函数中的一种或多种:
n(n)表示不大于n且为4的整数倍的整数中,取值最大的整数;或者,
f(n)表示不小于n且为4的整数倍的整数中,取值最小的整数;或者,
f(n)表示4的整数倍的整数中,与n的差值的绝对值最小的整数。
结合第十三方面,在第十三方面的某些实现方式中,该f i(n)包括以下函数中的一种或多种:
f i(n)表示不大于n且为4的整数倍的整数中,取值最大的整数;或者,
f i(n)表示不小于n且为4的整数倍的整数中,取值最小的整数;或者,
f i(n)表示4的整数倍的整数中,与n的差值的绝对值最小的整数。
第十四方面,提供一种无线通信装置,所述无线通信装置包括处理器,用于实现上述第十方面描述的方法中终端设备的功能。
可选地,所述无线通信装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第十方面描述的方法中终端设备的功能。
在一种可能的实现中,所述存储器用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第十方面描述的方法中终端设备的功能。可选地,所述无线通信装置还可以包括通信接口,所述通信接口用于所述无线通信装置与其它设备进行通信。当该无线通信装置为终端设备时,所述通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,所述无线通信装置包括:处理器和通信接口,用于实现上述第十方面描述的方法中终端设备的功能,具体地包括:
所述处理器利用所述通信接口与外部通信;
所述处理器用于运行计算机程序,使得所述装置实现上述第十方面描述的任一种方法。
可以理解,所述外部可以是处理器以外的对象,或者是所述装置以外的对象。
在另一种可能的设计中,该无线通信装置为芯片或芯片系统。所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第十五方面,提供一种无线通信装置,所述无线通信装置包括处理器,用于实现上述第十一方面描述的方法中网络设备的功能。
可选地,所述无线通信装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第十一方面描述的方法中网络设备的功能。
在一种可能的实现中,所述存储器用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第十一方面描述的方法中网络设备的功能。
可选地,所述无线通信装置还可以包括通信接口,所述通信接口用于所述无线通信装置与其它设备进行通信。当该无线通信装置为网络设备时,所述收发器可以是通信接口,或,输入/输出接口。
在一种可能的设计中,所述无线通信装置包括:处理器和通信接口,用于实现上述第十一方面描述的方法中网络设备的功能,具体地包括:
所述处理器利用所述通信接口与外部通信;
所述处理器用于运行计算机程序,使得所述装置实现上述第十一方面描述的任一种方法。
可以理解,所述外部可以是处理器以外的对象,或者是所述装置以外的对象。
在另一种实现方式中,该无线通信装置为芯片或芯片系统时,所述通信接口可以是是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第十六方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第十方面以及第十方面的任一可能的实现方式中的方法。
第十七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第十一方面以及第十一方面的任一可能的实现方式中的方法。
第十八方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第十方面以及第十方面的任一可能的实现方式中的方法。
第十九方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第十一方面以及第十一方面的任一可能的实现方式中的方法。
第二十方面,提供了一种通信系统,包括第十二方面所示的无线通信装置和第十三方面所示的无线通信装置。
第二十一方面,提供了一种无线通信方法,该无线通信方法可以由网络设备执行,或者,也可以由设置于网络设备中的芯片或电路执行,本申请对此不作限定。
该无线通信方法包括:
基于第一条件确定至少一个探测参考信号SRS分别对应的至少一个循环移位偏移值,其中,该至少一个SRS对应的SRS序列的序列长度与第一最大循环移位数的比值为非整数;发送该至少一个循环移位偏移值,该至少一个循环移位偏移值与该SRS序列相关联,其中,该SRS序列中,对应相同梳齿comb位置的SRS序列之间两两正交。其中,至少一个SRS对应的SRS序列的序列长度相同,例如,至少一个SRS对应两个SRS序列,该两个SRS序列的序列长度相同。
根据本申请实施例提供的无线通信方法,在至少一个SRS对应的SRS序列的序列长 度与第一最大循环移位数的比值为非整数的情况下,网络设备基于第一条件确定该至少一个SRS分别对应的至少一个循环移位偏移值,该至少一个循环移位偏移值与SRS序列相关联,以使得SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统通信性能。
所述第一最大循环移位数可以为协议预定义的最大循环移位数,也可以是信令配置的。所述第一条件可以是协议预定义的条件,也可以是信令指示的条件,本申请对此不作限定。
结合第二十一方面,在第二十一方面的某些实现方式中,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000188
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000189
其中,k 4为非负整数,M表示该序列长度,
Figure PCTCN2022110422-appb-000190
表示该第一最大循环移位数。
一种可能的实现方式,针对上述的至少一个SRS中的第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000191
来说,需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000192
),以使得网络设备确定的
Figure PCTCN2022110422-appb-000193
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第二十一方面,在第二十一方面的某些实现方式中,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000194
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000195
其中,k 5为非负整数,M表示该序列长度,
Figure PCTCN2022110422-appb-000196
表示该第一最大循环移位数。
Figure PCTCN2022110422-appb-000197
一种可能的实现方式,针对上述的至少一个SRS中的第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000198
来说,需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000199
),以使得网络设备确定的
Figure PCTCN2022110422-appb-000200
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第二十一方面,在第二十一方面的某些实现方式中,该至少一个SRS为多个SRS,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000201
和第二SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000202
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000203
其中,k 6为非负整数,
Figure PCTCN2022110422-appb-000204
表示该第一最大循环移位数,M表示该序列长度。
一种可能的实现方式,针对上述的至少一个SRS中的第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000205
和第二SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000206
来说需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000207
),以使得网络设备确定的
Figure PCTCN2022110422-appb-000208
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS对不同信道估计(包括不同终端信道估计)的影响,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第二十一方面,在第二十一方面的某些实现方式中,在第一最大公约数与该第一SRS对应的天线端口数的比值为非整数的条件下,
该第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000209
其中,该第一最大公约数等于M和
Figure PCTCN2022110422-appb-000210
的最大公约数,
Figure PCTCN2022110422-appb-000211
表示该第一SRS对应 的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000212
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000213
表示该第一最大循环移位数,p i表示该天线端口i的序号,
Figure PCTCN2022110422-appb-000214
表示该第一SRS对应的天线端口数,K表示该第一SRS对应的梳齿个数。
一种可能的实现方式,在M和
Figure PCTCN2022110422-appb-000215
的最大公约数与天线端口数不能整除场景下,对应相同comb位置的天线端口可能无法同时满足第一条件,即对应相同comb位置的天线端口对应的SRS序列无法正交。通过重新定义第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口对应的SRS序列的循环移位之间的关系,使得在相同梳齿位置,第一SRS对应的天线端口对应的SRS序列正交。
结合第二十一方面,在第二十一方面的某些实现方式中,该K与第二最大公约数相关,该第二最大公约数等于该第一最大公约数与
Figure PCTCN2022110422-appb-000216
的最大公约数。
结合第二十一方面,在第二十一方面的某些实现方式中,该K与该第二最大公约数相关满足:
Figure PCTCN2022110422-appb-000217
其中,K表示该第一SRS对应的梳齿个数,
Figure PCTCN2022110422-appb-000218
表示该第一SRS对应的天线端口数,R表示该第二最大公约数。
结合第二十一方面,在第二十一方面的某些实现方式中,所述K个梳齿中的每个梳齿对应R个天线端口,其中R个天线端口对应R个循环移位,所述R个循环移位为所述第一最大公约数个循环移位中的值不同且等间隔的循环移位,所述梳齿上发送的参考信号是根据所述R个循环移位生成的。
结合第二十一方面,在第二十一方面的某些实现方式中,所述K个梳齿是连续的,或者所述K个梳齿是等间隔的。
多个梳齿之间可以是连续的,也可是存在间隔的,增加了方案的灵活性。
结合第二十一方面,在第二十一方面的某些实现方式中,若
Figure PCTCN2022110422-appb-000219
该第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000220
其中,
Figure PCTCN2022110422-appb-000221
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000222
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000223
表示该第一最大循环移位数,p i表示该天线端口i的序号,
Figure PCTCN2022110422-appb-000224
表示该第一SRS对应的天线端口数。
结合第二十一方面,在第二十一方面的某些实现方式中,在所述第一最大公约数与所述第一SRS对应的天线端口数的比值为非整数的条件下,所述第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000225
其中,所述第一最大公约数等于所述序列长度M和
Figure PCTCN2022110422-appb-000226
的最大公约数。
在所述序列长度M和
Figure PCTCN2022110422-appb-000227
的最大公约数与第一SRS对应的天线端口数的比值为非整数的情况下,对应相同comb位置的天线端口可能无法同时满足第一条件,即对应相同comb位置的天线端口对应的SRS序列无法正交。可以通过限制配置第一SRS对应的循环移位偏移值的取值,使得在相同梳齿上,第一SRS对应的天线端口对应的SRS序列两两正交。
第二十二方面,提供了一种无线通信方法,该无线通信方法可以由终端设备执行,或者,也可以由设置于终端设备中的芯片或电路执行,本申请对此不作限定。
该无线通信方法包括:
接收第一探测参考信号SRS对应的循环移位偏移值,该第一SRS对应的循环移位偏移值基于第一条件确定,生成该第一SRS对应的SRS序列,该第一SRS对应的循环移位偏移值与该SRS序列相关联,其中,该第一SRS对应的SRS序列的序列长度与第一最大循环移位数的比值为非整数,其中,该SRS序列中,对应相同梳齿comb位置的SRS序列之间两两正交。
根据本申请实施例提供的无线通信方法,在第一SRS对应的SRS序列的长度为M,该M与第一最大循环移位数的比值为非整数的情况下,终端设备接收来自网络设备基于第一条件(协议预定义的条件)确定的该第一SRS对应的循环移位偏移值,并基于该第一SRS对应的循环移位偏移值生成该第一SRS对应的SRS序列,以使得该多个SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统通信性能。
所述第一最大循环移位数可以为协议预定义的最大循环移位数,也可以是信令配置的。所述第一条件可以是协议预定义的条件,也可以是信令指示的条件,本申请对此不作限定。
结合第二十二方面,在第二十二方面的某些实现方式中,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000228
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000229
其中,k 4为非负整数,M表示该序列长度,
Figure PCTCN2022110422-appb-000230
表示该第一最大循环移位数。
一种可能的实现方式,针对上述的至少一个SRS中的第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000231
来说,需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000232
),以使得网络设备确定的
Figure PCTCN2022110422-appb-000233
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第二十二方面,在第二十二方面的某些实现方式中,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000234
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000235
其中,k 5为非负整数,M表示该序列长度,
Figure PCTCN2022110422-appb-000236
表示该第一最大循环移位数。
Figure PCTCN2022110422-appb-000237
一种可能的实现方式,针对上述的至少一个SRS中的第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000238
来说,需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000239
),以使得网络设备确定的
Figure PCTCN2022110422-appb-000240
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS序列对不同信道估计的影响,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第二十二方面,在第二十二方面的某些实现方式中,该至少一个SRS为多个SRS,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000241
和第二SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000242
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000243
其中,k 6为非负整数,
Figure PCTCN2022110422-appb-000244
表示该第一最大循环移位数,M表示该序列长度。
一种可能的实现方式,针对上述的至少一个SRS中的第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000245
和第二SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000246
来说需要满足上述的第一条件(如,
Figure PCTCN2022110422-appb-000247
以使得网络设备确定的
Figure PCTCN2022110422-appb-000248
关联的SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而降低不同SRS对不同信道估计(包括不同终端信道估计)的影响,提升信道估计精度,进而提升系统覆盖和容量性能。
结合第二十二方面,在第二十二方面的某些实现方式中,在第一最大公约数与该第一SRS对应的天线端口数的比值为非整数的条件下,该第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000249
其中,该第一最大公约数等于M和
Figure PCTCN2022110422-appb-000250
的最大公约数,
Figure PCTCN2022110422-appb-000251
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000252
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000253
表示该第一最大循环移位数,p i表示该天线端口i的序号,
Figure PCTCN2022110422-appb-000254
表示该第一SRS对应的天线端口数,K表示该第一SRS对应的梳齿个数。
一种可能的实现方式,在M和
Figure PCTCN2022110422-appb-000255
的最大公约数与天线端口数不能整除场景下,对应相同comb位置的天线端口可能无法同时满足第一条件,即对应相同comb位置的天线端口对应的SRS序列无法正交。通过重新定义第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口对应的SRS序列的循环移位之间的关系,使得在相同梳齿,第一SRS对应的天线端口对应的SRS序列正交。
结合第二十二方面,在第二十二方面的某些实现方式中,该K与第二最大公约数相关,该第二最大公约数等于该第一最大公约数与
Figure PCTCN2022110422-appb-000256
的最大公约数。
结合第二十二方面,在第二十二方面的某些实现方式中,该K与该第二最大公约数相关满足:
Figure PCTCN2022110422-appb-000257
其中,K表示该第一SRS对应的梳齿个数,
Figure PCTCN2022110422-appb-000258
表示该第一SRS对应的天线端口数,R表示该第二最大公约数。
结合第二十二方面,在第二十二方面的某些实现方式中,所述K个梳齿中的每个梳齿对应R个天线端口,其中R个天线端口对应R个循环移位,所述R个循环移位为所述第一最大公约数个循环移位中的值不同且等间隔的循环移位,所述梳齿上发送的参考信号是根据所述R个循环移位生成的。
结合第二十二方面,在第二十二方面的某些实现方式中,所述K个梳齿是连续的,或者所述K个梳齿是等间隔的。
多个梳齿之间可以是连续的,也可以是存在间隔的,增加了方案的灵活性。
结合第二十二方面,在第二十二方面的某些实现方式中,若
Figure PCTCN2022110422-appb-000259
该第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000260
其中,
Figure PCTCN2022110422-appb-000261
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000262
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000263
表示该第一最大循环移位数,p i表示该天线端口i的序号,
Figure PCTCN2022110422-appb-000264
表示该第一SRS对应的天线端口数。
结合第二十二方面,在第二十二方面的某些实现方式中,在所述第一最大公约数与所述第一SRS对应的天线端口数的比值为非整数的条件下,所述第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000265
其中,所述第一最大公约数等于所述序列长度M和
Figure PCTCN2022110422-appb-000266
的最大公约数。
在M和
Figure PCTCN2022110422-appb-000267
的最大公约数与第一SRS对应的天线端口数的比值为非整数的情况下,对应相同comb位置的天线端口可能无法同时满足第一条件,即对应相同comb位置的天线端口对应的SRS序列无法正交。可以通过限制配置第一SRS对应的循环移位偏移 值的取值,使得在相同梳齿位置,第一SRS对应的天线端口对应的SRS序列正交。
第二十三方面,提供一种无线通信装置,所述无线通信装置包括处理器,用于实现上述第二十一方面描述的方法中网络设备的功能。
可选地,所述无线通信装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第二十一方面描述的方法中网络设备的功能。
在一种可能的实现中,所述存储器用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第二十一方面描述的方法中网络设备的功能。可选地,所述无线通信装置还可以包括通信接口,所述通信接口用于所述无线通信装置与其它设备进行通信。当该无线通信装置为网络设备时,所述通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,所述无线通信装置包括:处理器和通信接口,用于实现上述第二十一方面描述的方法中网络设备的功能,具体地包括:
所述处理器利用所述通信接口与外部通信;
所述处理器用于运行计算机程序,使得所述装置实现上述第二十一方面描述的任一种方法。
可以理解,所述外部可以是处理器以外的对象,或者是所述装置以外的对象。
在另一种可能的设计中,该无线通信装置为芯片或芯片系统。所述通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第二十四方面,提供一种无线通信装置,所述无线通信装置包括处理器,用于实现上述第二十二方面描述的方法中终端设备的功能。
可选地,所述无线通信装置还可以包括存储器,所述存储器与所述处理器耦合,所述处理器用于实现上述第二十二方面描述的方法中终端设备的功能。
在一种可能的实现中,所述存储器用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第二十二方面描述的方法中终端设备的功能。
可选地,所述无线通信装置还可以包括通信接口,所述通信接口用于所述无线通信装置与其它设备进行通信。当该无线通信装置为终端设备时,所述收发器可以是通信接口,或,输入/输出接口。
在一种可能的设计中,所述无线通信装置包括:处理器和通信接口,用于实现上述第二十二方面描述的方法中终端设备的功能,具体地包括:
所述处理器利用所述通信接口与外部通信;
所述处理器用于运行计算机程序,使得所述装置实现上述第二十二方面描述的任一种方法。
可以理解,所述外部可以是处理器以外的对象,或者是所述装置以外的对象。
在另一种实现方式中,该无线通信装置为芯片或芯片系统时,所述通信接口可以是是该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
第二十五方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机 程序被通信装置执行时,使得所述通信装置实现第二十一方面以及第二十一方面的任一可能的实现方式中的方法。
第二十六方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置实现第二十二方面以及第二十二方面的任一可能的实现方式中的方法。
第二十七方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第二十一方面以及第二十一方面的任一可能的实现方式中的方法。
第二十八方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得通信装置实现第二十二方面以及第二十二方面的任一可能的实现方式中的方法。
第二十九方面,提供了一种通信系统,包括第二十三方面所示的无线通信装置和第二十四方面所示的无线通信装置。
附图说明
图1是本申请实施例适用的通信系统100的示意图。
图2是一种SRS示意图。
图3是SRS序列生成方式的示意图。
图4是一种乘积分量的示意图。
图5是本申请实施例提供的一种无线通信方法的示意性流程图。
图6是另一种乘积分量的示意图。
图7是另一种SRS示意图。
图8是RB起始位置的示意图。
图9中的(a)是本申请实施例提供的另一种无线通信方法的示意性流程图;图9中的(b)是一种起始RB位置的示意图。
图10是本申请提出的无线通信装置1000的示意图。
图11是适用于本申请实施例的终端设备1100的结构示意图。
图12是本申请提出的无线通信装置1200的示意图。
图13是适用于本申请实施例的网络设备1300的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请实施例的技术方案还可以应用于设备到设备(device to device,D2D)通信,车辆外联(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系统。
本申请实施例中的终端设备(terminal equipment)可以指接入终端、用户单元、用 户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而, 在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明本申请实施例适用的通信系统。图1是本申请实施例适用的通信系统100的示意图。如图1所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个支持现有协议机制的传统终端设备(legacy UE),例如图1所示的终端设备120;该通信系统100还可以包括至少一个部分频率监听(partial frequency sounding,PFS)的终端设备(PFS UE),例如图1所示的终端设备130,其中,部分频率监听有多种形式,本申请中不做限定,PFS UE用于增强备探测参考信号(sounding reference signal,SRS)覆盖和容量。网络设备110与终端设备120和终端设备130可通过无线链路通信。各通信设备,如网络设备110、终端设备120或终端设备130,均可以配置多个天线。对于该通信系统100中的每一个通信设备而言,所配置的多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。因此,该通信系统100中的各通信设备之间,如网络设备110与终端设备120之间,可通过多天线技术通信;还如网络设备110与终端设备130之间,可通过多天线技术通信。
应理解,图1是以网络设备与legacy UE和PFS UE通信为例,简单说明本申请能够应用的一个通信场景,不同天线端口通过循环移位(cyclic shift,CS)和梳齿(Comb)实现在同一个正交频分多路复用(orthogonal frequency division multiplexing,OFDM)符号上的SRS复用。图1场景为示例性的描述,不对本申请可以应用的其他场景产生限制。
还应理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
例如,通信系统100中还可以包括用于管理终端设备120,数据传输以及网络设备110配置的核心网设备,如,包括接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、策略控制功能(policy control function,PCF)网元等。
图1为本申请实施例适用的通信系统,为了便于理解本申请实施例的技术方案,在以5G架构为基础介绍本申请实施例的方案之前,首先对本申请实施例可能涉及到的5G中的一些术语或概念进行简单描述。
1、参考信号(reference signal,RS)。
参考信号也可以称为导频(pilot)或参考序列等。在本申请实施例中,参考信号可以是用于信道测量的参考信号。例如,该参考信号可以是用于上行信道测量的SRS。例如,该参考信号可以是用于上行信道测量的导频。或者,该参考信号可以是用于定位测量的SRS。应理解,上文列举的参考信号仅为示例,不应对本申请构成任何限定。本申请并不排除在未来的协议中定义其他参考信号以实现相同或相似功能的可能,也不排除在未来的协议中定义其他参考信号实现不同功能的可能。
为了便于描述,下文中以参考信号为SRS为例进行说明。在5G NR通信系统中,SRS用于估计不同频段的信道质量。
2、部分频域监听(partial frequency sounding,PFS)。
3GPP TSG RAN Meeting#86次会议确定工作项目描述(work item description,WID)实现NR系统中多输入多输出(multiple input multiple output,MIMO)的进一步增强。其中,考虑到SRS广泛应用在多种场景中,提升SRS容量和覆盖成为主要目标之一,并确定可能采用的技术有:增加SRS重复以及部分频域监听等。
本申请实施例中主要涉及部分频域监听,对于增加SRS重复可以参考协议或其他现有资料中的描述,本申请中不进行赘述。
部分频域监听实现了SRS在配置SRS带宽的部分频域位置发送。通过降低发送SRS对应(占据)的RB数量,在上行功率一定的条件下,SRS在单个资源单元(resource element,RE)上的发送功率提升(power boosting),从而有效提升SRS的覆盖性能。同时,SRS发送频域范围降低,同一时隙(slot)内可以复用的UE数量对应增加,SRS系统容量显著提升。
从另一方面来说,若信道在频域具有比较好的平坦特性,即,信道在频域具有比较强的相关性,可以在监听部分频带的基础上,通过差分的方式得到其他频域范围的信道估计信息,从而有效提升系统信道估计效率。
应理解,本申请实施例中将SRS在部分频域位置发送称为部分频域监听只是一种示例,对本申请的保护范围不构成任何的限定。例如,还可以称为部分频率探测等。
3、RB级别的部分频域监听。
3GPP TSG RAN WG1 103e会议讨论了部分频域监听的几种实现方式,包括:RB级别的部分频域监听,子载波级别的部分频域监听等。
本申请实施例中主要针对RB级别的部分频率监听进行示例性说明,对于子载波级别的部分频域监听,在技术特征与本实施例一致的情况下,也可以采用本实施例所描述的方案,本申请中不进行赘述。
其中,RB级别的部分频率监听可以理解为:在配置带宽范围内,终端设备在对应部分且连续的一个或多个RB上发送SRS序列,通过power boosting来提升SRS覆盖性能。图2以C SRS=24,b hop=0,B SRS=2,n RRC=0,为例说明RB级别的部分频率监听的基本原理,上述参数用于确定SRS配置带宽以及跳频模式,具体含义可参考协议38.211 6.4.1.4章节。图2是一种SRS示意图,图2左边为传统SRS(legacy SRS)示意图,右边为RB级别的部分频率监听对应的SRS(partial SRS),部分频率监听模式下,SRS只在配置带宽的一半范围内发送。
具体地,通过SRS带宽配置参数(SRS bandwidth configuration)C SRS、SRS带宽配置参数B SRS确定每次SRS的发送带宽和SRS总的发送带宽;通过SRS调频配置参数b hop和频域起始位置参数n RRC确定SRS的跳频图样。
4、SRS序列生成。
SRS序列
Figure PCTCN2022110422-appb-000268
由基序列
Figure PCTCN2022110422-appb-000269
和循环移位(cyclic shift,CS)得到:
Figure PCTCN2022110422-appb-000270
其中,M ZC为序列长度;基序列
Figure PCTCN2022110422-appb-000271
由组索引u={0,1,...,29}和组内基序列索引v以及序列长度M ZC定义。在基序列
Figure PCTCN2022110422-appb-000272
相同条件下,不同SRS序列通过不同CS区分,且不同CS对应的SRS序列正交,α为循环移位,j是虚数单位。
5、SRS序列的生成和对应所占RB数。
基于RB级别的部分频率监听在104e次会议确定作为提升SRS覆盖和容量性能的方式之一。并于104b-e次会议围绕部分频率监听场景下SRS序列的生成和对应所占RB数进行了讨论,具体讨论内容展开如下:
1)部分频率监听场景下SRS序列生成方式:部分频率监听场景下SRS序列生成方式,目前标准讨论可能有两种方案,如图3所示,图3是SRS序列生成方式的示意图,从图3中可以看出最左边为传统SRS序列的生成方式;中间为方案一的SRS序列的生成方式;最右边为方案二的SRS序列的生成方式。
方案1:基于部分监听所占RB数
Figure PCTCN2022110422-appb-000273
直接产生长度为
Figure PCTCN2022110422-appb-000274
的Zadoff-
Figure PCTCN2022110422-appb-000275
序列,其中,
Figure PCTCN2022110422-appb-000276
表示SRS配置带宽(或者称为SRS配置的RB数),P F为部分频率监听系数,K TC表示SRS对应的comb大小,
Figure PCTCN2022110422-appb-000277
可以记为部分频率监听的序列长度M。
方案2:与Legacy SRS相同,基于SRS配置的RB数
Figure PCTCN2022110422-appb-000278
生成长度为
Figure PCTCN2022110422-appb-000279
的ZC序列,并基于部分频率监听对应位置,发送部分SRS符号,
Figure PCTCN2022110422-appb-000280
可以记为配置的序列长度M ZC
与方案2相比,方案1保持了ZC序列的低峰均功率比(peak to average power ratio,PAPR)特性,且对硬件实现无影响。
2)部分频率监听场景下SRS所占RB数:部分频率监听场景下SRS所占RB数目前标准讨论有两个走向:
一个走向为支持部分频率监听场景下SRS所占RB数为整数,主要考虑提高部分频率监听方案灵活性,进一步实现容量和覆盖提升的目标,该技术走向目前有两个方案:
方案1:部分频率监听所占RB数
Figure PCTCN2022110422-appb-000281
为整数。
方案2:
Figure PCTCN2022110422-appb-000282
为大于或等于4的整数。
另一个走向为支持部分频率监听场景下SRS所占RB数为4的整数倍,主要考虑不需要所有的配置SRS带宽均支持所有的部分频率监听参数(P F),并且部分频率监听带宽为4的整数倍与现有机制相符,可以实现与legacy UE的复用,具体方案描述如下:
方案3:
Figure PCTCN2022110422-appb-000283
为4的整数倍。
方案4:
Figure PCTCN2022110422-appb-000284
为4的整数倍。
其中,round()为4的整数倍表示参数
Figure PCTCN2022110422-appb-000285
等于相邻4的倍数。
6、SRS资源的CS配置规则。
对于特定SRS资源,对应SRS序列为:
Figure PCTCN2022110422-appb-000286
其中,M ZC为SRS序列长度,由RRC配置参数确定,
Figure PCTCN2022110422-appb-000287
为一个SRS resource所占的连续OFDM符号数量,由RRC参数nrofSymbols配置。δ=log 2(K TC),K TC∈{2,4,8}为复用的comb数,对应配置参数包含在RRC参数transmissionComb内。天线端口p i对应的CS的循环移位值α i
Figure PCTCN2022110422-appb-000288
其中,p i可以理解为天线端口i的序号,
Figure PCTCN2022110422-appb-000289
对应配置参数包含在RRC参数transmissionComb内,MIMO场景下对应最大CS个数
Figure PCTCN2022110422-appb-000290
由下表1指示。
表1:
Figure PCTCN2022110422-appb-000291
其中,K TC=8,只在用于定位功能的RRC信令SRS-PosResource-r16内配置,对于其他功能的RRC信令SRS-Resource,只支持K TC=28和K TC=4两种配置。
7、基于不同CS的SRS正交序列。
考虑长度为M ZC的SRS序列r 0和SRS序列r 1,其基序列相同,配置CS分别为α 0和α 1
Figure PCTCN2022110422-appb-000292
Figure PCTCN2022110422-appb-000293
Figure PCTCN2022110422-appb-000294
对于配置CSα 0≠α 1,序列r 0和序列r 1相乘,可得
Figure PCTCN2022110422-appb-000295
各个分量
Figure PCTCN2022110422-appb-000296
在极坐标中位置如图4所示(以
Figure PCTCN2022110422-appb-000297
M ZC=8为例),图4是一种乘积分量的示意图。
由图4可得,8个分量中的任意一个分量存在对称的分量,其中,某个分量和与其对称的分量可以称为一对对称的分量,一对对称的分量的和为0(例如,图4中所示的分量#1和分量#5为一对对称的分量、分量#2和分量#6为一对对称的分量、分量#3和分量#7为一对对称的分量、分量#4和分量#8为一对对称的分量),在
Figure PCTCN2022110422-appb-000298
M ZC=8的情况下,两SRS序列为正交的序列。
由上述可知,两SRS序列是否正交与两个SRS的序列分别配置CS的循环移位值α 0和α 1以及SRS序列长度M ZC有关。现有协议中,SRS配置带宽为4的整数倍,对应可能SRS序列长度如下表2所示:
表2:
Figure PCTCN2022110422-appb-000299
其中,n为正整数。
8、comb。
梳齿Comb-N指的是每N个子载波中选择一个子载波来承载SRS,这里的N是通过高层参数transmissionComb来配置的,combOffset配置的是传输梳齿偏移,相当于选择在N个子载波的哪一个资源单元(resource element,RE)上发。不同UE的SRS可以在同一符号且相同的RB上发送,彼此之间可以通过使用不同的comb来区分。
现有机制中,SRS具有三种不同的梳状结构:Comb-2、Comb-4和Comb-8。
9、SRS资源。
SRS资源,即SRS resource,传输SRS的时域资源,频域资源,空域资源中的一种或多种。示例性地,时域资源可以符号、子帧、时隙等时间单元,频域资源可以指子载波、RB、RE或RG等频域位置,空域资源可以指天线端口或码字等空间域。
SRS资源由无线资源控制(radio resource control,RRC)IE SRS-Resource或SRS-PosResource配置,其中,SRS-PosResource用于定位场景。相同终端相同时刻最多可以激活一个SRS resource set,一个SRS resource set可以包含一个或多个SRS resource,多个SRS resource通过resource ID来区分。不同终端设备配置SRS resource不同。
SRS与SRS resource的关系:一个SRS在一个SRS resource上发送,一个SRS对应一个或多个天线端口,每个天线端口对应一个SRS序列。或者说,一个SRS对应一个或多个SRS序列,这些序列在不同的天线端口上发送。
10、天线端口序号p i
若一个SRS资源集SRS-ResourceSet中高层参数usage的未设置为'nonCodebook'时,该资源集中包含的每一个SRS对应的天线端口为p i=1000+i;当一个SRS资源集SRS-ResourceSet中高层参数usage的设置为'nonCodebook'时,该资源集中包含的第(i+1)个SRS资源的天线端口索引为p i=1000+i。这里的原因是,高层参数usage的设置为 'nonCodebook'时,每个SRS资源只会配置一个端口,一个资源集中的所有SRS资源联合测量多个端口的预编码信息。
上述结合图1简单介绍了本申请能够适用的场景,并介绍了本申请中涉及的基本概念,由上述可知,若部分频率监听场景下SRS所占RB数
Figure PCTCN2022110422-appb-000300
为整数,且基于
Figure PCTCN2022110422-appb-000301
生成SRS序列,基于目前协议中规定的循环移位机制,对应相同的comb位置,会产生不正交的SRS序列。
为了保证SRS序列间正交,本申请提供一种无线通信方法,以期实现SRS序列间正交。
下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入设备中能够调用程序并执行程序的功能模块。
为了便于理解本申请实施例,做出以下几点说明。
第一,为方便理解和说明,首先对本申请中涉及到的主要参数分别说明如下:
K TC:传输梳齿(comb)数,包含在高层信令transmissionComb内。
Figure PCTCN2022110422-appb-000302
传输comb偏移,由高层参数combOffset-n2(4,8)配置。
p i:天线端口i的序号。
α i:循环移位值。
Figure PCTCN2022110422-appb-000303
循环移位偏移值。
Figure PCTCN2022110422-appb-000304
天线端口i对应的SRS序列的循环移位。
Figure PCTCN2022110422-appb-000305
一个SRS配置天线端口数,由高层参数nrofSRS-Ports配置,否则,天线端口数为1。
Figure PCTCN2022110422-appb-000306
SRS的配置带宽(或者称为SRS占据的RB数),由参数C SRS和B SRS配置。
P F:部分频率监听系数。
Figure PCTCN2022110422-appb-000307
标识同一OFDM符号连续
Figure PCTCN2022110422-appb-000308
个RB上传输SRS。
M ZC:配置的SRS序列长度。由
Figure PCTCN2022110422-appb-000309
和K TC联合确定,
Figure PCTCN2022110422-appb-000310
表示一个RB对应的RE数量。
M:发送的SRS序列长度。其中,一个SRS对应多个天线端口,不同的天线端口发送对应的SRS序列,不同的天线端口发送的SRS序列长度相同,应该区别于配置的SRS序列长度。
Figure PCTCN2022110422-appb-000311
SRS频域起始位置(子载波级别)。
n shift:频域偏移值,由高层信令freqDomainShift配置(RB级别)。
Figure PCTCN2022110422-appb-000312
第一最大循环移位数。目前协议中定义的最大循环移位数,与K TC相对应。
N′ max:满足第一条件的第二最大循环移位数。与
Figure PCTCN2022110422-appb-000313
相异。
N offset:起始RB索引。
第二,在本申请中,“用于指示”可以理解为“使能”,“使能”可以包括直接使能和间接使能。当描述某一信息用于使能A时,可以包括该信息直接使能A或间接使能A,而并 不代表该信息中一定携带有A。
将信息所使能的信息称为待使能信息,则具体实现过程中,对待使能信息进行使能的方式有很多种,例如但不限于,可以直接使能待使能信息,如待使能信息本身或者该待使能信息的索引等。也可以通过使能其他信息来间接使能待使能信息,其中该其他信息与待使能信息之间存在关联关系。还可以仅仅使能待使能信息的一部分,而待使能信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的使能,从而在一定程度上降低使能开销。同时,还可以识别各个信息的通用部分并统一使能,以降低单独使能同样的信息而带来的使能开销。
第三,在本申请中示出的第一、第二以及各种数字编号(例如,“#1”、“#2”等)仅为描述方便,用于区分的对象,并不用来限制本申请实施例的范围。例如,区分不同的SRS等。而不是用于描述特定的顺序或先后次序。应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第四,在本申请中,“预设”可包括预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括用户设备或核心网设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
第五,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第六,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括5G协议、新空口(new radio,NR)协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
以下,不失一般性,以网络设备和终端设备之间的交互为例详细说明本申请实施例提供的无线通信方法。
图5是本申请实施例提供的一种无线通信方法的示意性流程图。包括以下步骤:
S510,基于第一条件确定至少一个SRS分别对应的至少一个循环移位偏移值。
其中,至少一个SRS对应的SRS序列的序列长度与第一最大循环移位数的比值为非整数。
为了便于描述,该实施例中将序列长度记为M,需要说明的是M只是用于标识序列长度,对本申请的保护范围不构成任何的限定,本申请实施例中与第一最大循环移位数的比值为非整数的序列长度可取的值都在本申请的保护范围之内。
由上述可知在至少一个SRS对应的SRS序列的长度M与第一最大循环移位数的比值为非整数的情况下,基于目前协议中规定的循环移位机制,会产生不正交的SRS序列。
例如,以部分频率监听系数P F∈{2,4,8},部分频域监听场景下SRS所占RB数为正整数且不是4的整数倍为例,阐述本申请实施例解决的问题。部分频率监听场景下,针对不同comb场景,对应SRS序列长度如表3所示:
表3:
Figure PCTCN2022110422-appb-000314
其中,SRS序列的长度(表3中的第三列)中的黑色加粗部分为部分频率监听场景下SRS新增序列长度(相比于表2),n为正整数。
以K TC=2,
Figure PCTCN2022110422-appb-000315
SRS序列的长度为12,天线端口数为1(p 0)为例,由上述的公式(1-3)可知,天线端口p 0对应的循环移位满足:
Figure PCTCN2022110422-appb-000316
其中,
Figure PCTCN2022110422-appb-000317
用于天线端口1对应的SRS序列的生成。
p 0对应的SRS序列的CS索引配置如下表4所示:
表4:
Figure PCTCN2022110422-appb-000318
若SRS#1(或者说SRS resource#1)对应的SRS序列配置CS index为
Figure PCTCN2022110422-appb-000319
SRS#2(或者说SRS resource#2)对应的SRS序列配置CS index为
Figure PCTCN2022110422-appb-000320
由上述的公式(1-3)中关系:
Figure PCTCN2022110422-appb-000321
可知:
Figure PCTCN2022110422-appb-000322
对应SRS#1对应的SRS序列为:
Figure PCTCN2022110422-appb-000323
同理,对应SRS#2对应的SRS序列为:
Figure PCTCN2022110422-appb-000324
对应SRS#1对应的SRS序列和SRS#2对应的SRS序列乘积等于:
Figure PCTCN2022110422-appb-000325
各个分量
Figure PCTCN2022110422-appb-000326
在极坐标中位置如图6所示(以
Figure PCTCN2022110422-appb-000327
M ZC=12为例),图6是另一种乘积分量的示意图。
为了便于区分,将对称的分量和非对称的分量分别由图6中的(a)和图6中的(b)进行表示,图6中的(a)所示的为x=0,1,2,3,4,5,6,7的8个分量的示意图,由图6中的(a)可得,8个分量中的任意一个分量存在对称的分量;图6中的(b)所示的为x=8,9,10,11的4个分量的示意图,由图6中的(b)可得,4个分量中的任意一个分量均不存在对称的分量。
综合图6中的(a)和图6中的(b)所示的情况可得,12个分量中的存在4个分量不存在对称的分量(例如,图6中的(b)中所示的分量#9、分量#10、分量#11和分量#12),也就是说这4个分量求和得到不为0的值,也就是说在
Figure PCTCN2022110422-appb-000328
M ZC=12的 情况下,两SRS序列不正交。
应理解,本申请实施例中并不限定P F的取值只能为上述的2,4,8,在P F的取值为其他值的情况下,部分频率监听的SRS新增SRS序列可能包括上表3中未出现或已出现的值。
示例性地,在P F的取值为12的情况下,K TC为2的情况下,SRS序列的长度为
Figure PCTCN2022110422-appb-000329
对应SRS序列的长度可以为6,12,18,24,30,…,6n,所述n为正整数。
需要说明的是,P F的取值还可以为3,8,16或其他可能的值,本申请中不再赘述。
上述的至少一个SRS对应的SRS序列表示一个SRS或多个SRS对应的多个SRS序列。
例如,一个SRS对应一个或多个SRS序列;
还例如,多个SRS,每个SRS对应一个或多个SRS序列。
其中,SRS对应的SRS序列表示一个SRS可以对应一个或多个SRS序列传输。例如,一个SRS对应多个天线端口,不同的天线端口发送对应的SRS序列,不同的天线端口发送的SRS序列的长度相同。
需要说明的是,本申请实施例的M所表示的SRS序列的长度表示相同OFDM符号下,终端设备通过一个天线端口传输的SRS序列的序列长度,或者,M所表示的SRS序列的长度表示相同OFDM符号下,传输一个SRS对应的天线端口对应的SRS序列的长度。或者,M表示基于SRS配置带宽确定的SRS序列长度。
示例性地,部分频率监听场景,M可以基于
Figure PCTCN2022110422-appb-000330
确定,其中,
Figure PCTCN2022110422-appb-000331
为相同OFDM符号下,传输一个SRS对应的RB数,
Figure PCTCN2022110422-appb-000332
为SRS配置RB数,P F为部分频率监听系数。
示例性地,M可以基于配置SRS带宽
Figure PCTCN2022110422-appb-000333
确定,其中,
Figure PCTCN2022110422-appb-000334
为SRS配置RB数,由RRC信令指示。
例如,序列长度M表示为
Figure PCTCN2022110422-appb-000335
或者表示为
Figure PCTCN2022110422-appb-000336
还可以表示为M ZC,本申请对此不做限定。
因此为了使得上述的至少一个SRS对应的SRS序列中,对应相同comb位置的SRS序列之间两两正交,可以基于第一条件确定至少一个SRS分别对应的至少一个循环移位偏移值。循环移位偏移值与循环移位相关联,通过确定循环移位偏移值,使得对应相同comb位置且对应不同循环移位的SRS序列正交。
示例性地,第一条件为预设的,或者预定义的,或者还可以是信令指示,本申请对此不做限定。
本申请实施例中涉及的“确定至少一个SRS分别对应的至少一个循环移位偏移值”,可以理解为“生成至少一个SRS分别对应的至少一个循环移位偏移值”,或者还可以理解为“获取至少一个SRS分别对应的至少一个循环移位偏移值”,或者还可以理解为“核心网配置至少一个SRS分别对应的至少一个循环移位偏移值”,或者还可以理解为“协议预定义至少一个SRS分别对应的至少一个循环移位偏移值”。
另外,本申请实施例中涉及的“M与第一最大循环移位数的比值为非整数”,可以理解为“M不能整除第一最大循环移位数”,或者说“第一最大循环移位数不能被M整除”,其中, 第一最大循环移位数为预设的,或者预定义的,还可以是信令指示的,本申请对此不做限制。
示例性地,第一条件的具体形式包括以下几种方式:
方式一:
Figure PCTCN2022110422-appb-000337
满足第一条件,第一条件满足:
Figure PCTCN2022110422-appb-000338
其中,
Figure PCTCN2022110422-appb-000339
表示第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000340
表示上述的第一最大循环移位数,该天线端口i对应的SRS序列为上述的至少一个SRS对应的SRS序列中的一个,k为非负整数。
需要说明的是,天线端口i对应的SRS序列为某个SRS对应的相同comb位置的多个SRS序列中的任意一个,也就是说该SRS对应的相同comb位置的多个SRS序列中的每一个SRS序列的循环移位均满足第一条件。
另外,上述的第一条件满足
Figure PCTCN2022110422-appb-000341
只是举例,对本申请的保护范围不构成任何的限定,例如,上述公式的简单变形
Figure PCTCN2022110422-appb-000342
也在本申请的保护范围之内。
上述的
Figure PCTCN2022110422-appb-000343
表示第一SRS对应的天线端口i对应的SRS序列的循环移位,还可以称为:天线端口i对应的循环移位,或者天线端口i映射的SRS序列的循环移位等。
示例性地,方式一中第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000344
其中,
Figure PCTCN2022110422-appb-000345
表示所述第一SRS对应的循环移位偏移值,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000346
表示所述第一SRS对应的天线端口数。
应理解,方式一中上述的第一SRS对应的循环移位偏移值与第一SRS对应的天线端口i对应的SRS序列的循环移位之间所满足的关系式,只是举例,对本申请的保护范围不构成任何的限定,本申请中第一SRS对应的循环移位偏移值与第一SRS对应的天线端口i对应的SRS序列的循环移位之间相关联即可,还可以对应其他映射关系,本申请中不再赘述。
示例性地,式(2-4)对应的第一条件根据M和
Figure PCTCN2022110422-appb-000347
的最大公约数不同,可以通过以下几种场景展开:
场景一:M为6的奇数倍,
Figure PCTCN2022110422-appb-000348
为8。
在场景一下,上述公式(2-4)可表示为:
Figure PCTCN2022110422-appb-000349
其中,t为正奇数。
根据
Figure PCTCN2022110422-appb-000350
可知,
Figure PCTCN2022110422-appb-000351
Figure PCTCN2022110422-appb-000352
或者
Figure PCTCN2022110422-appb-000353
Figure PCTCN2022110422-appb-000354
满足上述的式(2-5)。
下面将针对不同的天线端口数的场景,说明在场景一下可选择的
Figure PCTCN2022110422-appb-000355
和天线端口对应的循环移位
Figure PCTCN2022110422-appb-000356
关系。
在天线端口数为1(p 0)的情况下,对应关系如表5所示:
表5:
Figure PCTCN2022110422-appb-000357
其中,可配置的
Figure PCTCN2022110422-appb-000358
Figure PCTCN2022110422-appb-000359
包括:
Figure PCTCN2022110422-appb-000360
对应
Figure PCTCN2022110422-appb-000361
Figure PCTCN2022110422-appb-000362
对应
Figure PCTCN2022110422-appb-000363
在天线端口数为2(p 0,p 1)的情况下,对应关系如表6所示:
表6:
Figure PCTCN2022110422-appb-000364
其中,可配置的
Figure PCTCN2022110422-appb-000365
Figure PCTCN2022110422-appb-000366
包括:
Figure PCTCN2022110422-appb-000367
对应
Figure PCTCN2022110422-appb-000368
在天线端口数为4(p 0,p 1,p 2,p 3)的情况下,对应关系如表7所示:
表7:
Figure PCTCN2022110422-appb-000369
其中,可配置的
Figure PCTCN2022110422-appb-000370
包括:
Figure PCTCN2022110422-appb-000371
对应
Figure PCTCN2022110422-appb-000372
其中,天线端口p 0和天线端口p 2对应相同的comb位置,
Figure PCTCN2022110422-appb-000373
取值为4,5,6,7中的一个的场景下,天线端口p 0,p 2与天线端口p 1,p 3在不同的comb位置发送SRS序列。
场景二:M为12的奇数倍,
Figure PCTCN2022110422-appb-000374
为8。
在场景二下,上述公式(2-4)可表示为:
Figure PCTCN2022110422-appb-000375
其中,t为正奇数。
根据
Figure PCTCN2022110422-appb-000376
可知,
Figure PCTCN2022110422-appb-000377
Figure PCTCN2022110422-appb-000378
或者
Figure PCTCN2022110422-appb-000379
2,或者
Figure PCTCN2022110422-appb-000380
或者
Figure PCTCN2022110422-appb-000381
满足上述的式(2-6)。
下面将针对不同的天线端口数的场景,说明在场景二下可选择的
Figure PCTCN2022110422-appb-000382
和天线端口对应的循环移位
Figure PCTCN2022110422-appb-000383
关系。
在天线端口数为1(p 0)的情况下,对应关系如表8所示:
表8:
Figure PCTCN2022110422-appb-000384
其中,可配置的
Figure PCTCN2022110422-appb-000385
Figure PCTCN2022110422-appb-000386
包括:
Figure PCTCN2022110422-appb-000387
对应
Figure PCTCN2022110422-appb-000388
Figure PCTCN2022110422-appb-000389
对应
Figure PCTCN2022110422-appb-000390
Figure PCTCN2022110422-appb-000391
对应
Figure PCTCN2022110422-appb-000392
Figure PCTCN2022110422-appb-000393
Figure PCTCN2022110422-appb-000394
对应
Figure PCTCN2022110422-appb-000395
在天线端口数为2(p 0,p 1)的情况下,对应关系如表9所示:
表9:
Figure PCTCN2022110422-appb-000396
其中,可配置的
Figure PCTCN2022110422-appb-000397
Figure PCTCN2022110422-appb-000398
如表9粗体所示,包括:
Figure PCTCN2022110422-appb-000399
对应
Figure PCTCN2022110422-appb-000400
Figure PCTCN2022110422-appb-000401
对应
Figure PCTCN2022110422-appb-000402
等。
在天线端口数为4(p 0,p 1,p 2,p 3)的情况下,对应关系如表10所示:
表10:
Figure PCTCN2022110422-appb-000403
其中,可配置的
Figure PCTCN2022110422-appb-000404
Figure PCTCN2022110422-appb-000405
如表10,包括:
Figure PCTCN2022110422-appb-000406
对应
Figure PCTCN2022110422-appb-000407
Figure PCTCN2022110422-appb-000408
对应
Figure PCTCN2022110422-appb-000409
Figure PCTCN2022110422-appb-000410
对应
Figure PCTCN2022110422-appb-000411
等。
Figure PCTCN2022110422-appb-000412
取值为4,5,6,7中的一个的场景下,天线端口p 0,p 2与天线端口p 1,p 3在不同的comb位置发送SRS序列。
场景三:M为6的奇数倍,
Figure PCTCN2022110422-appb-000413
为12。
在场景三下,上述公式(2-4)可表示为:
Figure PCTCN2022110422-appb-000414
其中,t为正奇数。
根据
Figure PCTCN2022110422-appb-000415
可知,
Figure PCTCN2022110422-appb-000416
Figure PCTCN2022110422-appb-000417
或者
Figure PCTCN2022110422-appb-000418
Figure PCTCN2022110422-appb-000419
或者
Figure PCTCN2022110422-appb-000420
或者
Figure PCTCN2022110422-appb-000421
或者
Figure PCTCN2022110422-appb-000422
或者
Figure PCTCN2022110422-appb-000423
满足上述的式(2-7)。
下面将针对不同的天线端口数的场景,说明在场景三下可选择的
Figure PCTCN2022110422-appb-000424
和天线端口对应的循环移位
Figure PCTCN2022110422-appb-000425
关系。
在天线端口数为1(p 0)的情况下,对应关系如表11所示:
表11:
Figure PCTCN2022110422-appb-000426
其中,可配置的
Figure PCTCN2022110422-appb-000427
Figure PCTCN2022110422-appb-000428
包括:
Figure PCTCN2022110422-appb-000429
对应
Figure PCTCN2022110422-appb-000430
Figure PCTCN2022110422-appb-000431
对应
Figure PCTCN2022110422-appb-000432
Figure PCTCN2022110422-appb-000433
对应
Figure PCTCN2022110422-appb-000434
Figure PCTCN2022110422-appb-000435
Figure PCTCN2022110422-appb-000436
对应
Figure PCTCN2022110422-appb-000437
Figure PCTCN2022110422-appb-000438
对应
Figure PCTCN2022110422-appb-000439
Figure PCTCN2022110422-appb-000440
对应
Figure PCTCN2022110422-appb-000441
Figure PCTCN2022110422-appb-000442
在天线端口数为2(p 0,p 1)的情况下,对应关系如表12所示:
表12:
Figure PCTCN2022110422-appb-000443
其中,可配置的
Figure PCTCN2022110422-appb-000444
Figure PCTCN2022110422-appb-000445
包括:
Figure PCTCN2022110422-appb-000446
对应
Figure PCTCN2022110422-appb-000447
Figure PCTCN2022110422-appb-000448
对应
Figure PCTCN2022110422-appb-000449
Figure PCTCN2022110422-appb-000450
Figure PCTCN2022110422-appb-000451
对应
Figure PCTCN2022110422-appb-000452
Figure PCTCN2022110422-appb-000453
对应
Figure PCTCN2022110422-appb-000454
Figure PCTCN2022110422-appb-000455
对应
Figure PCTCN2022110422-appb-000456
Figure PCTCN2022110422-appb-000457
对应
Figure PCTCN2022110422-appb-000458
在天线端口数为4(p 0,p 1,p 2,p 3)的情况下,对应关系如表13所示:
表13:
Figure PCTCN2022110422-appb-000459
其中,可配置的
Figure PCTCN2022110422-appb-000460
Figure PCTCN2022110422-appb-000461
如表13加粗部分所示,包括:
Figure PCTCN2022110422-appb-000462
对应
Figure PCTCN2022110422-appb-000463
Figure PCTCN2022110422-appb-000464
对应
Figure PCTCN2022110422-appb-000465
Figure PCTCN2022110422-appb-000466
对应
Figure PCTCN2022110422-appb-000467
等。
Figure PCTCN2022110422-appb-000468
为4,5,6,7的场景下,天线端口p 0,p 2与天线端口p 1,p 3在不同的comb位置发送SRS序列。
上述的场景一至场景三所示的三种场景,针对
Figure PCTCN2022110422-appb-000469
的取值,可以总结为下表14所示。
表14:
Figure PCTCN2022110422-appb-000470
其中,m为奇数,
Figure PCTCN2022110422-appb-000471
表示
Figure PCTCN2022110422-appb-000472
可取0或4中的任意一项,本申请对此不做限制。
方式二:
Figure PCTCN2022110422-appb-000473
Figure PCTCN2022110422-appb-000474
满足第一条件,第一条件满足:
Figure PCTCN2022110422-appb-000475
其中,
Figure PCTCN2022110422-appb-000476
表示第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000477
表示第一SRS对应的天线端口j对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000478
表示所述第一最大循环移位数,天线端口i对应的SRS序列与天线端口j对应的SRS序列为所述SRS序列中相同SRS对应的两个SRS序列,k 1为正整数,天线端口i和天线端口j对应相同comb位置。
Figure PCTCN2022110422-appb-000479
Figure PCTCN2022110422-appb-000480
之间的差值为第一差值,M倍的第一差值除以第一最大循环移位个数为 非零整数。
可以理解为,在配置的
Figure PCTCN2022110422-appb-000481
Figure PCTCN2022110422-appb-000482
满足该条件的情况下,两个参考信号序列分别对应的CS的循环移位值之间的差值与M的乘积为2π的整数倍,也就是说各个分量在极坐标中均存在对称的分量,对称的分量对应序列乘积等于0,对应两个序列正交。
或者说,公式(2-8)所述条件还可以表示为:|α ij|M=2πk 1,α i表示第一SRS对应的天线端口i对应的SRS序列的循环移位值,α j表示第一SRS对应的天线端口j对应的SRS序列的循环移位值。
需要说明的是,天线端口i对应的SRS序列为某个SRS对应的相同comb位置的多个SRS序列中的任意一个;天线端口j对应的SRS序列为某个SRS对应的相同comb位置的多个SRS序列中除天线端口i对应的SRS序列之外的任意一个,也就是说该SRS对应的多个SRS序列中的任意相异的两个SRS序列的循环移位均满足第一条件。
另外,上述的第一条件满足
Figure PCTCN2022110422-appb-000483
只是举例,对本申请的保护范围不构成任何的限定,例如,上述公式的简单变形
Figure PCTCN2022110422-appb-000484
式,也在本申请的保护范围之内。
具体地,方式二中第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000485
其中,
Figure PCTCN2022110422-appb-000486
表示所述第一SRS对应的循环移位偏移值,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000487
表示所述第一SRS对应的天线端口数。
第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口j对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000488
其中,
Figure PCTCN2022110422-appb-000489
表示所述第一SRS对应的循环移位偏移值,p j表示所述天线端口j的序号,
Figure PCTCN2022110422-appb-000490
表示所述第一SRS对应的天线端口数。
在M和
Figure PCTCN2022110422-appb-000491
的最大公约数(可以称为第一最大公约数)与天线端口数不能整除的条件下,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000492
示例性地,在M和
Figure PCTCN2022110422-appb-000493
的最大公约数与天线端口数不能整除的场景下,若第一SRS对应的天线端口数为4,且该4个天线端口对应相同的comb位置,该4个天线端口对应的循环移位可能无法满足式(2-8)对应的第一条件。
为了便于理解,以第一SRS对应的SRS序列的序列长度为6的奇数倍,
Figure PCTCN2022110422-appb-000494
等于12为例,进行说明:
第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口对应的SRS序列的循环移位,如表14a所示:
表14a
Figure PCTCN2022110422-appb-000495
Figure PCTCN2022110422-appb-000496
如表14a所示,若配置
Figure PCTCN2022110422-appb-000497
对应相同comb位置的4个天线端口无法同时满足式(2-8)对应的第一条件,即,对应相同comb位置的4个天线端口对应的SRS序列无法正交。考虑到在4天线端口场景下,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000498
时,天线端口p 0和天线端口p 2在相同comb位置传输SRS序列,且天线端口p 0对应的循环移位与天线端口p 2对应的循环移位满足第一条件,即序列正交条件;天线端口p 1和天线端口p 3在相同comb位置传输SRS序列,且天线端口p 1对应的循环移位与天线端口p 3对应的循环移位满足第一条件,在该场景下,可通过限制配置
Figure PCTCN2022110422-appb-000499
的方式,保证第一SRS对应的4个天线端口对应的SRS序列正交。
对于不同SRS对应的SRS序列之间的正交性,可通过网络设备配置解决。
若联合考虑第一SRS对应的SRS序列之间的正交性,以及第一SRS对应的SRS序列和第二SRS对应的SRS序列之间的正交性,其中一种可能的
Figure PCTCN2022110422-appb-000500
Figure PCTCN2022110422-appb-000501
配置,如表14a加粗部分所示,包括:
Figure PCTCN2022110422-appb-000502
Figure PCTCN2022110422-appb-000503
Figure PCTCN2022110422-appb-000504
示例性地,式(2-8)对应的第一条件根据M和
Figure PCTCN2022110422-appb-000505
的最大公约数不同,还可以通过如下场景展开:
场景一:M为6的奇数倍,
Figure PCTCN2022110422-appb-000506
为8。
在天线端口数为4场景下,第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口对应的SRS序列的循环移位,如表14b所示:
表14b:
Figure PCTCN2022110422-appb-000507
若联合考虑第一SRS对应的SRS序列之间的正交性,以及第一SRS对应的SRS序列和第二SRS对应的SRS序列之间的正交性,基于式(2-8)所示第一条件,其中一种可能的
Figure PCTCN2022110422-appb-000508
Figure PCTCN2022110422-appb-000509
配置,如表14b加粗部分所示,包括:
Figure PCTCN2022110422-appb-000510
Figure PCTCN2022110422-appb-000511
等;
示例地,一种可能的
Figure PCTCN2022110422-appb-000512
Figure PCTCN2022110422-appb-000513
配置,还可包括:
Figure PCTCN2022110422-appb-000514
Figure PCTCN2022110422-appb-000515
等,在此不再赘述。
应理解,上述方式二中的第一SRS对应的循环移位偏移值与第一SRS对应的天线端口i对应的SRS序列的循环移位之间所满足的关系式,以及第一SRS对应的循环移位偏移值与第一SRS对应的天线端口j对应的SRS序列的循环移位之间所满足的关系式,只是举例,对本申请的保护范围不构成任何的限定,本申请中第一SRS对应的循环移位偏移值与第一SRS对应的天线端口i对应的SRS序列的循环移位之间相关联,以及第一SRS对应的循环移位偏移值与第一SRS对应的天线端口j对应的SRS序列的循环移位之间相关联即可,还可以对应其他映射关系,本申请中不再赘述。
进一步地,可以简化上述的式(2-8),例如,
Figure PCTCN2022110422-appb-000516
则上述的式(2-8)可以简化为:
Figure PCTCN2022110422-appb-000517
或者,
还例如,配置
Figure PCTCN2022110422-appb-000518
则上述的式(2-8)可以简化为:
Figure PCTCN2022110422-appb-000519
Figure PCTCN2022110422-appb-000520
的情况下,方式二所示的第一条件可以理解为方式一中所示的第一条件,则方式二中当
Figure PCTCN2022110422-appb-000521
时,上述方式一中所示场景一至场景三所示的场景也适用,如下表15所示。
表15
Figure PCTCN2022110422-appb-000522
但是,本申请实施例中并不限制配置
Figure PCTCN2022110422-appb-000523
还可以配置
Figure PCTCN2022110422-appb-000524
上述的式(2-8)可以简化为:
Figure PCTCN2022110422-appb-000525
上述的场景下
Figure PCTCN2022110422-appb-000526
或者
Figure PCTCN2022110422-appb-000527
满足上述的式(2-11),场景二和场景三中
Figure PCTCN2022110422-appb-000528
的取值类似需要加1才能满足式(2-11),如,上述的表14更新为下表16所示:
表16:
Figure PCTCN2022110422-appb-000529
其中,m为奇数,{1,5},表示
Figure PCTCN2022110422-appb-000530
可取1或5中的任意一项,或者,表示为
Figure PCTCN2022110422-appb-000531
Figure PCTCN2022110422-appb-000532
本申请对此不做限制。
方式三:
上述的至少一个SRS为多个SRS。
Figure PCTCN2022110422-appb-000533
Figure PCTCN2022110422-appb-000534
满足第一条件,第一条件满足:
Figure PCTCN2022110422-appb-000535
其中,
Figure PCTCN2022110422-appb-000536
表示第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000537
表示第二SRS对应的天线端口p对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000538
表示所述第一最大循环移位数,所述天线端口i对应的SRS序列与所述天线端口p对应的SRS序列为所述多个SRS序列中不同SRS对应的SRS序列。
可选地,不同的SRS也可以理解为不同的SRS resource,SRS和SRS resource的关系可以理解为一个SRS在对应的SRS resource上发送,SRS resource用于确定SRS的时域、频域和空域资源中的一个或多个。
示例性地:SRS resource通过RRC IE(information element)SRS-Resource或SRS- PosResource进行配置,SRS-PosResource用于定位场景。相同终端设备相同时刻最多可以激活一个SRS resource set,一个SRS resource set可包含一个或多个SRS resource,多个SRS resource通过resource ID来区分;不同终端设备配置SRS resource不同。
具体地,方式三中第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000539
第二SRS对应的循环移位偏移值与所述第二SRS对应的天线端口q对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000540
其中,
Figure PCTCN2022110422-appb-000541
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000542
表示所述第二SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000543
表示所述第一SRS对应的天线端口i的序号,
Figure PCTCN2022110422-appb-000544
表示所述第二SRS对应的天线端口q的序号,
Figure PCTCN2022110422-appb-000545
表示所述第一SRS对应的天线端口数,
Figure PCTCN2022110422-appb-000546
表示所述第二SRS对应的天线端口数。
应理解,上述方式三中的第一SRS对应的循环移位偏移值与第一SRS对应的天线端口i对应的SRS序列的循环移位之间所满足的关系式,以及第二SRS对应的循环移位偏移值与第二SRS对应的天线端口q对应的SRS序列的循环移位之间所满足的关系式,只是举例,对本申请的保护范围不构成任何的限定,本申请中第一SRS对应的循环移位偏移值与第一SRS对应的天线端口i对应的SRS序列的循环移位之间相关联,以及第二SRS对应的循环移位偏移值与第二SRS对应的天线端口q对应的SRS序列的循环移位之间相关联即可,还可以对应其他映射关系,本申请中不再赘述。
进一步地,可以简化上述的式(2-12),例如,
Figure PCTCN2022110422-appb-000547
则上述的式(2-12)可以简化为:
Figure PCTCN2022110422-appb-000548
或者,
还例如,配置
Figure PCTCN2022110422-appb-000549
则上述的式(2-12)可以简化为:
Figure PCTCN2022110422-appb-000550
Figure PCTCN2022110422-appb-000551
的情况下,方式三所示的第一条件可以理解为方式一中所示的第一条件,则方式三中当
Figure PCTCN2022110422-appb-000552
时,上述方式一中所示场景一至场景三所示的场景也适用,如,如下表17所示。
表17
Figure PCTCN2022110422-appb-000553
但是,本申请实施例中并不限制配置
Figure PCTCN2022110422-appb-000554
还可以配置
Figure PCTCN2022110422-appb-000555
上述的式(2-12)可以简化为:
Figure PCTCN2022110422-appb-000556
上述的场景下
Figure PCTCN2022110422-appb-000557
或者
Figure PCTCN2022110422-appb-000558
满足上述的式(2-15),场景二和场景三中
Figure PCTCN2022110422-appb-000559
的取值类似需要加1才能满足式(2-15),如,上述的表14更新为下表18所示:
表18:
Figure PCTCN2022110422-appb-000560
上述表格(表14、表15和表17)还可以以SRS对应的部分频率监听带宽定义,如表19所示:
Figure PCTCN2022110422-appb-000561
或者,如表19a所示:
Figure PCTCN2022110422-appb-000562
同理,上述的表16和表18也可以以SRS对应的部分频率监听带宽定义,这里不再赘述。
示例地,考虑现有机制下,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000563
通过网络侧配置得到,并基于下述关系式:
Figure PCTCN2022110422-appb-000564
确定第一SRS对应的天线端口i对应的循环移位
Figure PCTCN2022110422-appb-000565
从而生成对应的SRS序列。上述第一条件还可通过直接限定配置
Figure PCTCN2022110422-appb-000566
来实现。
示例性地,第一条件的具体形式还可包括以下几种方式:
一种可能的方式:第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000567
满足第一条件,第一条件满足:
Figure PCTCN2022110422-appb-000568
其中,
Figure PCTCN2022110422-appb-000569
表示上述的第一最大循环移位数,M为第一SRS对应的序列长度,k 4为非负整数。
需要说明的是,上述的第一条件满足
Figure PCTCN2022110422-appb-000570
只是举例,对本申请的保护范围不构成任何的限定,例如,上述公式的简单变形
Figure PCTCN2022110422-appb-000571
也在本申请的保护范围之内。
一种可能的实施方式,在第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000572
满足式(2-15a)所示第一条件的场景下,若M和
Figure PCTCN2022110422-appb-000573
的最大公约数(可以称为第一最大公约数)与天线端 口数不能整除,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000574
可以理解的是,上述第一最大公约数可以等于满足第一条件的所有
Figure PCTCN2022110422-appb-000575
个数,或者,第一最大公约数等于网络设备可配置,或终端期待被配置的所有
Figure PCTCN2022110422-appb-000576
的个数,或者,第一最大公约数等于第一SRS对应的SRS序列的序列长度M和第一SRS对应的最大循环移位偏移值
Figure PCTCN2022110422-appb-000577
的最大公约数,所述定义均在本申请的保护范围之内。
对于满足式(2-15a)的配置循环移位偏移值
Figure PCTCN2022110422-appb-000578
在M和
Figure PCTCN2022110422-appb-000579
的最大公约数与天线端口数不能整除场景下,对应相同comb位置的不同天线端口之间的SRS序列可能无法正交。
为了便于理解,以第一SRS对应的天线端口数为4,SRS序列的序列长度为6的奇数倍,
Figure PCTCN2022110422-appb-000580
等于12为例,进行说明:
第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口对应的SRS序列的循环移位,如表19b所示:
表19b
Figure PCTCN2022110422-appb-000581
Figure PCTCN2022110422-appb-000582
满足式(2-15a)所示的第一条件,
Figure PCTCN2022110422-appb-000583
Figure PCTCN2022110422-appb-000584
则4个天线端口对应的SRS序列的循环移位,满足:
Figure PCTCN2022110422-appb-000585
基于上述介绍,上述4个天线端口对应的SRS序列之间不正交。考虑到在4天线端口场景下,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000586
时,天线端口p 0和天线端口p 2在相同comb位置传输SRS序列,且天线端口p 0对应的循环移位与天线端口p 2对应的循环移位满足第一条件,即序列正交条件;天线端口p 1和天线端口p 3在相同comb位置传输SRS序列,且天线端口p 1对应的循环移位与天线端口p 3对应的循环移位满足第一条件,在该场景下,可通过限制配置
Figure PCTCN2022110422-appb-000587
的方式,保证第一SRS对应的4个天线端口对应的SRS序列正交。
基于上述规则,在表19b对应场景下,第一SRS对应的
Figure PCTCN2022110422-appb-000588
或者,
Figure PCTCN2022110422-appb-000589
或者,
Figure PCTCN2022110422-appb-000590
Figure PCTCN2022110422-appb-000591
为例,天线端口p 0和天线端口p 2对应的循环移位分别满足:
Figure PCTCN2022110422-appb-000592
Figure PCTCN2022110422-appb-000593
所述天线端口p 0和天线端口p 2对应的SRS序列正交,天线端口p 1和天线端口p 3同理。
示例性地,式(2-15a)对应的第一条件根据M和
Figure PCTCN2022110422-appb-000594
的最大公约数不同,可以通过以下几种场景展开:
场景一:M为6的奇数倍,
Figure PCTCN2022110422-appb-000595
为8。
在场景一下,上述公式(2-15a)可表示为:
Figure PCTCN2022110422-appb-000596
其中,t为正奇数。
Figure PCTCN2022110422-appb-000597
或者
Figure PCTCN2022110422-appb-000598
满足上述的式(2-15b)。
为了便于理解,下面将针对不同的天线端口数的场景,说明在场景一下可选择的
Figure PCTCN2022110422-appb-000599
和天线端口对应的循环移位
Figure PCTCN2022110422-appb-000600
关系。
在天线端口数为1(p 0)的情况下,对应关系如表19c所示:
表19c:
Figure PCTCN2022110422-appb-000601
Figure PCTCN2022110422-appb-000602
其中,可配置的
Figure PCTCN2022110422-appb-000603
如表19c粗体所示,包括:
Figure PCTCN2022110422-appb-000604
对应
Figure PCTCN2022110422-appb-000605
Figure PCTCN2022110422-appb-000606
对应
Figure PCTCN2022110422-appb-000607
在天线端口数为2(p 0,p 1)的情况下,可配置
Figure PCTCN2022110422-appb-000608
如表19d所示:
表19d:
Figure PCTCN2022110422-appb-000609
在天线端口数为4(p 0,p 1,p 2,p 3)的情况下,M和
Figure PCTCN2022110422-appb-000610
的最大公约数等于2,与天线端口数4不能整除,则配置
Figure PCTCN2022110422-appb-000611
基于上述规则,可配置
Figure PCTCN2022110422-appb-000612
如表19e所示:
表19e:
Figure PCTCN2022110422-appb-000613
其中,可配置的
Figure PCTCN2022110422-appb-000614
包括:
Figure PCTCN2022110422-appb-000615
对应
Figure PCTCN2022110422-appb-000616
对应
Figure PCTCN2022110422-appb-000617
其中,天线端口p 0和天线端口p 2对应相同的comb位置,天线端口p 1和天线端口p 3对应相同的comb位置。
场景二:M为12的奇数倍,
Figure PCTCN2022110422-appb-000618
为8。
在场景二下,上述公式(2-15a)可表示为:
Figure PCTCN2022110422-appb-000619
其中,t为正奇数。且
Figure PCTCN2022110422-appb-000620
或者
Figure PCTCN2022110422-appb-000621
或者
Figure PCTCN2022110422-appb-000622
或者
Figure PCTCN2022110422-appb-000623
满足上述的式(2-15c)。
为了便于理解,下面将针对不同的天线端口数的场景,说明在场景二下可选择的
Figure PCTCN2022110422-appb-000624
和天线端口对应的循环移位
Figure PCTCN2022110422-appb-000625
关系。
在天线端口数为1(p 0)的情况下,可配置
Figure PCTCN2022110422-appb-000626
如表19f粗体所示:
表19f:
Figure PCTCN2022110422-appb-000627
其中,可配置的
Figure PCTCN2022110422-appb-000628
Figure PCTCN2022110422-appb-000629
包括:
Figure PCTCN2022110422-appb-000630
对应
Figure PCTCN2022110422-appb-000631
Figure PCTCN2022110422-appb-000632
对应
Figure PCTCN2022110422-appb-000633
Figure PCTCN2022110422-appb-000634
对应
Figure PCTCN2022110422-appb-000635
Figure PCTCN2022110422-appb-000636
Figure PCTCN2022110422-appb-000637
对应
Figure PCTCN2022110422-appb-000638
在天线端口数为2(p 0,p 1)的情况下,可配置
Figure PCTCN2022110422-appb-000639
如表19g所示:
表19g:
Figure PCTCN2022110422-appb-000640
Figure PCTCN2022110422-appb-000641
在天线端口数为4(p 0,p 1,p 2,p 3)的情况下,M和
Figure PCTCN2022110422-appb-000642
的最大公约数等于4,与天线端口数4可以整除,基于上述规则,可配置
Figure PCTCN2022110422-appb-000643
如表19h所示:
表19h:
Figure PCTCN2022110422-appb-000644
场景三:M为6的奇数倍,
Figure PCTCN2022110422-appb-000645
为12。
在场景三下,上述公式(2-15a)可表示为:
Figure PCTCN2022110422-appb-000646
其中,t为正奇数。其中,配置
Figure PCTCN2022110422-appb-000647
或者
Figure PCTCN2022110422-appb-000648
或者
Figure PCTCN2022110422-appb-000649
或者
Figure PCTCN2022110422-appb-000650
Figure PCTCN2022110422-appb-000651
或者
Figure PCTCN2022110422-appb-000652
或者
Figure PCTCN2022110422-appb-000653
满足上述的式(2-15d)。
为了便于理解,下面将针对不同的天线端口数的场景,说明在场景三下可选择的
Figure PCTCN2022110422-appb-000654
和天线端口对应的循环移位
Figure PCTCN2022110422-appb-000655
关系。
在天线端口数为1(p 0)的情况下,可配置
Figure PCTCN2022110422-appb-000656
如表19i所示:
表19i:
Figure PCTCN2022110422-appb-000657
其中,可配置的
Figure PCTCN2022110422-appb-000658
Figure PCTCN2022110422-appb-000659
包括:
Figure PCTCN2022110422-appb-000660
对应
Figure PCTCN2022110422-appb-000661
Figure PCTCN2022110422-appb-000662
对应
Figure PCTCN2022110422-appb-000663
Figure PCTCN2022110422-appb-000664
对应
Figure PCTCN2022110422-appb-000665
Figure PCTCN2022110422-appb-000666
Figure PCTCN2022110422-appb-000667
对应
Figure PCTCN2022110422-appb-000668
Figure PCTCN2022110422-appb-000669
对应
Figure PCTCN2022110422-appb-000670
Figure PCTCN2022110422-appb-000671
对应
Figure PCTCN2022110422-appb-000672
Figure PCTCN2022110422-appb-000673
在天线端口数为2(p 0,p 1)的情况下,可配置
Figure PCTCN2022110422-appb-000674
如表19j所示:
表19j:
Figure PCTCN2022110422-appb-000675
其中,可配置的
Figure PCTCN2022110422-appb-000676
Figure PCTCN2022110422-appb-000677
包括:
Figure PCTCN2022110422-appb-000678
对应
Figure PCTCN2022110422-appb-000679
Figure PCTCN2022110422-appb-000680
对应
Figure PCTCN2022110422-appb-000681
Figure PCTCN2022110422-appb-000682
Figure PCTCN2022110422-appb-000683
对应
Figure PCTCN2022110422-appb-000684
Figure PCTCN2022110422-appb-000685
对应
Figure PCTCN2022110422-appb-000686
Figure PCTCN2022110422-appb-000687
对应
Figure PCTCN2022110422-appb-000688
Figure PCTCN2022110422-appb-000689
对应
Figure PCTCN2022110422-appb-000690
在天线端口数为4(p 0,p 1,p 2,p 3)的情况下,M和
Figure PCTCN2022110422-appb-000691
的最大公约数等于6,与天线端口数4不能整除,基于上述规则,配置
Figure PCTCN2022110422-appb-000692
可配置
Figure PCTCN2022110422-appb-000693
如表19k粗体所示:
表19k:
Figure PCTCN2022110422-appb-000694
Figure PCTCN2022110422-appb-000695
一种可能的实现方式,
Figure PCTCN2022110422-appb-000696
满足第一条件,第一条件满足:
Figure PCTCN2022110422-appb-000697
其中,k 5为非负整数,
Figure PCTCN2022110422-appb-000698
表示第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000699
表示所述第一最大循环移位数,
Figure PCTCN2022110422-appb-000700
和q之间的差值为第一差值,M倍的第一差值除以第一最大循环移位个数为非零整数。
一种可能的实施方式,在第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000701
满足式(2-15d)所示第一条件场景下,若M和
Figure PCTCN2022110422-appb-000702
的最大公约数与天线端口数不能整除,第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000703
可以理解为,基于现有机制,在4天线端口条件下,可能会存在M和
Figure PCTCN2022110422-appb-000704
的最大公约数与天线端口数不能整除的场景,若上述循环移位偏移值
Figure PCTCN2022110422-appb-000705
Figure PCTCN2022110422-appb-000706
第一SRS对应的4个天线端口可以通过不同comb位置发送SRS,从而实现SRS序列正交。
可以理解为,在配置的
Figure PCTCN2022110422-appb-000707
满足上述条件的情况下,对应相同comb位置的两个参考信号序列分别对应的CS的循环移位值之间的差值与M的乘积为2π的整数倍,也就是说各个分量在极坐标中均存在对称的分量,对称的分量对应序列乘积等于0,对应两个序列正交。
另外,上述的第一条件满足
Figure PCTCN2022110422-appb-000708
只是举例,对本申请的保护范围不构成任何的限定,例如,上述公式的简单变形
Figure PCTCN2022110422-appb-000709
式,也在本申请的保护范围之内。
一种可能的实现方式,上述的至少一个SRS为多个SRS。
第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000710
和第二SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000711
满足第一条件,第一条件满足:
Figure PCTCN2022110422-appb-000712
其中,k 6为非负整数,
Figure PCTCN2022110422-appb-000713
表示所述第一最大循环移位数,M表示所述序列长度。
可选地,不同的SRS也可以理解为不同的SRS resource,SRS和SRS resource的关系可以理解为一个SRS在对应的SRS resource上发送,SRS resource用于确定SRS的时域、频域和空域资源中的一个或多个。
示例性地:SRS resource通过RRC IE(information element)SRS-Resource或SRS-PosResource进行配置,SRS-PosResource用于定位场景。相同终端设备相同时刻最多可以激活一个SRS resource set,一个SRS resource set可包含一个或多个SRS resource,多个SRS resource通过resource ID来区分;不同终端设备配置SRS resource不同。
所述方案通过限制第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000714
配置,实现了对应相同comb位置,第一SRS对应的不同天线端口对应的SRS序列正交。在尽可能遵循现有标准的基础上,将标准影响尽可能降低。
示例性地,第一条件的具体形式还可包括以下几种方式:
一种可能的方式:第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000715
满足第一条件,第一条件满足:
Figure PCTCN2022110422-appb-000716
其中,k 4为非负整数,
Figure PCTCN2022110422-appb-000717
表示上述的第一最大循环移位数,M为第一SRS对应的序列长度。
需要说明的是,上述的第一条件满足
Figure PCTCN2022110422-appb-000718
只是举例,对本申请的保护范围不构成任何的限定,例如,上述公式的简单变形
Figure PCTCN2022110422-appb-000719
也在本申请的保护范围之内。
示例性地,第一条件除满足式(2-15f)之外,第一条件还可满足:
Figure PCTCN2022110422-appb-000720
Figure PCTCN2022110422-appb-000721
其中,k 5为非负整数,M表示所述序列长度,
Figure PCTCN2022110422-appb-000722
表示所述第一最大循环移位数,
Figure PCTCN2022110422-appb-000723
或者,第一条件还可满足:
Figure PCTCN2022110422-appb-000724
其中,
Figure PCTCN2022110422-appb-000725
表示第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000726
表示第二SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000727
表示所述第一最大循环移位数,k 6为正整数,M表示所述序列长度。第一SRS和第二SRS的具体含义参加上述描述,在此不再赘述。
可以理解的是,为实现相同梳齿位置的SRS序列正交,第一条件可以有不同的表现形式,或者第一条件对应不同的规则。
为了便于描述,下文将以第一条件满足式(2-15f)为例,阐述本申请提供的具体方案。可以理解的是,第一条件满足其他公式的情况下,与第一条件满足式(2-15f)具体实现方式类似,在此不再赘述。如上所述,即使在配置
Figure PCTCN2022110422-appb-000728
满足式(2-15f)所述条件下,若SRS序列长度M和最大循环移位偏移值
Figure PCTCN2022110422-appb-000729
的最大公约数与天线端口数不能整除,在相同梳齿位置,第一SRS对应的不同天线端口对应的SRS序列之间可能仍然无法正交,具体场景如表19b所示,在此不再赘述。
上述一种可能的实现方式,在配置
Figure PCTCN2022110422-appb-000730
满足式(2-15f)所述条件下,通过进一步限定配置
Figure PCTCN2022110422-appb-000731
来解决上述问题,所述方案对标准影响较小,但对配置
Figure PCTCN2022110422-appb-000732
限制较大。
下述将介绍另一种可能的实现方式,在SRS序列长度M和最大循环移位偏移值
Figure PCTCN2022110422-appb-000733
的最大公约数与天线端口数不能整除场景下,通过重新定义天线端口对应的comb位置以及对应的循环移位,实现在相同comb位置,第一SRS不同天线端口对应的SRS序列正交。
具体实施方式包括,在第一SRS对应的循环移位偏移值
Figure PCTCN2022110422-appb-000734
满足式(2-15f)所示第一条件场景下,若SRS序列长度M和
Figure PCTCN2022110422-appb-000735
的最大公约数(可以称为第一最大公约数)与天线端口数不能整除,所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000736
其中,
Figure PCTCN2022110422-appb-000737
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000738
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000739
表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000740
表示所述第一SRS对应的天线端口数,K表示所述第一SRS对应的梳齿个数。
可以理解的是,K表示所述第一SRS对应的梳齿个数,还可以表示第一SRS对应的不同SRS序列在K个梳齿位置上复用,或者,第一SRS对应的不同SRS序列在K个梳 齿位置上传输。对应特定SRS序列,只能在一个梳齿位置上传输。
若第一SRS对应的序列长度M和最大循环移位个数
Figure PCTCN2022110422-appb-000741
的最大公约数与天线端口数不能整除,通过式(2-15g)所示方式,可以实现第一SRS对应的
Figure PCTCN2022110422-appb-000742
个天线端口在K个梳齿上复用,对应相同梳齿的不同天线端口对应的循环移位,满足式(2-15f)所示条件。可以理解的是,为实现SRS传输资源的合理利用,上述梳齿个数K与第二最大公约数相关,所述第二最大公约数等于所述第一最大公约数与
Figure PCTCN2022110422-appb-000743
的最大公约数。
所述第一最大公约数等于所述M和
Figure PCTCN2022110422-appb-000744
的最大公约数,或者,第一最大公约数等于满足式(2-15f)所示条件的所有
Figure PCTCN2022110422-appb-000745
的个数,其中,
Figure PCTCN2022110422-appb-000746
通过确定满足式(2-15f)所示条件的所有
Figure PCTCN2022110422-appb-000747
的个数与天线端口数
Figure PCTCN2022110422-appb-000748
的最大公约数,可以确定第一SRS对应的梳齿个数,从而确定特定梳齿下,第一SRS对应的天线端口数目。
基于上述第二最大公约数R含义,可以推导得到,所述K与所述第二最大公约数相关满足:
Figure PCTCN2022110422-appb-000749
其中,K表示所述第一SRS对应的梳齿个数,
Figure PCTCN2022110422-appb-000750
表示所述第一SRS对应的天线端口数,R表示所述第二最大公约数。
所述R表示在特定梳齿位置,第一SRS对应的天线端口数目,或者,所述R表示在特定梳齿位置,第一SRS对应的循环移位数目,所述R个循环移位满足式(2-15f)所示条件。所述R个循环移位为满足式(2-15f)所示条件中的循环移位集合中值不同且等间隔的循环移位,即,所述R个循环移位为所述第一最大公约数个循环移位中值不同且等间隔的循环移位。
确定第一SRS不同天线端口对应的comb位置以及对应循环移位后,终端基于循环移位生成SRS序列,并在对应comb位置传输SRS序列。
示例地,上述方案根据第一SRS对应的序列长度M和
Figure PCTCN2022110422-appb-000751
以及天线端口
Figure PCTCN2022110422-appb-000752
不同,通过以下几个场景进行方案的具体描述。
场景一:M为6的奇数倍,
Figure PCTCN2022110422-appb-000753
首先,基于式(2-15f)所示的第一条件,确定可配置
Figure PCTCN2022110422-appb-000754
其次,计算第一SRS对应序列长度M和最大循环移位
Figure PCTCN2022110422-appb-000755
的最大公约数,即第一最大公约数等于2。
另外,第一最大公约数还可以理解为等于满足第一条件的
Figure PCTCN2022110422-appb-000756
所有可能取值的数量。
在所述第一最大公约数无法与天线端口数
Figure PCTCN2022110422-appb-000757
整除的情况下,定义第一SRS对应的
Figure PCTCN2022110422-appb-000758
与所述第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000759
满足关系式:
Figure PCTCN2022110422-appb-000760
其中,
Figure PCTCN2022110422-appb-000761
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000762
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000763
表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000764
表示所述第一SRS对应的天线端口数,K表示所述第一SRS对应的梳齿个数。
基于式(2-15h),在此场景下,K=2。对应
Figure PCTCN2022110422-appb-000765
Figure PCTCN2022110422-appb-000766
如表19m所示:
表19m:
Figure PCTCN2022110422-appb-000767
Figure PCTCN2022110422-appb-000768
进一步地,为保证相同comb位置SRS序列之间的正交性,端口p 0和端口p 2在相同梳齿位置传输SRS序列,对应
Figure PCTCN2022110422-appb-000769
端口p 0和端口p 2对应的SRS序列正交;类似地,端口p 1和端口p 3在相同梳齿位置传输SRS序列,对应
Figure PCTCN2022110422-appb-000770
端口p 1和端口p 3对应的SRS序列正交。
示例性地,考虑现有机制下,第一SRS对应的4个天线端口与梳齿的对应关系,可设计规则如下:
Figure PCTCN2022110422-appb-000771
其中,
Figure PCTCN2022110422-appb-000772
表示天线端口p i对应的梳齿,
Figure PCTCN2022110422-appb-000773
表示传输梳齿偏移,K TC
表述传输梳齿数目。
示例性地,考虑现有机制下,第一SRS对应的4个天线端口与梳齿的对应关系,还可设计规则如下:
Figure PCTCN2022110422-appb-000774
其中,
Figure PCTCN2022110422-appb-000775
表示天线端口p i对应的梳齿,
Figure PCTCN2022110422-appb-000776
表示传输梳齿偏移,K TC
表述传输梳齿数目。
基于上述机制,终端基于不同天线端口对应的循环移位,生成SRS序列,并通过对应天线端口在对应梳齿频域位置传输SRS序列。
在第一SRS对应序列长度M为6的奇数倍,
Figure PCTCN2022110422-appb-000777
场景下,对应相同梳齿位置的不同天线端口的SRS序列相互正交,从而降低了SRS传输干扰,有效提升了SRS传输性能。
场景二:M为6的奇数倍,
Figure PCTCN2022110422-appb-000778
首先,基于式(2-15f)所示的第一条件,确定可配置
Figure PCTCN2022110422-appb-000779
其次,计算第一SRS对应序列长度M和最大循环移位
Figure PCTCN2022110422-appb-000780
的最大公约数,即第一最大公约数等于6。
另外,第一最大公约数还可以理解为等于满足第一条件的
Figure PCTCN2022110422-appb-000781
所有可能取值的数量。
在所述第一最大公约数无法与天线端口数
Figure PCTCN2022110422-appb-000782
整除的情况下,定义第一SRS对应的
Figure PCTCN2022110422-appb-000783
与所述第一SRS对应的天线端口i对应的SRS序列的循环移位
Figure PCTCN2022110422-appb-000784
满足关系式:
Figure PCTCN2022110422-appb-000785
其中,
Figure PCTCN2022110422-appb-000786
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000787
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000788
表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000789
表示所述第一SRS对应的天线端口数,K表示所述第一SRS对应的梳齿个数。基于式(2-15h),在此场景下,K=2。对应
Figure PCTCN2022110422-appb-000790
Figure PCTCN2022110422-appb-000791
如表19n所示:
表19n:
Figure PCTCN2022110422-appb-000792
进一步地,为保证相同梳齿位置SRS序列之间的正交性,端口p 0和端口p 2在相同梳齿位置传输SRS序列,对应
Figure PCTCN2022110422-appb-000793
端口p 0和端口p 2对应的SRS序列正交;类似地,端口p 1和端口p 3在相同梳齿位置传输SRS序列,对应
Figure PCTCN2022110422-appb-000794
端口p 1和端口p 3对应的SRS序列正交。
示例性地,考虑现有机制下,第一SRS对应的4个天线端口与梳齿的对应关系,可设计规则如下:
Figure PCTCN2022110422-appb-000795
其中,
Figure PCTCN2022110422-appb-000796
表示天线端口p i对应的梳齿,
Figure PCTCN2022110422-appb-000797
表示传输梳齿偏移,K TC
表述传输梳齿数目。
示例性地,考虑现有机制下,第一SRS对应的4个天线端口与梳齿的对应关系,还可设计规则如下:
Figure PCTCN2022110422-appb-000798
其中,
Figure PCTCN2022110422-appb-000799
表示天线端口p i对应的梳齿,
Figure PCTCN2022110422-appb-000800
表示传输梳齿偏移,K TC
表述传输梳齿数目。
基于上述机制,终端基于不同天线端口对应的循环移位,生成SRS序列,并通过对应天线端口在对应梳齿频域位置传输SRS序列。
在第一SRS对应序列长度M为6的奇数倍,
Figure PCTCN2022110422-appb-000801
场景下,对应相同梳齿位置的不同天线端口的SRS序列相互正交,从而降低了SRS传输干扰,有效提升了SRS传输性能。
上述为实现SRS序列的另一个方案,与限制
Figure PCTCN2022110422-appb-000802
方案不同,上述方案可以适用于更多场景,例如,
Figure PCTCN2022110422-appb-000803
也可采用上述方案,通过将第一SRS对应的不同SRS序列基于梳齿和循环移位进行复用,实现对应相同梳齿的SRS序列正交,具备更多的实施灵活性。
上述的通过限制配置的循环移位偏移值在对标准改动小的前提下,使得SRS序列中,对应相同comb位置的SRS序列之间两两正交的方式,标准影响较小,但相同comb位置复用的SRS序列个数有限(如,可复用CS对应的SRS序列个数等于最大循环移位个数
Figure PCTCN2022110422-appb-000804
与序列长度M的最大公约数)。
除了上述的通过限制配置的循环移位偏移值(如方式一至方式三)以使得SRS序列中,对应相同comb位置的SRS序列之间两两正交之外,还可以通过定义(如,协议预配 置)第二最大循环移位数N′ max,以使得上述的M与第二最大循环移位数的比值为整数,从而从源头上避免了SRS序列之间不正交的可能性。
通过定义第二最大循环移位数N′ max,以使得上述的M与第二最大循环移位数的比值为整数,避免了SRS序列之间不正交的可能性,能够保证相同comb位置复用的SRS序列个数等于最大循环移位数,下面结合方式四详细介绍定义第二最大循环移位数。
方式四:
N′ max满足第一条件,第一条件满足:M与所述N′ max的比值为正整数。
或者说,第一条件满足:
Figure PCTCN2022110422-appb-000805
其中,N′ max为确定的第二最大循环移位数,k 3为正整数。
应理解,针对上述的M与第一最大循环移位数的比值为非整数的情况下,可以通过定义(如,协议预配置)最大循环移位数为第二最大循环移位数,以使得上述的M与第二最大循环移位数的比值为整数。其中,第二最大循环移位数与基于现有协议对应的第一循环移位数不同,现有的第一最大循环移位数不满足M与最大循环移位数的比值为非整数正交条件。
可以理解为,在确定的第二最大循环移位个数N′ max能够被M整除的情况下,两个SRS序列分别对应的CS的循环移位值之间的差值与M的乘积为2π的整数倍,也就是说各个分量在极坐标中均存在对称的分量,对称的分量对应序列乘积等于0,对应SRS序列正交。
需要说明的是,在N′ max满足式(2-16)的情况下,不同参考信号序列的循环移位满足上述式(2-8)所示条件。
考虑到
Figure PCTCN2022110422-appb-000806
方式四可以以不同comb和部分频率监听RB数场景下,定义不同的最大循环移位个数。
其中,
Figure PCTCN2022110422-appb-000807
为SRS配置带宽,P F为部分频率监听系数,
Figure PCTCN2022110422-appb-000808
为部分频率监听带宽,
Figure PCTCN2022110422-appb-000809
为一个RB对应的RE数量,comb为SRS对应的comb数。
上述的式(2-17)只是示例,表示序列长度M的表示形式,对本申请的保护范围不构成任何的限定,其他与第一最大循环移位数的比值为非整数的序列长度也在本申请的保护范围内。
对于Comb2场景下,第一最大循环移位个数
Figure PCTCN2022110422-appb-000810
考虑信道最大多普勒时延场景限制,在Comb2,部分频率监听SRS所占RB数为4n-2场景下,对应第二最大循环移位个数N′ max=6。
示例性地,若
Figure PCTCN2022110422-appb-000811
为4的整数倍,复用现有循环移位配置,若
Figure PCTCN2022110422-appb-000812
不是4的整数倍,则对应N′ max=6,Comb-8场景除外。Comb-8场景下,可直接支持N′ max=6。
需要说明的是,在预设的第一最大循环移位数不能被M整除得到情况下,可以通过定义(如,协议预配置)最大循环移位数为第二最大循环移位数,由于第一最大循环移位数和第二最大循环移位数均表示最大循环移位数,所以本申请中第二最大循环移位数 也可以记为:
Figure PCTCN2022110422-appb-000813
示例性地,网络设备根据对应关系表确定第二最大循环移位数,所述对应关系满足下表20中的一个或多个,表20为协议预定义的。
可选地,根据不同的配置情况,表20包括下述的表20a至表20d
作为一种可能的实现方式,不同comb数(如,K TC)和SRS序列长度
Figure PCTCN2022110422-appb-000814
配置如下表20a所示,n为正整数,m为奇数(如,m为正奇数):
表20a:
Figure PCTCN2022110422-appb-000815
作为另一种可能的实现方式,不同comb数(如,K TC)和SRS序列长度
Figure PCTCN2022110422-appb-000816
配置如下表20b所示,n为正整数,m为奇数(如,m为正奇数):
表20b:
Figure PCTCN2022110422-appb-000817
作为另一种表述方式,不同comb数(如,K TC)和监听带宽条件下
Figure PCTCN2022110422-appb-000818
配置,如下表20c所示,n为正整数:
表20c:
Figure PCTCN2022110422-appb-000819
其中,K TC为2,序列长度为4n-2,
Figure PCTCN2022110422-appb-000820
配置为12时,
Figure PCTCN2022110422-appb-000821
满足:M与所述
Figure PCTCN2022110422-appb-000822
的比值为正整数,还满足:
Figure PCTCN2022110422-appb-000823
与天线口数的比值为正整数。
作为又一种表述方式,不同comb数(如,K TC)和监听带宽条件下
Figure PCTCN2022110422-appb-000824
配置,如下表20d所示,n为正整数:
表20d:
Figure PCTCN2022110422-appb-000825
Figure PCTCN2022110422-appb-000826
其中,K TC为2,序列长度为4n-2,
Figure PCTCN2022110422-appb-000827
配置为6时,
Figure PCTCN2022110422-appb-000828
满足:M与所述
Figure PCTCN2022110422-appb-000829
的比值为正整数,不满足:
Figure PCTCN2022110422-appb-000830
与天线口数的比值为正整数。
在确定第二最大循环移位数不满足与SRS对应的天线端口数整除的情况下,可以通过调整天线端口与SRS序列的循环移位的映射关系式,使得在第二最大循环移位数不满足与SRS对应的天线端口数整除的情况下,确定天线端口与SRS序列的循环移位的关系。
示例性地,上述的N′ max为预定义的第一集合中的一个,第一集合包含至少一个最大循环移位数。
例如,协议预定义某个包括至少一个最大循环移位数的第一集合,网络设备从该第一集合中确定出满足第一条件的N′ max
可选地,该第一集合中包括的至少一个最大循环移位数中的全部或者部分最大循环移位数均满足第一条件。
进一步地,可以通过预定义的方式或者高层信令配置的方式将N′ max通知到终端设备。图5所示的方法还包括:
S511,网络设备向终端设备发送高层信令,或者说终端设备接收来自网络设备的高层信令。
S512,网络设备向终端设备发送第一指示信息,或者说终端设备接收来自网络设备的第一指示信息。
可选地,网络设备和终端设备通过预定的方式确定N′ max为{6,8,12}中的一种,且所述N′ max可以被SRS序列长度整除。其中,{6,8,12}为示例性描述,本申请实施例中对此不做限制。
可选地,网络设备通过高层信令(如,RRC信令)指示N′ max为{6,8,12}中的一种
可选地,网络设备通过高层信令(如,RRC信令)配置N′ max可选值集合,网络设备通过第一指示信息(如,DCI)指示其中一种。
需要说明的是,最大循环移位数与天线端口数之间需要保证能够整除,也就是说当通过定义(如,协议预配置)的N′ max满足与天线端口数(可以为任意一个SRS对应的天线端口数,也可以为多个SRS中的每一个SRS对应的天线端口数)的比值为正整数的情况下,可以无需执行其他后续步骤;
本申请实施例中涉及的“第一条件还满足N′ max与天线口数的比值为正整数”,可以理解为“所述第一条件还满足:
Figure PCTCN2022110422-appb-000831
其中,k 4为正整数,
Figure PCTCN2022110422-appb-000832
表示所述至少一个SRS中的一个SRS对应天线口数”。
在第一SRS对应的N′ max满足与第一SRS对应的天线端口数的比值为非整数的情况下(或者说第一SRS对应的N′ max不满足与第一SRS对应的天线端口数的比值为正整数的情况下),需要使得第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000833
其中,[]为取整函数,
Figure PCTCN2022110422-appb-000834
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000835
表示所述第一SRS对应的循环移位偏移值,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000836
表示所述第一SRS对应的天线端口数,所述第一SRS为所述至少一个SRS中的一个。
可选地,取整函数包括向上取整或向下取整。例如,[3.1]=3,或者,[3.1]=4。
通过上述的方式一至方式四中任意一种或多种方式确定得到的至少一个循环移位偏移值,该至少一个循环移位偏移值与所述至少一个SRS对应的SRS序列相关联,其中,至少一个SRS对应的SRS序列中,对应相同梳齿comb位置的SRS序列之间两两正交。
需要说明的是,对应相同梳齿comb位置的SRS序列之间两两正交,可以是某个SRS对应的多个SRS序列中,对应相同comb位置的SRS序列之间两两正交;或者还可以是多个SRS对应的多个SRS序列中,对应相同comb位置的SRS序列之间两两正交。
上述的循环移位偏移值与SRS序列相关联可以理解为,循环移位偏移值与SRS序列对应的循环移位相关联。具体地,循环移位偏移值用于确定SRS序列对应的循环移位,SRS序列的循环移位和基序列用于SRS序列的生成,或用于SRS序列的确定,所以循环移位偏移值可以理解为用于生成SRS序列,或者用于确定SRS序列。例如,第一SRS对应的循环移位偏移值用于该第一SRS对应的一个或多个SRS序列的生成,示例性地,第一SRS对应的多个SRS序列的基序列相同的条件下,该第一SRS对应的一个或多个SRS序列通过不同的CS区分。示例性地,第一SRS对应的多个SRS序列的基序列相同的条件下,该第一SRS对应的一个或多个SRS序列也可以通过不同的comb位置区分,本申请对此不做限制。
需要说明的是,本申请实施例中涉及的comb位置可以理解为SRS的天线端口映射的comb位置,其中,comb位置可以RE位置,例如,某个OFDM符号上,在SRS所在的第一个RB或某个RB中的RE的起始位置,RE起始位置为小于comb的自然数,如对于comb为6的情况下,RE起始位置为0,1,2,3,4,5;还如对于comb为8的情况下,RE起始位置为0,1,…,7;又如对于comb为12的情况下,RE起始位置为0,1,…,11。
另外,当映射到不同的comb位置时,可以理解为映射到某个OFDM符号上,映射到一个RB中不同的RE起始位置,在某个OFDM符号映射到不同的comb位置,即映射到频分复用FDM的RE上。
映射到相同的comb位置时,可以理解为映射到索引相同的comb,或者说映射到同个RB中索引相同的comb。
本申请实施例中不对相同comb位置的多个SRS序列做赘述,简单理解为映射到某个OFDM符号上,映射到一个RB中相同的RE起始位置,在某个OFDM符号映射到不同的comb位置,即映射到频分复用FDM的RE上,详细的说明可以参考目前相关技术中的介绍。
上述的至少一个SRS对应的相同comb位置的多个SRS序列可以是一个SRS对应的多个SRS序列位于相同的comb位置,也可以是多个SRS分别对应的多个SRS序列位于相同的comb位置,例如,第一SRS对应的第一SRS序列和第二SRS对应的第二SRS序列位于相同的comb位置。
进一步地,网络设备确定得到上述的至少一个循环移位偏移值之后,需要将至少一 个循环移位偏移值发送给对应的终端设备。
示例性地,上述的至少一个循环移位偏移值为一个SRS对应的一个循环移位偏移值,则网络设备将该一个循环移位偏移值发送给该一个SRS对应的终端设备,其中,SRS对应的终端设备可以理解为发送该SRS的终端设备。
示例性地,上述的至少一个循环移位偏移值为多个SRS对应的多个循环移位偏移值,则网络设备将该多个循环移位偏移值分别发送给该多个SRS对应的多个终端设备。
示例性地,上述的至少一个循环移位偏移值为多个SRS对应的多个循环移位偏移值,则网络设备将该多个循环移位偏移值发送给该多个SRS对应的某个终端设备。
为了便于描述,下文中以某个终端设备接收到对应的SRS对应的一个循环移位偏移值为例进行说明,图5所示的方法流程还包括:
S520,网络设备向终端设备发送第一SRS对应的循环移位偏移值,或者说终端设备接收来自网络设备的第一SRS对应的循环移位偏移值。
其中,第一SRS对应的循环移位偏移值是基于上述的第一条件确定。
第一条件的具体形式可以参考上述的方式一至方式四,这里不再赘述。
终端设备接收到第一SRS对应的循环移位偏移值之后,生成所述第一SRS对应的SRS序列,图5所示的方法流程还包括:
S530,终端设备生成第一SRS对应的SRS序列。
其中,该第一SRS对应的循环移位偏移值与该第一SRS对应的序列相关联,所述第一SRS对应的一个或多个SRS序列的序列长度为M,所述M与第一最大循环移位数的比值为非整数,其中,所述SRS序列中,对应相同梳齿comb位置的多个SRS序列之间两两正交。
示例性地,第一SRS对应的SRS序列可以是一个或者多个SRS序列。
示例性地,在第一条件为上述方式一所述的情况下:
所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000837
其中,
Figure PCTCN2022110422-appb-000838
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000839
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000840
表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000841
表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列为所述第一SRS对应的SRS序列中的一个,所述
Figure PCTCN2022110422-appb-000842
满足所述第一条件,所述第一条件满足:
Figure PCTCN2022110422-appb-000843
其中,k为非负整数。
示例性地,在第一条件为上述方式二所述的情况下:
所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000844
所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口j对应的SRS 序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000845
其中,
Figure PCTCN2022110422-appb-000846
表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000847
表示所述第一SRS对应的天线端口j对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000848
表示所述第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000849
表示所述第一最大循环移位数,p i表示所述天线端口i的序号,p j表示所述天线端口j的序号,
Figure PCTCN2022110422-appb-000850
表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述第一SRS对应的SRS序列中相异的SRS序列,所述
Figure PCTCN2022110422-appb-000851
Figure PCTCN2022110422-appb-000852
满足所述第一条件,所述第一条件满足:
Figure PCTCN2022110422-appb-000853
其中,k 1为正整数。
示例性地,在第一条件为上述方式四所述的情况下:终端设备确定该第一SRS对应的第二最大循环移位数N′ max。所述N′ max满足所述第一条件,所述第一条件满足:所述M与所述N′ max的比值为整数。
N′ max的详细描述可以参考上述方式四中的描述,这里不再赘述。
示例性地,终端设备可以基于预定义的方式或者高层信令配置的方式获知N′ max
可选地,该终端设备可以在不同的SRS resource上发送不同的SRS,或者说终端设备在不同的OFDM符号上发送不同的SRS,图5所示的方法还可以包括:
S540,网络设备向终端设备发送第二SRS对应的循环移位偏移值,或者说终端设备接收来自网络设备的第二SRS对应的循环移位偏移值。
需要说明的是,第一SRS对应的循环移位偏移值和第二SRS对应的循环移位偏移值可以通过一条消息,也可以通过两条消息,发送给终端设备,本申请对此不做限定。
其中,该第二SRS对应的循环移位偏移值基于该第一条件确定,第二SRS和第一SRS为不同的SRS。
终端设备接收到第二SRS对应的循环移位偏移值之后,可以生成所述第二SRS对应的SRS序列,图5所示的方法流程还包括:
S550,终端设备生成第二SRS对应的SRS序列。
其中,该第二SRS对应的循环移位偏移值与该第二SRS对应的SRS序列相关联,该第二SRS对应的SRS序列的序列长度为该M,该第二SRS对应的SRS序列中,对应相同comb位置的多个SRS序列之间两两正交,或者,对应相同comb位置的该第二SRS对应的SRS序列与该第一SRS对应的SRS序列之间两两正交。
示例性地,第二SRS对应的SRS序列可以是一个或者多个SRS序列。
示例性地,在第一条件为上述方式三所述的情况下:
该第一SRS对应的循环移位偏移值与该第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000854
第二SRS对应的循环移位偏移值与该第二SRS对应的天线端口p对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000855
其中,
Figure PCTCN2022110422-appb-000856
表示该第一SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000857
表示该第二SRS对应的天线端口p对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000858
表示该第一SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000859
表示该第二SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000860
表示该第一最大循环移位数,p i表示该天线端口i的序号,p p表示该天线端口p的序号,
Figure PCTCN2022110422-appb-000861
表示该第一SRS对应的天线端口数,
Figure PCTCN2022110422-appb-000862
表示该第二SRS对应的天线端口数,该天线端口i对应的SRS序列与该天线端口p对应的SRS序列为不同SRS对应的相同comb位置的SRS序列,该
Figure PCTCN2022110422-appb-000863
Figure PCTCN2022110422-appb-000864
满足该第一条件,该第一条件满足:
Figure PCTCN2022110422-appb-000865
其中,k 2为正整数。
示例地,在第一条件满足:
Figure PCTCN2022110422-appb-000866
条件下,若SRS(如,上述的第一SRS,或第二SRS)对应的序列长度M和SRS对应的最大循环移位数
Figure PCTCN2022110422-appb-000867
的最大公约数与SRS对应的天线端口数的比值为非整数,终端不期待被配置除
Figure PCTCN2022110422-appb-000868
以外的所有可能
Figure PCTCN2022110422-appb-000869
的取值,以保证SRS对应的天线端口对应的SRS序列正交。
其中,
Figure PCTCN2022110422-appb-000870
表示上述的第一最大循环移位数,M为SRS对应的序列长度,k 4为非负整数,
Figure PCTCN2022110422-appb-000871
表示第SRS对应的循环移位偏移值。
所述SRS对应的循环移位偏移值与所述SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000872
其中,
Figure PCTCN2022110422-appb-000873
表示所述SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000874
表示所述SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000875
表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000876
表示所述SRS对应的天线端口数,所述天线端口i对应的SRS序列为所述SRS对应的SRS序列中的一个。
可以理解的是,以第一条件满足:
Figure PCTCN2022110422-appb-000877
条件为例,阐述终端侧生成SRS对应的SRS序列的规则。所述第一条件适用于方式一至方式四中定义的第一条件的一种或多种,在此不再赘述。
或者,
在第一条件满足:
Figure PCTCN2022110422-appb-000878
条件下,若SRS(如,上述的第一SRS,或第二SRS)对应的序列长度M和SRS对应的最大循环移位数
Figure PCTCN2022110422-appb-000879
的最大公约数(第一最大公约数)与SRS对应的天线端口数的比值为非整数,终端设备生成SRS对应的SRS序列时可以通过限制SRS对应的循环移位偏移值与所述SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000880
以保证SRS对应的天线端口对应的SRS序列正交。
其中,
Figure PCTCN2022110422-appb-000881
表示上述的第一最大循环移位数,M为SRS对应的序列长度,k 4为非负整数。
Figure PCTCN2022110422-appb-000882
表示所述SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000883
表示所述SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000884
表示所述第一最大循环移位数,p i表示所述天线端口 i的序号,
Figure PCTCN2022110422-appb-000885
表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列为所述SRS对应的SRS序列中的一个,K表示所述SRS对应的梳齿个数。
例如,
Figure PCTCN2022110422-appb-000886
其中,
Figure PCTCN2022110422-appb-000887
表示所述SRS对应的天线端口数,R表示所述第一最大公约数与
Figure PCTCN2022110422-appb-000888
的最大公约数。
可以理解的是,示例以第一条件满足:
Figure PCTCN2022110422-appb-000889
条件为例,阐述终端侧生成SRS对应的SRS序列的规则。所述第一条件适用于方式一至方式四中定义的第一条件的一种或多种,在此不再赘述。
示例地,在第一条件满足:
Figure PCTCN2022110422-appb-000890
条件下,若SRS(第一SRS和/或第二SRS)对应的序列长度M和最大循环移位数
Figure PCTCN2022110422-appb-000891
的最大公约数与SRS对应的天线端口数的比值为非整数,终端不期待被配置除
Figure PCTCN2022110422-appb-000892
以外的所有可能
Figure PCTCN2022110422-appb-000893
的取值,以保证SRS对应的天线端口对应的SRS序列正交。
其中,
Figure PCTCN2022110422-appb-000894
为第一SRS对应的循环移位偏移值,k 6为非负整数,
Figure PCTCN2022110422-appb-000895
表示该第一最大循环移位数,M表示该序列长度,
Figure PCTCN2022110422-appb-000896
为第二SRS对应的循环移位偏移值。
所述SRS对应的循环移位偏移值与所述SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000897
其中,
Figure PCTCN2022110422-appb-000898
表示所述SRS(第一SRS或第二SRS)对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000899
表示所述SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000900
表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000901
表示所述SRS对应的天线端口数,所述天线端口i对应的SRS序列为所述SRS对应的SRS序列中的一个。
或者,
在第一条件满足:
Figure PCTCN2022110422-appb-000902
条件下,若SRS(如,上述的第一SRS,或第二SRS)对应的序列长度M和SRS对应的最大循环移位数
Figure PCTCN2022110422-appb-000903
的最大公约数(第一最大公约数)与SRS对应的天线端口数的比值为非整数,终端设备生成SRS对应的SRS序列时可以通过限制SRS对应的循环移位偏移值与所述SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000904
以保证SRS对应的天线端口对应的SRS序列正交。
其中,
Figure PCTCN2022110422-appb-000905
表示上述的第一最大循环移位数,M为SRS对应的序列长度,k 4为非负整数。
Figure PCTCN2022110422-appb-000906
表示所述SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000907
表示所述SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000908
表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
Figure PCTCN2022110422-appb-000909
表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列为所述SRS对应的SRS序列中的一个,K表示所述SRS对应的梳齿个数。
例如,
Figure PCTCN2022110422-appb-000910
其中,
Figure PCTCN2022110422-appb-000911
表示所述SRS对应的天线端口数,R表示所述第一最大公约数与
Figure PCTCN2022110422-appb-000912
的最大公约数。
示例性地,该实施例中,终端设备可以判断接收到的SRS对应的循环移位偏移值是否 是满足第一条件的。
例如,终端设备根据接收到SRS对应的循环移位偏移值确定该SRS对应的天线端口i对应的SRS序列的循环移位。若天线端口i对应的SRS序列的循环移位满足第一条件,终端设备确定接收到的SRS对应的循环移位偏移值是基于第一条件确定的;若天线端口i对应的SRS序列的循环移位不满足第一条件,终端设备确定接收到的SRS对应的循环移位偏移值不是基于第一条件确定的。
可选地,若终端设备判断接收到的SRS对应的循环移位偏移值不是基于第一条件确定的,终端设备可以主动请求网络设备基于第一条件确定SRS对应的循环移位偏移值。或者,终端设备可以向网络设备反馈接收循环移位偏移值不满足第一条件的信息。
例如,终端设备向网络设备发送请求消息,该请求消息用于请求基于第一条件确定SRS对应的循环移位偏移值;
或者,终端设备接收该第一SRS对应的第一循环移位偏移值,发送第一反馈信息,反馈该第一循环移位偏移值为基于预设条件确定的或者该第一循环移位偏移值不是基于预设条件确定的中的一种。
图5所示的实施例中,在至少一个SRS对应的SRS序列的长度为M,该M与第一最大循环移位数的比值为非整数的情况下,不同SRS或不同天线端口间配置不同CS形成的SRS序列不正交。网络设备基于第一条件确定该至少一个SRS分别对应的至少一个循环移位偏移值,该至少一个循环移位偏移值与SRS序列相关联,以使得SRS序列中,对应相同comb位置的SRS序列之间两两正交,从而实现SRS序列正交。
本申请还提供一个实施例,针对:Legacy SRS对应的SRS序列和PF SRS对应的SRS序列在相同comb位置,相同OFDM符号场景传输,但是传输序列长度不同,如何实现对应相同comb位置的Legacy SRS对应的SRS序列和PF SRS对应的SRS序列的正交复用。
一种可能的实现方式,考虑相同OFDM符号下,对应相同RE位置的Legacy SRS序列符号组成的新的SRS序列与PF SRS序列正交,针对该实现方式,有两种可能的实现方法:
实现方法1,限制部分频率监听系数P F
实现方法2,限制配置循环移位偏移值,
来实现上述相同OFDM符号下,Legacy SRS对应的SRS序列与PF SRS序列正交。
相同OFDM符号条件下,与PF SRS序列符号对应相同RE位置的Legacy SRS序列符号组成的新的SRS序列可以表示为:
Figure PCTCN2022110422-appb-000913
其中,Legacy SRS在同一OFDM符号对应的SRS序列可表示为:
Figure PCTCN2022110422-appb-000914
同理,在相同OFDM符号,PF SRS对应的SRS序列可表示为:
Figure PCTCN2022110422-appb-000915
具体含义,如图7示,图7中左图为Legacy SRS的示意图,图7中右图为PF SRS,且Legacy SRS对应的SRS序列与PF SRS对应的SRS序列在相同comb起始位置复用。对于配置CSα 0≠α 1,序列ri 0和序列r 1正交需满足:
Figure PCTCN2022110422-appb-000916
与SRS序列正交部分内容类似,可以得出结论如下:
序列r′ 0和序列r 1正交需满足条件
Figure PCTCN2022110422-appb-000917
其中,
Figure PCTCN2022110422-appb-000918
表示Legacy UE的天线端口p i对应的循环移位,
Figure PCTCN2022110422-appb-000919
表示PF UE的天线端口p j对应的循环移位,
Figure PCTCN2022110422-appb-000920
表示第一最大循环移位个数,k1为正整数。
对应实现方式1,为实现任意Legacy SRS配置循环移位索引
Figure PCTCN2022110422-appb-000921
Figure PCTCN2022110422-appb-000922
PF SRS配置循环移位索引
Figure PCTCN2022110422-appb-000923
Figure PCTCN2022110422-appb-000924
通过限制P F配置,使其对于任意Legacy UE配置循环移位,PF UE满足条件:
Figure PCTCN2022110422-appb-000925
其中,k为正整数。
实现方式1可以理解为,部分频率监听SRS序列长度为第一最大循环移位数的整数倍,或者说部分频率监听SRS序列长度与第一最大循环移位数的比值为正数时,在相同OFDM符号下Legacy SRS与PF SRS正交。
实现方式2与图5所示的方法类似,通过限制legacy UE和PF UE配置循环移位
Figure PCTCN2022110422-appb-000926
Figure PCTCN2022110422-appb-000927
来满足公式(3-1)所述的正交条件,示例性地,可限制Legacy SRS配置循环移位索引
Figure PCTCN2022110422-appb-000928
和PF SRS配置循环移位索引
Figure PCTCN2022110422-appb-000929
Legacy SRS对应的循环移位偏移值与Legacy SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000930
PF SRS对应的循环移位偏移值与PF SRS对应的天线端口q对应的SRS序列的循环移位,满足关系式:
Figure PCTCN2022110422-appb-000931
其中,
Figure PCTCN2022110422-appb-000932
表示Legacy SRS对应的天线端口i对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000933
表示PF SRS对应的天线端口q对应的SRS序列的循环移位,
Figure PCTCN2022110422-appb-000934
表示Legacy SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000935
表示PF SRS对应的循环移位偏移值,
Figure PCTCN2022110422-appb-000936
表示所述第一最大循环移位数,p i表示Legacy SRS对应的天线端口i的序号,p q表示PF SRS对应的天线端口q的序号,
Figure PCTCN2022110422-appb-000937
表示Legacy SRS对应的天线端口数,
Figure PCTCN2022110422-appb-000938
表示PF SRS应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列为所述SRS序列中不同SRS对应的SRS序列,
所述
Figure PCTCN2022110422-appb-000939
Figure PCTCN2022110422-appb-000940
满足:
Figure PCTCN2022110422-appb-000941
其中,k 2为正整数,所述
Figure PCTCN2022110422-appb-000942
表示所述序列长度。
或者,
所述
Figure PCTCN2022110422-appb-000943
Figure PCTCN2022110422-appb-000944
满足:
Figure PCTCN2022110422-appb-000945
其中,k为非负整数,所述
Figure PCTCN2022110422-appb-000946
表示所述序列长度。
上述实现方式考虑在相同OFDM符号条件下,通过限定配置循环移位偏移值,或者限定部分频率监听系数P F的方式实现对应相同频域位置的Legacy SRS对应的SRS序列与PF SRS对应的SRS序列正交,下面,我们将介绍第二种实现方式,即:
对于PF UE,联合不同OFDM符号传输的SRS序列联合组成长度为M ZC的SRS序列(对应一个OFDM符号,传输的SRS序列长度为
Figure PCTCN2022110422-appb-000947
),基于现有机制,可实现与Legacy SRS对应的长度为M ZC的SRS序列正交。
对于PF UE,联合不同OFDM符号传输的SRS序列组成新的SRS序列的方式需依赖于部分频率监听场景下起始位置跳频的机制,具体背景介绍如下:
部分频率监听在降低监听RB数基础上,通过power bosting提升SRS上行覆盖性能。其中,未传输SRS对应的RB对应的信道可以通过差分的方式得到信道估计结果,但是,相比于基于SRS进行信道估计的方法来说,对应信道估计精度有所降低。为保证SRS配置带宽内信道估计精度的平衡,104b-e次会议中,有公司提案提出部分频率监听场景下起始位置跳频的机制,即,在不同OFDM符号上,对应RB起始位置对应改变,如图8所示,图8是部分频率监听场景下RB起始位置跳频的示意图,对应RB起始位置pattern为{0,2,1,3,0,2,1,3,…}:
同时,考虑到在不执行组跳频和序列跳频disable场景下(协议对应描述groupOrSequenceHopping等于'neither',该场景下,对应SRS基序列不会随时间(OFDM符号))变化。因此,一定时间内(RB起始位置跳频周期)信道没有明显变化的条件下,对于部分频率监听用户,可将对应不同OFDM符号的SRS序列联合,实现SRS配置带宽内的联合信道估计。对于部分频率监听用户,网络设备可以在轮询完所有RB起始位置,即,经过多个OFDM符号,UE实现在SRS配置带宽的所有RB位置上发送SRS序列,对于配置CS为α 1,SRS配置带宽对应的序列长度为M ZC,部分频率监听系数为P F场景下,上述SRS序列可表示为:
Figure PCTCN2022110422-appb-000948
其中,
Figure PCTCN2022110422-appb-000949
对应一个OFDM符号传输的SRS序列。
基于现有循环移位机制,易得:
Figure PCTCN2022110422-appb-000950
即实现Legacy SRS对应的SRS序列r 0和PF SRS对应的SRS序列r 2的正交复用。
该实现方式对配置循环移位偏移值以及部分频率监听系数配置没有限制,但只限于不执行组跳频和序列跳频的场景,即,对应SRS序列的基序列不会随时间变化。同时,上述实现方式适用于在RB起始位置跳频周期内,信道没有明显变化场景。若信道Doppler spread较大,即信道随时间变化明显,该实施例性能较差。
本申请还提供另一个实施例:针对部分频率监听场景下,部分频率监听带宽的起始RB位置,104b-e会议确定,其起始RB索引满足:
Figure PCTCN2022110422-appb-000951
其中,k F∈{0,...,P F-1},对应起始位置以SRS配置带宽
Figure PCTCN2022110422-appb-000952
内某个位置为参考点。
示例性的,SRS配置带宽
Figure PCTCN2022110422-appb-000953
内,与SRS配置带宽
Figure PCTCN2022110422-appb-000954
最小RB位置(对应频域位置最小)相隔N offset个RB对应的RB位置,或者,与SRS配置带宽
Figure PCTCN2022110422-appb-000955
最大RB位置((对应频域位置最大))相隔N offset个RB对应的RB位置。
如背景所述,104b-e会议还对部分频率监听带宽进行了讨论,其中一个可能方案为:在
Figure PCTCN2022110422-appb-000956
为整数,或者为大于等于4的整数基础上,其中,
Figure PCTCN2022110422-appb-000957
表示SRS配置带宽,P F为部分频率监听系数,定义部分频率监听带宽
Figure PCTCN2022110422-appb-000958
满足:
Figure PCTCN2022110422-appb-000959
其中,
Figure PCTCN2022110422-appb-000960
为4的整数倍,f为函数。
示例性地,f(n)表示不大于n且为4的整数倍的整数中,取值最大的整数。
示例性地,f(n)表示不小于n且为4的整数倍的整数中,取值最小的整数。
示例性地,f(n)表示4的整数倍的整数中,与n的绝对差值最小的整数。
若部分频率监听需通过函数操作限定为4的整数倍,则RB起始位置索引的表示方法无法适用该场景,以SRS配置带宽
Figure PCTCN2022110422-appb-000961
部分频率监听系数P F=4,为例:
示例性地,对应部分频率监听带宽
Figure PCTCN2022110422-appb-000962
若基于上述结论,则对应部分频率监听的起始RB位置索引满足:
N offset=17k F,      (4-2)
与部分频率监听带宽
Figure PCTCN2022110422-appb-000963
的限定条件不相符,从而可能会造成相同RB位置重复监听的结果,增加信道估计开销。
从另一方面来说,若定义
Figure PCTCN2022110422-appb-000964
则可能会导致部分RB位置没有SRS传输,降低信道估计精度的问题。
为解决上述问题,该实施例从定义起始RB位置索引表达式,或限定部分频率监听带宽两个角度,来实现部分频率监听带宽限定为4的整数倍的场景下,起始RB位置索引与对应部分频率监听带宽相对应。
下述将结合图9详细介绍该实施例对应方案:
图9中的(a)示出确定起始RB位置的流程。
图9中的(a)是本申请实施例提供的另一种无线通信方法的示意性流程图。包括以下步骤:
S910,网络设备基于第二条件确定探测参考信号SRS对应的起始资源块RB位置。
其中,该SRS对应的第一带宽与4的比值为非整数。
具体地,第一带宽可以基于配置带宽
Figure PCTCN2022110422-appb-000965
和部分频率监听系数P F确定,
Figure PCTCN2022110422-appb-000966
也可以为配置带宽
Figure PCTCN2022110422-appb-000967
或者还可以是SRS对应的其他带宽。
示例性地,
Figure PCTCN2022110422-appb-000968
可以称为部分频率监听带宽。
S920,终端设备基于第二条件确定探测参考信号SRS对应的起始资源块RB位置。
其中,该SRS对应的第一带宽与4的比值为非整数。
示例性地,第二条件可以通过协议预定义的方式配置在终端设备和网络设备中的。
示例性地,第二条件可以通过协商的方式确定。
示例性地,第二条件可以是其他设备预配置在终端设备和网络设备中的。
示例性地,第二条件可以是发送端设备确定的,然后通过信令通知到接收端设备的。其中,终端设备和网络设备一个为发送端设备,另一个接收端设备。
网络设备和终端设备确定SRS对应的起始资源块RB位置之后,网络设备基于起始RB位置接收该SRS,终端设备基于起始RB位置发送该SRS,图9中的(b)还包括步骤:
图9中的(b)会以SRS配置带宽
Figure PCTCN2022110422-appb-000969
内,与SRS配置带宽
Figure PCTCN2022110422-appb-000970
最大RB位置(对应频域位置最大)为参考点,SRS配置带宽
Figure PCTCN2022110422-appb-000971
部分频率监听系数P F=4,对下述方案下的RB起始位置做示例性描述。
S930,终端设备向网络设备发送该SRS,或者说网络设备接收来自终端设备的SRS。
上述的第二条件包括以下几种可能的实施方式,对应示例在图9(a)中呈现:
实施方式1:
部分频率监听带宽的起始RB位置,其起始RB索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000972
其中,N offset表示该起始RB位置的索引,k F∈{0,...,P F-1}对应配置带宽
Figure PCTCN2022110422-appb-000973
内的子带索引,k F可以由RRC信令配置得到,也可由RRC信令以及协议预定义偏移位置联合确定,还可由一个或多个参数联合确定,均在本发明方案的保护范围之内。
对应起始位置以SRS配置带宽
Figure PCTCN2022110422-appb-000974
内某个位置为参考点,P F表示部分频率监听系数,
Figure PCTCN2022110422-appb-000975
表示该SRS对应的第二带宽,该第二带宽与4的比值为整数。
示例性地,第二带宽可以对应RB数,也可以对应频率带宽,如Hz,MHz,也可以是子载波数,本申请对此不做限定。
第二带宽基于配置带宽
Figure PCTCN2022110422-appb-000976
和部分频率监听系数P F以及函数f(n)中的至少一项联合确定的,满足4的整数倍的条件。第一带宽与第二带宽可以相同,也可以不同。
示例性的,SRS配置带宽
Figure PCTCN2022110422-appb-000977
内,与SRS配置带宽
Figure PCTCN2022110422-appb-000978
最小RB位置(对应频域位置最小)相隔N offset个RB对应的RB位置,或者,与SRS配置带宽
Figure PCTCN2022110422-appb-000979
最大RB位置(对应频域位置最大)相隔N offset个RB对应的RB位置。
定义部分频率监听带宽
Figure PCTCN2022110422-appb-000980
满足:
Figure PCTCN2022110422-appb-000981
其中,
Figure PCTCN2022110422-appb-000982
为4的整数倍。f(n)为函数。
示例性地,f(n)表示不大于n且为4的整数倍的整数中,取值最大的整数。
示例性地,f(n)表示不小于n且为4的整数倍的整数中,取值最小的整数。
示例性地,f(n)表示4的整数倍的整数中,与n的绝对差值最小的整数。
具体方案如图9中的case-1所示,
其中,示例性的部分频率监听带宽
Figure PCTCN2022110422-appb-000983
基于起始RB索引N offset确定部分频率监听位置,其中,在SRS配置带宽内,部分RB(4)个RB上没有对应SRS传输。
实施方式2:
部分频率监听带宽的起始RB位置,其起始RB索引满足满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000984
其中,m offset为RB偏移值,k F∈{0,...,P F-1},对应起始位置以SRS配置带宽
Figure PCTCN2022110422-appb-000985
内某个位置为参考点。示例性的,SRS配置带宽
Figure PCTCN2022110422-appb-000986
内,与SRS配置带宽
Figure PCTCN2022110422-appb-000987
最小RB位置(对应频域位置最小)相隔N offset个RB对应的RB位置,或者,与SRS配置带宽
Figure PCTCN2022110422-appb-000988
最大RB位置((对应频域位置最大))相隔N offset个RB对应的RB位置。
定义部分频率监听带宽
Figure PCTCN2022110422-appb-000989
满足:
Figure PCTCN2022110422-appb-000990
其中,
Figure PCTCN2022110422-appb-000991
为4的整数倍。f为函数。
具体方案如图9中的case-2所示,
其中,示例性的部分频率监听带宽
Figure PCTCN2022110422-appb-000992
基于起始RB索引N offset和RB偏移值联合确定部分频率监听位置。
实施方式3:
部分频率监听带宽的起始RB位置,其起始RB索引满足该第二条件,该第二条件满足:
Figure PCTCN2022110422-appb-000993
其中,m offset为RB偏移值,k F∈{0,...,P F-1},对应起始位置以SRS配置带宽
Figure PCTCN2022110422-appb-000994
内某个位置为参考点。
定义部分频率监听带宽
Figure PCTCN2022110422-appb-000995
满足:
Figure PCTCN2022110422-appb-000996
其中,
Figure PCTCN2022110422-appb-000997
为4的整数倍。f为函数,f(n)表示不大于n且为4的整数倍的整数中,取值最大的整数。
具体方案如图9中的case-3所示,
其中,示例性的部分频率监听带宽
Figure PCTCN2022110422-appb-000998
基于起始RB索引N offset对应的是以17个RB的带宽范围,在该场景下,相邻N offset对应的部分频率监听带宽不连续,有1个RB的间隔。
实施方式4:
定义两类或多类部分频率监听带宽
Figure PCTCN2022110422-appb-000999
以两类带宽为例,第一部分频率监听带宽满足:
Figure PCTCN2022110422-appb-001000
第二部分频率监听带宽满足:
Figure PCTCN2022110422-appb-001001
其中,
Figure PCTCN2022110422-appb-001002
为4的整数倍,f 1(n)、f 2(n)为函数。
示例性地,f 1(n)表示不大于n且为4的整数倍的整数中,取值最大的整数。f 2(n)表示不小于n且为4的整数倍的整数中,取值最小的整数。
部分频率监听带宽的起始RB位置,其起始RB索引满足该第二条件,该第二条件满 足:
Figure PCTCN2022110422-appb-001003
其中,k F∈{0,...,P F-1},对应起始位置以SRS配置带宽
Figure PCTCN2022110422-appb-001004
内某个位置为参考点,
Figure PCTCN2022110422-appb-001005
为第i个部分频率监听带宽子带,在存在两类部分频率监听条件下,
Figure PCTCN2022110422-appb-001006
等于第一类部分频率监听带宽,或者,
Figure PCTCN2022110422-appb-001007
等于第二类部分频率监听带宽,
Figure PCTCN2022110422-appb-001008
与SRS对应的配置带
Figure PCTCN2022110422-appb-001009
满足:
Figure PCTCN2022110422-appb-001010
该f i(n)包括以下函数中的一种或多种:
f i(n)表示不大于n且为4的整数倍的整数中,取值最大的整数;或者,
f i(n)表示不小于n且为4的整数倍的整数中,取值最小的整数;或者,
f i(n)表示4的整数倍的整数中,与n的差值的绝对值最小的整数。
一种可能的实现方式,起始RB位置的索引需要满足上述的第二条件(如,
Figure PCTCN2022110422-appb-001011
),以使终端和网络侧关于SRS对应的RB起始位置的理解一致,避免出现部分RB监听不到的情况,提升信道估计精度,进而提升系统覆盖和容量性能。
具体方案如图9中的case-4所示。
应理解,本申请实施例中的图5至图9所示的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。例如,具体实施例中的流程均以参考信号为SRS为例进行描述,并不限定本申请提供的无线通信方法只能适用于SRS配置,其他涉及到确定循环移位偏移值的流程中也同样适用。
还应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
还应理解,在上述一些实施例中,主要以现有的网络架构中的设备为例进行了示例性说明(如网络设备,终端设备等),应理解,对于设备的具体形式本申请实施例不作限定。例如,在未来可以实现同样功能的设备都适用于本申请实施例。
可以理解的是,上述各个方法实施例中,由网络设备实现的方法和操作,也可以由可用于网络设备的部件实现;由终端设备实现的方法和操作,也可以由可用于终端设备的部件实现。
以上,结合图5至图9详细说明了本申请实施例提供的无线通信方法。上述无线通信方法主要从网络设备和终端设备之间交互的角度进行了介绍。可以理解的是,网络设备和终端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。
本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以下,结合图10至图13详细说明本申请实施例提供的无线通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
参见图10,图10是本申请提出的无线通信装置1000的示意图。如图10所示,装置1000包括接收单元1010和处理单元1020。
接收单元1010,用于接收第一探测参考信号SRS对应的循环移位偏移值,该第一SRS对应的循环移位偏移值基于第一条件确定;
处理单元1020,用于生成该第一SRS对应的SRS序列,该第一SRS对应的循环移位偏移值与该第一SRS对应的SRS序列相关联,
其中,该第一SRS对应的一个或多个SRS序列的序列长度与第一最大循环移位数的比值为非整数,其中,该SRS序列中,对应相同梳齿comb位置的多个SRS序列之间两两正交。
装置1000和方法实施例中的终端设备对应,装置1000可以是方法实施例中的终端设备,或者方法实施例中的终端设备内部的芯片或功能模块。装置1000的相应单元用于执行图5所示的方法实施例中由终端设备执行的相应步骤。
其中,装置1000中的处理单元1020用于执行方法实施例中终端设备对应与处理相关的步骤。例如,执行图5中生成第一SRS对应的SRS序列的步骤S530、执行图5中生成第二SRS对应的SRS序列的步骤S550。
装置1000中的接收取单元1010用于执行方法实施例中终端设备接收步骤。例如,执行图5中接收第一SRS对应的循环移位偏移值的步骤S520、执行图5中接收第二SRS对应的循环移位偏移值的步骤S540、执行图5中接收高层信令的步骤S511、执行图5中接收第一指示信息的步骤S512。
装置1000还可以包括发送单元,用于执行方法实施例中终端设备发送的步骤。例如,向其他设备发送信息。发送单元和接收单元1010可以组成收发单元,同时具有接收和发送的功能。其中,处理单元1020可以是至少一个处理器。发送单元可以是发射器或者接口电路,接收单元1010可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
可选的,装置1000还可以包括存储单元,用于存储数据和/或信令,处理单元1020、发送单元、和接收单元1010可以与存储单元交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图11,图11是适用于本申请实施例的用终端设备1100的结构示意图。该终端设备1100可应用于图1所示出的系统中。为了便于说明,图11仅示出了终端设备的主要 部件。如图11所示,终端设备1100包括处理器、存储器、控制电路、天线以及输入输出装置。处理器用于控制天线以及输入输出装置收发信号,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请提出的用于注册的方法中由终端设备执行的相应流程和/或操作。此处不再赘述。
本领域技术人员可以理解,为了便于说明,图1100仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
参见图12,图12是本申请提出的无线通信装置1200的示意图。如图12所示,装置1200包括处理单元1210和发送单元1220。
处理单元1210,用于确定至少一个探测参考信号SRS分别对应的至少一个循环移位偏移值,其中,该至少一个SRS对应的SRS序列的长度为M,该M与第一最大循环移位数的比值为非整数;
发送单元1220,用于发送该至少一个循环移位偏移值,该至少一个循环移位偏移值与该SRS序列相关联,其中,该SRS序列中,对应相同梳齿comb位置的SRS序列之间两两正交。
装置1200和方法实施例中的网络设备对应,装置1200可以是方法实施例中的网络设备,或者方法实施例中的网络设备内部的芯片或功能模块。装置1200的相应单元用于执行图5所示的方法实施例中由网络设备执行的相应步骤。
其中,装置1200中的处理单元1210用于执行方法实施例中网络设备内部对应于处理相关的步骤。例如,执行图5中基于第一条件确定至少一个SRS分别对应的至少一个循环移位偏移值的步骤S510
装置1200中的发送单元1220,用于执行网络设备发送相关的步骤。例如,执行图5中发送第一SRS对应的循环移位偏移值的步骤S520、执行图5中发送第二SRS对应的循环移位偏移值的步骤S540、执行图5中发送高层信令的步骤S512、执行图5中发送第一指示信息的步骤S512。
装置1200还可以包括接收单元,用于执行方法实施例中网络设备的接收步骤。接收单元和发送单元1220可以组成收发单元,同时具有接收和发送的功能。其中,处理单元1210可以是至少一个处理器。发送单元可以是发射器或者接口电路。接收单元可以是接收器或者接口电路。接收器和发射器可以集成在一起组成收发器或者接口电路。
可选的,装置1200还可以包括存储单元,用于存储数据和/或信令,处理单元1210、发送单元1220、和接收单元可以与存储单元交互或者耦合,例如读取或者调用存储单元中的数据和/或信令,以使得上述实施例的方法被执行。
以上各个单元可以独立存在,也可以全部或者部分集成。
参见图13,图13是适用于本申请实施例的网络设备1300的结构示意图,可以用于实现上述用于信道测量的方法中的网络设备的功能。可以为网络设备的结构示意图。
一种可能的方式中,例如在5G通信系统中的某些实现方案中,网络设备1300可以包括CU、DU和AAU,相比于LTE通信系统中的接入网设备由一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1301和一个或多个基带单元(base band unit,BBU)来说原BBU的非实时部分将分割出来,重新定义为CU,负责处理非实时协议和服务、 BBU的部分物理层处理功能与原RRU及无源天线合并为AAU、BBU的剩余功能重新定义为DU,负责处理物理层协议和实时服务。简而言之,CU和DU,以处理内容的实时性进行区分、AAU为RRU和天线的组合。
CU、DU、AAU可以采取分离或合设的方式,所以,会出现多种网络部署形态,一种可能的部署形态与传统4G接入网设备一致,CU与DU共硬件部署。应理解,图13只是一种示例,对本申请的保护范围并不限制,例如,部署形态还可以是DU部署在5G BBU机房,CU集中部署或DU集中部署,CU更高层次集中等。
该AAU 1301可以实现收发功能称为收发单元1301。可选地,该收发单元1301还可以称为收发机、收发电路、或者收发器等,其可以包括至少一个天线13011和射频单元13013。可选地,收发单元1301可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。该CU和DU 1302可以实现内部处理功能称为处理单元1302。可选地,该处理单元1302可以对接入网设备进行控制等,可以称为控制器。该AAU 1301与CU和DU 1302可以是物理上设置在一起,也可以物理上分离设置的。
另外,接入网设备不限于图13所示的形态,也可以是其它形态:例如:包括BBU和ARU,或者包括BBU和AAU;也可以为CPE,还可以为其它形态,本申请不限定。
应理解,图13所示的网络设备1300能够实现图5的方法实施例中涉及的网络设备。网络设备1300中的各个单元的操作和/或功能,分别为了实现本申请方法实施例中由网络设备执行的相应流程。为避免重复,此处适当省略详述描述。图13示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
本申请实施例还提供一种通信系统,其包括前述的终端设备和网络设备。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5所示的方法中终端设备执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图5所示的方法中网络设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5所示的方法中终端设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图5所示的方法中网络设备执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的用于信道测量的方法中由终端设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体 现为处理电路或逻辑电路。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的用于信道测量的方法中由网络设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是该芯片上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。所述处理器也可以体现为处理电路或逻辑电路。
上述的芯片也可以替换为芯片系统,这里不再赘述。
本申请中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的 介质。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (44)

  1. 一种无线通信方法,其特征在于,包括:
    基于第一条件确定至少一个探测参考信号SRS分别对应的至少一个循环移位偏移值,其中,所述至少一个SRS对应的SRS序列的序列长度与第一最大循环移位数的比值为非整数;
    发送所述至少一个循环移位偏移值,所述至少一个循环移位偏移值与所述SRS序列相关联,其中,所述SRS序列中,对应相同梳齿comb位置的SRS序列之间两两正交。
  2. 根据权利要求1所述的方法,其特征在于,第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100001
    其中,
    Figure PCTCN2022110422-appb-100002
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100003
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100004
    表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
    Figure PCTCN2022110422-appb-100005
    表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列为所述SRS序列中的一个,
    所述
    Figure PCTCN2022110422-appb-100006
    满足所述第一条件,所述第一条件满足:
    Figure PCTCN2022110422-appb-100007
    其中,k为非负整数,M表示所述序列长度。
  3. 根据权利要求1或2所述的方法,其特征在于,第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100008
    所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口j对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100009
    其中,
    Figure PCTCN2022110422-appb-100010
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100011
    表示所述第一SRS对应的天线端口j对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100012
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100013
    表示所述第一最大循环移位数,p i表示所述天线端口i的序号,p j表示所述天线端口j的序号,
    Figure PCTCN2022110422-appb-100014
    表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述SRS序列中相同SRS对应的两个SRS序列,
    所述
    Figure PCTCN2022110422-appb-100015
    Figure PCTCN2022110422-appb-100016
    满足所述第一条件,所述第一条件满足:
    Figure PCTCN2022110422-appb-100017
    其中,k 1为正整数,M表示所述序列长度。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述至少一个SRS为多个SRS,第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100018
    第二SRS对应的循环移位偏移值与所述第二SRS对应的天线端口q对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100019
    其中,
    Figure PCTCN2022110422-appb-100020
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100021
    表示所述第二SRS对应的天线端口q对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100022
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100023
    表示所述第二SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100024
    表示所述第一最大循环移位数,
    Figure PCTCN2022110422-appb-100025
    表示所述第一SRS对应的天线端口i的序号,
    Figure PCTCN2022110422-appb-100026
    表示所述第二SRS对应的天线端口q的序号,
    Figure PCTCN2022110422-appb-100027
    表示所述第一SRS对应的天线端口数,
    Figure PCTCN2022110422-appb-100028
    表示所述第二SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列为所述SRS序列中不同SRS对应的SRS序列,
    所述
    Figure PCTCN2022110422-appb-100029
    Figure PCTCN2022110422-appb-100030
    满足所述第一条件,所述第一条件满足:
    Figure PCTCN2022110422-appb-100031
    其中,k 2为正整数,M表示所述序列长度。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定第二最大循环移位数N′ max,所述N′ max满足所述第一条件,所述第一条件满足:所述序列长度与所述N′ max的比值为整数。
  6. 根据权利要求5所述的方法,其特征在于,所述N′ max属于第一集合,所述第一集合包含至少一个最大循环移位数。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于指示所述N′ max
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    发送高层信令,所述高层信令用于指示第二集合,或者所述第二集合为预定义的,所述第二集合包含至少一个最大循环移位数,所述N′ max属于所述第二集合。
  9. 根据权利要求5至8中任一项所述的方法,其特征在于,所述第一条件还满足:所述N′ max与所述至少一个SRS中的一个SRS对应的天线端口数的比值为整数。
  10. 根据权利要求5至8中任一项所述的方法,其特征在于,所述第一条件满足:第一SRS对应的N′ max与第一SRS对应的天线端口数的比值为非整数,所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100032
    其中,[]为取整函数,
    Figure PCTCN2022110422-appb-100033
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100034
    表示所述第一SRS对应的循环移位偏移值,p i表示所述天线端口i的序号,
    Figure PCTCN2022110422-appb-100035
    表示所述第一SRS对应的天线端口数,所述第一SRS为所述至少一个SRS中的一个。
  11. 根据权利要求5至10中任一项所述的方法,其特征在于,所述N′ max=6。
  12. 一种无线通信方法,其特征在于,包括:
    接收第一探测参考信号SRS对应的循环移位偏移值,所述第一SRS对应的循环移位偏移值基于第一条件确定,
    生成所述第一SRS对应的SRS序列,所述第一SRS对应的循环移位偏移值与所述 SRS序列相关联,
    其中,所述第一SRS对应的SRS序列的序列长度与第一最大循环移位数的比值为非整数,其中,所述SRS序列中,对应相同梳齿comb位置的SRS序列之间两两正交。
  13. 根据权利要求12所述的方法,其特征在于,所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100036
    其中,
    Figure PCTCN2022110422-appb-100037
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100038
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100039
    表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
    Figure PCTCN2022110422-appb-100040
    表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列为所述SRS序列中的一个,
    所述
    Figure PCTCN2022110422-appb-100041
    满足所述第一条件,所述第一条件满足:
    Figure PCTCN2022110422-appb-100042
    其中,k为非负整数,M表示所述序列长度。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100043
    所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口j对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100044
    其中,
    Figure PCTCN2022110422-appb-100045
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100046
    表示所述第一SRS对应的天线端口j对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100047
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100048
    表示所述第一最大循环移位数,p i表示所述天线端口i的序号,p j表示所述天线端口j的序号,
    Figure PCTCN2022110422-appb-100049
    表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述SRS序列中相异的SRS序列,
    所述
    Figure PCTCN2022110422-appb-100050
    Figure PCTCN2022110422-appb-100051
    满足所述第一条件,所述第一条件满足:
    Figure PCTCN2022110422-appb-100052
    其中,k 1为正整数,M表示所述序列长度。
  15. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    确定所述第一SRS对应的第二最大循环移位数N′ max,所述N′ max满足所述第一条件,所述第一条件满足:所述序列长度与所述N′ max的比值为整数。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示N′ max
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    接收高层信令,所述高层信令用于配置第二集合,或者所述第二集合为预定义的,所述第二集合包含至少一个最大循环移位数,所述N′ max属于所述第二集合。
  18. 根据权利要求15至17任意一项所述的方法,其特征在于,所述第一条件还满足:所述第一SRS对应的N′ max与所述第一SRS对应的天线端口数的比值为整数。
  19. 根据权利要求15至17任意一项所述的方法,其特征在于,所述第一条件满足: 所述第一SRS对应的N′ max与所述第一SRS对应的天线端口数的比值为非整数,所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100053
    其中,[]为取整函数,
    Figure PCTCN2022110422-appb-100054
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100055
    表示所述第一SRS对应的循环移位偏移值,p i表示所述天线端口i的序号,
    Figure PCTCN2022110422-appb-100056
    表示所述第一SRS对应的天线端口数。
  20. 根据权利要求15至19中任一项所述的方法,其特征在于,所述N′ max=6。
  21. 一种无线通信装置,其特征在于,包括:
    处理单元,用于确定至少一个探测参考信号SRS分别对应的至少一个循环移位偏移值,其中,所述至少一个SRS对应的SRS序列的序列长度与第一最大循环移位数的比值为非整数;
    发送单元,用于发送所述至少一个循环移位偏移值,所述至少一个循环移位偏移值与所述SRS序列相关联,其中,所述SRS序列中,对应相同梳齿comb位置的SRS序列之间两两正交。
  22. 根据权利要求21所述的装置,其特征在于,第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100057
    其中,
    Figure PCTCN2022110422-appb-100058
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100059
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100060
    表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
    Figure PCTCN2022110422-appb-100061
    表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列为所述SRS序列中的一个,
    所述
    Figure PCTCN2022110422-appb-100062
    满足所述第一条件,所述第一条件满足:
    Figure PCTCN2022110422-appb-100063
    其中,k为非负整数,M表示所述序列长度。
  23. 根据权利要求21或22所述的装置,其特征在于,第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100064
    所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口j对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100065
    其中,
    Figure PCTCN2022110422-appb-100066
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100067
    表示所述第一SRS对应的天线端口j对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100068
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100069
    表示所述第一最大循环移位数,p i表示所述天线端口i的序号,p j表示所述天线端口j的序号,
    Figure PCTCN2022110422-appb-100070
    表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述SRS序列中相同SRS对应的两个SRS序列,
    所述
    Figure PCTCN2022110422-appb-100071
    Figure PCTCN2022110422-appb-100072
    满足所述第一条件,所述第一条件满足:
    Figure PCTCN2022110422-appb-100073
    其中,k 1为正整数,M表示所述序列长度。
  24. 根据权利要求21所述的装置,其特征在于,所述至少一个SRS为多个SRS,第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100074
    第二SRS对应的循环移位偏移值与所述第二SRS对应的天线端口q对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100075
    其中,
    Figure PCTCN2022110422-appb-100076
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100077
    表示所述第二SRS对应的天线端口q对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100078
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100079
    表示所述第二SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100080
    表示所述第一最大循环移位数,
    Figure PCTCN2022110422-appb-100081
    表示所述第一SRS对应的天线端口i的序号,
    Figure PCTCN2022110422-appb-100082
    表示所述第二SRS对应的天线端口q的序号,
    Figure PCTCN2022110422-appb-100083
    表示所述第一SRS对应的天线端口数,
    Figure PCTCN2022110422-appb-100084
    表示所述第二SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口q对应的SRS序列为所述SRS序列中不同SRS对应的SRS序列,
    所述
    Figure PCTCN2022110422-appb-100085
    Figure PCTCN2022110422-appb-100086
    满足所述第一条件,所述第一条件满足:
    Figure PCTCN2022110422-appb-100087
    其中,k 2为正整数,M表示所述序列长度。
  25. 根据权利要求21所述的装置,其特征在于,所述处理单元,还用于确定第二最大循环移位数N′ max,所述N′ max满足所述第一条件,所述第一条件满足:所述序列长度与所述N′ max的比值为整数。
  26. 根据权利要求25所述的装置,其特征在于,所述N′ max属于第一集合,所述第一集合包含至少一个最大循环移位数。
  27. 根据权利要求25或26所述的装置,其特征在于,所述发送单元,还用于发送第一指示信息,所述第一指示信息用于指示所述N′ max
  28. 根据权利要求27所述的装置,其特征在于,所述发送单元,还用于发送高层信令,所述高层信令用于指示第二集合,或者所述第二集合为预定义的,所述第二集合包含至少一个最大循环移位数,所述N′ max属于所述第二集合。
  29. 根据权利要求25至28中任一项所述的装置,其特征在于,所述第一条件还满足:N′ max与所述至少一个SRS中的一个SRS对应的天线端口数的比值为整数。
  30. 根据权利要求25至28中任一项所述的装置,其特征在于,所述第一条件满足:所述第一SRS对应的N′ max与第一SRS对应的天线端口数的比值为非整数,所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100088
    其中,[]为取整函数,
    Figure PCTCN2022110422-appb-100089
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100090
    表示所述第一SRS对应的循环移位偏移值,p i表示所述天线端口i的序号,
    Figure PCTCN2022110422-appb-100091
    表示所述第一SRS对应的天线端口数,所述第一SRS为所述至少一个SRS中的一个。
  31. 根据权利要求25至30中任一项所述的装置,其特征在于,所述N′ max=6。
  32. 一种无线通信装置,其特征在于,包括:
    接收单元,用于接收第一探测参考信号SRS对应的循环移位偏移值,所述第一SRS对应的循环移位偏移值基于第一条件确定,
    处理单元,用于生成所述第一SRS对应的SRS序列,所述第一SRS对应的循环移位偏移值与所述SRS序列相关联,
    其中,所述第一SRS对应的一个或多个SRS序列的序列长度与第一最大循环移位数的比值为非整数,其中,所述SRS序列中,对应相同梳齿comb位置的多个SRS序列之间两两正交。
  33. 根据权利要求32所述的装置,其特征在于,所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100092
    其中,
    Figure PCTCN2022110422-appb-100093
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100094
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100095
    表示所述第一最大循环移位数,p i表示所述天线端口i的序号,
    Figure PCTCN2022110422-appb-100096
    表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列为所述SRS序列中的一个,
    所述
    Figure PCTCN2022110422-appb-100097
    满足所述第一条件,所述第一条件满足:
    Figure PCTCN2022110422-appb-100098
    其中,k为非负整数,M表示所述序列长度。
  34. 根据权利要求32或33所述的装置,其特征在于,所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100099
    所述第一SRS对应的循环移位偏移值与所述第一SRS对应的天线端口j对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100100
    其中,
    Figure PCTCN2022110422-appb-100101
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100102
    表示所述第一SRS对应的天线端口j对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100103
    表示所述第一SRS对应的循环移位偏移值,
    Figure PCTCN2022110422-appb-100104
    表示所述第一最大循环移位数,p i表示所述天线端口i的序号,p j表示所述天线端口j的序号,
    Figure PCTCN2022110422-appb-100105
    表示所述第一SRS对应的天线端口数,所述天线端口i对应的SRS序列与所述天线端口j对应的SRS序列为所述SRS序列中相异的SRS序列
    所述
    Figure PCTCN2022110422-appb-100106
    Figure PCTCN2022110422-appb-100107
    满足所述第一条件,所述第一条件满足
    Figure PCTCN2022110422-appb-100108
    其中,k 1为正整数,M表示所述序列长度。
  35. 根据权利要求32所述的装置,其特征在于,所述处理单元,还用于确定所述第一SRS对应第二最大循环移位数N′ max,所述N′ max满足所述第一条件,所述第一条件满足:所述M与所述N′ max的比值为整数。
  36. 根据权利要求35所述的装置,其特征在于,所述接收单元,还用于接收第一指 示信息,所述第一指示信息用于指示N′ max
  37. 根据权利要求36所述的装置,其特征在于,所述接收单元,还用于接收高层信令,所述高层信令用于配置第二集合,或者所述第二集合为预定义的,所述第二集合包含至少一个最大循环移位数,所述N′ max属于所述第二集合。
  38. 根据权利要求35至37任意一项所述的装置,其特征在于,所述第一条件还满足:所述第一SRS对应的N′ max与所述第一SRS对应的天线端口数的比值为整数。
  39. 根据权利要求35至37任意一项所述的装置,其特征在于,所述第一条件满足:所述第一SRS对应的N′ max与所述第一SRS对应的天线端口数的比值为非整数,所述第一SRS对应的天线端口i对应的SRS序列的循环移位,满足关系式:
    Figure PCTCN2022110422-appb-100109
    其中,[]为取整函数,
    Figure PCTCN2022110422-appb-100110
    表示所述第一SRS对应的天线端口i对应的SRS序列的循环移位,
    Figure PCTCN2022110422-appb-100111
    表示所述第一SRS对应的循环移位偏移值,p i表示所述天线端口i的序号,
    Figure PCTCN2022110422-appb-100112
    表示所述第一SRS对应的天线端口数。
  40. 根据权利要求35至39中任一项所述的装置,其特征在于,所述N′ max=6。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序运行时,使得装置执行如权利要求1至11中任意一项所述的方法,或者,使得装置执行如权利要求12至20中任意一项所述的方法。
  42. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统的通信装置执行如权利要求1至11中任意一项所述的方法;或者,使得安装有所述芯片系统的通信装置执行如权利要求12至20中任意一项所述的方法。
  43. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至11中任一项所述的方法,或者,使得所述通信装置执行权利要求12至20中任一项所述的方法。
  44. 一种通信系统,其特征在于,所述通信系统包括至少一个如权利要求21至31中任一项所述的无线通信装置和至少一个如权利要求32至40中任一项所述的无线通信装置。
PCT/CN2022/110422 2021-08-06 2022-08-05 无线通信方法和装置 WO2023011613A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110904396.2 2021-08-06
CN202110904396 2021-08-06
CN202111343735.0 2021-11-13
CN202111343735.0A CN115941410A (zh) 2021-08-06 2021-11-13 无线通信方法和装置

Publications (1)

Publication Number Publication Date
WO2023011613A1 true WO2023011613A1 (zh) 2023-02-09

Family

ID=85155321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110422 WO2023011613A1 (zh) 2021-08-06 2022-08-05 无线通信方法和装置

Country Status (1)

Country Link
WO (1) WO2023011613A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384055A (zh) * 2007-09-05 2009-03-11 北京三星通信技术研究有限公司 配置用于信道测量的上行参考信号的设备和方法
US20150312009A1 (en) * 2012-12-21 2015-10-29 Nokia Technologies Oy Grouping of cs and comb values for dm-rs and srs on shared time-frequency resources
CN108111270A (zh) * 2017-06-16 2018-06-01 中兴通讯股份有限公司 导频信号发送、接收方法及装置
CN111835488A (zh) * 2019-08-15 2020-10-27 维沃移动通信有限公司 一种确定天线端口映射方法和终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101384055A (zh) * 2007-09-05 2009-03-11 北京三星通信技术研究有限公司 配置用于信道测量的上行参考信号的设备和方法
US20150312009A1 (en) * 2012-12-21 2015-10-29 Nokia Technologies Oy Grouping of cs and comb values for dm-rs and srs on shared time-frequency resources
CN108111270A (zh) * 2017-06-16 2018-06-01 中兴通讯股份有限公司 导频信号发送、接收方法及装置
CN111835488A (zh) * 2019-08-15 2020-10-27 维沃移动通信有限公司 一种确定天线端口映射方法和终端

Similar Documents

Publication Publication Date Title
US20220255697A1 (en) Method and Apparatus for Determining Reference Signal Sequence, Computer Program Product, and Computer Readable Storage Medium
WO2019096248A1 (zh) 发送和接收信号的方法、装置和系统
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
WO2020052514A1 (zh) 一种信息发送方法,信息接收的方法和装置
WO2021208821A1 (zh) 一种通信方法和通信装置
WO2020001607A1 (zh) 数据加扰方法及相关设备
WO2021017773A1 (zh) 上报信道状态信息的方法和装置
WO2022001226A1 (zh) 探测参考信号srs传输方法及通信装置
WO2019196689A1 (zh) 通信的方法和通信装置
KR20190105075A (ko) 통신 방법, 네트워크 디바이스, 단말 디바이스, 컴퓨터 판독 가능형 저장 매체, 컴퓨터 프로그램 제품, 프로세싱 장치 및 통신 시스템
CN111867086A (zh) 通信方法以及通信装置
US20230029215A1 (en) Reference Signal Transmission Method and Apparatus
WO2018126944A1 (zh) 信道状态信息测量的配置方法及相关设备
US11381288B2 (en) Communication method, network device, and terminal device
WO2022061544A1 (zh) 无线通信方法、终端设备和网络设备
TW201919429A (zh) 用於配置資源的方法、終端設備和網路設備
WO2020233370A1 (zh) 一种通信方法及设备
EP3879901B1 (en) Srs transmission method and apparatus
TW201828672A (zh) 信號傳輸方法和設備
WO2021062815A1 (zh) 调制解调参考信号的配置信息获取方法、配置方法及装置
WO2023011613A1 (zh) 无线通信方法和装置
WO2022152037A1 (zh) 资源配置、获取方法及装置
WO2021223084A1 (zh) 一种发送和接收上行参考信号的方法及通信装置
WO2022165671A1 (zh) 一种通信方法和装置
WO2021031632A1 (zh) 一种下行控制信息dci的发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE