WO2021027919A9 - 传输参考信号的方法及设备 - Google Patents

传输参考信号的方法及设备 Download PDF

Info

Publication number
WO2021027919A9
WO2021027919A9 PCT/CN2020/109148 CN2020109148W WO2021027919A9 WO 2021027919 A9 WO2021027919 A9 WO 2021027919A9 CN 2020109148 W CN2020109148 W CN 2020109148W WO 2021027919 A9 WO2021027919 A9 WO 2021027919A9
Authority
WO
WIPO (PCT)
Prior art keywords
prs
prs resource
qcl
resources
resource set
Prior art date
Application number
PCT/CN2020/109148
Other languages
English (en)
French (fr)
Other versions
WO2021027919A1 (zh
Inventor
于莹洁
黄甦
王艺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20853043.6A priority Critical patent/EP4156810A4/en
Publication of WO2021027919A1 publication Critical patent/WO2021027919A1/zh
Publication of WO2021027919A9 publication Critical patent/WO2021027919A9/zh
Priority to US17/669,668 priority patent/US20220167181A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • This application relates to the field of wireless communication, and more specifically, to a method and device for transmitting signals.
  • the quasi-colocation (QCL) (QCL may also be referred to as quasi-co-location) relationship is introduced in long term evolution (LTE) coordinated multi-point (CoMP).
  • LTE long term evolution
  • CoMP coordinated multi-point
  • Two reference signals about a large-scale parameter QCL means that the large-scale parameter of one reference signal can be inferred from the large-scale parameter of the other reference signal, so that the terminal can assist the other reference signal based on the received information of one reference signal Received.
  • no QCL relationship is configured between positioning reference signals (positioning reference signals, PRS).
  • the terminal equipment uses The beam scanning method receives positioning reference signals, which is relatively complicated.
  • This application provides a signal transmission method and device. By configuring the QCL relationship between different PRS resources, it helps terminal equipment to determine the receiving beam of the positioning reference signal, which can reduce the overhead of receiving beam scanning for the terminal equipment, thereby saving Resources.
  • a signal transmission method is provided.
  • the signal transmission method is executed by a terminal device, or executed by a chip or circuit provided in the terminal device, which is not limited in this application.
  • the terminal device executes the signal transmission method provided in the first aspect as an example for description.
  • the method of transmitting signals includes:
  • Receive the first positioning reference signal PRS resource set receive the second PRS resource set; determine that the N first PRS resources in the first PRS resource set and the N second PRS resources in the second PRS resource set meet quasi co-location QCL relationship, N is an integer greater than or equal to 1.
  • first PRS resource set and the second PRS resource set are different PRS resource sets corresponding to different indexes.
  • the index of the first PRS resource set is "first PRS resource set #1”
  • the index of the second PRS resource set is "second PRS resource set #2”.
  • the terminal device after receiving the first PRS resource set and the second PRS resource set, learns that the N first PRS resources in the first PRS resource set and N in the second PRS resource set are respectively After the second PRS resource satisfies the QCL relationship, the same receiving beam is used to receive the two PRSs corresponding to the two PRS resources that meet the QCL relationship, which helps the terminal device to determine the receiving beam of the positioning reference signal, and can reduce the terminal device to do the receiving beam Scanning overhead.
  • the terminal device learns that the first PRS resource #1 in the first PRS resource set and the second PRS resource #1 in the second PRS resource set satisfy the QCL relationship, and the terminal device uses the same receiving beam to receive the first PRS resource# 1 and second PRS resource #1 correspond to PRS#1 and PRS#2, respectively, without the need to perform receive beam scanning for PRS#1 and PRS#2 to determine the receive beams of PRS#1 and PRS#2.
  • determining that the N first PRS resources and the N second PRS resources respectively satisfy the quasi co-location QCL relationship includes: determining that the N first PRS resources and PRS resources with the same resource index among the N second PRS resources satisfy the QCL relationship; or, determine that N first PRS resources and PRS resources with the same resource order among the N second PRS resources satisfy the QCL relationship; or, determine N PRS resources having a specified QCL relationship among the first PRS resources and the N second PRS resources satisfy the QCL relationship.
  • the terminal device determines that different PRS resources in different PRS resource sets satisfy the QCL relationship, including: based on the index of the PRS resources in the different PRS resource sets, or based on the PRS resources in the different PRS resource sets.
  • the sequence provides a variety of feasible solutions for the terminal device to determine that the PRS resources in different PRS resource sets satisfy the QCL relationship.
  • the terminal device learning that the first PRS resource #1 in the first PRS resource set and the second PRS resource #1 in the second PRS resource set satisfy the QCL relationship includes the following three ways:
  • the terminal device learns that the indexes of the first PRS resource #1 and the second PRS resource #1 are the same, and both are "#1".
  • the identification method of the PRS resource in the PRS resource set is not limited.
  • the terminal device learns that the order of the first PRS resource #1 in the first PRS resource set is the same as the order of the second PRS resource #1 in the second PRS resource set, for example, the first PRS resource #1 is the first PRS resource set The first first PRS resource in, and the second PRS resource #1 is the first second PRS resource in the second PRS resource set.
  • the terminal device learns that the N first PRS resources in the first PRS resource set and the N second PRS resources in the second PRS resource set have a specified QCL relationship according to the protocol preset or the configuration of the network device; for example, the terminal The device learns that the first PRS resource #1 in the first PRS resource set and the second PRS resource #3 in the second PRS resource set have the specified QCL relationship according to the protocol preset or the configuration of the network device.
  • the terminal device learns that the first PRS resource #1 in the first PRS resource set and the second PRS resource #3 in the second PRS resource set have the specified QCL relationship according to the protocol preset or the configuration of the network device, and the first The first PRS resource #2 in the PRS resource set and the second PRS resource #5 in the second PRS resource set have a designated QCL relationship.
  • the foregoing determining that the N first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship includes: determining N based on QCL related parameters The first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship, where the QCL related parameters include one or more of the following parameters: QCL type, index of the first PRS resource set, and second PRS resource set The index of the QCL related parameters; some or all of the parameters included in the QCL related parameters are preset; or, some or all of the parameters included in the QCL related parameters are configured by the network device.
  • the terminal device can learn that the N first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship, which is based on a preset and/or is related to the QCL configured by the network device
  • the parameter learning provides a flexible solution for the terminal device to learn the QCL related parameters used to determine that the PRS resources in different PRS resource sets satisfy the QCL relationship.
  • the terminal device learns QCL related parameters in the following ways:
  • All parameters in the QCL related parameters are preset, for example, predefined by the protocol. In this way, terminal equipment and network equipment can learn QCL related parameters based on the protocol.
  • All parameters in QCL related parameters are configured by network equipment.
  • Some parameters in the QCL related parameters are preset, and the parameters that are not preset in the QCL related parameters are configured by the network device.
  • pre-defined for example, protocol definitions.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the equipment (for example, including terminal equipment and network equipment). This application does not make any specific implementation methods. limited.
  • the QCL related parameters further include: indexes of N first PRS resources and indexes of N second PRS resources.
  • QCL related parameters also include the indexes of PRS resources in different PRS resource sets, so that the terminal device can further determine that different PRS resources satisfy the QCL relationship based on the index of the PRS resource, which can improve the determination of the terminal device
  • the PRS resources in different PRS resource sets satisfy the accuracy of the QCL relationship.
  • the method for transmitting signals further includes: receiving configuration parameters, the configuration parameters including QCL Some or all of the related parameters.
  • the terminal device learning the above-mentioned QCL-related parameters may be configured via a network device, which provides a feasible solution for the terminal device to learn the above-mentioned QCL-related parameters.
  • the configuration parameters are carried in Long Term Evolution Positioning Protocol LPP signaling.
  • the above-mentioned configuration parameters are sent to the terminal device through Long Term Evolution Positioning Protocol (LPP) signaling, and the signaling in the existing protocol is reused, which can save resources.
  • LPP Long Term Evolution Positioning Protocol
  • the QCL type includes at least one of the following types: QCL type A, QCL type D, QCL type A+D, QCL type C, or QCL type C+D.
  • the above-mentioned QCL type includes multiple possibilities, which improves the flexibility of the solution.
  • the first PRS resource set includes M first PRS resources, and the M first PRS resources are in one-to-one correspondence with the M transmission beams;
  • second The PRS resource set includes M second PRS resources, and the M second PRS resources sequentially correspond to M transmission beams one-to-one, and M is an integer greater than or equal to N.
  • the number of PRS resources included in the first PRS resource set is the same as the number of PRS resources included in the first PRS resource set, and is used for sending the first PRS resource set
  • the beam of the PRS resource is the same as the beam used to transmit the PRS resource in the second PRS resource set, so that the terminal device can not know the index of the N first PRS resources and the index of the N second PRS resources.
  • a one-to-one correspondence between the PRS resources included in the first PRS resource set and the PRS resources included in the second PRS resource set is determined based on the index of the first PRS resource set and the index of the second PRS resource set.
  • the resource particles RE occupied by the first PRS resource in the first PRS resource set and the second PRS resource in the second PRS resource set respectively overlap or Partially overlapping, where the first PRS resource and the second PRS resource satisfy the QCL relationship.
  • different PRS resources that occupy resource elements (resource elements, RE) that fully or partially overlap satisfy the QCL relationship including that the different PRS resources are due to the occupation of REs that fully or partially overlap and naturally satisfy the QCL relationship.
  • the different PRS resources satisfying the QCL relationship are determined through the foregoing method of determining that the different PRS resources satisfy the QCL relationship.
  • a signal transmission method is provided.
  • the signal transmission method is executed by a network device, or executed by a chip or circuit provided in the network device, which is not limited in this application.
  • the network equipment involved in the embodiment of this application includes a location management component (location management component, LMC), or a location management function (location management function, LMF), or other functions that can implement LMC or LMF in the embodiments of this application device of.
  • LMC location management component
  • LMF location management function
  • the method for transmitting signals provided in the second aspect by a network device is taken as an example for description in the following.
  • the method of transmitting signals includes:
  • N is an integer greater than or equal to 1; send the first positioning reference Signal PRS resource set; send the second PRS resource set.
  • the network device before sending the first PRS resource set and the second PRS resource set, the network device can learn that the N first PRS resources in the first PRS resource set and the second PRS resource set are respectively The N second PRS resources satisfy the QCL relationship, and then the same transmission beam can be used to transmit two PRSs corresponding to the two PRS resources that satisfy the QCL relationship, which helps the network device to determine the transmission beam of the positioning reference signal.
  • determining that the N first PRS resources and the N second PRS resources respectively satisfy the quasi co-location QCL relationship includes: determining that the N first PRS resources and PRS resources with the same resource index among the N second PRS resources satisfy the QCL relationship; or, determine that N first PRS resources and PRS resources with the same resource order among the N second PRS resources satisfy the QCL relationship; or, determine N PRS resources having a specified QCL relationship among the first PRS resources and the N second PRS resources satisfy the QCL relationship.
  • the network device determining that PRS resources in different PRS resource sets satisfy the QCL relationship includes indexing based on PRS resources in different PRS resource sets, or based on the order of PRS resources in different PRS resource sets, It provides a variety of feasible solutions for network equipment to determine that PRS resources in different PRS resource sets satisfy the QCL relationship.
  • the network device learning that the first PRS resource #1 in the first PRS resource set and the second PRS resource #1 in the second PRS resource set satisfy the QCL relationship includes the following three ways:
  • the network device learns that the indexes of the first PRS resource #1 and the second PRS resource #1 are the same, and both are "#1".
  • the identification method of the PRS resource in the PRS resource set is not limited.
  • the network device learns that the order of the first PRS resource #1 in the first PRS resource set is the same as the order of the second PRS resource #1 in the second PRS resource set.
  • the first PRS resource #1 is the first PRS resource set.
  • the first first PRS resource in, and the second PRS resource #1 is the first second PRS resource in the second PRS resource set.
  • the network device knows or directly configures the N first PRS resources in the first PRS resource set and the N second PRS resources in the second PRS resource set according to the protocol preset to have a specified QCL relationship; for example, the network device according to The protocol presets or directly configures that the first PRS resource #1 in the first PRS resource set and the second PRS resource #3 in the second PRS resource set have a specified QCL relationship. Or, the network device knows according to the protocol preset or directly configures the first PRS resource #1 in the first PRS resource set and the second PRS resource #3 in the second PRS resource set to have the specified QCL relationship, and the first PRS resource The first PRS resource #2 in the set and the second PRS resource #5 in the second PRS resource set have a specified QCL relationship.
  • the foregoing determining that the N first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship includes: determining N based on QCL related parameters The first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship, where the QCL related parameters include one or more of the following parameters: QCL type, index of the first PRS resource set, and second PRS resource set The index of the QCL related parameters; some or all of the parameters included in the QCL related parameters are preset; or, some or all of the parameters included in the QCL related parameters are configured by the network device.
  • the network device can learn that the N first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship, which is based on a preset, and/or, the QCL configured by the network device is related
  • the parameter learning provides a flexible solution for the network device to learn the QCL related parameters used to determine that the PRS resources in different PRS resource sets satisfy the QCL relationship.
  • the network device learns QCL related parameters in the following ways:
  • All parameters in the QCL related parameters are preset, for example, predefined by the protocol. In this way, terminal equipment and network equipment can learn QCL related parameters based on the protocol.
  • All parameters in QCL related parameters are configured by network equipment.
  • the network device can naturally learn the QCL related parameters configured by the network device.
  • Some parameters in the QCL related parameters are preset, and the parameters that are not preset in the QCL related parameters are configured by the network device.
  • the QCL related parameters further include: indexes of N first PRS resources and indexes of N second PRS resources.
  • QCL related parameters also include indexes of PRS resources in different PRS resource sets, so that the network device can further determine that different PRS resources satisfy the QCL relationship based on the index of the PRS resource, which can improve network device determination
  • the PRS resources in different PRS resource sets satisfy the accuracy of the QCL relationship.
  • the signal transmission method when some or all of the parameters included in the QCL related parameters are configured by the network device, the signal transmission method further includes: sending configuration parameters, the configuration parameters including QCL Some or all of the related parameters.
  • the network device can send the above-mentioned QCL-related parameters to the terminal device, which provides a feasible solution for the terminal device to learn the above-mentioned QCL-related parameters.
  • the configuration parameters are carried in Long Term Evolution Positioning Protocol LPP signaling.
  • the above-mentioned configuration parameters are sent to the terminal device through LPP signaling, and the signaling in the existing protocol is reused, which can save resources.
  • the QCL type includes at least one of the following types: QCL type A, QCL type D, QCL type A+D, QCL type C, or QCL type C+D.
  • the above-mentioned QCL type includes multiple possibilities, which improves the flexibility of the solution.
  • the first PRS resource set includes M first PRS resources, and the M first PRS resources are in one-to-one correspondence with the M transmission beams;
  • second The PRS resource set includes M second PRS resources, and the M second PRS resources sequentially correspond to M transmission beams one-to-one, and M is an integer greater than or equal to N.
  • the number of PRS resources included in the first PRS resource set is the same as the number of PRS resources included in the first PRS resource set, and is used for sending the first PRS resource set
  • the beam of the PRS resource is the same as the beam used to transmit the PRS resource in the second PRS resource set, so that the network device can not know the index of the N first PRS resources and the index of the N second PRS resources.
  • a one-to-one correspondence between the PRS resources included in the first PRS resource set and the PRS resources included in the second PRS resource set is determined based on the index of the first PRS resource set and the index of the second PRS resource set.
  • the resource particles RE occupied by the first PRS resource in the first PRS resource set and the second PRS resource in the second PRS resource set respectively overlap or Partially overlapping, where the first PRS resource and the second PRS resource satisfy the QCL relationship.
  • different PRS resources that occupy resource elements overlap or partially overlap satisfy the QCL relationship, including that the different PRS resources are due to the full overlap or partial overlap of the occupied REs and naturally satisfy the QCL relationship.
  • the different PRS resources satisfying the QCL relationship are determined through the aforementioned method of determining that the different PRS resources satisfy the QCL relationship.
  • a signal transmission device in a third aspect, includes a processor for implementing the function of the terminal device in the method described in the first aspect.
  • the signal transmission apparatus further includes a memory coupled with the processor, and the processor is configured to implement the function of the terminal device in the method described in the first aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the terminal device in the method described in the first aspect.
  • the signal transmission device further includes a communication interface, and the communication interface is used for the signal transmission device to communicate with other devices.
  • the communication interface includes a transceiver, or the communication interface includes an input/output interface.
  • the signal transmission device includes: a processor and a communication interface, which are used to implement the function of the terminal device in the method described in the first aspect above, and specifically include:
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the device implements any one of the methods described in the first aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the communication interface when the signal transmission device is a chip or a chip system, the communication interface includes an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system, etc. .
  • the processor is embodied as a processing circuit or a logic circuit.
  • a signal transmission device in a fourth aspect, includes a processor for implementing the function of the network device in the method described in the second aspect.
  • the signal transmission apparatus further includes a memory coupled with the processor, and the processor is configured to implement the function of the network device in the method described in the second aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the network device in the method described in the second aspect.
  • the signal transmission device further includes a communication interface, and the communication interface is used for the signal transmission device to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the signal transmission device includes a processor and a communication interface, which are used to implement the function of the network device in the method described in the first aspect above, and specifically include:
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the device implements any of the methods described in the second aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the signal transmission device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a signal transmission method is provided.
  • the signal transmission method is executed by a terminal device, or executed by a chip or circuit provided in the terminal device, which is not limited in this application.
  • the terminal device executes the signal transmission method provided in the fifth aspect as an example for description.
  • the method of transmitting signals includes:
  • the first PRS resource in the first PRS resource set and the second PRS resource in the second PRS resource set satisfy the quasi-co-location QCL relationship.
  • the first PRS resource and the second PRS resource have at least one of the following correspondences, including:
  • the first PRS resource and the second PRS resource have the same resource index
  • the first PRS resource and the second PRS resource have the same resource order
  • the first PRS resource and the second PRS resource have a designated QCL relationship.
  • determining that the first PRS resource and the second PRS resource satisfy the quasi-co-location QCL relationship includes:
  • the QCL related parameters include one or more of the following parameters:
  • Some or all of the parameters included in the QCL related parameters are preset; or, some or all of the parameters included in the QCL related parameters are configured by the network device.
  • QCL related parameters further include:
  • the index of the first PRS resource and the index of the second PRS resource are the index of the first PRS resource and the index of the second PRS resource.
  • the method further includes: receiving the configuration parameters, and the configuration parameters include the QCL related parameters. Some or all of the parameters.
  • the configuration parameters are carried in Long Term Evolution Positioning Protocol LPP signaling.
  • the QCL type includes at least one of the following types:
  • QCL type A QCL type D, QCL type A+D, QCL type C, or QCL type C+D.
  • the first PRS resource set includes M first PRS resources, and the M first PRS resources sequentially correspond to the M transmission beams one-to-one;
  • the second PRS resource set includes M second PRS resources, and the M second PRS resources are in one-to-one correspondence with M transmission beams, and M is an integer greater than or equal to 1.
  • the resource particles RE occupied by the first PRS resource in the first PRS resource set and the second PRS resource in the second PRS resource set respectively overlap or Partially overlapping, where the first PRS resource and the second PRS resource meet the QCL relationship; the first PRS resource and the second PRS resource meet the QCL relationship, including: preset the first PRS resource and the second PRS resource to meet the QCL relationship; or, It is determined based on the QCL related parameters that the first PRS resource and the second PRS resource satisfy the QCL relationship.
  • a signal transmission method is provided.
  • the signal transmission method is executed by a network device, or executed by a chip or circuit provided in the network device, which is not limited in this application.
  • the following uses a network device to execute the signal transmission method provided in the fifth aspect as an example for description.
  • the method of transmitting signals includes:
  • the first PRS resource and the second PRS resource have at least one of the following correspondences, including:
  • the first PRS resource and the second PRS resource have the same resource index
  • the first PRS resource and the second PRS resource have the same resource order
  • the first PRS resource and the second PRS resource have a designated QCL relationship.
  • determining that the first PRS resource and the second PRS resource satisfy the quasi co-location QCL relationship includes:
  • the QCL related parameters include one or more of the following parameters:
  • Some or all of the parameters included in the QCL related parameters are preset; or, some or all of the parameters included in the QCL related parameters are configured by the network device.
  • QCL related parameters further include:
  • the index of the first PRS resource and the index of the second PRS resource are the index of the first PRS resource and the index of the second PRS resource.
  • the method further includes: sending the configuration parameters, and the configuration parameters include the QCL related parameters. Some or all of the parameters.
  • the configuration parameters are carried in Long Term Evolution Positioning Protocol LPP signaling.
  • the QCL type includes at least one of the following types:
  • QCL type A QCL type D, QCL type A+D, QCL type C, or QCL type C+D.
  • the first PRS resource set includes M first PRS resources, and the M first PRS resources sequentially correspond to the M transmission beams in a one-to-one manner;
  • the second PRS resource set includes M second PRS resources, and the M second PRS resources are in one-to-one correspondence with M transmission beams, and M is an integer greater than or equal to 1.
  • the resource particles RE occupied by the first PRS resource in the first PRS resource set and the second PRS resource in the second PRS resource set respectively overlap or Partially overlapping, where the first PRS resource and the second PRS resource meet the QCL relationship; the first PRS resource and the second PRS resource meet the QCL relationship, including: preset the first PRS resource and the second PRS resource to meet the QCL relationship; or, It is determined based on the QCL related parameters that the first PRS resource and the second PRS resource satisfy the QCL relationship.
  • a signal transmission device in a seventh aspect, includes a processor for implementing the function of the terminal device in the method described in the fifth aspect.
  • the signal transmission apparatus further includes a memory coupled to the processor, and the processor is configured to implement the function of the terminal device in the method described in the fifth aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the terminal device in the method described in the fifth aspect.
  • the signal transmission device further includes a communication interface, and the communication interface is used for the signal transmission device to communicate with other devices.
  • the communication interface includes a transceiver, or the communication interface includes an input/output interface.
  • the signal transmission device includes: a processor and a communication interface, which are used to implement the function of the terminal device in the method described in the fifth aspect, and specifically include:
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the device implements any of the methods described in the fifth aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the communication interface when the signal transmission device is a chip or a chip system, the communication interface includes an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system, etc. .
  • the processor is embodied as a processing circuit or a logic circuit.
  • a signal transmission device includes a processor for implementing the function of the network device in the method described in the sixth aspect.
  • the signal transmission apparatus further includes a memory coupled with the processor, and the processor is configured to implement the function of the network device in the method described in the sixth aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the network device in the method described in the sixth aspect.
  • the signal transmission device further includes a communication interface, and the communication interface is used for the signal transmission device to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the signal transmission device includes: a processor and a communication interface, used to implement the function of the network device in the method described in the sixth aspect, specifically including:
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the device implements any one of the methods described in the sixth aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the signal transmission device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device realizes the first aspect and any one of the possible implementation manners of the first aspect. method.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device When the computer program is executed by a communication device, the communication device enables the communication device to implement the second aspect and any of the possible implementation manners of the second aspect method.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device When the computer program is executed by a communication device, the communication device enables the communication device to implement the fifth aspect and any of the possible implementation manners of the fifth aspect Methods.
  • a computer-readable storage medium on which a computer program is stored.
  • the communication device When the computer program is executed by a communication device, the communication device enables the communication device to implement the sixth aspect and any of the possible implementation manners of the sixth aspect Methods.
  • a computer program product containing instructions which when executed by a computer, enables a communication device to implement the first aspect, the third aspect, and the method in any possible implementation manner of the first aspect.
  • a computer program product containing instructions which when executed by a computer, enables a communication device to implement the second aspect and the method in any possible implementation manner of the second aspect.
  • a computer program product containing instructions which when executed by a computer, enables a communication device to implement the fifth aspect and the method in any possible implementation manner of the fifth aspect.
  • a computer program product containing instructions which when executed by a computer, enables a communication device to implement the sixth aspect and the method in any possible implementation manner of the sixth aspect.
  • a positioning system which includes the signal transmission device shown in the third aspect and the signal transmission device shown in the fourth aspect, or the signal transmission device shown in the seventh aspect and the signal transmission device shown in the seventh aspect.
  • the positioning system provided in the seventeenth aspect also includes serving cells, neighboring cells, and so on.
  • the AND device for transmitting signals helps the terminal device to determine the receiving beam of the positioning reference signal, and can reduce the overhead of the terminal device for receiving beam scanning.
  • the solution provided in this application can be applied to scenarios where the terminal device is positioned based on the distance from the terminal device to multiple base stations, and can also be applied to other scenarios that need to obtain a QCL relationship between different PRSs.
  • FIG. 1 is a schematic diagram of the architecture of a positioning system applying an embodiment of the present application to transmit signals
  • FIG. 2 is a schematic diagram of the architecture of another positioning system applying an embodiment of the present application to transmit signals
  • FIG. 3 is a schematic flowchart of a signal transmission method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the correspondence between PRS resources and transmission beams in a PRS resource set provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a signal transmission device 50 proposed in the present application.
  • FIG. 6 is a schematic structural diagram of a terminal device 60 applicable to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a signal transmission device 70 proposed in this application.
  • FIG. 8 is a schematic structural diagram of a network device 80 applicable to an embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G mobile communication system involved in this application includes a non-standalone (NSA) 5G mobile communication system or a standalone (SA) 5G mobile communication system.
  • SA standalone
  • the technical solution provided in this application can also be applied to future communication systems, such as the sixth-generation mobile communication system.
  • the communication system can also be a public land mobile communication network (Public Land Mobile Network, PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, and a device-to-device (D2D) communication system.
  • PLMN Public Land Mobile Network
  • D2D device-to-device
  • M2M machine-to-machine
  • D2D device-to-device
  • IoT Internet of Things
  • the terminal equipment (terminal equipment) in the embodiments of this application may refer to an access terminal, a user unit, a user station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal, and a user equipment.
  • UE user equipment
  • terminal terminal
  • wireless communication equipment user agent, or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (personal digital assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or future evolution of the public land mobile network (PLMN)
  • PLMN public land mobile network
  • wearable devices can also be referred to as wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device can also be a terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology to realize man-machine Interconnection, an intelligent network of interconnection of things.
  • the IOT technology can achieve massive connections, deep coverage, and power saving of the terminal through, for example, narrowband (narrowband, NB) technology.
  • the terminal equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves. , To transmit uplink data to network equipment.
  • the network device in the embodiment of the present application may be any communication device with a wireless transceiving function that is used to communicate with a terminal device.
  • This equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC) , Base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless fidelity (wireless fidelity, WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP), or transmission and reception point (TRP), etc., can also be 5G, such as NR ,
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements part of the functions of gNB, and the DU implements part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+AAU.
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable storage medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of the architecture of a positioning system applying an embodiment of the present application to transmit signals.
  • the terminal equipment is connected to the radio access network via the next-generation eNodeB (ng-eNB) and gNB through the LTE-Uu and/or NR-Uu interface, respectively;
  • the network access is connected to the core network through the access and mobility management function (AMF) through the NG-C interface.
  • the next-generation radio access network includes one or more ng-eNBs; NG-RAN may also include one or more gNBs; NG-RAN may also include one or more Ng-eNB and gNB.
  • the ng-eNB is an LTE base station accessing the 5G core network
  • the gNB is a 5G base station accessing the 5G core network.
  • the core network includes functions such as AMF and LMF. Among them, AMF is used to implement functions such as access management, and LMF is used to implement functions such as positioning.
  • AMF and LMF are connected through the NLs interface.
  • LMF is a device or component that is deployed in the core network to provide positioning functions for terminal equipment.
  • Fig. 2 is a schematic structural diagram of another positioning system applying an embodiment of the present application to transmit signals.
  • the difference between the positioning system architecture of FIG. 1 and FIG. 2 is that the device or component (such as LMF) of the positioning management function of FIG. 1 is deployed in the core network, and the device or component of the positioning management function of FIG. 2 (such as the positioning management component LMC) Can be deployed in base stations.
  • the gNB contains LMC.
  • the LMC is a part of the functional components of the LMF and can be integrated in the gNB on the NG-RAN side.
  • the positioning system of FIG. 1 or FIG. 2 may include one or more gNBs and one or more terminal devices.
  • a single gNB can transmit data or control signaling to a single terminal device or multiple terminal devices.
  • Multiple gNBs can also transmit data or control signaling for a single terminal device at the same time.
  • the devices or functional nodes included in the positioning system of FIG. 1 or FIG. 2 are only exemplary descriptions, and do not limit the embodiments of the present application.
  • the positioning system of FIG. 1 or FIG. 2 may also include Other network elements or devices or functional nodes that have an interactive relationship with the devices or functional nodes illustrated in the figure are not specifically limited here.
  • the QCL hypothesis information may also be referred to as QCL information for short.
  • the QCL information is used to assist in describing the terminal device receiving beamforming information and the receiving process.
  • QCL information is used to indicate the QCL relationship between the two reference signals.
  • the target reference signal is generally a demodulation reference signal (DMRS), CSI-RS, etc., and the reference signal or source reference signal that is cited Generally, it can be CSI-RS, TRS, SSB, etc.
  • Spatial relation information used to assist in describing the beamforming information on the transmitting side of the terminal device and the transmission process.
  • the spatial relation information is used to indicate the spatial transmission parameter relationship between the two reference signals.
  • the target reference signal can generally be DMRS, SRS, etc.
  • the reference signal or source reference signal to be quoted can generally be CSI-RS, SRS, etc. SSB etc.
  • the spatial characteristic parameters of the two reference signals or channels that satisfy the QCL relationship are the same, so that the spatial characteristic parameters of the target reference signal can be inferred based on the source reference signal resource index.
  • the spatial characteristic parameters of the two reference signals or channels that satisfy the spatial correlation information are the same, so that the spatial characteristic parameters of the target reference signal can be inferred based on the source reference signal resource index.
  • the spatial characteristic parameters include one or more of the following parameters:
  • Angle of incidence AoA
  • dominant (dominant) incident angle AoA average incident angle
  • power angular spectrum PAS
  • exit angle angle of departure, AoD
  • main exit angle Average exit angle, power angle spectrum of exit angle
  • terminal device transmit beamforming terminal device receive beamforming, spatial channel correlation, network device transmit beamforming, network device receive beamforming, average channel gain, average channel delay (average delay), delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (doppler shift), spatial reception parameters (spatial Rx parameters), etc.
  • These spatial characteristic parameters describe the spatial channel characteristics between the antenna ports of the source reference signal and the target reference signal, and help the terminal device to complete the receiving-side beamforming or receiving process according to the QCL information. It should be understood that the terminal device can receive the target reference signal according to the receiving beam information of the source reference signal indicated by the QCL information; these spatial characteristic parameters also help the terminal device to complete the beamforming or transmission process at the transmitting side according to the spatial related information. It should be understood that the terminal device may transmit the target reference signal according to the transmit beam information of the source reference signal indicated by the spatial related information.
  • the network equipment may indicate the demodulation reference signal of the PDCCH or the physical downlink shared channel (physical downlink shared channel, PDSCH) and the terminal equipment One or more of the previously reported multiple reference signals satisfy the QCL relationship.
  • the reference signal may be a CSI-RS.
  • each reported CSI-RS resource index corresponds to a transmit-receive beam pair established during the previous measurement based on the CSI-RS resource. It should be understood that the receiving beam information of the two reference signals or channels that satisfy the QCL relationship is the same, and the terminal device can infer the receiving beam information of receiving the PDCCH or PDSCH according to the reference signal resource index.
  • Network equipment can configure one or more types of QCL for terminal equipment at the same time, such as QCL type C, QCL type D, QCL type A+D, QCL type C+D:
  • QCL type A Doppler shift, Doppler spread, average delay, and delay spread
  • QCL type B Doppler frequency shift, Doppler extension
  • the positioning-related QCL types involved in this application mainly include: at least one of QCL type A, QCL type D, QCL type A+D, QCL type C, or QCL type C+D.
  • a beam is a communication resource, and different beams can be considered as different communication resources. Different beams can send the same information or different information.
  • the beam may correspond to at least one of time domain resources, space resources, and frequency domain resources.
  • multiple beams with the same or type of communication characteristics may be regarded as one beam, and one beam may include one or more antenna ports for transmitting data channels, control channels, sounding signals, and the like.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna;
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beam may be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means, which is not limited in this application. Among them, beamforming technology can achieve higher antenna array gain by oriented in a specific direction in space.
  • beams can be divided into transmitting beams and receiving beams of network equipment, and transmitting beams and receiving beams of terminal equipment.
  • the transmitting beam of the network device is used to describe the beamforming information on the receiving side of the network device, and the receiving beam of the network device is used to describe the beamforming information on the receiving side of the network device.
  • the transmitting beam of the terminal device is used to describe the beamforming information on the transmitting side of the terminal device, and the receiving beam of the terminal device is used to describe the beamforming information on the receiving side.
  • beamforming technology includes digital beamforming technology, analog beamforming technology, and hybrid digital-analog beamforming technology.
  • the analog beamforming technology can be implemented by radio frequency.
  • a radio frequency link RF chain
  • communication based on analog beams requires the beams of the transmitter and receiver to be aligned, otherwise signals cannot be transmitted normally.
  • one or more antenna ports forming a beam may also be regarded as an antenna port set.
  • the beam can also be embodied by a spatial filter or a spatial domain transmission filter.
  • the beam can also be referred to as a "spatial filter”
  • the transmit beam is referred to as a "spatial filter”.
  • Transmitting filter” and receiving beam are called “spatial receiving filter” or “downstream spatial filter”.
  • the receiving beam of a network device or the transmitting beam of a terminal device may also be referred to as an "uplink spatial filter”
  • the transmitting beam of a network device or a receiving beam of a terminal device may also be referred to as a "downlink spatial filter”.
  • Optimal N beam pair links (a BPL includes a transmit beam of a network device and a receive beam of a terminal device, or a BPL includes a transmit beam of a terminal device and a receive beam of a network device )s Choice. Used for terminal equipment based on the beam scanning of the network equipment to realize the selection of the transmission beam of the network equipment and/or the receiving beam of the terminal equipment, and the network equipment realizes the transmission beam of the terminal equipment and/or the network equipment based on the beam scanning of the terminal equipment The choice of receiving beam.
  • the transmit beam may be a network device transmit beam, or a terminal device transmit beam.
  • the transmit beam is a network device transmit beam
  • the network device sends reference signals to the terminal device through different transmit beams
  • the terminal device receives the reference signal sent by the network device through different transmit beams through the same receive beam, and is based on the received signal Determine the optimal transmit beam of the network device, and then feed back the optimal transmit beam of the network device to the network device, so that the network device can update the transmit beam.
  • the terminal device When the transmitting beam is a terminal device transmitting beam, the terminal device sends a reference signal to the network device through different transmitting beams, and the network device uses the same receiving beam to receive the reference signal sent by the terminal device through different transmitting beams, and based on the received signal Determine the optimal transmit beam of the terminal device, and then feed back the optimal transmit beam of the terminal device to the terminal device, so that the terminal device can update the transmit beam.
  • the foregoing process of transmitting reference signals through different transmit beams may be referred to as beam scanning, and the process of determining the optimal transmit beam based on the received signal may be referred to as beam matching.
  • the receiving beam may be a receiving beam of a network device or a receiving beam of a terminal device.
  • the terminal device sends a reference signal to the network device through the same transmitting beam, and the network device uses different receiving beams to receive the reference signal sent by the terminal device, and then determines the maximum value of the network device based on the received signal.
  • Optimizing the receiving beam to update the receiving beam of the network device.
  • the network device sends a reference signal to the terminal device through the same transmitting beam.
  • the terminal device uses different receiving beams to receive the reference signal sent by the network device, and then determines the terminal device's maximum value based on the received signal. Optimizing the receiving beam to update the receiving beam of the terminal device.
  • the network device will configure the type of reference signal resource set for beam training.
  • the repetition parameter configured for the reference signal resource set is "on"
  • the terminal device assumes the reference signal resource set
  • the reference signal resources in are transmitted using the same downlink spatial filter, that is, the same transmission beam is used for transmission; in this case, in general, the terminal equipment will use different receiving beams to receive the reference signal resources in the above reference signal resource set, The best receiving beam of the terminal device is trained.
  • the terminal device can report the channel quality of the reference signal corresponding to the best N reference signal resources measured by the terminal device.
  • the terminal device When the repetition parameter configured for the reference signal resource number set is "off", the terminal device does not assume that the reference signal resources in the reference signal resource set use the same downlink spatial filter for transmission, that is, it does not assume that the network devices use the same Send beam transmission reference signal resources, at this time, the terminal device selects the best N beams from the resource set by measuring the channel quality of the reference signal corresponding to the reference signal resource in the set and feeds it back to the network device. In general, this time , The terminal equipment uses the same receiving beam in this process.
  • the LTE system standardizes the positioning technology based on Observed Time Difference of Arrival (OTDOA) in Rel-9.
  • the positioning technology is mainly used by terminal equipment to receive and measure the PRS sent by several cells, calculate the reference signal time difference (RSTD) and other measurement quantities, and send it to the evolved serving mobile location center (evolved serving mobile location center, E- SMLC) sends these measured quantities.
  • the E-SMLC determines the location of the terminal device based on these received measurements.
  • the positioning requirement in LTE is to meet regulatory requirements. In particular, positioning needs to meet the horizontal positioning accuracy of ⁇ 50m, and the vertical positioning accuracy to be able to identify floors.
  • the PRS sent by the base station can be composed of multiple resource sets, and each resource set contains multiple resources.
  • Each resource in a resource set corresponds to a beam, and each resource has its own index (identify, ID) number.
  • the resources in different resource sets are sent on the same beam, and the terminal equipment measures the PRS by beam scanning on all the beams, which will increase the PRS measurement time.
  • multiple base stations send PRS to terminal equipment, and the terminal equipment obtains signal arrival time information by measuring the PRS sent by multiple base stations.
  • the terminal device can report the measured PRS signal arrival time information to the positioning management unit, and the positioning management unit calculates the geographic location of the terminal device according to the geographic locations of multiple base stations.
  • the terminal device can also calculate the geographic location of the terminal device based on the measured arrival time information of the PRS signal, combined with the geographic locations of multiple base stations indicated by the positioning management unit.
  • OTDOA is a technology for positioning based on the time difference of signal propagation between multiple base stations and mobile terminal equipment. For example, three base stations. OTDOA calculates the distance difference between the mobile terminal equipment and the two base stations by measuring the wireless signal propagation time difference between the terminal equipment and the two base stations. The motion trajectory of the mobile terminal device is a hyperbola with two base stations as the focus and the distance difference as the fixed difference. To achieve precise positioning, the same measurements and calculations must be performed on the other two base stations to obtain another hyperbola. Since the network knows the propagation delay from the serving cell (also called the serving base station) to the mobile terminal device, the distance from the base station to the mobile terminal can be estimated from the OTDOA measurement value provided by the mobile terminal device. The intersection of the different circles formed by the three base stations is the estimated terminal position.
  • serving cell also called the serving base station
  • LTE Rel-14 defines that a cell can be configured with 3 PRSs of different bandwidths, and these 3 PRSs can be independently configured with other parameters such as period.
  • the existing LTE does not configure QCL associations between PRSs. However, there are multiple beams in the NR system, and the PRS will be transmitted on multiple beams. If the QCL association is not configured, the PRS measurement will be prolonged due to the need to train the receiving beam, which will affect the positioning efficiency.
  • the positioning requirements in the 5G system or the new air interface NR include regulatory requirements and business scenario requirements.
  • the regulatory requirements are the same as the positioning requirements of LTE; and for commercial scenarios, positioning needs to meet outdoor horizontal positioning accuracy ⁇ 10m, vertical positioning accuracy ⁇ 3m (to be determined), indoor horizontal positioning accuracy ⁇ 3m, and vertical positioning accuracy ⁇ 3m (to be determined).
  • 5G not only supports multi-level requirements, but also has much stricter requirements in business scenarios than LTE.
  • used to indicate can include both used for direct indication and used for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the first, second, and various numerical numbers are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application. For example, distinguish different PRS resource sets, etc.
  • the "saving" mentioned in the embodiments of the present application may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of memory can be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided by the embodiments of the present application, as long as the program that records the code of the method provided by the embodiments of the present application can be executed according to the present application.
  • the method provided in the application embodiment only needs to communicate.
  • the execution subject of the method provided in the embodiment of the application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • the embodiment of the present application provides a signal transmission method.
  • the terminal device is assisted to determine the receiving beam of the positioning reference signal, which can reduce the overhead of the terminal device for receiving beam scanning.
  • FIG. 3 is a schematic flowchart of a signal transmission method provided by an embodiment of the present application.
  • the executive body includes terminal equipment and network equipment.
  • the signal transmission method includes the following steps.
  • the network device sends the first PRS resource set to the terminal device.
  • the network device may directly send the first PRS resource set to the terminal device.
  • the network device may also send first configuration information to the terminal device, where the first configuration information is used to indicate a first PRS resource set, and the terminal device obtains the first PRS resource according to the first configuration information set.
  • the network device sends the second PRS resource set to the terminal device.
  • the network device may directly send the second PRS resource set to the terminal device.
  • the network device may also send second configuration information to the terminal device, where the second configuration information is used to indicate a second PRS resource set, and the terminal device obtains the second PRS resource according to the second configuration information set.
  • the above-mentioned first configuration information and second configuration information may be the same configuration information, or may be different configuration information.
  • the network device may send the first PRS resource set to the terminal device. After the resource collection, the network device sends the aforementioned second PRS resource collection to the terminal device; or, before the network device sends the aforementioned first PRS resource collection to the terminal device, the network device sends the aforementioned second PRS resource collection to the terminal device. Resource set; or, the network device simultaneously sends the above-mentioned first PRS resource set and the second PRS resource set to the terminal device.
  • the network equipment involved in the embodiment of the present application includes the LMF shown in FIG. 1 or the LMC and LMF shown in FIG. 2.
  • the foregoing first PRS resource set includes M first PRS resources, and the M first PRS resources are sequentially transmitted on M transmission beams; and the second PRS resource set includes M first PRS resources. Two PRS resources, the M second PRS resources are sequentially transmitted on the above M transmit beams, and M is a positive integer.
  • FIG. 4 is a schematic diagram of the correspondence between PRS resources and transmission beams in a PRS resource set provided by an embodiment of the present application. Including PRS resource set #1, PRS resource set #2, and transmission beam set.
  • PRS resource set #1 includes 3 PRS resources (first PRS resource #1 to first PRS resource #3), and PRS resource set #2 includes 3 PRS resources (second PRS resource # 1 ⁇ second PRS resource #3), the transmission beam set includes 3 transmission beams (transmission beam #1 ⁇ transmission beam #3), where the first PRS resource #1 and the second PRS resource #1 are both in the transmission beam # The first PRS resource #2 and the second PRS resource #2 are all transmitted on the transmission beam #2, and the first PRS resource #3 and the second PRS resource #3 are both transmitted on the transmission beam #3.
  • the period and bandwidth of PRS resource set #1 and PRS resource set #2 are different, the period and bandwidth of the first PRS resource #1 to the first PRS resource #3 in PRS resource set #1 are the same, and the PRS resource set The period of the second PRS resource #1 to the second PRS resource #3 in #2 is the same as the bandwidth.
  • the current protocol does not specify the QCL relationship between PRS resources configured with different parameters (for example, period and/or bandwidth), so even if the above-mentioned first PRS resource #1 and second PRS resource #1 are both transmitting beam# 1 and the terminal equipment side cannot know that the first PRS resource #1 and the second PRS resource #1 can be received via the same receiving beam, but the first PRS resource #1 and the second PRS resource #1 and the second PRS resource #1 and second PRS resource #1 respectively corresponds to the PRS, thereby increasing the PRS measurement time.
  • the first PRS resource set includes P1 first PRS resources, and the P1 first PRS resources are sequentially transmitted on the P1 transmission beams;
  • the second PRS resource set includes P2 second PRS resources, the P2 second PRS resources are sequentially transmitted on the P2 transmission beams.
  • P1 and P2 are not equal and both are positive integers.
  • the network device includes 6 transmission beams (beam #1 to beam #6) for transmitting PRS resources, where the first PRS resource set includes 4 first PRS resources, and the 4 first PRS resources are in 4
  • the second PRS resource set includes two second PRS resources, and the two second PRS resources are used in two transmission beams (beam #1 ⁇ beam #2). ) Are sent sequentially.
  • the first PRS resource set includes P3 first PRS resources, and the P3 first PRS resources are sequentially transmitted on the P3#1 transmission beam;
  • the second PRS resource set includes P3 The second PRS resource, the P3 second PRS resources are sequentially transmitted on the P3#2 transmission beams.
  • P3 is a positive integer, and the values of P3#1 and P3#2 are equal, but part or all of the P3#1 transmitting beams and P3#2 transmitting beams are different.
  • the network device includes 6 transmission beams (beam #1 to beam #6) for transmitting PRS resources, where the first PRS resource set includes 4 first PRS resources, and the 4 first PRS resources are in 4
  • the second PRS resource set includes four second PRS resources, and the four second PRS resources are in the four transmission beams (beam #6 ⁇ beam #3). ) Are sent sequentially.
  • the N first PRS resources respectively correspond to the same N transmission beams with the N second PRS resources in the second PRS resource set, and N is a positive integer less than or equal to M.
  • the N first PRS resources in the first PRS resource set and the N second PRS resources in the second PRS resource set respectively satisfy the quasi-co-location QCL relationship, that is, the method flow shown in FIG. 3 is also include:
  • the terminal device determines that the N first PRS resources and the N second PRS resources respectively satisfy the QCL relationship, where N is an integer greater than or equal to 1.
  • the terminal device After receiving the first PRS resource set and the second PRS resource set, learns that the N first PRS resources in the first PRS resource set are different from those in the second PRS resource set. After the N second PRS resources meet the QCL relationship, use the same receiving beam to receive the two PRSs corresponding to the two PRS resources that meet the QCL relationship, which helps the terminal device to determine the receiving beam of the positioning reference signal, which can reduce the terminal device’s reception The overhead of beam scanning.
  • the N first PRS resources correspond to the N second PRS resources in a one-to-one correspondence to form N pairs of PRS resources, and each pair of PRS resources in the N pairs of PRS resources satisfy the QCL relationship.
  • One first PRS resource is the first PRS resource #1; one second PRS resource is the second PRS resource #1, and the first PRS resource #1 and the second PRS resource #1 constitute 1
  • the PRS resource is denoted as PRS resource group #1.
  • the first PRS resource #1 and the second PRS resource #1 in the PRS resource group #1 satisfy the QCL relationship.
  • the N first PRS resources are the first PRS resource #1, the first PRS resource #2, and the first PRS resource #3; the N second PRS resources are the second PRS resource #1, the second PRS resource #2, and the first PRS resource #1.
  • Two PRS resource #3, the first PRS resource #1 and the second PRS resource #1 form a pair of PRS resources, denoted as PRS resource group #1
  • the first PRS resource #2 and the second PRS resource #2 form a pair of PRS resources
  • first PRS resource #3, and second PRS resource #3 form a pair of PRS resources, denoted as PRS resource group #3, specifically, the first PRS in PRS resource group #1 Resource #1 and the second PRS resource #1 meet the QCL relationship, the first PRS resource #2 and the second PRS resource #2 in the PRS resource group #2 meet the QCL relationship, and the first PRS resource # in the PRS resource group #3 3 and the second PRS resource #3 satisfy the QCL relationship.
  • the terminal device may determine based on QCL related parameters that the N first PRS resources and the N second PRS resources respectively satisfy a quasi-co-location QCL relationship, where the QCL related parameters include one or more of the following parameters:
  • the QCL type the index of the first PRS resource set, and the index of the second PRS resource set.
  • the aforementioned QCL related parameters further include:
  • the indexes of the aforementioned N first PRS resources and the indexes of the aforementioned N second PRS resources are aforementioned N first PRS resources and the indexes of the aforementioned N second PRS resources.
  • QCL related parameters include the index of the first PRS resource set, the index of the second PRS resource set, the index of a first PRS resource in the first PRS resource set, and the index of a second PRS resource in the second PRS resource set.
  • the first PRS resource and the second PRS resource have a QCL relationship.
  • the QCL related parameters include the index of the first PRS resource set, the index of the second PRS resource set, the indexes of the three first PRS resources in the first PRS resource set, and the indexes of the three second PRS resources in the second PRS resource set. index.
  • the three first PRS resources and the three second PRS resources respectively satisfy a one-to-one corresponding QCL relationship.
  • all parameters included in the above QCL related parameters are preset;
  • all parameters included in the above QCL related parameters are configured by network equipment;
  • part of the parameters included in the above QCL related parameters are preset, and the remaining part of the parameters are configured by the network device.
  • the terminal device can learn QCL related parameters through any of the following six methods:
  • the method flow shown in Figure 3 also includes:
  • the network device sends configuration parameters to the terminal device.
  • the above configuration parameters include:
  • the index of the first PRS resource set, the index of the second PRS resource set is the index of the first PRS resource set, the index of the second PRS resource set.
  • the above configuration parameters include:
  • the index of N first PRS resources and the index of N second PRS resources are the index of N first PRS resources and the index of N second PRS resources.
  • the above configuration parameters include:
  • the above configuration parameters include:
  • the QCL type, the index of the first PRS resource set, and the index of the second PRS resource set; or, the configuration parameters include:
  • the above configuration parameters include:
  • QCL type the index of the first PRS resource set, the index of the second PRS resource set, the index of N first PRS resources, and the index of N second PRS resources.
  • index involved in this application can be understood as identification information.
  • the index of the above-mentioned PRS resource can be understood as identification information that identifies the PRS resource, such as a PRS resource ID (resource ID).
  • resource ID resource ID
  • identity can be replaced with “index”
  • index can be replaced with “identification”.
  • the method flow shown in Figure 3 also includes:
  • the terminal device learns QCL related parameters based on preset parameters.
  • the above preset parameters include:
  • the index of the first PRS resource set, the index of the second PRS resource set is the index of the first PRS resource set, the index of the second PRS resource set.
  • the above preset parameters include:
  • the index of N first PRS resources and the index of N second PRS resources are the index of N first PRS resources and the index of N second PRS resources.
  • the above preset parameters include:
  • the index of the first PRS resource set, the index of the second PRS resource set, the indexes of N first PRS resources, and the indexes of N second PRS resources are integers of the first PRS resource set, the index of the second PRS resource set, the indexes of N first PRS resources, and the indexes of N second PRS resources; or,
  • the above preset parameters include:
  • the above configuration parameters include:
  • the above preset parameters include:
  • QCL type the index of the first PRS resource set, the index of the second PRS resource set, the index of N first PRS resources, and the index of N second PRS resources.
  • the terminal device and the network device may save the aforementioned preset parameters in the local storage system of the terminal device and the network device.
  • the QCL type and the index of the first PRS resource set are the index of the second PRS resource set and the N first PRS resources configured by the network device through configuration parameters.
  • the index of and the index of the N second PRS resources are preset parameters.
  • the index of the first PRS resource set, the index of the second PRS resource set, the indexes of the N first PRS resources, and the indexes of the N second PRS resources are configured by the network device through configuration parameters
  • the QCL type is Preset parameters.
  • the terminal device determines the above-mentioned Nth based on the QCL-related parameters.
  • a PRS resource meets the quasi co-location QCL relationship with the N second PRS resources, including:
  • the first PRS resource set includes N first PRS resources, and the N first PRS resources are sequentially transmitted on N transmission beams;
  • the second PRS resource set includes N second PRS resources, and the N second PRS resources The resources are sequentially transmitted on the aforementioned N transmission beams;
  • the N first PRS resources in the first PRS resource set and the N second PRS resources in the second PRS resource set respectively satisfy the QCL relationship, that is, the terminal device is learning the aforementioned QCL type and the index of the aforementioned first PRS resource set
  • the terminal device is learning the aforementioned QCL type and the index of the aforementioned first PRS resource set
  • the index of the foregoing second PRS resource set it can be determined that the N first PRS resources and the foregoing N second PRS resources respectively satisfy the QCL relationship.
  • the N first PRS resources and the aforementioned N second PRS resources respectively satisfy the QCL relationship, which may be that the indexes of the aforementioned N first PRS resources are the same as the indexes of the aforementioned N second PRS resources; or,
  • the order of the N first PRS resources in the first PRS resource set is the same as the order of the N second PRS resources in the second PRS resource set; or,
  • the N first PRS resources and the N second PRS resources respectively have a designated QCL relationship, and the designated QCL relationship may be preset by a protocol or configured by a network device.
  • the index of the first PRS resource set is PRS resource set #1
  • the index of the second PRS resource set is PRS resource set #2
  • the first PRS resource set includes three first PRS resources
  • the second PRS resource set The three second PRS resources included in the PRS satisfy the QCL relationship, and the three first PRS resources have a one-to-one correspondence with the three second PRS resources.
  • the one-to-one correspondence may be the same index or the same order of the resources in the PRS resource set, Or other one-to-one correspondence methods, which are not limited in this application.
  • the index of the first PRS resource set is PRS resource set #1
  • the index of the second PRS resource set is PRS resource set #2
  • the first PRS resource set includes one first PRS resource and a second PRS resource
  • One second PRS resource included in the set satisfies the QCL relationship
  • the one first PRS resource corresponds to one second PRS resource.
  • the correspondence may be the same index, or the order of the resources in the PRS resource set is the same, or has The specified correspondence relationship is not limited in this application.
  • the above-mentioned QCL related parameters include:
  • PRS resource set #1 PRS resource set #2.
  • PRS resource set #1 and PRS resource set #2 can learn the first PRS corresponding to PRS resource set #1 and PRS resource set #2 respectively. All PRS resources in the resource set meet the QCL relationship with all PRS resources in the second PRS resource set respectively.
  • the number of first PRS resources included in the first PRS resource set is the same as the number of second PRS resources included in the second PRS resource set, and the number of PRS resources in the first PRS resource set is sent
  • the transmission beam of the first PRS resource is the same as the transmission beam of the second PRS resource in the second RS resource set, and the order of the transmission beam of the first PRS resource in the first PRS resource set and the second RS resource set are transmitted The order of the transmission beams of the second PRS resource in the same.
  • the terminal device determines based on the QCL related parameters that the N first PRS resources and the N second PRS resources satisfy the quasi co-location QCL relationship, including:
  • the first PRS resource set includes P1 first PRS resources, and the P1 first PRS resources are sequentially transmitted on P1 transmission beams;
  • the second PRS resource set includes P2 second PRS resources, and the P2 second PRS resources The resources are transmitted sequentially on the above-mentioned P2 transmission beams; among them, P1 and P2 are integers greater than or equal to N.
  • N is a positive integer less than or equal to P1 and P2, that is, the terminal device is learning the above
  • the index of the first PRS resource set, the index of the second PRS resource set, the index of the N first PRS resources, and the index of the N second PRS resources, N first PRSs can be determined
  • the resources respectively satisfy the QCL relationship with the above N second PRS resources.
  • the N first PRS resources and the aforementioned N second PRS resources respectively satisfy the QCL relationship, which may be that the indexes of the aforementioned N first PRS resources are the same as the indexes of the aforementioned N second PRS resources; or,
  • the order of the N first PRS resources in the first PRS resource set is the same as the order of the N second PRS resources in the second PRS resource set; or, the N first PRS resources are respectively the same as the above
  • the N second PRS resources have a designated QCL relationship, and the designated QCL relationship may be preset by a protocol or configured by a network device.
  • the index of the first PRS resource set is PRS resource set #1
  • the index of the second PRS resource set is PRS resource set #2
  • the three first PRS resources in the first PRS resource set are respectively the second PRS resource set
  • the 3 second PRS resources in the PRS satisfy the QCL relationship.
  • the indexes of the three first PRS resources are respectively PRS resource #1, PRS resource #2, and PRS resource #3; the indexes of the three second PRS resources are also PRS resource #1, PRS resource #2, and PRS resource respectively. #3, PRS resources with the same resource index satisfy the QCL relationship.
  • the above-mentioned QCL related parameters include:
  • PRS resource collection #1 PRS resource collection #2;
  • PRS resource #1 PRS resource #2, PRS resource #3.
  • PRS resource set #1 and PRS resource set #2 can learn the first PRS resource set and the first PRS resource set corresponding to PRS resource set #1 and PRS resource set #2, respectively.
  • PRS resources in the PRS resource set that satisfy the QCL relationship.
  • the terminal device can learn that the indexes in the first PRS resource set are PRS resource# based on the index of the PRS resource, PRS resource #1, PRS resource #2, and PRS resource #3. 1.
  • the three PRS resources of PRS resource #2 and PRS resource #3 meet the QCL relationship with the three PRS resources in the second PRS resource set whose indexes are PRS resource #1, PRS resource #2, and PRS resource #3 respectively. .
  • the number of first PRS resources included in the first PRS resource set and the number of second PRS resources included in the second PRS resource set may be different.
  • the transmission beam of the first PRS resource and the transmission beam part of the second PRS resource in the second RS resource set are the same, and the order of the transmission beams of the first PRS resource in the first PRS resource set and the second RS are transmitted The order of transmitting beams of the second PRS resource in the resource set may be different.
  • the network device can configure one PRS resource included in the two PRS resource sets to satisfy the QCL relationship.
  • the above configuration parameters include:
  • PRS resource collection #1 PRS resource collection #2;
  • the protocol may predefine a PRS resource included in the two PRS resource sets to satisfy the QCL relationship.
  • the aforementioned preset parameters include:
  • PRS resource collection #1 PRS resource collection #2;
  • the PRS resource indexed as PRS resource #1 in the PRS resource set corresponding to PRS resource set #1, and the PRS resource indexed as PRS resource #1 in the PRS resource set corresponding to PRS resource set #2 satisfies the QCL relationship.
  • the terminal device determines the above-mentioned N first PRS based on the QCL-related parameters.
  • the resources meet the quasi co-location QCL relationship with the above N second PRS resources respectively, including:
  • the first PRS resource set includes N first PRS resources, and the N first PRS resources are sequentially transmitted on N transmission beams;
  • the second PRS resource set includes N second PRS resources, and the N second PRS resources The resources are sequentially transmitted on the aforementioned N transmission beams;
  • the N first PRS resources in the first PRS resource set and the N second PRS resources in the second PRS resource set respectively satisfy the QCL relationship, that is, the terminal device is learning the aforementioned QCL type and the index of the aforementioned first PRS resource set
  • the terminal device is learning the aforementioned QCL type and the index of the aforementioned first PRS resource set
  • the index of the foregoing second PRS resource set it can be determined that the N first PRS resources and the foregoing N second PRS resources respectively satisfy the QCL relationship.
  • the N first PRS resources and the aforementioned N second PRS resources respectively satisfy the QCL relationship, which may be that the indexes of the aforementioned N first PRS resources are the same as the indexes of the aforementioned N second PRS resources; or,
  • the order of the N first PRS resources in the first PRS resource set is the same as the order of the N second PRS resources in the second PRS resource set; or,
  • the N first PRS resources and the N second PRS resources respectively have a designated QCL relationship, and the designated QCL relationship may be preset by a protocol or configured by a network device.
  • the index of the first PRS resource set is PRS resource set #1
  • the index of the second PRS resource set is PRS resource set #2
  • the first PRS resource set includes three first PRS resources
  • the second PRS resource set The three second PRS resources included in the PRS satisfy the QCL relationship, and the three first PRS resources have a one-to-one correspondence with the three second PRS resources.
  • the one-to-one correspondence may be the same index or the same order of the resources in the PRS resource set, Or other one-to-one correspondence methods, this application is not limited thereto.
  • the index of the first PRS resource set is PRS resource set #1
  • the index of the second PRS resource set is PRS resource set #2
  • the first PRS resource set includes one first PRS resource and a second PRS resource
  • One second PRS resource included in the set satisfies the QCL relationship
  • the one first PRS resource corresponds to one second PRS resource.
  • the correspondence may be the same index, or the order of the resources in the PRS resource set is the same, or has The specified correspondence relationship is not limited in this application.
  • the above-mentioned QCL related parameters include:
  • PRS resource set #1 PRS resource set #2.
  • PRS resource set #1 and PRS resource set #2 can learn the first PRS corresponding to PRS resource set #1 and PRS resource set #2 respectively. All PRS resources in the resource set meet the QCL relationship with all PRS resources in the second PRS resource set respectively. Or, based on the index of the PRS resource set, PRS resource set #1, PRS resource set #2 can learn one or more of the first PRS resource in the PRS resource set #1, PRS resource set #2 and one of the second PRS resource set. Or multiple second PRS resources satisfy the QCL relationship.
  • the number of first PRS resources included in the first PRS resource set is the same as the number of second PRS resources included in the second PRS resource set, and the number of PRS resources in the first PRS resource set is sent
  • the transmission beam of the first PRS resource is the same as the transmission beam of the second PRS resource in the second RS resource set, and the order of the transmission beam of the first PRS resource in the first PRS resource set and the second RS resource set are transmitted The order of the transmission beams of the second PRS resource in the same.
  • the terminal device determines that the N first PRS resources and the N second PRS resources satisfy the quasi-co-location QCL relationship based on the QCL related parameters, including:
  • the first PRS resource set includes P1 first PRS resources, and the P1 first PRS resources are sequentially transmitted on P1 transmission beams;
  • the second PRS resource set includes P2 second PRS resources, and the P2 second PRS resources The resources are transmitted sequentially on the aforementioned P2 transmission beams; among them, P1 and P2 are integers greater than or equal to N.
  • N is a positive integer less than or equal to P1 and P2, that is, the terminal device is learning the above
  • the index of the first PRS resource set, the index of the second PRS resource set, the index of the N first PRS resources, and the index of the N second PRS resources, N first PRSs can be determined
  • the resources respectively satisfy the QCL relationship with the above N second PRS resources.
  • the N first PRS resources and the aforementioned N second PRS resources respectively satisfy the QCL relationship, which may be that the indexes of the aforementioned N first PRS resources are the same as the indexes of the aforementioned N second PRS resources; or,
  • the order of the N first PRS resources in the first PRS resource set is the same as the order of the N second PRS resources in the second PRS resource set; or, the N first PRS resources are respectively the same as the above
  • the N second PRS resources have a designated QCL relationship, and the designated QCL relationship may be preset by a protocol or configured by a network device.
  • the index of the first PRS resource set is PRS resource set #1
  • the index of the second PRS resource set is PRS resource set #2
  • the three first PRS resources in the first PRS resource set are respectively the second PRS resource set
  • the 3 second PRS resources in the PRS satisfy the QCL relationship.
  • the indexes of the three first PRS resources are PRS resource #1, PRS resource #2, and PRS resource #3; the indexes of the three second PRS resources are also PRS resource #1, PRS resource #2, and PRS resource respectively. #3, PRS resources with the same resource index satisfy the QCL relationship.
  • the above-mentioned QCL related parameters include:
  • PRS resource collection #1 PRS resource collection #2;
  • PRS resource #1 PRS resource #2, PRS resource #3.
  • PRS resource set #1 and PRS resource set #2 can learn the first PRS resource set and the first PRS resource set corresponding to PRS resource set #1 and PRS resource set #2, respectively.
  • PRS resources in the PRS resource set that satisfy the QCL relationship.
  • the terminal device can learn that the indexes in the first PRS resource set are PRS resource# based on the index of the PRS resource, PRS resource #1, PRS resource #2, and PRS resource #3. 1.
  • the three PRS resources of PRS resource #2 and PRS resource #3 meet the QCL relationship with the three PRS resources in the second PRS resource set whose indexes are PRS resource #1, PRS resource #2, and PRS resource #3 respectively. .
  • the number of first PRS resources included in the first PRS resource set and the number of second PRS resources included in the second PRS resource set may be different.
  • the transmission beam of the first PRS resource and the transmission beam part of the second PRS resource in the second RS resource set are the same, and the order of the transmission beams of the first PRS resource in the first PRS resource set and the second RS are transmitted The order of transmitting beams of the second PRS resource in the resource set may be different.
  • the network device can configure one PRS resource included in the two PRS resource sets to satisfy the QCL relationship.
  • the above configuration parameters include:
  • PRS resource collection #1 PRS resource collection #2;
  • the protocol may predefine one PRS resource included in the two PRS resource sets to satisfy the QCL relationship.
  • the aforementioned preset parameters include:
  • PRS resource collection #1 PRS resource collection #2;
  • the PRS resource indexed as PRS resource #1 in the PRS resource set corresponding to PRS resource set #1, and the PRS resource indexed as PRS resource #1 in the PRS resource set corresponding to PRS resource set #2 satisfies the QCL relationship.
  • the index of the first PRS resource set is PRS resource set #1
  • the index of the second PRS resource set is PRS resource set #2
  • one first PRS resource in the first PRS resource set is respectively the second PRS resource
  • One second PRS resource in the set satisfies the QCL relationship.
  • the index of the first PRS resource is PRS resource #1; the index of the second PRS resource is PRS resource #3, the first PRS resource #1 and the second PRS resource #3 have a specified QCL relationship, then
  • the above-mentioned QCL related parameters include:
  • PRS resource set #1 PRS resource #1;
  • PRS resource set #2 PRS resource #3.
  • PRS resource set #1 and PRS resource set #2 can learn the first PRS resource set and the first PRS resource set corresponding to PRS resource set #1 and PRS resource set #2, respectively. 2.
  • PRS resources in the PRS resource set that satisfy the QCL relationship.
  • the terminal device can learn the PRS resource indexed as PRS resource #1 in the first PRS resource set based on the index of the PRS resource PRS resource #1 and PRS resource #3, and The PRS resource whose index is PRS resource #3 in the second PRS resource set satisfies the QCL relationship.
  • this implementation is only introduced by taking the first PRS resource set containing one first PRS resource and the second PRS resource set containing one second PRS resource as an example.
  • This implementation can be extended to PRS resource set#
  • N first PRS resources in 1 and N second PRS resources in PRS resource set #2 respectively have a designated QCL relationship, where N is an integer greater than or equal to 1, and the designated QCL relationship can be preset by the protocol Or network device configuration.
  • the network device learns QCL related parameters based on preset parameters.
  • the network device before sending the first PRS resource set and the second PRS resource set, the network device can learn that the N first PRS resources in the first PRS resource set and the second PRS resource set are respectively The N second PRS resources satisfy the QCL relationship, and then the same transmission beam can be used to transmit two PRSs corresponding to the two PRS resources that satisfy the QCL relationship, which helps the network device determine the transmission beam of the positioning reference signal.
  • the specific method for the network device to learn the QCL related parameters based on the preset parameters is similar to that for the terminal device to learn the QCL related parameters based on the preset parameters, and will not be repeated here.
  • the network device acquires the aforementioned QCL related parameters based on sending beams for sending the first PRS resource in the first PRS resource set and the second PRS resource in the second PRS resource set.
  • the method flow shown in Fig. 3 also includes S333, the network device determines the configuration parameters.
  • QCL type A QCL type D, QCL type A+D, QCL type C, or QCL type C+D.
  • the resource element REs respectively occupied by the first PRS resource included in the first PRS resource set and the second PRS resource included in the second PRS resource set may overlap or partially overlap;
  • REs occupied by the first PRS resource and the second PRS resource satisfying the QCL relationship may overlap or partially overlap.
  • the occupation of the first PRS resource and the second PRS resource that overlap in all or part of the RE to satisfy the QCL relationship includes the following two cases:
  • the first PRS resource and the second PRS resource naturally satisfy the QCL relationship. In this case, there is no need to determine the first based on the aforementioned QCL related parameters.
  • the first PRS resource and the second PRS resource satisfy the QCL relationship.
  • the QCL relationship is configured for the first PRS resource and the second PRS resource that overlap all or part of the occupied REs.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not constitute the implementation process of the embodiments of the application. Any restrictions.
  • each device such as a transmitter device or a receiver device, includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 5 is a schematic diagram of a signal transmission device 50 proposed in the present application. As shown in FIG. 5, the device 50 includes a receiving unit 510 and a processing unit 520.
  • the receiving unit 510 is configured to receive a first positioning reference signal PRS resource set
  • the receiving unit 510 is also configured to receive a second PRS resource set.
  • the order in which the receiving unit 510 receives the first PRS resource set and the second PRS resource set is not limited in the embodiment of the present application.
  • the processing unit 520 is configured to determine that the N first PRS resources in the above-mentioned first PRS resource set and the N second PRS resources in the above-mentioned second PRS resource set meet the quasi co-location QCL relationship, and N is greater than Or an integer equal to 1.
  • the processing unit 520 determines that the N first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship, including:
  • the processing unit 520 determines that the PRS resources with the same resource index among the N first PRS resources and the N second PRS resources satisfy the QCL relationship; or,
  • the processing unit 520 determines that the PRS resources with the same resource order among the N first PRS resources and the N second PRS resources satisfy the QCL relationship; or,
  • the processing unit 520 determines that the PRS resources having the specified QCL relationship among the N first PRS resources and the N second PRS resources satisfy the QCL relationship.
  • the processing unit 520 determines that the N first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship, including:
  • the processing unit 520 determines based on the QCL related parameters that the N first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship, where the QCL related parameters include one or more of the following parameters:
  • the receiving unit 510 is further configured to receive configuration parameters, and the configuration parameters include some or all of the QCL related parameters.
  • the receiving unit 510 receives configuration parameters through LPP signaling.
  • the first PRS resource set includes M first PRS resources, and the M first PRS resources are in one-to-one correspondence with M transmission beams in sequence;
  • the second PRS resource set includes M second PRS resources, and the M second PRS resources are in one-to-one correspondence with M transmission beams, and M is an integer greater than or equal to N.
  • the resource particles respectively occupied by the first PRS resource in the first PRS resource set and the second PRS resource in the second PRS resource set respectively overlap or partially overlap, where the first PRS resource and the second PRS resource satisfy QCL relationship,
  • the first PRS resource and the second PRS resource satisfy the QCL relationship, including:
  • the processing unit 520 determines that the first PRS resource and the second PRS resource satisfy the QCL relationship based on the signal transmission method shown in FIG. 3.
  • the apparatus 50 completely corresponds to the terminal device in the method embodiment, and the device 50 may be the terminal device in the method embodiment, or a chip or functional module inside the terminal device in the method embodiment.
  • the corresponding unit of the apparatus 50 is used to execute the corresponding steps executed by the terminal device in the method embodiment shown in FIG. 3.
  • the processing unit 520 executes the steps implemented or processed inside the terminal device in the method embodiment. For example, perform step S332 in FIG. 3 to obtain QCL related parameters based on preset parameters; also perform step S330 in FIG. 3 to determine that the N first PRS resources and the N second PRS resources meet the quasi-co-location QCL. relationship.
  • FIG. 6 is a schematic structural diagram of a terminal device 60 suitable for an embodiment of the present application.
  • the terminal device 60 can be applied to the system shown in FIG. 1.
  • FIG. 6 only shows the main components of the terminal device.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory can be set independently of the processor, or can be integrated with the processor, which is not limited in the embodiment of the present application.
  • the transceiving unit 610 is further used to perform the receiving operations on the terminal device side in step S310, step S320, and step S331 shown in FIG. 3, and/or the transceiving unit 610 is further used to perform terminal device side receiving operations.
  • the processing unit 620 is configured to execute steps S332 and S330 shown in FIG. 3, and/or the processing unit 620 is further configured to execute other processing steps on the terminal device side.
  • FIG. 6 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 6.
  • the chip When the signal transmission device 50 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • FIG. 7 is a schematic diagram of the signal transmission device 70 proposed in the present application.
  • the device 70 includes a processing unit 710 and a sending unit 720.
  • the processing unit 710 is configured to determine that the N first PRS resources in the first positioning reference signal PRS resource set and the N second PRS resources in the second PRS resource set meet the quasi co-location QCL relationship, and N is greater than or equal to An integer of 1;
  • the sending unit 720 is configured to send the first PRS resource set
  • the sending unit 720 is also used to send the second PRS resource set.
  • the sending unit 720 sends the first PRS resource set and the second PRS resource set is not limited in the embodiment of the present application.
  • the processing unit 710 is configured to determine that the N first PRS resources in the above-mentioned first PRS resource set and the N second PRS resources in the above-mentioned second PRS resource set meet the quasi co-location QCL relationship, and N is greater than or An integer equal to 1.
  • the processing unit 710 determines that the N first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship, including:
  • the processing unit 710 determines that the PRS resources with the same resource index among the N first PRS resources and the N second PRS resources satisfy the QCL relationship; or,
  • the processing unit 710 determines that the PRS resources with the same resource order among the N first PRS resources and the N second PRS resources satisfy the QCL relationship; or,
  • the processing unit 710 determines that the PRS resources having the specified QCL relationship among the N first PRS resources and the N second PRS resources satisfy the QCL relationship.
  • the processing unit 710 determines that the N first PRS resources and the N second PRS resources respectively satisfy the quasi-co-location QCL relationship, including:
  • the processing unit 710 determines based on the QCL related parameters that the N first PRS resources and the N second PRS resources respectively satisfy the quasi co-location QCL relationship, where the QCL related parameters include one or more of the following parameters:
  • Some or all of the parameters included in the QCL related parameters are preset; or, some or all of the parameters included in the QCL related parameters are configured by the network device.
  • the indexes of N first PRS resources and the indexes of N second PRS resources are identical to each other.
  • the sending unit 720 is further configured to send configuration parameters, and the configuration parameters include some or all of the QCL related parameters.
  • the sending unit 720 receives configuration parameters through LPP signaling.
  • the first PRS resource set includes M first PRS resources, and the M first PRS resources are in one-to-one correspondence with M transmission beams in sequence;
  • the second PRS resource set includes M second PRS resources, and the M second PRS resources are in one-to-one correspondence with M transmission beams, and M is an integer greater than or equal to N.
  • the resource particles respectively occupied by the first PRS resource in the first PRS resource set and the second PRS resource in the second PRS resource set respectively overlap or partially overlap, where the first PRS resource and the second PRS resource satisfy QCL relationship,
  • the first PRS resource and the second PRS resource satisfy the QCL relationship, including:
  • the processing unit 710 determines that the first PRS resource and the second PRS resource satisfy the QCL relationship based on the signal transmission method shown in FIG. 3.
  • the device 70 completely corresponds to the network device in the method embodiment, and the device 70 may be the network device in the method embodiment, or a chip or functional module inside the network device in the method embodiment.
  • the corresponding unit of the device 70 is used to execute the corresponding steps executed by the network device in the method embodiment shown in FIG. 3.
  • the sending unit 720 in the apparatus 70 executes the steps of the network device sending in the method embodiment. For example, perform step S310 in FIG. 3 to send the first PRS resource set to the terminal device; also perform step S320 in FIG. 3 to send the second PRS resource set to the terminal device; also perform step S331 in FIG. 3 to send the terminal device
  • the device sends configuration parameters.
  • the processing unit 710 in the device 70 executes the steps implemented or processed inside the network device in the method embodiment. For example, step S333 in FIG. 3 is executed to determine configuration parameters; step S334 in FIG. 3 is also executed to obtain QCL related parameters based on preset parameters.
  • the apparatus 70 may further include a receiving unit, configured to perform the steps of receiving by the network device, for example, receiving information sent by other devices.
  • the receiving unit and the sending unit 720 may constitute a transceiver unit, and have the functions of receiving and sending at the same time.
  • the processing unit 710 may be a processor.
  • the sending unit 720 may be a transmitter.
  • the receiving unit may be a receiver.
  • the receiver and transmitter can be integrated to form a transceiver.
  • the transceiver may also be called a communication interface or a communication unit.
  • FIG. 8 is a schematic structural diagram of a network device 80 applicable to an embodiment of the present application, and can be used to implement the functions of the network device in the foregoing signal transmission method.
  • the location management component includes part 810 and part 820.
  • the 810 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 820 part is mainly used for baseband processing and control of positioning management components.
  • the 810 part can usually be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 820 part is usually the control center of the positioning management component, and may generally be referred to as a processing unit, which is used to control the positioning management component to perform processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 810 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency unit.
  • the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 810 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 810 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 820 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute the program in the memory to realize the baseband processing function and control the positioning management component. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • the transceiving unit of part 810 is used to perform the sending operations on the network device side in step S310, step S320, and step S331 in FIG. 3, and/or the transceiving unit of part 810 is also used to perform the present application.
  • the processing unit in part 820 is used to perform the processing steps on the network device side in step S33 and step S334 in FIG. 3, and/or the transceiving unit in part 820 is also used to perform other transceiving steps on the network device side in the embodiment of the present application.
  • FIG. 8 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 8.
  • the chip When the communication device 80 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the network device 80 shown in FIG. 8 can implement the network device functions involved in the method embodiment of FIG. 3.
  • the operations and/or functions of each unit in the network device 80 are respectively for implementing the corresponding process executed by the network device in the method embodiment of the present application. To avoid repetition, detailed description is omitted here.
  • the structure of the network device illustrated in FIG. 8 is only a possible form, and should not constitute any limitation in the embodiment of the present application. This application does not exclude the possibility of other types of network equipment structures that may appear in the future.
  • An embodiment of the present application also provides a communication system, which includes the aforementioned terminal equipment, network equipment, serving cell, and neighboring cells.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes each of the steps performed by the terminal device in the method shown in FIG. 3 above. step.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes each of the operations performed by the network device in the method shown in FIG. 3 above. step.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the terminal device in the method shown in FIG. 3.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the network device in the method shown in FIG. 3.
  • the application also provides a chip including a processor.
  • the processor is used to read and run the computer program stored in the memory to execute the corresponding operation and/or process executed by the terminal device in the signal transmission method provided in this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • the application also provides a chip including a processor.
  • the processor is used to read and run the computer program stored in the memory to execute the corresponding operation and/or process performed by the network device in the signal transmission method provided in this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • processors mentioned in the embodiments of this application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the term "and/or” in this application is only an association relationship that describes associated objects, which means that there can be three types of relationships, for example, A and/or B, which can mean that A alone exists, and both A and B exist. , There are three cases of B alone.
  • the character "/" in this document generally means that the associated objects before and after are in an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of, B and C can mean: A alone exists, B alone exists, C alone exists, A and B exist alone, A and C exist at the same time, C and B exist at the same time, A and B and C exist at the same time, this Seven situations.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输信号的方法和装置,有助于终端设备确定定位参考信号的接收波束,能够降低终端设备做接收波束扫描的开销,从而节省资源。该方法包括:终端设备接收网络设备发送的第一定位参考信号PRS资源集合和第二PRS资源集合,并且获知第一PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中的N个第二PRS资源满足准共址QCL关系。

Description

传输参考信号的方法及设备
[根据细则91更正 17.03.2021] 
本申请要求于2019年08月14日提交中国专利局、申请号为201910748780.0、发明名称为“传输信号的方法和装置”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,并且更具体地,涉及一种传输信号的方法和装置。
背景技术
准同位(quasi-colocation,QCL)(QCL也可称作准共址)关系是在长期演进(long term evolution,LTE)协作多点(coordinated multi-point,CoMP)中引入的。两个参考信号关于某个大尺度参数QCL表示可以从一个参考信号的这个大尺度参数推测出另一个参考信号的这个大尺度参数,从而可以让终端基于一个参考信号的接收信息辅助另一个参考信号的接收。在LTE系统中,没有为定位参考信号(positioning reference signal,PRS)之间配置QCL关系。
而未来的第五代(5th generation,5G)系统或新空口(new radio,NR)中存在多个波束,PRS可以在多个波束上发送,如果不配置PRS之间的QCL关系,终端设备采用波束扫描的方式接收定位参考信号,复杂度较高。
发明内容
本申请提供一种传输信号的方法和装置,通过配置不同的PRS资源之间的QCL关系,有助于终端设备确定定位参考信号的接收波束,能够降低终端设备做接收波束扫描的开销,从而节省资源。
第一方面,提供了一种传输信号的方法,该传输信号的方法由终端设备执行,或者,由设置于终端设备中的芯片或电路执行,本申请对此不作限定。为了便于描述,下文中以终端设备执行第一方面中提供的传输信号的方法为例进行说明。
该传输信号的方法包括:
接收第一定位参考信号PRS资源集合;接收第二PRS资源集合;确定第一PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中的N个第二PRS资源满足准共址QCL关系,N为大于或等于1的整数。
应理解,上述第一PRS资源集合和第二PRS资源集合为不同的PRS资源集合,对应着不同的索引。作为示例,第一PRS资源集合的索引为“第一PRS资源集合#1”、第二PRS资源集合的索引为“第二PRS资源集合#2”。
本申请提供的传输信号的方法,终端设备在接收到第一PRS资源集合和第二PRS资源集合,获知第一PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中的N个第二PRS资源满足QCL关系之后,用同一个接收波束接收满足QCL关系的两个PRS 资源对应的两个PRS,有助于终端设备确定定位参考信号的接收波束,能够降低终端设备做接收波束扫描的开销。
作为示例,终端设备获知第一PRS资源集合中的第一PRS资源#1和第二PRS资源集合中的第二PRS资源#1满足QCL关系,终端设备用同一个接收波束接收第一PRS资源#1和第二PRS资源#1分别对应的PRS#1和PRS#2,而无需分别针对PRS#1和PRS#2进行接收波束扫描确定PRS#1和PRS#2的接收波束。
结合第一方面,在第一方面的一种可能的实现方式中,确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,包括:确定N个第一PRS资源与N个第二PRS资源中具有相同资源索引的PRS资源满足QCL关系;或者,确定N个第一PRS资源与N个第二PRS资源中具有相同资源次序的PRS资源满足QCL关系;或者,确定N个第一PRS资源与N个第二PRS资源中具有指定QCL关系的PRS资源满足QCL关系。
本申请提供的传输信号的方法,终端设备确定不同PRS资源集合中不同的PRS资源满足QCL关系,包括:基于不同PRS资源集合中的PRS资源的索引,或者,基于不同PRS资源集合中的PRS资源的顺序,为终端设备确定不同PRS资源集合中的PRS资源满足QCL关系提供多种可行的方案。
作为示例,终端设备获知第一PRS资源集合中的第一PRS资源#1和第二PRS资源集合中的第二PRS资源#1满足QCL关系包括以下三种方式:
方式一:
终端设备获知第一PRS资源#1和第二PRS资源#1的索引相同,均为“#1”。
应理解,本申请实施例中对于PRS资源集合中的PRS资源的标识方式并不限定。
方式二:
终端设备获知第一PRS资源#1在第一PRS资源集合中的次序和第二PRS资源#1在第二PRS资源集合中的次序相同,例如,第一PRS资源#1为第一PRS资源集合中的第一个第一PRS资源,第二PRS资源#1为第二PRS资源集合中的第一个第二PRS资源。
方式三:
终端设备根据协议预设或者网络设备的配置获知第一PRS资源集合中的N个第一PRS资源和第二PRS资源集合中的N个第二PRS资源具有指定的QCL关系;示例性地,终端设备根据协议预设或者网络设备的配置获知第一PRS资源集合中的第一PRS资源#1和第二PRS资源集合中的第二PRS资源#3具有指定的QCL关系。或者,终端设备根据协议预设或者网络设备的配置获知第一PRS资源集合中的第一PRS资源#1和第二PRS资源集合中的第二PRS资源#3具有指定的QCL关系,以及第一PRS资源集合中的第一PRS资源#2和第二PRS资源集合中的第二PRS资源#5具有指定的QCL关系。
结合第一方面,在第一方面的一种可能的实现方式中,上述的确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,包括:基于QCL相关参数确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,其中,QCL相关参数包括以下一种或多种参数:QCL类型、第一PRS资源集合的索引、第二PRS资源集合的索引;QCL相关参数包括的部分或全部参数为预设的;或者,QCL相关参数包括的部分或全部参数由网络设备配置。
本申请提供的传输信号的方法,终端设备能够获知N个第一PRS资源分别与N个第 二PRS资源满足准共址QCL关系,是基于预设的,和/或,网络设备配置的QCL相关参数获知的,为终端设备获知用于确定不同PRS资源集合中的PRS资源满足QCL关系的QCL相关参数提供灵活的方案。
作为示例,终端设备获知QCL相关参数包括以下几种方式:
方式一:
QCL相关参数中的全部参数为预设的,例如,协议预定义的。在该方式下,终端设备和网络设备基于协议即可获知QCL相关参数。
方式二:
QCL相关参数中的全部参数由网络设备配置。
方式三:
QCL相关参数中的部分参数为预设的,QCL相关参数中未预设的参数由网络设备配置。
应理解,本申请中涉及的“预设的”包括预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
结合第一方面,在第一方面的一种可能的实现方式中,QCL相关参数还包括:N个第一PRS资源的索引和N个第二PRS资源的索引。
本申请提供的传输信号的方法,QCL相关参数还包括不同PRS资源集合中的PRS资源的索引,使得终端设备能够进一步地基于PRS资源的索引确定不同的PRS资源满足QCL关系,能够提高终端设备确定不同PRS资源集合中的PRS资源满足QCL关系的准确性。
结合第一方面,在第一方面的一种可能的实现方式中,当QCL相关参数包括的部分或全部参数由网络设备配置时,该传输信号的方法还包括:接收配置参数,配置参数包括QCL相关参数中的部分或全部参数。
本申请提供的传输信号的方法,终端设备获知上述的QCL相关参数可以是经由网络设备配置的,为终端设备获知上述的QCL相关参数提供可行的方案。
结合第一方面,在第一方面的一种可能的实现方式中,所述配置参数承载于长期演进定位协议LPP信令。
本申请提供的传输信号的方法,上述的配置参数通过长期演进定位协议(long term evolution position protocol,LPP)信令发送给终端设备,复用现有协议中的信令,能够节约资源。
结合第一方面,在第一方面的一种可能的实现方式中,QCL类型包括以下类型中的至少一种:QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
本申请提供的传输信号的方法,上述的QCL类型包括多种可能,提高方案的灵活性。
结合第一方面,在第一方面的一种可能的实现方式中,第一PRS资源集合中包括M个第一PRS资源,M个第一PRS资源依次与M个发送波束一一对应;第二PRS资源集合中包括M个第二PRS资源,M个第二PRS资源依次与M个发送波束一一对应,M为大于或者等于N的整数。
本申请提供的传输信号的方法,上述的第一PRS资源集合中包括的PRS资源的个数和第一PRS资源集合中包括的PRS资源的个数相同,并且用于发送第一PRS资源集合中 的PRS资源的波束与用于发送第二PRS资源集合中的PRS资源的波束相同,从而终端设备能够在未获知上述的N个第一PRS资源的索引和N个第二PRS资源的索引的情况下,基于第一PRS资源集合的索引和第二PRS资源集合的索引确定第一PRS资源集合中包括的PRS资源和第二PRS资源集合中包括的PRS资源一一对应。
结合第一方面,在第一方面的一种可能的实现方式中,第一PRS资源集合中的第一PRS资源和第二PRS资源集合中的第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,第一PRS资源与第二PRS资源满足QCL关系。
本申请提供的传输信号的方法,占用资源粒子(resource element,RE)全部重叠或者部分重叠的不同的PRS资源满足QCL关系包括该不同的PRS资源是由于占用RE全部重叠或者部分重叠自然满足QCL关系,或者,该不同的PRS资源满足QCL关系是经由上述的确定不同的PRS资源满足QCL关系的方法确定的。
第二方面,提供了一种传输信号的方法,该传输信号的方法由网络设备执行,或者,由设置于网络设备中的芯片或电路执行,本申请对此不作限定。其中,本申请实施例中涉及的网络设备包括定位管理组件(location management component,LMC),或者定位管理功能(location management function,LMF),或者其他能够实现LMC或LMF在本申请实施例中的功能的设备。为了便于描述,下文中以网络设备执行第二方面中提供的传输信号的方法为例进行说明。
该传输信号的方法包括:
确定第一PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中的N个第二PRS资源满足准共址QCL关系,N为大于或等于1的整数;发送第一定位参考信号PRS资源集合;发送第二PRS资源集合。
本申请提供的传输信号的方法,网络设备在发送第一PRS资源集合和第二PRS资源集合之前,能够获知第一PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中的N个第二PRS资源满足QCL关系,进而可以用同一个发送波束发送满足QCL关系的两个PRS资源对应的两个PRS,有助于网络设备确定定位参考信号的发送波束。
结合第二方面,在第二方面的一种可能的实现方式中,确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,包括:确定N个第一PRS资源与N个第二PRS资源中具有相同资源索引的PRS资源满足QCL关系;或者,确定N个第一PRS资源与N个第二PRS资源中具有相同资源次序的PRS资源满足QCL关系;或者,确定N个第一PRS资源与N个第二PRS资源中具有指定QCL关系的PRS资源满足QCL关系。
本申请提供的传输信号的方法,网络设备确定不同PRS资源集合中的PRS资源满足QCL关系包括基于不同PRS资源集合中的PRS资源的索引,或者,基于不同PRS资源集合中的PRS资源的顺序,为网络设备确定不同PRS资源集合中的PRS资源满足QCL关系提供多种可行的方案。
作为示例,网络设备获知第一PRS资源集合中的第一PRS资源#1和第二PRS资源集合中的第二PRS资源#1满足QCL关系包括以下三种方式:
方式一:
网络设备获知第一PRS资源#1和第二PRS资源#1的索引相同,均为“#1”。
应理解,本申请实施例中对于PRS资源集合中的PRS资源的标识方式并不限定。
方式二:
网络设备获知第一PRS资源#1在第一PRS资源集合中的次序和第二PRS资源#1在第二PRS资源集合中的次序相同,例如,第一PRS资源#1为第一PRS资源集合中的第一个第一PRS资源,第二PRS资源#1为第二PRS资源集合中的第一个第二PRS资源。
方式三:
网络设备根据协议预设获知或者直接配置第一PRS资源集合中的N个第一PRS资源和第二PRS资源集合中的N个第二PRS资源具有指定的QCL关系;示例性地,网络设备根据协议预设获知或者直接配置第一PRS资源集合中的第一PRS资源#1和第二PRS资源集合中的第二PRS资源#3具有指定的QCL关系。或者,网络设备根据协议预设获知或者直接配置第一PRS资源集合中的第一PRS资源#1和第二PRS资源集合中的第二PRS资源#3具有指定的QCL关系,以及第一PRS资源集合中的第一PRS资源#2和第二PRS资源集合中的第二PRS资源#5具有指定的QCL关系。结合第二方面,在第二方面的一种可能的实现方式中,上述的确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,包括:基于QCL相关参数确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,其中,QCL相关参数包括以下一种或多种参数:QCL类型、第一PRS资源集合的索引、第二PRS资源集合的索引;QCL相关参数包括的部分或全部参数为预设的;或者,QCL相关参数包括的部分或全部参数由网络设备配置。
本申请提供的传输信号的方法,网络设备能够获知N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,是基于预设的,和/或,网络设备配置的QCL相关参数获知的,为网络设备获知用于确定不同PRS资源集合中的PRS资源满足QCL关系的QCL相关参数提供灵活的方案。
作为示例,网络设备获知QCL相关参数包括以下几种方式:
方式一:
QCL相关参数中的全部参数为预设的,例如,协议预定义的。在该方式下,终端设备和网络设备基于协议即可获知QCL相关参数。
方式二:
QCL相关参数中的全部参数由网络设备配置。网络设备自然能够获知网络设备配置的QCL相关参数。
方式三:
QCL相关参数中的部分参数为预设的,QCL相关参数中未预设的参数由网络设备配置。
结合第二方面,在第二方面的一种可能的实现方式中,QCL相关参数还包括:N个第一PRS资源的索引和N个第二PRS资源的索引。
本申请提供的传输信号的方法,QCL相关参数还包括不同PRS资源集合中的PRS资源的索引,使得网络设备能够进一步地基于PRS资源的索引确定不同的PRS资源满足QCL关系,能够提高网络设备确定不同PRS资源集合中的PRS资源满足QCL关系的准确性。
结合第二方面,在第二方面的一种可能的实现方式中,当QCL相关参数包括的部分或全部参数由网络设备配置时,该传输信号的方法还包括:发送配置参数,配置参数包括QCL相关参数中的部分或全部参数。
本申请提供的传输信号的方法,网络设备能够将上述的QCL相关参数发送给终端设备,为终端设备获知上述的QCL相关参数提供可行的方案。
结合第二方面,在第二方面的一种可能的实现方式中,所述配置参数承载于长期演进定位协议LPP信令。
本申请提供的传输信号的方法,上述的配置参数通过LPP信令发送给终端设备,复用现有协议中的信令,能够节约资源。
结合第二方面,在第二方面的一种可能的实现方式中,QCL类型包括以下类型中的至少一种:QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
本申请提供的传输信号的方法,上述的QCL类型包括多种可能,提高方案的灵活性。
结合第二方面,在第二方面的一种可能的实现方式中,第一PRS资源集合中包括M个第一PRS资源,M个第一PRS资源依次与M个发送波束一一对应;第二PRS资源集合中包括M个第二PRS资源,M个第二PRS资源依次与M个发送波束一一对应,M为大于或者等于N的整数。
本申请提供的传输信号的方法,上述的第一PRS资源集合中包括的PRS资源的个数和第一PRS资源集合中包括的PRS资源的个数相同,并且用于发送第一PRS资源集合中的PRS资源的波束与用于发送第二PRS资源集合中的PRS资源的波束相同,从而网络设备能够在未获知上述的N个第一PRS资源的索引和N个第二PRS资源的索引的情况下,基于第一PRS资源集合的索引和第二PRS资源集合的索引确定第一PRS资源集合中包括的PRS资源和第二PRS资源集合中包括的PRS资源一一对应。
结合第二方面,在第二方面的一种可能的实现方式中,第一PRS资源集合中的第一PRS资源和第二PRS资源集合中的第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,第一PRS资源与第二PRS资源满足QCL关系。
本申请提供的传输信号的方法,占用资源粒子(resource element,RE)重叠或者部分重叠的不同的PRS资源满足QCL关系包括该不同的PRS资源是由于占用RE全部重叠或者部分重叠自然满足QCL关系,或者,该不同的PRS资源满足QCL关系是经由上述的确定不同的PRS资源满足QCL关系的方法确定的。
第三方面,提供一种传输信号的装置,该传输信号的装置包括处理器,用于实现上述第一方面描述的方法中终端设备的功能。
示例性地,该传输信号的装置还包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第一方面描述的方法中终端设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面描述的方法中终端设备的功能。
示例性地,该传输信号的装置还包括通信接口,该通信接口用于该传输信号的装置与其它设备进行通信。当该传输信号的装置为终端设备时,该通信接口包括收发器,或,该通信接口包括输入/输出接口。
在一种可能的设计中,该传输信号的装置包括:处理器和通信接口,用于实现上述第一方面描述的方法中终端设备的功能,具体地包括:
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该装置实现上述第一方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种实现方式中,该传输信号的装置为芯片或芯片系统时,该通信接口包括该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器体现为处理电路或逻辑电路。
第四方面,提供一种传输信号的装置,该传输信号的装置包括处理器,用于实现上述第二方面描述的方法中网络设备的功能。
示例性地,该传输信号的装置还包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第二方面描述的方法中网络设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第二方面描述的方法中网络设备的功能。
示例性地,该传输信号的装置还包括通信接口,该通信接口用于该传输信号的装置与其它设备进行通信。当该传输信号的装置为网络设备时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该传输信号的装置包括:处理器和通信接口,用于实现上述第一方面描述的方法中网络设备的功能,具体地包括:
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该装置实现上述第二方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该传输信号的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第五方面,提供了一种传输信号的方法,该传输信号的方法由终端设备执行,或者,由设置于终端设备中的芯片或电路执行,本申请对此不作限定。为了便于描述,下文中以终端设备执行第五方面中提供的传输信号的方法为例进行说明。
该传输信号的方法包括:
接收第一配置信息,根据第一配置信息获取第一定位参考信号PRS资源集合;
接收第二配置信息,根据第二配置信息获取第二PRS资源集合;
确定第一PRS资源集合中的第一PRS资源与第二PRS资源集合中的第二PRS资源满足准共址QCL关系。
结合第五方面,在第五方面的一种可能的实现方式中,第一PRS资源与第二PRS资源存在以下至少一种对应关系,包括:
第一PRS资源与第二PRS资源具有相同的资源索引;
第一PRS资源与第二PRS资源具有相同的资源次序;
第一PRS资源与第二PRS资源具有指定的QCL关系。
结合第五方面,在第五方面的一种可能的实现方式中,确定第一PRS资源与第二PRS资源满足准共址QCL关系,包括:
基于QCL相关参数确定第一PRS资源与第二PRS资源满足准共址QCL关系,其中, QCL相关参数包括以下一种或多种参数:
QCL类型、第一PRS资源集合的索引、第二PRS资源集合的索引;
QCL相关参数包括的部分或全部参数为预设的;或者,QCL相关参数包括的部分或全部参数由网络设备配置。
结合第五方面,在第五方面的一种可能的实现方式中,QCL相关参数还包括:
第一PRS资源的索引和第二PRS资源的索引。
结合第五方面,在第五方面的一种可能的实现方式中,当QCL相关参数包括的部分或全部参数由网络设备配置时,该方法还包括:接收配置参数,配置参数包括QCL相关参数中的部分或全部参数。
结合第五方面,在第五方面的一种可能的实现方式中,配置参数承载于长期演进定位协议LPP信令。
结合第五方面,在第五方面的一种可能的实现方式中,QCL类型包括以下类型中的至少一种:
QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
结合第五方面,在第五方面的一种可能的实现方式中,第一PRS资源集合中包括M个第一PRS资源,M个第一PRS资源依次与M个发送波束一一对应;
第二PRS资源集合中包括M个第二PRS资源,M个第二PRS资源依次与M个发送波束一一对应,M为大于或者等于1的整数。
结合第五方面,在第五方面的一种可能的实现方式中,第一PRS资源集合中的第一PRS资源和第二PRS资源集合中的第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,第一PRS资源与第二PRS资源满足QCL关系;第一PRS资源与第二PRS资源满足QCL关系,包括:预设第一PRS资源与第二PRS资源满足QCL关系;或者,基于QCL相关参数确定第一PRS资源与第二PRS资源满足QCL关系。
第五方面及其任意一种可能的实现方式的技术效果和详细解释请参考上述第一方面及其任意一种可能的实现方式的描述,第五方面及其任意一种可能的实现方式可以看作是上述第一方面及其任意一种可能的实现方式的特例,此处不再赘述。
第六方面,提供了一种传输信号的方法,该传输信号的方法由网络设备执行,或者,由设置于网络设备中的芯片或电路执行,本申请对此不作限定。为了便于描述,下文中以网络设备执行第五方面中提供的传输信号的方法为例进行说明。
该传输信号的方法包括:
确定第一定位参考信号PRS资源集合中的第一PRS资源与第二PRS资源集合中的第二PRS资源满足准共址QCL关系;
发送第一配置信息,所述第一配置信息用于指示所述第一PRS资源集合;
发送第二配置信息,所述第二配置信息用于指示所述第二PRS资源集合。
结合第六方面,在第六方面的一种可能的实现方式中,第一PRS资源与第二PRS资源存在以下至少一种对应关系,包括:
第一PRS资源与第二PRS资源具有相同的资源索引;
第一PRS资源与第二PRS资源具有相同的资源次序;
第一PRS资源与第二PRS资源具有指定的QCL关系。
结合第六方面,在第六方面的一种可能的实现方式中,确定第一PRS资源与第二PRS资源满足准共址QCL关系,包括:
基于QCL相关参数确定第一PRS资源与第二PRS资源满足准共址QCL关系,其中,QCL相关参数包括以下一种或多种参数:
QCL类型、第一PRS资源集合的索引、第二PRS资源集合的索引;
QCL相关参数包括的部分或全部参数为预设的;或者,QCL相关参数包括的部分或全部参数由网络设备配置。
结合第六方面,在第六方面的一种可能的实现方式中,QCL相关参数还包括:
第一PRS资源的索引和第二PRS资源的索引。
结合第六方面,在第六方面的一种可能的实现方式中,当QCL相关参数包括的部分或全部参数由网络设备配置时,该方法还包括:发送配置参数,配置参数包括QCL相关参数中的部分或全部参数。
结合第五方面,在第六方面的一种可能的实现方式中,配置参数承载于长期演进定位协议LPP信令。
结合第六方面,在第六方面的一种可能的实现方式中,QCL类型包括以下类型中的至少一种:
QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
结合第六方面,在第六方面的一种可能的实现方式中,第一PRS资源集合中包括M个第一PRS资源,M个第一PRS资源依次与M个发送波束一一对应;
第二PRS资源集合中包括M个第二PRS资源,M个第二PRS资源依次与M个发送波束一一对应,M为大于或者等于1的整数。
结合第六方面,在第六方面的一种可能的实现方式中,第一PRS资源集合中的第一PRS资源和第二PRS资源集合中的第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,第一PRS资源与第二PRS资源满足QCL关系;第一PRS资源与第二PRS资源满足QCL关系,包括:预设第一PRS资源与第二PRS资源满足QCL关系;或者,基于QCL相关参数确定第一PRS资源与第二PRS资源满足QCL关系。
第六方面及其任意一种可能的实现方式的技术效果和详细解释请参考上述第二方面及其任意一种可能的实现方式的描述,第六方面及其任意一种可能的实现方式可以看作是上述第二方面及其任意一种可能的实现方式的特例,此处不再赘述。
第七方面,提供一种传输信号的装置,该传输信号的装置包括处理器,用于实现上述第五方面描述的方法中终端设备的功能。
示例性地,该传输信号的装置还包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第五方面描述的方法中终端设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第五方面描述的方法中终端设备的功能。
示例性地,该传输信号的装置还包括通信接口,该通信接口用于该传输信号的装置与其它设备进行通信。当该传输信号的装置为终端设备时,该通信接口包括收发器,或,该通信接口包括输入/输出接口。
在一种可能的设计中,该传输信号的装置包括:处理器和通信接口,用于实现上述第五方面描述的方法中终端设备的功能,具体地包括:
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该装置实现上述第五方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种实现方式中,该传输信号的装置为芯片或芯片系统时,该通信接口包括该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器体现为处理电路或逻辑电路。
第八方面,提供一种传输信号的装置,该传输信号的装置包括处理器,用于实现上述第六方面描述的方法中网络设备的功能。
示例性地,该传输信号的装置还包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第六方面描述的方法中网络设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第六方面描述的方法中网络设备的功能。
示例性地,该传输信号的装置还包括通信接口,该通信接口用于该传输信号的装置与其它设备进行通信。当该传输信号的装置为网络设备时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该传输信号的装置包括:处理器和通信接口,用于实现上述第六方面描述的方法中网络设备的功能,具体地包括:
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该装置实现上述第六方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种可能的设计中,该传输信号的装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第九方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被通信装置执行时,使得该通信装置实现第一方面以及第一方面的任一可能的实现方式中的方法。
第十方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被通信装置执行时,使得该通信装置实现第二方面以及第二方面的任一可能的实现方式中的方法。
第十一方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被通信装置执行时,使得该通信装置实现第五方面以及第五方面的任一可能的实现方式中的方法。
第十二方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被通信装置执行时,使得该通信装置实现第六方面以及第六方面的任一可能的实现方式中的方法。
第十三方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得通信 装置实现第一方面和第三方面以及第一方面的任一可能的实现方式中的方法。
第十四方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得通信装置实现第二方面以及第二方面的任一可能的实现方式中的方法。
第十五方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得通信装置实现第五方面以及第五方面的任一可能的实现方式中的方法。
第十六方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得通信装置实现第六方面以及第六方面的任一可能的实现方式中的方法。
第十七方面,提供了一种定位系统,包括第三方面所示的传输信号的装置和第四方面所示的传输信号的装置,或者,包括第七方面所示的传输信号的装置和第八方面所示的传输信号的装置。
在第十七方面提供的定位系统中还包括服务小区、邻小区等。
基于上述描述,本申请提供的传输信号的与装置,有助于终端设备确定定位参考信号的接收波束,能够降低终端设备做接收波束扫描的开销。本申请提供的方案可以应用于基于根据终端设备到多个基站的距离对终端设备进行定位的场景,还可以应用于其它的需要获取不同PRS之间满足QCL关系的场景。
附图说明
图1是应用本申请实施例的传输信号的一个定位系统的架构示意图;
图2是应用本申请实施例的传输信号的另一个定位系统的架构示意图;
图3是本申请实施例提供的一种传输信号的方法示意性流程图;
图4是本申请实施例提供的一种PRS资源集合中的PRS资源和发送波束相对应的示意图;
图5是本申请提出的传输信号的装置50的示意图;
图6是适用于本申请实施例的终端设备60的结构示意图;
图7是本申请提出的传输信号的装置70的示意图;
图8是适用于本申请实施例的网络设备80的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等,本申请中涉及的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(Public Land Mobile Network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、 物联网(Internet of Things,IoT)通信系统或者其他通信系统。
本申请实施例中的终端设备(terminal equipment)可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备或者未来车联网中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC) 层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是应用本申请实施例的传输信号的一个定位系统的架构示意图。如图1所示,该定位系统中,终端设备通过LTE-Uu和/或NR-Uu接口分别经由下一代基站(next-generation eNodeB,ng-eNB)和gNB连接到无线接入网;无线接入网通过NG-C接口经由接入和移动性管理功能(access and mobility management function,AMF)连接到核心网。其中,下一代无线接入网(next-generation radio access network,NG-RAN)包括一个或多个ng-eNB;NG-RAN也可以包括一个或多个gNB;NG-RAN还可以包括一个或多个ng-eNB以及gNB。ng-eNB为接入5G核心网的LTE基站,gNB为接入5G核心网的5G基站。核心网包括AMF与LMF等功能。其中,AMF用于实现接入管理等功能,LMF用于实现定位等功能。AMF与LMF之间通过NLs接口连接。LMF是一种部署在核心网中为终端设备提供定位功能的装置或组件。
图2是应用本申请实施例的传输信号的另一个定位系统的架构示意图。图1与图2的定位系统架构的区别在于,图1的定位管理功能的装置或组件(比如LMF)部署在核心网中,图2的定位管理功能的装置或组件(比如定位管理组件LMC)可以部署在基站中。如图2所示,gNB中包含LMC。LMC是LMF的部分功能组件,可以集成在NG-RAN侧 的gNB中。
应理解,上述图1或图2的定位系统中,可以包括一个或多个gNB,一个或多个终端设备。单个gNB可以向单个终端设备或多个终端设备传输数据或控制信令。多个gNB也可以同时为单个终端设备传输数据或控制信令。
还应理解,上述图1或图2的定位系统中包括的设备或功能节点只是示例性地描述,并不对本申请实施例构成限定,事实上,图1或图2的定位系统中还可以包含其他与图中示意的设备或功能节点具有交互关系的网元或设备或功能节点,这里不作具体限定。
为了便于理解本申请实施例中提供的传输信号的方法,下面简单介绍本申请实施例中涉及到的几个基本概念:
1、准共站/准共址(quasi-collocation,QCL)假设信息。
QCL假设信息也可以简称为QCL信息,QCL信息用于辅助描述终端设备接收波束赋形信息以及接收流程。QCL信息用于指示两种参考信号之间的QCL关系,其中目标参考信号一般是可以是解调参考信号(demodulation reference signal,DMRS),CSI-RS等,而被引用的参考信号或者源参考信号一般可以是CSI-RS、TRS、SSB等。
空间相关(spatial relation)信息:用于辅助描述终端设备发射侧波束赋形信息以及发射流程。spatial relation信息用于指示两种参考信号之间的空间发送参数关系,其中目标参考信号一般是可以是DMRS,SRS等,而被引用的参考信号或者源参考信号一般可以是CSI-RS、SRS、SSB等。
应理解,满足QCL关系的两个参考信号或信道的空间特性参数是相同的,从而基于该源参考信号资源索引可推断出目标参考信号的空间特性参数。
还应理解,满足空间相关性信息的两个参考信号或信道的空间特性参数是相同的,从而基于该源参考信号资源索引可推断出目标参考信号的空间特性参数。
其中,空间特性参数包括以下参数中的一种或多种:
入射角(angle of arrival,AoA)、主(dominant)入射角AoA、平均入射角、入射角的功率角度谱(power angular spectrum,PAS)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端设备发送波束成型、终端设备接收波束成型、空间信道相关性、网络设备发送波束成型、网络设备接收波束成型、平均信道增益、平均信道时延(average delay)、时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(doppler shift)、空间接收参数(spatial Rx parameters)等。
这些空间特性参数描述了源参考信号与目标参考信号的天线端口间的空间信道特性,有助于终端设备根据该QCL信息完成接收侧波束赋形或接收处理过程。应理解,终端设备可以根据QCL信息指示的源参考信号的接收波束信息,接收目标参考信号;这些空间特性参数还有助于终端设备根据该空间相关信息完成发射侧波束赋形或者发射处理过程,应理解,终端设备可以根据空间相关信息指示的源参考信号的发射波束信息,发射目标参考信号。
其中,为了节省网络设备对终端设备的QCL信息指示开销,作为一种可选的实施方式,网络设备可以指示PDCCH或物理下行共享信道(physical downlink shared channel,PDSCH)的解调参考信号与终端设备之前上报的多个参考信号中的一个或多个是满足QCL关系的,例如,该参考信号可以是CSI-RS。这里,每一个上报的CSI-RS资源索引对 应了一个之前基于该CSI-RS资源测量时建立的一个收发波束对。应理解,满足QCL关系的两个参考信号或信道的接收波束信息是相同的,该终端设备可以根据该参考信号资源索引推断出接收PDCCH或PDSCH的接收波束信息。
现有标准中定义了四种类型的QCL,网络设备可以同时给终端设备配置一个或多种类型的QCL,如QCL type C,QCL type D,QCL type A+D,QCL type C+D:
QCL type A:多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均延时(average delay),延时扩展(delay spread);
QCL type B:多普勒频移,多普勒扩展;
QCL type C:平均延时,延时扩展
QCL type D:空间接收参数(Spatial Rx parameter)。
本申请中所涉及的定位相关的QCL类型主要包括:QCL type A、QCL type D、QCL type A+D、QCL type C或QCL type C+D中的至少一种。
2、波束(beam)。
波束是一种通信资源,不同的波束可以认为是不同的通信资源。不同的波束可以发送相同的信息,也可以发送不同的信息。波束可以对应时域资源、空间资源和频域资源中的至少一项。
可选地,具有相同或者类型的通信特征的多个波束可以视为一个波束,一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等。例如,发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布;接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
具体地,波束可以是宽波束,也可以是窄波束,还可以是其他类型的波束。形成波束的技术可以是波束成型技术也可以是其他技术手段,本申请对此不进行限定。其中,波束成型技术(beam forming)可以是通过在空间上朝向特定的方向来实现更高的天线阵列增益。此外,波束可以分为网络设备的发送波束和接收波束,与终端设备的发送波束和接收波束。网络设备的发送波束用于描述网络设备接收侧波束赋形信息,网络设备的接收波束用于描述网络设备接收侧波束赋形信息。终端设备的发送波束用于描述终端设备发送侧波束赋形信息,终端设备的接收波束用于描述接收侧波束赋形信息。
更具体地,波束成型技术包括数字波束成型技术、模拟波束成型技术和混合数字模拟波束成型技术。其中,模拟波束成型技术可以通过射频实现,例如,一个射频链路(RF chain)通过移相器来调整相位,从而控制模拟波束方向的改变。因此,一个RF chain在同一时刻只能打出一个模拟波束。此外,基于模拟波束的通信,需要发送端和接收端的波束对齐,否则无法正常传输信号。
应理解,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
还应理解,波束还可以通过空间滤波器(spatial filter)或空间传输滤波器(spatial domain transmission filter)体现,换句话说,波束也可以称为“空间滤波器”,其中发射波束称为“空间发射滤波器”,接收波束称为“空间接收滤波器”或“下行空间滤波器”。网络设备的接收波束或终端设备的发送波束还可以称为“上行空间滤波器”,网络设备的发送波束或终端设备的接收波束还可以称为“下行空间滤波器”。最优的N个波束对(beam pair link,BPL)(一个BPL包括一个网络设备的发射波束和一个终端设备的接收波束,或者,一个BPL包括 一个终端设备的发射波束和一个网络设备的接收波束)的选择。用于终端设备基于网络设备的波束扫描实现对网络设备的发射波束和/或终端设备的接收波束的选择,以及,网络设备基于终端设备的波束扫描实现对终端设备的发射波束和/或网络设备的接收波束的选择。
具体地,发射波束可以为网络设备发射波束,也可以为终端设备发射波束。当该发射波束为网络设备发射波束时,网络设备通过不同的发射波束向终端设备发送参考信号,终端设备通过同一个接收波束来接收网络设备通过不同的发射波束发送的参考信号,并基于接收信号确定网络设备的最优发射波束,然后将网络设备的最优发射波束反馈给网络设备,以便于网络设备对发射波束进行更新。当该发射波束为终端设备发射波束时,终端设备通过不同的发射波束向网络设备发送参考信号,网络设备通过同一个接收波束来接收终端设备通过不同的发射波束发送的参考信号,并基于接收信号确定终端设备的最优发射波束,然后将终端设备的最优发射波束反馈给终端设备,以便于终端设备对发射波束进行更新。其中,上述通过不同的发射波束发送参考信号的过程可以称为波束扫描,基于接收信号确定最优发射波束的过程可以称为波束匹配。
接收波束可以为网络设备的接收波束,也可以为终端设备的接收波束。当该接收波束为网络设备的接收波束时,终端设备通过同一个发射波束向网络设备发送参考信号,网络设备采用不同的接收波束接收终端设备发送的参考信号,然后基于接收信号确定网络设备的最优接收波束,以对网络设备的接收波束进行更新。当该接收波束为终端设备的接收波束时,网络设备通过同一个发射波束向终端设备发送参考信号,终端设备采用不同的接收波束接收网络设备发送的参考信号,然后基于接收信号确定终端设备的最优接收波束,以对终端设备的接收波束进行更新。
需要说明的是,对于下行波束的训练,网络设备会配置参考信号资源集合的类型用于波束训练,当为参考信号资源集合配置的重复参数为“on”时,终端设备假设该参考信号资源集合中的参考信号资源使用相同的下行空间滤波器传输,也即使用相同的发送波束传输;此时,一般情况下,终端设备会使用不同的接收波束接收上述参考信号资源集合中的参考信号资源,训练出终端设备最好的接收波束,可选地,终端设备可以上报终端设备测量的最好的N个参考信号资源对应的参考信号的信道质量。当为参考信资源号集合配置的重复参数为“off”时,终端设备不会假设该参考信号资源集合中的参考信号资源使用相同的下行空间滤波器传输,也即不假设网络设备使用相同的发送波束传输参考信号资源,此时终端设备通过测量该集合中参考信号资源对应的参考信号的信道质量在该资源集合中选出最好的N个波束反馈给网络设备,一般情况下,此时,终端设备在此过程中使用相同的接收波束。
3、定位参考信号(positioning reference signal,PRS)。
LTE系统在Rel-9标准化了基于观测到达时间差(observed time difference of arrival,OTDOA)的定位技术。该定位技术主要是通过终端设备接收并测量若干小区发送PRS,计算出参考信号到达时间差(reference signal time difference,RSTD)等测量量,并向演进服务移动定位中心(evolved serving mobile location center,E-SMLC)发送这些测量量。E-SMLC基于接收到的这些测量量,确定终端设备的位置。LTE中的定位需求是为了满足法规要求,特别的,定位需要满足水平定位精度<50m,垂直定位精度能够识别楼层。
NR Rel-16有关PRS设计的最新结论为:基站(或发射端)发送的PRS可由多个资源集(resource set)组成,每个resource set由包含多个资源(resource)。一个resource set内的每个resource都分别对应一个波束,且每个resource都有自己的索引(identify,ID)号。不同resource set中的resource会在同一个波束上发送,终端设备在所有波束上以波束扫描的方式测量PRS将增加PRS测量的时间。
4、OTDOA。
OTDOA定位技术中,多个基站向终端设备发送PRS,而终端设备通过对多个基站发送的PRS进行测量得到信号到达时间信息。终端设备可以将测得的PRS信号达到时间信息上报给定位管理单元,由定位管理单元根据多个基站的地理位置计算出终端设备的地理位置。终端设备也可以根据测得的PRS信号到达时间信息,结合定位管理单元指示的多个基站的地理位置计算出终端设备的地理位置。
OTDOA是根据多个基站与移动终端设备信号传播的时间差值进行定位的技术。例如,三个基站。OTDOA通过测量终端设备到两个基站的无线信号传播时间差来计算移动终端设备到两个基站的距离差。移动终端设备的运动轨迹就是以两个基站为焦点、以其距离差为定差的双曲线。要实现精确定位还必须对另外两个基站进行相同的测量与计算,以获得另外一条双曲线。由于网络已知服务小区(也可以称为服务基站)到移动终端设备的传播延迟,因此可以从移动终端设备提供的OTDOA测量值,估算出基站到移动终端的距离。三个基站构成的不同圆的交点就是估算出来的终端位置。
在LTE Rel-14讨论的增强机器类通信(enhance machine class communication,eMTC)OTDOA增强中,因为eMTC的终端设备下行带宽是1.4MHz,设计了专门为eMTC UE使用的1.4MHz带宽的PRS。同时,应用于移动宽带(mobile broadband,MBB)的终端设备的PRS也在正常发送。因此,LTE Rel-14中定义了一个小区可配3个不同带宽的PRS,且这3个PRS可独立配置周期等其他参数,现有LTE中没有为PRS间配置QCL关联。而NR系统中存在多个波束,PRS会在多个波束上发送。如果不配置QCL关联,会因为需要训练接收波束而延长PRS的测量,进而影响定位效率。
5G系统或新空口NR中的定位需求包括法规需求和商业场景需求。法规需求与LTE的定位需求一样;而对于商业场景需求,定位需要满足室外水平定位精度<10m,垂直定位精度<3m(待定),室内水平定位精度<3m,垂直定位精度<3m(待定)。相对于LTE的单一需求,5G不仅支持多级的需求,而且在商业场景需求上,也比LTE时要严格得多。
此外,为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
第二,在下文示出的实施例中第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的PRS资源集合等。
第三,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此 限定。
第四,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
以下,不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的传输信号的方法。
本申请实施例提供了一种传输信号的方法,通过向终端设备提供定位参考信号的QCL配置,辅助终端设备确定定位参考信号的接收波束,能够降低终端设备做接收波束扫描的开销。下面将结合图3详细描述本申请实施例。
图3是本申请实施例提供的一种传输信号的方法示意性流程图。执行主体包括终端设备和网络设备。
该传输信号的方法包括以下步骤。
S310、网络设备向终端设备发送第一PRS资源集合。
可选的,在一种可能的实现方式中,网络设备可以直接向终端设备发送第一PRS资源集合。在另一种可能的实现方式中,网络设备还可以向终端设备发送第一配置信息,该第一配置信息用于指示第一PRS资源集合,终端设备根据第一配置信息获取该第一PRS资源集合。
S320、网络设备向终端设备发送第二PRS资源集合。
可选的,在一种可能的实现方式中,网络设备可以直接向终端设备发送第二PRS资源集合。在另一种可能的实现方式中,网络设备还可以向终端设备发送第二配置信息,该第二配置信息用于指示第二PRS资源集合,终端设备根据第二配置信息获取该第二PRS资源集合。上述第一配置信息和第二配置信息可以为同一配置信息,也可以为不同的配置信息。
应理解,本申请实施例中对于网络设备向终端设备发送上述的第一PRS资源集合和第二PRS资源集合的先后不做任何限定,例如,可以是网络设备向终端设备发送上述的第一PRS资源集合之后,网络设备再向终端设备发送上述的第二PRS资源集合;或者,可以是网络设备向终端设备发送上述的第一PRS资源集合之前,网络设备再向终端设备发送上述的第二PRS资源集合;或者,网络设备同时向终端设备发送上述的第一PRS资源集合和第二PRS资源集合。
可选地,本申请实施例中涉及的网络设备包括包括图1中所示的LMF或图2中所示的LMC和LMF。
还应理解,本申请实施例中对于网络设备如何向终端设备发送上述的PRS资源集合并不限制,可以参考现有协议中的规定,或者,还可以是在通信技术发展以后网络设备向终端设备发送PRS资源集合的方式。
作为一种可能的实现方式,上述的第一PRS资源集合中包括M个第一PRS资源,该 M个第一PRS资源在M个发送波束上依次发送;第二PRS资源集合中包括M个第二PRS资源,该M个第二PRS资源在上述的M个发送波束上依次发送,M为正整数。
为了便于理解,结合图4简单说明不同的PRS资源集合中的PRS资源对应的发送波束。
图4是本申请实施例提供的一种PRS资源集合中的PRS资源和发送波束相对应的示意图。包括PRS资源集合#1、PRS资源集合#2以及发送波束集合。
从图4中可以看出,PRS资源集合#1包括3个PRS资源(第一PRS资源#1~第一PRS资源#3)、PRS资源集合#2包括3个PRS资源(第二PRS资源#1~第二PRS资源#3)、发送波束集合包括3个发送波束(发送波束#1~发送波束#3),其中,第一PRS资源#1和第二PRS资源#1均在发送波束#1上发送、第一PRS资源#2和第二PRS资源#2均在发送波束#2上发送、第一PRS资源#3和第二PRS资源#3均在发送波束#3上发送。
具体地,PRS资源集合#1和PRS资源集合#2的周期和带宽不一样,PRS资源集合#1中的第一PRS资源#1~第一PRS资源#3的周期和带宽一样、PRS资源集合#2中的第二PRS资源#1~第二PRS资源#3的周期和带宽一样。目前协议中并未规定不同的参数(例如,周期和/或带宽)配置的PRS资源之间的QCL关系,所以即使上述的第一PRS资源#1和第二PRS资源#1均在发送波束#1上发送,终端设备侧无法获知可以经由同一个接收波束接收上述的第一PRS资源#1和第二PRS资源#1,而是以波束扫描的方式分别接收第一PRS资源#1和第二PRS资源#1分别对应的PRS,从而增加PRS测量的时间。
作为另一种可能的实现方式,第一PRS资源集合中包括P1个第一PRS资源,该P1个第一PRS资源在P1个发送波束上依次发送;第二PRS资源集合中包括P2个第二PRS资源,该P2个第二PRS资源在P2个发送波束上依次发送。其中,P1和P2不相等且均为正整数。
例如,网络设备包括6个用于发送PRS资源的发送波束(波束#1~波束#6),其中,第一PRS资源集合中包括4个第一PRS资源,该4个第一PRS资源在4个发送波束(波束#1~波束#4)上依次发送,第二PRS资源集合中包括2个第二PRS资源,该2个第二PRS资源在2个发送波束(波束#1~波束#2)上依次发送。
作为另一种可能的实现方式,第一PRS资源集合中包括P3个第一PRS资源,该P3个第一PRS资源在P3#1个发送波束上依次发送;第二PRS资源集合中包括P3个第二PRS资源,该P3个第二PRS资源在P3#2个发送波束上依次发送。P3为正整数,P3#1和P3#2数值相等,但是P3#1个发送波束和P3#2个发送波束部分或全部不相同。
例如,网络设备包括6个用于发送PRS资源的发送波束(波束#1~波束#6),其中,第一PRS资源集合中包括4个第一PRS资源,该4个第一PRS资源在4个发送波束(波束#1~波束#4)上依次发送,第二PRS资源集合中包括4个第二PRS资源,该4个第二PRS资源在4个发送波束(波束#6~波束#3)上依次发送。
应理解,上述对于第一PRS资源集合和第二PRS资源集合中分别包括的PRS资源可能的形式的描述只是举例,对本申请的保护范围不构成任何限定,本申请中第一PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中的N个第二PRS资源对应相同的N个发送波束,N为小于或者等M的正整数。
本申请实施例中第一PRS资源集合中的N个第一PRS资源分别与上述第二PRS资源 集合中的N个第二PRS资源满足准共址QCL关系,即图3所示的方法流程还包括:
S330、终端设备确定上述N个第一PRS资源分别与上述N个第二PRS资源满足QCL关系,其中,N为大于或等于1的整数。
图3所示的传输信号的方法,终端设备在接收到第一PRS资源集合和第二PRS资源集合,获知第一PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中的N个第二PRS资源满足QCL关系之后,用同一个接收波束接收满足QCL关系的两个PRS资源对应的两个PRS,有助于终端设备确定定位参考信号的接收波束,能够降低终端设备做接收波束扫描的开销。
应理解,本申请实施例中N个第一PRS资源分别与N个第二PRS资源一一对应,组成N对PRS资源,该N对PRS资源中每对PRS资源满足QCL关系。
例如,上述N=1。1个第一PRS资源为第一PRS资源#1;1个第二PRS资源为第二PRS资源#1,第一PRS资源#1和第二PRS资源#1组成1对PRS资源,记为PRS资源组#1,具体地,PRS资源组#1中的第一PRS资源#1和第二PRS资源#1满足QCL关系。
例如,上述N=3。N个第一PRS资源为第一PRS资源#1、第一PRS资源#2和第一PRS资源#3;N个第二PRS资源为第二PRS资源#1、第二PRS资源#2和第二PRS资源#3,第一PRS资源#1和第二PRS资源#1组成1对PRS资源,记为PRS资源组#1、第一PRS资源#2和第二PRS资源#2组成1对PRS资源,记为PRS资源组#2、第一PRS资源#3和第二PRS资源#3组成1对PRS资源,记为PRS资源组#3,具体地,PRS资源组#1中的第一PRS资源#1和第二PRS资源#1满足QCL关系、PRS资源组#2中的第一PRS资源#2和第二PRS资源#2满足QCL关系、PRS资源组#3中的第一PRS资源#3和第二PRS资源#3满足QCL关系。
进一步地,终端设备可以基于QCL相关参数确定上述N个第一PRS资源分别与上述N个第二PRS资源满足准共址QCL关系,其中,上述QCL相关参数包括以下一种或多种参数:
QCL类型、上述第一PRS资源集合的索引和上述第二PRS资源集合的索引。
可选地,上述QCL相关参数还包括:
上述N个第一PRS资源的索引和上述N个第二PRS资源的索引。
示例性地,QCL相关参数包括第一PRS资源集合的索引,第二PRS资源集合的索引,第一PRS资源集合中一个第一PRS资源的索引,第二PRS资源集合中一个第二PRS资源的索引。该第一PRS资源与该第二PRS资源具有QCL关系。或者,QCL相关参数包括第一PRS资源集合的索引,第二PRS资源集合的索引,第一PRS资源集合中3个第一PRS资源的索引,第二PRS资源集合中3个第二PRS资源的索引。该3个第一PRS资源与该3个第二PRS资源分别满足一一对应的QCL关系。
作为一种可能的实现方式,上述QCL相关参数包括的全部参数为预设的;
作为另一种可能的实现方式,上述QCL相关参数包括的全部参数由网络设备配置;
作为又一种可能的实现方式,上述QCL相关参数包括的部分参数为预设的,剩余的部分参数由网络设备配置。
终端设备获知QCL相关参数可以通过以下六种方式中的任意一种:
方式一:
图3所示的方法流程还包括:
S331、网络设备向终端设备发送配置参数。
上述配置参数包括:
上述第一PRS资源集合的索引、上述第二PRS资源集合的索引;或者,
上述配置参数包括:
N个第一PRS资源的索引、N个第二PRS资源的索引;或者,
上述配置参数包括:
上述第一PRS资源集合的索引、上述第二PRS资源集合的索引、N个第一PRS资源的索引、N个第二PRS资源的索引;或者,
上述配置参数包括:
QCL类型、上述第一PRS资源集合的索引、上述第二PRS资源集合的索引;或者,上述配置参数包括:
QCL类型、N个第一PRS资源的索引、N个第二PRS资源的索引;或者,
上述配置参数包括:
QCL类型、上述第一PRS资源集合的索引、上述第二PRS资源集合的索引、N个第一PRS资源的索引、N个第二PRS资源的索引。
应理解,本申请中涉及的“索引”能够理解为标识信息,例如,上述的PRS资源的索引可以理解为标识PRS资源的标识信息,例如PRS资源标识(resource ID)。需要说明的是,在本申请各实施例中,“标识”可以替换为“索引”,“索引”可以替换为“标识”。
方式二:
图3所示的方法流程还包括:
S332、终端设备基于预设的参数获知QCL相关参数。
上述预设的参数包括:
上述第一PRS资源集合的索引、上述第二PRS资源集合的索引;或者,
上述预设的参数包括:
N个第一PRS资源的索引、N个第二PRS资源的索引;或者,
上述预设的参数包括:
上述第一PRS资源集合的索引、上述第二PRS资源集合的索引、N个第一PRS资源的索引、N个第二PRS资源的索引;或者,
上述预设的参数包括:
QCL类型、上述第一PRS资源集合的索引、上述第二PRS资源集合的索引;或者,
上述配置参数包括:
QCL类型、N个第一PRS资源的索引、N个第二PRS资源的索引;或者,
上述预设的参数包括:
QCL类型、上述第一PRS资源集合的索引、上述第二PRS资源集合的索引、N个第一PRS资源的索引、N个第二PRS资源的索引。
示例性地,终端设备和网络设备可以将上述的预设的参数保存在终端设备和网络设备本地存储系统中。
应理解,上述方式一和方式二可以结合,例如,上述QCL类型、上述第一PRS资源 集合的索引为网络设备通过配置参数配置的、上述第二PRS资源集合的索引、N个第一PRS资源的索引、N个第二PRS资源的索引为预设的参数。或者,上述第一PRS资源集合的索引、上述第二PRS资源集合的索引、N个第一PRS资源的索引、N个第二PRS资源的索引为网络设备通过配置参数配置的,上述QCL类型为预设的参数。
一种可能的实现方式,当上述的QCL相关参数包括QCL类型、上述第一PRS资源集合的索引、上述第二PRS资源集合的索引的情况下,终端设备基于该QCL相关参数确定上述N个第一PRS资源分别与上述N个第二PRS资源满足准共址QCL关系,包括:
第一PRS资源集合中包括N个第一PRS资源,该N个第一PRS资源在N个发送波束上依次发送;第二PRS资源集合中包括N个第二PRS资源,该N个第二PRS资源在上述的N个发送波束上依次发送;
第一PRS资源集合中的N个第一PRS资源和第二PRS资源集合中的N个第二PRS资源分别满足QCL关系,即终端设备在获知上述的QCL类型、上述第一PRS资源集合的索引、上述第二PRS资源集合的索引的情况下能够确定N个第一PRS资源分别与上述N个第二PRS资源满足QCL关系。
可选地,N个第一PRS资源分别与上述N个第二PRS资源满足QCL关系可以是上述N个第一PRS资源的索引分别与上述N个第二PRS资源的索引相同;或者,
上述N个第一PRS资源在上述第一PRS资源集合中的顺序分别与上述N个第二PRS资源在上述第二PRS资源集合中的顺序相同;或者,
上述N个第一PRS资源分别与上述N个第二PRS资源具有指定的QCL关系,该指定的QCL关系可以由协议预设或者网络设备配置。
例如,第一PRS资源集合的索引为PRS资源集合#1、第二PRS资源集合的索引为PRS资源集合#2,第一PRS资源集合中包括3个第一PRS资源,与第二PRS资源集合中包括的3个第二PRS资源满足QCL关系,该3个第一PRS资源与3个第二PRS资源一一对应,一一对应可以是索引相同,或者在PRS资源集合中的资源顺序相同,或者其他一一对应方式,本申请对此并不限定。
又例如,第一PRS资源集合的索引为PRS资源集合#1、第二PRS资源集合的索引为PRS资源集合#2,第一PRS资源集合中包括1个第一PRS资源,与第二PRS资源集合中包括的1个第二PRS资源满足QCL关系,该1个第一PRS资源与1个第二PRS资源对应,该对应可以是索引相同,或者在PRS资源集合中的资源次序相同,或者具有指定的对应关系,本申请对此并不限定。则上述的QCL相关参数包括:
QCL类型;
PRS资源集合#1、PRS资源集合#2。
也就是说,终端设备获知上述的QCL相关参数之后,基于PRS资源集合的索引PRS资源集合#1、PRS资源集合#2能够获知PRS资源集合#1、PRS资源集合#2分别对应的第一PRS资源集合中所有的PRS资源分别和第二PRS资源集合中所有PRS资源满足QCL关系。应理解,在该实现方式下,第一PRS资源集合中包括的第一PRS资源的个数和第二PRS资源集合中包括的第二PRS资源的个数相同、发送第一PRS资源集合中的第一PRS资源的发送波束和发送第二RS资源集合中的第二PRS资源的发送波束相同,且发送第一PRS资源集合中的第一PRS资源的发送波束的次序和发送第二RS资源集合中的第二PRS 资源的发送波束的次序相同。
另一种可能的实现方式,当上述的QCL相关参数包括QCL类型、上述第一PRS资源集合的索引、上述第二PRS资源集合的索引、N个第一PRS资源的索引和上述N个第二PRS资源的索引的情况下,终端设备基于该QCL相关参数确定上述N个第一PRS资源分别与上述N个第二PRS资源满足准共址QCL关系,包括:
第一PRS资源集合中包括P1个第一PRS资源,该P1个第一PRS资源在P1个发送波束上依次发送;第二PRS资源集合中包括P2个第二PRS资源,该P2个第二PRS资源在上述的P2个发送波束上依次发送;其中,P1、P2为大于或等于N的整数。
第一PRS资源集合中的N个第一PRS资源和第二PRS资源集合中的N个第二PRS资源分别满足QCL关系,N为小于或等于P1、P2的正整数,即终端设备在获知上述的QCL类型、上述第一PRS资源集合的索引、上述第二PRS资源集合的索引、N个第一PRS资源的索引和上述N个第二PRS资源的索引的情况下能够确定N个第一PRS资源分别与上述N个第二PRS资源满足QCL关系。
可选地,N个第一PRS资源分别与上述N个第二PRS资源满足QCL关系可以是上述N个第一PRS资源的索引分别与上述N个第二PRS资源的索引相同;或者,
上述N个第一PRS资源在上述第一PRS资源集合中的顺序分别与上述N个第二PRS资源在上述第二PRS资源集合中的顺序相同;或者,上述N个第一PRS资源分别与上述N个第二PRS资源具有指定的QCL关系,该指定的QCL关系可以由协议预设或者网络设备配置。
例如,第一PRS资源集合的索引为PRS资源集合#1、第二PRS资源集合的索引为PRS资源集合#2,第一PRS资源集合中的3个第一PRS资源分别与第二PRS资源集合中的3个第二PRS资源满足QCL关系。该3个第一PRS资源的索引分别为PRS资源#1、PRS资源#2、PRS资源#3;该3个第二PRS资源的索引也分别为PRS资源#1、PRS资源#2、PRS资源#3,相同资源索引的PRS资源满足QCL关系。则上述的QCL相关参数包括:
QCL类型;
PRS资源集合#1、PRS资源集合#2;
PRS资源#1、PRS资源#2、PRS资源#3。
终端设备获知上述的QCL相关参数之后,基于PRS资源集合的索引PRS资源集合#1、PRS资源集合#2能够获知PRS资源集合#1、PRS资源集合#2分别对应的第一PRS资源集合和第二PRS资源集合中有PRS资源满足QCL关系,进一步地,终端设备基于PRS资源的索引PRS资源#1、PRS资源#2、PRS资源#3能够获知第一PRS资源集合中索引分别为PRS资源#1、PRS资源#2、PRS资源#3的3个PRS资源,分别与第二PRS资源集合中索引分别为PRS资源#1、PRS资源#2、PRS资源#3的3个PRS资源满足QCL关系。应理解,在该实现方式下,第一PRS资源集合中包括的第一PRS资源的个数和第二PRS资源集合中包括的第二PRS资源的个数可以不同、发送第一PRS资源集合中的第一PRS资源的发送波束和发送第二RS资源集合中的第二PRS资源的发送波束部分相同,且发送第一PRS资源集合中的第一PRS资源的发送波束的次序和发送第二RS资源集合中的第二PRS资源的发送波束的次序可以不同。
在该实现方式下,网络设备可以配置两个PRS资源集合中分别包括的一个PRS资源 满足QCL关系,例如,上述的配置参数包括:
QCL类型;
PRS资源集合#1、PRS资源集合#2;
PRS资源#1。
或者,
在该实现方式下,协议可以预定义两个PRS资源集合中分别包括的一个PRS资源满足QCL关系,例如,上述的预设的参数包括:
QCL类型;
PRS资源集合#1、PRS资源集合#2;
PRS资源#1。
表示PRS资源集合#1对应的PRS资源集合中索引为PRS资源#1的PRS资源,与PRS资源集合#2对应的PRS资源集合中索引为PRS资源#1的PRS资源满足QCL关系。
另一种可能的实现方式,当上述的QCL相关参数包括上述第一PRS资源集合的索引、上述第二PRS资源集合的索引的情况下,终端设备基于该QCL相关参数确定上述N个第一PRS资源分别与上述N个第二PRS资源满足准共址QCL关系,包括:
第一PRS资源集合中包括N个第一PRS资源,该N个第一PRS资源在N个发送波束上依次发送;第二PRS资源集合中包括N个第二PRS资源,该N个第二PRS资源在上述的N个发送波束上依次发送;
第一PRS资源集合中的N个第一PRS资源和第二PRS资源集合中的N个第二PRS资源分别满足QCL关系,即终端设备在获知上述的QCL类型、上述第一PRS资源集合的索引、上述第二PRS资源集合的索引的情况下能够确定N个第一PRS资源分别与上述N个第二PRS资源满足QCL关系。
可选地,N个第一PRS资源分别与上述N个第二PRS资源满足QCL关系可以是上述N个第一PRS资源的索引分别与上述N个第二PRS资源的索引相同;或者,
上述N个第一PRS资源在上述第一PRS资源集合中的顺序分别与上述N个第二PRS资源在上述第二PRS资源集合中的顺序相同;或者,
上述N个第一PRS资源分别与上述N个第二PRS资源具有指定的QCL关系,该指定的QCL关系可以由协议预设或者网络设备配置。
例如,第一PRS资源集合的索引为PRS资源集合#1、第二PRS资源集合的索引为PRS资源集合#2,第一PRS资源集合中包括3个第一PRS资源,与第二PRS资源集合中包括的3个第二PRS资源满足QCL关系,该3个第一PRS资源与3个第二PRS资源一一对应,一一对应可以是索引相同,或者在PRS资源集合中的资源顺序相同,或者其他一一对应方式,本申请对此并不限定。
又例如,第一PRS资源集合的索引为PRS资源集合#1、第二PRS资源集合的索引为PRS资源集合#2,第一PRS资源集合中包括1个第一PRS资源,与第二PRS资源集合中包括的1个第二PRS资源满足QCL关系,该1个第一PRS资源与1个第二PRS资源对应,该对应可以是索引相同,或者在PRS资源集合中的资源次序相同,或者具有指定的对应关系,本申请对此并不限定。则上述的QCL相关参数包括:
PRS资源集合#1、PRS资源集合#2。
也就是说,终端设备获知上述的QCL相关参数之后,基于PRS资源集合的索引PRS资源集合#1、PRS资源集合#2能够获知PRS资源集合#1、PRS资源集合#2分别对应的第一PRS资源集合中所有的PRS资源分别和第二PRS资源集合中所有PRS资源满足QCL关系。或者,基于PRS资源集合的索引PRS资源集合#1、PRS资源集合#2能够获知PRS资源集合#1、PRS资源集合#2中一个或多个第一PRS资源分别和第二PRS资源集合中一个或多个第二PRS资源满足QCL关系。应理解,在该实现方式下,第一PRS资源集合中包括的第一PRS资源的个数和第二PRS资源集合中包括的第二PRS资源的个数相同、发送第一PRS资源集合中的第一PRS资源的发送波束和发送第二RS资源集合中的第二PRS资源的发送波束相同,且发送第一PRS资源集合中的第一PRS资源的发送波束的次序和发送第二RS资源集合中的第二PRS资源的发送波束的次序相同。
另一种可能的实现方式,当上述的QCL相关参数包括上述第一PRS资源集合的索引、上述第二PRS资源集合的索引、N个第一PRS资源的索引和上述N个第二PRS资源的索引的情况下,终端设备基于该QCL相关参数确定上述N个第一PRS资源分别与上述N个第二PRS资源满足准共址QCL关系,包括:
第一PRS资源集合中包括P1个第一PRS资源,该P1个第一PRS资源在P1个发送波束上依次发送;第二PRS资源集合中包括P2个第二PRS资源,该P2个第二PRS资源在上述的P2个发送波束上依次发送;其中,P1、P2为大于或等于N的整数。
第一PRS资源集合中的N个第一PRS资源和第二PRS资源集合中的N个第二PRS资源分别满足QCL关系,N为小于或等于P1、P2的正整数,即终端设备在获知上述的QCL类型、上述第一PRS资源集合的索引、上述第二PRS资源集合的索引、N个第一PRS资源的索引和上述N个第二PRS资源的索引的情况下能够确定N个第一PRS资源分别与上述N个第二PRS资源满足QCL关系。
可选地,N个第一PRS资源分别与上述N个第二PRS资源满足QCL关系可以是上述N个第一PRS资源的索引分别与上述N个第二PRS资源的索引相同;或者,
上述N个第一PRS资源在上述第一PRS资源集合中的顺序分别与上述N个第二PRS资源在上述第二PRS资源集合中的顺序相同;或者,上述N个第一PRS资源分别与上述N个第二PRS资源具有指定的QCL关系,该指定的QCL关系可以由协议预设或者由网络设备配置。
例如,第一PRS资源集合的索引为PRS资源集合#1、第二PRS资源集合的索引为PRS资源集合#2,第一PRS资源集合中的3个第一PRS资源分别与第二PRS资源集合中的3个第二PRS资源满足QCL关系。该3个第一PRS资源的索引分别为PRS资源#1、PRS资源#2、PRS资源#3;该3个第二PRS资源的索引也分别为PRS资源#1、PRS资源#2、PRS资源#3,相同资源索引的PRS资源满足QCL关系。则上述的QCL相关参数包括:
PRS资源集合#1、PRS资源集合#2;
PRS资源#1、PRS资源#2、PRS资源#3。
终端设备获知上述的QCL相关参数之后,基于PRS资源集合的索引PRS资源集合#1、PRS资源集合#2能够获知PRS资源集合#1、PRS资源集合#2分别对应的第一PRS资源集合和第二PRS资源集合中有PRS资源满足QCL关系,进一步地,终端设备基于PRS资源的索引PRS资源#1、PRS资源#2、PRS资源#3能够获知第一PRS资源集合中索引分别 为PRS资源#1、PRS资源#2、PRS资源#3的3个PRS资源,分别与第二PRS资源集合中索引分别为PRS资源#1、PRS资源#2、PRS资源#3的3个PRS资源满足QCL关系。应理解,在该实现方式下,第一PRS资源集合中包括的第一PRS资源的个数和第二PRS资源集合中包括的第二PRS资源的个数可以不同、发送第一PRS资源集合中的第一PRS资源的发送波束和发送第二RS资源集合中的第二PRS资源的发送波束部分相同,且发送第一PRS资源集合中的第一PRS资源的发送波束的次序和发送第二RS资源集合中的第二PRS资源的发送波束的次序可以不同。
在该实现方式下,网络设备可以配置两个PRS资源集合中分别包括的一个PRS资源满足QCL关系,例如,上述的配置参数包括:
PRS资源集合#1、PRS资源集合#2;
PRS资源#1。
或者,
在该实现方式下,协议可以预定义两个PRS资源集合中分别包括的一个PRS资源满足QCL关系,例如,上述的预设的参数包括:
PRS资源集合#1、PRS资源集合#2;
PRS资源#1。
表示PRS资源集合#1对应的PRS资源集合中索引为PRS资源#1的PRS资源,与PRS资源集合#2对应的PRS资源集合中索引为PRS资源#1的PRS资源满足QCL关系。
又例如,第一PRS资源集合的索引为PRS资源集合#1、第二PRS资源集合的索引为PRS资源集合#2,第一PRS资源集合中的1个第一PRS资源分别与第二PRS资源集合中的1个第二PRS资源满足QCL关系。该1个第一PRS资源的索引为PRS资源#1;该1个第二PRS资源的索引为PRS资源#3,第一PRS资源#1与第二PRS资源#3具有指定的QCL关系,则上述的QCL相关参数包括:
PRS资源集合#1、PRS资源#1;
PRS资源集合#2、PRS资源#3。
终端设备获知上述的QCL相关参数之后,基于PRS资源集合的索引PRS资源集合#1、PRS资源集合#2能够获知PRS资源集合#1、PRS资源集合#2分别对应的第一PRS资源集合和第二PRS资源集合中有PRS资源满足QCL关系,进一步地,终端设备基于PRS资源的索引PRS资源#1、PRS资源#3能够获知第一PRS资源集合中索引为PRS资源#1的PRS资源,与第二PRS资源集合中索引为PRS资源#3的PRS资源满足QCL关系。应理解,本实现方式仅以第一PRS资源集合中包含1个第一PRS资源,第二PRS资源集合中包含1个第二PRS资源为例进行介绍,本实现方式可以扩展到PRS资源集合#1中存在N个第一PRS资源分别与PRS资源集合#2中的N个第二PRS资源具有指定的QCL关系,其中N为大于或等于1的整数,该指定的QCL关系可以由协议预设或者网络设备配置。
应理解,网络设备侧也可以基于预设的参数获知上述的QCL相关参数,则图3所示方法流程,还包括:
S334、网络设备基于预设的参数获知QCL相关参数。
图3所示的传输信号的方法,网络设备在发送第一PRS资源集合和第二PRS资源集合之前,能够获知第一PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中 的N个第二PRS资源满足QCL关系,进而可以用同一个发送波束发送满足QCL关系的两个PRS资源对应的两个PRS,有助于网络设备确定定位参考信号的发送波束。
网络设备基于预设的参数获知QCL相关参数的具体方式与终端设备基于预设的参数获知QCL相关参数类似,这里不再赘述。或者,在网络设备发送上述的配置参数之前,网络设备基于发送第一PRS资源集合中的第一PRS资源和第二PRS资源集合中的第二PRS资源的发送波束,获知上述的QCL相关参数。则图3所示方法流程,还包括S333、网络设备确定配置参数。
本申请实施例中涉及的QCL类型包括以下QCL类型中的至少一种:
QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
应理解,上述的第一PRS资源集合中包括的第一PRS资源和第二PRS资源集合中包括的第二PRS资源分别占用的资源粒子RE可以重叠或者部分重叠;
其中,满足QCL关系的第一PRS资源和第二PRS资源占用的RE可以重叠或者部分重叠。
或者,
上述的第一PRS资源集合中包括的第一PRS资源和第二PRS资源集合中包括的第二PRS资源分别占用的资源粒子RE不重叠。
具体地,占用RE全部重叠或者部分重叠的第一PRS资源和第二PRS资源满足QCL关系包括以下两种情况:
情况一:
由于第一PRS资源和第二PRS资源占用的RE全部重叠或者部分重叠,导致第一PRS资源和第二PRS资源自然是满足QCL关系的,在该情况下,无需基于上述的QCL相关参数确定第一PRS资源和第二PRS资源满足QCL关系。
情况二:
经由图3所示的传输信号的方法,为占用的RE全部重叠或者部分重叠的第一PRS资源和第二PRS资源配置QCL关系。
应理解,上述方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上面描述了本申请实施例提供的方法实施例,下面将描述本申请实施例提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上面主要从各个设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个设备,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本申请中公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的 划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
参见图5,图5是本申请提出的传输信号的装置50的示意图。如图5所示,装置50包括接收单元510和处理单元520。
接收单元510,用于接收第一定位参考信号PRS资源集合;
该接收单元510,还用于接收第二PRS资源集合。
应理解,本申请实施例中并不限制接收单元510接收第一PRS资源集合和第二PRS资源集合的先后顺序。
处理单元520,用于确定上述的第一PRS资源集合中的N个第一PRS资源分别与上述的第二PRS资源集合中的N个第二PRS资源满足准共址QCL关系,N为大于于或等于1的整数。
作为示例,处理单元520确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,包括:
处理单元520确定N个第一PRS资源与N个第二PRS资源中具有相同资源索引的PRS资源满足QCL关系;或者,
处理单元520确定N个第一PRS资源与N个第二PRS资源中具有相同资源次序的PRS资源满足QCL关系;或者,
处理单元520确定N个第一PRS资源与N个第二PRS资源中具有指定QCL关系的PRS资源满足QCL关系。
作为示例,处理单元520确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,包括:
处理单元520基于QCL相关参数确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,其中,QCL相关参数包括以下一种或多种参数:
QCL类型、第一PRS资源集合的索引、第二PRS资源集合的索引;
QCL相关参数包括的部分或全部参数为预设的;或者,QCL相关参数包括的部分或全部参数由网络设备配置。
作为示例,N个第一PRS资源的索引和N个第二PRS资源的索引。
进一步地,当QCL相关参数包括的部分或全部参数由网络设备配置时,接收单元510还用于接收配置参数,配置参数包括QCL相关参数中的部分或全部参数。
作为示例,接收单元510通过LPP信令接收配置参数。
作为示例,第一PRS资源集合中包括M个第一PRS资源,M个第一PRS资源依次与M个发送波束一一对应;
第二PRS资源集合中包括M个第二PRS资源,M个第二PRS资源依次与M个发送波束一一对应,M为大于或者等于N的整数。
作为示例,第一PRS资源集合中的第一PRS资源和第二PRS资源集合中的第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,第一PRS资源与第二PRS 资源满足QCL关系,
第一PRS资源与第二PRS资源满足QCL关系,包括:
预设第一PRS资源与第二PRS资源满足QCL关系;或者,
处理单元520基于图3所示的传输信号的方法确定第一PRS资源与第二PRS资源满足QCL关系。
装置50和方法实施例中的终端设备完全对应,装置50可以是方法实施例中的终端设备,或者方法实施例中的终端设备内部的芯片或功能模块。装置50的相应单元用于执行图3所示的方法实施例中由终端设备执行的相应步骤。
其中,装置50中的接收单元510执行方法实施例中终端设备发送的步骤。例如,执行图3中的步骤S310、接收网络设备发送的第一PRS资源集合;还执行图3中的步骤S320、接收网络设备发送的第二PRS资源集合;还执行图3中的步骤S331、接收网络设备发送的配置参数。
处理单元520执行方法实施例中终端设备内部实现或处理的步骤。例如,执行图3中的步骤S332、基于预设的参数获知QCL相关参数;还执行图3中的步骤S330、确定N个第一PRS资源分别与、N个第二PRS资源满足准共址QCL关系。
装置50还可以包括发送单元,用于执行终端设备发送的步骤,例如,向其他设备发送信息。发送单元和接收单元510可以组成收发单元,同时具有接收和发送的功能。其中,处理单元520可以是处理器。发送单元可以是发射器,接收单元510可以是接收器。接收器和发射器可以集成在一起组成收发器。其中,收发器还可以称为通信接口或者通信单元。
当图5所示的传输信号的装置为终端设备时,为了便于理解和图示方便,终端设备以用户设备作为例子,例如手机。参见图6,图6是适用于本申请实施例的终端设备60的结构示意图。该终端设备60可应用于图1所示出的系统中。为了便于说明,图6仅示出了终端设备的主要部件。如图6所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图6中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以独立于处理器设置,也可以与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
作为示例,如图6所示,将具有收发功能的天线和射频电路记为收发单元610,将具 有处理功能的处理器记为处理单元620。即终端设备包括收发单元610和处理单元620。收发单元610也可以称为收发器、收发机、收发装置等。处理单元620也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元610中用于实现接收功能的器件视为接收单元,将收发单元610中用于实现发送功能的器件视为发送单元,即收发单元610包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元610还用于执行图3中所示的步骤S310、步骤S320和步骤S331中终端设备侧的接收操作,和/或收发单元610还用于执行终端设备侧的其他收发步骤。处理单元620用于执行图3中所示的步骤S332和步骤S330,和/或处理单元620还用于执行终端设备侧的其他处理步骤。
应理解,图6仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图6所示的结构。
当该传输信号的装置50为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
参见图7,图7是本申请提出的传输信号的装置70的示意图。如图7所示,装置70包括处理单元710和发送单元720。
处理单元710,用于确定第一定位参考信号PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中的N个第二PRS资源满足准共址QCL关系,N为大于或等于1的整数;
发送单元720,用于发送第一PRS资源集合;
该发送单元720,还用于发送第二PRS资源集合。
应理解,本申请实施例中并不限制发送单元720发送第一PRS资源集合和第二PRS资源集合的先后顺序。
处理单元710,用于确定上述的第一PRS资源集合中的N个第一PRS资源分别与上述的第二PRS资源集合中的N个第二PRS资源满足准共址QCL关系,N为大于或等于1的整数。
作为示例,处理单元710确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,包括:
处理单元710确定N个第一PRS资源与N个第二PRS资源中具有相同资源索引的PRS资源满足QCL关系;或者,
处理单元710确定N个第一PRS资源与N个第二PRS资源中具有相同资源次序的PRS资源满足QCL关系;或者,
处理单元710确定N个第一PRS资源与N个第二PRS资源中具有指定QCL关系的PRS资源满足QCL关系。
作为示例,处理单元710确定N个第一PRS资源分别与N个第二PRS资源满足准共址QCL关系,包括:
处理单元710基于QCL相关参数确定N个第一PRS资源分别与N个第二PRS资源 满足准共址QCL关系,其中,QCL相关参数包括以下一种或多种参数:
QCL类型、第一PRS资源集合的索引、第二PRS资源集合的索引;
QCL相关参数包括的部分或全部参数为预设的;或者,QCL相关参数包括的部分或全部参数由网络设备配置。
作为示例,N个第一PRS资源的索引和N个第二PRS资源的索引。
进一步地,当QCL相关参数包括的部分或全部参数由网络设备配置时,发送单元720还用于发送配置参数,配置参数包括QCL相关参数中的部分或全部参数。
作为示例,发送单元720通过LPP信令接收配置参数。
作为示例,第一PRS资源集合中包括M个第一PRS资源,M个第一PRS资源依次与M个发送波束一一对应;
第二PRS资源集合中包括M个第二PRS资源,M个第二PRS资源依次与M个发送波束一一对应,M为大于或者等于N的整数。
作为示例,第一PRS资源集合中的第一PRS资源和第二PRS资源集合中的第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,第一PRS资源与第二PRS资源满足QCL关系,
第一PRS资源与第二PRS资源满足QCL关系,包括:
预设第一PRS资源与第二PRS资源满足QCL关系;或者,
处理单元710基于图3所示的传输信号的方法确定第一PRS资源与第二PRS资源满足QCL关系。
装置70和方法实施例中的网络设备完全对应,装置70可以是方法实施例中的网络设备,或者方法实施例中的网络设备内部的芯片或功能模块。装置70的相应单元用于执行图3所示的方法实施例中由网络设备执行的相应步骤。
其中,装置70中的发送单元720执行方法实施例中网络设备发送的步骤。例如,执行图3中的步骤S310、向终端设备发送第一PRS资源集合;还执行图3中的步骤S320、向终端设备发送第二PRS资源集合;还执行图3中的步骤S331、向终端设备发送配置参数。
装置70中的处理单元710执行方法实施例中网络设备内部实现或处理的步骤。例如,执行图3中的步骤S333、确定配置参数;还执行图3中的步骤S334、基于预设的参数获知QCL相关参数。
装置70还可以包括接收单元,用于执行网络设备接收的步骤,例如,接收其他设备发送的信息。接收单元和发送单元720可以组成收发单元,同时具有接收和发送的功能。其中,处理单元710可以是处理器。发送单元720可以是发射器。接收单元可以是接收器。接收器和发射器可以集成在一起组成收发器。其中,收发器还可以称为通信接口或者通信单元。
当图7所示的传输信号的装置为网络设备时,为了便于理解和图示方便,网络设备以定位管理组件作为例子,例如图2中所示的LMC。参见图8,图8是适用于本申请实施例的网络设备80的结构示意图,可以用于实现上述传输信号的方法中的网络设备的功能。
定位管理组件包括810部分以及820部分。810部分主要用于射频信号的收发以及射频信号与基带信号的转换;820部分主要用于基带处理,对定位管理组件进行控制等。810 部分通常可以称为收发单元、收发机、收发电路、或者收发器等。820部分通常是定位管理组件的控制中心,通常可以称为处理单元,用于控制定位管理组件执行上述方法实施例中网络设备侧的处理操作。
810部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选地,可以将810部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即810部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
820部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对定位管理组件的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,810部分的收发单元用于执行图3中步骤S310、步骤S320和步骤S331中网络设备侧的发送操作,和/或810部分的收发单元还用于执行本申请实施例中网络设备侧的其他收发步骤。820部分的处理单元用于执行图3中步骤S33和步骤S334中网络设备侧的处理步骤,和/或820部分的收发单元还用于执行本申请实施例中网络设备侧的其他收发步骤。
应理解,图8仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图8所示的结构。
当该通信设备80为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
应理解,图8所示的网络设备80能够实现图3的方法实施例中涉及的网络设备功能。网络设备80中的各个单元的操作和/或功能,分别为了实现本申请方法实施例中由网络设备执行的相应流程。为避免重复,此处适当省略详述描述。图8示例的网络设备的结构仅为一种可能的形态,而不应对本申请实施例构成任何限定。本申请并不排除未来可能出现的其他形态的网络设备结构的可能。
本申请实施例还提供一种通信系统,其包括前述的终端设备、网络设备、服务小区和邻小区。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图3所示的方法中终端设备执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图3所示的方法中网络设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图3所示的方法中终端设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运 行时,使得计算机执行如图3所示的方法中网络设备执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的传输信号的方法中由终端设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的传输信号的方法中由网络设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (77)

  1. 一种传输信号的方法,其特征在于,包括:
    接收第一定位参考信号PRS资源集合;
    接收第二PRS资源集合;
    确定所述第一PRS资源集合中的N个第一PRS资源分别与所述第二PRS资源集合中的N个第二PRS资源满足准共址QCL关系,所述N为大于或等于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,包括:
    确定所述N个第一PRS资源与所述N个第二PRS资源中具有相同资源标识或相同资源索引的PRS资源满足QCL关系;或者,
    确定所述N个第一PRS资源与所述N个第二PRS资源中具有相同资源次序的PRS资源满足QCL关系;或者,
    确定所述N个第一PRS资源与所述N个第二PRS资源中具有指定QCL关系的PRS资源满足QCL关系。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,包括:
    基于QCL相关参数确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,其中,所述QCL相关参数包括以下一种或多种参数:
    QCL类型、所述第一PRS资源集合的索引、所述第二PRS资源集合的索引;
    所述QCL相关参数包括的部分或全部参数为预设的;或者,所述QCL相关参数包括的部分或全部参数由网络设备配置。
  4. 根据权利要求3所述的方法,其特征在于,所述QCL相关参数还包括:
    所述N个第一PRS资源的索引和所述N个第二PRS资源的索引。
  5. 根据权利要求3或4所述的方法,其特征在于,当所述QCL相关参数包括的部分或全部参数由网络设备配置时,所述方法还包括:
    接收配置参数,所述配置参数包括所述QCL相关参数中的部分或全部参数。
  6. 根据权利要求5所述的方法,其特征在于,所述配置参数承载于长期演进定位协议LPP信令。
  7. 根据权利要求3-6中任一项所述的方法,其特征在于,所述QCL类型包括以下类型中的至少一种:
    QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一PRS资源集合中包括M个第一PRS资源,所述M个第一PRS资源依次与M个发送波束一一对应;
    所述第二PRS资源集合中包括M个第二PRS资源,所述M个第二PRS资源依次与所述M个发送波束一一对应,所述M为大于或者等于所述N的整数。
  9. 根据权利要求3-8中任一项所述的方法,其特征在于,所述第一PRS资源集合中的所述第一PRS资源和所述第二PRS资源集合中的所述第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,所述第一PRS资源与所述第二PRS资源满足QCL 关系;
    所述第一PRS资源与所述第二PRS资源满足QCL关系,包括:
    预设所述第一PRS资源与所述第二PRS资源满足QCL关系;或者,
    基于所述QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足QCL关系。
  10. 一种传输信号的方法,其特征在于,包括:
    确定第一定位参考信号PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中的N个第二PRS资源满足准共址QCL关系,所述N为大于或等于1的整数;
    发送所述第一PRS资源集合;
    发送所述第二PRS资源集合。
  11. 根据权利要求10所述的方法,其特征在于,所述确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,包括:
    确定所述N个第一PRS资源与所述N个第二PRS资源中具有相同资源索引的PRS资源满足QCL关系;或者,
    确定所述N个第一PRS资源与所述N个第二PRS资源中具有相同资源次序的PRS资源满足QCL关系;或者,
    确定所述N个第一PRS资源与所述N个第二PRS资源中具有指定QCL关系的PRS资源满足QCL关系。
  12. 根据权利要求10或11所述的方法,其特征在于,所述确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,包括:
    基于QCL相关参数确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,其中,所述QCL相关参数包括以下一种或多种参数:
    QCL类型、所述第一PRS资源集合的索引、所述第二PRS资源集合的索引;
    所述QCL相关参数包括的部分或全部参数为预设的;或者,所述QCL相关参数包括的部分或全部参数由网络设备配置。
  13. 根据权利要求12所述的方法,其特征在于,所述QCL相关参数还包括:
    所述N个第一PRS资源的索引和所述N个第二PRS资源的索引。
  14. 根据权利要求12或13所述的方法,其特征在于,当所述QCL相关参数包括的部分或全部参数由网络设备配置时,所述方法还包括:
    发送配置参数,所述配置参数包括所述QCL相关参数中的部分或全部参数。
  15. 根据权利要求14所述的方法,其特征在于,所述配置参数承载于长期演进定位协议LPP信令。
  16. 根据权利要求12-15中任一项所述的方法,其特征在于,所述QCL类型包括以下类型中的至少一种:
    QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
  17. 根据权利要求10-16中任一项所述的方法,其特征在于,所述第一PRS资源集合中包括M个第一PRS资源,所述M个第一PRS资源依次与M个发送波束一一对应;
    所述第二PRS资源集合中包括M个第二PRS资源,所述M个第二PRS资源依次与所述M个发送波束一一对应,所述M为大于或者等于所述N的整数。
  18. 根据权利要求12-17中任一项所述的方法,其特征在于,所述第一PRS资源集合 中的所述第一PRS资源和所述第二PRS资源集合中的所述第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,所述第一PRS资源与所述第二PRS资源满足QCL关系,
    所述第一PRS资源与所述第二PRS资源满足QCL关系,包括:
    预设所述第一PRS资源与所述第二PRS资源满足QCL关系;或者,
    基于所述QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足QCL关系。
  19. 一种传输信号的装置,其特征在于,包括:
    接收单元,用于接收第一定位参考信号PRS资源集合;
    所述接收单元,还用于接收第二PRS资源集合;
    处理单元,用于确定所述第一PRS资源集合中的N个第一PRS资源分别与所述第二PRS资源集合中的N个第二PRS资源满足准共址QCL关系,所述N为大于或等于1的整数。
  20. 根据权利要求19所述的装置,其特征在于,所述处理单元确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,包括:
    所述处理单元确定所述N个第一PRS资源与所述N个第二PRS资源中具有相同资源索引的PRS资源满足QCL关系;或者,
    所述处理单元确定所述N个第一PRS资源与所述N个第二PRS资源中具有相同资源次序的PRS资源满足QCL关系;或者,
    所述处理单元确定所述N个第一PRS资源与所述N个第二PRS资源中具有指定QCL关系的PRS资源满足QCL关系。
  21. 根据权利要求19或20所述的装置,其特征在于,所述处理单元确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,包括:
    所述处理单元基于QCL相关参数确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,其中,所述QCL相关参数包括以下一种或多种参数:
    QCL类型、所述第一PRS资源集合的索引、所述第二PRS资源集合的索引;
    所述QCL相关参数包括的部分或全部参数为预设的;或者,所述QCL相关参数包括的部分或全部参数由网络设备配置。
  22. 根据权利要求21所述的装置,其特征在于,所述QCL相关参数还包括:
    所述N个第一PRS资源的索引和所述N个第二PRS资源的索引。
  23. 根据权利要求21或22所述的装置,其特征在于,当所述QCL相关参数包括的部分或全部参数由网络设备配置时,所述接收单元还用于接收配置参数,所述配置参数包括所述QCL相关参数中的部分或全部参数。
  24. 根据权利要求23所述的装置,其特征在于,所述配置参数承载于长期演进定位协议LPP信令。
  25. 根据权利要求19-24中任一项所述的装置,其特征在于,所述QCL类型包括以下类型中的至少一种:
    QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
  26. 根据权利要求19-25中任一项所述的装置,其特征在于,所述第一PRS资源集合中包括M个第一PRS资源,所述M个第一PRS资源依次与M个发送波束一一对应;
    所述第二PRS资源集合中包括M个第二PRS资源,所述M个第二PRS资源依次与所述M个发送波束一一对应,所述M为大于或者等于所述N的整数。
  27. 根据权利要求21-26中任一项所述的装置,其特征在于,所述第一PRS资源集合中的所述第一PRS资源和所述第二PRS资源集合中的所述第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,所述第一PRS资源与所述第二PRS资源满足QCL关系,
    所述第一PRS资源与所述第二PRS资源满足QCL关系,包括:
    预设所述第一PRS资源与所述第二PRS资源满足QCL关系;或者,
    所述处理单元基于所述QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足QCL关系。
  28. 一种传输信号的装置,其特征在于,包括:
    处理单元,用于确定第一定位参考信号PRS资源集合中的N个第一PRS资源分别与第二PRS资源集合中的N个第二PRS资源满足准共址QCL关系,所述N为大于或等于1的整数;
    发送单元,用于发送所述第一PRS资源集合;
    所述发送单元,还用于发送所述第二PRS资源集合。
  29. 根据权利要求28所述的装置,其特征在于,所述处理单元确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,包括:
    所述处理单元确定所述N个第一PRS资源与所述N个第二PRS资源中具有相同资源索引的PRS资源满足QCL关系;或者,
    所述处理单元确定所述N个第一PRS资源与所述N个第二PRS资源中具有相同资源次序的PRS资源满足QCL关系;或者,
    所述处理单元确定所述N个第一PRS资源与所述N个第二PRS资源中具有指定QCL关系的PRS资源满足QCL关系。
  30. 根据权利要求28或29所述的装置,其特征在于,所述处理单元确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,包括:
    所述处理单元基于QCL相关参数确定所述N个第一PRS资源分别与所述N个第二PRS资源满足准共址QCL关系,其中,所述QCL相关参数包括以下一种或多种参数:
    QCL类型、所述第一PRS资源集合的索引、所述第二PRS资源集合的索引;
    所述QCL相关参数包括的部分或全部参数为预设的;或者,所述QCL相关参数包括的部分或全部参数由网络设备配置。
  31. 根据权利要求30所述的装置,其特征在于,所述QCL相关参数还包括:
    所述N个第一PRS资源的索引和所述N个第二PRS资源的索引。
  32. 根据权利要求30或31所述的装置,其特征在于,当所述QCL相关参数包括的部分或全部参数由网络设备配置时,所述发送单元,还用于发送配置参数,所述配置参数包括所述QCL相关参数中的部分或全部参数。
  33. 根据权利要求32所述的装置,其特征在于,所述配置参数承载于长期演进定位协议LPP信令。
  34. 根据权利要求30-33中任一项所述的装置,其特征在于,所述QCL类型包括以 下类型中的至少一种:
    QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
  35. 根据权利要求28-34中任一项所述的装置,其特征在于,所述第一PRS资源集合中包括M个第一PRS资源,所述M个第一PRS资源依次与M个发送波束一一对应;
    所述第二PRS资源集合中包括M个第二PRS资源,所述M个第二PRS资源依次与所述M个发送波束一一对应,所述M为大于或者等于所述N的整数。
  36. 根据权利要求30-35中任一项所述的装置,其特征在于,所述第一PRS资源集合中的所述第一PRS资源和所述第二PRS资源集合中的所述第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,所述第一PRS资源与所述第二PRS资源满足QCL关系,
    所述第一PRS资源与所述第二PRS资源满足QCL关系,包括:
    预设所述第一PRS资源与所述第二PRS资源满足QCL关系;或者,
    所述处理单元基于所述QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足QCL关系。
  37. 一种传输信号的方法,其特征在于,包括:
    接收第一配置信息,根据所述第一配置信息获取第一定位参考信号PRS资源集合;
    接收第二配置信息,根据所述第二配置信息获取第二PRS资源集合;
    确定所述第一PRS资源集合中的第一PRS资源与所述第二PRS资源集合中的第二PRS资源满足准共址QCL关系。
  38. 根据权利要求37所述的方法,其特征在于,所述第一PRS资源与所述第二PRS资源存在以下至少一种对应关系,包括:
    所述第一PRS资源与所述第二PRS资源具有相同的资源索引;
    所述第一PRS资源与所述第二PRS资源具有相同的资源次序;
    所述第一PRS资源与所述第二PRS资源具有指定的QCL关系。
  39. 根据权利要求37或38所述的方法,其特征在于,所述确定所述第一PRS资源与所述第二PRS资源满足准共址QCL关系,包括:
    基于QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足准共址QCL关系,其中,所述QCL相关参数包括以下一种或多种参数:
    QCL类型、所述第一PRS资源集合的索引、所述第二PRS资源集合的索引;
    所述QCL相关参数包括的部分或全部参数为预设的;或者,所述QCL相关参数包括的部分或全部参数由网络设备配置。
  40. 根据权利要求39所述的方法,其特征在于,所述QCL相关参数还包括:
    所述第一PRS资源的索引和所述第二PRS资源的索引。
  41. 根据权利要求39或40所述的方法,其特征在于,当所述QCL相关参数包括的部分或全部参数由网络设备配置时,所述方法还包括:
    接收配置参数,所述配置参数包括所述QCL相关参数中的部分或全部参数。
  42. 根据权利要求41所述的方法,其特征在于,所述配置参数承载于长期演进定位协议LPP信令。
  43. 根据权利要求39-42中任一项所述的方法,其特征在于,所述QCL类型包括以 下类型中的至少一种:
    QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
  44. 根据权利要求37-43中任一项所述的方法,其特征在于,所述第一PRS资源集合中包括M个第一PRS资源,所述M个第一PRS资源依次与M个发送波束一一对应;
    所述第二PRS资源集合中包括M个第二PRS资源,所述M个第二PRS资源依次与所述M个发送波束一一对应,所述M为大于或者等于1的整数。
  45. 根据权利要求39-44中任一项所述的方法,其特征在于,所述第一PRS资源集合中的所述第一PRS资源和所述第二PRS资源集合中的所述第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,所述第一PRS资源与所述第二PRS资源满足QCL关系;
    所述第一PRS资源与所述第二PRS资源满足QCL关系,包括:
    预设所述第一PRS资源与所述第二PRS资源满足QCL关系;或者,
    基于所述QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足QCL关系。
  46. 一种传输信号的方法,其特征在于,包括:
    确定第一定位参考信号PRS资源集合中的第一PRS资源与第二PRS资源集合中的第二PRS资源满足准共址QCL关系;
    发送第一配置信息,所述第一配置信息用于指示所述第一PRS资源集合;
    发送第二配置信息,所述第二配置信息用于指示所述第二PRS资源集合。
  47. 根据权利要求46所述的方法,其特征在于,所述第一PRS资源与所述第二PRS资源存在以下至少一种对应关系,包括:
    所述第一PRS资源与所述第二PRS资源具有相同的资源索引;
    所述第一PRS资源与所述第二PRS资源具有相同的资源次序;
    所述第一PRS资源与所述第二PRS资源具有指定的QCL关系。
  48. 根据权利要求46或47所述的方法,其特征在于,所述确定所述第一PRS资源与所述第二PRS资源满足准共址QCL关系,包括:
    基于QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足准共址QCL关系,其中,所述QCL相关参数包括以下一种或多种参数:
    QCL类型、所述第一PRS资源集合的索引、所述第二PRS资源集合的索引;
    所述QCL相关参数包括的部分或全部参数为预设的;或者,所述QCL相关参数包括的部分或全部参数由网络设备配置。
  49. 根据权利要求48所述的方法,其特征在于,所述QCL相关参数还包括:
    所述第一PRS资源的索引和所述第二PRS资源的索引。
  50. 根据权利要求48或49所述的方法,其特征在于,当所述QCL相关参数包括的部分或全部参数由网络设备配置时,所述方法还包括:
    发送配置参数,所述配置参数包括所述QCL相关参数中的部分或全部参数。
  51. 根据权利要求50所述的方法,其特征在于,所述配置参数承载于长期演进定位协议LPP信令。
  52. 根据权利要求48-51中任一项所述的方法,其特征在于,所述QCL类型包括以下类型中的至少一种:
    QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
  53. 根据权利要求46-52中任一项所述的方法,其特征在于,所述第一PRS资源集合中包括M个第一PRS资源,所述M个第一PRS资源依次与M个发送波束一一对应;
    所述第二PRS资源集合中包括M个第二PRS资源,所述M个第二PRS资源依次与所述M个发送波束一一对应,所述M为大于或者等于1的整数。
  54. 根据权利要求48-53中任一项所述的方法,其特征在于,所述第一PRS资源集合中的所述第一PRS资源和所述第二PRS资源集合中的所述第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,所述第一PRS资源与所述第二PRS资源满足QCL关系,
    所述第一PRS资源与所述第二PRS资源满足QCL关系,包括:
    预设所述第一PRS资源与所述第二PRS资源满足QCL关系;或者,
    基于所述QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足QCL关系。
  55. 一种传输信号的装置,其特征在于,包括:
    接收单元,用于接收第一配置信息,所述第一配置信息用于指示第一定位参考信号PRS资源集合;
    所述接收单元,还用于接收第二配置信息,所述第二配置信息用于指示第二PRS资源集合;
    处理单元,用于确定所述第一PRS资源集合中的第一PRS资源与所述第二PRS资源集合中的第二PRS资源满足准共址QCL关系。
  56. 根据权利要求55所述的装置,其特征在于,所述第一PRS资源与所述第二PRS资源存在以下至少一种对应关系,包括:
    所述第一PRS资源与所述第二PRS资源具有相同的资源索引;
    所述第一PRS资源与所述第二PRS资源具有相同的资源次序;
    所述第一PRS资源与所述第二PRS资源具有指定的QCL关系。
  57. 根据权利要求55或56所述的装置,其特征在于,所述处理单元确定所述第一PRS资源与所述第二PRS资源满足准共址QCL关系,包括:
    所述处理单元基于QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足准共址QCL关系,其中,所述QCL相关参数包括以下一种或多种参数:
    QCL类型、所述第一PRS资源集合的索引、所述第二PRS资源集合的索引;
    所述QCL相关参数包括的部分或全部参数为预设的;或者,所述QCL相关参数包括的部分或全部参数由网络设备配置。
  58. 根据权利要求57所述的装置,其特征在于,所述QCL相关参数还包括:
    所述第一PRS资源的索引和所述第二PRS资源的索引。
  59. 根据权利要求57或58所述的装置,其特征在于,当所述QCL相关参数包括的部分或全部参数由网络设备配置时,所述接收单元还用于接收配置参数,所述配置参数包括所述QCL相关参数中的部分或全部参数。
  60. 根据权利要求59所述的装置,其特征在于,所述配置参数承载于长期演进定位协议LPP信令。
  61. 根据权利要求57-60中任一项所述的装置,其特征在于,所述QCL类型包括以 下类型中的至少一种:
    QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
  62. 根据权利要求55-61中任一项所述的装置,其特征在于,所述第一PRS资源集合中包括M个第一PRS资源,所述M个第一PRS资源依次与M个发送波束一一对应;
    所述第二PRS资源集合中包括M个第二PRS资源,所述M个第二PRS资源依次与所述M个发送波束一一对应,所述M为大于或者等于1的整数。
  63. 根据权利要求55-62中任一项所述的装置,其特征在于,所述第一PRS资源集合中的所述第一PRS资源和所述第二PRS资源集合中的所述第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,所述第一PRS资源与所述第二PRS资源满足QCL关系,
    所述第一PRS资源与所述第二PRS资源满足QCL关系,包括:
    预设所述第一PRS资源与所述第二PRS资源满足QCL关系;或者,
    所述处理单元基于所述QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足QCL关系。
  64. 一种传输信号的装置,其特征在于,包括:
    处理单元,用于确定第一定位参考信号PRS资源集合中的第一PRS资源与第二PRS资源集合中的第二PRS资源满足准共址QCL关系;
    发送单元,用于发送第一配置信息,所述第一配置信息用于指示所述第一PRS资源集合;
    所述发送单元,还用于发送所述第二配置信息,所述第二配置信息用于指示所述第二PRS资源集合。
  65. 根据权利要求64所述的装置,其特征在于,所述第一PRS资源与所述第二PRS资源存在以下至少一种对应关系,包括:
    所述第一PRS资源与所述第二PRS资源具有相同的资源索引;
    所述第一PRS资源与所述第二PRS资源具有相同的资源次序;
    所述第一PRS资源与所述第二PRS资源具有指定的QCL关系。
  66. 根据权利要求64或65所述的装置,其特征在于,所述处理单元确定所述第一PRS资源与所述第二PRS资源满足准共址QCL关系,包括:
    所述处理单元基于QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足准共址QCL关系,其中,所述QCL相关参数包括以下一种或多种参数:
    QCL类型、所述第一PRS资源集合的索引、所述第二PRS资源集合的索引;
    所述QCL相关参数包括的部分或全部参数为预设的;或者,所述QCL相关参数包括的部分或全部参数由网络设备配置。
  67. 根据权利要求66所述的装置,其特征在于,所述QCL相关参数还包括:
    所述第一PRS资源的索引和所述第二PRS资源的索引。
  68. 根据权利要求67所述的装置,其特征在于,当所述QCL相关参数包括的部分或全部参数由网络设备配置时,所述发送单元,还用于发送配置参数,所述配置参数包括所述QCL相关参数中的部分或全部参数。
  69. 根据权利要求68所述的装置,其特征在于,所述配置参数承载于长期演进定位 协议LPP信令。
  70. 根据权利要求66-69中任一项所述的装置,其特征在于,所述QCL类型包括以下类型中的至少一种:
    QCL类型A、QCL类型D、QCL类型A+D、QCL类型C、或QCL类型C+D。
  71. 根据权利要求64-70中任一项所述的装置,其特征在于,所述第一PRS资源集合中包括M个第一PRS资源,所述M个第一PRS资源依次与M个发送波束一一对应;
    所述第二PRS资源集合中包括M个第二PRS资源,所述M个第二PRS资源依次与所述M个发送波束一一对应,所述M为大于或者等于1的整数。
  72. 根据权利要求66-71中任一项所述的装置,其特征在于,所述第一PRS资源集合中的所述第一PRS资源和所述第二PRS资源集合中的所述第二PRS资源分别占用的资源粒子RE全部重叠或者部分重叠,其中,所述第一PRS资源与所述第二PRS资源满足QCL关系,
    所述第一PRS资源与所述第二PRS资源满足QCL关系,包括:
    预设所述第一PRS资源与所述第二PRS资源满足QCL关系;或者,
    所述处理单元基于所述QCL相关参数确定所述第一PRS资源与所述第二PRS资源满足QCL关系。
  73. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时使得所述计算机实现权利要求1-9中任一项所述的方法,或者,权利要求10-18中任一项所述的方法,或者,权利要求37-45中任一项所述的方法,或者,权利要求46-54中任一项所述的方法。
  74. 一种计算机程序产品,其特征在于,包括:指令,当所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1-9中任一项所述的方法,或者执行权利要求10-18中任一项所述的方法,或者,权利要求37-45中任一项所述的方法,或者,权利要求46-54中任一项所述的方法。
  75. 一种传输信号的装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器存储的所述计算机执行指令,以使所述装置执行如权利要求1-9中任一项所述的方法,或者执行权利要求10-18中任一项所述的方法,或者,权利要求37-45中任一项所述的方法,或者,权利要求46-54中任一项所述的方法。
  76. 一种传输信号的装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收计算机执行指令并传输至所述处理器;所述处理器运行所述计算机执行指令以执行如权利要求1-9中任一项所述的方法,或者执行权利要求10-18中任一项所述的方法,或者,权利要求37-45中任一项所述的方法,或者,权利要求46-54中任一项所述的方法。
  77. 一种通信系统,其特征在于,包括如权利要求19-27中任一项所述的传输信号的装置或如权利要求55-63中任一项所述的终端设备,以及,如权利要求28-36中任一项所述的装置或如权利要求64-72中任一项所述的装置。
PCT/CN2020/109148 2019-08-14 2020-08-14 传输参考信号的方法及设备 WO2021027919A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20853043.6A EP4156810A4 (en) 2019-08-14 2020-08-14 METHOD AND DEVICE FOR TRANSMITTING A REFERENCE SIGNAL
US17/669,668 US20220167181A1 (en) 2019-08-14 2022-02-11 Reference signal transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910748780.0A CN112399567A (zh) 2019-08-14 2019-08-14 传输信号的方法和装置
CN201910748780.0 2019-08-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/669,668 Continuation US20220167181A1 (en) 2019-08-14 2022-02-11 Reference signal transmission method and device

Publications (2)

Publication Number Publication Date
WO2021027919A1 WO2021027919A1 (zh) 2021-02-18
WO2021027919A9 true WO2021027919A9 (zh) 2021-04-29

Family

ID=74569406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109148 WO2021027919A1 (zh) 2019-08-14 2020-08-14 传输参考信号的方法及设备

Country Status (4)

Country Link
US (1) US20220167181A1 (zh)
EP (1) EP4156810A4 (zh)
CN (1) CN112399567A (zh)
WO (1) WO2021027919A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11909589B2 (en) 2019-10-03 2024-02-20 Qualcomm Incorporated Constraints on a source reference signal for quasi-collocation timing reference of a positioning reference signal
CN115707094A (zh) * 2021-08-06 2023-02-17 华为技术有限公司 一种定位方法及通信装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7940740B2 (en) * 2009-02-03 2011-05-10 Motorola Mobility, Inc. Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station
US10050756B2 (en) * 2014-04-09 2018-08-14 Lg Electronics Inc. Method for tranceiving signal in wireless communication system and apparatus therefor
CN106160934B (zh) * 2015-04-10 2019-08-02 中国移动通信集团公司 一种csi反馈方法、装置和相关设备
CN106559886A (zh) * 2015-09-28 2017-04-05 华为技术有限公司 无线通信系统中传输控制信息的方法、基站和用户设备
CN108288985B (zh) * 2017-01-10 2021-06-08 电信科学技术研究院 一种数据传输控制方法、网络侧设备及终端
US10812162B2 (en) * 2017-03-21 2020-10-20 Samsung Electronics Co., Ltd. Method and apparatus for indication of reference signals in wireless systems
US11233612B2 (en) * 2017-08-01 2022-01-25 Qualcomm Incorporated Downlink positioning reference signal in multi-beam systems
CN109842470A (zh) * 2017-11-24 2019-06-04 华为技术有限公司 数据传输方法、终端设备和网络设备
WO2019182401A1 (ko) * 2018-03-23 2019-09-26 주식회사 케이티 차세대 무선망에서 포지셔닝을 수행하는 방법 및 장치
JP7289189B2 (ja) * 2018-06-28 2023-06-09 シャープ株式会社 端末装置、ロケーションサーバー及び方法
CN110808820B (zh) * 2018-07-20 2021-09-17 大唐移动通信设备有限公司 一种定位参考信号传输方法及装置
CN112513662A (zh) * 2018-08-01 2021-03-16 苹果公司 对无线网络中的用户装备(ue)定位的测量和报告
US20210176022A1 (en) * 2018-08-02 2021-06-10 Samsung Electronics Co., Ltd. Method and apparatus for providing a positional reference signal in a mobile communication system
US11646921B2 (en) * 2018-08-09 2023-05-09 Qualcomm Incorporated Using physical channels for positioning measurement signals
US11502735B2 (en) * 2018-08-10 2022-11-15 Lg Electronics Inc. Method for transmitting and receiving downlink signal and device for same
WO2020065894A1 (ja) * 2018-09-27 2020-04-02 三菱電機株式会社 基地局、端末装置および測位方法
CN112771945B (zh) * 2018-09-27 2023-05-30 上海诺基亚贝尔股份有限公司 用于定位参考信号的资源配置的方法和装置
US11412400B2 (en) * 2018-10-01 2022-08-09 Nokia Technologies Oy Method for positioning reference design
WO2020200429A1 (en) * 2019-04-02 2020-10-08 Nokia Technologies Oy Method of correcting time of departure in observed time difference of arrival positioning

Also Published As

Publication number Publication date
WO2021027919A1 (zh) 2021-02-18
CN112399567A (zh) 2021-02-23
EP4156810A4 (en) 2024-02-07
US20220167181A1 (en) 2022-05-26
EP4156810A1 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
WO2021097598A1 (zh) 侧行定位方法和装置
CN110972156B (zh) 一种干扰测量方法、装置、芯片及存储介质
US20200336194A1 (en) Joint beam reporting for wireless networks
WO2021057473A1 (zh) 一种共生网络中载波的调度方法、装置及存储介质
WO2021008581A1 (zh) 用于定位的方法和通信装置
US20220171014A1 (en) Relative angle-based positioning method and apparatus
WO2020063308A1 (zh) 一种无线通信网络中的指示波束信息的方法和设备
WO2021036945A1 (zh) 发送定位参考信号的方法和相关装置
WO2020182031A1 (zh) 一种无线通信技术领域中的通信方法和通信装置
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
WO2020164517A1 (zh) 用于测量信号的方法和通信装置
WO2021134455A1 (zh) 无线资源管理测量的方法和装置
WO2021052473A1 (zh) 通信方法和通信装置
US20220007275A1 (en) Method and network device for terminal device positioning with integrated access backhaul
WO2021027919A9 (zh) 传输参考信号的方法及设备
WO2022001241A1 (zh) 一种波束管理方法及装置
WO2023125223A1 (zh) 下行传输的方法及装置
WO2021138866A1 (zh) 信息确定方法、信息指示方法、终端设备和网络设备
WO2021087889A1 (zh) 一种配置cli测量的方法及通信装置
US20220240116A1 (en) Link Failure Detection Method and Apparatus
WO2020207222A1 (zh) 一种基于cu-du架构的定位方法及装置
WO2021174558A1 (zh) 资源指示方法、终端设备和网络设备
WO2023231823A1 (zh) 一种通信方法及相关装置
WO2023124995A1 (zh) 通信方法、终端设备、网络设备及通信系统
WO2022198591A1 (zh) 一种非周期定位参考信号的测量上报方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020853043

Country of ref document: EP

Effective date: 20220314