WO2021097598A1 - 侧行定位方法和装置 - Google Patents

侧行定位方法和装置 Download PDF

Info

Publication number
WO2021097598A1
WO2021097598A1 PCT/CN2019/119114 CN2019119114W WO2021097598A1 WO 2021097598 A1 WO2021097598 A1 WO 2021097598A1 CN 2019119114 W CN2019119114 W CN 2019119114W WO 2021097598 A1 WO2021097598 A1 WO 2021097598A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
reference signal
measurement value
side row
positioning
Prior art date
Application number
PCT/CN2019/119114
Other languages
English (en)
French (fr)
Inventor
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2019475080A priority Critical patent/AU2019475080B2/en
Priority to PCT/CN2019/119114 priority patent/WO2021097598A1/zh
Priority to CN201980102247.5A priority patent/CN114731638A/zh
Priority to EP19953315.9A priority patent/EP4054258A4/en
Publication of WO2021097598A1 publication Critical patent/WO2021097598A1/zh
Priority to US17/663,729 priority patent/US20220279313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0072Transmission between mobile stations, e.g. anti-collision systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of communications, and in particular to a method and device for lateral positioning.
  • Some existing positioning technologies determine the location information of the terminal equipment based on the measurement of the reference signal between the network equipment and the terminal equipment. These positioning technologies need to be controlled by the core network, and the positioning error of the terminal equipment will vary with the network equipment and the terminal equipment. The distance between the devices increases and increases. In some scenarios with high requirements for positioning accuracy, the position information of the terminal device cannot be accurately measured due to the large error of the positioning method based on the network device and the terminal device.
  • the present application provides a method and device for lateral positioning.
  • the terminal equipment can use the lateral signal to determine the positioning, obtain the relative position or the absolute position, and improve the positioning accuracy.
  • a side-line positioning method includes: a first terminal device receives a first side-line positioning configuration sent by a network device; Line positioning reference signal, the first side line positioning reference signal is used to determine the first measurement value, where the first measurement value includes the measurement value of the first side line positioning reference signal by the second terminal device, and the position of the first terminal device is Determined based on the first measurement value and the location of the second terminal device.
  • the second terminal device measures the first lateral positioning reference signal sent by the first terminal device to obtain the first measurement value, so that the positional relationship of the first terminal device relative to the second terminal device can be determined.
  • the location information of the first terminal device may be determined by the first terminal device or the network device according to the first measurement value and the location information of the second terminal device, and the first measurement value does not need to go through the core network, which reduces the positioning delay.
  • this technical solution is also suitable for the first terminal device that does not support sideline reference signal measurement, and the second terminal device that supports sideline reference signal performs the measurement.
  • the first terminal device receives the first measurement value from the second terminal device or the network device, and the first terminal device receives the first measurement value according to the first measurement value and the location of the second terminal device. To determine the location of the first terminal device.
  • the first terminal device may calculate its own location information by itself according to the first measurement value.
  • the first terminal device receives the second sideline positioning reference signal sent by the second terminal device according to the first sideline positioning configuration; the first terminal device responds to the second side Measure the positioning reference signal to determine the second measurement value; the first terminal device determines the location of the first terminal device according to the first measurement value and the location of the second terminal device, including: the first terminal device determines the location of the first terminal device according to the first measurement value , The second measurement value and the location of the second terminal device determine the location of the first terminal device.
  • the first terminal device measures the first side row positioning reference signal by the second terminal device according to the first measurement value
  • the first terminal device measures the second side row positioning reference signal on the second measurement value according to the first measurement value.
  • a measurement value and a second measurement value jointly determine the positional relationship of the first terminal device relative to the second terminal device. Then, on the basis of determining the relative positional relationship between the first terminal device and the second terminal device, the position of the first terminal device is finally determined according to the position of the second terminal device, and the first measurement value and the second measurement value are not required Via the core network, the positioning delay is reduced.
  • the method before the first terminal device receives the first lateral positioning configuration sent by the network device, the method further includes: the first terminal device sends a location information request to the network device.
  • the first side row positioning configuration information includes at least one or more of the following information configurations: time-frequency resources occupied by the first side row positioning reference signal, and the second side The time-frequency resources occupied by the horizontal positioning reference signal, the sequence information of the first lateral positioning reference signal, the sequence information of the second lateral positioning reference signal, the information of the second terminal device, and the reporting configuration information of the first terminal device, where:
  • the reporting configuration information of the first terminal device includes the second measurement value and the Uu interface measurement reporting method.
  • the first measurement value includes: the difference between the transmission and reception time of the second terminal device, and the measurement value of the angle of arrival of the second terminal device to the first lateral positioning reference signal.
  • the second measurement value includes: the transmission and reception time difference of the first terminal device, and the measurement value of the angle of arrival of the first terminal device to the second lateral positioning reference signal.
  • a side-line positioning method including: a second terminal device receives a second side-line positioning configuration sent by a network device; and the second terminal device receives a second side-line positioning configuration sent by the first terminal device according to the second side-line positioning configuration.
  • the location determines the location of the first terminal device.
  • the second terminal device measures the first measurement value sent by the first terminal device to obtain the first measurement value, thereby determining the positional relationship of the first terminal device relative to the second terminal device.
  • Both the first terminal device and the network device can determine the location information of the first terminal device according to the first measurement value and the location information of the second terminal device.
  • the measurement value does not need to go through the core network, which reduces the positioning delay.
  • the technical solution is also suitable for the first terminal device that does not support sideline reference signal measurement, and the second terminal device that supports the sideline reference signal performs the measurement.
  • the second terminal device sends the second sideline positioning reference signal to the first terminal device according to the second sideline positioning configuration.
  • the second side row positioning configuration includes one or more of the following information: the time-frequency resources occupied by the first side row positioning reference signal, and the second side row positioning reference The time-frequency resources occupied by the signal, the sequence information of the first side row positioning reference signal, the sequence information of the second side row positioning reference signal, the information of the second terminal device, the report configuration information of the second terminal device, where the second terminal The reported configuration information of the device includes the first measured value and the method of measuring and reporting the PC5 interface.
  • the first measurement value includes: the difference between the transmission and reception time of the second terminal device, and the measurement value of the angle of arrival of the second terminal device to the first lateral positioning reference signal.
  • the second terminal device sends the location information of the second terminal device to the network device or the first terminal device.
  • a side-line positioning method including: a network device sends a first side-line positioning configuration to a first terminal device; the network device sends a second side-line positioning configuration to a second terminal device; and the network device receives the second The first measurement value sent by the terminal device, the first measurement value includes the measurement value of the second terminal device on the first lateral positioning reference signal; the network device determines the value of the first terminal device according to the first measurement value and the position of the second terminal device position.
  • the second terminal device measures the first measurement value sent by the first terminal device to obtain the first measurement value, thereby determining the positional relationship of the first terminal device relative to the second terminal device.
  • the network device can determine the location information of the first terminal device according to the first measurement value and the location information of the second terminal device, and the measurement value does not need to go through the core network, which reduces the positioning delay.
  • the network device receives the second measurement value sent by the first terminal device, and the second measurement value includes the second side line sent by the first terminal device to the second terminal device.
  • the measurement value of the positioning reference signal the network device determines the location of the first terminal device according to the first measurement value and the location of the second terminal device, including: the network device determines the location of the first terminal device according to the first measurement value, the second measurement value, and the location of the second terminal device To determine the location of the first terminal device.
  • the position relationship of the first terminal device relative to the second terminal device can be jointly determined according to the first measurement value and the second measurement value. Then, on the basis of determining the relative positional relationship between the first terminal device and the second terminal device, the position of the first terminal device is finally determined according to the position of the second terminal device, and the first measurement value and the second measurement value are not required Via the core network, the positioning delay is reduced.
  • the method before the network device sends the first side-line positioning configuration to the first terminal device and the network device sends the second side-line positioning configuration to the second terminal device, the method further Including: the network device receives the location information request of the first terminal device.
  • the first side row positioning configuration information includes one or more of the following configurations: time-frequency resources occupied by the first side row positioning reference signal, and second side row positioning The time-frequency resources occupied by the reference signal, the sequence information of the first side row positioning reference signal, the sequence information of the second side row positioning reference signal, the information of the second terminal device, the report configuration information of the first terminal device, where the first The report configuration information of the terminal device includes the second measurement value and the Uu interface measurement report method.
  • the second side row positioning configuration information includes one or more of the following configurations: time-frequency resources occupied by the first side row positioning reference signal, and second side row positioning The time-frequency resources occupied by the reference signal, the sequence information of the first side row positioning reference signal, the sequence information of the second side row positioning reference signal, the information of the second terminal device, the report configuration information of the second terminal device, where the second The report configuration information of the terminal device includes the first measurement value and the PC5 interface measurement report method.
  • the first measurement value includes: the transmission and reception time difference of the second terminal device, and the measurement value of the angle of arrival of the second terminal device to the first lateral positioning reference signal.
  • the second measurement value includes: the transmission and reception time difference of the first terminal device, and the measurement value of the angle of arrival of the first terminal device to the second lateral positioning reference signal.
  • the method further includes: the network device receives the location information of the second terminal device sent by the second terminal device.
  • a lateral positioning device which includes various modules or units for executing the methods in the first aspect or the second aspect and the possible implementation of the first aspect or the second aspect.
  • a lateral positioning device which includes a processor.
  • the processor is coupled with the memory, and can be used to execute the method in the first aspect or the second aspect and possible implementation manners in the first aspect or the second aspect.
  • the side row positioning device further includes a memory.
  • the lateral positioning device further includes a communication interface, and the processor is coupled with the communication interface.
  • the lateral positioning device is a terminal device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the side row positioning device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a lateral positioning device which includes modules or units for executing the methods in the third aspect and possible implementation manners of the third aspect.
  • a lateral positioning device which includes a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the foregoing third aspect and the methods in the possible implementation manners of the third aspect.
  • the side row positioning device further includes a memory.
  • the lateral positioning device further includes a communication interface, and the processor is coupled with the communication interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the side row positioning device is a network device.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the side row positioning device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a processor including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive a signal through the input circuit and transmit a signal through the output circuit, so that any one of the first aspect to the third aspect, and any one of the possible implementation manners of the first aspect to the third aspect The method in is implemented.
  • the above-mentioned processor may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver, and the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and output
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times.
  • the embodiments of the present application do not limit the specific implementation manners of the processor and various circuits.
  • a processing device including a processor and a memory.
  • the processor is used to read instructions stored in the memory, and can receive signals through a receiver, and transmit signals through a transmitter to execute any one of the first to third aspects and any one of the first to third aspects.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the memory can be a non-transitory (non-transitory) memory, such as a read only memory (ROM), which can be integrated with the processor on the same chip, or can be set in different On the chip, the embodiment of the present application does not limit the type of the memory and the setting mode of the memory and the processor.
  • ROM read only memory
  • sending instruction information may be a process of outputting instruction information from the processor
  • receiving capability information may be a process of the processor receiving input capability information.
  • the processed output data may be output to the transmitter, and the input data received by the processor may come from the receiver.
  • the transmitter and receiver can be collectively referred to as a transceiver.
  • the processor in the above-mentioned ninth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, an integrated circuit, etc.; when implemented by software
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in the memory.
  • the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute the first to third aspects above And the method in any one of the possible implementation manners of the first aspect to the third aspect.
  • a computer program also called code, or instruction
  • a computer-readable storage medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned aspects from the first aspect to The method in the third aspect and any one of the possible implementation manners of the first aspect to the third aspect.
  • a computer program also called code, or instruction
  • a communication system including the aforementioned network equipment and terminal equipment.
  • Fig. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the relationship between the antenna array and the angle of arrival in the downlink angle of arrival positioning technology.
  • Figure 3 is a schematic diagram of the direction angle and the pitch angle in the downlink angle of arrival positioning technology.
  • Figure 4 is a schematic diagram of a two-dimensional antenna array in the downlink angle of arrival positioning technology.
  • FIG. 5 is a schematic interaction diagram of a side row positioning method provided by an embodiment of the present application.
  • Fig. 6 is a schematic interaction diagram of another lateral row positioning method provided by an embodiment of the present application.
  • FIG. 7 is a schematic interaction diagram of yet another side row positioning method provided by an embodiment of the present application.
  • FIG. 8 is a schematic interaction diagram of yet another side row positioning method provided by an embodiment of the present application.
  • FIG. 9 is a schematic interaction diagram of yet another side row positioning method provided by an embodiment of the present application.
  • FIG. 10 is a schematic interaction diagram of yet another side row positioning method provided by an embodiment of the present application.
  • FIG. 11 is a schematic interaction diagram of yet another side row positioning method provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a lateral positioning device provided by an embodiment of the application.
  • FIG. 13 is a schematic block diagram of another lateral row positioning device provided by an embodiment of the application.
  • FIG. 14 is a schematic block diagram of a terminal device provided by an embodiment of the application.
  • FIG. 15 is a schematic block diagram of a network device provided by an embodiment of the application.
  • V2X vehicle-to-X
  • 5G fifth generation
  • V2X vehicle-to-X
  • 6G vehicle-to-X
  • V2X can include vehicle to network (V2N), vehicle to vehicle (V2V), vehicle to infrastructure (V2I), vehicle to pedestrian (V2P), etc.
  • LTE-V Long-term evolution-vehicle
  • MTC machine type communication
  • IoT Internet of things
  • LTE-V long-term evolution of machine-to-machine communication
  • LTE-M long-term evolution-vehicle
  • M2M machine to machine
  • Fig. 1 shows a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the communication system of the embodiment of the present application may include a network device and multiple terminal devices.
  • the network device can include one antenna or multiple antennas.
  • the network device may additionally include a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can all include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers, Demodulator, demultiplexer or antenna, etc.).
  • the network device can communicate with multiple terminal devices.
  • the terminal equipment in the embodiments of this application may also be referred to as: user equipment (UE), mobile station (MS), mobile terminal (MT), access terminal, user unit, user station, Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device may be a device that provides voice/data connectivity to the user, for example, a handheld device with a wireless connection function, a vehicle-mounted device, and so on.
  • some examples of terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid) Wireless terminals in transportation safety (transportation safety), wireless terminals in smart city (smart city), wireless terminals in smart home (smart home), cellular phones, cordless phones, session initiation protocols (session initiation) protocol, SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, In-vehicle equipment, wearable equipment, terminal equipment in
  • wearable devices can also be called wearable smart devices, which are the general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the terminal device may also be a terminal device in the Internet of Things system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology, thereby realizing people Machine interconnection, an intelligent network of interconnection of things.
  • the terminal equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves. , To transmit uplink data to network equipment.
  • the network equipment in the embodiments of the present application may be equipment used to communicate with terminal equipment.
  • the network equipment may be an evolved node B (eNB or eNodeB) in the LTE system, or a cloud wireless access network (
  • the wireless controller in the cloud radio access network (CRAN) scenario can also be a radio network controller (RNC), a base station controller (BSC), a home base station (for example, home evolved nodeB, or home nodeB (HNB), baseband unit (BBU), or the network device can be a relay station, access point, in-vehicle device, wearable device, network device in the future 5G network or network in the future evolved PLMN network
  • the equipment, etc. can be an access point (AP), a wireless relay node, a wireless backhaul node, a transmission point (TP), or a sending and receiving point in wireless local area networks (WLAN).
  • AP access point
  • TP transmission point
  • WLAN wireless local area networks
  • TRP transmission and reception point
  • TRP transmission and reception point
  • TRP transmission and reception point
  • NR new radio
  • An antenna panel or, may also be a network node constituting a gNB or transmission point, such as a baseband unit (BBU), or a distributed unit (DU), etc., which is not limited in the embodiment of the present application.
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU for short).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) The function of the layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the network equipment provides services for the cell
  • the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment
  • the cell may belong to a macro base station (for example, a macro eNB or a macro gNB, etc.) may also belong to the base station corresponding to a small cell.
  • the small cell here may include: metro cell, micro cell, pico cell , Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • a cell can be understood as an area covered by a wireless signal of a network device.
  • the network equipment may include base stations (gNB), such as macro stations, micro base stations, indoor hotspots, and relay nodes, etc.
  • gNB base stations
  • the function is to send radio waves to terminal equipment, and on the one hand, it realizes downlink data transmission. On the other hand, it sends scheduling information to control uplink transmission, and receives radio waves sent by terminal equipment, and receives uplink data transmission.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • various aspects or features of the embodiments of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article used in the embodiments of this application covers a computer program that can be accessed from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • multiple application programs can be run at the application layer.
  • the application program of the corresponding action may be a different application program.
  • the terminal device communicates with the network device, where the network device can send information to the terminal device through a forward link (also called a downlink), and receive information from the terminal device through a reverse link (also called an uplink).
  • a forward link also called a downlink
  • a reverse link also called an uplink
  • the forward link and the reverse link may use different frequency bands.
  • FDD frequency division duplex
  • the forward link and the reverse link may use a common frequency band.
  • the network device and the terminal device may be a wireless communication sending device and/or a wireless communication receiving device.
  • the wireless communication sending device can encode the data for transmission.
  • the wireless communication sending device may obtain (for example, generate, receive from other communication devices, or store in a memory, etc.) a certain number of data bits to be sent to the wireless communication receiving device through a channel.
  • Such data bits can be included in a transmission block (or multiple transmission blocks) of data, and the transmission block can be segmented to generate multiple code blocks.
  • the communication system can be a PLMN network, a device-to-device (D2D) network, a machine-to-machine (M2M) network, an IoT network or other networks.
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT IoT network
  • Figure 1 is only a simplified schematic diagram of an example.
  • the network may also include other network devices, which are not shown in Figure 1.
  • LMF core network location management function
  • LMF mainly completes the following operations:
  • Cell information exchange with ng-eNB/gNB such as obtaining positioning reference signal (positioning reference signal, PRS), sounding reference signal (sounding reference signal, SRS) configuration information, cell timing, cell location information, etc.
  • positioning reference signal positioning reference signal
  • SRS sounding reference signal
  • the LMF can determine the location information of the UE:
  • DL-TDOA Downlink-time difference of arrival
  • the UE measures the reference signal time difference (RSTD) for the PRS signals of each cell, and reports the measurement results to the LMF.
  • RSTD reference signal time difference
  • Uplink-time difference of arrival (UP-TDOA) positioning technology Each cell measures the uplink-relative time of arrival (UL-RTOA) on the UE’s SRS signal, and measures it The results are reported to LMF.
  • UL-RTOA uplink-relative time of arrival
  • Downlink-angle of departure (DL-AoD) positioning technology UE measures positioning reference signal received power (positioning reference signal-reference signal received power, PRS-RSRP) on the PRS signal of each cell, and reports the measurement result to LMF.
  • positioning reference signal received power positioning reference signal-reference signal received power, PRS-RSRP
  • Uplink-azimuth angle of arrival (UL-AoA) positioning technology each cell measures the AoA/elevation angle (Zenith angle of arrival, ZoA) on the SRS signal of the UE, and reports the measurement result to the LMF.
  • AoA/elevation angle Zenith angle of arrival, ZoA
  • UE measures synchronization signal-reference signal received power (synchronization signal-reference signal received power) for each cell synchronization signal block (synchronization signal and physical broadcast channel block, SSB) , SS-RSRP)/synchronization signal-reference signal received quality (SS-RSRQ)/synchronization signal-signal to interference plus noise ratio (SS-SINR) , And report the measurement results to LMF.
  • synchronization signal-reference signal received power synchronization signal-reference signal received power
  • SSB physical broadcast channel block
  • SS-RSRP synchronization signal-reference signal received quality
  • SS-SINR synchronization signal-signal to interference plus noise ratio
  • Multi-round trip time (Multi-RTT) positioning technology The UE measures the Rx-Tx time difference (Rx-Tx time difference) of the PRS signal of each cell, and reports the measurement result to the LMF; the SRS signal of each cell to the UE Measure gNB Rx-Tx time difference, and report the measurement result to LMF.
  • Rx-Tx time difference Rx-Tx time difference
  • the specific method of the UL-AoA positioning technology is that the terminal device sends the SRS, and the serving cell base station and the neighboring cell base station receive the SRS.
  • the base station receiving antenna has an array form, when the transmitted signal passes through the antenna array, because the distance between each antenna in the array and the transmitting device is different, the receiving device will have a signal phase difference.
  • the base station can estimate the direction of the relative signal based on the phase shift caused by the wave path difference between the multiple antenna array elements, thereby determining the relative direction of the terminal.
  • x BB (t) is the baseband signal.
  • the time delay k/f c of the radio frequency signal is equivalent to introducing an additional phase, as shown below.
  • the principle of angular positioning is to obtain the phase difference between different antenna elements at the uplink receiving end of the base station, and in turn estimate the wave direction.
  • the 3rd generation partnership project (3GPP) defines the direction angle and the pitch angle.
  • the angle of orientation (AoA) is defined as the angle between the terminal device in the horizontal plane and the geographic true north direction, with counterclockwise rotation as positive, as shown by ⁇ in Figure 3;
  • the pitch angle (ZoA) is defined as the angle between the direction of the terminal device and the dome direction Angle, as shown by ⁇ in Figure 3.
  • the antenna shown in Figure 2 is a one-dimensional array.
  • the two-dimensional antenna array is located in a plane determined by the geographic true north and the dome direction, as shown in Figure 4 for the horizontal-dimensional antenna array.
  • the element spacing is d 1 ⁇
  • the vertical dimension antenna element spacing is d 2 ⁇ . It is easy to find the relationship between the horizontal/vertical array element and the elevation angle and direction angle determined based on Figure 3, and the relationship between d 1 and d 2 in Figure 4 is
  • ⁇ and ⁇ can be obtained by inverse solution.
  • the rotation between the orientation of the base station and the orientation shown in Fig. 4 needs to be considered.
  • the existing angle-based positioning scheme is that the base station estimates the angle of the terminal, and based on the absolute coordinates of the base station, multiple base stations jointly determine the position of the terminal.
  • the present application proposes a method to optimize the positioning method of the terminal device, which can locate the position of the terminal device more accurately.
  • the network equipment in all embodiments of the present application may be a RAN, such as a next-generation radio access network (NG-RAN).
  • NG-RAN next-generation radio access network
  • FIG. 5 is a schematic interaction diagram of a side row positioning method provided by an embodiment of the present application.
  • the first terminal device sends a location information request to the network device.
  • the network device receives the location information request sent by the first terminal device.
  • the location information request further includes a zone ID, and the zone ID is used to indicate the approximate GPS coordinates of the first terminal device or which area the first terminal device is approximately in the current cell.
  • the network device may forward the location request to the core network and be authorized by the core network, and the network device may host the positioning process of the first terminal device.
  • the network device may also decide to host the positioning process of the first terminal device by itself without going through the core network after pre-authorization by the core network.
  • S520 The network device sends the first side-line positioning configuration to the first terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the first side-line positioning configuration, and sends the first side-line positioning configuration to the first terminal device.
  • the first side row positioning configuration can also be configured by the core network.
  • the first side row positioning configuration information includes one or more of the following configurations:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-domain resources include period, slot offset, and symbol index in the slot
  • frequency-domain resources include occupied resource block (RB) and resources in the RB Element (Resource Element, RE) index; sequence information of the first side row positioning reference signal.
  • RB resource block
  • RE resource Element
  • the first side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the second lateral positioning reference signal is a reference signal sent by the second terminal device to the first terminal device.
  • the second side row positioning reference signal configuration includes:
  • Time-frequency resources occupied by the second side row positioning reference signal for example, time-domain resources include period, time slot offset, and symbol index in the time slot; frequency domain resources include occupied RB and RE index in the RB; second side row positioning The sequence information of the reference signal.
  • the second side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the measurement report configuration of the first terminal device on the second side row positioning reference signal includes:
  • the measured value includes the Rx-Tx time difference of the first terminal device and/or the measured value of the sidelink (SL) AoA of the first terminal device to the second sideline positioning reference signal;
  • the first terminal device and the network device are connected through the Uu interface, and the terminal device can send information to the network device through the Uu interface.
  • the embodiment of the present application does not limit the specific form of the method for reporting the measured value.
  • RRC radio resource control
  • MAC CE MAC control element
  • uplink control information uplink control information, UCI
  • RRC/MAC CE radio resource control element
  • UCI uplink control information
  • PUCCH physical uplink control channel
  • the information of the second terminal device includes at least one of the following information:
  • the location information of the second terminal device the orientation information of the second terminal device, and the speed information of the second terminal device.
  • the network device sends the second side row positioning configuration information to the second terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the second side-line positioning configuration and sends the second side-line positioning configuration to the second terminal device.
  • the second side row positioning configuration can also be configured by the core network.
  • the second side row positioning configuration information includes one or more of the following configurations:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-frequency resources occupied by the first-side row positioning reference signal for example, time-domain resources include period, slot offset, and symbol index in the slot, and frequency-domain resources include occupied RB and RE index in the RB; first-side row positioning The sequence information of the reference signal.
  • the first side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the second lateral positioning reference signal is a reference signal sent by the second terminal device to the first terminal device.
  • the second side row positioning reference signal configuration includes:
  • Time-frequency resources occupied by the second side row positioning reference signal for example, time-domain resources include period, time slot offset, and symbol index in the time slot; frequency domain resources include occupied RB and RE index in the RB; second side row positioning The sequence information of the reference signal.
  • the second side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the measurement report configuration of the second terminal device on the first lateral positioning reference signal includes:
  • the measured value includes the Rx-Tx time difference of the second terminal device or the measured value of the first sideline positioning reference signal SL AoA of the second terminal device;
  • the second terminal device is connected to the network device through the Uu interface, and the terminal device can send information to the network device through the Uu interface.
  • the embodiment of the present application does not limit the specific form of the method for reporting the measured value.
  • RRC/MAC CE/UCI is sent to the network device, where RRC/MAC CE can only be reported through PUSCH, and UCI can be reported through PUCCH or PUSCH.
  • the first terminal device and the second terminal device are connected through the PC5 interface, and the first terminal device and the second terminal device can send information to each other through the PC5 interface.
  • the embodiment of the present application does not limit the specific form of the method for reporting the measured value.
  • the second terminal device can send information to the first terminal device through PC5 RRC/PC5 MAC CE/sidelink control information (SCI), where PC5 RRC/PC5 MAC CE can only pass through the physical side-line shared channel (physical sidelink control information, SCI).
  • Sidelink shared channel, PSSCH) reporting, SCI can be reported through the physical sidelink control channel (PSCCH) or PSSCH.
  • the first terminal device sends the first lateral positioning reference signal to the second terminal device.
  • the first terminal device sends the first side row positioning reference signal to the second terminal device on the corresponding time-frequency resource according to the first side row positioning reference signal configuration in the first side row positioning configuration.
  • the second terminal device receives the first side row positioning reference signal sent by the first terminal device in the corresponding time-frequency resource according to the first side row positioning reference signal configuration in the second side row positioning configuration.
  • the second terminal device sends a second lateral positioning reference signal to the first terminal device.
  • the second terminal device sends the second side row positioning reference signal to the first terminal device on the corresponding time-frequency resource according to the second side row positioning reference signal configuration in the second side row positioning configuration.
  • the first terminal device receives the second side row positioning reference signal sent by the second terminal device on the corresponding time-frequency resource according to the second side row positioning reference signal configuration in the first side row positioning configuration.
  • the second terminal device determines the Rx-Tx time difference of the second terminal device according to the time when the first side-line positioning reference signal is received and the time when the second side-line positioning reference signal is sent.
  • the first lateral positioning reference signal sent by the device measures the angle of arrival AoA of the reference signal.
  • the first measurement value includes the Rx-Tx time difference of the second terminal device and/or the SL AoA of the first lateral positioning reference signal measured by the second terminal device.
  • the first terminal device determines the Rx–Tx time difference of the first terminal device according to the time when the second side-line positioning reference signal is received and the time when the first side-line positioning reference signal is sent.
  • the first terminal device can also determine the Rx-Tx time difference of the first terminal device according to The second lateral positioning reference signal sent by the second terminal device measures the angle of arrival AoA of the reference signal.
  • the second measurement value includes the Rx-Tx time difference of the first terminal device and/or the SL AoA of the second lateral positioning reference signal measured by the first terminal device.
  • S560 The second terminal device sends the first measurement value to the first terminal device.
  • the network device configures a PC5 interface for the second terminal device, and the second terminal device sends the first measurement value to the first terminal device through the PC5 interface.
  • the first measurement value may also include at least one of the following information: location information of the second terminal device, orientation information of the second terminal device, speed information of the second terminal device, and measurement time information of the second terminal device.
  • S570 The first terminal device sends the second measurement value to the network device.
  • the network device configures a Uu interface for the first terminal device, and the first terminal device sends the second measurement value to the network device through the Uu interface.
  • the second measurement value may further include at least one of the following information: orientation information of the first terminal device, speed information of the first terminal device, and measurement time information of the first terminal device.
  • S580 The second terminal device sends the first measurement value to the network device.
  • the network device configures a Uu interface for the second terminal device, and the second terminal device sends the first measurement value to the network device through the Uu interface.
  • the first measurement value may also include at least one of the following information: location information of the second terminal device, orientation information of the second terminal device, speed information of the second terminal device, and measurement time information of the second terminal device.
  • the network device sends the measurement value or the location information of the first terminal device to the first terminal device.
  • the network device configures a Uu interface for the first terminal device, and the network device sends a measurement value to the first terminal device through the Uu interface.
  • the measurement value includes the first measurement value and/or the second measurement value.
  • the first terminal device Calculate its own location based on the received measurement value and based on the location information of the second terminal device.
  • the network device may calculate the location information of the first terminal device based on the first measurement value and/or the second measurement value and the location information of the second terminal device, and then send the location information to the first terminal device through the Uu interface.
  • One terminal equipment may calculate the location information of the first terminal device based on the first measurement value and/or the second measurement value and the location information of the second terminal device, and then send the location information to the first terminal device through the Uu interface.
  • the above technical solution is based on the relative position relationship of the side-line reference signal measurement terminal, the first terminal device and the second terminal device measure the reference signal each other, and the position information of the first terminal device is determined according to the first measurement value and/or the second measurement value.
  • the distance between the terminal device and the terminal device is much smaller than the distance between the terminal device and the network device, thereby improving the positioning accuracy.
  • the positioning process is dominated by the network device and does not go through the core network. The positioning delay of the first terminal device.
  • Fig. 6 is a schematic interaction diagram of another lateral row positioning method provided by an embodiment of the present application.
  • S610 is similar to S510. For specific description, refer to S510, which is not repeated here for brevity.
  • S620 The network device sends the first side-line positioning configuration information to the first terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the first side-line positioning configuration, and sends the first side-line positioning configuration to the first terminal device.
  • the first side row positioning configuration can also be configured by the core network.
  • the first side row positioning configuration information includes:
  • the second lateral positioning reference signal is a reference signal sent by the second terminal device to the first terminal device.
  • the second side row positioning reference signal configuration includes:
  • Time-frequency resources occupied by the second side row positioning reference signal for example, time-domain resources include period, time slot offset, and symbol index in the time slot; frequency domain resources include occupied RB and RE index in the RB; second side row positioning The sequence information of the reference signal.
  • the second side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the information of the second terminal device includes at least one of the following information:
  • the location information of the second terminal device the orientation information of the second terminal device, and the speed information of the second terminal device.
  • S630 The network device sends the second side-line positioning configuration information to the second terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the second side-line positioning configuration and sends the second side-line positioning configuration to the second terminal device.
  • the second side row positioning configuration can also be configured by the core network.
  • the second side row positioning configuration information includes:
  • the second lateral positioning reference signal is a reference signal sent by the second terminal device to the first terminal device.
  • the second side row positioning reference signal configuration includes:
  • Time-frequency resources occupied by the second side row positioning reference signal for example, time-domain resources include period, time slot offset, and symbol index in the time slot; frequency domain resources include occupied RB and RE index in the RB; second side row positioning The sequence information of the reference signal.
  • the second side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the second terminal device sends a second side row positioning signal to the first terminal device.
  • the second terminal device sends the second side row positioning reference signal to the first terminal device on the corresponding time-frequency resource according to the second side row positioning reference signal configuration in the second side row positioning configuration.
  • the first terminal device receives the second side row positioning reference signal sent by the second terminal device on the corresponding time-frequency resource according to the second side row positioning reference signal configuration in the first side row positioning configuration, and compares the second side row positioning reference signal.
  • the AoA of the second lateral positioning reference signal sent by the terminal device is measured, and the second measured value includes the SL AoA.
  • S650 The first terminal device calculates location information.
  • the first terminal device calculates its own location information according to the measured second measurement value and based on the location information of the second terminal device.
  • the relative position relationship of the terminal is measured based on the side-line reference signal.
  • the first terminal device measures the AoA of the second side-line positioning signal sent by the second terminal device, and the first terminal device calculates its own location information by itself.
  • the terminal equipment improves the positioning accuracy, and at the same time, the positioning process does not go through the core network to reduce the positioning delay.
  • FIG. 7 is a schematic interaction diagram of yet another side row positioning method provided by an embodiment of the present application.
  • S710 is similar to S510. For specific description, refer to S510, which is not repeated here for brevity.
  • S720 The network device sends the first side-line positioning configuration information to the first terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the first side-line positioning configuration, and sends the first side-line positioning configuration to the first terminal device.
  • the first side row positioning configuration can also be configured by the core network.
  • the first side row positioning configuration information includes:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-domain resources include period, slot offset, and symbol index in the slot
  • frequency-domain resources include occupied resource block (RB) and resources in the RB Element (Resource Element, RE) index; sequence information of the first side row positioning reference signal.
  • RB resource block
  • RE resource Element
  • the first side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the measurement report configuration of the first terminal device on the second lateral positioning reference signal includes:
  • the measured value includes the measured value of SL AoA of the second side line positioning reference signal by the first terminal device
  • the first terminal device and the network device are connected through the Uu interface, and the terminal device can send information to the network device through the Uu interface.
  • the embodiment of the present application does not limit the specific form of the method for reporting the measured value.
  • RRC/MAC CE/UCI is sent to the network device, where RRC/MAC CE can only be reported through PUSCH, and UCI can be reported through PUCCH or PUSCH.
  • S730 The network device sends the second side row positioning configuration information to the second terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the second side-line positioning configuration and sends the second side-line positioning configuration to the second terminal device.
  • the second side row positioning configuration can also be configured by the core network.
  • the second side row positioning configuration information includes:
  • the second lateral positioning reference signal is a reference signal sent by the second terminal device to the first terminal device.
  • the second side row positioning reference signal configuration includes:
  • Time-frequency resources occupied by the second side row positioning reference signal for example, time-domain resources include period, time slot offset, and symbol index in the time slot; frequency domain resources include occupied RB and RE index in the RB; second side row positioning The sequence information of the reference signal.
  • the second side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the second terminal device sends a second lateral positioning signal to the first terminal device.
  • the second terminal device sends the second side row positioning reference signal to the first terminal device on the corresponding time-frequency resource according to the second side row positioning reference signal configuration in the second side row positioning configuration sent by the network device.
  • the first terminal device receives the second side row positioning reference signal sent by the second terminal device on the corresponding time-frequency resource according to the second side row positioning reference signal configuration in the first side row positioning configuration, and compares the second side row positioning reference signal.
  • the AoA of the second lateral positioning reference signal sent by the terminal device is measured, and the second measured value includes the SL AoA.
  • S750 The first terminal device sends the second measurement value to the network device.
  • the network device configures a Uu interface for the first terminal device, and the first terminal device sends the second measured value to the network device through the Uu interface.
  • the second measurement value may further include at least one of the following information: orientation information of the first terminal device, speed information of the first terminal device, and measurement time information of the first terminal device.
  • the network device sends the measurement value or the location information of the first terminal device to the first terminal device.
  • the network device configures the Uu interface for the first terminal device, the network device sends a measurement value to the first terminal device through the Uu interface, the measurement value includes the second measurement value, and the first terminal device according to the measurement value sent by the network device , And calculate its own location based on the location information of the second terminal device.
  • the network device may calculate the location information of the first terminal device based on the second measurement value reported by the first terminal device and the location information of the second terminal device, and then send the location information to the first terminal device through the Uu interface.
  • Terminal Equipment Terminal Equipment
  • the relative position relationship of the terminal is measured based on the side-line reference signal.
  • the first terminal device measures the AoA of the second side-line positioning signal sent by the second terminal device, and the network device assists in determining the location information of the first terminal device.
  • the terminal equipment improves the positioning accuracy, and at the same time, the positioning process does not go through the core network to reduce the positioning delay.
  • FIG. 8 is a schematic interaction diagram of yet another side row positioning method provided by an embodiment of the present application.
  • S810 is similar to S510. For specific description, refer to S510, which is not repeated here for brevity.
  • S820 The network device sends the first side-line positioning configuration information to the first terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the first side-line positioning configuration, and sends the first side-line positioning configuration to the first terminal device.
  • the first side row positioning configuration can also be configured by the core network.
  • the first side row positioning configuration information includes:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-frequency resources occupied by the first-side row positioning reference signal for example, time-domain resources include period, slot offset, and symbol index in the slot; frequency-domain resources include occupied RB and RE index in the RB; first-side row positioning The sequence information of the reference signal.
  • the first side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • S830 The network device sends the second side row positioning configuration information to the second terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the second side-line positioning configuration, and sends the second side-line positioning configuration to the second terminal device.
  • the second side row positioning configuration can also be configured by the core network.
  • the second side row positioning configuration information includes:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-frequency resources occupied by the first-side row positioning reference signal for example, time-domain resources include period, slot offset, and symbol index in the slot; frequency-domain resources include occupied RB and RE index in the RB; first-side row positioning The sequence information of the reference signal.
  • the first side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the measurement report configuration of the second terminal device on the first lateral positioning reference signal includes:
  • the measured value includes the measured value of the first lateral positioning reference signal AoA by the second terminal device
  • the second terminal device is connected to the network device through the Uu interface, and the terminal device can send information to the network device through the Uu interface.
  • the embodiment of the present application does not limit the specific form of the method for reporting the measured value.
  • RRC/MAC CE/UCI is sent to the network device, where RRC/MAC CE can only be reported through PUSCH, and UCI can be reported through PUCCH or PUSCH.
  • the first terminal device sends the first lateral positioning reference signal to the second terminal device.
  • the first terminal device sends the first side row positioning reference signal to the second terminal device on the corresponding time-frequency resource according to the first side row positioning reference signal configuration in the first side row positioning configuration.
  • the second terminal device receives the first side row positioning reference signal sent by the first terminal device on the corresponding time-frequency resource according to the first side row positioning reference signal configuration in the second side row positioning configuration, and compares the first side row positioning reference signal to the first side row positioning reference signal.
  • the AoA of the lateral positioning reference signal is measured, and the first measured value includes the SL AoA.
  • S850 The second terminal device sends the first measurement value to the network device.
  • the network device configures a Uu interface for the second terminal device, and the second terminal device sends the first measurement value to the network device through the Uu interface.
  • the first measurement value may also include at least one of the following information: location information of the second terminal device, orientation information of the second terminal device, speed information of the second terminal device, and measurement time information of the second terminal device.
  • the network device sends the measurement value or the location information of the first terminal device to the first terminal device.
  • the network device configures a Uu interface for the second terminal device, the network device sends a measurement value to the first terminal device through the Uu interface, the measurement value includes the first measurement value, and the first terminal device according to the measurement value sent by the network device , And calculate its own location based on the location information of the second terminal device.
  • the network device may calculate the location information of the first terminal device based on the first measurement value reported by the second terminal device and the location information of the second terminal device, and then send the location information to the first terminal device through the Uu interface.
  • Terminal Equipment Terminal Equipment
  • the above technical solution is based on the relative position relationship of the side-line reference signal measurement terminal, and is suitable for terminal equipment that does not support side-line reference signal measurement.
  • the second terminal device assists the first terminal device to perform SL AoA, and the second terminal device performs specific measurement. In this way, even if the terminal device to be located does not support the measurement of the sideline reference signal, other terminal devices can also be used to perform the measurement instead of the terminal device to be located.
  • FIG. 9 is a schematic interaction diagram of yet another side row positioning method provided by an embodiment of the present application.
  • S910 is similar to S510. For specific description, refer to S510, which is not repeated here for brevity.
  • the network device sends the first side-line positioning configuration information to the first terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the first side-line positioning configuration, and sends the first side-line positioning configuration to the first terminal device.
  • the first side row positioning configuration can also be configured by the core network.
  • the first side row positioning configuration information includes:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-frequency resources occupied by the first-side row positioning reference signal for example, time-domain resources include period, slot offset, and symbol index in the slot, and frequency-domain resources include occupied RB and RE index in the RB; first-side row positioning The sequence information of the reference signal.
  • the first side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the information of the second terminal device includes at least one of the following information:
  • the location information of the second terminal device the orientation information of the second terminal device, and the speed information of the second terminal device.
  • S930 The network device sends the second side row positioning configuration information to the second terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the second side-line positioning configuration, and sends the second side-line positioning configuration to the second terminal device.
  • the second side row positioning configuration can also be configured by the core network.
  • the second side row positioning configuration information includes:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-frequency resources occupied by the first-side row positioning reference signal for example, time-domain resources include period, slot offset, and symbol index in the slot; frequency-domain resources include occupied RB and RE index in the RB; first-side row positioning The sequence information of the reference signal.
  • the first side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the measurement report configuration of the second terminal device on the first lateral positioning reference signal includes:
  • the measured value includes the measured value of the first lateral positioning reference signal AoA by the second terminal device
  • the first terminal device and the second terminal device are connected through the PC5 interface, and the first terminal device and the second terminal device can send information to each other through the PC5 interface.
  • the embodiment of the present application does not limit the specific form of the method for reporting the measured value.
  • the second terminal device can send information to the first terminal device through PC5 RRC/PC5 MAC CE/SCI, where PC5 RRC/PC5 MAC CE can only be reported through PSSCH, and SCI can be reported through PSCCH or PSSCH.
  • the first terminal device sends the first lateral positioning reference signal to the second terminal device.
  • the first terminal device sends the first side row positioning reference signal to the second terminal device on the corresponding time-frequency resource according to the first side row positioning reference signal configuration in the first side row positioning configuration sent by the network device.
  • the second terminal device receives the first side row positioning reference signal sent by the first terminal device on the corresponding time-frequency resource according to the first side row positioning reference signal configuration in the second side row positioning configuration, and compares the first side row positioning reference signal to the first side row positioning reference signal.
  • the AoA of the lateral positioning reference signal is measured, and the first measured value includes the SL AoA.
  • S950 The second terminal device sends the first measurement value to the first terminal device.
  • the network device configures a PC5 interface for the second terminal device, and the second terminal device sends the first measurement value to the first terminal device through the PC5 interface.
  • the first measurement value may also include at least one of the following information: location information of the second terminal device, orientation information of the second terminal device, speed information of the second terminal device, and measurement time information of the second terminal device.
  • S960 The first terminal device calculates location information.
  • the first terminal device calculates its own location information based on the location information of the second terminal device according to the first measurement value sent by the second terminal device.
  • the above technical solution is based on the relative position relationship of the side-line reference signal measurement terminal, and is suitable for terminal equipment that does not support side-line reference signal measurement.
  • the second terminal device assists the first terminal device to perform SL AoA, and the second terminal device performs specific measurement. In this way, even if the terminal device to be located does not support the measurement of the sideline reference signal, other terminal devices can also be used to perform the measurement instead of the terminal device to be located.
  • FIG. 10 is a schematic interaction diagram of yet another side row positioning method provided by an embodiment of the present application.
  • S1010 is similar to S510. For specific description, refer to S510, which is not repeated here for brevity.
  • S1020 The network device sends the first side-line positioning configuration information to the first terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the first side-line positioning configuration, and sends the first side-line positioning configuration to the first terminal device.
  • the first side row positioning configuration can also be configured by the core network.
  • the first side row positioning configuration information includes:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-frequency resources occupied by the first-side row positioning reference signal for example, time-domain resources include period, slot offset, and symbol index in the slot; frequency-domain resources include occupied RB and RE index in the RB; first-side row positioning The sequence information of the reference signal.
  • the first side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the second lateral positioning reference signal is a reference signal sent by the second terminal device to the first terminal device.
  • the second side row positioning reference signal configuration includes:
  • Time-frequency resources occupied by the second side row positioning reference signal for example, time-domain resources include period, time slot offset, and symbol index in the time slot; frequency domain resources include occupied RB and RE index in the RB; second side row positioning The sequence information of the reference signal.
  • the second side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the measurement report configuration of the first terminal device on the second side row positioning reference signal includes:
  • the measured value includes the Rx-Tx time difference of the first terminal device
  • the first terminal device and the network device are connected through the Uu interface, and the terminal device can send information to the network device through the Uu interface.
  • the embodiment of the present application does not limit the specific form of the method for reporting the measured value.
  • RRC/MAC CE/UCI is sent to the network device, where RRC/MAC CE can only be reported through PUSCH, and UCI can be reported through PUCCH or PUSCH.
  • the network device sends the second side-line positioning configuration information to the second terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the second side-line positioning configuration, and sends the second side-line positioning configuration to the second terminal device.
  • the second side row positioning configuration can also be configured by the core network.
  • the second side row positioning configuration information includes:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-frequency resources occupied by the first-side row positioning reference signal for example, time-domain resources include period, slot offset, and symbol index in the slot, and frequency-domain resources include occupied RB and RE index in the RB; first-side row positioning The sequence information of the reference signal.
  • the first side row positioning reference signal configuration may further include: the number of ports, spatial beam information, and power information.
  • the second lateral positioning reference signal is a reference signal sent by the second terminal device to the first terminal device.
  • the second side row positioning reference signal configuration includes:
  • time-frequency resources occupied by the second side row positioning reference signal for example, time-domain resources include period, time slot offset, and symbol index in the time slot, and frequency domain resources include occupied RB and RE index index in the RB; the second side row Sequence information of the positioning reference signal.
  • the configuration of the second side row positioning reference signal may further include: the number of ports, spatial beam information, and power information (3)
  • the measurement report configuration of the side row positioning reference signal sent by the first terminal device by the second terminal device, measurement The report configuration includes:
  • the measured value includes the Rx-Tx time difference of the second terminal device
  • the second terminal device is connected to the network device through the Uu interface, and the terminal device can send information to the network device through the Uu interface.
  • the embodiment of the present application does not limit the specific form of the method for reporting the measured value.
  • RRC/MAC CE/UCI is sent to the network device, where RRC/MAC CE can only be reported through PUSCH, and UCI can be reported through PUCCH or PUSCH.
  • the first terminal device and the second terminal device are connected through the PC5 interface, and the first terminal device and the second terminal device can send information to each other through the PC5 interface.
  • the embodiment of the present application does not limit the specific form of the method for reporting the measured value.
  • the second terminal device can send information to the first terminal device through PC5 RRC/PC5 MAC CE/SCI, where PC5 RRC/PC5 MAC CE can only be reported through PSSCH, and SCI can be reported through PSCCH or PSSCH.
  • the first terminal device sends the first lateral positioning reference signal to the second terminal device.
  • the first terminal device sends the first side row positioning reference signal to the second terminal device on the corresponding time-frequency resource according to the first side row positioning reference signal configuration in the first side row positioning configuration sent by the network device.
  • the second terminal device receives the first side row positioning reference signal sent by the first terminal device on the corresponding time-frequency resource according to the first side row positioning reference signal configuration in the second side row positioning configuration.
  • the first terminal device measures the time when it sends the first sideline positioning reference signal as a, and the second terminal device measures the time when it receives the first sideline reference signal as b.
  • the second terminal device sends a second lateral positioning reference signal to the first terminal device.
  • the second terminal device sends the second side row positioning reference signal to the first terminal device on the corresponding time-frequency resource according to the second side row positioning reference signal configuration in the second side row positioning configuration sent by the network device.
  • the first terminal device receives the second side row positioning reference signal sent by the second terminal device on the corresponding time-frequency resource according to the second side row positioning reference signal configuration in the first side row positioning configuration.
  • the second terminal device measures the time when it sends the second lateral positioning reference signal as c, and the first terminal device measures the time when it receives the second lateral positioning reference signal as d.
  • the second terminal device determines the Rx-Tx time difference of the second terminal device (the time difference is equal to bc) according to the time when the first side-line positioning reference signal is received and the time when the second side-line positioning reference signal is sent, and the first measurement value includes the first measurement value. 2. Rx-Tx time difference of terminal equipment.
  • the first terminal device determines the Rx–Tx time difference of the first terminal device (the time difference is equal to da) according to the time of receiving the second side line positioning reference signal and the time of sending the first side line positioning reference signal (the time difference is equal to da), and the second measurement The value includes the Rx-Tx time difference of the first terminal device.
  • a, b, c, and d here can be absolute time, or include sending the first side line reference signal, receiving the first side line reference signal, sending the second side line reference signal, and receiving the second side line reference signal.
  • Rx-Tx time difference (bc, da) may also correspond to the time difference of the subframe boundary.
  • the transmission and reception time difference of the second terminal device may be ((bc)mod 1)ms or (((b-c+0.5) mod 1)-0.5)ms.
  • the Rx-Tx time difference of the second terminal device is 0.3ms.
  • S1060 The first terminal device sends the second measurement value to the network device.
  • the network device configures a Uu interface for the first terminal device, and the first terminal device sends the second measurement value to the network device through the Uu interface.
  • the second measurement value may further include at least one of the following information: orientation information of the first terminal device, speed information of the first terminal device, and measurement time information of the first terminal device.
  • S1070 The second terminal device sends the first measurement value to the network device.
  • the network device configures a Uu interface for the second terminal device, and the second terminal device sends the first measurement value to the network device through the Uu interface.
  • the first measurement value may also include at least one of the following information: location information of the second terminal device, orientation information of the second terminal device, speed information of the second terminal device, and measurement time information of the second terminal device.
  • S1080 The network device sends the measurement value or the location information of the first terminal device to the first terminal device.
  • the network device configures a Uu interface for the first terminal device, and the network device sends a measurement value to the first terminal device through the Uu interface, and the measurement value includes the first measurement value and the second measurement value.
  • the network device may also calculate the RTT between the first terminal device and the second terminal device based on the measured value, the network device calculates the location of the first terminal device based on the RTT and the location information of the second terminal device, and then The location information is sent to the first terminal device through the Uu interface.
  • the above technical solution measures the relative position relationship of the terminal based on the sideline reference signal, the first terminal device and the second terminal device mutually measure Rx-Tx time difference to determine the SL RTT, and the network device assists the first terminal device to determine its position.
  • FIG. 11 is a schematic interaction diagram of yet another side row positioning method provided by an embodiment of the present application.
  • S1110 is similar to S510. For a detailed description, refer to S510, which is not repeated here for brevity.
  • S1120 The network device sends the first side-line positioning configuration information to the first terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the first side-line positioning configuration, and sends the first side-line positioning configuration to the first terminal device.
  • the first side row positioning configuration can also be configured by the core network.
  • the first side row positioning configuration information includes:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-frequency resources occupied by the first-side row positioning reference signal for example, time-domain resources include period, slot offset, and symbol index in the slot; frequency-domain resources include occupied RB and RE index in the RB; first-side row positioning The sequence information of the reference signal.
  • the first side row positioning reference signal configuration may also include: the number of ports, spatial beam information, and power information
  • the second lateral positioning reference signal is a reference signal sent by the second terminal device to the first terminal device.
  • the second side row positioning reference signal configuration includes:
  • Time-frequency resources occupied by the second side row positioning reference signal for example, time-domain resources include period, time slot offset, and symbol index in the time slot; frequency domain resources include occupied RB and RE index in the RB; second side row positioning The sequence information of the reference signal.
  • the second side row positioning reference signal configuration may also include: the number of ports, spatial beam information, and power information
  • the measurement report configuration of the first terminal device on the second side row positioning reference signal includes:
  • the measured value includes the Rx-Tx time difference of the first terminal device
  • the information of the second terminal device includes at least one of the following information:
  • the location information of the second terminal device the orientation information of the second terminal device, and the speed information of the second terminal device.
  • S1130 The network device sends the second side-line positioning configuration information to the second terminal device.
  • the network device After the network device receives the location information request of the first terminal device, the network device configures the second side-line positioning configuration, and sends the second side-line positioning configuration to the second terminal device.
  • the second side row positioning configuration can also be configured by the core network.
  • the second side row positioning configuration information includes:
  • the first lateral positioning reference signal is a reference signal sent by the first terminal device to the second terminal device.
  • the first side row positioning reference signal configuration includes:
  • time-frequency resources occupied by the first-side row positioning reference signal for example, time-domain resources include period, slot offset, and symbol index in the slot; frequency-domain resources include occupied RB and RE in RB; first-side row positioning reference signal The sequence information.
  • the first side row positioning reference signal configuration may also include: the number of ports, spatial beam information, and power information
  • the second lateral positioning reference signal is a reference signal sent by the second terminal device to the first terminal device.
  • the second side row positioning reference signal configuration includes:
  • Time-frequency resources occupied by the second side row positioning reference signal for example, time-domain resources include period, time slot offset, and symbol index in the time slot; frequency domain resources include occupied RB and RE index in the RB; second side row positioning The sequence information of the reference signal.
  • the second side row positioning reference signal configuration may also include: the number of ports, spatial beam information, and power information
  • the measurement report configuration of the second terminal device on the first lateral positioning reference signal includes:
  • the measured value includes the Rx-Tx time difference of the second terminal device
  • the first terminal device and the second terminal device are connected through the PC5 interface, and the first terminal device and the second terminal device can send information to each other through the PC5 interface.
  • the embodiment of the present application does not limit the specific form of the method for reporting the measured value.
  • the second terminal device can send information to the first terminal device through PC5 RRC/PC5 MAC CE/SCI, where PC5 RRC/PC5 MAC CE can only be reported through PSSCH, and SCI can be reported through PSCCH or PSSCH.
  • the first terminal device sends the first lateral positioning reference signal to the second terminal device.
  • the first terminal device sends the first side row positioning reference signal to the second terminal device on the corresponding time-frequency resource according to the first side row positioning reference signal configuration in the first side row positioning configuration sent by the network device.
  • the second terminal device receives the first side row positioning reference signal sent by the first terminal device in the corresponding time-frequency resource according to the first side row positioning reference signal configuration in the second side row positioning configuration.
  • the first terminal device measures the time when it sends the first sideline positioning reference signal as a, and the second terminal device measures the time when it receives the first sideline reference signal as b.
  • the second terminal device sends a second lateral positioning reference signal to the first terminal device.
  • the second terminal device sends the second side row positioning reference signal to the first terminal device on the corresponding time-frequency resource according to the second side row positioning reference signal configuration in the second side row positioning configuration sent by the network device.
  • the first terminal device receives the second side row positioning reference signal sent by the second terminal device in the corresponding time-frequency resource according to the second side row positioning reference signal configuration in the first side row positioning configuration.
  • the second terminal device measures the time when it sends the second lateral positioning reference signal as c, and the first terminal device measures the time when it receives the second lateral positioning reference signal as d.
  • the second terminal device determines the Rx-Tx time difference of the second terminal device (the time difference is equal to bc) according to the time when the first side-line positioning reference signal is received and the time when the second side-line positioning reference signal is sent, and the first measurement value includes the first measurement value. 2. Rx-Tx time difference of terminal equipment.
  • the first terminal device determines the Rx–Tx time difference of the first terminal device (the time difference is equal to da) according to the time when the second side-line positioning reference signal is received and the time when the first side-line positioning reference signal is sent, and the second measurement The value includes the Rx-Tx time difference of the first terminal device.
  • a, b, c, and d here can be absolute time, or include sending the first side line reference signal, receiving the first side line reference signal, sending the second side line reference signal, and receiving the second side line reference signal.
  • Rx-Tx time difference (bc, da) may also correspond to the time difference of the subframe boundary.
  • the transmission and reception time difference of the second terminal device may be ((bc)mod 1)ms or (((b-c+0.5) mod 1)-0.5)ms.
  • the Rx-Tx time difference of the second terminal device is 0.3ms.
  • S1160 The second terminal device sends the first measurement value to the first terminal device.
  • the network device configures a PC5 interface for the second terminal device, and the second terminal device sends the first measurement value to the first terminal device through the PC5 interface.
  • the first measurement value may also include at least one of the following information: location information of the second terminal device, orientation information of the second terminal device, speed information of the second terminal device, and measurement time information of the second terminal device S1170 .
  • S1170 The first terminal device calculates its own location information.
  • the above technical solution measures the relative position relationship of the terminal based on the side-line reference signal.
  • the first terminal device and the second terminal device mutually measure Rx-Tx time difference to determine the SL RTT, and the first terminal device determines itself based on the position of the SL RTT and the second terminal device. s position.
  • the methods in FIG. 10 and FIG. 11 may also be combined with the methods in FIG. 5 to FIG. 9 to measure SL and AoA-assisted RTT positioning to more accurately locate the location information of the first terminal device.
  • the lateral positioning reference signal in all the embodiments of this application represents a signal used to determine the position information of the first terminal device, and does not represent a specific signal, and this application does not specifically limit the type of the signal .
  • the first measurement value and/or the second measurement value reported in the foregoing embodiment may or may not include the location information of the second terminal device.
  • the network device or the first terminal device must first obtain the location information of the second terminal device before calculating the location of the first terminal device.
  • the method of obtaining is not limited.
  • the network device may configure the PC5 interface measurement report method for the multiple terminal devices.
  • a plurality of terminal devices to be located may measure the relative positional relationship between two terminal devices to be located according to the method in the foregoing embodiment, and send measurement information to each other through the PC5 interface.
  • UE1 and UE2 are terminal devices to be positioned
  • UE3 is a terminal device with a known location
  • UE1 and UE2 can determine the relative position relationship by using the method in the foregoing embodiment.
  • UE1 and UE3 determine the location of UE1 according to the method in the above-mentioned embodiment. Then, according to the relative location relationship between UE1 and UE2, the location information of UE2 can be directly determined without measuring the location relationship between UE2 and UE3 again.
  • all the position information in this embodiment is not necessarily based on latitude and longitude coordinates, but may be a custom coordinate system, for example, with the first terminal device or the second terminal device as the origin, the true north direction is the x-axis, and the positive The west direction is the y-axis, the vertical direction is the z-axis, or the first terminal device or the second terminal device is the origin, a certain predetermined direction (for example, the direction of the convoy) is the x-axis, and the other horizontal direction perpendicular to the forward direction It is the y-axis, and the vertical direction is the z-axis.
  • the methods and operations implemented by the terminal device in the foregoing method embodiments can also be implemented by components (such as chips or circuits) that can be used in the terminal device.
  • the methods and operations implemented by the network device in the foregoing method embodiments may also be implemented by a network device. Operations can also be implemented by components (such as chips or circuits) that can be used in network devices.
  • each network element such as a transmitting end device or a receiving end device, includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of protection of this application.
  • the embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules based on the foregoing method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one process.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other feasible division methods in actual implementation. The following is an example of dividing each function module corresponding to each function as an example.
  • FIG. 12 is a schematic block diagram of a side row positioning device provided by an embodiment of the present application.
  • the lateral positioning device 1200 includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiver unit 1210 can communicate with the outside, and the processing unit 1220 is used for data processing.
  • the transceiving unit 1210 may also be referred to as a communication interface or a communication unit.
  • the side row positioning device 1200 may further include a storage unit, and the storage unit may be used to store instructions or and/or data, and the processing unit 1220 may read the instructions or and/or data in the storage unit.
  • the lateral positioning device 1200 can be used to perform the actions performed by the terminal device in the above method embodiment.
  • the lateral positioning device 1200 can be a terminal device or a component configurable in the terminal device, and the transceiver unit 1210 is used for Performing operations related to receiving and sending on the terminal device side in the above method embodiments, and the processing unit 1220 is configured to perform operations related to processing on the terminal device side in the above method embodiments.
  • the side-line positioning apparatus 1200 may be used to perform the actions performed by the network equipment in the above method embodiment.
  • the side-line positioning apparatus 1200 may be a network equipment or a component configurable in the network equipment, the transceiver unit 1210
  • the processing unit 1220 is configured to perform the operations related to receiving and sending on the network device side in the above method embodiments, and the processing unit 1220 is configured to perform the operations related to processing on the network device side in the above method embodiments.
  • the side row positioning device 1200 is used to perform the actions performed by the first terminal device in the embodiments shown in FIGS. 5 to 11 above, and the transceiver unit 1210 is used to: receive the first side row sent by the network device Positioning configuration; according to the first side row positioning configuration to send a first side row positioning reference signal to the second terminal device, the first side row positioning reference signal is used to determine the first measurement value, where the first measurement value includes the second terminal device For the measurement value of the first lateral positioning reference signal, the position of the first terminal device provided with the device is determined according to the first measurement value and the position of the second terminal device, wherein the first measurement value includes the pair of the second terminal device The measured value of the positioning reference signal on the first side row.
  • the transceiver unit 1210 is configured to: receive the first measurement value from the second terminal device or network device; the processing unit 1220 is configured to: determine the location of the first terminal device according to the first measurement value and the location of the second terminal device .
  • the transceiver unit 1210 is configured to: receive the second lateral positioning reference signal sent by the second terminal device according to the first lateral positioning configuration; the processing unit 1220 is configured to: measure the second lateral positioning reference signal to obtain The second measurement value; the location of the first terminal device is determined according to the first measurement value, the second measurement value, and the location of the second terminal device.
  • the transceiver unit 1210 is configured to send a location information request to the network device.
  • the first side row positioning configuration includes one or more of the following information: time-frequency resources occupied by the first side row positioning reference signal, time-frequency resources occupied by the second side row positioning reference signal, and first side row positioning
  • the first measurement value includes: the difference between the receiving and sending time of the second terminal device, and the measurement value of the angle of arrival of the second terminal device to the first lateral positioning reference signal.
  • the second measurement value includes: a time difference between the transmission and reception of the transceiver unit, and a measurement value of the angle of arrival of the processing unit for the second lateral positioning reference signal.
  • the transceiver unit 1210 is configured to: receive the location information of the second terminal device from the network device or the second terminal device.
  • the side row positioning device 1200 is used to perform the actions performed by the second terminal device in the embodiments shown in FIGS. 5 to 11 above, and the transceiver unit 1210 is used to: receive the second side sent by the network device Line positioning configuration; receiving the first side line positioning reference signal sent by the first terminal device according to the second side line positioning configuration; the processing unit 1220 is configured to: obtain the first measurement value according to the first side line positioning reference signal; the transceiver unit 1210 Used to: send the first measurement value to the network device, so that the network device determines the position of the first terminal device according to the first measurement value and the position of the second terminal device provided with the device; or send the first measurement value to the first terminal device Value, so that the first terminal device determines the location of the first terminal device according to the first measurement value and the location of the second terminal device.
  • the transceiver unit 1210 is configured to: send a second lateral positioning reference signal to the first terminal device according to the second lateral positioning configuration.
  • the second side row positioning configuration includes one or more of the following information: time-frequency resources occupied by the first side row positioning reference signal, time-frequency resources occupied by the second side row positioning reference signal, and first side row positioning
  • the first measurement value includes: the transmission and reception time difference of the transceiver unit 1210, and the measurement value of the angle of arrival of the processing unit 1220 for the first lateral positioning reference signal.
  • the transceiver unit 1210 is configured to send the location information of the second terminal device to the network device or the first terminal device.
  • the side row positioning device 1200 is used to perform the actions performed by the network device in the embodiment shown in FIG. 5 to FIG. 11, and the transceiver unit 1210 is used to: send the first side row to the first terminal device Positioning configuration; sending a second lateral positioning configuration to the second terminal device; receiving a first measurement value sent by the second terminal device, the first measurement value including the measurement value of the first lateral positioning reference signal by the second terminal device; processing The unit 1220 is configured to determine the location of the first terminal device according to the first measurement value and the location of the second terminal device.
  • the transceiver unit 1210 is configured to: receive a second measurement value sent by the first terminal device, the second measurement value including the measurement value of the second lateral positioning reference signal sent by the first terminal device to the second terminal device; processing The unit 1220 is configured to determine the location of the first terminal device according to the first measurement value, the second measurement value, and the location of the second terminal device.
  • the transceiver unit 1210 is configured to receive a location information request of the first terminal device.
  • the first side row positioning configuration information includes one or more of the following configurations: time-frequency resources occupied by the first side row positioning reference signal, time-frequency resources occupied by the second side row positioning reference signal, and the first side row
  • the second side row positioning configuration information includes one or more of the following configurations: time-frequency resources occupied by the first side row positioning reference signal, time-frequency resources occupied by the second side row positioning reference signal, and the first side row
  • the first measurement value includes: the difference between the receiving and sending time of the second terminal device, and the measurement value of the angle of arrival of the second terminal device to the first lateral positioning reference signal.
  • the second measurement value includes: a difference between the receiving and sending time of the first terminal device, and a measurement value of the angle of arrival of the first terminal device to the second lateral positioning reference signal.
  • the transceiver unit 1210 is configured to receive the location information of the second terminal device sent by the second terminal device.
  • the processing unit 1220 in FIG. 12 may be implemented by a processor or processor-related circuits.
  • the transceiver unit 1210 can be implemented by a transceiver or a transceiver-related circuit.
  • the transceiving unit 1210 may also be referred to as a communication unit or a communication interface.
  • the storage unit can be realized by a memory.
  • an embodiment of the present application also provides a lateral positioning device 1300.
  • the side row positioning device 1300 includes a processor 1310, which is coupled to a memory 1320.
  • the memory 1320 is used to store computer programs or instructions or and/or data
  • the processor 1310 is used to execute computer programs or instructions and/or data stored in the memory 1320. Or data that causes the method in the above method embodiment to be executed.
  • the side row positioning device 1300 includes one or more processors 1310.
  • the side row positioning device 1300 may further include a memory 1320.
  • the side row positioning device 1300 includes one or more memories 1320.
  • the memory 1320 may be integrated with the processor 1310 or provided separately.
  • the lateral positioning device 1300 may further include a transceiver 1330, and the transceiver 1330 is used for signal reception and/or transmission.
  • the processor 1310 is configured to control the transceiver 1330 to receive and/or send signals.
  • the side row positioning device 1300 is used to implement the operations performed by the terminal device in the foregoing method embodiments.
  • the processor 1310 is used to implement the processing-related operations performed by the terminal device in the foregoing method embodiment
  • the transceiver 1330 is used to implement the transceiving-related operations performed by the terminal device in the foregoing method embodiment.
  • the side row positioning device 1300 is used to implement the operations performed by the network device in the foregoing method embodiments.
  • the processor 1310 is used to implement the processing-related operations performed by the network device in the foregoing method embodiment
  • the transceiver 1330 is used to implement the transceiving-related operations performed by the network device in the foregoing method embodiment.
  • the embodiment of the present application also provides a lateral positioning device 1400, and the lateral positioning device 1400 may be a terminal device or a chip.
  • the lateral positioning device 1400 may be used to perform operations performed by the terminal device in the foregoing method embodiments.
  • FIG. 14 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 14 only one memory and processor are shown in FIG. 14. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiving unit 1410 and a processing unit 1420.
  • the transceiving unit 1410 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 1420 may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1410 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiving unit 1410 can be regarded as the sending unit, that is, the transceiving unit 1410 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiver unit 1410 is configured to perform the receiving operation of the terminal device in FIG. 5 to FIG. 11.
  • the processing unit 1420 is configured to perform processing actions on the terminal device side in FIGS. 5 to 11.
  • FIG. 14 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 14.
  • the chip When the side row positioning device 1400 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a side-row positioning device 1500, which may be a network device or a chip.
  • the lateral positioning apparatus 1500 can be used to perform operations performed by a network device in the foregoing method embodiments.
  • the lateral positioning apparatus 1500 is a network device, for example, it is a base station.
  • Figure 15 shows a simplified schematic diagram of the base station structure.
  • the base station includes 1510 parts and 1520 parts.
  • the 1515 part is mainly used for receiving and sending radio frequency signals and the conversion between radio frequency signals and baseband signals; the 1520 part is mainly used for baseband processing and controlling the base station.
  • the 1510 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 1520 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 1510 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency circuit, and the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 1510 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the 1510 part includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 1520 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • part 1510 of the transceiving unit is used to perform the steps related to transceiving performed by the network device in the embodiment shown in Figures 5 to 11; part 1520 is used to perform the implementation shown in Figures 5 to 11 The steps related to the processing performed by the network device in the example.
  • FIG. 15 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 15.
  • the chip When the side row positioning device 1500 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a computer-readable storage medium on which is stored computer instructions for implementing the method executed by the terminal device or the method executed by the network device in the foregoing method embodiments.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • the embodiments of the present application also provide a computer program product containing instructions that, when executed by a computer, cause the computer to implement the method executed by the terminal device in the foregoing method embodiments or the method executed by the network device.
  • the embodiment of the present application also provides a communication system, which includes the network device and the terminal device in the above embodiment.
  • the communication system includes: the network device and the terminal device in the embodiments described above with reference to FIG. 5 to FIG. 11.
  • the terminal device or the network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system at the operating system layer can be any one or more computer operating systems that implement business processing through processes, such as Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer can include applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of this application does not specifically limit the specific structure of the execution subject of the method provided in the embodiment of this application, as long as it can run a program that records the code of the method provided in the embodiment of this application, according to the method provided in the embodiment of this application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • Computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.), etc. ), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices for example, hard disks, floppy disks, or tapes, etc.
  • optical disks for example, compact discs (CD), digital versatile discs (digital versatile disc, DVD), etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to: wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiments of this application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • RAM can be used as an external cache.
  • RAM may include the following various forms: static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM) , Double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM) and Direct RAM Bus RAM (DR RAM).
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous DRAM
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Direct RAM Bus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • memories described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), etc.
  • the medium can include but is not limited to: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请提供了一种侧行定位方法和装置。该方法可以包括:第一终端设备接收网络设备发送的第一侧行定位配置;第一终端设备根据第一侧行定位配置向第二终端设备发送第一侧行定位参考信号,第一终端设备的位置是根据第一测量值和第二终端设备的位置确定的,其中,第一测量值包括第二终端设备对第一侧行定位参考信号的测量值。通过这种终端设备之间利用侧行参考信号进行定位的方法,可以获取终端设备之间的相对位置或绝对位置。

Description

侧行定位方法和装置 技术领域
本申请涉及通信领域,具体涉及一种侧行定位方法和装置。
背景技术
现有一些定位技术基于网络设备与终端设备之间对参考信号的测量从而确定终端设备的位置信息,这些定位技术都需要经由核心网控制,且对终端设备的定位误差会随着网络设备与终端设备之间的距离增大而增大。在一些对定位精度要求较高的场景下,由于这种基于网络设备与终端设备之间的定位方法误差较大,无法准确的测量出终端设备的的位置信息。
那么,在这些对定位精度要求高的场景中如何使用这些定位技术成为亟待解决的问题。
发明内容
本申请提供一种侧行定位方法和装置,终端设备之间可以利用侧行信号确定进行定位,获取相对位置或绝对位置,可以提升定位精度。
第一方面,提供了一种侧行定位方法包括:第一终端设备接收网络设备发送的第一侧行定位配置;第一终端设备根据第一侧行定位配置向第二终端设备发送第一侧行定位参考信号,第一侧行定位参考信号用于确定第一测量值,其中,第一测量值包括第二终端设备对第一侧行定位参考信号的测量值,第一终端设备的位置是根据第一测量值和第二终端设备的位置确定的。
上述技术方案中,第二终端设备对第一终端设备发送的第一侧行定位参考信号进行测量,得到第一测量值,从而可以确定第一终端设备相对于第二终端设备的位置关系。第一终端设备的位置信息可以由第一终端设备或者网络设备根据第一测量值和第二终端设备的位置信息确定,且第一测量值不需要经由核心网,减小了定位时延。另外,该技术方案还适合不支持侧行参考信号测量的第一终端设备,由支持侧行参考信号的第二终端设备实施测量。
结合第一方面,在第一方面的某些实现方式中,第一终端设备从第二终端设备或网络设备接收第一测量值,第一终端设备根据第一测量值和第二终端设备的位置,确定第一终端设备的位置。
上述技术方案中,第一终端设备可以根据第一测量值自己计算自己的位置信息。
结合第一方面,在第一方面的某些实现方式中,第一终端设备根据第一侧行定位配置接收第二终端设备发送的第二侧行定位参考信号;第一终端设备对第二侧行定位参考信号进行测量,确定得到第二测量值;第一终端设备根据第一测量值和第二终端设备的位置,确定第一终端设备的位置,包括:第一终端设备根据第一测量值、第二测量值和第二终端 设备的位置,确定第一终端设备的位置。
上述技术方案中,第一终端设备根据第二终端设备对第一侧行定位参考信号测量的第一测量值、第一终端设备对第二侧行定位参考信号测量的第二测量值,根据第一测量值和第二测量值共同确定第一终端设备相对于第二终端设备的位置关系。然后,在确定第一终端设备和第二终端设备的相对位置关系的基础上,再根据第二终端设备的位置最终确定第一终端设备的位置,且第一测量值和第二测量值不需要经由核心网,减小了定位时延。
结合第一方面,在第一方面的某些实现方式中,第一终端设备接收网络设备发送的第一侧行定位配置之前,方法还包括:第一终端设备向网络设备发送位置信息请求。
结合第一方面,在第一方面的某些实现方式中,第一侧行定位配置信息至少包括以下一个项或多项信息配置:第一侧行定位参考信号占用的时频资源、第二侧行定位参考信号占用的时频资源、第一侧行定位参考信号的序列信息、第二侧行定位参考信号的序列信息、第二终端设备的信息、第一终端设备的上报配置信息,其中,第一终端设备的上报配置信息包括第二测量值和Uu接口测量上报方法。
结合第一方面,在第一方面的某些实现方式中,第一测量值包括:第二终端设备的收发时间差、第二终端设备对第一侧行定位参考信号的到达角的测量值。
结合第一方面,在第一方面的某些实现方式中,第二测量值包括:第一终端设备的收发时间差、第一终端设备对第二侧行定位参考信号的到达角的测量值。
第二方面,提供了一种侧行定位方法,包括:第二终端设备接收网络设备发送的第二侧行定位配置;第二终端设备根据第二侧行定位配置接收第一终端设备发送的第一侧行定位参考信号;第二终端设备根据第一侧行定位参考信号,确定得到第一测量值;第二终端设备向网络设备发送第一测量值,以便于使得网络设备根据第一测量值和第二终端设备的位置确定第一终端设备的位置;或者第二终端设备向第一终端设备发送第一测量值,以便于使得第一终端设备设备根据第一测量值和第二终端设备的位置确定第一终端设备的位置。
上述技术方案中,第二终端设备对第一终端设备发送的第一测量值进行测量,得到第一测量值,从而确定第一终端设备相对于第二终端设备的位置关系。第一终端设备和网络设备都可以根据该第一测量值和第二终端设备的位置信息确定第一终端设备的位置信息,该测量值不需要经由核心网,减小了定位时延。同时,该技术方案还适合不支持侧行参考信号测量的第一终端设备,由支持侧行参考信号的第二终端设备实施测量。
结合第二方面,在第二方面的某些实现方式中,第二终端设备根据第二侧行定位配置向第一终端设备发送第二侧行定位参考信号。
结合第二方面,在第二方面的某些实现方式中,第二侧行定位配置包括以下一项或多项信息:第一侧行定位参考信号占用的时频资源、第二侧行定位参考信号占用的时频资源、第一侧行定位参考信号的序列信息、第二侧行定位参考信号的序列信息、第二终端设备的信息、第二终端设备的上报配置信息,其中,第二终端设备的上报配置信息包括第一测量值和PC5接口测量上报方法。
结合第二方面,在第二方面的某些实现方式中,第一测量值包括:第二终端设备的收发时间差、第二终端设备对第一侧行定位参考信号的到达角的测量值。
结合第二方面,在第二方面的某些实现方式中,第二终端设备向网络设备或第一终端 设备发送第二终端设备的位置信息。
第三方面,提供了一种侧行定位方法,包括:网络设备向第一终端设备发送第一侧行定位配置;网络设备向第二终端设备发送第二侧行定位配置;网络设备接收第二终端设备发送的第一测量值,第一测量值包括第二终端设备对第一侧行定位参考信号的测量值;网络设备根据第一测量值和第二终端设备的位置确定第一终端设备的位置。
上述技术方案中,第二终端设备对第一终端设备发送的第一测量值进行测量,得到第一测量值,从而确定第一终端设备相对于第二终端设备的位置关系。网络设备可以根据该第一测量值和第二终端设备的位置信息确定第一终端设备的位置信息,测量值不需要经由核心网,减小了定位时延。
结合第三方面,在第三方面的某些实现方式中,网络设备接收第一终端设备发送的第二测量值,第二测量值包括第一终端设备对第二终端设备发送的第二侧行定位参考信号的测量值;网络设备根据第一测量值和第二终端设备的位置确定第一终端设备的位置,包括:网络设备根据第一测量值、第二测量值和第二终端设备的位置,确定第一终端设备的位置。
上述技术方案中,根据第一测量值和第二测量值可以共同确定第一终端设备相对于第二终端设备的位置关系。然后,在确定第一终端设备和第二终端设备的相对位置关系的基础上,再根据第二终端设备的位置最终确定第一终端设备的位置,且第一测量值和第二测量值不需要经由核心网,减小了定位时延。
结合第三方面,在第三方面的某些实现方式中,在网络设备向第一终端设备发送第一侧行定位配置和网络设备向第二终端设备发送第二侧行定位配置之前,方法还包括:网络设备接收第一终端设备的位置信息请求。
结合第三方面,在第三方面的某些实现方式中,第一侧行定位配置信息包括以下一项或多项配置:第一侧行定位参考信号占用的时频资源、第二侧行定位参考信号占用的时频资源、第一侧行定位参考信号的序列信息、第二侧行定位参考信号的序列信息、第二终端设备的信息、第一终端设备的上报配置信息,其中,第一终端设备的上报配置信息包括第二测量值和Uu接口测量上报方法。
结合第三方面,在第三方面的某些实现方式中,第二侧行定位配置信息包括以下一项或多项配置:第一侧行定位参考信号占用的时频资源、第二侧行定位参考信号占用的时频资源、第一侧行定位参考信号的序列信息、第二侧行定位参考信号的序列信息、第二终端设备的信息、第二终端设备的上报配置信息,其中,第二终端设备的上报配置信息包括第一测量值和PC5接口测量上报方法。
结合第三方面,在第三方面的某些实现方式中,第一测量值包括:第二终端设备的收发时间差、第二终端设备对第一侧行定位参考信号的到达角的测量值。
结合第三方面,在第三方面的某些实现方式中,第二测量值包括:第一终端设备的收发时间差、第一终端设备对第二侧行定位参考信号的到达角的测量值。
结合第三方面,在第三方面的某些实现方式中,方法还包括:网络设备接收第二终端设备发送的第二终端设备的位置信息。
第四方面,提供了一种侧行定位装置,包括用于执行第一方面或第二方面以及第一方面或第二方面中可能实现方式中的方法的各个模块或单元。
第五方面,提供了一种侧行定位装置,包括处理器。该处理器与存储器耦合,可用于 执行第一方面或第二方面以及第一方面或第二方面中可能实现方式中的方法。可选地,该侧行定位装置还包括存储器。可选地,该侧行定位装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该侧行定位装置为终端设备。当该侧行定位装置为终端设备时,该通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该侧行定位装置为芯片或芯片系统。当该侧行定位装置为芯片或芯片系统时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第六方面,提供了一种侧行定位装置,包括用于执行第三方面以及第三方面可能实现方式中的方法的各个模块或单元。
第七方面,提供了一种侧行定位装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第三方面以及第三方面可能实现方式中的方法。可选地,该侧行定位装置还包括存储器。可选地,该侧行定位装置还包括通信接口,处理器与通信接口耦合。可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
在一种实现方式中,该侧行定位装置为网络设备。当该侧行定位装置为网络设备时,该通信接口可以是收发器,或,输入/输出接口。可选地,该收发器可以为收发电路。可选地,该输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该侧行定位装置为芯片或芯片系统。当该侧行定位装置为芯片或芯片系统时,该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第八方面,提供了一种处理器,包括:输入电路、输出电路和处理电路。该处理电路用于通过该输入电路接收信号,并通过该输出电路发射信号,使得该第一方面至第三方面中的任一方面,以及第一方面至第三方面中任一种可能实现方式中的方法被实现。
在具体实现过程中,上述处理器可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
第九方面,提供了一种处理装置,包括处理器和存储器。该处理器用于读取存储器中存储的指令,并可通过接收器接收信号,通过发射器发射信号,以执行第一方面至第三方面以及第一方面至第三方面任一种可能实现方式中的方法。
可选地,该处理器为一个或多个,该存储器为一个或多个。
可选地,该存储器可以与该处理器集成在一起,或者该存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
应理解,相关的数据交互过程例如发送指示信息可以为从处理器输出指示信息的过程,接收能力信息可以为处理器接收输入能力信息的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述第九方面中的处理器可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面至第三方面以及第一方面至第三方面中任一种可能实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面至第三方面以及第一方面至第三方面中任一种可能实现方式中的方法。
第十二方面,提供了一种通信系统,包括前述的网络设备和终端设备。
附图说明
图1是适用于本申请实施例的网络架构的示意图。
图2是下行链路到达角定位技术中天线阵列与到达角关系的示意图。
图3是下行链路到达角定位技术中方向角与俯仰角的示意图。
图4是下行链路到达角定位技术中二维天线阵列的示意图。
图5是本申请实施例提供的一种侧行定位方法的示意性交互图。
图6是本申请实施例提供的另一种侧行定位方法的示意性交互图。
图7是本申请实施例提供的又一种侧行定位方法的示意性交互图。
图8是本申请实施例提供的又一种侧行定位方法的示意性交互图。
图9是本申请实施例提供的又一种侧行定位方法的示意性交互图。
图10是本申请实施例提供的又一种侧行定位方法的示意性交互图。
图11是本申请实施例提供的又一种侧行定位方法的示意性交互图。
图12为本申请实施例提供的侧行定位装置的示意性框图。
图13为本申请实施例提供的另一侧行定位装置的示意性框图。
图14为本申请实施例提供的终端设备的示意性框图。
图15为本申请实施例提供的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)系统或新无线(new radio,NR),车到其它设备(vehicle-to-X V2X)或下一代通信技术,比如6G。其中V2X可以 包括车到互联网(vehicle to network,V2N)、车到车(vehicle to-vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(internet of things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M)等。
图1示出了本申请实施例提供的一种网络架构的示意图。如图1所示,本申请实施例的通信系统可以包括网络设备和多个终端设备。网络设备可包括1个天线或多个天线。另外,网络设备可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备可以与多个终端设备通信。本申请实施例中的终端设备也可以称为:用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是一种向用户提供语音/数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备和/或用于在无线通信系统上通信的任意其它适合设备,本申请实施例对此并不限定。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据, 并发送电磁波,向网络设备传输上行数据。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是LTE系统中的演进型基站B(evolved nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,还可以是无线网络控制器(radio network controller,RNC)、基站控制器(base station controller,BSC)、家庭基站(例如,home evolved nodeB,或home nodeB,HNB)、基带单元(baseband unit,BBU),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,可以是无线局域网(wireless local area networks,WLAN)中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,可以是新型无线系统(new radio,NR)系统中的gNB或传输点(TRP或TP),或者,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
需要说明的是,小区可以理解为网络设备的无线信号覆盖范围内的区域。
此外,在本申请实施例中,网络设备可以包括基站(gNB),例如宏站、微基站、室内热点、以及中继节点等,功能是向终端设备发送无线电波,一方面实现下行数据传输,另一方面发送调度信息控制上行传输,并接收终端设备发送的无线电波,接收上行数据传输。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit, CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请实施例中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
需要说明的是,在本申请实施例中,在应用层可以运行多个应用程序,此情况下,执行本申请实施例的通信方法的应用程序与用于控制接收端设备完成所接收到的数据所对应的动作的应用程序可以是不同的应用程序。
终端设备与网络设备通信,其中网络设备可以通过前向链路(也称为下行链路)向终端设备发送信息,并通过反向链路(也称为上行链路)从终端设备接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路可与反向链路使用不同的频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路和反向链路可使用共同频带。
在给定时间,网络设备、终端设备可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统可以是PLMN网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、IoT网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
目前LTE和NR Rel-16的定位是基于核心网定位管理功能(location management function,LMF)控制,接入网和终端辅助的架构。
在该定位架构下,以下行定位为例,LMF主要完成以下操作:
(1)与ng-eNB/gNB之间的小区信息交互,例如获取定位参考信号(positioning reference signal,PRS)、探测参考信号(sounding reference signal,SRS)配置信息、小区 定时、小区位置信息等。
(2)与UE之间完成UE能力信息传递、辅助信息传递、测量信息传递等。
(3)与gNB之间完成测量信息传递等。
基于小区信息、UE对各小区下行信号的测量上报、各小区对UE上行信号的测量上报,例如以下定位技术中,LMF可以确定UE的位置信息:
下行链路到达时间差(downlink-time difference of arrival,DL-TDOA)定位技术:UE对各小区PRS信号测量参考信号到达时间差(reference signal time difference,RSTD),并将测量结果上报给LMF。
上行链路到达时间差(uplink-time difference of arrival,UP-TDOA)定位技术:各小区对UE的SRS信号测量上行链路相对到达时间(uplink-relative time of arrival,UL-RTOA),并将测量结果上报给LMF。
下行离开角(downlink-angle of departure,DL-AoD)定位技术:UE对各小区PRS信号测量定位参考信号接收功率(positioning reference signal-reference signal received power,PRS-RSRP),并将测量结果上报给LMF。
上行到达角(uplink-azimuth angle of arrival,UL-AoA)定位技术:各小区对UE的SRS信号测量AoA/俯仰角(Zenith angle of arrival,ZoA),并将测量结果上报给LMF。
增强的基于小区ID(enhanced cell identity,E-CID)定位技术:UE对各小区同步信号块(synchronization signal and physical broadcast channel block,SSB)测量同步信号参考信号接收功率(synchronization signal-reference signal received power,SS-RSRP)/同步信号参考信号接收质量(synchronization signal-reference signal received quality,SS-RSRQ)/同步信号参考信号与干扰加噪声比(synchronization signal-signal to interference plus noise ratio,SS-SINR),并将测量结果上报给LMF。
多往返时间(multi-round trip time,Multi-RTT)定位技术:UE对各小区PRS信号测量UE收发时间差(Rx-Tx time difference),并将测量结果上报给LMF;各小区对UE的SRS信号测量gNB Rx-Tx time difference,并将测量结果上报给LMF。
下面以UL-AoA定位技术为例,具体介绍一下该定位技术。
UL-AoA定位技术的具体方法是终端设备发送SRS,服务小区基站和邻区基站接收SRS。当基站接收天线具有阵列形式时,所发射的信号通过天线阵列时,由于阵列中的每根天线与发射设备之间的距离不同,接收设备会出现信号相位差。基站可以根据多个天线阵元之间因为波程差造成的相移估计相对信号所在方向,从而确定终端相对所在方向。
如图2所示,例如设基站天线间距为dλ,其中λ为载波波长,终端设备发送的SRS在基站接收时的来波方向与天线阵列夹角为
Figure PCTCN2019119114-appb-000001
相邻天线阵元之间的波程差为kλ,其中
Figure PCTCN2019119114-appb-000002
从而相邻天线阵元上的信号到达时间差kλ/c=k/f c,其中c为光速,f c为载波频点。对于无线射频信号
Figure PCTCN2019119114-appb-000003
其中,x BB(t)为基带信号。在此基础上,射频信号的时延k/f c等效于引入额外相位,如下所示。
Figure PCTCN2019119114-appb-000004
这里
Figure PCTCN2019119114-appb-000005
是因为时延k/f c对基带信号而言影响可以忽略不计。从而可以确定不同天线阵元之间信号相位差为
Figure PCTCN2019119114-appb-000006
角度定位的原理是通过获取基站上行接收端在不同天线阵元之间的相位差,反过来估计出来波方向
Figure PCTCN2019119114-appb-000007
为了刻画空间角度,第三代合作伙伴计划(3rd generation partnership project,3GPP)定义了方向角和俯仰角。方向角(AoA)定义为终端设备在水平面与地理正北方向的夹角,以逆时针旋转为正,如图3中φ所示;俯仰角(ZoA)定义为终端设备所在方向与穹顶方向夹角,如图3中θ所示。
图2所示的天线为一维阵列,当实际为2维阵列时,不失一般地,假定2维天线阵列位于地理正北与穹顶方向确定的平面内,如图4所示水平维度天线阵元间距为d 1λ,垂直维度天线阵元间距为d 2λ,容易求得水平/垂直阵元与基于图3确定的俯仰角与方向角、图4中d 1、d 2的关系为
Figure PCTCN2019119114-appb-000008
Figure PCTCN2019119114-appb-000009
通过测量取得k 1和k 2,可以反解求得θ和φ。当基站有其他朝向时,为了求得θ和φ还需要考虑基站朝向与图4所示朝向之间的旋转。
现有基于角度定位方案是基站估计出终端的角度,并且基于基站绝对坐标,由多个基站联合确定出终端位置。
由于角度定位存在一定误差,并且误差会随着终端设备与基站距离增大而增大,所以用于车联网这种对位置精度要求较高的场景中误差较大,无法精准的确定两车相对位置关系。
有鉴于此,本申请提出一种方法,对终端设备的定位方法进行优化,可以更加准确的定位终端设备的位置。
下面将结合附图详细说明本申请提供的各个实施例。
作为示例而非限定,本申请所有实施例中的网络设备可以为RAN,如下一代无线接入网(next-generation radio access network,NG-RAN)。
图5是本申请实施例提供的一种侧行定位方法的示意性交互图。
S510,第一终端设备向网络设备发送位置信息请求。
对应的,网络设备接收第一终端设备发送的位置信息请求。
可选的,该位置信息请求还包括区域(zone)ID,zone ID用于指示第一终端设备大致的GPS坐标或第一终端设备大概在当前小区哪个区域内。
网络设备可以将该位置请求转发给核心网,并由核心网授权,由网络设备主导(host)第一终端设备的定位过程。
可选的,网络设备也可以在核心网预先授权之后不再经由核心网,自行决定主导(host)第一终端设备的定位过程。
S520,网络设备向第一终端设备发送第一侧行定位配置。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第一侧行定位配置,并向第一终端设备发送该第一侧行定位配置。
可选的,第一侧行定位配置也可以由核心网进行配置。
第一侧行定位配置信息包括以下一项或多项配置:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的资源块(resource block,RB)、RB内的资源元素(Resource Element,RE)索引;第一侧行定位参考信号的序列信息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(2)第二侧行定位参考信号配置。
该第二侧行定位参考信号为第二终端设备向第一终端设备发送的参考信号。其中,第二侧行定位参考信号配置包括:
第二侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第二侧行定位参考信号的序列信息。
可选的,第二侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(3)第一终端设备对第二侧行定位参考信号的测量上报配置,测量上报配置包括:
①测量值,包括第一终端设备的Rx–Tx time difference和/或第一终端设备对第二侧行定位参考信号的侧行链路(sidelink,SL)AoA的测量值;
②Uu口测量值上报方法,第一终端设备与网络设备之间通过Uu接口连接,终端设备可以通过Uu接口将信息发送给网络设备。本申请实施例对测量值上报方法的具体形式不做限定。例如通过无线资源控制(radio resource control,RRC)/MAC控制元素(control element,CE)(MAC CE)/上行控制信息(uplink control information,UCI)向网络设备发送,其中RRC/MAC CE只能通过物理上行共享信道(physical uplink shared channel,PUSCH)上报,UCI可以通过物理上行控制信道(physical uplink control channel,PUCCH)或者PUSCH上报。
(4)第二终端设备的信息,包括以下至少一种信息:
第二终端设备的位置信息、第二终端设备的朝向信息、第二终端设备的速度信息。
S530,网络设备向第二终端设备发送第二侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第二侧行定位配置,并向第二终端设备发送该第二侧行定位配置。
可选的,第二侧行定位配置也可以由核心网进行配置。
第二侧行定位配置信息包括以下一项或多项配置:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第一侧行定位参考信号的序列信息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(2)第二侧行定位参考信号配置。
该第二侧行定位参考信号为第二终端设备向第一终端设备发送的参考信号。其中,第二侧行定位参考信号配置包括:
第二侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第二侧行定位参考信号的序列信息。
可选的,第二侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(3)第二终端设备对第一侧行定位参考信号的测量上报配置,测量上报配置包括:
①测量值,包括第二终端设备的Rx–Tx time difference或第二终端设备对第一侧行定位参考信号SL AoA的测量值;
②Uu口测量值上报方法,第二终端设备与网络设备之间通过Uu接口连接,终端设备可以通过Uu接口将信息发送给网络设备。本申请实施例对测量值上报方法的具体形式不做限定。例如通过RRC/MAC CE/UCI向网络设备发送,其中RRC/MAC CE只能通过PUSCH上报,UCI可以通过PUCCH或者PUSCH上报。
③PC5口测量上报方法,第一终端设备与第二终端设备之间通过PC5接口连接,第一终端设备与第二终端设备之间可以通过PC5接口互相发送信息。本申请实施例对测量值上报方法的具体形式不做限定。例如第二终端设备可以通过PC5 RRC/PC5 MAC CE/侧行控制信息(sidelink control information,SCI)向第一终端设备发送信息,其中PC5 RRC/PC5 MAC CE只能通过物理侧行共享信道(physical sidelink shared channel,PSSCH)上报,SCI可以通过物理侧行控制信道(physical sidelink control channel,PSCCH)或者PSSCH上报。
S540,第一终端设备向第二终端设备发送第一侧行定位参考信号。
第一终端设备根据第一侧行定位配置中第一侧行定位参考信号配置,在对应的时频资源上向第二终端设备发送第一侧行定位参考信号。
对应的,第二终端设备根据第二侧行定位配置中第一侧行定位参考信号配置,在对应的时频资源接收第一终端设备发送的第一侧行定位参考信号。
S550,第二终端设备向第一终端设备发送第二侧行定位参考信号。
第二终端设备根据第二侧行定位配置中第二侧行定位参考信号配置,在对应的时频资源上向第一终端设备发送第二侧行定位参考信号。
对应的,第一终端设备根据第一侧行定位配置中第二侧行定位参考信号配置,在对应的时频资源上接收第二终端设备发送的第二侧行定位参考信号。
第二终端设备根据接收第一侧行定位参考信号的时间和发送第二侧行定位参考信号的时间确定第二终端设备的Rx–Tx time difference,另外,第二终端设备还可以根据第一终端设备发送的第一侧行定位参考信号测量该参考信号的到达角AoA。
第一测量值包括第二终端设备的Rx–Tx time difference和/或第二终端设备测量第一侧行定位参考信号的SL AoA。
同理,第一终端设备根据接收第二侧行定位参考信号的时间和发送第一侧行定位参考信号的时间确定第一终端设备的Rx–Tx time difference,另外,第一终端设备还可以根据第二终端设备发送的第二侧行定位参考信号测量该参考信号的到达角AoA。
第二测量值包括第一终端设备的Rx–Tx time difference和/或第一终端设备测量第二侧行定位参考信号的SL AoA。
S560,第二终端设备向第一终端设备发送第一测量值。
在S530中,网络设备为第二终端设备配置了PC5接口,第二终端设备通过PC5接口向第一终端设备发送第一测量值。
可选的,第一测量值还可以包含以下至少一种信息:第二终端设备的位置信息、第二终端设备的朝向信息、第二终端设备的速度信息和第二终端设备的测量时间信息。
S570,第一终端设备向网络设备发送第二测量值。
在S520中,网络设备为第一终端设备配置了Uu接口,第一终端设备通过Uu接口向网络设备发送第二测量值。
可选的,第二测量值还可以包含以下至少一种信息:第一终端设备的朝向信息、第一终端设备的速度信息和第一终端设备的测量时间信息。
S580,第二终端设备向网络设备发送第一测量值。
在S530中,网络设备为第二终端设备配置了Uu接口,第二终端设备通过Uu接口向网络设备发送第一测量值。
可选的,第一测量值还可以包含以下至少一种信息:第二终端设备的位置信息、第二终端设备的朝向信息、第二终端设备的速度信息和第二终端设备的测量时间信息。
S590,网络设备向第一终端设备发送测量值或第一终端设备的位置信息。
在S520中,网络设备为第一终端设备配置了Uu接口,网络设备通过Uu接口向第一终端设备发送测量值,该测量值包括第一测量值和/或第二测量值,第一终端设备根据接收的该测量值,并基于第二终端设备的位置信息计算自己的位置。
可选的,网络设备可以根据第一测量值和/或第二测量值,并基于第二终端设备的位置信息计算出第一终端设备的位置信息,再通过Uu接口将该位置信息发送给第一终端设备。
上述技术方案基于侧行参考信号测量终端相对位置关系,由第一终端设备和第二终端设备互相测量参考信号,根据第一测量值和/或第二测量值确定第一终端设备的位置信息。在选取测量对象时,终端设备与终端设备之间的距离远小于终端设备与网络设备之间的距离,从而提高了定位精度,同时,定位过程由网络设备主导,不经由核心网,相对减少了第一终端设备的定位时延。
图6是本申请实施例提供的另一种侧行定位方法的示意性交互图。
S610与S510类似,具体描述参考S510,此处为了简洁不在赘述。
S620,网络设备向第一终端设备发送第一侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第一侧行定位配置,并向第一终端设备发送该第一侧行定位配置。
可选的,第一侧行定位配置也可以由核心网进行配置。
第一侧行定位配置信息包括:
(1)第二侧行定位参考信号配置。
该第二侧行定位参考信号为第二终端设备向第一终端设备发送的参考信号。其中,第二侧行定位参考信号配置包括:
第二侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第二侧行定位参考信号的序列信息。
可选的,第二侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(2)第二终端设备的信息,包括以下至少一种信息:
第二终端设备的位置信息、第二终端设备的朝向信息、第二终端设备的速度信息。
S630,网络设备向第二终端设备发送第二侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第二侧行定位配置,并向第二终端设备发送该第二侧行定位配置。
可选的,第二侧行定位配置也可以由核心网进行配置。
第二侧行定位配置信息包括:
(1)第二侧行定位参考信号配置。
该第二侧行定位参考信号为第二终端设备向第一终端设备发送的参考信号。其中,第二侧行定位参考信号配置包括:
第二侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第二侧行定位参考信号的序列信息。
可选的,第二侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
S640,第二终端设备向第一终端设备发送第二侧行定位信号。
第二终端设备根据第二侧行定位配置中第二侧行定位参考信号配置,在对应的时频资源上向第一终端设备发送第二侧行定位参考信号。
对应的,第一终端设备根据第一侧行定位配置中第二侧行定位参考信号配置,在对应的时频资源上接收第二终端设备发送的第二侧行定位参考信号,并对第二终端设备发送的第二侧行定位参考信号的AoA进行测量,第二测量值包括该SL AoA。
S650,第一终端设备计算位置信息。
第一终端设备根据测量到的第二测量值,并基于第二终端设备的位置信息计算自己的位置信息。
上述技术方案中基于侧行参考信号测量终端相对位置关系,由第一终端设备测量第二终端设备发送的第二侧行定位信号的AoA,并由第一终端设备自己计算自己的位置信息,以终端设备作为测量参考对象,提高了定位精度,同时定位过程不经过核心网减小了定位时延。
图7是本申请实施例提供的又一种侧行定位方法的示意性交互图。
S710与S510类似,具体描述参考S510,此处为了简洁不在赘述。
S720,网络设备向第一终端设备发送第一侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第一侧行定位配置,并向第一终端设备发送该第一侧行定位配置。
可选的,第一侧行定位配置也可以由核心网进行配置。
第一侧行定位配置信息包括:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的资源块(resource block,RB)、RB内的资源元素(Resource Element,RE)索引;第一侧行定位参考信号的序列信息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(2)第一终端设备对第二侧行定位参考信号的测量上报配置,测量上报配置包括:
①测量值,包括第一终端设备对第二侧行定位参考信号的SL AoA的测量值;
②Uu口测量值上报方法,第一终端设备与网络设备之间通过Uu接口连接,终端设备可以通过Uu接口将信息发送给网络设备。本申请实施例对测量值上报方法的具体形式不做限定。例如通过RRC/MAC CE/UCI向网络设备发送,其中RRC/MAC CE只能通过PUSCH上报,UCI可以通过PUCCH或者PUSCH上报。
S730,网络设备向第二终端设备发送第二侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第二侧行定位配置,并向第二终端设备发送该第二侧行定位配置。
可选的,第二侧行定位配置也可以由核心网进行配置。
第二侧行定位配置信息包括:
(1)第二侧行定位参考信号配置。
该第二侧行定位参考信号为第二终端设备向第一终端设备发送的参考信号。其中,第二侧行定位参考信号配置包括:
第二侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第二侧行定位参考信号的序列信息。
可选的,第二侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
S740,第二终端设备向第一终端设备发送第二侧行定位信号。
第二终端设备根据网络设备发送的第二侧行定位配置中第二侧行定位参考信号配置,在对应的时频资源上向第一终端设备发送第二侧行定位参考信号。
对应的,第一终端设备根据第一侧行定位配置中第二侧行定位参考信号配置,在对应的时频资源上接收第二终端设备发送的第二侧行定位参考信号,并对第二终端设备发送的第二侧行定位参考信号的AoA进行测量,第二测量值包括该SL AoA。
S750,第一终端设备向网络设备发送第二测量值。
在S720中,网络设备为第一终端设备配置了Uu接口,第一终端设备通过Uu接口向网络设备发送第二测量值。
可选的,第二测量值还可以包含以下至少一种信息:第一终端设备的朝向信息、第一 终端设备的速度信息和第一终端设备的测量时间信息。
S760,网络设备向第一终端设备发送测量值或第一终端设备的位置信息。
在S720中,网络设备为第一终端设备配置了Uu接口,网络设备通过Uu接口向第一终端设备发送测量值,该测量值包括第二测量值,第一终端设备根据网络设备发送的测量值,并基于第二终端设备的位置信息计算自己的位置。
可选的,网络设备可以根据第一终端设备上报的第二测量值,并基于第二终端设备的位置信息计算出第一终端设备的位置信息,再通过Uu接口将该位置信息发送给第一终端设备。
上述技术方案中基于侧行参考信号测量终端相对位置关系,第一终端设备测量第二终端设备发送的第二侧行定位信号的AoA,并由网络设备辅助确定第一终端设备的位置信息,以终端设备作为测量参考对象,提高了定位精度,同时定位过程不经过核心网减小了定位时延。
图8本申请实施例提供的又一种侧行定位方法的示意性交互图。
S810与S510类似,具体描述参考S510,此处为了简洁不在赘述。
S820,网络设备向第一终端设备发送第一侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第一侧行定位配置,并向第一终端设备发送该第一侧行定位配置。
可选的,第一侧行定位配置也可以由核心网进行配置。
第一侧行定位配置信息包括:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第一侧行定位参考信号的序列信息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
S830,网络设备向第二终端设备发送第二侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第二侧行定位配置,并向第二终端设备发送该第二侧行定位配置。
可选的,第二侧行定位配置也可以由核心网进行配置。
第二侧行定位配置信息包括:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第一侧行定位参考信号的序列信息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(2)第二终端设备对第一侧行定位参考信号的测量上报配置,测量上报配置包括:
①测量值,包括第二终端设备对第一侧行定位参考信号AoA的测量值;
②Uu口测量值上报方法,第二终端设备与网络设备之间通过Uu接口连接,终端设备可以通过Uu接口将信息发送给网络设备。本申请实施例对测量值上报方法的具体形式不做限定。例如通过RRC/MAC CE/UCI向网络设备发送,其中RRC/MAC CE只能通过PUSCH上报,UCI可以通过PUCCH或者PUSCH上报。
S840,第一终端设备向第二终端设备发送第一侧行定位参考信号。
第一终端设备根据第一侧行定位配置中第一侧行定位参考信号配置,在对应的时频资源上向第二终端设备发送第一侧行定位参考信号。
对应的,第二终端设备根据第二侧行定位配置中第一侧行定位参考信号配置,在对应的时频资源上接收第一终端设备发送的第一侧行定位参考信号,并对第一侧行定位参考信号的AoA进行测量,第一测量值包括该SL AoA。
S850,第二终端设备向网络设备发送第一测量值。
在S830中,网络设备为第二终端设备配置了Uu接口,第二终端设备通过Uu接口向网络设备发送第一测量值。
可选的,第一测量值还可以包含以下至少一种信息:第二终端设备的位置信息、第二终端设备的朝向信息、第二终端设备的速度信息、第二终端设备的测量时间信息。
S860,网络设备向第一终端设备发送测量值或第一终端设备的位置信息。
在S830中,网络设备为第二终端设备配置了Uu接口,网络设备通过Uu接口向第一终端设备发送测量值,该测量值包括第一测量值,第一终端设备根据网络设备发送的测量值,并基于第二终端设备的位置信息计算自己的位置。
可选的,网络设备可以根据第二终端设备上报的第一测量值,并基于第二终端设备的位置信息计算出第一终端设备的位置信息,再通过Uu接口将该位置信息发送给第一终端设备。
上述技术方案基于侧行参考信号测量终端相对位置关系,适合不支持侧行参考信号测量的终端设备。例如,当第一终端设备不支持侧行参考信号测量,第二终端设备辅助第一终端设备进行SL AoA,由第二终端设备实施具体测量。这样,即使待定位终端设备不支持侧行参考信号的测量,还可以由其他终端设备代替待定位终端设备进行测量。
图9本申请实施例提供的又一种侧行定位方法的示意性交互图。
S910与S510类似,具体描述参考S510,此处为了简洁不在赘述。
S920,网络设备向第一终端设备发送第一侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第一侧行定位配置,并向第一终端设备发送该第一侧行定位配置。
可选的,第一侧行定位配置也可以由核心网进行配置。
第一侧行定位配置信息包括:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第一侧行定位参考信号的序列信 息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(2)第二终端设备的信息,包括以下至少一种信息:
第二终端设备的位置信息、第二终端设备的朝向信息、第二终端设备的速度信息。
S930,网络设备向第二终端设备发送第二侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第二侧行定位配置,并向第二终端设备发送该第二侧行定位配置。
可选的,第二侧行定位配置也可以由核心网进行配置。
第二侧行定位配置信息包括:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第一侧行定位参考信号的序列信息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(2)第二终端设备对第一侧行定位参考信号的测量上报配置,测量上报配置包括:
①测量值,包括第二终端设备对第一侧行定位参考信号AoA的测量值;
②PC5口测量上报方法,第一终端设备与第二终端设备之间通过PC5接口连接,第一终端设备与第二终端设备之间可以通过PC5接口互相发送信息。本申请实施例对测量值上报方法的具体形式不做限定。例如第二终端设备可以通过PC5 RRC/PC5 MAC CE/SCI向第一终端设备发送信息,其中PC5 RRC/PC5 MAC CE只能通过PSSCH上报,SCI可以通过PSCCH或者PSSCH上报。
S940,第一终端设备向第二终端设备发送第一侧行定位参考信号。
第一终端设备根据网络设备发送的第一侧行定位配置中第一侧行定位参考信号配置,在对应的时频资源上向第二终端设备发送第一侧行定位参考信号。
对应的,第二终端设备根据第二侧行定位配置中第一侧行定位参考信号配置,在对应的时频资源上接收第一终端设备发送的第一侧行定位参考信号,并对第一侧行定位参考信号的AoA进行测量,第一测量值包括该SL AoA。
S950,第二终端设备向第一终端设备发送第一测量值。
在S930中,网络设备为第二终端设备配置了PC5接口,第二终端设备通过PC5接口向第一终端设备发送第一测量值。
可选的,第一测量值还可以包含以下至少一种信息:第二终端设备的位置信息、第二终端设备的朝向信息、第二终端设备的速度信息、第二终端设备的测量时间信息。
S960,第一终端设备计算位置信息。
第一终端设备根据第二终端设备发送的第一测量值,并基于第二终端设备的位置信息计算自己的位置信息。
上述技术方案基于侧行参考信号测量终端相对位置关系,适合不支持侧行参考信号测量的终端设备。例如,当第一终端设备不支持侧行参考信号测量,第二终端设备辅助第一 终端设备进行SL AoA,由第二终端设备实施具体测量。这样,即使待定位终端设备不支持侧行参考信号的测量,还可以由其他终端设备代替待定位终端设备进行测量。
图10本申请实施例提供的又一种侧行定位方法的示意性交互图。
S1010与S510类似,具体描述参考S510,此处为了简洁不在赘述。
S1020,网络设备向第一终端设备发送第一侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第一侧行定位配置,并向第一终端设备发送该第一侧行定位配置。
可选的,第一侧行定位配置也可以由核心网进行配置。
第一侧行定位配置信息包括:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第一侧行定位参考信号的序列信息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(2)第二侧行定位参考信号配置。
该第二侧行定位参考信号为第二终端设备向第一终端设备发送的参考信号。其中,第二侧行定位参考信号配置包括:
第二侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第二侧行定位参考信号的序列信息。
可选的,第二侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(3)第一终端设备对第二侧行定位参考信号的测量上报配置,测量上报配置包括:
①测量值,包括第一终端设备的Rx–Tx time difference;
②Uu口测量值上报方法,第一终端设备与网络设备之间通过Uu接口连接,终端设备可以通过Uu接口将信息发送给网络设备。本申请实施例对测量值上报方法的具体形式不做限定。例如通过RRC/MAC CE/UCI向网络设备发送,其中RRC/MAC CE只能通过PUSCH上报,UCI可以通过PUCCH或者PUSCH上报。
S1030,网络设备向第二终端设备发送第二侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第二侧行定位配置,并向第二终端设备发送该第二侧行定位配置。
可选的,第二侧行定位配置也可以由核心网进行配置。
第二侧行定位配置信息包括:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第一侧行定位参考信号的序列信 息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息。
(2)第二侧行定位参考信号配置。
该第二侧行定位参考信号为第二终端设备向第一终端设备发送的参考信号。其中,第二侧行定位参考信号配置包括:
第二侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引索引;第二侧行定位参考信号的序列信息。
可选的,第二侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息(3)第二终端设备对第一终端设备发送的侧行定位参考信号的测量上报配置,测量上报配置包括:
①测量值,包括第二终端设备的Rx–Tx time difference;
②Uu口测量值上报方法,第二终端设备与网络设备之间通过Uu接口连接,终端设备可以通过Uu接口将信息发送给网络设备。本申请实施例对测量值上报方法的具体形式不做限定。例如通过RRC/MAC CE/UCI向网络设备发送,其中RRC/MAC CE只能通过PUSCH上报,UCI可以通过PUCCH或者PUSCH上报。
③PC5口测量上报方法,第一终端设备与第二终端设备之间通过PC5接口连接,第一终端设备与第二终端设备之间可以通过PC5接口互相发送信息。本申请实施例对测量值上报方法的具体形式不做限定。例如第二终端设备可以通过PC5 RRC/PC5 MAC CE/SCI向第一终端设备发送信息,其中PC5 RRC/PC5 MAC CE只能通过PSSCH上报,SCI可以通过PSCCH或者PSSCH上报。
S1040,第一终端设备向第二终端设备发送第一侧行定位参考信号。
第一终端设备根据网络设备发送的第一侧行定位配置中第一侧行定位参考信号配置,在对应的时频资源上向第二终端设备发送第一侧行定位参考信号。
对应的,第二终端设备根据第二侧行定位配置中第一侧行定位参考信号配置,在对应的时频资源上接收第一终端设备发送的第一侧行定位参考信号。
同时,第一终端设备测量自己发送第一侧行定位参考信号的时间为a,第二终端设备测量自己接收第一侧行参考信号的时间为b。
S1050,第二终端设备向第一终端设备发送第二侧行定位参考信号。
第二终端设备根据网络设备发送的第二侧行定位配置中第二侧行定位参考信号配置,在对应的时频资源上向第一终端设备发送第二侧行定位参考信号。
对应的,第一终端设备根据第一侧行定位配置中第二侧行定位参考信号配置,在对应的时频资源上接收第二终端设备发送的第二侧行定位参考信号。
同时,第二终端设备测量自己发送第二侧行定位参考信号的时间为c,第一终端设备测量自己接收第二侧行定位参考信号的时间为d。
第二终端设备根据接收第一侧行定位参考信号的时间和发送第二侧行定位参考信号的时间确定第二终端设备的Rx–Tx time difference(该时间差等于b-c),第一测量值包括第二终端设备的Rx–Tx time difference。
同理,第一终端设备根据接收第二侧行定位参考信号的时间和发送第一侧行定位参考 信号的时间确定第一终端设备的Rx–Tx time difference(该时间差等于d-a),第二测量值包括第一终端设备的Rx–Tx time difference。
应理解,这里的a,b,c,d可以是绝对时间,也可以是包含发送第一侧行参考信号、接收第一侧行参考信号、发送第二侧行参考信号、接收第二侧行参考信号所在子帧起始时刻。
应理解,Rx–Tx time difference(b-c、d-a)也可以对应子帧边界的时间差,例如第二终端设备的收发时间差可以为((b-c)mod 1)ms或(((b-c+0.5)mod 1)-0.5)ms。例如当b-c=1.3ms时,第二终端设备的Rx–Tx time difference为0.3ms。
S1060,第一终端设备向网络设备发送第二测量值。
在S1020中,网络设备为第一终端设备配置了Uu接口,第一终端设备通过Uu接口向网络设备发送第二测量值。
可选的,第二测量值还可以包含以下至少一种信息:第一终端设备的朝向信息、第一终端设备的速度信息和第一终端设备的测量时间信息。
S1070,第二终端设备向网络设备发送第一测量值。
在S1030中,网络设备为第二终端设备配置了Uu接口,第二终端设备通过Uu接口向网络设备发送第一测量值。
可选的,第一测量值还可以包含以下至少一种信息:第二终端设备的位置信息、第二终端设备的朝向信息、第二终端设备的速度信息和第二终端设备的测量时间信息。
S1080,网络设备向第一终端设备发送测量值或第一终端设备的位置信息。
在S1020中,网络设备为第一终端设备配置了Uu接口,网络设备通过Uu接口向第一终端设备发送测量值,该测量值包括第一测量值和第二测量值。第一终端设备根据网络设备发送的测量值计算出第一终端设备和第二终端设备之间的RTT,根据RTT可以确定第一终端设备与第二终端设备之间的距离,其中RTT=(第一终端设备的Rx–Tx time difference+第二终端设备的Rx–Tx time difference)/2,第一终端设备根据RTT和第二终端设备的位置信息计算出第一终端设备的位置信息。
可选的,网络设备也可以根据该测量值计算出第一终端设备和第二终端设备之间的RTT,网络设备根据RTT和第二终端设备的位置信息计算出第一终端设备的位置,再通过Uu接口将该位置信息发送给第一终端设备。
上述技术方案基于侧行参考信号测量终端相对位置关系,第一终端设备和第二终端设备互测Rx–Tx time difference确定SL RTT,网络设备辅助第一终端设备确定其位置。
图11本申请实施例提供的又一种侧行定位方法的示意性交互图。
S1110与S510类似,具体描述参考S510,此处为了简洁不在赘述。
S1120,网络设备向第一终端设备发送第一侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第一侧行定位配置,并向第一终端设备发送该第一侧行定位配置。
可选的,第一侧行定位配置也可以由核心网进行配置。
第一侧行定位配置信息包括:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第一侧行定位参考信号的序列信息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息
(2)第二侧行定位参考信号配置。
该第二侧行定位参考信号为第二终端设备向第一终端设备发送的参考信号。其中,第二侧行定位参考信号配置包括:
第二侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第二侧行定位参考信号的序列信息。
可选的,第二侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息
(3)第一终端设备对第二侧行定位参考信号的测量上报配置,测量上报配置包括:
①测量值,包括第一终端设备的Rx–Tx time difference;
(4)第二终端设备的信息,包括以下至少一种信息:
第二终端设备的位置信息、第二终端设备的朝向信息、第二终端设备的速度信息。
S1130,网络设备向第二终端设备发送第二侧行定位配置信息。
网络设备接收到第一终端设备的位置信息请求后,网络设备配置第二侧行定位配置,并向第二终端设备发送该第二侧行定位配置。
可选的,第二侧行定位配置也可以由核心网进行配置。
第二侧行定位配置信息包括:
(1)第一侧行定位参考信号配置。
该第一侧行定位参考信号为第一终端设备向第二终端设备发送的参考信号。其中,第一侧行定位参考信号配置包括:
第一侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用RB、RB内的RE;第一侧行定位参考信号的序列信息。
可选的,第一侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息
(2)第二侧行定位参考信号配置。
该第二侧行定位参考信号为第二终端设备向第一终端设备发送的参考信号。其中,第二侧行定位参考信号配置包括:
第二侧行定位参考信号占用的时频资源,例如时域资源包括周期、时隙偏移、时隙内符号索引,频域资源包括占用的RB、RB内的RE索引;第二侧行定位参考信号的序列信息。
可选的,第二侧行定位参考信号配置还可以包括:端口数、空间波束信息、功率信息
(3)第二终端设备对第一侧行定位参考信号的测量上报配置,测量上报配置包括:
①测量值,包括第二终端设备的Rx–Tx time difference;
②PC5口测量上报方法,第一终端设备与第二终端设备之间通过PC5接口连接,第一终端设备与第二终端设备之间可以通过PC5接口互相发送信息。本申请实施例对测量值上报方法的具体形式不做限定。例如第二终端设备可以通过PC5 RRC/PC5 MAC CE/SCI向第一终端设备发送信息,其中PC5 RRC/PC5 MAC CE只能通过PSSCH上报,SCI可以通 过PSCCH或者PSSCH上报。
S1140,第一终端设备向第二终端设备发送第一侧行定位参考信号。
第一终端设备根据网络设备发送的第一侧行定位配置中第一侧行定位参考信号配置,在对应时频资源上向第二终端设备发送第一侧行定位参考信号。
对应的,第二终端设备根据第二侧行定位配置中第一侧行定位参考信号配置,在对应时频资源接收第一终端设备发送的第一侧行定位参考信号。
同时,第一终端设备测量自己发送第一侧行定位参考信号的时间为a,第二终端设备测量自己接收第一侧行参考信号的时间为b。
S1150,第二终端设备向第一终端设备发送第二侧行定位参考信号。
第二终端设备根据网络设备发送的第二侧行定位配置中第二侧行定位参考信号配置,在对应时频资源上向第一终端设备发送第二侧行定位参考信号。
对应的,第一终端设备根据第一侧行定位配置中第二侧行定位参考信号配置,在对应时频资源接收第二终端设备发送的第二侧行定位参考信号。
同时,第二终端设备测量自己发送第二侧行定位参考信号的时间为c,第一终端设备测量自己接收第二侧行定位参考信号的时间为d。
第二终端设备根据接收第一侧行定位参考信号的时间和发送第二侧行定位参考信号的时间确定第二终端设备的Rx–Tx time difference(该时间差等于b-c),第一测量值包括第二终端设备的Rx–Tx time difference。
同理,第一终端设备根据接收第二侧行定位参考信号的时间和发送第一侧行定位参考信号的时间确定第一终端设备的Rx–Tx time difference(该时间差等于d-a),第二测量值包括第一终端设备的Rx–Tx time difference。
应理解,这里的a,b,c,d可以是绝对时间,也可以是包含发送第一侧行参考信号、接收第一侧行参考信号、发送第二侧行参考信号、接收第二侧行参考信号所在子帧起始时刻。
应理解,Rx–Tx time difference(b-c、d-a)也可以对应子帧边界的时间差,例如第二终端设备的收发时间差可以为((b-c)mod 1)ms或(((b-c+0.5)mod 1)-0.5)ms。例如当b-c=1.3ms时,第二终端设备的Rx–Tx time difference为0.3ms。
S1160,第二终端设备向第一终端设备发送第一测量值。
在S1130中,网络设备为第二终端设备配置了PC5接口,第二终端设备通过PC5接口向第一终端设备发送第一测量值。
可选的,第一测量值还可以包含以下至少一种信息:第二终端设备的位置信息、第二终端设备的朝向信息、第二终端设备的速度信息和第二终端设备的测量时间信息S1170。
S1170,第一终端设备计算自己的位置信息。
第一终端设备根据接收的第一测量值和自己测量的第二测量值计算出第一终端设备和第二终端设备之间的RTT,根据RTT可以确定第一终端设备与第二终端设备之间的距离,其中RTT=(第一终端设备的Rx–Tx time difference+第二终端设备的Rx–Tx time difference)/2,第一终端设备根据RTT和第二终端设备的位置信息计算出第一终端设备的位置信息。
上述技术方案基于侧行参考信号测量终端相对位置关系,第一终端设备和第二终端设备互测Rx–Tx time difference确定SL RTT,第一终端设备根据SL RTT和第二终端设备的 位置确定自己的位置。
可选的,图10和图11中的方法也可以结合图5至图9中的方法测量SL AoA辅助RTT定位,更精准的定位第一终端设备的位置信息。
应理解,本申请所有实施例中的侧行定位参考信号表示用来确定第一终端设备的位置信息的一种信号,不代表某一个具体的信号,本申请对该信号的类型不做具体限定。
应理解,上述实施例中上报的第一测量值和/或第二测量值中可以包含第二终端设备的位置信息,也可以不包含第二终端设备的位置信息。当不包含第二终端设备的位置信息时,网络设备或第一终端设备在计算第一终端设备的位置之前,都要先获取第二终端设备的位置信息,这里对第二终端设备的位置信息获取方式不做限定。
应理解,当存在多个待定位的终端设备时,网络设备可以为多个终端设备都配置PC5接口测量上报方法。多个待定位终端设备可以根据上述实施例中的方法测量两两待定位终端设备之间相对的位置关系,通过PC5接口相互发送测量信息。例如UE1、UE2为待定位终端设备,UE3为已知位置的终端设备,UE1和UE2使用上述实施例中的方法可以确定相对位置关系。UE1和UE3根据上述实施例中的方法确定UE1的位置,那么根据UE1和UE2的相对位置关系,就可以直接确定UE2的位置信息,而不需要重新再去测量UE2和UE3的位置关系。
应理解,本实施例中的所有位置信息不一定是基于经纬度的坐标,可以是一个自定义的坐标系,例如以第一终端设备或第二终端设备为原点,正北方向为x轴,正西方向为y轴,垂直方向为z轴,或者以第一终端设备或第二终端设备设备为原点,某个预定方向(例如车队前进方向)为x轴,与前进方向垂直的另一个水平方向为y轴,垂直方向为z轴。
应理解,本申请所有实施例还可以和其他定位技术相结合,进一步提高定位精度。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,上述各个方法实施例中由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上文描述了本申请提供的方法实施例,下文将描述本申请提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上文主要从各个网元之间交互的角度对本申请实施例提供的方案进行了描述。可以理解的是,各个网元,例如发射端设备或者接收端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
本申请实施例可以根据上述方法示例,对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模 块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有其它可行的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图12是本申请实施例提供的侧行定位侧行定位装置的示意性框图。该侧行定位装置1200包括收发单元1210和处理单元1220。收发单元1210可以与外部进行通信,处理单元1220用于进行数据处理。收发单元1210还可以称为通信接口或通信单元。
可选地,该侧行定位装置1200还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元1220可以读取存储单元中的指令或者和/或数据。
该侧行定位装置1200可以用于执行上文方法实施例中终端设备所执行的动作,这时,该侧行定位装置1200可以为终端设备或者可配置于终端设备的部件,收发单元1210用于执行上文方法实施例中终端设备侧的收发相关的操作,处理单元1220用于执行上文方法实施例中终端设备侧的处理相关的操作。
或者,该侧行定位装置1200可以用于执行上文方法实施例中网络设备所执行的动作,这时,该侧行定位装置1200可以为网络设备或者可配置于网络设备的部件,收发单元1210用于执行上文方法实施例中网络设备侧的收发相关的操作,处理单元1220用于执行上文方法实施例中网络设备侧的处理相关的操作。
作为一种设计,该侧行定位装置1200用于执行上文图5至图11所示实施例中第一终端设备所执行的动作,收发单元1210用于:接收网络设备发送的第一侧行定位配置;根据第一侧行定位配置向第二终端设备发送第一侧行定位参考信号,第一侧行定位参考信号用于确定第一测量值,其中,第一测量值包括第二终端设备对第一侧行定位参考信号的测量值,设置有装置的第一终端设备的位置是根据第一测量值和第二终端设备的位置确定的,其中,第一测量值包括第二终端设备对第一侧行定位参考信号的测量值。
可选的,收发单元1210用于:从第二终端设备或网络设备接收第一测量值;处理单元1220用于:根据第一测量值和第二终端设备的位置,确定第一终端设备的位置。
可选的,收发单元1210用于:根据第一侧行定位配置接收第二终端设备发送的第二侧行定位参考信号;处理单元1220用于:对第二侧行定位参考信号进行测量,得到第二测量值;根据第一测量值、第二测量值和第二终端设备的位置,确定第一终端设备的位置。
可选的,收发单元1210用于:向网络设备发送位置信息请求。
可选的,第一侧行定位配置包括以下一项或多项信息:第一侧行定位参考信号占用的时频资源、第二侧行定位参考信号占用的时频资源、第一侧行定位参考信号的序列信息、第二侧行定位参考信号的序列信息、第二终端设备的信息、第一终端设备的上报配置信息,其中,第一终端设备的上报配置信息包括第二测量值和Uu接口测量上报方法。
可选的,第一测量值包括:第二终端设备的收发时间差、第二终端设备对第一侧行定位参考信号的到达角的测量值。
可选的,第二测量值包括:收发单元的收发时间差、处理单元对第二侧行定位参考信号的到达角的测量值。
可选的,收发单元1210用于:从网络设备或第二终端设备接收第二终端设备的位置信息。
作为另一种设计,该侧行定位装置1200用于执行上文图5至图11所示实施例中第二 终端设备所执行的动作,收发单元1210用于:接收网络设备发送的第二侧行定位配置;根据第二侧行定位配置接收第一终端设备发送的第一侧行定位参考信号;处理单元1220用于:根据第一侧行定位参考信号,得到第一测量值;收发单元1210用于:向网络设备发送第一测量值,以使得网络设备根据第一测量值和设置有装置的第二终端设备的位置确定第一终端设备的位置;或者向第一终端设备发送第一测量值,以使得第一终端设备设备根据第一测量值和第二终端设备的位置确定第一终端设备的位置。
可选的,收发单元1210用于:根据第二侧行定位配置向第一终端设备发送第二侧行定位参考信号。
可选的,第二侧行定位配置包括以下一项或多项信息:第一侧行定位参考信号占用的时频资源、第二侧行定位参考信号占用的时频资源、第一侧行定位参考信号的序列信息、第二侧行定位参考信号的序列信息、第二终端设备的信息、第二终端设备的上报配置信息,其中,第二终端设备的上报配置信息包括第一测量值和PC5接口测量上报方法。
可选的,第一测量值包括:收发单元1210的收发时间差、处理单元1220对第一侧行定位参考信号的到达角的测量值。
可选的,收发单元1210用于:向网络设备或第一终端设备发送第二终端设备的位置信息。
作为又一种设计,该侧行定位装置1200用于执行上文图5至图11所示实施例中网络设备所执行的动作,收发单元1210用于:向第一终端设备发送第一侧行定位配置;向第二终端设备发送第二侧行定位配置;接收第二终端设备发送的第一测量值,第一测量值包括第二终端设备对第一侧行定位参考信号的测量值;处理单元1220用于:根据第一测量值和第二终端设备的位置确定第一终端设备的位置。
可选的,收发单元1210用于:接收第一终端设备发送的第二测量值,第二测量值包括第一终端设备对第二终端设备发送的第二侧行定位参考信号的测量值;处理单元1220用于:根据第一测量值、第二测量值和第二终端设备的位置,确定第一终端设备的位置。
可选的,收发单元1210用于:接收第一终端设备的位置信息请求。
可选的,第一侧行定位配置信息包括以下一项或多项配置:第一侧行定位参考信号占用的时频资源、第二侧行定位参考信号占用的时频资源、第一侧行定位参考信号的序列信息、第二侧行定位参考信号的序列信息、第二终端设备的信息、第一终端设备的上报配置信息,其中,第一终端设备的上报配置信息包括第二测量值和Uu接口测量上报方法。
可选的,第二侧行定位配置信息包括以下一项或多项配置:第一侧行定位参考信号占用的时频资源、第二侧行定位参考信号占用的时频资源、第一侧行定位参考信号的序列信息、第二侧行定位参考信号的序列信息、第二终端设备的信息、第二终端设备的上报配置信息,其中,第二终端设备的上报配置信息包括第一测量值和PC5接口测量上报方法。
可选的,第一测量值包括:第二终端设备的收发时间差、第二终端设备对第一侧行定位参考信号的到达角的测量值。
可选的,第二测量值包括:第一终端设备的收发时间差、第一终端设备对第二侧行定位参考信号的到达角的测量值。
可选的,收发单元1210用于:接收第二终端设备发送的第二终端设备的位置信息。
图12中的处理单元1220可以由处理器或处理器相关电路实现。收发单元1210可以 由收发器或收发器相关电路实现。收发单元1210还可称为通信单元或通信接口。存储单元可以通过存储器实现。
如图13所示,本申请实施例还提供一种侧行定位装置1300。该侧行定位装置1300包括处理器1310,处理器1310与存储器1320耦合,存储器1320用于存储计算机程序或指令或者和/或数据,处理器1310用于执行存储器1320存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该侧行定位装置1300包括的处理器1310为一个或多个。
可选地,如图13所示,该侧行定位装置1300还可以包括存储器1320。
可选地,该侧行定位装置1300包括的存储器1320可以为一个或多个。
可选地,该存储器1320可以与该处理器1310集成在一起,或者分离设置。
可选地,如图13所示,该侧行定位装置1300还可以包括收发器1330,收发器1330用于信号的接收和/或发送。例如,处理器1310用于控制收发器1330进行信号的接收和/或发送。
作为一种方案,该侧行定位装置1300用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器1310用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器1330用于实现上文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,该侧行定位装置1300用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器1310用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器1330用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种侧行定位装置1400,该侧行定位装置1400可以是终端设备也可以是芯片。该侧行定位装置1400可以用于执行上述方法实施例中由终端设备所执行的操作。当该侧行定位装置1400为终端设备时,图14示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图14中,终端设备以手机作为例子。如图14所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图14中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图14所示,终端设备包括收发单元1410和处理单元1420。收发单元1410也可以称为收发器、收发机、收发装置等。处理单元1420也可以称为处理器,处理单板,处理模块、处理装置等。
可选地,可以将收发单元1410中用于实现接收功能的器件视为接收单元,将收发单元1410中用于实现发送功能的器件视为发送单元,即收发单元1410包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,收发单元1410用于执行图5至图11中的终端设备的接收操作。处理单元1420用于执行图5至图11中终端设备侧的处理动作。
应理解,图14仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图14所示的结构。
当该侧行定位装置1400为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种侧行定位装置1500,该侧行定位装置1500可以是网络设备也可以是芯片。该侧行定位装置1500可以用于执行上述方法实施例中由网络设备所执行的操作。
当该侧行定位装置1500为网络设备时,例如为基站。图15示出了一种简化的基站结构示意图。基站包括1510部分以及1520部分。1515部分主要用于射频信号的收发以及射频信号与基带信号的转换;1520部分主要用于基带处理,对基站进行控制等。1510部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1520部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
1510部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频电路,其中射频电路主要用于进行射频处理。可选地,可以将1510部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即1510部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
1520部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1510部分的收发单元用于执行图5至图11所示实施例中由网络设备执行的收发相关的步骤;1520部分用于执行图5至图11所示实施例中由网络设备执行的处理相关的步骤。
应理解,图15仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图15所示的结构。
当该侧行定位装置1500为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
作为一个示例,该通信系统包括:上文结合图5至图11描述的实施例中的网络设备与终端设备。
上述提供的任一种侧行定位装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本文中使用的术语“制品”可以涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。
本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可以包括但不限于:无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专 用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
还需要说明的是,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的保护范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。 当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,(SSD))等。例如,前述的可用介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种侧行定位方法,其特征在于,包括:
    第一终端设备接收网络设备发送的第一侧行定位配置;
    所述第一终端设备根据所述第一侧行定位配置向第二终端设备发送第一侧行定位参考信号,所述第一侧行定位参考信号用于确定第一测量值,其中,所述第一测量值包括所述第二终端设备对所述第一侧行定位参考信号的测量值,所述第一终端设备的位置是根据所述第一测量值和所述第二终端设备的位置确定的。
  2. 根据权利要求1所述的侧行定位方法,其特征在于,所述方法还包括:
    所述第一终端设备从所述第二终端设备或所述网络设备接收第一测量值,所述第一终端设备根据所述第一测量值和第二终端设备的位置,确定第一终端设备的位置。
  3. 根据权利要求2所述的侧行定位方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第一侧行定位配置接收所述第二终端设备发送的第二侧行定位参考信号;
    所述第一终端设备对所述第二侧行定位参考信号进行测量,得到第二测量值;
    所述第一终端设备根据所述第一测量值和所述第二终端设备的位置,确定第一终端设备的位置,包括:
    所述第一终端设备根据所述第一测量值、所述第二测量值和第二终端设备的位置,确定第一终端设备的位置。
  4. 根据权利要求1至3中任一项所述的侧行定位方法,其特征在于,所述第一终端设备接收所述网络设备发送的所述第一侧行定位配置之前,所述方法还包括:
    所述第一终端设备向所述网络设备发送位置信息请求。
  5. 根据权利要求3或4所述的侧行定位方法,其特征在于,所述第一侧行定位配置包括以下一项或多项信息:
    所述第一侧行定位参考信号占用的时频资源、所述第二侧行定位参考信号占用的时频资源、所述第一侧行定位参考信号的序列信息、所述第二侧行定位参考信号的序列信息、所述第二终端设备的信息、所述第一终端设备的上报配置信息,其中,所述第一终端设备的测量上报配置包括所述第二测量值和Uu接口测量上报方法。
  6. 根据权利要求1至5中任一项所述的侧行定位方法,其特征在于,所述第一测量值包括:
    所述第二终端设备的收发时间差、所述第二终端设备对所述第一侧行定位参考信号的到达角的测量值。
  7. 根据权利要求3至6中任一项所述的侧行定位方法,其特征在于,所述第二测量值包括:
    所述第一终端设备的收发时间差、所述第一终端设备对所述第二侧行定位参考信号的到达角的测量值。
  8. 根据权利要求1至7中任一项所述的侧行定位方法,其特征在于,所述方法还包括:
    所述第一终端设备从所述网络设备或所述第二终端设备接收所述第二终端设备的位置信息。
  9. 一种侧行定位方法,其特征在于,包括:
    第二终端设备接收网络设备发送的第二侧行定位配置;
    所述第二终端设备根据所述第二侧行定位配置接收第一终端设备发送的第一侧行定位参考信号;
    所述第二终端设备根据所述第一侧行定位参考信号,得到第一测量值;
    所述第二终端设备向网络设备发送所述第一测量值,以使得所述网络设备根据所述第一测量值和所述第二终端设备的位置确定所述第一终端设备的位置;或者
    所述第二终端设备向所述第一终端设备发送所述第一测量值,以使得所述第一终端设备设备根据所述第一测量值和所述第二终端设备的位置确定所述第一终端设备的位置。
  10. 根据权利要求9所述的侧行定位方法,其特征在于,所述方法还包括:
    所述第二终端设备根据所述第二侧行定位配置向所述第一终端设备发送第二侧行定位参考信号。
  11. 根据权利要求10所述的侧行定位方法,其特征在于,所述第二侧行定位配置包括以下一项或多项信息:
    所述第一侧行定位参考信号占用的时频资源、所述第二侧行定位参考信号占用的时频资源、所述第一侧行定位参考信号的序列信息、所述第二侧行定位参考信号的序列信息、所述第二终端设备的信息、所述第二终端设备的上报配置信息,其中,所述第二终端设备的上报配置信息包括所述第一测量值和PC5接口测量上报方法。
  12. 根据权利要求9至11中任一项所述的侧行定位方法,其特征在于,所述第一测量值包括:
    所述第二终端设备的收发时间差、所述第二终端设备对所述第一侧行定位参考信号的到达角的测量值。
  13. 根据权利要求9至12中任一项所述的侧行定位方法,其特征在于,所述方法还包括:
    所述第二终端设备向所述网络设备或所述第一终端设备发送所述第二终端设备的位置信息。
  14. 一种侧行定位方法,其特征在于,包括:
    网络设备向所述第一终端设备发送第一侧行定位配置;
    所述网络设备向第二终端设备发送第二侧行定位配置;
    所述网络设备接收所述第二终端设备发送的第一测量值,所述第一测量值包括所述第二终端设备对所述第一侧行定位参考信号的测量值;
    所述网络设备根据所述第一测量值和所述第二终端设备的位置确定所述第一终端设备的位置。
  15. 根据权利要求14所述的侧行定位方法,其特征在于,所述方法还包括:
    所述网络设备接收第一终端设备发送的第二测量值,所述第二测量值包括所述第一终端设备对所述第二终端设备发送的第二侧行定位参考信号的测量值;
    所述网络设备根据所述第一测量值和所述第二终端设备的位置确定所述第一终端设 备的位置,包括:
    所述网络设备根据所述第一测量值、所述第二测量值和所述第二终端设备的位置,确定所述第一终端设备的位置。
  16. 根据权利要求14或15所述的侧行定位方法,其特征在于,在所述网络设备向所述第一终端设备发送所述第一侧行定位配置和所述网络设备向所述第二终端设备发送所述第二侧行定位配置之前,所述方法还包括:
    所述网络设备接收所述第一终端设备的位置信息请求。
  17. 根据权利要求15或16所述的侧行定位方法,其特征在于,所述第一侧行定位配置信息包括以下一项或多项配置:
    所述第一侧行定位参考信号占用的时频资源、所述第二侧行定位参考信号占用的时频资源、所述第一侧行定位参考信号的序列信息、所述第二侧行定位参考信号的序列信息、所述第二终端设备的信息、所述第一终端设备的上报配置信息,其中,所述第一终端设备的上报配置信息包括所述第二测量值和Uu接口测量上报方法。
  18. 根据权利要求15至17中任一项所述的侧行定位方法,其特征在于,所述第二侧行定位配置信息包括以下一项或多项配置:
    所述第一侧行定位参考信号占用的时频资源、所述第二侧行定位参考信号占用的时频资源、所述第一侧行定位参考信号的序列信息、所述第二侧行定位参考信号的序列信息、所述第二终端设备的信息、所述第二终端设备的上报配置信息,其中,所述第二终端设备的上报配置信息包括所述第一测量值和PC5接口测量上报方法。
  19. 根据权利要求14至18中任一项所述的侧行定位方法,其特征在于,所述第一测量值包括:
    所述第二终端设备的收发时间差、所述第二终端设备对所述第一侧行定位参考信号的到达角的测量值。
  20. 根据权利要求15至19中任一项所述的侧行定位方法,其特征在于,所述第二测量值包括:
    所述第一终端设备的收发时间差、所述第一终端设备对所述第二侧行定位参考信号的到达角的测量值。
  21. 根据权利要求14至20中任一项所述的侧行定位方法,其特征在于,所述方法还包括:
    所述网络设备接收所述第二终端设备发送的所述第二终端设备的位置信息。
  22. 一种侧行定位装置,其特征在于,包括:
    收发单元,用于接收网络设备发送的第一侧行定位配置;
    所述收发单元,用于根据所述第一侧行定位配置向第二终端设备发送第一侧行定位参考信号,所述第一侧行定位参考信号用于确定第一测量值,其中,所述第一测量值包括所述第二终端设备对所述第一侧行定位参考信号的测量值,设置有所述装置的第一终端设备的位置是根据第一测量值和所述第二终端设备的位置确定的,其中,所述第一测量值包括所述第二终端设备对所述第一侧行定位参考信号的测量值。
  23. 根据权利要求22所述的侧行定位装置,其特征在于,所述装置包括:
    所述收发单元,用于从所述第二终端设备或所述网络设备接收第一测量值;
    处理单元,用于根据所述第一测量值和所述第二终端设备的位置,确定所述第一终端设备的位置。
  24. 根据权利要求23所述的侧行定位装置,其特征在于,所述装置包括:
    所述收发单元,用于根据所述第一侧行定位配置接收所述第二终端设备发送的第二侧行定位参考信号;
    所述处理单元,用于对所述第二侧行定位参考信号进行测量,得到第二测量值;
    所述处理单元,用于根据所述第一测量值和第二终端设备的位置,确定所述第一终端设备的位置,包括:
    所述处理单元,用于根据所述第一测量值、所述第二测量值和第二终端设备的位置,确定第一终端设备的位置。
  25. 根据权利要求22至24中任一项所述的侧行定位装置,其特征在于,所述收发单元接收所述网络设备发送的所述第一侧行定位配置之前,所述装置包括:
    所述收发单元,用于向所述网络设备发送位置信息请求。
  26. 根据权利要求24或25所述的侧行定位装置,其特征在于,所述第一侧行定位配置包括以下一项或多项信息:
    所述第一侧行定位参考信号占用的时频资源、所述第二侧行定位参考信号占用的时频资源、所述第一侧行定位参考信号的序列信息、所述第二侧行定位参考信号的序列信息、所述第二终端设备的信息、所述第一终端设备的上报配置信息,其中,所述第一终端设备的上报配置信息包括所述第二测量值和Uu接口测量上报方法。
  27. 根据权利要求22至26中任一项所述的侧行定位装置,其特征在于,所述第一测量值包括:
    所述第二终端设备的收发时间差、所述第二终端设备对所述第一侧行定位参考信号的到达角的测量值。
  28. 根据权利要求24至27中任一项所述的侧行定位装置,其特征在于,所述第二测量值包括:
    所述收发单元的收发时间差、所述处理单元对所述第二侧行定位参考信号的到达角的测量值。
  29. 根据权利要求22至28中任一项所述的侧行定位装置,其特征在于,所述装置还包括:
    所述收发单元,用于从所述网络设备或所述第二终端设备接收所述第二终端设备的位置信息。
  30. 一种侧行定位装置,其特征在于,包括:
    收发单元,用于接收网络设备发送的第二侧行定位配置;
    所述收发单元,用于根据所述第二侧行定位配置接收第一终端设备发送的第一侧行定位参考信号;
    处理单元,用于根据所述第一侧行定位参考信号,得到第一测量值;
    所述收发单元,用于向网络设备发送所述第一测量值,以使得所述网络设备根据所述第一测量值和设置有所述装置的第二终端设备的位置确定所述第一终端设备的位置;或者
    所述收发单元,用于向所述第一终端设备发送所述第一测量值,以使得所述第一终端 设备设备根据所述第一测量值和所述第二终端设备的位置确定所述第一终端设备的位置。
  31. 根据权利要求30所述的侧行定位装置,其特征在于,所述装置还包括:
    所述收发单元,用于根据所述第二侧行定位配置向所述第一终端设备发送第二侧行定位参考信号。
  32. 根据权利要求31所述的侧行定位装置,其特征在于,所述第二侧行定位配置包括以下一项或多项信息:
    所述第一侧行定位参考信号占用的时频资源、所述第二侧行定位参考信号占用的时频资源、所述第一侧行定位参考信号的序列信息、所述第二侧行定位参考信号的序列信息、所述第二终端设备的信息、所述第二终端设备的上报配置信息,其中,所述第二终端设备的上报配置信息包括所述第一测量值和PC5接口测量上报方法。
  33. 根据权利要求30至32中任一项所述的侧行定位装置,其特征在于,所述第一测量值包括:
    所述收发单元的收发时间差、所述处理单元对所述第一侧行定位参考信号的到达角的测量值。
  34. 根据权利要求30至33中任一项所述的侧行定位装置,其特征在于,所述装置包括:
    所述收发单元,向所述网络设备或所述第一终端设备发送所述第二终端设备的位置信息。
  35. 一种侧行定位装置,其特征在于,包括:
    收发单元,用于向所述第一终端设备发送第一侧行定位配置;
    所述收发单元,用于向第二终端设备发送第二侧行定位配置;
    所述收发单元,用于接收所述第二终端设备发送的第一测量值,所述第一测量值包括所述第二终端设备对所述第一侧行定位参考信号的测量值;
    处理单元,用于根据所述第一测量值和所述第二终端设备的位置确定所述第一终端设备的位置。
  36. 根据权利要求35所述的侧行定位装置,其特征在于,所述装置包括:
    所述收发单元,用于接收第一终端设备发送的第二测量值,所述第二测量值包括所述第一终端设备对所述第二终端设备发送的第二侧行定位参考信号的测量值;
    所述收发单元,用于根据所述第一测量值和所述第二终端设备的位置确定所述第一终端设备的位置,包括:
    所述处理单元根据所述第一测量值、所述第二测量值和所述第二终端设备的位置,确定所述第一终端设备的位置。
  37. 根据权利要求35或36所述的侧行定位装置,其特征在于,在所述收发单元向所述第一终端设备发送所述第一侧行定位配置和所述收发单元向所述第二终端设备发送所述第二侧行定位配置之前,所述装置还包括:
    所述收发单元,用于接收所述第一终端设备的位置信息请求。
  38. 根据权利要求36或37所述的侧行定位装置,其特征在于,所述第一侧行定位配置信息包括以下一项或多项配置:
    所述第一侧行定位参考信号占用的时频资源、所述第二侧行定位参考信号占用的时频 资源、所述第一侧行定位参考信号的序列信息、所述第二侧行定位参考信号的序列信息、所述第二终端设备的信息、所述第一终端设备的上报配置信息,其中,所述第一终端设备的上报配置信息包括所述第二测量值和Uu接口测量上报方法。
  39. 根据权利要求36至38中任一项所述的侧行定位装置,其特征在于,所述第二侧行定位配置信息包括以下一项或多项配置:
    所述第一侧行定位参考信号占用的时频资源、所述第二侧行定位参考信号占用的时频资源、所述第一侧行定位参考信号的序列信息、所述第二侧行定位参考信号的序列信息、所述第二终端设备的信息、所述第二终端设备的上报配置信息,其中,所述第二终端设备的上报配置信息包括所述第一测量值和PC5接口测量上报方法。
  40. 根据权利要求35至39中任一项所述的侧行定位装置,其特征在于,所述第一测量值包括:
    所述第二终端设备的收发时间差、所述第二终端设备对所述第一侧行定位参考信号的到达角的测量值。
  41. 根据权利要求36至40中任一项所述的侧行定位装置,其特征在于,所述第二测量值包括:
    所述第一终端设备的收发时间差、所述第一终端设备对所述第二侧行定位参考信号的到达角的测量值。
  42. 根据权利要求35至41中任一项所述的侧行定位装置,其特征在于,所述装置包括:
    所述收发单元,接收所述第二终端设备发送的所述第二终端设备的位置信息。
  43. 一种侧行定位装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得
    权利要求1至8中任一项所述的方法被执行,或
    权利要求9至13中任一项所述的方法被执行,或
    权利要求14至21中任一项所述的方法被执行。
  44. 一种计算机可读存储介质,其特征在于,存储有计算机程序或指令,所述计算机程序或指令用于
    权利要求1至8中任一项所述的方法或
    权利要求9至13中任一项所述的方法或
    权利要求14至21中任一项所述的方法。
  45. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,
    使得安装有所述芯片系统的通信设备执行
    权利要求1至8中任一项所述的方法或
    权利要求9至13中任一项所述的方法或
    权利要求14至21中任一项所述的方法。
PCT/CN2019/119114 2019-11-18 2019-11-18 侧行定位方法和装置 WO2021097598A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2019475080A AU2019475080B2 (en) 2019-11-18 2019-11-18 Sidelink positioning method and apparatus
PCT/CN2019/119114 WO2021097598A1 (zh) 2019-11-18 2019-11-18 侧行定位方法和装置
CN201980102247.5A CN114731638A (zh) 2019-11-18 2019-11-18 侧行定位方法和装置
EP19953315.9A EP4054258A4 (en) 2019-11-18 2019-11-18 LATERAL LINK POSITIONING METHOD AND APPARATUS
US17/663,729 US20220279313A1 (en) 2019-11-18 2022-05-17 Sidelink Positioning Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119114 WO2021097598A1 (zh) 2019-11-18 2019-11-18 侧行定位方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/663,729 Continuation US20220279313A1 (en) 2019-11-18 2022-05-17 Sidelink Positioning Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021097598A1 true WO2021097598A1 (zh) 2021-05-27

Family

ID=75980279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119114 WO2021097598A1 (zh) 2019-11-18 2019-11-18 侧行定位方法和装置

Country Status (5)

Country Link
US (1) US20220279313A1 (zh)
EP (1) EP4054258A4 (zh)
CN (1) CN114731638A (zh)
AU (1) AU2019475080B2 (zh)
WO (1) WO2021097598A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245315A (zh) * 2021-12-24 2022-03-25 中信科移动通信技术股份有限公司 终端定位方法及装置
WO2022256764A1 (en) * 2021-06-03 2022-12-08 Qualcomm Incorporated Network configuration for sidelink-based positioning session initiation
WO2023004212A1 (en) * 2021-07-23 2023-01-26 Qualcomm Incorporated Sidelink positioning reference signal sequences
WO2023001106A1 (zh) * 2021-07-19 2023-01-26 华为技术有限公司 一种定位的方法和装置
WO2023001096A1 (zh) * 2021-07-19 2023-01-26 维沃移动通信有限公司 定位方法及装置
WO2023005836A1 (zh) * 2021-07-26 2023-02-02 维沃移动通信有限公司 定位方法、装置、终端及介质
WO2023028776A1 (zh) * 2021-08-30 2023-03-09 Oppo广东移动通信有限公司 定位方法、终端和定位装置
WO2023059965A1 (en) * 2021-10-05 2023-04-13 Qualcomm Incorporated Nulling for inter-user equipment interference cancellation
WO2023116904A1 (zh) * 2021-12-24 2023-06-29 维沃移动通信有限公司 定位方法、设备及可读存储介质
WO2023123080A1 (zh) * 2021-12-29 2023-07-06 Oppo广东移动通信有限公司 侧行通信方法和设备
WO2023185423A1 (zh) * 2022-03-28 2023-10-05 华为技术有限公司 一种执行网络管理服务意图的方法、装置和系统
WO2023198069A1 (zh) * 2022-04-12 2023-10-19 维沃移动通信有限公司 定位方法、装置、终端及可读存储介质
WO2023207510A1 (zh) * 2022-04-29 2023-11-02 中信科智联科技有限公司 用于sidelink的定位方法、装置及可读存储介质
WO2023208141A1 (zh) * 2022-04-29 2023-11-02 华为技术有限公司 获取位置信息的方法、通信装置及系统
WO2023206364A1 (zh) * 2022-04-29 2023-11-02 Oppo广东移动通信有限公司 无线通信的方法和终端设备
WO2023206173A1 (zh) * 2022-04-27 2023-11-02 北京小米移动软件有限公司 定位方法、装置、设备及存储介质
WO2024016181A1 (en) * 2022-07-19 2024-01-25 Nokia Shanghai Bell Co., Ltd. Transmission of control information associated with sidelink positioning reference signal
WO2024026695A1 (en) * 2022-08-02 2024-02-08 Zte Corporation Systems and methods for accuracy improvement for rtt-based positioning
WO2024078196A1 (zh) * 2022-10-09 2024-04-18 华为技术有限公司 定位方法与通信装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11895521B2 (en) * 2020-01-27 2024-02-06 Qualcomm Incorporated Positioning measurement data reported via L1 or L2 signaling
CN117859389A (zh) * 2022-08-09 2024-04-09 北京小米移动软件有限公司 测距或侧行链路定位方法、装置、通信设备及存储介质
WO2024031533A1 (zh) * 2022-08-11 2024-02-15 Oppo广东移动通信有限公司 用于侧行定位的方法、终端设备及网络设备
WO2024031669A1 (zh) * 2022-08-12 2024-02-15 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN117812528A (zh) * 2022-09-24 2024-04-02 上海朗帛通信技术有限公司 一种被用于定位的方法和装置
WO2024065511A1 (zh) * 2022-09-29 2024-04-04 北京小米移动软件有限公司 一种传输定位辅助信息的方法、装置以及可读存储介质
CN117793615A (zh) * 2022-09-29 2024-03-29 华为技术有限公司 通信方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664518A (zh) * 2014-09-25 2017-05-10 英特尔公司 无线蜂窝技术中设备到设备辅助定位的资源分配与使用
US20190149365A1 (en) * 2018-01-12 2019-05-16 Intel Corporation Time domain resource allocation for mobile communication
CN110289896A (zh) * 2018-03-15 2019-09-27 索尼公司 电子装置、无线通信方法以及计算机可读介质
CN110383862A (zh) * 2016-10-10 2019-10-25 华为技术有限公司 用于实现定位相关信令交换的通信节点和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294875B2 (en) * 2011-09-30 2016-03-22 Electronics And Telecommunications Research Institute Method for determining position of terminal in cellular mobile communication system
US9964626B2 (en) * 2014-07-24 2018-05-08 Lg Electronics Inc. Positioning method and apparatus therefor in wireless communication system
US9713117B2 (en) * 2014-09-25 2017-07-18 Intel Corporation Device-to-device assisted positioning in wireless cellular technologies
CN104540099A (zh) * 2014-12-31 2015-04-22 京信通信系统(中国)有限公司 一种终端定位方法及演进的服务移动位置中心
KR102284044B1 (ko) * 2015-09-10 2021-07-30 삼성전자주식회사 무선 통신 시스템에서 위치 추정 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664518A (zh) * 2014-09-25 2017-05-10 英特尔公司 无线蜂窝技术中设备到设备辅助定位的资源分配与使用
CN110383862A (zh) * 2016-10-10 2019-10-25 华为技术有限公司 用于实现定位相关信令交换的通信节点和方法
US20190149365A1 (en) * 2018-01-12 2019-05-16 Intel Corporation Time domain resource allocation for mobile communication
CN110289896A (zh) * 2018-03-15 2019-09-27 索尼公司 电子装置、无线通信方法以及计算机可读介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Considerations on NR Positioning", 3GPP DRAFT; R1-1809348, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20180820 - 20180824, 11 August 2018 (2018-08-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051516712 *
INTEL CORPORATION: "Potential RAT Dependent Techniques for NR Positioning", 3GPP DRAFT; R1-1812519 INTEL - NR_POS_TECHNIQUES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20181112 - 20181116, 11 November 2018 (2018-11-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051554463 *
See also references of EP4054258A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256764A1 (en) * 2021-06-03 2022-12-08 Qualcomm Incorporated Network configuration for sidelink-based positioning session initiation
US11683782B2 (en) 2021-06-03 2023-06-20 Qualcomm Incorporated Network configuration for sidelink-based positioning session initiation
WO2023001106A1 (zh) * 2021-07-19 2023-01-26 华为技术有限公司 一种定位的方法和装置
WO2023001096A1 (zh) * 2021-07-19 2023-01-26 维沃移动通信有限公司 定位方法及装置
WO2023004212A1 (en) * 2021-07-23 2023-01-26 Qualcomm Incorporated Sidelink positioning reference signal sequences
WO2023005836A1 (zh) * 2021-07-26 2023-02-02 维沃移动通信有限公司 定位方法、装置、终端及介质
WO2023028776A1 (zh) * 2021-08-30 2023-03-09 Oppo广东移动通信有限公司 定位方法、终端和定位装置
WO2023059965A1 (en) * 2021-10-05 2023-04-13 Qualcomm Incorporated Nulling for inter-user equipment interference cancellation
CN114245315A (zh) * 2021-12-24 2022-03-25 中信科移动通信技术股份有限公司 终端定位方法及装置
WO2023116904A1 (zh) * 2021-12-24 2023-06-29 维沃移动通信有限公司 定位方法、设备及可读存储介质
WO2023123080A1 (zh) * 2021-12-29 2023-07-06 Oppo广东移动通信有限公司 侧行通信方法和设备
WO2023185423A1 (zh) * 2022-03-28 2023-10-05 华为技术有限公司 一种执行网络管理服务意图的方法、装置和系统
WO2023198069A1 (zh) * 2022-04-12 2023-10-19 维沃移动通信有限公司 定位方法、装置、终端及可读存储介质
WO2023206173A1 (zh) * 2022-04-27 2023-11-02 北京小米移动软件有限公司 定位方法、装置、设备及存储介质
WO2023207510A1 (zh) * 2022-04-29 2023-11-02 中信科智联科技有限公司 用于sidelink的定位方法、装置及可读存储介质
WO2023208141A1 (zh) * 2022-04-29 2023-11-02 华为技术有限公司 获取位置信息的方法、通信装置及系统
WO2023206364A1 (zh) * 2022-04-29 2023-11-02 Oppo广东移动通信有限公司 无线通信的方法和终端设备
WO2024016181A1 (en) * 2022-07-19 2024-01-25 Nokia Shanghai Bell Co., Ltd. Transmission of control information associated with sidelink positioning reference signal
WO2024026695A1 (en) * 2022-08-02 2024-02-08 Zte Corporation Systems and methods for accuracy improvement for rtt-based positioning
WO2024078196A1 (zh) * 2022-10-09 2024-04-18 华为技术有限公司 定位方法与通信装置

Also Published As

Publication number Publication date
AU2019475080A1 (en) 2022-06-16
CN114731638A (zh) 2022-07-08
US20220279313A1 (en) 2022-09-01
AU2019475080B2 (en) 2023-06-15
EP4054258A1 (en) 2022-09-07
EP4054258A4 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2021097598A1 (zh) 侧行定位方法和装置
US10813170B2 (en) Locating method, system, and related device
CN110972156B (zh) 一种干扰测量方法、装置、芯片及存储介质
CN113114439B (zh) 用于定位的方法与装置
WO2020164345A1 (zh) 信号传输方法与装置
WO2021057473A1 (zh) 一种共生网络中载波的调度方法、装置及存储介质
WO2021031714A1 (zh) 一种基于相对角度的定位方法及装置
CN114245457A (zh) 定位方法、装置及设备
WO2021008581A1 (zh) 用于定位的方法和通信装置
WO2021227901A1 (zh) 一种定位方法、定位管理装置、接入网设备以及终端
EP4277404A2 (en) Technologies for nr coverage enhancement
WO2021027919A9 (zh) 传输参考信号的方法及设备
WO2021204248A1 (zh) 无线通信方法和通信装置
EP4271067A1 (en) Wireless communication method and device
WO2021062869A1 (zh) 无线通信方法和终端设备
CN110708700B (zh) 终端覆盖方法、通信装置及计算机可读存储介质
WO2024092423A1 (zh) 一种通信方法及相关装置
WO2023001060A1 (zh) 一种通信方法及相关装置
CN115884408A (zh) 用于信号传输的方法和设备
WO2024093939A1 (zh) 信号配置方法、系统以及通信装置
WO2022006827A1 (zh) 无线通信方法、终端设备和网络设备
US20230129834A1 (en) Method for determining antenna panel for transmission, and terminal device
WO2022151391A1 (zh) 一种发送频率调整方法及装置
WO2022141205A1 (zh) 一种波束训练方法、装置及通信设备
WO2023029942A1 (zh) 测量干扰的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953315

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019475080

Country of ref document: AU

Date of ref document: 20191118

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019953315

Country of ref document: EP

Effective date: 20220602

NENP Non-entry into the national phase

Ref country code: DE