WO2021031714A1 - 一种基于相对角度的定位方法及装置 - Google Patents

一种基于相对角度的定位方法及装置 Download PDF

Info

Publication number
WO2021031714A1
WO2021031714A1 PCT/CN2020/100311 CN2020100311W WO2021031714A1 WO 2021031714 A1 WO2021031714 A1 WO 2021031714A1 CN 2020100311 W CN2020100311 W CN 2020100311W WO 2021031714 A1 WO2021031714 A1 WO 2021031714A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
measurement information
angle
terminal device
participating
Prior art date
Application number
PCT/CN2020/100311
Other languages
English (en)
French (fr)
Inventor
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3148186A priority Critical patent/CA3148186A1/en
Priority to EP20854043.5A priority patent/EP4017036A4/en
Publication of WO2021031714A1 publication Critical patent/WO2021031714A1/zh
Priority to US17/673,582 priority patent/US20220171014A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0284Relative positioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/08Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac

Definitions

  • This application relates to the field of wireless communication, and more specifically, to a positioning method and device based on a relative angle.
  • the terminal device sends a sounding reference signal (SRS) to the base station.
  • SRS sounding reference signal
  • the serving cell base station and the neighboring cell base station receive and measure the sounding reference signal SRS.
  • the serving cell base station and the neighboring cell base station can estimate the received sounding reference signal based on the phase shift between their multiple antenna array elements due to the wave path difference.
  • the beam direction and then determine the direction of the terminal device, and finally determine the location of the terminal device.
  • the so-called absolute angle information refers to the angle between the direction of the terminal device and the absolute direction.
  • the direction angle of a terminal device is defined as the angle between the projection of the direction in which the terminal device is located in the horizontal plane and the geographic true north direction, with counterclockwise rotation as positive; for example, the pitch angle of the terminal device is defined as the location of the terminal device The angle between the direction and the dome direction.
  • the solutions in the prior art usually determine the position of the terminal device by estimating the direction angle and the pitch angle of the terminal device. This method uses multiple base stations to determine multiple rays, and the intersection of the rays is the position of the terminal device.
  • the antenna array of the base station needs to be a planar array, that is, with a two-dimensional antenna array, the construction cost of the base station will increase, and the form of the antenna array will also be restricted.
  • the position of the terminal device can also be determined only by the direction angle.
  • the method determines multiple planes by multiple base stations, and the terminal position is located on the intersection line or intersection of the multiple planes. Generally, the intersection of the horizontal plane is perpendicular to the horizontal plane, which means that the horizontal coordinates of the terminal device can be obtained.
  • this method is only suitable for horizontal antenna linear array positioning, and is an approximate method when the elevation angle is close to 90 degrees (for example, the terminal device is far from the base station, and the elevation difference can be ignored).
  • the approximation error of this method is relatively large, which leads to inaccurate estimation of the direction angle of the terminal equipment and increases the positioning error of the terminal equipment.
  • This application provides a positioning method and device based on relative angles, which can enable network equipment to flexibly select reference directions and support angular positioning based on linear array antennas. There is no problem of inaccurate positioning when terminal equipment approaches the network equipment. The positioning accuracy of the terminal equipment.
  • a positioning method based on relative angles is provided.
  • the method can be applied to the uplink positioning process and executed by a network device or positioning center, or executed by a chip or circuit set in the network device or positioning center.
  • the application is not limited.
  • the following takes the network device to execute the relative angle-based positioning method provided in the first aspect as an example for description.
  • the positioning method based on relative angle includes:
  • the network equipment participating in positioning exchanges uplink positioning configuration with the positioning center, terminal equipment, and serving cell participating in positioning; the network equipment participating in positioning receives the first reference signal sent by the terminal equipment; the network equipment participating in positioning determines the angle measurement according to the first reference signal
  • the angle measurement information includes the set reference direction and the angle of the direction of the terminal device relative to the set reference direction; the network device participating in the positioning reports the angle measurement information to the positioning center.
  • the angle measurement information corresponds to the network devices participating in positioning one-to-one.
  • the relative angle-based positioning method provided in this application is based on the cone-shaped intersection line positioning during the uplink angle positioning process where the network device is a linear array antenna, instead of the plane-based intersection line positioning in the prior art, there is no prior art
  • the problem of large positioning errors when terminal equipment approaches network equipment is conducive to improving the uplink positioning accuracy.
  • the above-mentioned relative angle-based positioning method further includes: the positioning center determines the position of the terminal device according to the angle measurement information.
  • the positioning center involved in the embodiments of the present application includes a location management component (location management component, LMC), or a location management function (location management function, LMF), or other devices that can implement the functions of the LMC or LMF in the embodiments of the present application .
  • the location management component LMC undertakes part of the LMF functions and can be integrated into the network equipment on the NG-RAN side. In this way, in order to realize the part of the LMF functions undertaken by the LMC, there is no need to introduce the 5G core network through the AMF, which reduces the signaling delay .
  • the positioning center determines the position of the terminal device according to angle measurement information, including: the positioning center determines multiple conical surfaces according to angle measurement information, and multiple conical surfaces One-to-one correspondence with angle measurement information, one-to-one correspondence between angle measurement information and network devices participating in positioning; wherein, each of the multiple conical surfaces is centered on the set reference direction contained in the corresponding angle measurement information ; The positioning center determines the position of the terminal device according to the intersection or line of multiple conical surfaces.
  • the terminal device is positioned based on the plane intersection line during the angular positioning of the antenna linear array.
  • the estimated direction angle is not accurate, resulting in inaccurate positioning of the terminal device;
  • the terminal device is positioned based on the intersection line of the cone, instead of the positioning based on the plane intersection in the prior art.
  • the set reference direction includes a direction angle, or, a direction angle and a pitch angle; when the set reference direction only includes a direction angle, the corresponding pitch The angle is set to ⁇ /2.
  • the above technical solution uses the parameters included in the reference direction in the prior art, but the definition of the direction angle and the pitch angle is different from the prior art.
  • Most of the angle-based positioning solutions in the prior art determine the position of the terminal device based on absolute angle information.
  • the so-called absolute angle information means that the direction where the terminal device is located is described by the angle with the absolute reference direction.
  • the direction angle of a terminal device is defined as the angle between the projection of the direction in which the terminal device is located in the horizontal plane and the geographic true north direction, with counterclockwise rotation as positive; for example, the pitch angle of the terminal device is defined as the location of the terminal device The angle between the direction and the dome direction.
  • the reference direction in this application uses the parameters included in the reference direction in the prior art, a certain direction can be arbitrarily selected by the network equipment participating in the positioning, which supports flexible reference direction setting.
  • the angle of the direction of the terminal device relative to the set reference direction in the range of [0, ⁇ ], where an angle of 0 indicates the direction of the terminal device The same direction as the set reference direction, an angle of ⁇ /2 means that the direction of the terminal device is perpendicular to the set reference direction, and an angle of ⁇ means that the direction of the terminal device is opposite to the set reference direction.
  • the above technical solution is used to define three special situations for determining the position of the terminal device according to the angle value of the direction of the terminal device relative to the set reference direction. Understanding the above three special situations can better implement the method provided in this application.
  • the reference direction setting method includes at least one of the following: the orientation of the antenna array of the network device participating in the positioning; the level of the antenna array of the network device participating in the positioning The orientation of the dimension; a certain direction arbitrarily selected by the network equipment participating in the positioning.
  • the so-called absolute angle information means that the direction where the terminal device is located is described by the angle with the absolute reference direction.
  • the direction angle of a terminal device is defined as the angle between the projection of the direction in which the terminal device is located in the horizontal plane and the geographic true north direction, with counterclockwise rotation as positive; for example, the pitch angle of the terminal device is defined as the location of the terminal device The angle between the direction and the dome direction.
  • the reference direction in this application can be arbitrarily selected by the network equipment participating in the positioning, which supports flexible reference direction setting.
  • the positioning center is a positioning management function or a positioning management component
  • the positioning management component is integrated on the network equipment of the serving cell or integrated on the network equipment participating in positioning, Or integrated on network equipment that does not participate in positioning.
  • the location management component LMC undertakes part of the LMF functions and can be integrated into the network equipment on the NG-RAN side. In this way, in order to realize the part of the LMF functions undertaken by the LMC, there is no need to introduce the 5G core network through the AMF, which reduces trust. Time delay.
  • the network equipment participating in the positioning includes the serving cell network device or does not include the serving cell network device.
  • the above technical solution shows that the network equipment participating in the positioning can be flexibly selected, which can be a serving cell network device or a non-serving cell network device, and the selection of network equipment is not restricted.
  • the uplink positioning configuration includes uplink sounding reference signal configuration information or uplink physical random access channel configuration information.
  • the uplink sounding reference signal configuration information or the uplink physical random access channel configuration information are only two examples of the uplink positioning configuration information, which is not limited in this application. These two examples are two commonly used uplink positioning configuration information that can be applied to the relative angle-based positioning method proposed in this application.
  • a positioning method based on relative angles is provided.
  • the method can be applied to the downlink positioning process and executed by the positioning center or network equipment, or executed by the chip or circuit set in the positioning center or network equipment.
  • the application is not limited.
  • the positioning center executes the positioning method based on the relative angle provided in the second aspect as an example for description.
  • the positioning center involved in the embodiments of this application includes a location management component (location management component, LMC), or a location management function (location management function, LMF), or other functions that can implement LMC or LMF in the embodiments of this application device of.
  • the positioning method based on relative angle includes:
  • the positioning center participating in the positioning exchanges downlink positioning configuration with the network equipment, terminal equipment, and serving cell participating in the positioning; the positioning center receives the power measurement information reported by the terminal equipment, and the power measurement information includes one or more second references determined by the terminal equipment One or more reference signal received powers and/or one or more path powers of the signal; the positioning center sends the requested location information to the network equipment participating in positioning, the requested location information includes power measurement information, and the requested location information is used to indicate participation in positioning
  • the network equipment determines the angle measurement information according to the power measurement information, the angle measurement information includes the set reference direction and the angle of the direction of the terminal device relative to the set reference direction; the positioning center receives the angle measurement information reported by the network equipment participating in the positioning ; The positioning center determines the position of the terminal device according to the angle measurement information.
  • the terminal device processes one or more second reference signals to obtain one or more power measurement information; the network device participating in positioning processes one or more power measurement information contained in the requested location information to obtain and participate One-to-one corresponding angle measurement information of the located network device.
  • the terminal device processes the four second reference signals to obtain four power measurement information; three network devices participating in positioning process the four power measurement information contained in the requested location information, and obtain and The three angle measurement information corresponding to the located network equipment one by one.
  • the relative angle-based positioning method provided in the present application is based on the cone-shaped intersection line positioning during the downlink angle positioning process where the network device is a linear array antenna, instead of the plane-based intersection line positioning in the prior art, there is no prior art
  • the problem of large positioning errors when terminal equipment approaches network equipment is conducive to improving the accuracy of downlink positioning.
  • the relative angle positioning method further includes: the positioning center calculates the angle measurement information according to the power measurement information ; The positioning center determines the position of the terminal device according to the angle measurement information.
  • the positioning center has computing capabilities, can calculate and/or measure angle measurement information based on the power measurement information reported by the terminal device, and determine the position of the terminal device based on the angle measurement information.
  • the steps of the positioning center sending request location information to the network equipment participating in positioning and the positioning center receiving the angle measurement information reported by the network equipment participating in the positioning can be omitted, and only performing other method steps, the positioning method is more concise.
  • the signaling overhead is smaller.
  • the positioning center determines the position of the terminal device according to the angle measurement information, including: the positioning center determines multiple conical surfaces according to the angle measurement information, and multiple conical surfaces One-to-one correspondence with angle measurement information, one-to-one correspondence between angle measurement information and network devices participating in positioning; wherein, each of the multiple conical surfaces is centered on the set reference direction contained in the corresponding angle measurement information ; The positioning center determines the position of the terminal device according to the intersection or line of multiple conical surfaces.
  • the terminal device is positioned based on the plane intersection line during the angular positioning of the antenna linear array.
  • the estimated direction angle is not accurate, resulting in inaccurate positioning of the terminal device;
  • the terminal device is positioned based on the intersection line of the cone, instead of the positioning based on the plane intersection in the prior art.
  • the set reference direction includes a direction angle, or, a direction angle and a pitch angle; when the set reference direction only includes a direction angle, the corresponding pitch The angle is set to ⁇ /2.
  • the above technical solution uses the parameters included in the reference direction in the prior art, but the definition of the direction angle and the pitch angle is different from the prior art.
  • Most of the angle-based positioning solutions in the prior art determine the position of the terminal device based on absolute angle information.
  • the so-called absolute angle information means that the direction where the terminal device is located is described by the angle with the absolute reference direction.
  • the direction angle of a terminal device is defined as the angle between the projection of the direction in which the terminal device is located in the horizontal plane and the geographic true north direction, with counterclockwise rotation as positive; for example, the pitch angle of the terminal device is defined as the location of the terminal device The angle between the direction and the dome direction.
  • the reference direction in this application uses the parameters included in the reference direction in the prior art, a certain direction can be arbitrarily selected by the network equipment participating in the positioning, which supports flexible reference direction setting.
  • the angle of the direction of the terminal device relative to the set reference direction is [0, ⁇ ], where an angle of 0 indicates the direction of the terminal device The same direction as the set reference direction, an angle of ⁇ /2 means that the direction of the terminal device is perpendicular to the set reference direction, and an angle of ⁇ means that the direction of the terminal device is opposite to the set reference direction.
  • the above technical solution is used to define three special situations for determining the position of the terminal device according to the angle value of the direction of the terminal device relative to the set reference direction. Understanding the above three special situations can better implement the method provided in this application.
  • the reference direction setting method includes at least one of the following: the orientation of the antenna array of the network device participating in the positioning; the level of the antenna array of the network device participating in the positioning The orientation of the dimension; a certain direction arbitrarily selected by the network equipment participating in the positioning.
  • the so-called absolute angle information means that the direction where the terminal device is located is described by the angle with the absolute reference direction.
  • the direction angle of a terminal device is defined as the angle between the projection of the direction in which the terminal device is located in the horizontal plane and the geographic true north direction, with counterclockwise rotation as positive; for example, the pitch angle of the terminal device is defined as the location of the terminal device The angle between the direction and the dome direction.
  • the reference direction in this application can be arbitrarily selected by the network equipment participating in the positioning, which supports flexible reference direction setting.
  • the positioning center is a positioning management function or a positioning management component
  • the positioning management component is integrated on the network equipment of the serving cell or integrated on the network equipment participating in positioning, Or integrated on network equipment that does not participate in positioning.
  • the location management component LMC undertakes part of the LMF functions and can be integrated into the network equipment on the NG-RAN side. In this way, in order to realize the part of the LMF functions undertaken by the LMC, there is no need to introduce the 5G core network through the AMF, which reduces trust. Time delay.
  • the network equipment participating in the positioning includes a serving cell network device or does not include a serving cell network device.
  • the above technical solution shows that the network equipment participating in the positioning can be flexibly selected, which can be a serving cell network device or a non-serving cell network device, and the selection of network equipment is not restricted.
  • the downlink positioning configuration includes synchronization signal block configuration information or positioning reference signal configuration information.
  • the synchronization signal block configuration information or the positioning reference signal configuration information are only two examples of the downlink positioning configuration information, which is not limited in this application. These two examples are two commonly used downlink positioning configuration information applicable to the relative angle-based positioning method proposed in this application.
  • a positioning method based on relative angles is provided.
  • the method can be applied to the uplink positioning process and executed by a network device or a positioning center, or executed by a chip or circuit set in the network device or the positioning center.
  • the application is not limited.
  • the foregoing first aspect is described by taking the network device executing the relative angle-based positioning method provided in the first aspect as an example.
  • the following will take the positioning center to execute the relative angle-based positioning method provided in the first aspect as an example.
  • the positioning center involved in the embodiments of this application includes a location management component (location management component, LMC), or a location management function (location management function, LMF), or other functions that can implement LMC or LMF in the embodiments of this application device of.
  • LMC location management component
  • LMF location management function
  • the relative angle-based positioning method includes: a positioning center participating in positioning interacts with the network equipment, terminal equipment, and serving cell participating in positioning uplink positioning configuration; the positioning center receives angle measurement information reported by the network equipment participating in positioning, and the angle measurement information is determined by The network equipment participating in the positioning is determined according to the first reference signal, which is received from the terminal equipment by the network equipment participating in the positioning; the angle measurement information includes the set reference direction and the direction of the terminal device relative to the set reference direction.
  • Angle The positioning center determines the position of the terminal device based on the angle measurement information.
  • a positioning method based on relative angles is provided.
  • the method can be applied to the downlink positioning process and executed by a positioning center or network equipment, or executed by a chip or circuit set in the positioning center or network equipment.
  • the application is not limited.
  • the above second aspect is described by taking the positioning center executing the relative angle-based positioning method provided in the second aspect as an example. In the following, description will be made by taking the network device executing the relative angle-based positioning method provided in the second aspect as an example.
  • the positioning method based on the relative angle includes: the network equipment participating in the positioning interacts with the positioning center, terminal equipment, and serving cell participating in the positioning of the downlink positioning configuration; the network equipment participating in the positioning sends a second reference signal to the terminal equipment; the network equipment participating in the positioning Receive the requested location information sent by the positioning center, the requested location information includes power measurement information, the power measurement information is determined by the terminal device according to one or more of the second reference signals; the requested location information is used to instruct the network devices participating in the positioning to measure according to the power The information determines the angle measurement information.
  • the angle measurement information includes the set reference direction and the angle of the direction of the terminal device relative to the set reference direction; the network equipment participating in the positioning reports the angle measurement information to the positioning center.
  • a network device in a fifth aspect, includes a processor for implementing the function of the network device in the method described in the first aspect.
  • the network device further includes a memory coupled to the processor, and the processor is configured to implement the function of the network device in the method described in the first aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the network device in the method described in the first aspect.
  • the network device further includes a communication interface, and the communication interface is used for the network device to communicate with other devices.
  • the communication interface includes a transceiver, or the communication interface includes an input/output interface.
  • the network device includes: a processor and a communication interface, which are used to implement the function of the network device in the method described in the first aspect, specifically including:
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the network device implements any of the methods described in the first aspect.
  • the exterior may be an object other than the processor, or an object other than the device.
  • the communication interface includes an input/output interface, an interface circuit, an output circuit, an input circuit, a pin, or related circuits on the chip or a chip system.
  • the processor is embodied as a processing circuit or a logic circuit.
  • a positioning management device configured to implement the function of the positioning center in the method described in the second aspect.
  • the positioning management device further includes a memory coupled with the processor, and the processor is configured to implement the function of the positioning center in the method described in the second aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the positioning center in the method described in the second aspect.
  • the positioning management apparatus further includes a communication interface, and the communication interface is used for the positioning management apparatus to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the positioning management device includes a processor and a communication interface, which are used to implement the function of the positioning center in the method described in the first aspect above, specifically including:
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the positioning management device implements any of the methods described in the second aspect.
  • the exterior may be an object other than the processor, or an object other than the positioning management device.
  • the location management device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a positioning management device which includes a processor, configured to implement the function of the positioning center in the method described in the third aspect.
  • the positioning management device further includes a memory coupled with the processor, and the processor is configured to implement the function of the positioning center in the method described in the third aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to realize the function of the positioning center in the method described in the third aspect.
  • the positioning management apparatus further includes a communication interface, and the communication interface is used for the positioning management apparatus to communicate with other devices.
  • the communication interface is a transceiver, an input/output interface, or a circuit.
  • the positioning management device includes: a processor and a communication interface, used to implement the function of the positioning center in the method described in the third aspect, specifically including:
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the positioning management device implements any of the methods described in the third aspect.
  • the exterior may be an object other than the processor, or an object other than the positioning management device.
  • the location management device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • a network device in an eighth aspect, includes a processor for implementing the function of the network device in the method described in the fourth aspect.
  • the network device further includes a memory coupled to the processor, and the processor is configured to implement the function of the network device in the method described in the fourth aspect.
  • the memory is used to store program instructions and data.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement the function of the network device in the method described in the fourth aspect.
  • the network device further includes a communication interface, and the communication interface is used for the network device to communicate with other devices.
  • the communication interface includes a transceiver, or the communication interface includes an input/output interface.
  • the network device includes: a processor and a communication interface, used to implement the function of the network device in the method described in the fourth aspect, specifically including:
  • the processor uses the communication interface to communicate with the outside;
  • the processor is used to run a computer program, so that the network device implements any of the methods described in the fourth aspect.
  • the exterior may be an object other than the processor, or an object other than the network device.
  • the communication interface includes an input/output interface, an interface circuit, an output circuit, an input circuit, a pin, or related circuits on the chip or a chip system.
  • the processor is embodied as a processing circuit or a logic circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the network device realizes the first aspect and any one of the possible implementations of the first aspect Method, or implement the fourth aspect and any possible implementation manner of the fourth aspect.
  • a computer-readable storage medium on which a computer program is stored.
  • the positioning management device realizes the second aspect and any possible implementation manner of the second aspect Or implement the third aspect and any possible implementation of the third aspect.
  • An eleventh aspect provides a computer program product containing instructions, which when executed by a computer, enables a network device to implement the first aspect and any one of the possible implementation methods of the first aspect, or to implement the fourth aspect and the first aspect. The method in any possible implementation of the four aspects.
  • a computer program product containing instructions which when executed by a computer, causes the positioning management apparatus to implement the second aspect and any one of the possible implementation methods of the second aspect, or implement the third aspect and The method in any possible implementation of the third aspect.
  • a positioning system including the network device shown in the fifth aspect or the eighth aspect and the positioning management device shown in the sixth or seventh aspect.
  • the positioning system provided by the thirteenth aspect also includes serving cells, terminal equipment, and so on.
  • the relative angle-based positioning method and device provided in this application enable network equipment to flexibly select the reference direction and support angular positioning based on linear array antennas. There is no problem of inaccurate positioning when terminal equipment approaches the network equipment. , Improve the positioning accuracy of terminal equipment.
  • the solution provided in this application can be applied to scenarios where positioning is based on the set reference direction and the angle of the direction of the terminal device relative to the set reference direction, and can also be applied to other scenarios where the terminal device needs to be positioned.
  • FIG. 1 is a schematic structural diagram of a positioning system applied to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another positioning system applied to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a positioning method based on a relative angle according to an embodiment of the present application
  • 4 is a schematic diagram of the direction angle and the pitch angle of the set reference direction
  • Figure 5 is a schematic diagram of a conical surface defined by a positioning center
  • FIG. 6 is a schematic diagram of the angle between the direction of the terminal device and the set reference direction
  • Figure 7 is a schematic diagram of the drawn intersection line of two cones
  • FIG. 8 is a schematic flowchart of yet another relative angle-based positioning method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the network device 90 proposed in this application.
  • FIG. 10 is a schematic diagram of another network device 100 proposed in this application.
  • FIG. 11 is a schematic diagram of the positioning management device 110 proposed in this application.
  • FIG. 12 is a schematic diagram of another positioning management device 120 proposed in this application.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as: long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (time division duplex) , TDD) system, worldwide interoperability for microwave access (WiMAX) communication system, future 5th generation (5G) system or new radio (NR) system, etc., which are involved in this application
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • WiMAX worldwide interoperability for microwave access
  • 5G future 5th generation
  • NR new radio
  • the 5G mobile communication system includes a non-standalone (NSA) 5G mobile communication system or a standalone (SA) 5G mobile communication system.
  • SA standalone
  • the technical solution provided in this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system applied in this application can also be a public land mobile network (PLMN) network, a device-to-device (D2D) communication system, and a machine-to-machine (M2M) communication System, Internet of Things (IoT) communication system or other communication systems, etc.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT Internet of Things
  • the terminal equipment (terminal equipment) in the embodiments of this application may refer to an access terminal, a user unit, a user station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal, and a user equipment (user equipment, UE), terminal (terminal), wireless communication equipment, user agent, or user device.
  • the terminal device can also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network or future evolution of the public land mobile network (PLMN)
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile network
  • the terminal device or the terminal device in the future Internet of Vehicles, etc. are not limited in the embodiment of the present application.
  • wearable devices can also be referred to as wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also powerful functions can be achieved through software support, data interaction, and cloud interaction.
  • wearable smart devices include the advantages of full-featured, large-sized, etc., which can realize complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to interact with other devices such as smart phones. Cooperate with other equipment, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in the IoT system.
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect objects to the network through communication technology to achieve Human-machine interconnection, an intelligent network interconnecting things.
  • the IoT technology can achieve functions such as massive connections, deep coverage, and terminal power saving through, for example, narrowband (NB) technology.
  • NB narrowband
  • the terminal equipment may also include sensors such as smart printers, train detectors, gas stations, etc.
  • the main functions include: collecting data (part of the terminal equipment), receiving control information and downlink data from network equipment, and sending electromagnetic waves , Transmit uplink data to network equipment, etc.
  • the network device in the embodiment of the present application may be any communication device with wireless transceiving function used to communicate with terminal devices.
  • This equipment includes but is not limited to: evolved Node B (eNB), base transceiver station (BTS), home base station (home evolved Node B, HeNB, or home Node B, HNB), baseband unit (base band unit, BBU), the access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission in the wireless fidelity (WIFI) system
  • the reception point (transmission and reception point, TRP), etc. can also be 5G, such as the 5G base station (g Node B, gNB) in the NR system, or the transmission point (TP), one or a group of base stations in the 5G system
  • the antenna panel (including multiple antenna panels) may also be a network node constituting a 5G base station gNB or transmission point TP, such as a baseband unit (BBU), or a distributed unit (DU).
  • a 5G base station may include a centralized unit (CU) and a distributed unit (DU).
  • the gNB may also include an active antenna unit (AAU).
  • CU implements part of the functions of gNB
  • DU implements part of the functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and realizes the functions of the radio link control (RLC) layer, media access control (MAC) layer, and physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by DU , Or, sent by DU+AAU.
  • the network device may be a device including one or more of the CU node, the DU node, and the AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), or the CU can be divided into network equipment in a core network (CN), which is not limited in this application.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution subject of the methods provided in the embodiments of the application, as long as the program recording the relevant codes of the methods provided in the embodiments of the application can be executed according to the embodiments of the application.
  • the provided method only needs to communicate.
  • the execution subject of the method provided in the embodiments of the present application may be a network device, or a functional module in the network device that can call and execute the program.
  • Fig. 1 is a schematic structural diagram of a positioning system applied to an embodiment of the present application.
  • terminal equipment is connected to wireless access via next-generation eNodeB (ng-eNB) and 5G base station (gNB) through LTE-Uu and/or NR-Uu interfaces, respectively.
  • Network The wireless access network is connected to the core network via the access and mobility management function (AMF) through the NG-C interface.
  • AMF access and mobility management function
  • the next-generation radio access network may include one or more ng-eNBs; NG-RAN may also include one or more gNBs; NG-RAN may also include one or Multiple ng-eNBs and gNBs.
  • the ng-eNB is an LTE base station connected to the 5G core network
  • the gNB is a 5G base station connected to the 5G core network
  • the NG-RAN may also include one or more terminal devices.
  • the core network includes functions such as access and mobility management function AMF and location management function LMF.
  • LMF is a device or component that is deployed in the core network to provide positioning functions for terminal equipment. Among them, AMF is used to implement functions such as access management, and LMF is used to implement functions such as positioning center. The AMF and LMF are connected through the NLs interface.
  • Fig. 2 is a schematic structural diagram of another positioning system applied to an embodiment of the present application.
  • the positioning management function device or component such as LMF
  • the positioning management function device or component such as positioning management component
  • the LMC undertakes part of the LMF functions and can be integrated into the gNB on the NG-RAN side. In this way, in order to realize the part of the LMF functions undertaken by the LMC, there is no need to introduce the 5G core network through the AMF, which reduces the signaling Time delay.
  • the positioning system shown in FIG. 1 or FIG. 2 may include one or more gNBs and one or more terminal devices.
  • a single gNB can transmit data or control signaling to a single terminal device or multiple terminal devices. Multiple gNBs can also simultaneously transmit data or control signaling for a single terminal device.
  • the devices or functional nodes included in the positioning system shown in FIG. 1 or FIG. 2 are only described as examples and do not limit the embodiment of the present application.
  • the positioning system shown in FIG. 1 or FIG. 2 also It may include other network elements, devices, or functional nodes that have an interactive relationship with the devices or functional nodes illustrated in the figure, which are not specifically limited here.
  • the method for setting the reference direction based on the relative angle positioning method provided in this application includes at least one of the following: (1) the orientation of the linear array of the network device (such as gNB) participating in the positioning; (2) the network device participating in the positioning (such as gNB) ) The orientation of the horizontal dimension of the area array; (3) A certain direction arbitrarily selected by the network equipment (such as gNB) participating in the positioning.
  • the reference direction can include:
  • the direction angle of the reference direction which is defined as the angle between the projection of the direction in which the terminal device is located in the horizontal plane and the geographical true north direction, with counterclockwise rotation as positive, as shown in the angle ⁇ reference in Figure 4.
  • the sphere in Figure 4 uses geographic true north, geographic true west, and dome direction as the x-axis, y-axis, and z-axis, respectively, and uses the center of the antenna array of the network equipment participating in the positioning as the origin to establish a rectangular coordinate system;
  • the angle of the direction in which the terminal device is located relative to the set reference direction is measured and/or calculated by the network equipment participating in the positioning, as shown in the angle ⁇ in FIG. 5.
  • the range is [0, ⁇ ], where the angle 0 indicates that the direction of the terminal device is the same as the set reference direction, the angle ⁇ /2 indicates that the direction of the terminal device is perpendicular to the set reference direction, and the angle ⁇ indicates that the terminal device is located.
  • the direction is opposite to the set reference direction.
  • Angle-of-Arriva (Angle-of-Arriva, AOA) positioning method It is a positioning method based on the angle of arrival of the signal. It is a typical positioning method based on ranging. This method senses the arrival of the transmitting node signal through some hardware devices Direction, calculate the relative position or angle between the receiving node and the anchor node, and then use triangulation or other methods to calculate the position of the unknown node.
  • the positioning method based on the Angle of Arrival (AOA) is a common method for self-positioning of wireless sensor network nodes. This method has low communication overhead and high positioning accuracy.
  • the positioning technology usually sets directional antennas or array antennas at more than two location points to obtain the angle information of the radio wave signal emitted by the terminal device, and then estimate the position of the terminal device by the intersection method. It only needs two antenna arrays to complete the initial positioning of the terminal equipment.
  • OTDOA Observed Time of Arrival
  • the system structure is simple, but the antenna array is required to be highly sensitive and high. Spatial resolution. Dense buildings, height, and topography have a greater impact on the positioning accuracy of AOA. In indoor, urban and rural areas, the typical values of AOA are 360 degrees, 20 degrees and 1 degree respectively. As the distance between the base station and the terminal equipment increases, the positioning accuracy of AOA gradually decreases.
  • AOA positioning errors are mainly caused by multipath propagation and system errors in the city, which can be corrected in advance to offset the impact of system errors.
  • the multipath effect in densely-built areas has always been a problem that plagues antenna communication.
  • Smart antennas can be used to a certain extent. Reduce the impact of multipath interference, but due to the complexity of implementation and equipment cost, it has not been widely used.
  • the positioning principle of the angle of departure (Angle of Departure, AoD) positioning method is similar to the angle of arrival (AOA) positioning method.
  • the difference is that the angle of arrival (AOA) positioning method usually requires that the base station is a single antenna and the terminal device is a multi-antenna.
  • the terminal device receives the reference signal and calculates its angle, and then determines its own position; the launch angle ranging (AoD) )
  • the positioning method usually requires the base station to participate in multiple antennas and the terminal device to participate in a single antenna.
  • the terminal device still needs to receive the reference signal and calculate its angle, and then determine its own position.
  • the reason for choosing the AoD positioning method is that the structure of the terminal device is not required to be too complicated.
  • the terminal device is not easily able to support the requirements of multiple antennas, while the base station serves as a stationary device.
  • Equipment it is relatively easy to implement multi-antenna configuration.
  • used to indicate can include both direct indication and indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the "saving" involved in the embodiments of the present application may refer to storing in one or more memories.
  • the one or more memories may be separate settings, or integrated in the encoder or decoder, processor or communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in the decoder, processor, or communication device.
  • the type of the memory may be any form of storage medium, which is not limited in this application.
  • the “protocols” involved in the embodiments of the present application may refer to standard protocols in the communication field, for example, may include LTE protocol, NR protocol, and related protocols applied to future communication systems, which are not limited in this application.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program recording the relevant code of the method provided in the embodiments of the application can be executed according to the present application.
  • the method provided in the application embodiment only needs to communicate.
  • the execution subject of the method provided in the embodiment of the application may be a network device or a positioning center, or a functional module in the network device or a positioning center that can call and execute the program.
  • the interaction between the network equipment participating in the positioning and the positioning center, terminal equipment, and serving cell participating in the positioning is taken as an example to describe in detail the positioning method based on the relative angle provided in the embodiments of the present application.
  • FIG. 3 is a schematic flowchart of a relative angle-based positioning method provided by an embodiment of the present application.
  • This method can be applied to the Uplink Angle-of-Arriva (AOA) positioning method, including: the network device reports the angle measurement information to the positioning center, and the angle measurement information includes the set reference direction and the relative direction of the terminal device.
  • the positioning center determines the conical surface where the terminal device is located based on the angle measurement information, and determines the position of the terminal device based on the intersection or line of intersection of the multiple conical surfaces.
  • the method may include but is not limited to the following steps:
  • the network equipment participating in positioning exchanges uplink positioning configuration with the positioning center, terminal equipment, and serving cell participating in positioning.
  • the uplink positioning configuration includes uplink sounding reference signal (sounding reference signal, SRS) configuration information or uplink physical random access channel (physical random access channel, PRACH) configuration information, etc.
  • the network equipment participating in the positioning may be an LTE base station ng-eNB or a 5G base station gNB, and there may be one or more network equipment participating in the positioning.
  • the positioning center participating in positioning may be the positioning management function LMF or the positioning management component LMC in the NG-RAN architecture.
  • the location management component LMC can be integrated on the serving cell network equipment (for example, serving cell gNB), it can also be integrated on any network device involved in positioning (for example, the gNB involved in positioning), and it can also be integrated on any network that does not participate in positioning.
  • the location management component LMC is integrated on the network equipment (such as gNB), and assumes part of the LMF functions. In this way, in order to realize this part of the LMF functions undertaken by the LMC, there is no need to introduce the 5G core network through the AMF, which reduces the signaling delay .
  • the network equipment participating in the positioning may include serving cell network equipment (such as serving cell gNB), or may not include serving cell network equipment.
  • the above-mentioned interactive uplink positioning configuration process includes the process of sending, receiving, and forwarding uplink positioning configuration information between the network equipment participating in positioning and the positioning center, terminal equipment, serving cell and other equipment participating in positioning. It may include processes such as sending, receiving, and forwarding the information processed by the uplink positioning configuration information.
  • the interaction process can meet the LTE protocol, the NR protocol, and related protocols that can be applied to future communication systems, which is not limited in this application. I won't repeat them here.
  • the terminal device sends an uplink reference signal to the network device participating in the positioning.
  • the uplink reference signal can be an uplink sounding reference signal SRS or an uplink physical random access channel PRACH, etc.
  • the network equipment participating in positioning measures and/or calculates the received uplink reference signal to obtain angle measurement information about the uplink reference signal .
  • the angle measurement information includes a set reference direction and an angle of the direction where the terminal device is located relative to the set reference direction.
  • the reference direction is set by the network equipment participating in the positioning, and the setting methods of the reference direction include: (1) the orientation of the network equipment participating in the positioning (such as gNB) of the linear array; (2) the network equipment participating in the positioning (such as gNB) The orientation of the horizontal dimension of the area array; (3) A certain direction arbitrarily selected by the network equipment (such as gNB) participating in the positioning.
  • the set reference direction includes: (1) direction angle and pitch angle, the direction angle is the angle ⁇ reference shown in Fig. 4, and the pitch angle is the angle ⁇ reference shown in Fig.
  • the angle is the angle ⁇ reference shown in Fig. 4, where the pitch angle is set to ⁇ /2.
  • the sphere in Figure 4 uses geographic true north, geographic true west, and dome direction as the x-axis, y-axis, and z-axis, respectively, and uses the center of the antenna array of the network device participating in the positioning as the origin to establish the rectangular coordinates shown in the figure. system.
  • the angle of the direction where the terminal device is located relative to the set reference direction needs to be measured and/or calculated by the network equipment participating in the positioning, as shown in the angle ⁇ in FIG. 5.
  • the range is [0, ⁇ ], where the angle 0 indicates that the direction of the terminal device is the same as the set reference direction, the angle ⁇ /2 indicates that the direction of the terminal device is perpendicular to the set reference direction, and the angle ⁇ indicates that the terminal device is located.
  • the direction is opposite to the set reference direction.
  • the network equipment participating in the positioning reports angle measurement information to the positioning center.
  • a network device participating in positioning processes one or more uplink reference signals to obtain angle measurement information. For example, three network devices participating in positioning process eight uplink reference signals to obtain three angle measurement information corresponding to the three network devices participating in positioning one-to-one.
  • the positioning center determines the position of the terminal device according to the angle measurement information.
  • the positioning center determines the position of the terminal device according to the angle measurement information received from the network device participating in the positioning.
  • the positioning center may determine a conical surface centered on the set reference direction contained in the angle measurement information according to the received angle measurement information.
  • the center line of the conical surface is the set reference direction
  • the angle of the direction of the terminal device relative to the set reference direction is ⁇
  • the vertex of the conical surface is the center of the antenna array of the network device participating in the positioning.
  • the vertex of the conical surface can correspond to the center of the sphere in FIG. 4.
  • Multiple network devices participating in positioning can report multiple angle measurement information, and the positioning center can determine multiple conical surfaces based on the multiple angle measurement information.
  • the network devices participating in the positioning correspond to the angle measurement information reported by them one to one, and the angle measurement information corresponds to the determined cone surface one to one.
  • the position of the terminal device is on the intersection or line of intersection of multiple conical surfaces determined by the positioning center, and the positioning center can determine the location of the terminal device based on the intersection or line of intersection of the multiple conical surfaces and other related information.
  • Figure 7 taking two network devices participating in positioning as an example, the intersection of two conical surfaces (dashed line in the figure) is schematically drawn, and the two network devices participating in positioning correspond to the two conical surfaces shown in the figure.
  • the reference direction set by each network device participating in the positioning is the vertical direction. It can be seen from FIG. 7 that the positioning center can determine the position information of the terminal device according to the intersection line of the two conical surfaces in the figure (the dotted line in the figure) and other related information.
  • the position of the terminal device is at the intersection or line of intersection of multiple conical surfaces determined by the positioning center. To generate intersections or lines of multiple conical surfaces, at least two conical surfaces must exist. Since the network equipment involved in positioning corresponds to the angle measurement information reported by it, and the angle measurement information corresponds to the determined conical surface one-to-one, so follow Inference, there should be at least two network devices involved in positioning.
  • the positioning center may determine a conical surface according to an angle measurement information reported by a network device participating in positioning, and then Combined with other relevant information, the location of the terminal device is finally determined.
  • the positioning center can determine two conical surfaces based on the two angle measurement information reported by the two network devices participating in the positioning, obtain the intersection of the two conical surfaces, and then combine other relevant information to finally determine the location of the terminal device. Therefore, there may be one or more network devices participating in positioning.
  • the relative angle-based positioning method provided in the foregoing embodiment can be applied to the uplink angle of arrival ranging positioning method (AoA).
  • the set reference direction is fixed to the dome or true north direction.
  • the positioning method provided in the embodiment of the present application can support a flexible way of setting the reference direction.
  • the prior art positioning method determines the position of the terminal device by estimating the direction angle and the pitch angle of the terminal device. The method determines multiple rays through multiple network devices participating in positioning, and the intersection of the rays is the position of the terminal device.
  • the antenna array of the network equipment that needs to participate in positioning is a planar array, that is, with a two-dimensional antenna array, the construction cost of the network equipment will increase, and the form of the antenna array will also be Restricted.
  • the prior art positioning method can also determine the position of the terminal device only by the direction angle.
  • the method determines multiple planes through multiple network devices participating in positioning, and the terminal position is located on the intersection line or intersection of the multiple planes. Generally, the intersection of the horizontal plane is perpendicular to the horizontal plane, which means that the horizontal coordinates of the terminal device can be obtained.
  • the relative angle-based positioning method includes the network equipment participating in the positioning reporting angle measurement information to the positioning center.
  • the angle measurement information includes the set reference direction and the angle of the direction of the terminal device relative to the set reference direction.
  • the positioning center determines the conical surface where the terminal device is located based on the reported angle measurement information, and determines the position of the terminal device based on the intersection point or line of intersection of the multiple cone surfaces.
  • the positioning method based on the relative angle does not have the problem of inaccurate positioning when the terminal device approaches the network device participating in the positioning, and the positioning accuracy is improved.
  • FIG. 8 is a schematic flowchart of another relative angle-based positioning method provided by an embodiment of the present application.
  • This method can be used in a downlink launch angle ranging (Angle of Departure, AoD) positioning method, including: the positioning center calculates itself according to the power measurement information reported by the terminal device or requests the angle measurement information from the network equipment participating in the positioning, and the angle measurement information includes The set reference direction and the angle between the direction of the terminal device and the set reference direction, the positioning center determines the conical surface of the terminal device based on the angle measurement information calculated by itself or received from the network device participating in the positioning, The location of the terminal device is determined based on the intersection or line of intersection of multiple cone surfaces.
  • the method may include but is not limited to the following steps:
  • S810 The positioning center participating in the positioning exchanges downlink positioning configuration with the network equipment, terminal equipment, and serving cell participating in the positioning.
  • the downlink positioning configuration may include downlink synchronization signal block (synchronization signal block, SSB) configuration information or downlink positioning reference signal (positioning reference signal, PRS) configuration information, etc.
  • the network equipment participating in the positioning may be an LTE base station ng-eNB or a 5G base station gNB, and there may be one or more network equipment participating in the positioning.
  • the positioning center participating in positioning may be the positioning management function LMF or the positioning management component LMC in the NG-RAN architecture.
  • the location management component LMC can be integrated on the serving cell network equipment (for example, serving cell gNB), it can also be integrated on any network device involved in positioning (for example, the gNB involved in positioning), and it can also be integrated on any network that does not participate in positioning.
  • the location management component LMC is integrated on the network equipment (such as gNB), and assumes part of the LMF functions. In this way, in order to realize this part of the LMF functions undertaken by the LMC, there is no need to introduce the 5G core network through the AMF, which reduces the signaling delay .
  • the network equipment participating in the positioning may include serving cell network equipment (such as serving cell gNB), or may not include serving cell network equipment.
  • the above-mentioned interactive uplink positioning configuration process includes the process of sending, receiving, and forwarding uplink positioning configuration information between the network equipment participating in positioning and the positioning center, terminal equipment, serving cell and other equipment participating in positioning. It may include processes such as sending, receiving, and forwarding the information processed by the uplink positioning configuration information.
  • the interaction process can meet the LTE protocol, the NR protocol, and related protocols that can be applied to future communication systems, which is not limited in this application. I won't repeat them here.
  • the network device participating in the positioning sends a downlink reference signal to the terminal device.
  • the downlink reference signal may be a downlink synchronization signal block SSB or a downlink positioning reference signal PRS or the like.
  • the terminal device calculates and/or measures the received downlink reference signal to obtain power measurement information about the downlink reference signal.
  • the power measurement information includes one or more reference signal received power (RSRP) and/or one or more radial powers about one or more downlink reference signals measured by the terminal device .
  • RSRP reference signal received power
  • the terminal equipment processes one or more downlink reference signals to obtain one or more power measurement information; the network equipment participating in positioning processes one or more power measurement information contained in the requested location information to obtain and participate in positioning One-to-one corresponding angle measurement information of network equipment.
  • a terminal device can process eight downlink reference signals to obtain eight power measurement information; three network devices participating in positioning process the eight power measurement information contained in the requested location information to obtain data related to the three Three angle measurement information corresponding to the network equipment one by one.
  • the terminal device reports the power measurement information to the positioning center.
  • the positioning center requests angle measurement information from network devices participating in positioning.
  • the positioning center has computing capabilities, and can calculate and/or measure the location information of the terminal device according to the power measurement information reported by the terminal device.
  • step S840 and step S850 may not be executed, and this embodiment of the relative angle-based positioning method may be executed after step S830, and step S860 may be executed directly.
  • the positioning center does not have computing capabilities and needs to request angle measurement information from network devices participating in positioning.
  • the positioning center sends request location information (RLI) to network devices participating in positioning.
  • the requested location information includes power measurement information.
  • the requested location information is used to instruct network devices participating in positioning to determine angle measurement information according to the power measurement information.
  • the angle measurement information includes the set reference direction and the direction of the terminal device relative to the set direction. The angle of the reference direction.
  • the network equipment participating in the positioning obtains the angle measurement information after calculating and/or measuring the power measurement information, and sends the angle measurement information to the positioning center.
  • the network equipment participating in the positioning reports angle measurement information to the positioning center.
  • the angle measurement information includes a set reference direction and an angle of the direction where the terminal device is located relative to the set reference direction.
  • the reference direction is set by the network equipment participating in the positioning.
  • the set reference direction includes: (1) the direction angle and the pitch angle.
  • the direction angle is the angle ⁇ reference shown in Fig. 4, and the pitch angle is shown in Fig. 4.
  • the sphere in Figure 4 uses geographic true north, geographic true west, and dome direction as the x-axis, y-axis, and z-axis, respectively, and uses the center of the antenna array of the network device participating in the positioning as the origin to establish the rectangular coordinates shown in the figure. system.
  • the angle of the direction where the terminal device is located relative to the set reference direction needs to be measured and/or calculated by the network equipment participating in the positioning, as shown in the angle ⁇ in FIG. 5.
  • the range is [0, ⁇ ], where the angle 0 indicates that the direction of the terminal device is the same as the set reference direction, the angle ⁇ /2 indicates that the direction of the terminal device is perpendicular to the set reference direction, and the angle ⁇ indicates that the terminal device is located.
  • the direction is opposite to the set reference direction.
  • the positioning center has computing capabilities, and can calculate and/or measure angle measurement information based on the power measurement information reported by the terminal device in step S830, and determine the position of the terminal device according to the angle measurement information.
  • step S840 and step S850 can be omitted, and only other steps are executed.
  • the positioning center does not have computing capabilities and needs to request angle measurement information from network devices participating in positioning.
  • the positioning center sends request location information (RLI) to network devices participating in positioning.
  • the requested location information includes power measurement information.
  • the requested location information is used to instruct network devices participating in positioning to determine angle measurement information according to the power measurement information.
  • the angle measurement information includes the set reference direction and the direction of the terminal device relative to the set direction. The angle of the reference direction.
  • the network equipment participating in the positioning obtains the angle measurement information after calculating and/or measuring the power measurement information, and sends the angle measurement information to the positioning center.
  • the positioning center may determine a conical surface centered on the set reference direction contained in the angle measurement information according to the received angle measurement information.
  • the center line of the conical surface is the set reference direction
  • the angle of the direction of the terminal device relative to the set reference direction is ⁇
  • the vertex of the conical surface is the center of the antenna array of the network device participating in the positioning.
  • the vertex of the conical surface can correspond to the center of the sphere in FIG. 4.
  • Multiple network devices participating in positioning can report multiple angle measurement information, and the positioning center can determine multiple conical surfaces based on the multiple angle measurement information.
  • the network devices participating in the positioning correspond to the angle measurement information reported by them one to one, and the angle measurement information corresponds to the determined cone surface one to one.
  • the position of the terminal device is on the intersection or line of intersection of multiple conical surfaces determined by the positioning center, and the positioning center can determine the location of the terminal device based on the intersection or line of intersection of the multiple conical surfaces and other related information.
  • the position of the terminal device is at the intersection or line of intersection of multiple conical surfaces determined by the positioning center. To generate intersections or lines of multiple conical surfaces, at least two conical surfaces must exist. Since the network equipment involved in positioning corresponds to the angle measurement information reported by it, and the angle measurement information corresponds to the determined conical surface one-to-one, so follow Inference, there should be at least two network devices involved in positioning.
  • the positioning center may determine a conical surface according to an angle measurement information reported by a network device participating in positioning, and then Combined with other relevant information, the location of the terminal device is finally determined.
  • the positioning center can determine two conical surfaces based on the two angle measurement information reported by the two network devices participating in the positioning, obtain the intersection of the two conical surfaces, and then combine other relevant information to finally determine the location of the terminal device. Therefore, there may be one or more network devices participating in positioning.
  • the relative angle-based positioning method provided in the above embodiment can be applied to an uplink transmission angle ranging positioning method (AoD).
  • AoD uplink transmission angle ranging positioning method
  • the set reference direction is fixed to the dome or true north direction.
  • the positioning method provided in the embodiment of the present application can support a flexible way of setting the reference direction.
  • the prior art positioning method determines the position of the terminal device by estimating the direction angle and the pitch angle of the terminal device. The method determines multiple rays through multiple network devices participating in positioning, and the intersection of the rays is the position of the terminal device.
  • the antenna array of the network equipment that needs to participate in positioning is a planar array, that is, with a two-dimensional antenna array, the construction cost of the network equipment will increase, and the form of the antenna array will also be Restricted.
  • the prior art positioning method can also determine the position of the terminal device only by the direction angle.
  • the method determines multiple planes through multiple network devices participating in positioning, and the terminal position is located on the intersection line or intersection of the multiple planes. Generally, the intersection of the horizontal plane is perpendicular to the horizontal plane, which means that the horizontal coordinates of the terminal device can be obtained.
  • the relative angle-based positioning method includes the network equipment participating in the positioning reporting angle measurement information to the positioning center.
  • the angle measurement information includes the set reference direction and the angle of the direction of the terminal device relative to the set reference direction.
  • the positioning center determines the conical surface where the terminal device is located based on the reported angle measurement information, and determines the position of the terminal device based on the intersection point or line of intersection of the multiple cone surfaces.
  • the positioning method based on the relative angle does not have the problem of inaccurate positioning when the terminal device approaches the network device participating in the positioning, and the positioning accuracy is improved.
  • the process of the positioning method based on the relative angle in the foregoing embodiment can also be simplified, and signaling overhead is saved.
  • each device such as a network device or a positioning center
  • each device includes hardware structures and/or software modules corresponding to each function in order to realize the above functions.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the network device or the positioning center into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. The following uses the division of each function module corresponding to each function as an example for description.
  • FIG. 9 is a schematic diagram of the network device 90 proposed in this application.
  • the network device 90 includes a transceiving unit 910 and a processing unit 920.
  • the network device 90 includes a transceiving unit 910 and a processing unit 920.
  • the network device 90 includes a transceiving unit 910 and a processing unit 920.
  • the transceiver unit 910 is configured to interact with the positioning center, terminal equipment, and serving cell participating in positioning for uplink positioning configuration;
  • the transceiving unit 910 is also configured to receive the first reference signal sent by the terminal device;
  • the transceiver unit 910 is further configured to report angle measurement information to the positioning center, where the angle measurement information includes the set reference direction and the angle of the direction where the terminal device is located relative to the set reference direction;
  • the embodiment of the present application does not limit the manner in which the transceiver unit 910 exchanges information with other devices, and may be based on the LTE protocol, the NR protocol, or other protocols applicable to future communication systems.
  • the processing unit 920 is configured to determine angle measurement information according to the first reference signal.
  • the processing unit 920 measures and/or calculates the uplink reference signal received by the transceiver unit 910, it obtains angle measurement information about the uplink reference signal.
  • the angle measurement information includes a set reference direction and an angle of the direction where the terminal device is located relative to the set reference direction.
  • the set reference direction is flexibly set by the processing unit 920.
  • the setting method includes at least one of the following: the orientation of the antenna linear array of the network device 90; the orientation of the horizontal dimension of the antenna array of the network device 90; a certain direction arbitrarily selected by the network device 90.
  • the angle of the direction of the terminal device relative to the set reference direction needs to be measured and/or calculated by the processing unit 920. This relative angle-based positioning method can support angular positioning based on antenna linear arrays.
  • the transceiver unit 910 is configured to interact with the positioning center, terminal equipment, and serving cell participating in positioning for downlink positioning configuration;
  • the transceiver unit 910 is also configured to send a second reference signal to the terminal device;
  • the transceiver unit 910 is further configured to receive requested location information sent by the positioning center, the requested location information includes power measurement information, and the power measurement information is determined by the terminal device according to one or more second reference signals; the requested location information is used for Instruct the processing unit 920 to determine angle measurement information according to the power measurement information; the angle measurement information includes the set reference direction and the angle of the direction of the terminal device relative to the set reference direction;
  • the transceiver unit 910 is also used to report the angle measurement information to the positioning center;
  • the processing unit 920 is configured to determine angle measurement information according to the power measurement information.
  • the angle measurement information on the downlink reference signal is obtained.
  • the transceiver unit 910 reports the angle measurement information to the positioning center, and the positioning center determines a conical surface centered on the set reference direction contained in the angle measurement information according to the received angle measurement information.
  • Multiple network devices 90 participating in positioning can report multiple angle measurement information through the transceiver unit 910, and the positioning center can determine multiple conical surfaces based on the multiple angle measurement information.
  • the network devices 90 participating in the positioning correspond to the angle measurement information reported by them, and the angle measurement information corresponds to the determined cone surface.
  • the position of the terminal device is on the intersection point or line of intersection of the multiple conical surfaces determined by the positioning center.
  • the positioning center can determine the position of the terminal device according to the intersection or line of intersection of multiple conical surfaces and other related information.
  • the network device 90 completely corresponds to the network device in the method embodiment, and the network device 90 may be the network device in the method embodiment, or a chip or functional module inside the network device in the method embodiment.
  • the corresponding unit of the network device 90 is used to execute the corresponding steps performed by the network device in the method embodiment shown in FIG. 3 or FIG. 8.
  • the transceiving unit 910 in the network device 90 executes the steps of the network device transceiving in the method embodiment. For example, perform step S310 in FIG. 3 to interact with the positioning center, terminal equipment, and serving cell involved in the positioning of the uplink positioning configuration; also perform step S320 in FIG. 3 to receive the uplink reference signal sent by the terminal device; and perform step S320 in FIG. 3 In step S330, report angle measurement information to the positioning center.
  • the processing unit 920 executes the steps implemented or processed inside the network device in the method embodiment. For example, in step S320 in FIG. 3, the operation of determining angle measurement information according to the uplink reference signal is performed.
  • the transceiving unit 910 in the network device 90 executes the steps of the network device transceiving in the method embodiment. For example, perform step S810 in FIG. 8 to interact with the positioning center, terminal equipment, and serving cell participating in positioning for downlink positioning configuration; also perform step S820 in FIG. 8 to send a downlink reference signal to the terminal device; also perform step S820 in FIG. 8 Step S840: Receive the requested location information sent by the positioning center; also execute step S840 in FIG. 8 to report angle measurement information to the positioning center.
  • the processing unit 920 executes the steps implemented or processed inside the network device in the method embodiment. For example, in step S840 in FIG. 8, the operation of determining angle measurement information according to the requested position information and the power measurement information contained therein is performed.
  • the transceiver unit 910 may be a transceiver, and the transceiver may be composed of a receiver and a transmitter integrated together.
  • the transceiver may also be called a communication interface or communication unit.
  • FIG. 9 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 9.
  • the chip When the network device 90 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the present application also provides a network device 100.
  • the network device 100 includes a processor 1010 configured to implement the functions performed by the network device in the method embodiment shown in FIG. 3 or FIG.
  • the network device further includes a memory 1020 coupled to the processor 1010, and the processor 1010 is configured to implement the functions performed by the network device in the method embodiment shown in FIG. 3 or FIG. 8.
  • the memory 1020 is used to store program instructions and data.
  • the memory 1020 is coupled with the processor 1010, and the processor 1010 can call and execute program instructions stored in the memory 1020 to implement the functions performed by the network device in the method embodiment shown in FIG. 3 or FIG.
  • the network device 100 further includes a communication interface 1030, and the communication interface 1030 is used for the network device 100 to communicate with other devices.
  • the communication interface 1030 includes a transceiver, or the communication interface 1030 includes an input/output interface.
  • the network device 100 includes a processor 1010 and a communication interface 1030, which are used to implement the functions performed by the network device in the method embodiment shown in FIG. 3 or FIG. 8, specifically including:
  • the processor 1010 uses the communication interface 1030 to communicate with the outside;
  • the processor 1010 is used to run a computer program, so that the network device 100 implements the functions executed by the network device in the method embodiment shown in FIG. 3 or FIG. 8.
  • the external may be an object other than the processor 1010, or an object other than the network device 100.
  • the communication interface 1030 includes input/output interfaces, interface circuits, output circuits, input circuits, pins or related circuits on the chip or chip system, etc. .
  • the processor 1010 is embodied as a processing circuit or a logic circuit.
  • the device 110 includes a transceiver unit 1110 and a processing unit 1120.
  • the device 110 includes a transceiver unit 1110 and a processing unit 1120.
  • the processing unit 1120 includes a transceiver unit 1110 and a processing unit 1120.
  • the transceiver unit 1110 is used to interact with the network equipment, terminal equipment, and serving cell participating in positioning for uplink positioning configuration;
  • the transceiver unit 1110 is also used to receive angle measurement information reported by the network equipment participating in the positioning.
  • the angle measurement information is determined by the network equipment participating in the positioning according to the first reference signal.
  • the first reference signal is obtained from the terminal equipment by the network equipment participating in the positioning.
  • the angle measurement information includes the set reference direction and the angle of the direction of the terminal device relative to the set reference direction;
  • the processing unit 1120 is configured to determine the position of the terminal device according to the angle measurement information.
  • the processing unit 1120 determines a plurality of conical surfaces according to the angle measurement information, and the plurality of conical surfaces corresponds to the angle measurement information in a one-to-one correspondence, and the angle measurement information corresponds to the network equipment participating in the positioning; Each cone surface of is centered on the set reference direction included in the angle measurement information corresponding to it; the processing unit 1120 determines the position of the terminal device according to the intersection or line of intersection of the multiple cone surfaces.
  • the transceiver unit 1110 is used to interact with the network equipment, terminal equipment, and serving cell participating in positioning for downlink positioning configuration;
  • the transceiver unit 1110 is further configured to receive power measurement information reported by the terminal device, where the power measurement information includes one or more reference signal received powers and/or one or more reference signal received powers determined by the terminal device regarding one or more second reference signals. Diameter power
  • the transceiver unit 1110 is further configured to send request location information to network devices participating in positioning.
  • the requested location information includes power measurement information.
  • the requested location information is used to instruct the network devices participating in positioning to determine angle measurement information based on the power measurement information.
  • the angle measurement information includes the set reference direction and the angle of the direction of the terminal device relative to the set reference direction;
  • the transceiver unit 1110 is also used to receive angle measurement information reported by network devices participating in positioning;
  • the processing unit 1120 is configured to determine the position of the terminal device according to the angle measurement information.
  • the processing unit 1120 is further configured to calculate angle measurement information according to the power measurement information, and determine the position of the terminal device according to the angle measurement information.
  • the processing unit 1120 determines the position of the terminal device according to the angle measurement information, including: the processing unit determines a plurality of conical surfaces according to the angle measurement information, and the multiple conical surfaces correspond to the angle measurement information one to one, and the angle measurement information is related to the network device participating in the positioning. One-to-one correspondence; wherein each of the multiple conical surfaces is centered on the set reference direction contained in the corresponding angle measurement information; the processing unit 1120 determines the terminal according to the intersection or line of intersection of the multiple conical surfaces The location of the device.
  • the positioning management device 110 completely corresponds to the positioning center in the method embodiment, and the positioning management device 110 may be the positioning center in the method embodiment, or a chip or functional module inside the positioning center in the method embodiment.
  • the corresponding unit of the positioning management device 110 is used to execute the corresponding steps performed by the positioning center in the method embodiment shown in FIG. 3 or FIG. 8.
  • the transceiving unit 1110 in the positioning management device 110 executes the steps of transceiving the positioning center in the method embodiment. For example, perform step S310 in FIG. 3 to interact with the network equipment, terminal equipment, and serving cell participating in positioning for uplink positioning configuration; also perform step S330 in FIG. 3 to receive angle measurement information reported by the network equipment participating in positioning.
  • the processing unit 1120 in the positioning management device 110 executes the steps implemented or processed inside the positioning center in the method embodiment. For example, step S340 in FIG. 3 is executed to determine the position of the terminal device according to the angle measurement information.
  • the transceiving unit 1110 in the positioning management apparatus 110 executes the steps of transceiving the positioning center in the method embodiment. For example, perform step S810 in Figure 8 to interact with the network equipment, terminal equipment, and serving cell participating in positioning for downlink positioning configuration; also perform step S840 in Figure 8 to request angle measurement information from the network equipment participating in positioning; Step S850 in 8, receiving angle measurement information reported by the network equipment participating in the positioning.
  • the processing unit 1120 in the positioning management device 110 executes the steps implemented or processed inside the positioning center in the method embodiment. For example, step S860 in FIG. 8 is executed to determine the position of the terminal device according to the angle measurement information.
  • the transceiver unit 1110 may be a transceiver, and the transceiver may be composed of a receiver and a transmitter integrated together.
  • the transceiver may also be called a communication interface or communication unit.
  • the processing unit 1120 may be a processor.
  • FIG. 11 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 11.
  • the chip When the location management device 110 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the present application also provides a positioning management device 120.
  • the positioning management device 120 includes a processor 1210 for implementing the functions performed by the positioning center in the method embodiment shown in FIG. 3 or FIG.
  • the positioning management apparatus 120 further includes a memory 1220, the memory 1220 is coupled with the processor 1210, and the processor 1210 is configured to implement the functions performed by the positioning center in the method embodiment shown in FIG. 3 or FIG. .
  • the memory 1220 is used to store program instructions and data.
  • the memory 1220 is coupled with the processor 1210, and the processor 1210 can call and execute the program instructions stored in the memory 1220 to implement the functions performed by the positioning center in the method embodiment shown in FIG. 3 or FIG.
  • the positioning management apparatus 120 further includes a communication interface 1230, and the communication interface 1230 is used for the positioning management apparatus 120 to communicate with other devices.
  • the communication interface 1230 includes a transceiver, or, the communication interface 1230 includes an input/output interface.
  • the positioning management device 120 includes a processor 1210 and a communication interface 1230, which are used to implement the functions performed by the positioning center in the method embodiment shown in FIG. 3 or FIG. 8, and specifically include:
  • the processor 1210 uses the communication interface 1230 to communicate with the outside;
  • the processor 1210 is used to run a computer program, so that the positioning management device 120 realizes the functions performed by the positioning center in the method embodiment shown in FIG. 3 or FIG. 8.
  • the exterior may be an object other than the processor 1210, or an object other than the positioning management apparatus 120.
  • the communication interface 1230 includes an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system Wait.
  • the processor 1210 is embodied as a processing circuit or a logic circuit.
  • An embodiment of the present application also provides a communication system, which includes the aforementioned network equipment, positioning center, terminal equipment, and serving cell.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the network device in the method shown in FIG. 3 or FIG. The various steps performed.
  • the present application also provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the computer executes the positioning center in the method shown in FIG. 3 or FIG. The various steps performed.
  • the present application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the network device in the method shown in FIG. 3 or FIG. 8.
  • This application also provides a computer program product containing instructions.
  • the computer program product runs on a computer, the computer executes the steps performed by the positioning center in the method shown in FIG. 3 or FIG. 8.
  • This application also provides a chip including a processor.
  • the processor is used to read and run a computer program stored in the memory to execute the corresponding operation and/or process executed by the network device in the relative angle-based positioning method provided in this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • This application also provides a chip including a processor.
  • the processor is used to read and run a computer program stored in the memory to execute the corresponding operation and/or process performed by the positioning center in the relative angle-based positioning method provided in this application.
  • the chip further includes a memory, the memory and the processor are connected to the memory through a circuit or a wire, and the processor is used to read and execute the computer program in the memory.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive data and/or information that needs to be processed, and the processor obtains the data and/or information from the communication interface, and processes the data and/or information.
  • the communication interface can be an input and output interface.
  • processors mentioned in the embodiments of this application may be a central processing unit (CPU), or may be other general-purpose processors, digital signal processors (DSP), or application specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the term "and/or” in this application is only an association relationship describing the associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A alone exists, and both A and B exist. , There are three cases of B alone.
  • the character "/" in this text generally means that the associated objects before and after are in an "or” relationship; the term “at least one” in this application can mean “one” and "two or more", for example, A At least one of, B and C can mean: A alone exists, B alone exists, C exists alone, A and B exist alone, A and C exist simultaneously, C and B exist simultaneously, and A and B and C exist simultaneously, this Seven situations.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请提供一种基于相对角度的定位方法及装置,该方法可以使网络设备灵活的选择参考方向,并支持基于线阵的角度定位,不存在终端设备接近网络设备时定位不准确的问题,提高了对终端设备的定位精度。该方法包括:参与定位的网络设备与参与定位的定位中心、终端设备、服务小区交互上行定位配置;参与定位的网络设备接收终端设备发送的第一参考信号;参与定位的网络设备根据该第一参考信号确定角度测量信息,参与定位的网络设备向定位中心上报角度测量信息,该角度测量信息包括设定的参考方向和终端设备所在方向相对于设定的参考方向的角度;定位中心根据接收到的角度测量信息确定终端设备的位置。

Description

一种基于相对角度的定位方法及装置
本申请要求于2019年08月16日提交中国专利局、申请号为201910760340.7、申请名称为“一种基于相对角度的定位方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,更具体地,涉及一种基于相对角度的定位方法及装置。
背景技术
未来的第五代(5th generation,5G)系统或新空口(new radio,NR)系统中引入了基于角度的定位技术,具体方法是终端设备向基站发送探测参考信号(sounding reference signal,SRS),服务小区基站和邻区基站接收并测量该探测参考信号SRS。当服务小区基站和邻区基站的接收天线具有阵列形式时,服务小区基站和邻区基站可以根据其多个天线阵元之间因为波程差造成的相移,估计接收到的探测参考信号的波束方向,进而确定终端设备所在方向,最后确定终端设备的位置。
现有技术中基于角度的定位方案,大多是根据绝对角度信息确定终端设备的位置。所谓绝对角度信息是指终端设备所在方向通过与绝对方向的夹角刻画。例如,终端设备的方向角,其定义为终端设备所在方向在水平面内的投影与地理正北方向的夹角,以逆时针旋转为正;例如,终端设备的俯仰角,其定义为终端设备所在方向与穹顶方向的夹角。现有技术中的方案通常通过估计终端设备的方向角以及俯仰角,确定终端设备的位置。该方法通过多个基站确定多条射线,射线的交点为终端设备的位置。由于使用该方法估计终端设备的方向角以及俯仰角,需要基站的天线阵列为面阵,即具有2维天线阵列,则基站的建设成本会增加,并且天线阵列的形式也会受限制。现有技术也可以仅通过方向角确定终端设备的位置。该方法通过多个基站确定多个平面,终端位置位于多个平面的交线或交点上。一般的,水平面交线垂直于水平面,意味着可以获得终端设备的水平坐标。但当基站的天线阵列是线阵时,该方法只适用于水平天线线阵定位,且为当俯仰角接近90度(例如终端设备距离基站较远,高程差可以忽略)时的近似方法。在终端设备距离基站较近时,该方法的近似误差较大,导致对终端设备的方向角估计不准确,使对终端设备的定位误差增加。
发明内容
本申请提供一种基于相对角度的定位方法及装置,可以使网络设备灵活的选择参考方向,并支持基于线阵天线的角度定位,不存在终端设备接近网络设备时定位不准确的问题,提高了对终端设备的定位精度。
第一方面,提供了一种基于相对角度的定位方法,该方法可应用于上行定位过程,由网络设备或定位中心执行,或者,由设置于网络设备或定位中心中的芯片或电路执行,本 申请对此不作限定。为了便于描述,下文中以网络设备执行第一方面中提供的基于相对角度的定位方法为例进行说明。
该基于相对角度的定位方法包括:
参与定位的网络设备与参与定位的定位中心、终端设备、服务小区交互上行定位配置;参与定位的网络设备接收终端设备发送的第一参考信号;参与定位的网络设备根据第一参考信号确定角度测量信息,该角度测量信息包括设定的参考方向和终端设备所在方向相对于该设定的参考方向的角度;参与定位的网络设备向定位中心上报该角度测量信息。
应理解,参与定位的网络设备为一个或多个,角度测量信息与参与定位的网络设备一一对应。
本申请提供的基于相对角度的定位方法,在网络设备为线阵天线的上行角度定位过程中,基于锥面交线定位,而非现有技术中基于平面交线定位,不存在现有技术中终端设备接近网络设备时定位误差较大的问题,有利于提高上行定位精度。
结合第一方面,在第一方面的一种可能的实现方式中,上述基于相对角度的定位方法还包括:定位中心根据角度测量信息确定终端设备的位置。
本申请实施例中涉及的定位中心包括定位管理组件(location management component,LMC),或者定位管理功能(location management function,LMF),或者其他能够实现LMC或LMF在本申请实施例中的功能的设备。定位管理组件LMC承担部分LMF的功能,可以集成在NG-RAN侧的网络设备中,这样为了实现由LMC承担的这部分LMF的功能,不需要经由AMF引入5G核心网,降低了信令时延。
结合第一方面,在第一方面的一种可能的实现方式中,定位中心根据角度测量信息确定所述终端设备的位置,包括:定位中心根据角度测量信息确定多个圆锥面,多个圆锥面与角度测量信息一一对应,角度测量信息与参与定位的网络设备一一对应;其中,多个圆锥面中的每个圆锥面以与其对应的角度测量信息中包含的设定的参考方向为中心;定位中心根据多个圆锥面的交点或交线确定终端设备的位置。
应理解,现有技术在天线线阵的角度定位过程中基于平面交线对终端设备定位,在终端设备接近网络设备时由于估计方向角不准确,导致对终端设备的定位不准确;本申请在天线线阵的角度定位过程中基于锥面交线对终端设备定位,而非现有技术中基于平面交线定位,不存在现有技术中终端设备接近网络设备时定位误差较大的问题,有利于提高下行定位精度。
结合第一方面,在第一方面的一种可能的实现方式中,设定的参考方向包括方向角,或,方向角以及俯仰角;当设定的参考方向仅包括方向角时,相应的俯仰角设定为π/2。
上述技术方案沿用现有技术中参考方向包含的参量,但对方向角和俯仰角的定义与现有技术不同。现有技术中基于角度的定位方案,大多是根据绝对角度信息确定终端设备的位置。所谓绝对角度信息是指终端设备所在方向通过与绝对参考方向的夹角刻画。例如,终端设备的方向角,其定义为终端设备所在方向在水平面内的投影与地理正北方向的夹角,以逆时针旋转为正;例如,终端设备的俯仰角,其定义为终端设备所在方向与穹顶方向的夹角。本申请中的参考方向虽然沿用现有技术中参考方向包含的参量,但可由参与定位的网络设备任意选择某个方向,支持灵活的参考方向设定。
结合第一方面,在第一方面的一种可能的实现方式中,终端设备所在方向相对于设定 的参考方向的角度,范围为[0,π],其中,角度为0表示终端设备所在方向与设定的参考方向同向,角度为π/2表示终端设备所在方向与设定的参考方向垂直,角度为π表示终端设备所在方向与设定的参考方向反向。
上述技术方案用于定义根据终端设备所在方向相对于设定的参考方向的角度值确定终端设备的位置的三种特殊情况,理解上述三种特殊情况可以更好地执行本申请提供的方法。
结合第一方面,在第一方面的一种可能的实现方式中,参考方向的设定方式包括以下至少一种:参与定位的网络设备天线线阵的朝向;参与定位的网络设备天线面阵水平维度的朝向;参与定位的网络设备任意选择的某个方向。
现有技术中基于角度的定位方案,大多是根据绝对角度信息确定终端设备的位置。所谓绝对角度信息是指终端设备所在方向通过与绝对参考方向的夹角刻画。例如,终端设备的方向角,其定义为终端设备所在方向在水平面内的投影与地理正北方向的夹角,以逆时针旋转为正;例如,终端设备的俯仰角,其定义为终端设备所在方向与穹顶方向的夹角。本申请中的参考方向可由参与定位的网络设备任意选择某个方向,支持灵活的参考方向设定。
结合第一方面,在第一方面的一种可能的实现方式中,定位中心为定位管理功能或定位管理组件,定位管理组件集成在服务小区网络设备上,或集成在参与定位的网络设备上,或集成在不参与定位的网络设备上。
应理解,定位管理组件LMC承担部分LMF的功能,可以集成在NG-RAN侧的网络设备中,这样为了实现由LMC承担的这部分LMF的功能,不需要经由AMF引入5G核心网,降低了信令时延。
结合第一方面,在第一方面的一种可能的实现方式中,参与定位的网络设备包括服务小区网络设备,或不包括服务小区网络设备。
上述技术方案说明参与定位的网络设备可灵活选择,可为服务小区网络设备或非服务小区网络设备,网络设备的选取不受限制。
结合第一方面,在第一方面的一种可能的实现方式中,上行定位配置包括上行探测参考信号配置信息或上行物理随机接入信道配置信息。
应理解,上行探测参考信号配置信息或上行物理随机接入信道配置信息仅为上行定位配置信息的两种示例,本申请对此不作限制。这两种示例为可应用于本申请提出的基于相对角度的定位方法的两种常用的上行定位配置信息。
第二方面,提供了一种基于相对角度的定位方法,该方法可应用于下行定位过程,由定位中心或网络设备执行,或者,由设置于定位中心或网络设备中的芯片或电路执行,本申请对此不作限定。为了便于描述,下文中以定位中心执行第二方面中提供的基于相对角度的定位方法为例进行说明。其中,本申请实施例中涉及的定位中心包括定位管理组件(location management component,LMC),或者定位管理功能(location management function,LMF),或者其他能够实现LMC或LMF在本申请实施例中的功能的设备。
该基于相对角度的定位方法包括:
参与定位的定位中心与参与定位的网络设备、终端设备、服务小区交互下行定位配置;定位中心接收终端设备上报的功率测量信息,该功率测量信息包括终端设备确定的关于一 个或多个第二参考信号的一个或多个参考信号接收功率和/或一个或多个径功率;定位中心向参与定位的网络设备发送请求位置信息,请求位置信息包含功率测量信息,该请求位置信息用于指示参与定位的网络设备根据功率测量信息确定角度测量信息,该角度测量信息包括设定的参考方向和终端设备所在方向相对于设定的参考方向的角度;定位中心接收参与定位的网络设备上报的角度测量信息;定位中心根据该角度测量信息确定终端设备的位置。
应理解,参与定位的网络设备为一个或多个,角度测量信息与参与定位的网络设备一一对应。终端设备对一个或多个第二参考信号进行处理,可以得到一个或多个功率测量信息;参与定位的网络设备对包含在请求位置信息中的一个或多个功率测量信息进行处理,得到与参与定位的网络设备一一对应的角度测量信息。示例的,终端设备对四个第二参考信号进行处理,可以得到四个功率测量信息;三个参与定位的网络设备对包含在请求位置信息中的四个功率测量信息处理,得到与三个参与定位的网络设备一一对应的三个角度测量信息。
本申请提供的基于相对角度的定位方法,在网络设备为线阵天线的下行角度定位过程中,基于锥面交线定位,而非现有技术中基于平面交线定位,不存在现有技术中终端设备接近网络设备时定位误差较大的问题,有利于提高下行定位精度。
结合第二方面,在第二方面的一种可能的实现方式中,定位中心接收终端设备上报的功率测量信息之后,该相对角度的定位方法还包括:定位中心根据功率测量信息计算得到角度测量信息;定位中心根据角度测量信息确定终端设备的位置。
在一种可能的实现方式中,定位中心具备计算能力,可以根据终端设备上报的功率测量信息计算和/或测量得到角度测量信息,并根据角度测量信息确定终端设备的位置。在该实现方式中,定位中心向参与定位的网络设备发送请求位置信息和定位中心接收参与定位的网络设备上报的角度测量信息的步骤可以省略,只执行其他方法步骤,则该定位方法更简洁,信令开销更小。
结合第二方面,在第二方面的一种可能的实现方式中,定位中心根据角度测量信息确定所述终端设备的位置,包括:定位中心根据角度测量信息确定多个圆锥面,多个圆锥面与角度测量信息一一对应,角度测量信息与参与定位的网络设备一一对应;其中,多个圆锥面中的每个圆锥面以与其对应的角度测量信息中包含的设定的参考方向为中心;定位中心根据多个圆锥面的交点或交线确定终端设备的位置。
应理解,现有技术在天线线阵的角度定位过程中基于平面交线对终端设备定位,在终端设备接近网络设备时由于估计方向角不准确,导致对终端设备的定位不准确;本申请在天线线阵的角度定位过程中基于锥面交线对终端设备定位,而非现有技术中基于平面交线定位,不存在现有技术中终端设备接近网络设备时定位误差较大的问题,有利于提高下行定位精度。
结合第二方面,在第二方面的一种可能的实现方式中,设定的参考方向包括方向角,或,方向角以及俯仰角;当设定的参考方向仅包括方向角时,相应的俯仰角设定为π/2。
上述技术方案沿用现有技术中参考方向包含的参量,但对方向角和俯仰角的定义与现有技术不同。现有技术中基于角度的定位方案,大多是根据绝对角度信息确定终端设备的位置。所谓绝对角度信息是指终端设备所在方向通过与绝对参考方向的夹角刻画。例如, 终端设备的方向角,其定义为终端设备所在方向在水平面内的投影与地理正北方向的夹角,以逆时针旋转为正;例如,终端设备的俯仰角,其定义为终端设备所在方向与穹顶方向的夹角。本申请中的参考方向虽然沿用现有技术中参考方向包含的参量,但可由参与定位的网络设备任意选择某个方向,支持灵活的参考方向设定。
结合第二方面,在第二方面的一种可能的实现方式中,终端设备所在方向相对于设定的参考方向的角度,范围为[0,π],其中,角度为0表示终端设备所在方向与设定的参考方向同向,角度为π/2表示终端设备所在方向与设定的参考方向垂直,角度为π表示终端设备所在方向与设定的参考方向反向。
上述技术方案用于定义根据终端设备所在方向相对于设定的参考方向的角度值确定终端设备的位置的三种特殊情况,理解上述三种特殊情况可以更好地执行本申请提供的方法。
结合第二方面,在第二方面的一种可能的实现方式中,参考方向的设定方式包括以下至少一种:参与定位的网络设备天线线阵的朝向;参与定位的网络设备天线面阵水平维度的朝向;参与定位的网络设备任意选择的某个方向。
现有技术中基于角度的定位方案,大多是根据绝对角度信息确定终端设备的位置。所谓绝对角度信息是指终端设备所在方向通过与绝对参考方向的夹角刻画。例如,终端设备的方向角,其定义为终端设备所在方向在水平面内的投影与地理正北方向的夹角,以逆时针旋转为正;例如,终端设备的俯仰角,其定义为终端设备所在方向与穹顶方向的夹角。本申请中的参考方向可由参与定位的网络设备任意选择某个方向,支持灵活的参考方向设定。
结合第二方面,在第二方面的一种可能的实现方式中,定位中心为定位管理功能或定位管理组件,定位管理组件集成在服务小区网络设备上,或集成在参与定位的网络设备上,或集成在不参与定位的网络设备上。
应理解,定位管理组件LMC承担部分LMF的功能,可以集成在NG-RAN侧的网络设备中,这样为了实现由LMC承担的这部分LMF的功能,不需要经由AMF引入5G核心网,降低了信令时延。
结合第二方面,在第二方面的一种可能的实现方式中,参与定位的网络设备包括服务小区网络设备,或不包括服务小区网络设备。
上述技术方案说明参与定位的网络设备可灵活选择,可为服务小区网络设备或非服务小区网络设备,网络设备的选取不受限制。
结合第二方面,在第二方面的一种可能的实现方式中,下行定位配置包括同步信号块配置信息或定位参考信号配置信息。
应理解,同步信号块配置信息或定位参考信号配置信息仅为下行定位配置信息的两种示例,本申请对此不作限制。这两种示例为可应用于本申请提出的基于相对角度的定位方法的两种常用的下行定位配置信息。
第三方面,提供了一种基于相对角度的定位方法,该方法可应用于上行定位过程,由网络设备或定位中心执行,或者,由设置于网络设备或定位中心中的芯片或电路执行,本申请对此不作限定。上述第一方面以网络设备执行第一方面中提供的基于相对角度的定位方法为例进行说明。下文中将以定位中心执行第一方面中提供的基于相对角度的定位方法 为例进行说明。其中,本申请实施例中涉及的定位中心包括定位管理组件(location management component,LMC),或者定位管理功能(location management function,LMF),或者其他能够实现LMC或LMF在本申请实施例中的功能的设备。
该基于相对角度的定位方法包括:参与定位的定位中心与参与定位的网络设备、终端设备、服务小区交互上行定位配置;定位中心接收参与定位的网络设备上报的角度测量信息,该角度测量信息由参与定位的网络设备根据第一参考信号确定,第一参考信号由参与定位的网络设备从终端设备处接收;角度测量信息包括设定的参考方向和终端设备所在方向相对于设定的参考方向的角度;定位中心根据角度测量信息确定终端设备的位置。
第三方面的各种可能的实现方式可以参照上述第一方面的描述,此处不再赘述。
第四方面,提供了一种基于相对角度的定位方法,该方法可应用于下行定位过程,由定位中心或网络设备执行,或者,由设置于定位中心或网络设备中的芯片或电路执行,本申请对此不作限定。上述第二方面以定位中心执行第二方面中提供的基于相对角度的定位方法为例进行说明。下文中将以网络设备执行第二方面中提供的基于相对角度的定位方法为例进行说明。
该基于相对角度的定位方法包括:参与定位的网络设备与参与定位的定位中心、终端设备、服务小区交互下行定位配置;参与定位的网络设备向终端设备发送第二参考信号;参与定位的网络设备接收定位中心发送的请求位置信息,请求位置信息包含功率测量信息,功率测量信息由终端设备根据一个或多个所述第二参考信号确定;请求位置信息用于指示参与定位的网络设备根据功率测量信息确定角度测量信息,角度测量信息包括设定的参考方向和终端设备所在方向相对于设定的参考方向的角度;参与定位的网络设备向定位中心上报角度测量信息。
第四方面的各种可能的实现方式可以参照上述第二方面的描述,此处不再赘述。
第五方面,提供一种网络装置,该网络装置包括处理器,用于实现上述第一方面描述的方法中网络设备的功能。
示例性地,该网络装置还包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第一方面描述的方法中网络设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面描述的方法中网络设备的功能。
示例性地,该网络装置还包括通信接口,该通信接口用于该网络装置与其它设备进行通信。当该网络装置为网络设备时,该通信接口包括收发器,或,该通信接口包括输入/输出接口。
在一种可能的设计中,该网络装置包括:处理器和通信接口,用于实现上述第一方面描述的方法中网络设备的功能,具体地包括:
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该网络装置实现上述第一方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该装置以外的对象。
在另一种实现方式中,该网络装置为芯片或芯片系统时,该通信接口包括该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理 器体现为处理电路或逻辑电路。
第六方面,提供一种定位管理装置,该定位管理装置包括处理器,用于实现上述第二方面描述的方法中定位中心的功能。
示例性地,该定位管理装置还包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第二方面描述的方法中定位中心的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第二方面描述的方法中定位中心的功能。
示例性地,该定位管理装置还包括通信接口,该通信接口用于该定位管理装置与其它设备进行通信。当该定位管理装置为定位中心时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该定位管理装置包括:处理器和通信接口,用于实现上述第一方面描述的方法中定位中心的功能,具体地包括:
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该定位管理装置实现上述第二方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该定位管理装置以外的对象。
在另一种可能的设计中,该定位管理装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第七方面,提供一种定位管理装置,该定位管理装置包括处理器,用于实现上述第三方面描述的方法中定位中心的功能。
示例性地,该定位管理装置还包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第三方面描述的方法中定位中心的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第三方面描述的方法中定位中心的功能。
示例性地,该定位管理装置还包括通信接口,该通信接口用于该定位管理装置与其它设备进行通信。当该定位管理装置为定位中心时,该通信接口为收发器、输入/输出接口、或电路等。
在一种可能的设计中,该定位管理装置包括:处理器和通信接口,用于实现上述第三方面描述的方法中定位中心的功能,具体地包括:
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该定位管理装置实现上述第三方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该定位管理装置以外的对象。
在另一种可能的设计中,该定位管理装置为芯片或芯片系统。该通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器也可以体现为处理电路或逻辑电路。
第八方面,提供一种网络装置,该网络装置包括处理器,用于实现上述第四方面描述的方法中网络设备的功能。
示例性地,该网络装置还包括存储器,该存储器与该处理器耦合,该处理器用于实现上述第四方面描述的方法中网络设备的功能。
在一种可能的实现中,该存储器用于存储程序指令和数据。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第四方面描述的方法中网络设备的功能。
示例性地,该网络装置还包括通信接口,该通信接口用于该网络装置与其它设备进行通信。当该网络装置为网络设备时,该通信接口包括收发器,或,该通信接口包括输入/输出接口。
在一种可能的设计中,该网络装置包括:处理器和通信接口,用于实现上述第四方面描述的方法中网络设备的功能,具体地包括:
该处理器利用该通信接口与外部通信;
该处理器用于运行计算机程序,使得该网络装置实现上述第四方面描述的任一种方法。
可以理解,该外部可以是处理器以外的对象,或者是该网络装置以外的对象。
在另一种实现方式中,该网络装置为芯片或芯片系统时,该通信接口包括该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器体现为处理电路或逻辑电路。
第九方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被网络装置执行时,使得该网络装置实现第一方面以及第一方面的任一可能的实现方式中的方法,或实现第四方面以及第四方面的任一可能的实现方式中的方法。
第十方面,提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被定位管理装置执行时,使得该定位管理装置实现第二方面以及第二方面的任一可能的实现方式中的方法,或实现第三方面以及第三方面的任一可能的实现方式中的方法。
第十一方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得网络装置实现第一方面以及第一方面的任一可能的实现方式中的方法,或实现第四方面以及第四方面的任一可能的实现方式中的方法。
第十二方面,提供一种包含指令的计算机程序产品,该指令被计算机执行时使得定位管理装置实现第二方面以及第二方面的任一可能的实现方式中的方法,或实现第三方面以及第三方面的任一可能的实现方式中的方法。
第十三方面,提供了一种定位系统,包括第五方面或第八方面所示的网络装置和第六方面或第七方面所示的定位管理装置。
在第十三方面提供的定位系统中还包括服务小区、终端设备等。
基于上述描述,本申请提供的基于相对角度的定位方法及装置,能使网络设备灵活的选择参考方向,并支持基于线阵天线的角度定位,不存在终端设备接近网络设备时定位不准确的问题,提高了对终端设备的定位精度。本申请提供的方案可以应用于基于设定的参考方向和终端设备所在方向相对于设定的参考方向的角度进行定位的场景,还可以应用于其它需要对终端设备进行定位的场景。
附图说明
图1是应用于本申请实施例的一个定位系统的架构示意图;
图2是应用于本申请实施例的另一个定位系统的架构示意图;
图3是本申请实施例提供的一种基于相对角度的定位方法的示意性流程图;
图4是设定的参考方向的方向角和俯仰角的示意图;
图5是定位中心确定的圆锥面的示意图;
图6是终端设备所在方向与设定的参考方向的角度示意图;
图7是绘制的两个圆锥面交线的示意图;
图8是本申请实施例提供的又一种基于相对角度的定位方法的示意性流程图;
图9是本申请提出的网络装置90的示意图;
图10是本申请提出的另一种网络装置100的示意图;
图11是本申请提出的定位管理装置110的示意图;
图12是本申请提出的另一种定位管理装置120的示意图;
具体实施方式
下面将结合附图,对本申请中的技术方案进行清楚详细地描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)系统等,本申请中涉及的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统或独立组网(standalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请应用的通信系统还可以是陆上公用移动通信(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(Internet of Things,IoT)通信系统或者其他通信系统等。
本申请实施例中的终端设备(terminal equipment)可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、用户设备(user equipment,UE)、终端(terminal)、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备或者未来车联网中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一 种便携式设备。可穿戴设备不仅仅是一种硬件设备,更可以通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大等优点,可不依赖智能手机实现完整或者部分功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用的其他设备,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网IoT系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IoT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电等功能。
此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括:收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,发送电磁波,向网络设备传输上行数据等。
本申请实施例中的网络设备可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved Node B,HeNB,或home Node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR系统中的5G基站(g Node B,gNB),或,传输点(TP),5G系统中基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成5G基站gNB或传输点TP的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,5G基站(gNB)可以包括集中式单元(centralized unit,CU)和分布式单元(DU)。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中的一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操 作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构进行特别限定,只要能够通过运行记录有本申请实施例提供的方法的相关代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是网络设备,或者是网络设备中能够调用程序并执行程序的功能模块。
图1是应用于本申请实施例的一个定位系统的架构示意图。如图1所示,该定位系统中,终端设备通过LTE-Uu和/或NR-Uu接口分别经由下一代基站(next-generation eNodeB,ng-eNB)和5G基站(gNB)连接到无线接入网;无线接入网通过NG-C接口经由接入和移动性管理功能(access and mobility management function,AMF)连接到核心网。其中,下一代无线接入网(next-generation radio access network,NG-RAN)可以包括一个或多个ng-eNB;NG-RAN也可以包括一个或多个gNB;NG-RAN还可以包括一个或多个ng-eNB以及gNB。ng-eNB为接入5G核心网中的LTE基站,gNB为接入5G核心网中的5G基站。进一步地,NG-RAN还可以包括一个或多个终端设备。此外,核心网包括接入和移动性管理功能AMF与定位管理功能LMF等功能。LMF是一种部署在核心网中为终端设备提供定位功能的装置或组件。其中,AMF用于实现接入管理等功能,LMF用于实现定位中心等功能。AMF与LMF之间通过NLs接口连接。
图2是应用于本申请实施例的另一个定位系统的架构示意图。图1与图2定位系统架构的区别在于,图1中的定位管理功能的装置或组件(比如LMF)部署在核心网中,而图2中的定位管理功能的装置或组件(比如定位管理组件LMC)可以部署在基站中。如图2所示,LMC承担部分LMF的功能,可以集成在NG-RAN侧的gNB中,这样为了实现由LMC承担的这部分LMF的功能,不需要经由AMF引入5G核心网,降低了信令时延。
应理解,图1或图2所示的定位系统,可以包括一个或多个gNB,一个或多个终端设备。单个gNB可以向单个终端设备或多个终端设备传输数据或控制信令。多个gNB也可以同时为单个终端设备传输数据或控制信令。
还应理解,图1或图2所示的定位系统中包括的设备或功能节点只是示例性地描述,并不对本申请实施例构成限定,事实上,图1或图2所示的定位系统还可以包含其他与图中示意的设备或功能节点具有交互关系的网元、或设备、或功能节点,这里不作具体限定。
为了便于理解本申请实施例中提供的基于相对角度的定位方法,下面简单介绍本申请实施例中涉及到的几个基本概念:
1、参考方向
本申请提供的基于相对角度定位方法的参考方向的设定方式包括以下至少一种:(1)参与定位的网络设备(如gNB)线阵的朝向;(2)参与定位的网络设备(如gNB)面阵水平维度的朝向;(3)参与定位的网络设备(如gNB)任意选择的某个方向。
该参考方向可以包括:
(1)参考方向的方向角,其定义为终端设备所在方向在水平面内的投影与地理正北方向的夹角,以逆时针旋转为正,如图4所示的角度φ reference。其中,图4中的球体将地理正北、地理正西、穹顶方向分别作为x轴、y轴和z轴,将参与定位的网络设备的天线阵列中心作为原点,建立直角坐标系;
(2)参考方向的方向角,其定义为终端设备所在方向与穹顶方向的夹角,如图4中所示的角度θ reference
2.终端设备所在方向相对于设定的参考方向的角度
终端设备所在方向相对于设定的参考方向的角度由参与定位的网络设备测量和/或计算得到,如图5所示的角度θ。其范围为[0,π],其中,角度0表示终端设备所在方向与设定的参考方向同向,角度π/2表示终端设备所在方向与设定的参考方向垂直,角度π表示终端设备所在方向与设定的参考方向反向。
3.AoA定位方法
到达角度测距(Angle-of-Arriva,AOA)定位方法:是基于信号到达角度的定位方法,是一种典型的基于测距的定位方法,该方法通过某些硬件设备感知发射节点信号的到达方向,计算接收节点和锚节点之间的相对方位或角度,然后再利用三角测量法或其他方式计算出未知节点的位置。基于信号到达角度(AOA)的定位方法是一种常见的无线传感器网络节点自定位方法,该方法法通信开销低,定位精度较高。
具体的,该定位技术通常在两个以上的位置点设置方向性天线或阵列天线,获取终端设备发射的无线电波信号角度信息,然后通过交汇法估计终端设备的位置。它只需利用两个天线阵列就能完成终端设备的初始定位,与观测到达时间差(observed time of arrival,OTDOA)等技术的定位体制相比,系统结构简单,但要求天线阵具有高度灵敏度和高空间分辨率。建筑物分别密集、高度和地形地貌对AOA的定位精度影响较大,在室内、城区及乡村地区,AOA的典型值分别为360度、20度和1度。随着基站与终端设备之间的距离增加,AOA的定位精度逐渐降低。AOA定位误差主要由城市的多径传播及系统误差造成,可通过预先校正来抵消系统误差的影响,而建筑物密集地区的多径效应一直是困扰天线通信的难题,智能天线可在一定程度上减小多径干扰的影响,但由于实现复杂和设备成本的问题,尚未广泛应用。
3.AoD定位方法
发射角测距(Angle of Departure,AoD)定位方法的定位原理与到达角度测距(AOA)定位方法相似。不同点在于,到达角度测距(AOA)定位方法通常需要基站为单天线参与终端设备为多天线参与,终端设备接收参考信号并计算其角度,然后确定其自身的位置;发射角测距(AoD)定位方法通常需要基站为多天线参与,终端设备为单天线参与,仍需要终端设备接收参考信号并计算其角度,然后确定其自身的位置。通常选择使用发射角测距(AoD)定位方法的原因,是不需要终端设备的结构太复杂,终端设备作为一个可移动设备,不太容易能够支持多天线的要求,而基站作为一个不动的设备,比较容易实现多天线配置。
此外,为了便于理解本申请实施例,做出以下几点说明。
第一,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
第二,本申请示出的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
第三,本申请实施例中涉及的“保存”,可以是指保存在一个或者多个存储器中。该一 个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器或通信装置中。该一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第四,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例提供的方法的相关代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是网络设备或定位中心,或者,是网络设备或定位中心中能够调用程序并执行程序的功能模块。
以下,不失一般性,以参与定位的网络设备与参与定位的定位中心、终端设备、服务小区之间的交互为例详细说明本申请实施例提供的基于相对角度的定位方法。
参见图3,图3是本申请实施例提供的一种基于相对角度的定位方法的示意性流程图。该方法可应用于上行到达角度测距(Angle-of-Arriva,AOA)定位方法,包括:网络设备向定位中心上报角度测量信息,该角度测量信息包括设定的参考方向以及终端设备所在方向相对于该设定的参考方向的角度,定位中心基于该角度测量信息确定终端设备所在的圆锥面,并基于多个圆锥面的交点或者交线确定终端设备的位置。该方法可以包括但不限于如下步骤:
S310、参与定位的网络设备与参与定位的定位中心、终端设备、服务小区交互上行定位配置。
具体的,上行定位配置包括上行探测参考信号(sounding reference signal,SRS)配置信息或上行物理随机接入信道(physical random access channel,PRACH)配置信息等。参与定位的网络设备可以为LTE基站ng-eNB或5G基站gNB,并且参与定位的网络设备可以为一个或多个。参与定位的定位中心可以为定位管理功能LMF或NG-RAN架构中的定位管理组件LMC。定位管理组件LMC可以集成在服务小区网络设备(例如服务小区gNB)上,也可以集成在任意一个参与定位的网络设备(例如参与定位的gNB)上,还可以集成在任意一个不参与定位的网络设备(如不参与定位的gNB)上。其中,定位管理组件LMC集成在网络设备(例如gNB)上,承担了一部分LMF的功能,这样为了实现由LMC承担的这部分LMF功能,不需要经由AMF引入5G核心网,降低了信令时延。此外,参与定位的网络设备可以包括服务小区网络设备(如服务小区gNB),也可以不包括服务小区网络设备。
需要说明的是,上述交互上行定位配置的过程,包括参与定位的网络设备与参与定位的定位中心、终端设备、服务小区等设备之间的上行定位配置信息进行发送、接收、转发等过程,还可以包括对上行定位配置信息处理后的信息进行发送、接收、转发等过程,该交互过程可以满足LTE协议、NR协议以及可应用于未来的通信系统的相关协议,本申请对此不做限定,此处不再赘述。
S320、终端设备向参与定位的网络设备发送上行参考信号。
该上行参考信号可以为上行探测参考信号SRS或上行物理随机接入信道PRACH等,参与定位的网络设备对接收到的上行参考信号进行测量和/或计算,得到关于该上行参考 信号的角度测量信息。
在一种可能的实现方式中,角度测量信息包括设定的参考方向以及终端设备所在方向相对于该设定的参考方向的角度。其中,参考方向由参与定位的网络设备设定,参考方向的设定方式包括:(1)参与定位的网络设备(如gNB)线阵的朝向;(2)参与定位的网络设备(如gNB)面阵水平维度的朝向;(3)参与定位的网络设备(如gNB)任意选择的某个方向。该设定的参考方向包括:(1)方向角和俯仰角,方向角如图4所示的角度φ reference,俯仰角如图4中所示的角度θ reference;或,(2)仅包括方向角,如图4所示的角度φ reference,其中,俯仰角设定为π/2。需要说明的是,图4中的球体将地理正北、地理正西、穹顶方向分别作为x轴、y轴和z轴,将参与定位的网络设备的天线阵列中心作为原点,建立图示直角坐标系。终端设备所在方向相对于设定的参考方向的角度需要参与定位的网络设备测量和/或计算得到,如图5所示的角度θ。其范围为[0,π],其中,角度0表示终端设备所在方向与设定的参考方向同向,角度π/2表示终端设备所在方向与设定的参考方向垂直,角度π表示终端设备所在方向与设定的参考方向反向。
S330、参与定位的网络设备向定位中心上报角度测量信息。
应理解,参与定位的网络设备可以为一个或多个,角度测量信息与参与定位的网络设备一一对应。一个参与定位的网络设备对一个或多个上行参考信号进行处理,可以得到一个角度测量信息。示例的,三个参与定位的网络设备对八个上行参考信号进行处理,可以得到与三个参与定位的网络设备一一对应的三个角度测量信息。
S340、定位中心根据角度测量信息确定终端设备的位置。
在一种可能的实现方式中,定位中心根据从参与定位的网络设备接收到的角度测量信息,确定终端设备的位置。具体地,定位中心可以根据接收到的角度测量信息确定一个以角度测量信息中包含的设定的参考方向为中心的圆锥面。如图6所示,圆锥面的中心线为设定的参考方向,终端设备所在方向相对于设定的参考方向的角度为θ,圆锥面的顶点为参与定位的网络设备天线阵列的中心,该圆锥面的顶点可对应图4中的球心。多个参与定位的网络设备可以上报多个角度测量信息,定位中心可以根据这多个角度测量信息确定多个圆锥面。其中,参与定位的网络设备可以为一个或多个,参与定位的网络设备与其上报的角度测量信息一一对应,角度测量信息与其确定的圆锥面一一对应。终端设备的位置在定位中心确定的多个圆锥面的交点或者交线上,定位中心可以根据多个圆锥面的交点或者交线以及其他相关信息确定终端设备的位置。图7中以参与定位的网络设备是两个为例,示意性地绘制了两个圆锥面的交线(图中虚线),参与定位的两个网络设备与图示两个圆锥面分别对应,并且每个参与定位的网络设备设定的参考方向均为垂直方向。根据图7可知,定位中心可以根据图中两个圆锥面的交线(图中虚线)以及其他相关信息确定终端设备的位置信息。
需要说明的是,本申请提出的基于相对角度的定位方法中,终端设备的位置在定位中心确定的多个圆锥面的交点或者交线。要产生多个圆锥面的交点或者交线,至少需要存在两个圆锥面,由于参与定位的网络设备与其上报的角度测量信息一一对应,角度测量信息与其确定的圆锥面一一对应,所以按照推理,参与定位的网络设备应该至少为两个。但在实际应用本申请提出的基于相对角度的定位方法的过程中,参与定位的网络设备可以为至少一个,定位中心可以根据一个参与定位的网络设备上报的一个角度测量信息确定一个圆 锥面,然后再结合其他相关信息,最终确定终端设备的位置。同理,定位中心可以根据两个参与定位的网络设备上报的两个角度测量信息确定两个圆锥面,得到两个圆锥面的交线,然后再结合其他相关信息,最终确定终端设备的位置。所以,参与定位的网络设备可以为一个或多个。
还应理解,本申请实施例中对于参与定位的网络设备与参与定位的定位中心、终端设备、服务小区之间的信息交互方式并不限制,可以参考现有协议中的规定,或者,还可以是通信技术发展以后的其他协议规定的信息交互的方式,此处不再赘述。
上述实施例提供的基于相对角度的定位方法,可应用于上行到达角度测距定位方法(AoA)。现有技术的定位方法中,设定的参考方向固定为穹顶或者正北方向,本申请实施例提供的定位方法可以支持灵活的参考方向设定方式。另外,现有技术的定位方法通过估计终端设备的方向角以及俯仰角,确定终端设备的位置。该方法通过多个参与定位的网络设备确定多条射线,射线的交点为终端设备的位置。由于使用该方法估计终端设备的方向角以及俯仰角,需要参与定位的网络设备的天线阵列为面阵,即具有2维天线阵列,则网络设备的建设成本会增加,并且天线阵列的形式也会受限制。现有技术的定位方法也可以仅通过方向角确定终端设备的位置。该方法通过多个参与定位的网络设备确定多个平面,终端位置位于多个平面的交线或交点上。一般的,水平面交线垂直于水平面,意味着可以获得终端设备的水平坐标。但当参与定位的网络设备的天线阵列是线阵时,该方法只适用于水平天线线阵定位,且为当俯仰角接近90度(例如终端设备距离基站较远,高程差可以忽略)时的近似方法。在终端设备距离参与定位的网络设备较近时,该方法的近似误差较大,导致对终端设备的方向角估计不准确,使对终端设备的定位误差增加。本申请实施例提供的基于相对角度的定位方法包括参与定位的网络设备向定位中心上报角度测量信息,该角度测量信息包括设定的参考方向以及终端设备所在方向相对于设定的参考方向的角度,定位中心基于上报的该角度测量信息确定终端设备所在的圆锥面,并基于多个圆锥面的交点或者交线确定终端设备的位置。该基于相对角度的定位方法,不存在终端设备接近参与定位的网络设备时定位不准确的问题,提高了定位精度。
请参见图8,图8是本申请实施例提供的又一种基于相对角度的定位方法的流程示意图。该方法可用于下行发射角测距(Angle of Departure,AoD)定位方法,包括:定位中心根据终端设备上报的功率测量信息自行计算或向参与定位的网络设备请求角度测量信息,该角度测量信息包括设定的参考方向以及终端设备所在方向相对于该设定的参考方向的夹角,定位中心基于自行计算的或从参与定位的网络设备处接收到的角度测量信息确定终端设备所在的圆锥面,并基于多个圆锥面的交点或者交线确定终端设备的位置。该方法可以包括但不限于如下步骤:
S810、参与定位的定位中心与参与定位的网络设备、终端设备、服务小区交互下行定位配置。
具体的,下行定位配置可以包括下行同步信号块(synchronization signal block,SSB)配置信息或下行定位参考信号(positioning reference signal,PRS)配置信息等。参与定位的网络设备可以为LTE基站ng-eNB或5G基站gNB,并且参与定位的网络设备可以为一个或多个。参与定位的定位中心可以为定位管理功能LMF或NG-RAN架构中的定位管理组件LMC。定位管理组件LMC可以集成在服务小区网络设备(例如服务小区gNB)上, 也可以集成在任意一个参与定位的网络设备(例如参与定位的gNB)上,还可以集成在任意一个不参与定位的网络设备(如不参与定位的gNB)上。其中,定位管理组件LMC集成在网络设备(例如gNB)上,承担了一部分LMF的功能,这样为了实现由LMC承担的这部分LMF功能,不需要经由AMF引入5G核心网,降低了信令时延。此外,参与定位的网络设备可以包括服务小区网络设备(如服务小区gNB),也可以不包括服务小区网络设备。
需要说明的是,上述交互上行定位配置的过程,包括参与定位的网络设备与参与定位的定位中心、终端设备、服务小区等设备之间的上行定位配置信息进行发送、接收、转发等过程,还可以包括对上行定位配置信息处理后的信息进行发送、接收、转发等过程,该交互过程可以满足LTE协议、NR协议以及可应用于未来的通信系统的相关协议,本申请对此不做限定,此处不再赘述。
S820、参与定位的网络设备向终端设备发送下行参考信号。
该下行参考信号可以为下行同步信号块SSB或下行定位参考信号PRS等。终端设备对接收到的下行参考信号进行计算和/或测量,得到关于该下行参考信号的功率测量信息。
需要说明的是,该功率测量信息包括终端设备测量的关于一个或多个下行参考信号的一个或多个参考信号接收功率(reference signal received power,RSRP),和/或,一个或多个径功率。
应理解,参与定位的网络设备为一个或多个,角度测量信息与参与定位的网络设备一一对应。终端设备对一个或多个下行参考信号处理,可以得到一个或多个功率测量信息;参与定位的网络设备对包含在请求位置信息中的一个或多个功率测量信息进行处理,可以得到与参与定位的网络设备一一对应的角度测量信息。示例的,终端设备对八个下行参考信号处理,可以得到八个功率测量信息;三个参与定位的网络设备对包含在请求位置信息中的八个功率测量信息处理,得到与三个参与定位的网络设备一一对应的三个角度测量信息。
S830、终端设备向定位中心上报所述功率测量信息。
S840、定位中心向参与定位的网络设备请求角度测量信息。
在一种可能的实现方式中,定位中心具备计算能力,可以根据终端设备上报的功率测量信息,计算和/或测量终端设备的位置信息。在该实现方式中,步骤S840和步骤S850可以不执行,该基于相对角度的定位方法实施例可以执行在步骤S830之后,直接执行步骤S860。
在另一种可能的实现方式中,定位中心不具备计算能力,需要向参与定位的网络设备请求角度测量信息。具体的,定位中心向参与定位的网络设备发送请求位置信息(request location information,RLI)。该请求位置信息包含功率测量信息,该请求位置信息用于指示参与定位的网络设备根据功率测量信息确定角度测量信息,该角度测量信息包括设定的参考方向和终端设备所在方向相对于设定的参考方向的角度。参与定位的网络设备对该功率测量信息进行计算和/或测量后,得到角度测量信息,并将该角度测量信息发送给定位中心。
S850、参与定位的网络设备向定位中心上报角度测量信息。
在一种可能的实现方式中,角度测量信息包括设定的参考方向以及终端设备所在方向 相对于该设定的参考方向的角度。其中,参考方向由参与定位的网络设备设定,该设定的参考方向包括:(1)方向角和俯仰角,方向角如图4所示的角度φ reference,俯仰角如图4中所示的角度θ reference;或,(2)仅包括方向角,如图4所示的角度φ reference,其中,俯仰角设定为π/2。需要说明的是,图4中的球体将地理正北、地理正西、穹顶方向分别作为x轴、y轴和z轴,将参与定位的网络设备的天线阵列中心作为原点,建立图示直角坐标系。终端设备所在方向相对于设定的参考方向的角度需要参与定位的网络设备测量和/或计算得到,如图5所示的角度θ。其范围为[0,π],其中,角度0表示终端设备所在方向与设定的参考方向同向,角度π/2表示终端设备所在方向与设定的参考方向垂直,角度π表示终端设备所在方向与设定的参考方向反向。
在一种可能的实现方式中,定位中心具备计算能力,可以根据步骤S830中终端设备上报的功率测量信息计算和/或测量得到角度测量信息,并根据角度测量信息确定终端设备的位置。则在该实现方式中,步骤S840和步骤步骤S850可以省略,只执行其他步骤。
在另一种可能的实现方式中,定位中心不具备计算能力,需要向参与定位的网络设备请求角度测量信息。具体的,定位中心向参与定位的网络设备发送请求位置信息(request location information,RLI)。该请求位置信息包含功率测量信息,该请求位置信息用于指示参与定位的网络设备根据功率测量信息确定角度测量信息,该角度测量信息包括设定的参考方向和终端设备所在方向相对于设定的参考方向的角度。参与定位的网络设备对该功率测量信息进行计算和/或测量后,得到角度测量信息,并将该角度测量信息发送给定位中心。
需要说明的是,具体地,定位中心可以根据接收到的角度测量信息确定一个以角度测量信息中包含的设定的参考方向为中心的圆锥面。如图6所示,圆锥面的中心线为设定的参考方向,终端设备所在方向相对于设定的参考方向的角度为θ,圆锥面的顶点为参与定位的网络设备天线阵列的中心,该圆锥面的顶点可对应图4中的球心。多个参与定位的网络设备可以上报多个角度测量信息,定位中心可以根据这多个角度测量信息确定多个圆锥面。其中,参与定位的网络设备可以为一个或多个,参与定位的网络设备与其上报的角度测量信息一一对应,角度测量信息与其确定的圆锥面一一对应。终端设备的位置在定位中心确定的多个圆锥面的交点或者交线上,定位中心可以根据多个圆锥面的交点或者交线以及其他相关信息确定终端设备的位置。
还需要说明的是,本申请提出的基于相对角度的定位方法中,终端设备的位置在定位中心确定的多个圆锥面的交点或者交线。要产生多个圆锥面的交点或者交线,至少需要存在两个圆锥面,由于参与定位的网络设备与其上报的角度测量信息一一对应,角度测量信息与其确定的圆锥面一一对应,所以按照推理,参与定位的网络设备应该至少为两个。但在实际应用本申请提出的基于相对角度的定位方法的过程中,参与定位的网络设备可以为至少一个,定位中心可以根据一个参与定位的网络设备上报的一个角度测量信息确定一个圆锥面,然后再结合其他相关信息,最终确定终端设备的位置。同理,定位中心可以根据两个参与定位的网络设备上报的两个角度测量信息确定两个圆锥面,得到两个圆锥面的交线,然后再结合其他相关信息,最终确定终端设备的位置。所以,参与定位的网络设备可以为一个或多个。
还应理解,本申请实施例中对于参与定位的网络设备与参与定位的定位中心、终端设 备、服务小区之间的信息交互方式并不限制,可以参考现有协议中的规定,或者,还可以是通信技术发展以后的其他协议规定的信息交互的方式,此处不再赘述。
上述实施例提供的基于相对角度的定位方法,可应用于上行发射角度测距定位方法(AoD)。现有技术的定位方法中,设定的参考方向固定为穹顶或者正北方向,本申请实施例提供的定位方法可以支持灵活的参考方向设定方式。另外,现有技术的定位方法通过估计终端设备的方向角以及俯仰角,确定终端设备的位置。该方法通过多个参与定位的网络设备确定多条射线,射线的交点为终端设备的位置。由于使用该方法估计终端设备的方向角以及俯仰角,需要参与定位的网络设备的天线阵列为面阵,即具有2维天线阵列,则网络设备的建设成本会增加,并且天线阵列的形式也会受限制。现有技术的定位方法也可以仅通过方向角确定终端设备的位置。该方法通过多个参与定位的网络设备确定多个平面,终端位置位于多个平面的交线或交点上。一般的,水平面交线垂直于水平面,意味着可以获得终端设备的水平坐标。但当参与定位的网络设备的天线阵列是线阵时,该方法只适用于水平天线线阵定位,且为当俯仰角接近90度(例如终端设备距离基站较远,高程差可以忽略)时的近似方法。在终端设备距离参与定位的网络设备较近时,该方法的近似误差较大,导致对终端设备的方向角估计不准确,使对终端设备的定位误差增加。本申请实施例提供的基于相对角度的定位方法包括参与定位的网络设备向定位中心上报角度测量信息,该角度测量信息包括设定的参考方向以及终端设备所在方向相对于设定的参考方向的角度,定位中心基于上报的该角度测量信息确定终端设备所在的圆锥面,并基于多个圆锥面的交点或者交线确定终端设备的位置。该基于相对角度的定位方法,不存在终端设备接近参与定位的网络设备时定位不准确的问题,提高了定位精度。并且,在该实施例中,若定位中心具备计算能力,还可以简化上述实施例中基于相对角度的定位方法流程,节省信令开销。
上面描述了本申请实施例提供的方法实施例,下面将描述本申请实施例提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
上面主要从各个设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个设备,例如网络设备或者定位中心,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本申请中公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同的方法实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备或者定位中心进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面采用对应各个功能划分各个功能模块为例进行说明。
参见图9,图9是本申请提出的网络装置90的示意图。如图9所示,网络装置90包 括收发单元910和处理单元920。在一种可能的实现方式中:
收发单元910,用于与参与定位的定位中心、终端设备、服务小区交互上行定位配置;
该收发单元910,还用于接收终端设备发送的第一参考信号;
该收发单元910,还用于向定位中心上报角度测量信息,该角度测量信息包括设定的参考方向和终端设备所在方向相对于设定的参考方向的角度;
应理解,本申请实施例中并不限制收发单元910与其他设备交互信息的方式,可以依据LTE协议、NR协议或可应用于未来通信系统中的其他协议等。
处理单元920,用于根据第一参考信号确定角度测量信息。
具体的,处理单元920对收发单元910接收到的上行参考信号进行测量和/或计算后,得到关于该上行参考信号的角度测量信息。在一种可能的实现方式中,该角度测量信息包括设定的参考方向以及终端设备所在方向相对于该设定的参考方向的角度。其中,设定的参考方向由处理单元920灵活设定。设定方式包括以下至少一种:网络装置90天线线阵的朝向;网络装置90天线面阵水平维度的朝向;网络装置90任意选择的某个方向。终端设备所在方向相对于设定的参考方向的角度需要处理单元920测量和/或计算得到。该基于相对角度的定位方法可以支持基于天线线阵的角度定位。
在另一种可能的实现方式中:
收发单元910,用于与参与定位的定位中心、终端设备、服务小区交互下行定位配置;
该收发单元910,还用于向终端设备发送第二参考信号;
该收发单元910,还用于接收定位中心发送的请求位置信息,该请求位置信息包含功率测量信息,该功率测量信息由终端设备根据一个或多个第二参考信号确定;该请求位置信息用于指示处理单元920根据功率测量信息确定角度测量信息;该角度测量信息包括设定的参考方向和终端设备所在方向相对于设定的参考方向的角度;
该收发单元910,还用于向定位中心上报该角度测量信息;
处理单元920,用于根据功率测量信息确定角度测量信息。
具体的,处理单元920对收发单元910接收到的功率测量信息进行测量和/或计算后,得到关于下行参考信号的角度测量信息。收发单元910向定位中心上报该角度测量信息,定位中心根据接收到的该角度测量信息确定一个以角度测量信息中包含的设定的参考方向为中心的圆锥面。多个参与定位的网络装置90可以通过收发单元910上报多个角度测量信息,定位中心可以根据这多个角度测量信息确定多个圆锥面。其中,参与定位的网络装置90可以为一个或多个,参与定位的网络装置90与其上报的角度测量信息一一对应,角度测量信息与确定的圆锥面一一对应。终端设备的位置在定位中心确定的多个圆锥面的交点或者交线上。定位中心可以根据多个圆锥面的交点或者交线以及其他相关信息确定终端设备的位置。
需要说明的是,网络装置90和方法实施例中的网络设备完全对应,网络装置90可以是方法实施例中的网络设备,或者是方法实施例中的网络设备内部的芯片或功能模块。网络装置90的相应单元用于执行图3或图8所示的方法实施例中由网络设备执行的相应步骤。
在图3所示的方法实施例中,网络装置90中的收发单元910执行方法实施例中网络设备收发的步骤。例如,执行图3中的步骤S310、与参与定位的定位中心、终端设备、 服务小区交互上行定位配置;还执行图3中的步骤S320、接收终端设备发送的上行参考信号;还执行图3中的步骤S330、向定位中心上报角度测量信息。
处理单元920执行方法实施例中网络设备内部实现或处理的步骤。例如,执行图3中的步骤S320中,根据上行参考信号确定角度测量信息的操作。
在图8所示的方法实施例中,网络装置90中的收发单元910执行方法实施例中网络设备收发的步骤。例如,执行图8中的步骤S810、与参与定位的定位中心、终端设备、服务小区交互下行定位配置;还执行图8中的步骤S820、向终端设备发送下行参考信号;还执行图8中的步骤S840、接收定位中心发送的请求位置信息;还执行图8中的步骤S840、向定位中心上报角度测量信息。
处理单元920执行方法实施例中网络设备内部实现或处理的步骤。例如,执行图8中的步骤S840中,根据请求位置信息和其包含的功率测量信息确定角度测量信息的操作。
其中,收发单元910可以是收发器,该收发器可以由接收器和发射器集成在一起组成。该收发器还可以称为通信接口或者通信单元。
应理解,图9仅为示例而非限定,上述包括收发单元和处理单元的网络装置可以不依赖于图9所示的结构。
当该网络装置90为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
参见图10,本申请还提供一种网络装置100,该网络装置100包括处理器1010,用于实现图3或图8所示的方法实施例中由网络设备执行的功能。
示例性地,该网络装置还包括存储器1020,该存储器1020与该处理器1010耦合,该处理器1010用于实现实现图3或图8所示的方法实施例中由网络设备执行的功能。
在一种可能的实现中,该存储器1020用于存储程序指令和数据。该存储器1020与该处理器1010耦合,该处理器1010可以调用并执行该存储器1020中存储的程序指令,用于实现图3或图8所示的方法实施例中由网络设备执行的功能。
示例性地,该网络装置100还包括通信接口1030,该通信接口1030用于该网络装置100与其它设备进行通信。当该网络装置100为网络设备时,该通信接口1030包括收发器,或,该通信接口1030包括输入/输出接口。
在一种可能的设计中,该网络装置100包括:处理器1010和通信接口1030,用于实现图3或图8所示的方法实施例中由网络设备执行的功能,具体地包括:
该处理器1010利用该通信接口1030与外部通信;
该处理器1010用于运行计算机程序,使得该网络装置100实现图3或图8所示的方法实施例中由网络设备执行的功能。
可以理解,该外部可以是处理器1010以外的对象,或者是该网络装置100以外的对象。
在另一种实现方式中,该网络装置100为芯片或芯片系统时,该通信接口1030包括该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器1010体现为处理电路或逻辑电路。
参见图11,图11是本申请提出的定位管理装置110的示意图。如图11所示,装置 110包括收发单元1110和处理单元1120。在一种可能的实现方式中:
收发单元1110,用于与参与定位的网络设备、终端设备、服务小区交互上行定位配置;
该收发单元1110,还用于接收参与定位的网络设备上报的角度测量信息,该角度测量信息由参与定位的网络设备根据第一参考信号确定,第一参考信号由参与定位的网络设备从终端设备处接收;该角度测量信息包括设定的参考方向和终端设备所在方向相对于设定的参考方向的角度;
处理单元1120,用于根据角度测量信息确定终端设备的位置。
具体的,处理单元1120根据角度测量信息确定多个圆锥面,该多个圆锥面与角度测量信息一一对应,该角度测量信息与参与定位的网络设备一一对应;其中,多个圆锥面中的每个圆锥面以与其对应的角度测量信息中包含的设定的参考方向为中心;处理单元1120根据该多个圆锥面的交点或交线确定终端设备的位置。
在另一种可能的实现方式中:
收发单元1110,用于与参与定位的网络设备、终端设备、服务小区交互下行定位配置;
该收发单元1110,还用于接收终端设备上报的功率测量信息,该功率测量信息包括终端设备确定的关于一个或多个第二参考信号的一个或多个参考信号接收功率和/或一个或多个径功率;
该收发单元1110,还用于向参与定位的网络设备发送请求位置信息,该请求位置信息包含功率测量信息,该请求位置信息用于指示参与定位的网络设备根据功率测量信息确定角度测量信息,该角度测量信息包括设定的参考方向和终端设备所在方向相对于设定的参考方向的角度;
该收发单元1110,还用于接收参与定位的网络设备上报的角度测量信息;
处理单元1120,用于根据角度测量信息确定终端设备的位置。
在一种可能的实现方式中,处理单元1120还用于根据功率测量信息计算得到角度测量信息,并根据角度测量信息确定终端设备的位置。
处理单元1120根据角度测量信息确定终端设备的位置,包括:处理单元根据角度测量信息确定多个圆锥面,该多个圆锥面与角度测量信息一一对应,该角度测量信息与参与定位的网络设备一一对应;其中,该多个圆锥面中的每个圆锥面以与其对应的角度测量信息中包含的设定的参考方向为中心;处理单元1120根据多个圆锥面的交点或交线确定终端设备的位置。
定位管理装置110和方法实施例中的定位中心完全对应,定位管理装置110可以是方法实施例中的定位中心,或者方法实施例中的定位中心内部的芯片或功能模块。定位管理装置110的相应单元用于执行图3或图8所示的方法实施例中由定位中心执行的相应步骤。
在图3所示的方法实施例中,定位管理装置110中的收发单元1110执行方法实施例中定位中心收发的步骤。例如,执行图3中的步骤S310、与参与定位的网络设备、终端设备、服务小区交互上行定位配置;还执行图3中的步骤S330、接收参与定位的网络设备上报的角度测量信息。
定位管理装置110中的处理单元1120执行方法实施例中定位中心内部实现或处理的 步骤。例如,执行图3中的步骤S340、根据角度测量信息确定终端设备的位置。
在图8所示的方法实施例中,定位管理装置110中的收发单元1110执行方法实施例中定位中心收发的步骤。例如,执行图8中的步骤S810、与参与定位的网络设备、终端设备、服务小区交互下行定位配置;还执行图8中的步骤S840、向参与定位的网络设备请求角度测量信息;还执行图8中的步骤S850、接收参与定位的网络设备上报的角度测量信息。
定位管理装置110中的处理单元1120执行方法实施例中定位中心内部实现或处理的步骤。例如,执行图8中的步骤S860、根据角度测量信息确定终端设备的位置。
其中,收发单元1110可以是收发器,该收发器可以由接收器和发射器集成在一起组成。该收发器还可以称为通信接口或者通信单元。处理单元1120可以是处理器。
应理解,图11仅为示例而非限定,上述包括收发单元和处理单元的网络装置可以不依赖于图11所示的结构。
当该定位管理装置110为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
参见图12,本申请还提供一种定位管理装置120,该定位管理装置120包括处理器1210,用于实现图3或图8所示的方法实施例中由定位中心执行的功能。
示例性地,该定位管理装置120还包括存储器1220,该存储器1220与该处理器1210耦合,该处理器1210用于实现实现图3或图8所示的方法实施例中由定位中心执行的功能。
在一种可能的实现中,该存储器1220用于存储程序指令和数据。该存储器1220与该处理器1210耦合,该处理器1210可以调用并执行该存储器1220中存储的程序指令,用于实现图3或图8所示的方法实施例中由定位中心执行的功能。
示例性地,该定位管理装置120还包括通信接口1230,该通信接口1230用于该定位管理装置120与其它设备进行通信。当该定位管理装置120为定位中心时,该通信接口1230包括收发器,或,该通信接口1230包括输入/输出接口。
在一种可能的设计中,该定位管理装置120包括:处理器1210和通信接口1230,用于实现图3或图8所示的方法实施例中由定位中心执行的功能,具体地包括:
该处理器1210利用该通信接口1230与外部通信;
该处理器1210用于运行计算机程序,使得该定位管理装置120实现图3或图8所示的方法实施例中由定位中心执行的功能。
可以理解,该外部可以是处理器1210以外的对象,或者是该定位管理装置120以外的对象。
在另一种实现方式中,该定位管理装置120为芯片或芯片系统时,该通信接口1230包括该芯片或芯片系统上输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。该处理器1210体现为处理电路或逻辑电路。
本申请实施例还提供一种通信系统,其包括前述的网络设备、定位中心、终端设备和服务小区。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当 该指令在计算机上运行时,使得计算机执行上述如图3或图8所示的方法中网络设备执行的各个步骤。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述如图3或图8所示的方法中定位中心执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图3或图8所示的方法中网络设备执行的各个步骤。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行如图3或图8所示的方法中定位中心执行的各个步骤。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的基于相对角度的定位方法中由网络设备执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请还提供一种芯片,包括处理器。该处理器用于读取并运行存储器中存储的计算机程序,以执行本申请提供的基于相对角度的定位方法中由定位中心执行的相应操作和/或流程。可选地,该芯片还包括存储器,该存储器与该处理器通过电路或电线与存储器连接,处理器用于读取并执行该存储器中的计算机程序。进一步可选地,该芯片还包括通信接口,处理器与该通信接口连接。通信接口用于接收需要处理的数据和/或信息,处理器从该通信接口获取该数据和/或信息,并对该数据和/或信息进行处理。该通信接口可以是输入输出接口。
本申请中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程、方法、产品或设备所固有的其它步骤或单元。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically  EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而 前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种基于相对角度的定位方法,其特征在于,包括:
    参与定位的网络设备与参与定位的定位中心、终端设备、服务小区交互上行定位配置;
    所述参与定位的网络设备接收所述终端设备发送的第一参考信号;
    所述参与定位的网络设备根据所述第一参考信号确定角度测量信息,所述角度测量信息包括设定的参考方向和所述终端设备所在方向相对于所述设定的参考方向的角度;
    所述参与定位的网络设备向所述定位中心上报所述角度测量信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述定位中心根据所述角度测量信息确定所述终端设备的位置。
  3. 根据权利要求2所述的方法,其特征在于,所述定位中心根据所述角度测量信息确定所述终端设备的位置,包括:
    所述定位中心根据所述角度测量信息确定多个圆锥面,所述多个圆锥面与所述角度测量信息一一对应,所述角度测量信息与所述参与定位的网络设备一一对应;
    其中,所述多个圆锥面中的每个圆锥面以与其对应的所述角度测量信息中包含的设定的参考方向为中心;
    所述定位中心根据所述多个圆锥面的交点或交线确定所述终端设备的位置。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述设定的参考方向包括方向角,或,方向角以及俯仰角;当所述设定的参考方向仅包括所述方向角时,相应的俯仰角设定为π/2。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述终端设备所在方向相对于所述设定的参考方向的角度,范围为[0,π],其中,所述角度为0表示所述终端设备所在方向与所述设定的参考方向同向,所述角度为π/2表示所述终端设备所在方向与所述设定的参考方向垂直,所述角度为π表示所述终端设备所在方向与所述设定的参考方向反向。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述参考方向的设定方式包括以下至少一种:
    所述参与定位的网络设备天线线阵的朝向;
    所述参与定位的网络设备天线面阵水平维度的朝向;
    所述参与定位的网络设备任意选择的某个方向。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述定位中心为定位管理功能或定位管理组件,所述定位管理组件集成在所述服务小区网络设备上,或集成在所述参与定位的网络设备上,或集成在不参与定位的网络设备上。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述参与定位的网络设备包括服务小区网络设备,或不包括服务小区网络设备。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述上行定位配置包括上行探测参考信号配置信息或上行物理随机接入信道配置信息。
  10. 一种基于相对角度的定位方法,其特征在于,包括:
    参与定位的定位中心与参与定位的网络设备、终端设备、服务小区交互下行定位配置;
    所述定位中心接收所述终端设备上报的功率测量信息,所述功率测量信息包括所述终 端设备确定的关于一个或多个第二参考信号的一个或多个参考信号接收功率和/或一个或多个径功率;
    所述定位中心向所述参与定位的网络设备发送请求位置信息,所述请求位置信息包含所述功率测量信息,所述请求位置信息用于指示所述参与定位的网络设备根据所述功率测量信息确定所述角度测量信息,所述角度测量信息包括设定的参考方向和所述终端设备所在方向相对于所述设定的参考方向的角度;
    所述定位中心接收所述参与定位的网络设备上报的所述角度测量信息;
    所述定位中心根据所述角度测量信息确定所述终端设备的位置。
  11. 根据权利要求10所述的方法,其特征在于,所述定位中心接收所述终端设备上报的功率测量信息之后,所述方法还包括:
    所述定位中心根据所述功率测量信息计算得到所述角度测量信息;
    所述定位中心根据所述角度测量信息确定所述终端设备的位置。
  12. 根据权利要求10或11所述的方法,其特征在于,所述定位中心根据所述角度测量信息确定所述终端设备的位置,包括:
    所述定位中心根据所述角度测量信息确定多个圆锥面,所述多个圆锥面与所述角度测量信息一一对应,所述角度测量信息与所述参与定位的网络设备一一对应;
    其中,所述多个圆锥面中的每个圆锥面以与其对应的所述角度测量信息中包含的设定的参考方向为中心;
    所述定位中心根据所述多个圆锥面的交点或交线确定所述终端设备的位置。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述设定的参考方向包括方向角,或,方向角以及俯仰角;当所述设定的参考方向仅包括所述方向角时,相应的俯仰角设定为π/2。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述终端设备所在方向相对于所述设定的参考方向的角度,范围为[0,π],其中,所述角度为0表示所述终端设备所在方向与所述设定的参考方向同向,所述角度为π/2表示所述终端设备所在方向与所述设定的参考方向垂直,所述角度为π表示所述终端设备所在方向与所述设定的参考方向反向。
  15. 根据权利要求10-14任一项所述的方法,其特征在于,所述参考方向的设定方式包括以下至少一种:
    所述参与定位的网络设备天线线阵的朝向;
    所述参与定位的网络设备天线面阵水平维度的朝向;
    所述参与定位的网络设备任意选择的某个方向。
  16. 根据权利要求10-15任一项所述的方法,其特征在于,所述定位中心为定位管理功能或定位管理组件,所述定位管理组件集成在服务小区网络设备上,或集成在所述参与定位的网络设备上,或集成在不参与定位的网络设备上。
  17. 根据权利要求10-16任一项所述的方法,其特征在于,所述参与定位的网络设备包括服务小区网络设备,或不包括服务小区网络设备。
  18. 根据权利要求10-17任一项所述的方法,其特征在于,所述下行定位配置包括同步信号块配置信息或定位参考信号配置信息。
  19. 一种基于相对角度的定位方法,其特征在于,包括:
    参与定位的定位中心与参与定位的网络设备、终端设备、服务小区交互上行定位配置;
    所述定位中心接收所述参与定位的网络设备上报的角度测量信息,所述角度测量信息由所述参与定位的网络设备根据第一参考信号确定,所述第一参考信号由所述参与定位的网络设备从所述终端设备处接收;所述角度测量信息包括设定的参考方向和所述终端设备所在方向相对于所述设定的参考方向的角度;
    所述定位中心根据所述角度测量信息确定所述终端设备的位置。
  20. 一种基于相对角度的定位方法,其特征在于,包括:
    参与定位的网络设备与参与定位的定位中心、终端设备、服务小区交互下行定位配置;
    所述参与定位的网络设备向所述终端设备发送第二参考信号;
    所述参与定位的网络设备接收所述定位中心发送的请求位置信息,所述请求位置信息包含功率测量信息,所述功率测量信息由所述终端设备根据一个或多个所述第二参考信号确定;所述请求位置信息用于指示所述参与定位的网络设备根据所述功率测量信息确定所述角度测量信息,所述角度测量信息包括设定的参考方向和所述终端设备所在方向相对于所述设定的参考方向的角度;
    所述参与定位的网络设备向所述定位中心上报所述角度测量信息。
  21. 一种网络装置,其特征在于,包括:
    收发单元,用于与参与定位的定位中心、终端设备、服务小区交互上行定位配置;
    所述收发单元,还用于接收所述终端设备发送的第一参考信号;
    所述收发单元,还用于向所述定位中心上报角度测量信息,所述角度测量信息包括设定的参考方向和所述终端设备所在方向相对于所述设定的参考方向的角度;
    处理单元,用于根据所述第一参考信号确定所述角度测量信息。
  22. 根据权利要求21所述的装置,其特征在于,所述设定的参考方向包括方向角,或,方向角以及俯仰角;当所述设定的参考方向仅包括所述方向角时,相应的俯仰角设定为π/2。
  23. 根据权利要求21或22任一项所述的装置,其特征在于,所述参考方向的设定方式包括以下至少一种:
    所述网络装置天线线阵的朝向;
    所述网络装置天线面阵水平维度的朝向;
    所述网络装置任意选择的某个方向。
  24. 一种定位管理装置,其特征在于,包括:
    收发单元,用于与参与定位的网络设备、终端设备、服务小区交互下行定位配置;
    所述收发单元,还用于接收所述终端设备上报的功率测量信息,所述功率测量信息包括所述终端设备确定的关于一个或多个第二参考信号的一个或多个参考信号接收功率和/或一个或多个径功率;
    所述收发单元,还用于向所述参与定位的网络设备发送请求位置信息,所述请求位置信息包含所述功率测量信息,所述请求位置信息用于指示所述参与定位的网络设备根据所述功率测量信息确定所述角度测量信息,所述角度测量信息包括设定的参考方向和所述终端设备所在方向相对于所述设定的参考方向的角度;
    所述收发单元,还用于接收所述参与定位的网络设备上报的所述角度测量信息;
    处理单元,用于根据所述角度测量信息确定所述终端设备的位置。
  25. 根据权利要求24所述的装置,其特征在于,所述处理单元还用于根据所述功率测量信息计算得到所述角度测量信息,并根据所述角度测量信息确定所述终端设备的位置。
  26. 根据权利要求24或25所述的装置,其特征在于,所述处理单元根据所述角度测量信息确定所述终端设备的位置,包括:
    所述处理单元根据所述角度测量信息确定多个圆锥面,所述多个圆锥面与所述角度测量信息一一对应,所述角度测量信息与所述参与定位的网络设备一一对应;
    其中,所述多个圆锥面中的每个圆锥面以与其对应的所述角度测量信息中包含的设定的参考方向为中心;
    所述处理单元根据所述多个圆锥面的交点或交线确定所述终端设备的位置。
  27. 一种定位管理装置,其特征在于,包括:
    收发单元,用于与参与定位的网络设备、终端设备、服务小区交互上行定位配置;
    所述收发单元,还用于接收所述参与定位的网络设备上报的角度测量信息,所述角度测量信息由所述参与定位的网络设备根据第一参考信号确定,所述第一参考信号由所述参与定位的网络设备从所述终端设备处接收;所述角度测量信息包括设定的参考方向和所述终端设备所在方向相对于所述设定的参考方向的角度;
    处理单元,用于根据所述角度测量信息确定所述终端设备的位置。
  28. 根据权利要求27所述的装置,其特征在于,所述处理单元根据所述角度测量信息确定所述终端设备的位置,包括:
    所述处理单元根据所述角度测量信息确定多个圆锥面,所述多个圆锥面与所述角度测量信息一一对应,所述角度测量信息与所述参与定位的网络设备一一对应;
    其中,所述多个圆锥面中的每个圆锥面以与其对应的所述角度测量信息中包含的设定的参考方向为中心;
    所述处理单元根据所述多个圆锥面的交点或交线确定所述终端设备的位置。
  29. 一种网络装置,其特征在于,包括:
    收发单元,用于与参与定位的定位中心、终端设备、服务小区交互下行定位配置;
    所述收发单元,还用于向所述终端设备发送第二参考信号;
    所述收发单元,还用于接收所述定位中心发送的请求位置信息,所述请求位置信息包含功率测量信息,所述功率测量信息由所述终端设备根据一个或多个所述第二参考信号确定;所述请求位置信息用于指示所述参与定位的网络设备根据所述功率测量信息确定所述角度测量信息;所述角度测量信息包括设定的参考方向和所述终端设备所在方向相对于所述设定的参考方向的角度;
    所述收发单元,还用于向所述定位中心上报所述角度测量信息;
    处理单元,用于根据所述功率测量信息确定所述角度测量信息。
  30. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时使得所述计算机实现权利要求1-9中任一项所述的方法,或者,权利要求10-18中任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,包括:指令,当所述计算机程序产品在计算 机上运行时,使得计算机执行权利要求1-9中任一项所述的方法,或者执行权利要求10-18任一项所述的方法。
  32. 一种通信系统,其特征在于,包括:
    存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述设备执行权利要求1-9任一项所述的方法,或者执行权利要求10-18任一项所述的方法。
PCT/CN2020/100311 2019-08-16 2020-07-05 一种基于相对角度的定位方法及装置 WO2021031714A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3148186A CA3148186A1 (en) 2019-08-16 2020-07-05 Relative angle-based positioning method and apparatus
EP20854043.5A EP4017036A4 (en) 2019-08-16 2020-07-05 METHOD AND APPARATUS FOR POSITIONING BASED ON RELATIVE ANGLE
US17/673,582 US20220171014A1 (en) 2019-08-16 2022-02-16 Relative angle-based positioning method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760340.7A CN112399330A (zh) 2019-08-16 2019-08-16 一种基于相对角度的定位方法及装置
CN201910760340.7 2019-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/673,582 Continuation US20220171014A1 (en) 2019-08-16 2022-02-16 Relative angle-based positioning method and apparatus

Publications (1)

Publication Number Publication Date
WO2021031714A1 true WO2021031714A1 (zh) 2021-02-25

Family

ID=74602899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100311 WO2021031714A1 (zh) 2019-08-16 2020-07-05 一种基于相对角度的定位方法及装置

Country Status (5)

Country Link
US (1) US20220171014A1 (zh)
EP (1) EP4017036A4 (zh)
CN (1) CN112399330A (zh)
CA (1) CA3148186A1 (zh)
WO (1) WO2021031714A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105674A1 (en) * 2021-06-11 2022-12-21 Hand Held Products, Inc. Methods and apparatuses for automatically comissioning locators
US11770680B2 (en) 2021-06-11 2023-09-26 Hand Held Products, Inc. Methods and apparatuses for automatically commissioning locators

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115119136A (zh) * 2021-03-17 2022-09-27 维沃移动通信有限公司 定位方法、终端及网络侧设备
CN115243365A (zh) * 2021-04-02 2022-10-25 大唐移动通信设备有限公司 定位方法、装置及存储介质
CN115413016A (zh) * 2021-05-11 2022-11-29 大唐移动通信设备有限公司 参考设备确定方法及装置、网络侧设备
US11917653B2 (en) * 2021-09-09 2024-02-27 Qualcomm Incorporated Dynamic positioning capability reporting in millimeter wave bands
US11811462B2 (en) * 2021-09-22 2023-11-07 Qualcomm Incorporated Base station location and orientation computation procedure
CN115022961B (zh) * 2021-12-31 2023-06-02 荣耀终端有限公司 定位方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110124347A1 (en) * 2009-09-15 2011-05-26 Byron Hua Chen Method And Apparatus for UE Positioning in LTE Networks
CN105264920A (zh) * 2012-12-12 2016-01-20 英维斯塔克有限公司 使用减少的衰减rf技术对对象进行测距和跟踪时的多径抑制
CN108293172A (zh) * 2015-10-08 2018-07-17 波尔特公司 用于追踪对象的到达角度定位系统
CN109195097A (zh) * 2018-10-26 2019-01-11 Oppo广东移动通信有限公司 定位方法、装置、终端及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104540099A (zh) * 2014-12-31 2015-04-22 京信通信系统(中国)有限公司 一种终端定位方法及演进的服务移动位置中心
EP3306337A1 (en) * 2016-10-10 2018-04-11 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment localization in a mobile communication network
CN106569173A (zh) * 2016-11-09 2017-04-19 北京大学 一种检测可见光到达角的pd阵列及室内可见光定位方法
CN106872939B (zh) * 2017-02-14 2020-01-07 无锡费舍太格科技有限公司 一种定位系统及定位方法
CN108398675B (zh) * 2018-03-01 2020-12-11 英华达(上海)科技有限公司 定位系统
CN110333478B (zh) * 2018-03-30 2022-05-17 华为技术有限公司 一种到达角度、出发角度确定方法及通信装置
CN109342993B (zh) * 2018-09-11 2020-06-16 宁波大学 基于RSS-AoA混合测量的无线传感器网络目标定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110124347A1 (en) * 2009-09-15 2011-05-26 Byron Hua Chen Method And Apparatus for UE Positioning in LTE Networks
CN105264920A (zh) * 2012-12-12 2016-01-20 英维斯塔克有限公司 使用减少的衰减rf技术对对象进行测距和跟踪时的多径抑制
CN108293172A (zh) * 2015-10-08 2018-07-17 波尔特公司 用于追踪对象的到达角度定位系统
CN109195097A (zh) * 2018-10-26 2019-01-11 Oppo广东移动通信有限公司 定位方法、装置、终端及存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "UL Reference Signals for NR Positioning", 3GPP DRAFT; R1-1906306 UL REFERENCE SIGNALS FOR NR POSITIONING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051727756 *
QUALCOMM INCORPORATED: "DL and UL NR Positioning Procedures", 3GPP DRAFT; R2-1906779_(POSITIONING PROCEDURES)_V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051730235 *
SAMSUNG: "UL Reference Signals for NR Positioning", 3GPP DRAFT; R1-1906908 NR POSITIONING UL RS DESIGN_SS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051728358 *
See also references of EP4017036A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105674A1 (en) * 2021-06-11 2022-12-21 Hand Held Products, Inc. Methods and apparatuses for automatically comissioning locators
US11770680B2 (en) 2021-06-11 2023-09-26 Hand Held Products, Inc. Methods and apparatuses for automatically commissioning locators

Also Published As

Publication number Publication date
CN112399330A (zh) 2021-02-23
EP4017036A4 (en) 2022-10-12
EP4017036A1 (en) 2022-06-22
US20220171014A1 (en) 2022-06-02
CA3148186A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2021031714A1 (zh) 一种基于相对角度的定位方法及装置
US20220279313A1 (en) Sidelink Positioning Method and Apparatus
WO2020164339A1 (zh) 定向发送定位参考信号的方法及装置
WO2021008581A1 (zh) 用于定位的方法和通信装置
US11785622B2 (en) Electronic apparatus, wireless communication method and computer-readable medium for measurements based on adjusted beam configurations
WO2021032267A1 (en) Non-line-of-sight path detection for user equipment positioning in wireless networks
WO2021227901A1 (zh) 一种定位方法、定位管理装置、接入网设备以及终端
US20220224488A1 (en) Reference signal configuration determining method and apparatus
US20220007148A1 (en) Apparatus And User Equipment Positioning Method
US20220167181A1 (en) Reference signal transmission method and device
US11800375B2 (en) Beam training method, related apparatus, and system
US20170142680A1 (en) Techniques for determining a device location
US20220291324A1 (en) Method for Determining Positioning Information and Communication Apparatus
CN114095855A (zh) 一种定位方法及装置
WO2022105334A1 (zh) 一种波束对准的方法,信息传输的方法以及相关设备
WO2022198591A1 (zh) 一种非周期定位参考信号的测量上报方法和装置
WO2023011541A1 (zh) 一种定位方法及通信装置
JP7436679B2 (ja) 測位方法、装置、およびシステム
WO2023143139A1 (zh) 小区移动性管理的方法和装置
WO2022077399A1 (zh) 一种下行定位方法及通信装置
WO2022016548A1 (zh) 第一基站的天线定位方法及通信装置
CN116320991A (zh) 定位方法及装置、存储介质、程序产品
CN115336336A (zh) 无线通信方法、波束方向采集系统、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3148186

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020854043

Country of ref document: EP

Effective date: 20220315