WO2020164339A1 - 定向发送定位参考信号的方法及装置 - Google Patents

定向发送定位参考信号的方法及装置 Download PDF

Info

Publication number
WO2020164339A1
WO2020164339A1 PCT/CN2020/070364 CN2020070364W WO2020164339A1 WO 2020164339 A1 WO2020164339 A1 WO 2020164339A1 CN 2020070364 W CN2020070364 W CN 2020070364W WO 2020164339 A1 WO2020164339 A1 WO 2020164339A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
information
measurement
reference signal
positioning
Prior art date
Application number
PCT/CN2020/070364
Other languages
English (en)
French (fr)
Inventor
陈磊
陈雷
黄甦
史桢宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20756695.1A priority Critical patent/EP3902317A4/en
Priority to JP2021547245A priority patent/JP7278395B2/ja
Publication of WO2020164339A1 publication Critical patent/WO2020164339A1/zh
Priority to US17/396,145 priority patent/US11588538B2/en
Priority to US18/166,630 priority patent/US20230261727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to the field of positioning in a wireless communication system, in particular to a method and device for directional transmission of positioning reference signals.
  • the new radio adopts beam-based wireless communication to improve the efficiency of communication on a higher frequency spectrum.
  • Traditional positioning includes a variety of positioning methods.
  • OTDOA observed time difference of arrival
  • the user equipment (UE) receives various transmission points (transmissions).
  • the transmission of PRS at different transmission points is the base station for positioning.
  • LTE since the system works at low frequency, the transmission of PRS is omnidirectional transmission.
  • TP transmits PRS omnidirectionally. .
  • NR works in a higher frequency spectrum.
  • the signal transmission of the NR base station is based on beamforming. Multiple beams are used to cover a cell. According to the working frequency, the required beam width And the number is also different. Therefore, in NR, PRS also needs to be transmitted in the form of beams.
  • the embodiments of the present application provide a method and device for directional transmission of positioning reference signals, which solves the problem of excessive resource overhead caused by the need to transmit positioning reference signals in all areas due to beamforming in a positioning system
  • a method for acquiring beam information for positioning including: a terminal receives a beam information request sent by a positioning management function, the beam information request is used to request the terminal to provide measurement information of a downlink beam; the terminal acquires beam information, and the beam The information includes the information of the reference signal sent by at least one first network device measured by the terminal; the terminal sends the acquired beam information to the positioning management function.
  • the beam information request includes at least one of the following information: identification of the target transmission point, frequency band information, bandwidth information, and waveform parameters.
  • the terminal can provide beam information according to the needs of the positioning management function, so that the positioning management function can configure a suitable beam for the base station or the positioning management unit to reduce overhead.
  • the terminal sends a measurement request to the serving base station, the measurement request is used to request measurement of a reference signal sent by at least one first network device, and the measurement request includes the following information: At least one: the identification of the target transmission point, frequency band information, bandwidth information, waveform parameters, measurement type indication, and the measurement type indication is used to instruct the base station to configure the measurement of beam information for the terminal.
  • the terminal can obtain the currently valid beam information through the measurement request, avoiding the problem of inaccurate beam information caused by the existence of the beam information in the terminal for too long.
  • the method further includes: the terminal receives a measurement configuration sent by the serving base station, and the configuration includes information of the measurement object; and the terminal performs measurement according to the measurement configuration.
  • the terminal obtains measurement configuration parameters through measurement configuration, so that beam measurement can be implemented to obtain beam information.
  • the terminal receives a message providing assistance data sent by the positioning management function, the message providing assistance data includes beam information, and the beam information includes at least one of beam type, number, and QCL indication. Species; the terminal determines the direction of the beam for receiving the positioning reference signal according to the beam information.
  • the terminal obtains the direction of the receiving beam of the positioning measurement, avoiding the terminal scanning and receiving in all directions, causing excessive transmission of positioning reference signals, resulting in waste of resources.
  • a positioning reference signal configuration method is provided.
  • the method is applied to a positioning system and includes: a first network device receives a positioning reference signal configuration request sent by a positioning management function, and the positioning reference signal configuration request includes beam information of a terminal; The first network device sends a positioning reference signal configuration response to the positioning management function, where the positioning reference signal configuration response includes configuration information of the positioning reference signal.
  • the beam information in the positioning reference signal configuration request is used to indicate the sending direction of the positioning reference signal for the first network device, and the first network device configures resources for the positioning reference signal according to the beam information to avoid excessive positioning reference. The waste of resources caused by the transmission of signals.
  • the first network device receives a beam information request sent by the positioning management function, the beam information request is used to request the terminal's downlink beam measurement information, and the beam information request includes target transmission Point identification; the first network device obtains the beam information of the terminal.
  • the beam information of the terminal is obtained through the beam information request and the measurement information of the beam, thereby providing a reference for the configuration of the positioning reference signal, and reducing the problem that the positioning reference signal needs to be sent omnidirectionally because it does not know the beam that the terminal can receive .
  • the method further includes: the first network device sends a beam information report to the positioning management function, the beam information report includes at least one of the following information: an identifier of the terminal, a target transmission point , The beam type of the target transmission point, the beam change, and the RSRP value of the beam.
  • the beam information of the terminal is notified to the positioning management function through the beam information report, so that the positioning management function can configure an appropriate positioning reference signal for the first network device and reduce the overhead of positioning reference signal transmission.
  • the first network device acquiring the beam information of the terminal includes: the first network device determines the beam information of the terminal according to the historical measurement results reported by the terminal; or, the first network device performs the processing for the terminal The configuration is measured and the measurement report based on the measurement configuration sent by the terminal is received, and the first network device determines the beam information of the terminal according to the measurement report.
  • the first network device obtains effective beam information according to different situations, so as to avoid the invalidity of the obtained beam information and lead to a waste of positioning reference signal transmission resources.
  • the first network device determines the configuration of the positioning reference signal according to the beam information, and the configuration of the downlink positioning reference signal includes a frequency domain position, a time domain position, and a transmission direction;
  • the network device sends the configuration of the positioning reference signal to the positioning management function.
  • the configuration of the downlink positioning reference signal is performed by beam information, so that the PRS is configured in a limited direction, and the resource consumption of the PRS is reduced.
  • the first network device receives the positioning reference signal configuration coordination result sent by the positioning management function, and the positioning reference signal configuration coordination result includes the position reference signal determined after interference coordination Configuration.
  • a terminal is provided.
  • the terminal is used to implement the function of the method for acquiring beam information provided by any of the possible implementations of the first aspect.
  • the function may be implemented by hardware or It can be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the structure of the terminal includes a processor configured to support the user equipment to perform the beam information acquisition provided by the first aspect or any one of the possible implementation manners of the first aspect.
  • the terminal may further include a memory and/or a communication interface, the memory stores code and data, the memory is coupled with the processor, and the communication interface is coupled with the processor or the memory.
  • a network node is provided.
  • the network node is used to implement the function of the positioning reference signal configuration method provided in the second aspect or any possible implementation of the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the structure of the network node includes a processor configured to support the network node to execute the positioning reference signal provided by the second aspect or any one of the possible implementation manners of the second aspect.
  • the function of the configuration method may also include a memory and/or a communication interface, the memory stores code required for processing and/or the baseband processor, the memory is coupled with the processor, and the communication interface is coupled with the memory or the processor.
  • a computer-readable storage medium stores instructions which, when run on a computer, cause the computer to execute the first aspect or the first aspect described above.
  • the method for acquiring beam information provided by any possible implementation manner, or the method for configuring the positioning reference signal provided by the foregoing second aspect or any one of the possible implementation manners of the second aspect is executed.
  • Another aspect of the present application provides a computer program product containing instructions, which when run on a computer, causes the computer to execute the beam provided by the first aspect or any possible implementation of the first aspect.
  • a communication system in another aspect of the present application, includes a plurality of devices including terminals and network nodes; wherein, the terminal is the terminal provided in the above aspects, and is used to support the terminal to execute the above-mentioned first
  • the method for obtaining beam information provided by one aspect or any possible implementation of the first aspect and/or, the network node is the network node provided by the foregoing aspects, and is used to support the network node to perform the foregoing second aspect or The positioning reference signal configuration method provided by any possible implementation manner of the second aspect.
  • a device which is a processor, integrated circuit, or chip, and is used to perform steps performed by a processing unit of a terminal in an embodiment of the present invention, for example, to obtain beam information, and Configure the measurement, and determine the direction of the beam for receiving the positioning reference signal according to the beam information.
  • the device is also used to perform terminal processing or actions that have been described in the foregoing other aspects or embodiments, and details are not described herein again.
  • the device is a processor, an integrated circuit, or a chip, and is configured to execute the steps performed by the processing unit of the first network node in the embodiment of the present invention. For example, acquiring the beam information of the terminal, determining the beam information of the terminal according to the measurement results reported by the terminal, or performing measurement configuration for the terminal, or determining the beam information of the terminal according to the measurement report.
  • the another device is also used to execute the processing or action of the network node that has been described in the foregoing other aspects or embodiments, and will not be repeated here.
  • the apparatus, computer storage medium, or computer program product of the method for determining the measured value of the reference signal provided above are all used to execute the corresponding method provided above. Therefore, the beneficial effects that can be achieved can refer to the above The beneficial effects of the provided corresponding methods will not be repeated here.
  • Figure 1 is a schematic diagram of a positioning system provided by an embodiment of the present invention.
  • FIG. 2 is a method for obtaining beam information according to an embodiment of the present invention
  • FIG. 3 is a flowchart of UE-assisted beam information collection provided by an embodiment of the present invention.
  • Fig. 4 is a flow chart of auxiliary beam information collection by a base station provided by an embodiment of the present invention.
  • FIG. 5 is a flowchart of PRS resource configuration between the LMF and the base station provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a possible structure of a terminal provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a possible logical structure of a terminal provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a possible structure of a first network device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a possible logical structure of a first network device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a possible structure of a positioning management device provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a possible logical structure of a location management device provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of this application is applied.
  • the communication systems mentioned in the embodiments of this application include but are not limited to: narrow band-internet of things (NB-IoT) systems, wireless local area access network (WLAN) systems, and LTE systems , Next-generation 5G mobile communication systems or communication systems after 5G, such as NR, device-to-device (D2D) communication systems.
  • NB-IoT narrow band-internet of things
  • WLAN wireless local area access network
  • LTE LTE
  • Next-generation 5G mobile communication systems or communication systems after 5G such as NR
  • D2D device-to-device
  • a positioning system 100 at least includes a target device 101, a base station (BS) 102, an access management function (AMF) 103, and a location management function (LMF) 104.
  • the positioning system 100 may also include an enhanced serving mobile location center (E-SMLC) and a secure user plane location (SUPL) positioning platform (SUPL location platform, SLP) 106.
  • E-SMLC enhanced serving mobile location center
  • SUPL secure user plane location
  • SLP 106 is used for user plane positioning
  • E-SMLC 105 is used for control plane positioning.
  • the base station 102 includes 5G base stations and/or LTE next-generation base stations.
  • the target equipment 101 in the above positioning system includes but is not limited to: user equipment (UE), mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile equipment, terminal, wireless Communication equipment, user agent, wireless local access network (WLAN) station (ST), cell phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop (wireless local) loop, WLL) station, personal digital assistant (PDA), handheld devices with wireless communication functions, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, mobile in the future 5G network Station and terminal equipment in the future evolved public land mobile network (PLMN) network.
  • the target device may also be referred to as a terminal device or a terminal, which is not described in detail below.
  • the positioning system 100 may include a plurality of base stations 102, including a serving base station and a neighbor base station.
  • the neighbor base station refers to a base station adjacent to the serving base station.
  • the base station 102 includes but is not limited to: evolved node B (evolved node base, eNB), radio network controller (RNC), node B (node B, NB), base station controller (base station controller, BSC) , Base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home node B, HNB), baseband unit (baseband Unit, BBU), eLTE (evolved LTE, eLTE) base station, NR base station ( next generation node B, gNB) etc.
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC base station controller
  • Base transceiver station base transceiver station, B
  • the message transmission between the target device 101 and/or the base station 102 and the LMF is transmitted through the LTE positioning protocol (LTE positioning protocol, LPP).
  • LPP LTE positioning protocol
  • the positioning protocol may be NR positioning protocol (NRPP).
  • NRPP NR positioning protocol
  • the positioning protocol in this application can be LPP or NRPP, which is not restricted by this application. It should be understood that the use of a certain positioning protocol in this application is only exemplary, and may be either LPP or NRPP, and will not be described in detail below.
  • the UE will be mainly used to represent the target terminal, which is also called a terminal.
  • the location reference signal can be sent by a base station or a location management unit (LMU).
  • LMU location management unit
  • the base station is taken as an example below, but it should be understood that the location reference signal is not limited to the base station. It can also be an LMU or other equipment, so I won’t repeat it.
  • Quasi-colocation relationship used to indicate that multiple resources have one or more identical or similar communication characteristics.
  • QCL relationship the same or similar communication configuration can be used .
  • the large-scale characteristics of the channel transmitting one symbol on one port can be inferred from the large-scale characteristics of the channel transmitting one symbol on the other port.
  • Large-scale characteristics can include delay spread, average delay, Doppler spread, Doppler shift, average gain, receiving parameters, terminal receiving beam number, transmitting/receiving channel correlation, and receiving angle-of-arrival (angel-of-arrival, AOA), the spatial correlation of the receiver antenna, main AOA, average AOA, AOA extension, etc.
  • QCL can be specified by a quasi co-location indicator, which is used to indicate whether at least two sets of antenna ports have a quasi co-location relationship, including: the quasi co-location indicator is used to indicate the SCI- sent by at least two sets of antenna ports.
  • RS comes from the same transmission point or beam group.
  • the network node can notify the terminal that the port that sends the RS has a QCL relationship, and helps the terminal to receive and demodulate the RS.
  • the terminal can confirm that the A port and the B port have a QCL relationship, that is, the large-scale parameters of the RS measured on the A port can be used for the measurement and demodulation of the RS on the B port.
  • Spatial QCL is a type of QCL, and the spatial domain can be understood from the sender or receiver. From the perspective of the transmitting end, if the two antenna ports are spatial QCL, the beam directions corresponding to the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are spatial QCL, the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • a radio frequency (RF) link can drive one or more antenna units.
  • Both the terminal and the network node may include one or more antenna panels, and each antenna panel may include one or more beams.
  • the antenna panel can be expressed as an antenna array or an antenna subarray.
  • An antenna panel may include one or more antenna arrays/sub-arrays.
  • An antenna panel can be controlled by one or more oscillators.
  • the RF link may be called a receiving channel and/or a sending channel, a receiver branch, and so on.
  • An antenna panel can be driven by one RF link or multiple RF links.
  • Beam A communication resource, which can be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology can be beamforming technology or other technical means.
  • the beamforming technology may be a digital beamforming technology, an analog beamforming technology or a hybrid beamforming technology. Different beams can be considered as different resources.
  • the terminal and the network node can send the same information or different information through different beams.
  • a beam can include one or more antenna ports for transmitting data channels, control channels, and sounding signals.
  • a transmit beam can refer to the distribution of signal strengths formed in different directions in space after a signal is transmitted by an antenna.
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • One or more antenna ports forming a beam can be regarded as an antenna port set.
  • the embodiment of the beam in the protocol can also be a spatial filter.
  • the beam information can be identified by index information.
  • the index information may correspond to the resource identifier of the configured terminal.
  • the index information may correspond to the identity (ID) or resource of the configured CSI-RS, and may also correspond to the ID or resource of the configured uplink SRS.
  • the index information may also be index information that is displayed or implicitly carried by a signal or channel carried by a beam.
  • the index information may be a synchronization signal (SS) sent by a beam or a PBCH indicating index information of the beam.
  • SS synchronization signal
  • the identification of the beam information may include the absolute index of the passing beam, the relative index of the beam, the logical index of the beam, the index of the antenna port corresponding to the beam, the index of the antenna port group corresponding to the beam, the time index of the downlink SS block, and the corresponding beam index.
  • the base station can allow the terminal to report the reference signal resources that can be measured at the same time to assist the base station in the transmission of multiple reference signals. Since the reference signal in LTE, such as the transmission of the cell reference signal is a broadcast signal, all terminals within a certain coverage area can receive it. By reporting the reference signal that can be measured by the terminal, the network can know the reference that the terminal can receive at the same time signal. Generally, the reference signal that the terminal can measure is in a relatively large angle domain. Therefore, the terminal can measure orthogonal or quasi-orthogonal reference signals from different network nodes or transmission nodes to achieve measurement.
  • the network due to the use of beams, it has narrower coverage than traditional reference signals.
  • the beam sent by the network needs the receiving beam of the terminal to be received at a certain angle or range. Therefore, when the network sends a reference signal for positioning to the terminal, if the network does not know the location of the terminal, it needs to send the reference number for positioning in all directions so that the terminal can receive the reference signal at a certain moment , So as to achieve positioning measurement.
  • Reference signals used for positioning in this application include reference signals that can be used for positioning measurement, including but not limited to CSI-RS, tracking reference signal (tracking reference signal, TRS), synchronization signal block (synchronization signal block, SSB), DMRS, positioning reference signal (positioning reference signal, PRS).
  • This application will take the positioning reference signal as an example for description. It should be understood that the use of the positioning reference signal does not mean that only the positioning reference signal can be used for positioning, and will not be described in detail below.
  • the network sends PRS in various directions in order to realize terminal positioning, it will cause a great waste of resources, because the terminal only receives PRS in a certain direction.
  • the current positioning process does not yet support the collection of beam information and the effective configuration of PRS resources. This application mainly solves the above-mentioned problems.
  • this embodiment adopts a method for acquiring beam information for positioning, which includes: the terminal receives a beam information request sent by a positioning management function, and the beam information request is used to request the terminal to provide measurement information of the downlink beam; Beam information, the beam information includes the information of the reference signal sent by at least one first network device measured by the terminal; the terminal sends the obtained beam information to the positioning management function.
  • the beam information request includes at least one of the following information: the identification of the target transmission point, frequency band information, bandwidth information, and waveform parameters.
  • the above method further includes: the terminal sends a measurement request to the serving base station, the measurement request is used to request at least one first network device to send a reference signal for the terminal to perform measurement, and the measurement request includes at least one of the following information: the identification of the target transmission point, Frequency band information, bandwidth information, waveform parameters, measurement type indication, and measurement type indication are used to instruct the base station to configure the measurement of beam information for the terminal.
  • the above method further includes: the terminal receives the measurement configuration sent by the serving base station, the configuration includes the information of the measurement object; and the terminal performs measurement according to the measurement configuration.
  • the aforementioned first network device may be a serving base station, or a neighboring base station, or a serving base station and at least one neighboring base station.
  • the serving base station refers to the base station that currently establishes a connection with the terminal and provides services for the terminal.
  • Neighbor base stations refer to base stations that can be detected by the terminal. I won't repeat them below.
  • Fig. 2 is a method for obtaining beam information according to an embodiment of the present invention. It should be understood that OTDOA is taken as an example in FIG. 2, but it is not limited to OTDOA. It is applicable to all downlink positioning methods in this embodiment. Taking OTDOA as an example here is only an example and does not limit the embodiment of this application. No longer. Including the following steps:
  • the location management function sends an information request to the first network device.
  • the first network device may include multiple base stations, such as gNB1, gNB2, and gNB3. One of them is the serving base station.
  • the information request is used to request one or more base stations for OTDOA auxiliary information, and the auxiliary information includes: PRS transmission period, offset, transmission time length, etc.
  • multiple gNBs are shown in FIG. 2.
  • OTDOA positioning can also be implemented by one base station.
  • the multiple base stations in FIG. 2 are only exemplary.
  • S202 The base station sends an OTDOA information response to the LMF.
  • Each base station reports the OTDOA information of all sending sites under the base station to the positioning server, which mainly includes the base station's identity, transmission point identity, and PRS configuration information.
  • the PRS configuration information includes: PRS transmission period, offset , The length of sending time, etc. I won't repeat them below.
  • the positioning request of the UE reaches the positioning management function.
  • the positioning request may be triggered by the UE or the network side.
  • the specific network element that triggers the positioning is not limited by this application.
  • the positioning management function requests the UE for capabilities.
  • the positioning server requests UE positioning-related capabilities from the UE, and the positioning-related capabilities include the UE supporting positioning methods.
  • the UE provides capabilities to the LMF.
  • the UE reports the positioning-related capabilities to the LMF, and the positioning-related capabilities include the positioning method supported by the UE.
  • the LMF determines gNBs used for positioning.
  • the LMF determines the gNB that can be used to locate the terminal according to the OTDOA information response, which can be one gNB or multiple gNBs. For example, it is possible to determine which gNBs to select to locate the UE according to the PRS resources of the gNB.
  • the specific implementation is not restricted by this application.
  • the gNB here is only exemplary, and this application does not restrict the base station used for positioning, and it may also be other base stations or multiple different base stations to coordinate the positioning of the UE. I won't repeat them below.
  • the LMF collects beam information.
  • the base station and/or LMF can collect beam information before configuring PRS resources to determine that the UE can receive To which beams. According to the beams that the UE can receive, determine in which directions to send the PRS.
  • step S207 can be implemented before S206.
  • a base station for positioning is determined. By collecting beam information in advance, the LMF can better determine the base station used for positioning and provide better positioning performance.
  • the beam information collection can be assisted by the base station or the UE.
  • the specific implementation process will be described in the following embodiments.
  • S208 Perform PRS resource configuration between the LMF and the base station.
  • the first network device determines the configuration of the positioning reference signal according to the beam information.
  • the configuration of the positioning reference signal includes a frequency domain position, a time domain position, and a sending direction; the first network device sends a configuration of the positioning reference signal to the positioning management function.
  • the PRS resource configuration between the LMF and the base station is mainly to configure the PRS in a specific direction.
  • the LMF needs to request the base station to perform PRS configuration on specific resources. The specific method will be described in the following embodiments.
  • the LMF sends an assistance data provision message to the UE.
  • the information provided by the auxiliary data includes a reference site information and a number of adjacent site information, which includes the identification of the corresponding site, carrier frequency, and PRS configuration information.
  • the providing assistance data message may also include beam information for a certain TP, such as at least one of beam type, number, and QCL indication.
  • the configuration information of the PRS includes at least one of the start time, period, duration, and PRS generation parameters of the PRS transmission.
  • the beam type for a certain TP in the assistance data is SSB, and the number is 3, indicating that the PRS sent by this TP has a QCL relationship with the SSB with the sending label of 3.
  • the beam type and number can be one or more respectively, which is not limited here.
  • the LMF provides the UE with information about the receiving beam by providing an auxiliary data message.
  • the UE can obtain the direction of the receiving beam for receiving the positioning reference signal. This step also does not depend on the other steps mentioned above, as long as the LMF can provide beam-related information.
  • the UE performs PRS measurement.
  • the UE uses the receiving beam corresponding to the beam having a QCL relationship with the PRS to receive the PRS, and calculates the time difference of arrival of the PRS.
  • the UE determines the number of the beam having a QCL relationship with the PRS according to the auxiliary data, and receives the PRS using the receiving beam in the same direction as the number of the beam. Since OTDOA can measure the PRS of multiple base stations, the UE needs to first determine the beam of each base station that has a QCL relationship with the PRS. After determining the beam having a QCL relationship with the PRS, the receiving beam corresponding to the beam is used to receive the PRS.
  • the foregoing QCL relationship may be defined by the protocol, that is, the PRS in the information provided by the protocol defines that the beam corresponding to the number of the beam in the beam information has a QCL relationship. Therefore, it is not necessary to provide the auxiliary data message. Provide QCL instructions.
  • the UE provides the measurement result to the LMF.
  • the UE can obtain the measurement result of the PRS through the measurement in S210.
  • OTDOA includes the time difference between multiple reference signals, and the reporting method and format of the specific measurement results are not restricted by this application.
  • the LMF can collect the beam information of the terminal, and configure the positioning reference signal of the base station according to the collected beam information, so as to realize that positioning can be realized only by transmitting the PRS in a specific direction, thereby reducing PRS transmission overhead.
  • step S207 can be performed before step S206, so that the LMF can better determine the base station used for positioning according to the collected beam information.
  • FIG. 3 is a flowchart of UE-assisted beam information collection provided by an embodiment of the application.
  • Figure 3 includes the following steps:
  • the LMF sends a beam information request to the UE.
  • the terminal receives the beam information request sent by the positioning management function, and the beam information request is used to request the terminal to provide measurement information of the downlink beam.
  • the beam information request includes at least one of the following information: the identification of the target transmission point, frequency band information, bandwidth information, and waveform parameters.
  • the identifiers of multiple target transmission points may be included.
  • the LMF does not know the location of the UE, it does not know the reference signal of the base station that the UE can measure. Therefore, in the beam information request, only the UE is instructed to perform measurement, and the identification of the target transmission point that needs to be measured is not specified.
  • the UE obtains beam information.
  • the UE judges whether there is measured beam information according to the historical measurement results, and if so, execute step S303; the UE judges whether the measurement of the reference signal of the target transmission point needs to measure GAP, and if necessary, execute S302a and S302b, if not, The UE measures the reference signal of the target transmission point on the available measurement opportunity, obtains beam information, and then executes S303.
  • the UE determines whether there is a measurement result of the specified target transmission point, and if so, execute step S303.
  • the UE judges whether the measurement of the reference signal of the target transmission point needs to measure GAP, if necessary, executes S302a and S302b, if not, the UE measures the reference signal of the target transmission point on the available measurement opportunity to obtain beam information, and then executes S303.
  • Step S303 is executed.
  • the UE judges whether the measurement of the reference signal of the target transmission point needs to measure GAP, if necessary, executes S302a and S302b, if not, the UE measures the reference signal of the target transmission point on the available measurement opportunity to obtain beam information, and then executes S303.
  • step S303 is executed.
  • the UE judges whether the measurement of the reference signal of the target transmission point needs to measure GAP, if necessary, executes S302a and S302b, if not, the UE measures the reference signal of the target transmission point on the available measurement opportunity to obtain beam information, and then executes S303.
  • the UE sends a measurement request to the serving base station.
  • the measurement request is used to request at least one first network device to send a reference signal for the terminal to perform measurement, and the measurement request includes at least one of the following information: identification of the target transmission point, frequency band information, bandwidth information, waveform parameters, measurement type indication,
  • the measurement type indication is used to instruct the base station to configure the measurement of beam information for the terminal.
  • the measurement request sent by the UE to the serving base station includes the minimum reported number of target transmission points, and does not specify the identity of the target transmission point.
  • the serving base station may configure more base stations or reference signals for the UE to perform measurements.
  • the UE can only send a measurement request to the serving base station. If assistance information of the neighbor base station is required, the serving base station needs to interact with the neighbor base station to notify the neighbor base station to send reference signals to assist the UE in measuring.
  • the serving base station sends the measurement configuration to the UE.
  • the measurement configuration sent by the serving base station to the UE is similar to the measurement configuration sent during the handover process, and will not be repeated.
  • the measurement object can be any type of reference signal, or the reference signal of the target transmission point specified in the beam information request.
  • the reference signal includes the aforementioned reference signal used for positioning, such as SSB and CSI-RS, which will not be repeated.
  • the UE sends a beam information report to the LMF.
  • the beam information report includes at least one of the identification of the transmission point, the beam type corresponding to the transmission point, the beam number, and the measured RSRP corresponding to the beam number.
  • the LMF can obtain the information of the beams that the UE can measure from the UE. Through the information of these beams, the LMF can configure PRS in the directions of these beams, so that the UE can perform PRS measurements in the directions corresponding to these beams. , Thereby avoiding PRS transmission in all directions, reducing system overhead and improving positioning efficiency.
  • Fig. 4 is a flow chart of assisting beam information collection by a base station provided by an embodiment of the application.
  • Figure 4 includes the following steps:
  • the LMF sends a beam information request to the serving base station.
  • the beam information request contains the identity of the UE.
  • the identity of the UE may be any identity, such as a cell radio network temporary identity (C-RNTI). This application does not limit the identity of the UE.
  • C-RNTI cell radio network temporary identity
  • the first network device determines the beam information of the terminal according to the historical measurement results reported by the terminal; or, the first network device performs measurement configuration for the terminal and receives the measurement-based For the configured measurement report, the first network device determines the beam information of the terminal according to the measurement report.
  • the historical measurement result means that when the beam information request is received, the time of the historical measurement result obtained by the first network device is less than a certain predetermined time. That is, the historical measurement result can ensure that the beam information of the terminal is valid, and can reflect the measurement result of the beam information received by the terminal.
  • the serving base station performs measurement configuration.
  • Step S402 is optional. Specifically, the serving base station determines whether there is a measurement result of the beam information of the UE, and the measurement result of the beam information does not exceed a certain time. If yes, proceed directly to step S403; if not, the serving base station performs measurement configuration for the UE.
  • the LMF can request the serving base station to provide the measurement result of the specified target transmission point.
  • the UE determines whether there is a measurement result that meets the minimum reported number of target transmission points; if so, Step S403 is executed. If it does not exist, the serving base station performs measurement configuration for the UE and obtains the measurement result.
  • the UE determines whether there is a target transmission that meets the reference signal measurement threshold and meets the least reported target transmission If the measurement result of the number of points exists, step S403 is executed. If it does not exist, the serving base station performs measurement configuration for the UE and obtains the measurement result.
  • the serving base station sends a beam information report to the LMF.
  • the serving base station sends a beam information report to the positioning server.
  • This message carries the ID of the UE, the identification of the target transmission point, and the beam type corresponding to the target transmission point, the beam number, and the RSRP value of the corresponding beam.
  • the LMF can obtain the beam information of the UE and configure the PRS according to the beam information, avoiding the need to perform the PRS scanning process in the positioning measurement process, reducing system overhead and improving Positioning speed.
  • the LMF needs to obtain the beam information of the UE in advance to realize effective configuration of the PRS.
  • Obtaining the beam information of the UE may be obtained by using existing measurement results or by performing measurement configuration on the UE.
  • FIG. 5 is a flowchart of PRS resource configuration between the LMF and the base station provided by an embodiment of the application. It includes the following steps:
  • the LMF sends a positioning reference signal configuration request to the first network device.
  • the positioning reference signal configuration request includes the beam information of the terminal.
  • the positioning reference signal configuration request also includes positioning requirements of the positioning service, such as positioning delay, positioning accuracy, QoS information of the beam measured by the UE, PRS period, and bandwidth information.
  • the positioning reference signal configuration request also includes the beam information of each target transmission point collected in step S207, and the QCL sends an instruction.
  • the QCL sending instruction is used to instruct the first network to send the PRS in the specified beam direction. For example, if the positioning reference signal configuration request contains information about a certain beam, such as the identifier of the beam, when the base station sends the PRS, it sends the PRS with the QCL relationship with the designated beam.
  • the QoS information of the beam measured by the UE is used to indicate the quality of the QoS of the beam measured by the UE.
  • the first network device may determine whether to accept the PRS configuration request according to the QoS information. For example, when the quality of the QoS of a certain beam measured by the UE is lower than a certain threshold, the first network device may not need to send the PRS in this direction. Or the first network device determines the transmission power of the PRS according to the QoS information, for example, increases or decreases the transmission power.
  • the first network device returns a PRS configuration response.
  • the PRS configuration response includes the PRS configuration.
  • the PRS configuration includes the PRS transmission frequency, bandwidth, subcarrier spacing, period, offset, PRS occasion length and other parameters, and can also carry a beam type and number, which indicates this transmission The point will send PRS in this beam direction.
  • the LMF performs PRS configuration coordination.
  • LMF coordinates the PRS configuration of each transmission point to avoid interference. Since the first network device can independently configure PRS resources, when resource conflicts occur, the LMF needs to coordinate to avoid mutual interference between the PRS configured by each first network device.
  • the LMF sends a PRS configuration request to the serving base station, and the serving base station uniformly coordinates the PRS resources of each neighbor base station.
  • the PRS configuration request includes the identification of each target transmission point, or the serving base station determines the target transmission point.
  • the serving base station collects the PRS configuration of each neighbor base station, it uniformly sends the PRS configuration of each base station to the LMF. In this implementation, S504 is not needed.
  • the LMF sends the PRS coordination result to a first network device.
  • the first network device receives the positioning reference signal configuration coordination result sent by the positioning management function, where the positioning reference signal configuration coordination result includes the positioning reference signal configuration determined after interference coordination.
  • the PRS coordination result may also include an indication information for instructing different transmission points to use the PRS configuration to send the PRS.
  • the PRS configuration is as mentioned before, and will not be repeated here.
  • each first network device is instructed to perform PRS transmission in a specified direction, and through the interaction between the LMF and the first network device, the first network device is coordinated to send PRS resources, Therefore, resource waste caused by the first network device performing PRS transmission in all directions because it does not know the direction of the UE is reduced.
  • each network element such as a terminal and a network node, in order to realize the above-mentioned functions, includes a hardware structure and/or software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of this application can divide the terminal, the first network device, and the positioning management function into functional modules according to the above method examples. For example, it can be divided into various functional modules, or two or more functions can be integrated into one process. Module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation. It should also be understood that the functional modules of the terminal in this application do not include all functional modules of the terminal, but only functional modules related to this application.
  • the first network device may be a base station or a positioning management unit.
  • FIG. 6 is a schematic diagram of a possible structure of the terminal involved in the foregoing embodiment provided by this application.
  • the terminal includes: a receiving unit 601, a processing unit 602, and a sending unit 603.
  • the receiving unit 601 is used to support the terminal to perform S204, S207, and S209 in Figure 2 and S301 and S302b in Figure 3;
  • the processing unit 602 is used to support the terminal to perform S210 in Figure 2 and the processing of receiving or sending messages, or S302 in 3 and the processing of receiving or sending messages;
  • the sending unit 603 is used to support the first node to execute S205, S207, and S211 in FIG. 2 and S302a and S303 in FIG.
  • the foregoing receiving unit 601 may be a receiver, and the sending unit 603 may be a transmitter, and the receiver and the transmitter are integrated in the communication unit to form a communication interface.
  • FIG. 7 is a schematic diagram of a possible logical structure of a terminal involved in the foregoing embodiment provided by an embodiment of the application.
  • the terminal includes: a processor 702.
  • the processor 702 is used to control and manage the actions of the terminal.
  • the processor 702 is used to support the terminal to execute S210 in FIG. 2 in the foregoing embodiment and to process messages received or sent. Or S302 in FIG. 3 and the processing of receiving or sending a message.
  • the terminal may further include: a memory 701 and/or a communication interface 703; the processor 702, the communication interface 703, and the memory 701 may be connected to each other or through the bus 704.
  • the communication interface 703 is used to support the terminal to communicate, and the memory 701 is used to store program codes and data of the terminal.
  • the processor 702 calls the code stored in the memory 701 to perform control and management.
  • the memory 701 may be coupled with the processor or not.
  • the processor 702 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 704 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the aforementioned processor 702 and memory 701 may also be integrated in an application specific integrated circuit, and the application specific integrated circuit may further include a communication interface 703.
  • the application specific integrated circuit can be a processing chip or a processing circuit.
  • the communication interface 703 may be a communication interface including wireless transceiving, or a digital signal input after processing the received wireless signal through other processing circuits, or a software or hardware interface for communicating with other modules.
  • FIG. 8 is a schematic diagram of a possible structure of the first network device involved in the foregoing embodiment provided by this application.
  • the first network device is a base station or a positioning management unit, and the base station includes a serving base station and/or a neighboring cell base station.
  • the first network device includes: a sending unit 801 and a receiving unit 803.
  • the sending unit 801 is used to support the first network device to perform S202, S207, and S208 in Figure 2, S302b in Figure 3, S403 in Figure 4, and S502 in Figure 5;
  • the receiving unit 803 is used to support the first network
  • the device executes S201, S207, and S208 in Figure 2, S302a in Figure 3, S401 in Figure 4, and S501 and S504 in Figure 5.
  • the first network device may further include a processing unit 802 for supporting the first network device to perform S402 in FIG. 4 and processing received and/or sent messages by the first network device in the foregoing method embodiments, and obtaining beam information.
  • a processing unit 802 for supporting the first network device to perform S402 in FIG. 4 and processing received and/or sent messages by the first network device in the foregoing method embodiments, and obtaining beam information.
  • the foregoing sending unit 701 may be a transmitter
  • the receiving unit 703 may be a receiver
  • the receiver and the transmitter are integrated in the communication unit to form a communication interface.
  • FIG. 9 is a schematic diagram of a possible logical structure of the first network device involved in the foregoing embodiment provided by the embodiment of the application.
  • the first network device includes a processor 902.
  • the processor 902 is used to control and manage the actions of the first network device.
  • the processor 902 is used to support the first network device to execute the receiving unit 803, the sending unit 801, and the first network device in the foregoing embodiment.
  • the processing unit 802 processes various messages and obtains beam information.
  • the first network device may further include: a memory 901 and/or a communication interface 903; the processor 902, the communication interface 903, and the memory 901 may be connected to each other or through the bus 904.
  • the communication interface 903 is used to support the first network device to communicate, and the memory 901 is used to store the program code and data of the first network device.
  • the processor 902 calls the code stored in the memory 901 to perform control and management.
  • the memory 901 may or may not be coupled with the processor.
  • the processor 902 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 904 may be a Peripheral Component Interconnect (PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the aforementioned processor 902 and memory 901 may also be integrated in an application specific integrated circuit, and the integrated circuit may also include a communication interface 903.
  • the application specific integrated circuit can be a processing chip or a processing circuit.
  • the communication interface 903 may be a communication interface including wireless transceiving, or a digital signal input after processing the received wireless signal through other processing circuits, or a software or hardware interface for communicating with other modules.
  • FIG. 10 is a schematic diagram of a possible structure of the positioning management device involved in the foregoing embodiment provided by this application.
  • the positioning management device can be a part of the base station, or an independent device connected to the network.
  • the positioning management device includes: a sending unit 1001 and a receiving unit 1003.
  • the sending unit 1001 is used to support the positioning management device to perform S201, S204, S207, S208, and S209 in Figure 2, S301 in Figure 3, S401 in Figure 4, and S501 in Figure 5;
  • the receiving unit 1003 is used to support
  • the positioning management device executes S202, S205, S207, S208, and S211 in FIG. 2, S303 in FIG. 3, S403 in FIG. 4, and S502 in FIG.
  • the positioning management device may further include a processing unit 1002 for supporting the first network device to perform S206 in FIG. 2, S503 in FIG. 5, and processing of receiving and/or sending messages by the positioning management device in the foregoing method embodiment.
  • the aforementioned sending unit 1001 may be a transmitter
  • the receiving unit 1003 may be a receiver
  • the receiver and the transmitter are integrated in the communication unit to form a communication interface.
  • FIG. 11 is a schematic diagram of a possible logical structure of the location management device involved in the foregoing embodiment provided by an embodiment of the application.
  • the location management device includes: a processor 1102.
  • the processor 1102 is used to control and manage the actions of the positioning management device.
  • the processor 1102 is used to support the positioning management device to execute the receiving unit 1003, the sending unit 1001, and the processing unit in the foregoing embodiment.
  • the location management device may further include: a memory 1101 and/or a communication interface 1103; the processor 1102, the communication interface 1103, and the memory 1101 may be connected to each other or through a bus 1104.
  • the communication interface 1103 is used to support the positioning management device to communicate, and the memory 1101 is used to store the program code and data of the positioning management device.
  • the processor 1102 calls the code stored in the memory 1101 for control and management.
  • the memory 1101 may or may not be coupled with the processor.
  • the processor 1102 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the bus 1104 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus or the like. The bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used to represent in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the aforementioned processor 1102 and memory 1101 may also be integrated in an application specific integrated circuit, and the integrated circuit may also include a communication interface 1103.
  • the application specific integrated circuit can be a processing chip or a processing circuit.
  • the communication interface 1103 may be a communication interface including wireless transceiving, or a digital signal input after processing the received wireless signal by other processing circuits, or a software or hardware interface for communicating with other modules.
  • a readable storage medium stores computer execution instructions.
  • a device may be a single-chip microcomputer, a chip, etc.
  • a processor executes Figure 2 and Figure 3
  • the computer execution instruction in the storage medium is read.
  • the aforementioned readable storage medium may include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.
  • a computer program product in another embodiment, includes computer-executable instructions stored in a computer-readable storage medium; at least one processor of the device can be accessed from a computer The reading storage medium reads the computer-executed instruction, and at least one processor executes the computer-executed instruction to make the device implement the steps of the terminal and the first network device in the method for directionally transmitting positioning reference signals provided in FIGS. 2 to 5.
  • a communication system in another embodiment, includes at least one terminal, a first network device, and a positioning management function, where the first network device includes a base station, or a neighboring base station, or Position the management unit.
  • the terminal may be the terminal provided in FIG. 6 or FIG. 7 for performing the steps of the terminal in the method for obtaining beam information provided in FIG. 2 to FIG. 5; and/or, the first network device may be the terminal provided in FIG. 8 or FIG.
  • the provided first network device is used to execute the steps performed by the first network device in the positioning reference signal configuration method provided in FIGS. 2 to 5.
  • the communication system may include multiple terminals and multiple first network devices.
  • the terminal may simultaneously measure the reference signals sent by the multiple first network devices, and send beam information and/or positioning measurement results to the positioning management function. .
  • the terminal receives the beam information request sent by the positioning management function, and sends the beam information to the positioning management function, so that the positioning management can configure the positioning reference signal according to the beam information that the terminal can receive.
  • the first network device performs PRS configuration in the specified direction by receiving the PRS configuration request sent by the positioning management function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请提供一种波束信息获取的方法及装置,涉及通信技术领域,用于5G系统中由于波束的使用,当对终端进行定位时,由于不知道终端在哪个方向上而需要全向发送定位参考信号,从而造成定位参考信号的资源浪费的问题。本申请方法解决上述问题,并节省参考信号发送开销。所述方法包括:终端接收定位管理功能发送的波束信息请求,波束信息请求用于请求终端提供下行波束的测量信息;终端获取波束信息,波束信息包括终端测量到的至少一个第一网络设备发送的参考信号的信息;终端向所述定位管理功能发送获取的波束信息。

Description

定向发送定位参考信号的方法及装置
本申请要求于2019年02月13日提交中国国家知识产权局、申请号为201910115293.0、申请名称为“定向发送定位参考信号的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信系统中的定位领域,具体涉及一种定向发送定位参考信号的方法及装置。
背景技术
随着通信技术的不断发展,终端与网络节点之间的通信已成为一种常见的设备间通信。网络节点对终端进行定位,或者终端请求位置服务以实现特定的应用越来越重要。在第五代移动通信(5th generation mobile networks or 5th generation wireless systems,5G)中,新空口(new radio,NR)采用基于波束的无线通信以提升在更高频率的频谱上进行通信的效率。传统的定位包括多种定位方法,如观察到达时间差(observed time difference of arrival,OTDOA)的方法是一种基于蜂窝网络进行定位的技术,用户设备(user equipment,UE)通过接收各个传输点(transmission point,TP)发送的定位参考信号(positioning reference signal,PRS),计算不同传输点发送的PRS的到达时间差,利用已知的各个PRS传输点的地理位置,可以得到UE的位置。
在OTDOA中,不同传输点进行PRS的发送是进行定位的基站,在LTE中,由于系统工作在低频,所以PRS的发送为全向发送,在所有的PRS发送时机上,TP均全向发送PRS。
相对于LTE,NR工作在较高的频谱,为了对抗衰落,NR基站的信号发射是基于波束赋形的,用多个波束去覆盖一个小区,而根据工作频率的高低,所需的波束的宽度以及数目也不相同。因此,在NR中,PRS也需要以波束的形式发送。
采用波束进行PRS的发送会对定位系统带来较大的影响,如何提高PRS发送效率是5G定位系统需要研究的问题。
发明内容
本申请的实施例提供一种定向发送定位参考信号的方法及装置,解决了定位系统中由于波束赋形需要在所有区域上发送定位参考信号而造成的资源开销过大的问题
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种用于定位的波束信息获取的方法,包括:终端接收定位管理功能发送的波束信息请求,波束信息请求用于请求终端提供下行波束的测量信息;终端获取波束信息,波束信息包括终端测量到的至少一个第一网络设备发送的参考信号的信息;终端向定位管理功能发送获取的波束信息。上述技术方案中,通过获取终端测量的参考信号的 信息,获得终端能够测量的参考信号的方向,通过参考信号的方向确定PRS的发送方向,避免在所有方向上发送PRS造成的资源浪费。
在第一方面的一种可能的实现方式中,波束信息请求包括以下信息中的至少一种:目标传输点的标识,频带信息,带宽信息,波形参数。上述技术方案中,通过波束请求,终端可以根据定位管理功能的需要提供波束信息,从而使得定位管理功能可以为基站或定位管理单元配置合适的波束以减小开销。
在第一方面的一种可能的实现方式中,还包括:终端向服务基站发送测量请求,测量请求用于请求对至少一个第一网络设备发送的参考信号进行测量,测量请求包括以下信息中的至少一种:目标传输点的标识,频带信息,带宽信息,波形参数,测量类型指示,测量类型指示用于指示基站为所述终端配置波束信息的测量。上述技术方案中,通过测量请求,终端可以获取当前有效的波束信息,避免由于终端中的波束信息存在的时间过久而导致波束信息不准确的问题。
在第一方面的一种可能的实现方式中,还包括:终端接收服务基站发送的测量配置,配置包括测量对象的信息;终端根据测量配置进行测量。上述技术方案中,通过测量配置,终端获取测量配置参数,从而可以实现波束测量以获得波束信息。
在第一方面的一种可能的实现方式中,还包括:终端接收定位管理功能发送的提供辅助数据消息,提供辅助数据消息包括波束信息,波束信息包含波束类型、编号、QCL指示中的至少一种;终端根据波束信息确定接收定位参考信号的波束的方向。上述技术方案中,通过提供辅助数据消息,终端获得定位测量的接收波束的方向,避免终端在所有方向上进行扫描接收,而造成的过多的定位参考信号的发送,导致资源浪费。
第二方面,提供一种定位参考信号的配置方法,该方法应用于定位系统,包括:第一网络设备接收定位管理功能发送的定位参考信号配置请求,定位参考信号配置请求包括终端的波束信息;第一网络设备向定位管理功能发送定位参考信号配置响应,定位参考信号配置响应包括定位参考信号的配置信息。上述技术方案中,通过定位参考信号配置请求中的波束信息,为第一网络设备指示了定位参考信号发送的方向,第一网络设备根据波束信息为定位参考信号配置资源,避免过多的定位参考信号的发送而造成的资源浪费。
在第二方面的一种可能的实现方式中,还包括:第一网络设备接收定位管理功能发送的波束信息请求,波束信息请求用于请求终端的下行波束的测量信息,波束信息请求包括目标传输点的标识;第一网络设备获取终端的波束信息。上述技术方案中,通过波束信息请求和波束的测量信息获得终端的波束信息,从而为定位参考信号的配置提供参考,减少定位参考信号由于不知道终端能够接收的波束而需要进行全向发送的问题。
在第二方面的一种可能的实现方式中,还包括:第一网络设备向定位管理功能发送波束信息报告,波束信息报告包括以下信息中的至少一种:所述终端的标识,目标传输点的标识,目标传输点的波束类型,波束变化,波束的RSRP值。上述技术方案中,通过波束信息报告,将终端的波束信息通知给定位管理功能,使得定位管理功能可以为第一网络设备配置合适的定位参考信号,减小定位参考信号发送的开销。
在第二方面的一种可能的实现方式中,第一网络设备获取终端的波束信息包括:第一网络设备根据终端上报的历史测量结果确定终端的波束信息;或者,第一网络设备为终端 进行测量配置,并接收终端发送的基于测量配置的测量报告,第一网络设备根据测量报告确定终端的波束信息。上述技术方案中,第一网络设备根据不同的情况获取有效的波束信息,避免获取的波束信息无效而导致定位参考信号发送资源的浪费。
在第二方面的一种可能的实现方式中,还包括:第一网络设备根据波束信息确定定位参考信号的配置,下行定位参考信号的配置包括频域位置,时域位置,发送方向;第一网络设备向定位管理功能发送定位参考信号的配置。上述技术方案中,通过波束信息来进行下行定位参考信号的配置,使得PRS在有限的方向上进行配置,减少了PRS的资源消耗。
在第二方面的一种可能的实现方式中,还包括:第一网络设备接收定位管理功能发送的定位参考信号配置协调结果,定位参考信号配置协调结果包括干扰协调后所确定的定位参考信号的配置。上述技术方案中,通过定位参考信号配置协调过程,避免多个基站或定位管理单元发送的参考信号由于冲突而导致的相互干扰。
在本申请的又一方面,提供了一种终端,终端用于实现上述第一方面的任一种可能的实现方式所提供的波束信息获取的方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,终端的结构中包括处理器,该处理器被配置为支持该用户设备执行上述第一方面或第一方面的任一种可能的实现方式所提供的波束信息获取的方法。可选的,终端还可以包括存储器和/或通信接口,该存储器中存储代码和数据,该存储器与处理器耦合,通信接口与处理器或存储器耦合。
在本申请的又一方面,提供了一种网络节点,网络节点用于实现上述第二方面或第二方面的任一种可能的实现方式所提供的定位参考信号的配置方法的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,网络节点的结构中包括处理器,该处理器被配置为支持网络节点执行上述第二方面或第二方面的任一种可能的实现方式所提供的定位参考信号的配置方法的功能。可选的,网络节点还可以包括存储器和/或通信接口,存储器中存储处理和/或基带处理器所需代码,存储器与处理器耦合,通信接口与存储器或处理器耦合。
本申请的又一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所提供的波束信息获取的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式所提供的定位参考信号的配置方法。
本申请的又一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所提供的波束信息获取的方法,或者执行上述第二方面或第二方面的任一种可能的实现方式所提供的定位参考信号的配置方法。
本申请的又一方面,提供一种通信系统,该通信系统包括多个设备,该多个设备包括终端、网络节点;其中,终端为上述各方面所提供的终端,用于支持终端执行上述第一方面或第一方面的任一种可能的实现方式所提供的波束信息获取的方法;和/或,网络节点为上述各方面所提供的网络节点,用于支持网络节点执行上述第二方面或第二方面的任一 种可能的实现方式所提供的定位参考信号的配置方法。
在申请的又一方面,提供一种装置,所述装置为一个处理器、集成电路或者芯片,用于执行本发明实施例中由终端的处理单元执行的步骤,例如,获取波束信息,根据测量配置进行测量,根据所述波束信息确定接收定位参考信号的波束的方向。所述装置还用于执行前述其它方面或实施例中已经描述的终端处理或动作,此处不再赘述。
在申请的又一方面,提供另一种装置,所述装置为一个处理器、集成电路或者芯片,用于执行本发明实施例中由第一网络节点的处理单元执行的步骤。例如,获取所述终端的波束信息,根据终端上报的测量结果确定终端的波束信息,或者为终端进行测量配置,或者根据测量报告确定终端的波束信息。所述另一种装置还用于执行前述其它方面或实施例中已经描述的网络节点的处理或动作,此处不再赘述。
可以理解,上述提供的确定参考信号的测量值的方法的装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1是本发明实施例提供的定位系统示意图;
图2是本发明实施例提供的一种波束信息获取的方法;
图3是本发明实施例提供的由UE辅助波束信息收集的流程图;
图4是本发明实施例提供的由基站辅助波束信息收集的流程图;
图5是本发明实施例提供的LMF和基站之间进行PRS资源配置的流程图;
图6是本发明实施例提供的终端的一种可能的结构示意图;
图7是本发明实施例提供的终端的一种可能的逻辑结构示意图;
图8是本发明实施例提供的第一网络设备的一种可能的结构示意图;
图9是本发明实施例提供的第一网络设备的一种可能的逻辑结构示意图;
图10是本发明实施例提供的定位管理设备的一种可能的结构示意图;
图11是本发明实施例提供的定位管理设备的一种可能的逻辑结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何具有和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
为了更好地理解本发明实施例公开的一种定向发送定位参考信号的方法及装置,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1为本申请实施例所适用的通信系统的结构示意图。
需要说明的是,本申请实施例提及的通信系统包括但不限于:窄带物联网(narrow  band-internet of things,NB-IoT)系统、无线局域网(wireless local access network,WLAN)系统、LTE系统、下一代5G移动通信系统或者5G之后的通信系统,如NR、设备到设备(device to device,D2D)通信系统。
在图1所示的通信系统中,给出了传统的定位系统架构100。一个定位系统100至少包括目标设备101,基站(base station,BS)102,接入管理功能(access management function,AMF)103,定位管理功能(Location Management Function,LMF)104。定位系统100还可以包括增强的服务移动管理中心(enhanced serving mobile location centre,E-SMLC)以及安全用户面定位(secure user plane location,SUPL)定位平台(SUPL location platform,SLP)106。其中SLP 106用于用户面定位,E-SMLC 105用于控制面定位。基站102包括5G基站和/或LTE的下一代基站。
上述定位系统中的目标设备101包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。目标设备也可以称为终端设备或终端,以下不再赘述。
定位系统100可以包括多个基站102,其中包括服务基站和邻居基站,邻居基站是指和服务基站相邻的基站。基站102包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home node B,HNB)、基带单元(baseband Unit,BBU)、eLTE(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)等。
在定位系统100中,目标设备101和/或基站102和LMF之间的消息传输通过LTE定位协议(LTE positioning protocol,LPP)传输。而在5G定位系统中,定位协议可以是NR定位协议(NR positioning protocol,NRPP)。本申请中的定位协议可以是LPP,也可以是NRPP,本申请不做约束。应理解,本申请中使用某个定位协议只是示例性的,可以是LPP或NRPP中的任一种,以下不再赘述。
以下将主要使用UE来表示目标终端,目标终端又称为终端。而发送定位参考信号的可以是基站,也可以是定位管理单元(location management unit,LMU),本申请为描述方便,以下以基站为例,但应理解,发送定位参考信号的并不限于基站,还可以是LMU或其他设备,不再赘述。
为了描述方便,以下对本申请实施例涉及到的术语或概念进行解释。
准共址关系(qusi-colocation,QCL):用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有QCL关系的多个资源,可以采用相同或者类似的通信配置。
例如,如果两个天线端口具有共址关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括延迟扩展、平均延迟、多普勒扩展、多普勒频移、平均增益、接收参数、终端接收波束编号、发射/接收信道相关性、接收到达角(angel-of-arrival,AOA)、接收机天线的空间相关性、主AOA、平均AOA、AOA的扩展等。
具体地,QCL可以通过准共址指示进行指定,准共址指示用于指示至少两组天线端口是否具有准共址关系,包括:准共址指示用于指示至少两组天线端口发送的SCI-RS是否来自相同的传输点或波束组。网络节点可以通知终端发送RS的端口具有QCL关系,帮助终端进行RS的接收和解调。例如,终端能确认A端口和B端口具有QCL关系,即可以将A端口上测得的RS的大尺度参数用于B端口上的RS的测量和解调。
空域(spatial)QCL为QCL的一种,空域可以从发送端或接收端来理解。从发送端来看,如果两个天线端口是空域QCL,则这两个天线端口对应的波束方向在空间上一致。从接收端来看,如果两个天线端口是空域QCL,则接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
无线通信的信号需要由天线进行接收和发送,多个天线单元(antenna element)可以集成在一个面板上(panel)组成天线面板。一个射频(radio frequency,RF)链路可以驱动一个或多个天线单元。终端和网络节点均可以包括一个或多个天线面板,每个天线面板可以包括一个或者多个波束。天线面板可以表示为天线阵列(antenna array)或天线子阵列(antenna subarray)。一个天线面板可以包括一个或多个天线阵列/子阵列。一个天线面板可以由一个或多个晶振(oscillator)控制。RF链路可以称为接收通道和/或发送通道,接收机支路(receiver branch)等。一个天线面板可以由一个RF链路驱动,也可以由多个RF链路驱动。
波束:是一种通信资源,可以是宽波束,也可以是窄波束,还可以是其他类型波束。形成波束的技术可以是波束成形技术,也可以是其他技术手段。波束成形技术可以为数字波束成形技术、模拟波束成形技术或混合波束成形技术。不同的波束可以认为是不同的资源。终端和网络节点可以通过不同的波束发送相同的信息或者不同的信息。
可以将具有相同或者类似通信特征的多个波束视为一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
形成一个波束的一个或多个天线端口可以看作一个天线端口集。波束在协议中的体现还可以是空域滤波器(spatial filter)。波束的信息可以通过索引信息进行标识。索引信息可以对应配置终端的资源标识,比如,索引信息可以对应配置的CSI-RS的标识(identity,ID)或者资源,也可以对应配置的上行SRS的ID或者资源。索引信息还可以是通过波束承载的信号或信道显示或隐式承载的索引信息,比如,索引信息可以是通过波束发送的同步信号(synchronization signal,SS)或者PBCH指示该波束的索引信息。
波束的信息的标识可以包括通过波束的绝对索引、波束的相对索引、波束的逻辑索引、波束对应的天线端口的索引、波束对应的天线端口组的索引、下行SS块的时间索引、波束对应的连接(beam pair link,BPL)信息或索引、波束对应的发送参数(Tx parameter) 或索引、波束对应的接收参数(Rx parameter)或索引、波束对应的发送权重(weight)或索引、权重矩阵(weight vector)、权重向量(weight matrix)、波束对应的接收权重、波束对应的发送码本(codebook)或索引、波束对应的接收码本或索引等。
在LTE中,对于当前的服务小区,基站可以让终端上报能够同时测量到的参考信号资源,以辅助基站进行多个参考信号的传输。由于LTE中参考信号,如小区参考信号的传输是一个广播信号,在一定覆盖范围内的终端都可以接收到,终端通过上报能够测量到的参考信号,网络就可以知道终端能够同时接收到的参考信号。通常,终端能够测量到的参考信号是在一个比较大的角度域,因此,终端可以测量到来自不同网络节点或传输节点的正交或准正交的参考信号,从而实现测量。
但是,在NR中,由于采用了波束,相比传统的参考信号具有更窄的覆盖。网络发送的波束需要终端的接收波束在一定的角度或范围上才能接收到。因此,当网络给终端发送用于定位的参考信号的时候,如果网络不知道终端的位置,则需要网络在所有方向上发送用于定位的参考号,使得终端在某个时刻可以接收到参考信号,从而实现定位测量。
本申请中用于定位的参考信号包括可以用于进行定位测量的参考信号,包括但不限于CSI-RS,跟踪参考信号(tracking reference signal,TRS),同步信号块(synchronization signal block,SSB),DMRS,定位参考信号(positioning reference signal,PRS)。本申请中将以定位参考信号作为例子来进行说明,应理解,使用定位参考信号并不表示仅有定位参考信号可以用于定位,以下不再赘述。
如果网络为了实现终端定位而在各个方向上进行PRS的发送,将会造成资源的极大浪费,因为终端仅在某一个方向上接收PRS。
因此,在NR的基于波束的定位方法中,实现定位参考信号的有效发送是有必要的。目前的定位流程中还不支持波束信息的收集以及PRS资源的有效配置。本申请主要解决上述问题。
为解决上述问题,本实施例采用一种用于定位的波束信息获取的方法,包括:终端接收定位管理功能发送的波束信息请求,波束信息请求用于请求终端提供下行波束的测量信息;终端获取波束信息,波束信息包括终端测量到的至少一个第一网络设备发送的参考信号的信息;终端向定位管理功能发送获取的波束信息。
波束信息请求包括以下信息中的至少一种:目标传输点的标识,频带信息,带宽信息,波形参数。
上述方法还包括:终端向服务基站发送测量请求,测量请求用于请求至少一个第一网络设备发送参考信号用于终端进行测量,测量请求包括以下信息中的至少一种:目标传输点的标识,频带信息,带宽信息,波形参数,测量类型指示,测量类型指示用于指示基站为终端配置波束信息的测量。
上述方法还进一步包括:终端接收服务基站发送的测量配置,配置包括测量对象的信息;终端根据测量配置进行测量。
上述第一网络设备可以是服务基站,或者是邻居基站,或者是一个服务基站以及至少一个邻居基站。服务基站是指当前和终端建立连接,并为终端提供服务的基站。邻居基站是指能够被终端检测到的基站。以下不再赘述。
图2为本发明实施例提供的一种波束信息获取的方法。应理解,图2中以OTDOA为例,但并不限于OTDOA,对所有的下行定位方法本实施例都适应,这里以OTDOA为例仅是示例性的,并不对本申请实施例构成限制,以下不再赘述。包括如下步骤:
S201、定位管理功能向第一网络设备发送信息请求。
第一网络设备可以包括多个基站,如gNB1,gNB2,gNB3。其中一个为服务基站。具体地,以OTDOA为例,信息请求用于请求一个或多个基站用于OTDOA的辅助信息,辅助信息包括:PRS的发送周期,偏移量,发送时间长度等。
应理解,图2中示出了多个gNB,在NR中,由于一个基站可以发送多个波束,OTDOA的定位也可以用一个基站来实现,图2中多个基站仅是示例性的。
S202、基站向LMF发送OTDOA信息响应。
各基站将基站下的所有发送站点的用于OTDOA的信息上报定位服务器,主要包括基站的标识,传输点的标识,PRS的配置信息,其中PRS的配置信息包括:PRS的发送周期,偏移量,发送时间长度等。以下不再赘述。
S203、UE的定位请求到达定位管理功能,此定位请求可以由UE触发,也可以由网络侧触发,具体的由哪个网元触发本申请不做限定。
S204、定位管理功能向UE请求能力。
定位服务器向UE请求UE定位相关的能力,定位相关的能力包括UE支持定位方法。
S205、UE向LMF提供能力。
类似地,UE向LMF报告定位相关的能力,定位相关的能力包括UE支持定位方法。
S206、LMF确定用于定位的gNBs。
LMF根据OTDOA信息响应,确定可以用于对终端进行定位的gNB,可以是一个gNB,也可以是多个gNB。例如,可以根据gNB的PRS资源来确定选择哪些gNBs来对UE进行定位。具体的实现本申请不做约束。
应理解,这里的gNB仅是示例性的,本申请不对用于定位的基站进行约束,也可以是其他的基站,或者是多种不同的基站来协同对UE进行定位。以下不再赘述。
S207、LMF进行波束信息收集。
如前所述,由于基站使用波束来进行PRS的发送,为了避免PRS在不必要的方向上的传输,基站和/或LMF在进行PRS资源配置前,可以先收集波束信息,从而确定UE可以接收到哪些波束。根据UE可以接收到的波束,确定在哪些方向上发送PRS。
在一种可能的实现中,步骤S207可以在S206之前实现,在完成波束信息收集后,确定用于定位的基站。通过事先进行波束信息收集,使得LMF可以更好确定用于定位的基站,提供更好的定位性能。
具体地,波束信息收集可以由基站或UE来辅助完成。具体的实现过程将在后面的实施例描述。
S208、LMF和基站之间进行PRS资源配置。
第一网络设备根据波束信息确定定位参考信号的配置,定位参考信号的配置包括频域位置,时域位置,发送方向;第一网络设备向定位管理功能发送定位参考信号的配置。
LMF和基站之间进行PRS资源配置主要是在特定的方向上对PRS进行配置。为了实现 PRS资源配置,LMF需要请求基站在特定的资源上进行PRS的配置。具体的方法将在后面的实施例描述。
S209、LMF向UE发送提供辅助数据消息。
提供辅助数据消息中包括一个参考站点信息,以及若干个相邻站点信息,这些信息包括相应站点的标识,载频,以及PRS的配置信息。提供辅助数据消息还可以包含针对某个TP的波束信息,如波束类型、编号、QCL指示中的至少一种。PRS的配置信息包括PRS发送的起始时间,周期,持续时间,PRS生成参数中的至少一种。
示例性的,辅助数据中针对某个TP的波束类型为SSB,编号为3,表示此TP发送的PRS与它发送标号为3的SSB具有QCL关系。
需要说明的是,波束类型和编号可以分别为一个或多个,在此不做限定。
应理解,S209是LMF通过提供辅助数据消息为UE提供接收波束的信息。通过提供辅助数据消息,UE可以获得接收定位参考信号的接收波束的方向。该步骤也可以不依赖于前述其他步骤,只要LMF能提供波束相关的信息即可。
S210、UE进行PRS测量。
UE根据步骤S209中的辅助数据,使用和PRS具有QCL关系的波束所对应的接收波束接收PRS,并计算PRS的到达时间差。
UE根据辅助数据,确定和PRS具有QCL关系的波束的编号,使用和该波束的编号相同的方向的接收波束接收PRS。由于OTDOA可以对多个基站的PRS进行测量,因此,UE需要首先确定每个基站的和PRS具有QCL关系的波束。在确定和PRS具有QCL关系的波束后,使用该波束所对应的接收波束进行PRS的接收。
应理解,上述QCL关系可以是协议定义的,即,协议定义辅助数据所提供的信息中的PRS和波束信息中的波束的编号所对应的波束具有QCL关系,因此,在提供辅助数据消息中不必提供QCL指示。
S211、UE向LMF提供测量结果。
UE通过S210中的测量,可以获得PRS的测量结果。对OTDOA来说,包括多个参考信号之间的时间差,具体的测量结果的上报方式及格式本申请不做约束。
通过上述实施例,LMF可以收集终端的波束信息,根据收集的波束信息,对基站的定位参考信号进行配置,从而实现仅需要在特定的方向上进行PRS的发送就可以实现定位,从而减小了PRS的发送开销。
应理解,上述实施例中的各步骤之间并不严格限制先后顺序,如步骤S207可以在步骤S206之前执行,使得LMF可以更好的根据收集的波束信息确定用于定位的基站。
图3为本申请实施例提供的由UE辅助波束信息收集的流程图。图3包括如下步骤:
S301、LMF向UE发送波束信息请求。
终端接收定位管理功能发送的波束信息请求,波束信息请求用于请求终端提供下行波束的测量信息。
波束信息请求包括以下信息中的至少一种:目标传输点的标识,频带信息,带宽信息,波形参数。
其中,目标传输点可以有多个,因此,可以包括多个目标传输点的标识。
在一种可能的实现中,由于LMF不知道UE所在的位置,因此,并不知道UE可以测量 到的基站的参考信号。因此,在波束信息请求中仅指示UE进行测量,而不指定需要测量的目标传输点的标识。
S302、UE获得波束信息。
具体地,UE根据历史测量结果判断是否存在测量的波束信息,如果存在,执行步骤S303;UE判断对目标传输点参考信号的测量是否需要测量GAP,如果需要,执行S302a和S302b,如果不需要,UE在可用测量机会上测量目标传输点的参考信号,获得波束信息,然后执行S303。
在一种可能的实现中,如果LMF在波束信息请求中指定了目标传输点的标识,则UE判断是否有指定的目标传输点的测量结果,如果存在,在执行步骤S303。UE判断对目标传输点参考信号的测量是否需要测量GAP,如果需要,执行S302a和S302b,如果不需要,UE在可用测量机会上测量目标传输点的参考信号,获得波束信息,然后执行S303。
在一种可能的实现中,如果LMF在波束信息请求中指定了最少报告的目标传输点的个数,则UE判断是否存在满足最少报告的目标传输点的个数的测量结果,如果存在,在执行步骤S303。UE判断对目标传输点参考信号的测量是否需要测量GAP,如果需要,执行S302a和S302b,如果不需要,UE在可用测量机会上测量目标传输点的参考信号,获得波束信息,然后执行S303。
在一种可能的实现中,如果LMF在波束信息请求中指定了最少报告的目标传输点的个数以及参考信号测量阈值,则UE判断是否存在满足参考信号测量阈值,且满足最少报告的目标传输点的个数的测量结果,如果存在,在执行步骤S303。UE判断对目标传输点参考信号的测量是否需要测量GAP,如果需要,执行S302a和S302b,如果不需要,UE在可用测量机会上测量目标传输点的参考信号,获得波束信息,然后执行S303。
S302a、UE向服务基站发送测量请求。
测量请求用于请求至少一个第一网络设备发送参考信号用于终端进行测量,测量请求包括以下信息中的至少一种:目标传输点的标识,频带信息,带宽信息,波形参数,测量类型指示,测量类型指示用于指示基站为终端配置波束信息的测量。
在一种可能的实现中,UE向服务基站发送的测量请求中包括最少报告的目标传输点的个数,并不具体指定目标传输点的标识。通常,服务基站可能会配置更多的基站或参考信号让UE进行测量。
应理解,这里UE只能向服务基站发送测量请求,如果需要邻居基站的辅助信息,服务基站需要和邻居基站进行交互,以通知邻居基站发送参考信号以辅助UE进行测量。
S302b、服务基站向UE发送测量配置。
服务基站向UE发送的测量配置和切换过程中发送的测量配置是类似的,不再赘述。
应理解,UE在收到测量配置后,在指定的时间窗口内完成测量。测量对象可以是任意类型的参考信号,也可以是上述波束信息请求中指定的目标传输点的参考信号。参考信号包括前述用于定位的参考信号,如SSB,CSI-RS,不再赘述。
S303、UE向LMF发送波束信息报告。
波束信息报告包括:传输点的标识,传输点对应的波束类型,波束编号,对应波束编号测量到的RSRP中的至少一种。
通过上述实施例,LMF可以从UE获得UE能够测量到的波束的信息,通过这些波束的 信息,LMF可以在这些波束的方向上配置PRS,使得UE可以在这些波束对应的方向上进行PRS的测量,从而避免在所有方向上进行PRS的发送,降低了系统开销,提高了定位效率。
图4为本申请实施例提供的由基站辅助波束信息收集的流程图。图4包括如下步骤:
S401、LMF向服务基站发送波束信息请求。
波束信息请求中包含UE的标识。UE的标识可以是任何标识,如小区无线网络临时标识(cell radio network tempory identity,C-RNTI)。本申请不对UE的标识进行限制。
服务基站收到波束信息请求后,第一网络设备(如服务基站)根据终端上报的历史测量结果确定终端的波束信息;或者,第一网络设备为终端进行测量配置,并接收终端发送的基于测量配置的测量报告,第一网络设备根据测量报告确定终端的波束信息。
应理解,历史测量结果是指在收到波束信息请求时,第一网络设备所获得的历史测量结果的时间小于某个预定的时间。即历史测量结果能保证终端的波束信息是有效的,能反应终端接收波束信息的测量结果。
S402、服务基站进行测量配置。
步骤S402是可选的。具体地,服务基站判断是否存在该UE的波束信息的测量结果,且波束信息的测量结果没有超过一定时间。如果有,则直接进入步骤S403;如果没有,服务基站为该UE进行测量配置。LMF可以请求服务基站提供指定目标传输点的测量结果。
在一种可能的实现中,如果LMF在波束信息请求中指定了最少报告的目标传输点的个数,则UE判断是否存在满足最少报告的目标传输点的个数的测量结果;如果存在,在执行步骤S403。如果不存在,则服务基站为该UE进行测量配置,并获取测量结果。
在一种可能的实现中,如果LMF在波束信息请求中指定了最少报告的目标传输点的个数以及参考信号测量阈值,则UE判断是否存在满足参考信号测量阈值,且满足最少报告的目标传输点的个数的测量结果,如果存在,在执行步骤S403。如果不存在,则服务基站为该UE进行测量配置,并获取测量结果。
S403、服务基站向LMF发送波束信息报告。
服务基站向定位服务器发送波束信息报告,此消息携带,UE的ID,目标传输点的标识,以及该目标传输点所对应的波束类型,波束编号,以及对应波束的RSRP值。
通过上述图3或图4所示的实施例,LMF可以获得UE的波束信息,并根据波束信息对PRS进行配置,避免在定位测量过程中需要进行PRS的扫描过程,降低了系统开销,提高了定位速度。
应理解,上述过程是在定位之前完成的。通常LMF需要事先获取UE的波束信息,从而实现对PRS的有效配置。获取UE的波束信息可以是利用已有的测量结果或者通过对UE进行测量配置来获得波束的信息。
图5为本申请实施例提供的LMF和基站之间进行PRS资源配置的流程图。包括以下步骤:
S501、LMF向第一网络设备发送定位参考信号配置请求。
定位参考信号配置请求包括终端的波束信息。定位参考信号配置请求还包含定位服务的定位需求,如定位时延,定位精度,UE测量的波束的QoS信息,PRS周期,带宽信息。定位参考信号配置请求还包括步骤S207中收集到的各目标传输点的波束信息,QCL发送指示。
QCL发送指示用于指示第一网络在指定的波束方向上发送PRS。例如,在定位参考信号配置请求中包含某个波束的信息,如波束的标识,则基站在发送PRS时,和指定的波束发送具有QCL关系的PRS。
UE测量的波束的QoS信息用于指示UE测量的波束的QoS的质量。第一网络设备可以根据QoS信息确定是否接受PRS配置请求。例如,当UE测量的某个波束的QoS的质量低于某个阈值时,第一网络设备可以不需要在该方向发送PRS。或者第一网络设备根据QoS信息确定PRS的发送功率,例如增大或减小发送功率等。
S502、第一网络设备返回PRS配置响应。
PRS配置响应包括PRS配置,PRS配置包括PRS的发送频点,带宽,子载波间隔,周期,偏移,PRS occasion的长度等参数,也可携带一个波束类型和编号,此类型和编号指示此传输点将在此波束方向上发送PRS。
S503、LMF进行PRS配置协调。
该步骤是可选的。LMF协调各传输点的PRS配置,避免出现干扰。由于第一网络设备可以独立配置PRS资源,当出现资源冲突时,LMF需要进行协调,避免各第一网络设备配置的PRS发生相互干扰。
在一种可能的实现中,LMF向服务基站发送PRS配置请求,由服务基站统一协调各邻居基站的PRS资源。此时,PRS配置请求中包括各目标传输点的标识,或者,由服务基站确定目标传输点。服务基站收集各邻居基站的PRS配置后,统一将各基站的PRS配置发送给LMF。在这一实现中,S504是不需要的。
S504、LMF向个第一网络设备发送PRS协调结果。
这一步骤也是可选的。如果PRS在基站侧已经协调过,则无需执行这一步骤。第一网络设备接收定位管理功能发送的定位参考信号配置协调结果,定位参考信号配置协调结果包括干扰协调后所确定的定位参考信号的配置。PRS协调结果中还可以包括一个指示信息,用于指示不同传输点使用PRS配置发送PRS。PRS配置如前所述,不再赘述。
上述实施例通过PRS配置请求和PRS配置响应,指示各第一网络设备在指定的方向上进行PRS的传输,通过LMF和第一网络设备之间的交互,协调第一网络设备发送PRS的资源,从而减小第一网络设备由于不知道UE的方向而在所有方向进行PRS发送造成的资源浪费。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端和网络节点,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端、第一网络设备、定位管理功能进行功能模块的划分,例如,可以划分成各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的 形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。也应理解,本申请中终端的功能模块并不包括终端所有的功能模块,而是只包括和本申请相关的功能模块,第一网络设备可以是基站或定位管理单元。
图6为本申请的提供的上述实施例中所涉及的终端的一种可能的结构示意图。终端包括:接收单元601,处理单元602,发送单元603。接收单元601,用于支持终端执行图2中S204、S207、S209,图3中的S301、S302b;处理单元602,用于支持终端执行图2中S210以及对接收或发送消息的处理,或者图3中S302以及对接收或发送消息的处理;发送单元603,用于支持第一节点执行图2中的S205、S207、S211,图3中的S302a、S303。
在硬件实现上,上述接收单元601可以为接收器,发送单元603可以为发送器,接收器和发送器集成在通信单元中构成通信接口。
图7为本申请的实施例提供的上述实施例中所涉及的终端的一种可能的逻辑结构示意图。终端包括:处理器702。在本申请的实施例中,处理器702用于对该终端的动作进行控制管理,例如,处理器702用于支持终端执行前述实施例中图2中的S210以及对接收或发送消息的处理,或者图3中S302以及对接收或发送消息的处理。可选的,终端还可以包括:存储器701和/或通信接口703;处理器702、通信接口703以及存储器701可以相互连接或者通过总线704相互连接。其中,通信接口703用于支持该终端进行通信,存储器701用于存储终端的程序代码和数据。处理器702调用存储器701中存储的代码进行控制管理。该存储器701可以跟处理器耦合在一起,也可以不耦合在一起。
其中,处理器702可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线704可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述处理器702、存储器701也可以集成在专用集成电路中,专用集成电路还可以包括通信接口703。专用集成电路可以是处理芯片,也可以是处理电路。其中通信接口703可以是包括无线收发的通信接口,也可以是经过其他处理电路对接收的无线信号进行处理后而输入的数字信号的接口,还可以是和其他模块进行通信的软件或硬件接口。
图8为本申请的提供的上述实施例中所涉及的第一网络设备的一种可能的结构示意图。在本申请中,第一网络设备为基站或定位管理单元,基站包括服务基站和/或邻区基站。第一网络设备包括:发送单元801、接收单元803。其中,发送单元801用于支持第一网络设备执行图2中的S202、S207、S208,图3中的S302b,图4中的S403,图5中的S502;接收单元803用于支持第一网络设备执行图2中的S201、S207、S208,图3中的S302a,图4中的S401,图5中的S501、S504。
第一网络设备还可以包括处理单元802用于支持第一网络设备执行图4中的S402以及前述方法实施例中的第一网络设备对接收和/或发送消息的处理、波束信息的获取等。
在硬件实现上,上述发送单元701可以为发送器,接收单元703可以为接收器,接收器和发送器集成在通信单元中构成通信接口。
图9为本申请的实施例提供的上述实施例中所涉及的第一网络设备的一种可能的逻辑结构示意图。第一网络设备包括:处理器902。在本申请的实施例中,处理器902用于对该第一网络设备的动作进行控制管理,例如,处理器902用于支持第一网络设备执行前述实施例中接收单元803、发送单元801以及处理单元802中对各种消息的处理以及获取波束信息。可选的,第一网络设备还可以包括:存储器901和/或通信接口903;处理器902、通信接口903以及存储器901可以相互连接或者通过总线904相互连接。其中,通信接口903用于支持该第一网络设备进行通信,存储器901用于存储第一网络设备的程序代码和数据。处理器902调用存储器901中存储的代码进行控制管理。该存储器901可以跟处理器耦合在一起,也可以不耦合在一起。
其中,处理器902可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线904可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述处理器902、存储器901也可以集成在专用集成电路中,集成电路中还可以包括通信接口903。专用集成电路可以是处理芯片,也可以是处理电路。其中通信接口903可以是包括无线收发的通信接口,也可以是经过其他处理电路对接收的无线信号进行处理后而输入的数字信号的接口,还可以是和其他模块进行通信的软件或硬件接口。
图10为本申请的提供的上述实施例中所涉及的定位管理设备的一种可能的结构示意图。在本申请中,定位管理设备可以是基站的一部分,或者是一个独立的设备连接到网络。定位管理设备包括:发送单元1001、接收单元1003。其中,发送单元1001用于支持定位管理设备执行图2中的S201、S204、S207、S208、S209,图3中的S301,图4中的S401,图5中的S501;接收单元1003用于支持定位管理设备执行图2中的S202、S205、S207、S208、S211,图3中的S303,图4中的S403,图5中的S502。
定位管理设备还可以包括处理单元1002用于支持第一网络设备执行图2中的S206,图5中的S503,以及前述方法实施例中的定位管理设备对接收和/或发送消息的处理等。
在硬件实现上,上述发送单元1001可以为发送器,接收单元1003可以为接收器,接收器和发送器集成在通信单元中构成通信接口。
图11为本申请的实施例提供的上述实施例中所涉及的定位管理设备的一种可能的逻辑结构示意图。定位管理设备包括:处理器1102。在本申请的实施例中,处理器1102用于对该定位管理设备的动作进行控制管理,例如,处理器1102用于支持定位管理设备执行前述实施例中接收单元1003、发送单元1001以及处理单元1002中对各种消息的处理、基站的选择、干扰协调等。可选的,定位管理设备还可以包括:存储器1101和/或通信接口1103;处理器1102、通信接口1103以及存储器1101可以相互连接或者通过总线1104 相互连接。其中,通信接口1103用于支持该定位管理设备进行通信,存储器1101用于存储定位管理设备的程序代码和数据。处理器1102调用存储器1101中存储的代码进行控制管理。该存储器1101可以跟处理器耦合在一起,也可以不耦合在一起。
其中,处理器1102可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线1104可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
上述处理器1102、存储器1101也可以集成在专用集成电路中,集成电路中还可以包括通信接口1103。专用集成电路可以是处理芯片,也可以是处理电路。其中通信接口1103可以是包括无线收发的通信接口,也可以是经过其他处理电路对接收的无线信号进行处理后而输入的数字信号的接口,还可以是和其他模块进行通信的软件或硬件接口。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行图2、图3、图4或图5中定向发送定位参考的方法中终端或第一网络设备的步骤时,读取存储介质中的计算机执行指令。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施图2到图5所提供的定向发送定位参考信号的方法中终端、第一网络设备的步骤。
在本申请的另一实施例中,还提供一种通信系统,该通信系统至少包括一个终端、一个第一网络设备以及一个定位管理功能,其中,第一网络设备包括基站,或邻居基站,或定位管理单元。终端可以为图6或图7所提供的终端,用于执行图2-图5所提供的获取波束信息的方法中终端的步骤;和/或,第一网络设备可以为图8或图9所提供的第一网络设备,且用于执行图2-图5所提供的定位参考信号的配置方法中由第一网络设备执行的步骤。应理解,该通信系统可以包括多个终端以及多个第一网络设备,终端可以同时对多个第一网络设备发送的参考信号进行测量,并向定位管理功能发送波束信息和/或定位测量结果。
在本申请实施例中,终端通过接收接收定位管理功能发送的波束信息请求,并向定位管理功能发送波束信息,使得定位管理可以根据终端可以接收的波束信息配置定位参考信号。而第一网络设备通过接收定位管理功能发送的PRS配置请求,在指定的方向上进行PRS的配置。通过上述方法,可以使得定位参考信号仅在有限的方向上进行发送,减少了在各个方向上进行PRS波束的发送而造成的资源浪费。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种用于定位的波束信息获取的方法,其特征在于,包括:
    终端接收定位管理功能发送的波束信息请求,所述波束信息请求用于请求所述终端提供下行波束的测量信息;
    所述终端获取波束信息,所述波束信息包括所述终端测量到的至少一个第一网络设备发送的参考信号的信息;
    所述终端向所述定位管理功能发送获取的波束信息。
  2. 根据权利要求1所述的方法,其特征在于,所述波束信息请求包括以下信息中的至少一种:目标传输点的标识,频带信息,带宽信息,波形参数。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述终端向服务基站发送测量请求,所述测量请求用于请求对至少一个所述第一网络设备发送的参考信号进行测量,所述测量请求包括以下信息中的至少一种:目标传输点的标识,频带信息,带宽信息,波形参数,测量类型指示,所述测量类型指示用于指示基站为所述终端配置波束信息的测量。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    所述终端接收所述服务基站发送的测量配置,所述配置包括测量对象的信息;
    所述终端根据测量配置进行测量。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,还包括:
    所述终端接收定位管理功能发送的提供辅助数据消息,所述提供辅助数据消息包括波束信息,所述波束信息包含波束类型、编号、QCL指示中的至少一种;
    所述终端根据所述波束信息确定接收定位参考信号的波束的方向。
  6. 一种定位参考信号的配置方法,所述方法应用于无线定位系统,其特征在于,包括:
    第一网络设备接收定位管理功能发送的定位参考信号配置请求,所述定位参考信号配置请求包括终端的波束信息;
    所述第一网络设备向所述定位管理功能发送定位参考信号配置响应,所述定位参考信号配置响应包括定位参考信号的配置信息。
  7. 根据权利要求6所述的方法,其特征在于,还包括:
    所述第一网络设备接收所述定位管理功能发送的波束信息请求,所述波束信息请求用于请求所述终端的下行波束的测量信息,所述波束信息请求包括目标传输点的标识;
    所述第一网络设备获取所述终端的波束信息。
  8. 根据权利要求6或7所述的方法,其特征在于,还包括:
    所述第一网络设备向所述定位管理功能发送波束信息报告,所述波束信息报告包括以下信息中的至少一种:所述终端的标识,目标传输点的标识,目标传输点的波束类型,波束变化,波束的RSRP值。
  9. 根据权利要求7所述的方法,其特征在于,所述第一网络设备获取所述终端的波束信息包括:
    所述第一网络设备根据所述终端上报的历史测量结果确定所述终端的波束信息;或者,
    所述第一网络设备为所述终端进行测量配置,并接收所述终端发送的基于所述测量配置的测量报告,所述第一网络设备根据所述测量报告确定所述终端的波束信息。
  10. 根据权利要求6-9任一项所述的方法,其特征在于,还包括:
    所述第一网络设备根据所述波束信息确定定位参考信号的配置,所述定位参考信号的配置包括频域位置,时域位置,发送方向;
    所述第一网络设备向所述定位管理功能发送所述定位参考信号的配置。
  11. 根据权利要求6-10任一项所述的方法,其特征在于,还包括:
    所述第一网络设备接收所述定位管理功能发送的定位参考信号配置协调结果,所述定位参考信号配置协调结果包括干扰协调后所确定的定位参考信号的配置。
  12. 一种终端,其特征在于,包括:
    接收单元,用于接收定位管理功能发送的波束信息请求,所述波束信息请求用于请求所述终端提供下行波束的测量信息;
    处理单元,用于获取波束信息,所述波束信息包括所述终端测量到的至少一个第一网络设备发送的参考信号的信息;
    发送单元,用于向所述定位管理功能发送获取的波束信息。
  13. 根据权利要求12所述的终端,其特征在于,所述波束信息请求包括以下信息中的至少一种:目标传输点的标识,频带信息,带宽信息,波形参数。
  14. 根据权利要求12或13所述的终端,其特征在于,还包括:
    所述发送单元,还用于向服务基站发送测量请求,所述测量请求用于请求对至少一个所述第一网络设备发送参考信号进行测量,所述测量请求包括以下信息中的至少一种:目标传输点的标识,频带信息,带宽信息,波形参数,测量类型指示,所述测量类型指示用于指示基站为所述终端配置波束信息的测量。
  15. 根据权利要求14所述的终端,其特征在于,还包括:
    所述接收单元,还用于接收所述服务基站发送的测量配置,所述配置包括测量对象的信息;
    所述处理单元,还用于根据测量配置进行测量。
  16. 根据权利要求12-15任一项所述的终端,其特征在于,还包括:
    所述接收单元,还用于接收定位管理功能发送的提供辅助数据消息,所述提供辅助数据消息包括波束信息,所述波束信息包含波束类型、编号、QCL指示中的至少一种;
    所述处理单元,还用于根据所述波束信息确定接收定位参考信号的波束的方向。
  17. 一种第一网络设备,其特征在于,包括:
    接收单元,用于接收定位管理功能发送的定位参考信号配置请求,所述定位参考信号配置请求包括终端的波束信息;
    发送单元,用于向所述定位管理功能发送定位参考信号配置响应,所述定位参考信号配置响应包括定位参考信号的配置信息。
  18. 根据权利要求17所述第一网络设备,其特征在于,还包括:
    所述接收单元,还用于接收所述定位管理功能发送的波束信息请求,所述波束信息请求用于请求所述终端的下行波束的测量信息,所述波束信息请求包括目标传输点的标识;
    处理单元,还用于获取所述终端的波束信息。
  19. 根据权利要求17或18所述第一网络设备,其特征在于,还包括:
    所述发送单元,还用于向所述定位管理功能发送波束信息报告,所述波束信息报告包括以下信息中的至少一种:所述终端的标识,目标传输点的标识,目标传输点的波束类型,波束变化,波束的RSRP值。
  20. 根据权利要求18所述第一网络设备,其特征在于,所述处理单元,具体用于根据所述终端上报的历史测量结果确定所述终端的波束信息;或者为所述终端进行测量配置,并根据所述终端发送的测量报告确定所述终端的波束信息;
    所述接收单元具体用于接收所述终端基于测量配置发送的所述测量报告。
  21. 根据权利要求17-20任一项所述第一网络设备,其特征在于,还包括:
    所述处理单元,还用于根据所述波束信息确定定位参考信号的配置,所述定位参考信号的配置包括频域位置,时域位置,发送方向;
    所述发送单元,还用于向所述定位管理功能发送所述定位参考信号的配置。
  22. 根据权利要求17-21任一项所述的第一网络设备,其特征在于,还包括:
    所述接收单元,还用于接收所述定位管理功能发送的定位参考信号配置协调结果,所述定位参考信号配置协调结果包括干扰协调后所确定的定位参考信号的配置。
  23. 一种终端,其特征在于,包括:
    与程序指令相关的硬件,所述硬件用于执行权利要求1-5中任一项所述的方法步骤。
  24. 一种网络设备,其特征在于,包括:
    与程序指令相关的硬件,所述硬件用于执行权利要求6-11中任一项所述的方法步骤。
  25. 一种可读存储介质,其特征在于,所述可读存储介质上存储有程序,当所述程序运行时,实现如权利要求1-5任一项所述的波束信息获取的方法,或者实现如权利要求6-11任一项所述的定位参考信号的配置方法。
PCT/CN2020/070364 2019-02-13 2020-01-04 定向发送定位参考信号的方法及装置 WO2020164339A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20756695.1A EP3902317A4 (en) 2019-02-13 2020-01-04 METHOD AND DEVICE FOR DIRECTIONAL TRANSMISSION OF A POSITIONING REFERENCE SIGNAL
JP2021547245A JP7278395B2 (ja) 2019-02-13 2020-01-04 位置決定ビーム情報取得方法および装置
US17/396,145 US11588538B2 (en) 2019-02-13 2021-08-06 Positioning beam information obtaining method and apparatus
US18/166,630 US20230261727A1 (en) 2019-02-13 2023-02-09 Positioning beam information obtaining method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910115293.0 2019-02-13
CN201910115293.0A CN111565414B (zh) 2019-02-13 2019-02-13 一种用于定位的波束信息获取方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/396,145 Continuation US11588538B2 (en) 2019-02-13 2021-08-06 Positioning beam information obtaining method and apparatus

Publications (1)

Publication Number Publication Date
WO2020164339A1 true WO2020164339A1 (zh) 2020-08-20

Family

ID=72045257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070364 WO2020164339A1 (zh) 2019-02-13 2020-01-04 定向发送定位参考信号的方法及装置

Country Status (5)

Country Link
US (2) US11588538B2 (zh)
EP (1) EP3902317A4 (zh)
JP (1) JP7278395B2 (zh)
CN (2) CN114666828A (zh)
WO (1) WO2020164339A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114698098A (zh) * 2020-12-31 2022-07-01 大唐移动通信设备有限公司 定位方法、设备及计算机可读存储介质
GB2585415B (en) * 2019-02-22 2022-07-27 Samsung Electronics Co Ltd Method of transmitting and receiving user equipment management information in wireless communication system and electronic device for performing the method
CN114828205A (zh) * 2021-01-18 2022-07-29 大唐移动通信设备有限公司 终端定位方法及设备
WO2022205144A1 (zh) * 2021-03-31 2022-10-06 北京小米移动软件有限公司 一种定位参考信号配置信息的确定方法及其装置
US20230155650A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Heterogenous beamforming capability with mixed beamforming architecture

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163480A (zh) * 2018-11-07 2020-05-15 索尼公司 电子装置、无线通信方法和计算机可读介质
CN114258124A (zh) * 2020-09-23 2022-03-29 维沃移动通信有限公司 功率控制方法、终端及网络侧设备
CN112468276A (zh) * 2020-10-16 2021-03-09 中国信息通信研究院 一种定位导频指示方法、设备和通信系统
WO2022141219A1 (zh) * 2020-12-30 2022-07-07 华为技术有限公司 一种定位方法及相关装置
CN115119136A (zh) * 2021-03-17 2022-09-27 维沃移动通信有限公司 定位方法、终端及网络侧设备
CN115175304A (zh) * 2021-04-02 2022-10-11 大唐移动通信设备有限公司 定位方法、设备、装置和存储介质
CN115190582A (zh) * 2021-04-02 2022-10-14 大唐移动通信设备有限公司 一种prs配置信息的确定方法及装置
CN115250526A (zh) * 2021-04-27 2022-10-28 大唐移动通信设备有限公司 终端设备的定位方法、装置及存储介质
EP4371327A1 (en) * 2021-07-12 2024-05-22 Nokia Technologies Oy Positioning
CN116456363A (zh) * 2022-01-07 2023-07-18 大唐移动通信设备有限公司 一种信息配置方法、传输方法、装置、基站、lmf及终端
WO2023153335A1 (ja) * 2022-02-09 2023-08-17 三菱電機株式会社 通信システム
CN116709166A (zh) * 2022-02-25 2023-09-05 华为技术有限公司 一种通信方法及装置
CN116963237A (zh) * 2022-04-20 2023-10-27 大唐移动通信设备有限公司 一种信息处理方法、装置及可读存储介质
WO2023201686A1 (zh) * 2022-04-22 2023-10-26 Oppo广东移动通信有限公司 无线通信的方法、终端设备、锚点设备和网络设备
WO2023206272A1 (zh) * 2022-04-28 2023-11-02 富士通株式会社 波束信息的发送和接收方法、装置和通信系统
CN115336336A (zh) * 2022-05-06 2022-11-11 上海移远通信技术股份有限公司 无线通信方法、波束方向采集系统、终端设备和网络设备
CN115002901B (zh) * 2022-06-02 2023-12-22 中国电信股份有限公司 差分定位方法、服务器、基站、终端、设备及存储介质
CN117560618A (zh) * 2022-08-03 2024-02-13 大唐移动通信设备有限公司 下行定位方法、设备及处理器可读存储介质
CN117676459A (zh) * 2022-08-31 2024-03-08 华为技术有限公司 一种相对位置的确定方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018069208A1 (en) * 2016-10-10 2018-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. User equipment localization in a mobile communication network
CN108307413A (zh) * 2016-09-30 2018-07-20 华为技术有限公司 接入方法、终端设备和基站
US20190037338A1 (en) * 2017-07-31 2019-01-31 Qualcomm Incorporated Methods and systems for on-demand resource allocation for location determination of a mobile device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103209475B (zh) * 2012-01-16 2016-05-25 华为技术有限公司 定位方法、定位服务器、终端和基站
WO2016032308A1 (ko) * 2014-08-29 2016-03-03 엘지전자 주식회사 무선 통신 시스템에서 otdoa 관련 동작 수행 방법
US10033449B2 (en) * 2014-12-16 2018-07-24 Lg Electronics Inc. Method for receiving reference signal in wireless communication system, and apparatus therefor
WO2017164925A1 (en) * 2016-03-24 2017-09-28 Intel Corporation Method of positioning for 5g systems
US10021667B2 (en) * 2016-06-23 2018-07-10 Qualcomm Incorporated Positioning in beamformed communications
US10660109B2 (en) * 2016-11-16 2020-05-19 Qualcomm Incorporated Systems and methods to support multiple configurations for positioning reference signals in a wireless network
WO2018159967A1 (ko) * 2017-02-28 2018-09-07 엘지전자 주식회사 무선 통신 시스템에서의 단말 포지셔닝 방법 및 이를 위한 장치
US11563537B2 (en) * 2018-10-16 2023-01-24 Qualcomm Incorporated Exchanging quasi colocation information between a user equipment and a base station that indicates an association between a spatial parameter and a current transmission configuration
US11963150B2 (en) * 2018-11-01 2024-04-16 Qualcomm Incorporated Positioning enhancements for locating a mobile device in a wireless network
US11375340B2 (en) * 2019-08-09 2022-06-28 Kt Corporation Apparatus and method for performing positioning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108307413A (zh) * 2016-09-30 2018-07-20 华为技术有限公司 接入方法、终端设备和基站
WO2018069208A1 (en) * 2016-10-10 2018-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. User equipment localization in a mobile communication network
US20190037338A1 (en) * 2017-07-31 2019-01-31 Qualcomm Incorporated Methods and systems for on-demand resource allocation for location determination of a mobile device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FRAUNHOFER IIS; FRAUNHOFER HHI: "NR Beam Management Supporting Multi-gNB Measurements for Positioning", 3GPP DRAFT; R1-1813583, 16 November 2018 (2018-11-16), Spokane, US, pages 1 - 8, XP051479922 *
QUALCOMM INCORPORATED: "On Demand Transmission of PRS for NR", 3GPP DRAFT; R2-1817902, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 27, XP051481788 *
See also references of EP3902317A4
ZTE: "Enhance E-CID positioning with SSB information", 3GPP DRAFT; R2-1816510, 16 November 2018 (2018-11-16), Spokane, USA, pages 1 - 4, XP051480464 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2585415B (en) * 2019-02-22 2022-07-27 Samsung Electronics Co Ltd Method of transmitting and receiving user equipment management information in wireless communication system and electronic device for performing the method
US11653370B2 (en) 2019-02-22 2023-05-16 Samsung Electronics Co., Ltd. Method of transmitting and receiving user equipment management information in wireless communication system and electronic device for performing the method
CN114698098A (zh) * 2020-12-31 2022-07-01 大唐移动通信设备有限公司 定位方法、设备及计算机可读存储介质
CN114828205A (zh) * 2021-01-18 2022-07-29 大唐移动通信设备有限公司 终端定位方法及设备
WO2022205144A1 (zh) * 2021-03-31 2022-10-06 北京小米移动软件有限公司 一种定位参考信号配置信息的确定方法及其装置
US20230155650A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Heterogenous beamforming capability with mixed beamforming architecture

Also Published As

Publication number Publication date
JP7278395B2 (ja) 2023-05-19
JP2022520093A (ja) 2022-03-28
CN114666828A (zh) 2022-06-24
CN111565414B (zh) 2022-04-05
EP3902317A4 (en) 2022-03-02
EP3902317A1 (en) 2021-10-27
US20230261727A1 (en) 2023-08-17
CN111565414A (zh) 2020-08-21
US11588538B2 (en) 2023-02-21
US20210367657A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2020164339A1 (zh) 定向发送定位参考信号的方法及装置
CN111314952B (zh) 一种测量上报的方法及装置
WO2020125434A1 (zh) 一种多站点的定位方法及装置
US20220173857A1 (en) Measurements for on-demand positioning reference signal transmission
JP6231573B2 (ja) 複数の受信点を有する測定ノードを備えるシステムにおける測位の方法
EP3175660B1 (en) Apparatus, computer-readable medium, and method to determine a user equipment location in a cellular network using signals from a wireless local area network (wlan)
WO2014056172A1 (zh) 定位方法和装置
TW202038639A (zh) Rsrp 報告方法以及使用者設備
WO2020114334A1 (zh) 一种通信方法及设备
US11949621B2 (en) System and method for phase noise-based signal design for positioning in a communication system
WO2021010883A1 (en) Network node, user equipment and methods performed therein
US20220353842A1 (en) Methods and devices for on-demand positioning
US11706588B2 (en) Positioning method and apparatus for UE
US11864150B2 (en) Uplink coordinated multipoint positioning
WO2022151494A1 (zh) 一种传输参数确定方法及装置
CN111818552B (zh) 一种基于cu-du架构的定位方法及装置
CN115150937B (zh) 一种通信方法和装置
WO2022082784A1 (zh) 一种rss的测量方法、装置及系统
US20230397156A1 (en) Receiving radio node, radio device, network node and methods for positioning the radio device
CN115087097A (zh) 终端的定位方法、系统、处理设备及存储介质
WO2023072361A1 (en) Sidelink signal positioning coordination based on user device capability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020756695

Country of ref document: EP

Effective date: 20210722

ENP Entry into the national phase

Ref document number: 2021547245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE