WO2023201686A1 - 无线通信的方法、终端设备、锚点设备和网络设备 - Google Patents

无线通信的方法、终端设备、锚点设备和网络设备 Download PDF

Info

Publication number
WO2023201686A1
WO2023201686A1 PCT/CN2022/088406 CN2022088406W WO2023201686A1 WO 2023201686 A1 WO2023201686 A1 WO 2023201686A1 CN 2022088406 W CN2022088406 W CN 2022088406W WO 2023201686 A1 WO2023201686 A1 WO 2023201686A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor point
reference signal
configuration information
information
point device
Prior art date
Application number
PCT/CN2022/088406
Other languages
English (en)
French (fr)
Inventor
刘洋
于新磊
卢前溪
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/088406 priority Critical patent/WO2023201686A1/zh
Publication of WO2023201686A1 publication Critical patent/WO2023201686A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • Embodiments of the present application relate to the field of communications, and more specifically, to a wireless communication method, terminal device, anchor device, and network device.
  • target terminals with positioning requirements and anchor points that function similarly to base stations (gNB) or Transmission Reception Points (TRP) The devices are all disconnected from the network. In this case, how to position the target terminal is a problem that needs to be solved.
  • Embodiments of the present application provide a wireless communication method, terminal equipment, anchor point equipment and network equipment.
  • the terminal equipment determines whether the configurations of reference signals used for positioning of different anchor point devices conflict. In the case of configuration conflicts, a Methods to avoid conflicts to ensure accurate positioning of terminal devices.
  • a wireless communication method which method includes:
  • the terminal device determines whether the configurations of the first reference signals of the M anchor point devices conflict, M is a positive integer;
  • the terminal device redistributes the configuration information of the first reference signal to some or all of the M anchor point devices; or, the terminal device instructs the M anchor point devices to continue to use the existing first reference signal. Signal configuration information.
  • the terminal device in the case of a configuration conflict, reallocates the configuration information of the first reference signal to some or all of the M anchor point devices.
  • the terminal device instructs the M anchor point devices to continue to use the existing configuration information of the first reference signal.
  • the first reference signal is a reference signal used for positioning.
  • the first reference signal is a side row positioning reference signal (S-PRS).
  • S-PRS side row positioning reference signal
  • a wireless communication method which method includes:
  • the anchor point device sends the configuration information of the first reference signal
  • the configuration information of the first reference signal is used to determine whether the configurations of the first reference signals of M anchor point devices conflict, M is a positive integer, and M>1.
  • the first reference signal is a reference signal used for positioning.
  • the first reference signal is a side row positioning reference signal (S-PRS).
  • S-PRS side row positioning reference signal
  • a wireless communication method which method includes:
  • the network device determines whether the configurations of the first reference signals of the M anchor point devices conflict, where M is a positive integer;
  • the network device redistributes the configuration information of the first reference signal to some or all of the M anchor point devices; or, the network device instructs the M anchor point devices to continue to use the existing first reference signal. Signal configuration information.
  • the terminal device in the case of a configuration conflict, reallocates the configuration information of the first reference signal to some or all of the M anchor point devices.
  • the terminal device instructs the M anchor point devices to continue to use the existing configuration information of the first reference signal.
  • the first reference signal is a reference signal used for positioning.
  • the first reference signal is a side row positioning reference signal (S-PRS).
  • S-PRS side row positioning reference signal
  • a fourth aspect provides a terminal device for executing the method in the first aspect.
  • the terminal device includes a functional module for executing the method in the first aspect.
  • an anchor point device is provided for performing the method in the above second aspect.
  • the anchor point device includes a functional module for executing the method in the above second aspect.
  • a sixth aspect provides a network device for performing the method in the above third aspect.
  • the network device includes a functional module for executing the method in the above third aspect.
  • a terminal device including a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the terminal device executes the above-mentioned first aspect. Methods.
  • An eighth aspect provides an anchor device, including a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the network device executes the above second aspect method in.
  • a ninth aspect provides a network device, including a processor and a memory; the memory is used to store a computer program, and the processor is used to call and run the computer program stored in the memory, so that the network device executes the above-mentioned third aspect. Methods.
  • a device for implementing the method in any one of the above-mentioned first to third aspects.
  • the device includes: a processor, configured to call and run a computer program from a memory, so that a device installed with the device executes the method in any one of the above-mentioned first to third aspects.
  • An eleventh aspect provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first to third aspects.
  • a computer program product including computer program instructions, which cause a computer to execute the method in any one of the above-mentioned first to third aspects.
  • a thirteenth aspect provides a computer program that, when run on a computer, causes the computer to execute the method in any one of the above-mentioned first to third aspects.
  • the terminal device determines whether the configurations of the first reference signals of the M anchor point devices conflict, and in the case of a configuration conflict, the terminal device resets the configuration for some or all of the M anchor point devices.
  • the configuration information of the first reference signal is allocated, and if the configuration does not conflict, the terminal device instructs the M anchor point devices to continue to use the existing configuration information of the first reference signal, thereby ensuring accurate positioning of the terminal device.
  • the anchor device sends the configuration information of the first reference signal, so that the terminal device or the network device can determine whether the configurations of the first reference signals of the M anchor point devices conflict.
  • the terminal device or network device redistributes the configuration information of the first reference signal to some or all of the M anchor point devices, and instructs the M anchor point devices to continue using it if there is no configuration conflict.
  • the existing configuration information of the first reference signal can ensure the precise positioning of the terminal device.
  • the network device determines whether the configurations of the first reference signals of the M anchor point devices conflict, and in the case of a configuration conflict, the network device resets the configuration for some or all of the M anchor point devices.
  • the configuration information of the first reference signal is allocated, and if the configuration does not conflict, the network device instructs the M anchor devices to continue to use the existing configuration information of the first reference signal, thereby ensuring accurate positioning of the terminal device.
  • Figure 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of multi-RTT positioning provided by this application.
  • Figure 3 is a schematic flow chart of a wireless communication method provided according to an embodiment of the present application.
  • FIGS 4 and 5 are respectively schematic flow charts of terminal positioning provided by embodiments of the present application.
  • Figure 6 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of yet another wireless communication method provided according to an embodiment of the present application.
  • Figure 8 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Figure 9 is a schematic block diagram of an anchor point device provided according to an embodiment of the present application.
  • Figure 10 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Figure 11 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Figure 12 is a schematic block diagram of a device provided according to an embodiment of the present application.
  • Figure 13 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • IoT Internet of Things
  • WiT wireless fidelity
  • 5G fifth-generation communication
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) scenario. ) network deployment scenario, or applied to Non-Standalone (NSA) network deployment scenario.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • NSA Non-Standalone
  • the communication system in the embodiments of the present application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as shared spectrum; or, the communication system in the embodiments of the present application can also be applied to licensed spectrum, Among them, licensed spectrum can also be considered as unshared spectrum.
  • the communication system in the embodiment of the present application can be applied to the FR1 frequency band (corresponding to the frequency band range 410MHz to 7.125GHz), can also be applied to the FR2 frequency band (corresponding to the frequency band range 24.25GHz to 52.6GHz), and can also be applied to The new frequency band, for example, corresponds to the frequency band range of 52.6 GHz to 71 GHz or the high frequency band corresponding to the frequency band range of 71 GHz to 114.25 GHz.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • User Equipment User Equipment
  • the terminal device can be a station (STATION, ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital assistant.
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites). superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, or an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city (smart city) or wireless terminal equipment in smart home (smart home), vehicle-mounted communication equipment, wireless communication chip/application specific integrated circuit (ASIC)/system on chip (System on Chip, SoC), etc.
  • ASIC application specific integrated circuit
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the network device may be a device used to communicate with mobile devices.
  • the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA.
  • BTS Base Transceiver Station
  • it can be a base station (NodeB, NB) in WCDMA, or an evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network network equipment or base station (gNB) or network equipment in the future evolved PLMN network or network equipment in the NTN network, etc.
  • NodeB base station
  • gNB NR network network equipment or base station
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • network devices may be satellites or balloon stations.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • the network device may also be a base station installed on land, water, or other locations.
  • network equipment can provide services for a cell, and terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a network equipment ( For example, the cell corresponding to the base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell ( Pico cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the communication system 100 may include a network device 110, which may be a device that communicates with a terminal device 120 (also referred to as a communication terminal or terminal).
  • the network device 110 can provide communication coverage for a specific geographical area and can communicate with terminal devices located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and other numbers of terminal devices may be included within the coverage of each network device. The embodiments of the present application do not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiments of the present application.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be described again here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiments of this application.
  • the first communication device may be a terminal device, such as a mobile phone, a machine facility, a Customer Premise Equipment (CPE), industrial equipment, a vehicle, etc.; the second communication device The device may be a peer communication device of the first communication device, such as a network device, a mobile phone, an industrial device, a vehicle, etc.
  • CPE Customer Premise Equipment
  • This article takes the first communication device as a terminal device and the second communication device as a network device as a specific example for description.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may be an evolution of the existing LTE protocol, NR protocol, Wi-Fi protocol or protocols related to other communication systems.
  • the application does not limit the type of agreement.
  • the positioning architecture introduced in Release 16 (Release 16, R16) and Release 17 (Release 17, R17) mainly consists of a terminal (UE), multiple base stations (gNB), access and mobility management functions (Access and It is composed of Mobility Management Function (AMF) entity and Location Management Function (LMF) entity.
  • the UE and/or gNB send sounding reference signals (Sounding Reference Signal, SRS) and/or positioning reference signals (PRS) according to the known configuration pattern.
  • SRS Sounding Reference Signal
  • PRS positioning reference signals
  • the gNB and/or UE measures the SRS and/or PRS according to the known configuration pattern to obtain positioning-related measurement quantities such as departure angle, arrival angle, distance, and distance difference.
  • these measurement quantities are aggregated to the terminal or LMF to perform positioning to obtain the final positioning result.
  • the reference signals sent by different terminals/gNBs should maintain orthogonality. In this case, it can be guaranteed that the signals measured by all parties in the system come from a fixed point. This guarantee is the basis for positioning estimation. sexual. In addition, orthogonality can be ensured in at least one domain of time/frequency/code.
  • the configuration of SRS and PRS and their measurement can be explained based on the positioning method of multi-Round Trip Time (multi-RTT), as shown in Figure 2.
  • multi-RTT multi-Round Trip Time
  • the gNB configures uplink SRS resources for the terminal (UE), and then in step 5a the network activates the terminal (UE) to transmit SRS.
  • the LMF informs the neighboring gNBs of the SRS resource configuration of the terminal (UE) through the NR Positioning Protocol a (New Radio Positioning Protocol a, NRPPa) measurement request (measurement Request), and requires each gNB to send The SRS performs measurements, and finally in step 11, each gNB reports the measurement results they collected to the LMF entity.
  • NR Positioning Protocol a New Radio Positioning Protocol a, NRPPa
  • the network first sends the unique downlink PRS configuration information of each gNB to the terminal (UE), and then activates the terminal (UE) to perform downlink measurement, and finally in step 10
  • the terminal (UE) sends the measurement results to the LMF entity through a message (ProvideLocationInformation msg) providing location information through the Long Term Evolution Positioning Protocol (LPP).
  • a message ProvideLocationInformation msg
  • LPP Long Term Evolution Positioning Protocol
  • the specific reference signal (Reference Signal, RS) configuration is the following downlink (DL) PRS as an example.
  • the configuration information of NR DL PRS is provided to UE by LMF through LPP protocol signaling.
  • the parameter configuration of DL PRS adopts a four-layer signaling structure, which is represented from the top to the bottom as:
  • PFL Positioning Frequency Layer
  • TRP Transmission Reception Point
  • the UE is configured with multiple TRPs to send DL PRS signals at the same frequency point.
  • Each TRP can be configured with one or two DL PRS resource sets, which configure all DL PRS resources sent by this TRP at a certain frequency point.
  • Multiple DL PRS resources can be configured in each DL PRS resource set.
  • Each DL PRS resource can represent a transmit beam of a TRP, and different DL PRS resources can represent different transmit beams of this TRP.
  • PFL positioning frequency layers
  • UE terminal
  • the length of the cyclic prefix (CP) of the PRS signal is the length of the cyclic prefix (CP) of the PRS signal
  • PRS frequency domain resource bandwidth The value of this parameter is the number of physical resource blocks (PRBs) allocated to the PRS signal.
  • PRBs physical resource blocks
  • the minimum value of the PRS resource bandwidth is 24 PRBs, the granularity is 4 PRBs, and the maximum value It is 272 PRB;
  • Frequency domain starting frequency position of the PRS resource This parameter defines the index number of the starting PRB allocated to the PRS signal in the frequency domain.
  • the index number of the PRB is defined relative to Point A (PointA) of the PRS;
  • the frequency domain reference point PointA of the PRS signal is the frequency domain reference point PointA of the PRS signal
  • the comb size of the PRS signal is Comb-N.
  • each positioning frequency layer PFL
  • all PRS signals from multiple different TRPs will use the same subcarrier spacing and CP length, the same comb tooth size, and be sent on the same frequency subband, and Take up exactly the same bandwidth.
  • Such a design can support the UE to simultaneously receive and measure PRS signals from multiple different TRPs transmitted on the same frequency point.
  • the parameters of the TRP layer include an ID parameter used to uniquely identify the positioning TRP, the physical cell ID of the TRP, the NR Cell Global Identity (NCGI) of the TRP and the absolute radio channel number of the TRP (Absolute Radio Frequency Channel Number, ARFCN).
  • ID parameter used to uniquely identify the positioning TRP
  • NGI NR Cell Global Identity
  • ARFCN Absolute Radio Frequency Channel Number
  • DL PRS resource set identification ID (nr-DL-PRS-ResourceSetID);
  • DL PRS transmission period and slot offset (dl-PRS-Periodicity-and-ResourceSetSlotOffset): This parameter defines the time domain transmission behavior of all DL PRS resources included in this DL PRS resource set; configurable DL PRS The minimum value of the transmission period is 4 milliseconds, and the maximum value is 10240 milliseconds; the configuration of DL PRS supports flexible subcarrier spacing, including 15KHz, 30KHz, 60KHz and 120KHz; under different subcarrier spacing conditions, DL PRS can be configured The transmission cycle value range is the same;
  • DL PRS resource repetition factor (dl-PRS-ResourceRepetitionFactor): This parameter defines the number of repeated transmissions of a PRS resource in each PRS cycle. Repeated transmissions of the same DL PRS resource can be used by the UE to aggregate multiple transmissions. The DL PRS signal energy can thereby increase the coverage distance of DL PRS and increase the positioning accuracy.
  • repeated transmission of DL PRS resources is used by the UE for receiving beam scanning operations; the UE can use different receiving beams to receive the same DL Repeated transmission of PRS resources to find the best match between TRP transmit beam and UE receive beam; on the other hand, repeated transmission of DL PRS resources will increase PRS overhead.
  • the repetition factor value of DL PRS resources is 1, 2, 4, 6, 8, 16 and 32.
  • DL PRS resource repeated transmission time interval (dl-PRS-ResourceTimeGap): This parameter defines the number of time slots between two consecutive repeated transmissions of the same PRS resource;
  • DL PRS muting configuration This parameter is used to define that DL PRS signals will not be sent on certain allocated time and frequency resources (called muting). Muting means that DL PRS signals will not be sent on all allocated time and frequency resources. On the one hand, it can avoid conflicts with other signals such as SSB, and on the other hand, it can avoid interference between signals sent by different TRPs, such as Intentionally turning off the DL PRS transmission of a certain TRP at certain times so that the UE can receive the DL PRS signal from a distant TRP.
  • the PRS muting operation will be explained in detail in the subsequent description and will not be described in detail here. .
  • the number of OFDM symbols occupied by DL PRS resources (dl-PRS-NumSymbols): defines the number of orthogonal frequency-division multiplexing (OFDM) symbols allocated by a DL PRS resource within a time slot.
  • Each DL PRS resource will be configured with the following parameters:
  • a DL PRS resource identification ID (nr-DL-PRS-ResourceID);
  • DL PRS starting frequency domain resource unit offset (dl-PRS-CombSizeN-AndReOffset): This parameter defines the frequency domain resource unit used for resource mapping of DL PRS resources on the first allocated OFDM symbol in a time slot. Offset value. Based on this parameter and the relative offset value, the UE can determine the frequency domain resource unit offset value used for resource mapping on each OFDM symbol;
  • DL PRS resource slot offset (dl-PRS-ResourceSlotOffset): This parameter defines the slot offset relative to the DL PRS resource set. This parameter can determine the slot position of each DL PRS resource;
  • OFDM symbol offset of DL PRS (dl-PRS-ResourceSymbolOffset): This parameter defines the time-frequency resource allocation position of a DL PRS resource in a time slot. It indicates the starting OFDM symbol index number in a time slot. ;
  • QCL information of DL PRS (dl-PRS-QCL-Info): This parameter provides the quasi co-location information (Quasi Co-Location, QCL) of the DL PRS signal.
  • the anchor device and positioning target terminal which play a similar role to gNB or TRP, are not connected to the 5G system.
  • their reference signals such as sidelink positioning reference signals (S-PRS)
  • S-PRS sidelink positioning reference signals
  • the system performs measurements on the S-PRS sent by the positioning target terminal through the anchor device, or the target terminal performs measurements on the S-PRS sent by the anchor device. Combined with the location information of the anchor device, the system Complete positioning.
  • the terminal cannot know whether the selected anchor device is already transmitting S-PRS, or whether the PRS selected by each anchor device or already being sent has a conflict. , if a collision occurs, a certain mechanism is needed to avoid it.
  • this application proposes a terminal positioning solution.
  • the terminal device can determine whether the configurations of reference signals used for positioning of different anchor point devices conflict.
  • configuration conflicts a method of avoiding conflicts is designed, thereby ensuring Precise positioning of terminal equipment.
  • FIG 3 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the wireless communication method 200 may include at least part of the following content:
  • the terminal device determines whether the configurations of the first reference signals of the M anchor point devices conflict, where M is a positive integer;
  • S220 The terminal device redistributes the configuration information of the first reference signal to some or all of the M anchor point devices; or, the terminal device instructs the M anchor point devices to continue to use the existing third reference signal. Configuration information of a reference signal.
  • the anchor device may be a device used to assist terminal positioning and may send reference signals on the sidelink or measure received reference signals.
  • anchor device may also be called “anchor terminal” or “other terminal”, which is not limited by this application.
  • the M anchor point devices may be selected or determined by the terminal device. In other embodiments, the M anchor point devices may be selected or determined by the network device and indicated to the terminal device.
  • the first reference signal is a reference signal used for positioning.
  • the first reference signal may also be other reference signals, and this application is not limited thereto.
  • the first reference signal is a side row positioning reference signal (S-PRS).
  • S-PRS side row positioning reference signal
  • the terminal device in the above S220, in the case of a configuration conflict, reallocates the configuration information of the first reference signal to some or all of the M anchor point devices. For example, the configuration of the first reference signal of some or all of the M anchor point devices conflicts. In this case, the terminal device resets the configuration of the first reference signal of some or all of the M anchor point devices. Allocate configuration information of the first reference signal.
  • the terminal device instructs the M anchor point devices to continue to use the existing configuration information of the first reference signal. For example, the configurations of the first reference signals of all the anchor point devices among the M anchor point devices do not conflict. In this case, the terminal device instructs the M anchor point devices to continue to use the existing first reference signal. Signal configuration information. Optionally, the terminal device instructs or informs the M anchor point devices through dedicated signaling to continue to use the existing configuration information of the first reference signal.
  • the terminal device may obtain the configuration information of the first reference signal through broadcast or dedicated signaling.
  • the anchor device may send the S-PRS configuration information to the terminal device with positioning requirements, such as through sideline dedicated signaling or carrying the S-PRS configuration information in a broadcast. This operation can help the terminal device obtain the S-PRS configuration parameters of each anchor device at the first time, and determine whether the S-PRS parameter settings of each anchor device conflict or collide.
  • the terminal device may configure the configuration information of the first reference signal for such anchor device. For example, if the M anchor point devices include a second anchor point device, and the second anchor point device does not configure the configuration information of the first reference signal, the terminal device configures the second anchor point device. Configuration information of the first reference signal.
  • the terminal device receives first information, and the first information is used to indicate whether the configuration information of the first reference signal of the corresponding anchor device is allowed to be modified or updated.
  • the terminal device receives the first information sent by the anchor device 1, and the first information is used to indicate whether the configuration information of the first reference signal of the anchor device 1 is allowed to be modified or updated.
  • the terminal device receives the first information respectively sent by some or all of the M anchor point devices.
  • the first information is carried through broadcast or dedicated signaling.
  • the anchor device can notify the terminal device whether its configured S-PRS parameters can be modified or updated by broadcasting proprietary signaling (in certain cases, the configuration cannot be changed, such as the parameter configuration comes from other devices that are currently in use).
  • positioning terminal or gNB positioning terminal or gNB
  • the M anchor point devices include a first anchor point device, and the first information sent by the first anchor point device indicates configuration information of the first reference signal of the first anchor point device. If the configuration information of the first reference signal is not allowed to be modified or updated, the first anchor point device is not included in the anchor point devices that have redistributed the configuration information of the first reference signal. That is, for the anchor device whose configuration information of the first reference signal is not allowed to be modified or updated, the terminal device does not reallocate the configuration information of the first reference signal. Alternatively, for the anchor device whose configuration information of the first reference signal is not allowed to be modified or updated, the terminal device may reject or ignore the configuration information of the first reference signal that is reallocated to it.
  • the terminal device sets the priority of the first anchor device to low, or the terminal device lowers the priority of the first anchor device.
  • the criteria for the terminal device to select the anchor device the selected anchor device cannot both send a conflicting first reference signal (such as S-PRS) and indicate that it insists on using the allocated first reference signal (such as S-PRS), or the terminal device sets such an anchor device as a low-priority anchor device.
  • a conflicting first reference signal such as S-PRS
  • S-PRS conflicting first reference signal
  • the terminal device sets such an anchor device as a low-priority anchor device.
  • the terminal device receives second information; wherein the second information is used to indicate that the corresponding anchor device is configured with configuration information of the first reference signal.
  • the terminal device receives the second information respectively sent by some or all of the M anchor point devices.
  • the second information is carried through broadcast or dedicated signaling.
  • the second information is sent by replying to the inquiry.
  • the anchor device may send the second information by replying to the terminal device inquiry. In another implementation manner, the anchor device may send the second information by replying to the network device inquiry.
  • the second information is also used to indicate at least one of the following:
  • the corresponding anchor point device is located in an out-of-coverage communication scenario.
  • the first reference signal configured by the corresponding anchor point device is selected by itself.
  • the corresponding anchor point device measures the nearest base station (such as gNB ) is lower than the first threshold, and the corresponding anchor device measures the signal strength of the highest downlink path loss reference of the cell.
  • the anchor point device detects that the signal strength of the downlink path loss reference of the nearest base station (such as gNB) is lower than the first threshold, it can be indirectly deduced that the anchor point device is in an out-of-coverage scenario.
  • the nearest base station such as gNB
  • the signal strength is one of the following: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (Signal to Interference plus Noise) Ratio, SINR).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal to Interference plus Noise Ratio
  • the first threshold is configured by a network device, or the first threshold is agreed upon by a protocol.
  • the anchor device when the anchor device has been configured with the first reference signal (such as S-PRS), the anchor device can notify the terminal that it has configured the configuration information of the first reference signal by broadcasting or replying to the terminal inquiry.
  • the first reference signal such as S-PRS
  • the terminal device determines whether the configurations of the first reference signals of the M anchor point devices conflict. In the case of a configuration conflict, the terminal device re-establishes the configuration for some or all of the M anchor point devices. The configuration information of the first reference signal is allocated, and if the configuration does not conflict, the terminal device instructs the M anchor point devices to continue to use the existing configuration information of the first reference signal, thereby ensuring accurate positioning of the terminal device.
  • Example 1 The technical solution of the present application is described in detail through Example 1 and Example 2 below.
  • the terminal device first collects the S-PRS configuration information of the anchor device, and then the terminal device determines whether the S-PRS configuration reported by the anchor device has a conflict. If so, the terminal device needs to be at least one
  • the anchor point device reallocates the S-PRS configuration parameters, and sends the reallocated S-PRS configuration parameters to the at least one anchor point device.
  • the terminal device starts positioning.
  • the terminal device first collects the S-PRS configuration information of the anchor device, and then the terminal device determines whether the S-PRS configuration reported by the anchor device has a conflict. If so, the terminal device is a certain anchor. The point device reassigns the S-PRS configuration parameters. However, the anchor device rejects the S-PRS configuration parameters assigned to it by the end device. And the terminal device in turn redistributes S-PRS configuration parameters to other anchor devices. Optionally, after confirming that the anchor device enables the new S-PRS configuration parameters, the terminal device starts positioning.
  • the terminal-side embodiment of the present application is described in detail above with reference to Figures 3 to 5.
  • the anchor-side embodiment of the present application is described in detail below with reference to Figure 6. It should be understood that the anchor-side embodiment and the terminal-side embodiment are mutually exclusive. Correspondingly, similar description may refer to the terminal side embodiment.
  • FIG. 6 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application. As shown in Figure 6, the wireless communication method 300 may include at least part of the following content:
  • the anchor point device sends the configuration information of the first reference signal; wherein the configuration information of the first reference signal is used to determine whether the configurations of the first reference signals of M anchor point devices conflict, M is a positive integer, and M >1.
  • the anchor point device belongs to the M anchor point devices.
  • the anchor device may be a device used to assist terminal positioning and may send reference signals on the sidelink or measure received reference signals.
  • anchor device may also be called “anchor terminal” or “other terminal”, which is not limited by this application.
  • the terminal device may determine whether the configurations of the first reference signals of the M anchor point devices conflict; in the case of a configuration conflict, the terminal device is an anchor point device of some or all of the M anchor point devices. Re-allocate the configuration information of the first reference signal; and/or, if the configuration does not conflict, the terminal device instructs the M anchor point devices to continue to use the existing configuration information of the first reference signal.
  • the network device may determine whether the configurations of the first reference signals of the M anchor point devices conflict; in the case of a configuration conflict, the network device may be some or all of the M anchor point devices. Re-allocate the configuration information of the first reference signal; and/or, if the configuration does not conflict, the network device instructs the M anchor point devices to continue to use the existing configuration information of the first reference signal.
  • the network device includes at least one of the following: access network device (such as gNB), location management function (Location Management Function, LMF) entity, access and mobility management function (Access and Mobility Management Function, AMF) entity.
  • the M anchor point devices may be selected or determined by the terminal device. In other embodiments, the M anchor point devices may be selected or determined by the network device and indicated to the terminal device.
  • the first reference signal is a reference signal used for positioning.
  • the first reference signal may also be other reference signals, and this application is not limited thereto.
  • the first reference signal is a side row positioning reference signal (S-PRS).
  • S-PRS side row positioning reference signal
  • the anchor point device receives configuration information of the first reference signal reallocated thereto.
  • the anchor point device rejects or ignores the reallocated configuration information of the first reference signal.
  • the anchor device sends first information, where the first information is used to indicate whether the configuration information of the first reference signal of the anchor device is allowed to be modified or updated.
  • the first information is carried through broadcast or dedicated signaling.
  • the anchor device can notify the terminal device whether its configured S-PRS parameters can be modified or updated by broadcasting proprietary signaling (in certain cases, the configuration cannot be changed, such as the parameter configuration comes from other devices that are currently in use).
  • positioning terminal or gNB positioning terminal or gNB
  • the terminal device does not reallocate the configuration information of the first reference signal.
  • the terminal device may reject or ignore the configuration information of the first reference signal that is reallocated to it.
  • the anchor device sends the configuration information of the first reference signal through broadcast or dedicated signaling.
  • the anchor device may send the S-PRS configuration information to the terminal device with positioning requirements, such as through sideline dedicated signaling or carrying the S-PRS configuration information in a broadcast. This operation can help the terminal device obtain the S-PRS configuration parameters of each anchor device at the first time, and determine whether the S-PRS parameter settings of each anchor device conflict or collide.
  • the anchor point device sends second information; wherein the second information is used to indicate that the anchor point device is configured with configuration information of the first reference signal.
  • the terminal device receives the second information respectively sent by some or all of the M anchor point devices.
  • the second information is carried through broadcast or dedicated signaling.
  • the second information is sent by replying to the inquiry.
  • the anchor device may send the second information by replying to the terminal device inquiry. In another implementation manner, the anchor device may send the second information by replying to the network device inquiry.
  • the second information is also used to indicate at least one of the following:
  • the anchor point device is located in a communication scenario outside network coverage.
  • the first reference signal configured by the anchor point device is self-selected.
  • the anchor point device detects that the signal strength of the downlink path loss reference of the nearest base station is lower than the first threshold. , the anchor point device measures the signal strength of the downlink path loss reference of the highest cell.
  • the anchor point device detects that the signal strength of the downlink path loss reference of the nearest base station (such as gNB) is lower than the first threshold, it can be indirectly deduced that the anchor point device is in an out-of-coverage scenario.
  • the nearest base station such as gNB
  • the signal strength is one of: RSRP, RSRQ, SINR.
  • the first threshold is configured by a network device, or the first threshold is agreed upon by a protocol.
  • the anchor device when the anchor device has been configured with the first reference signal (such as S-PRS), the anchor device can notify the terminal that it has configured the configuration information of the first reference signal by broadcasting or replying to the terminal inquiry.
  • the first reference signal such as S-PRS
  • the anchor point device sends the configuration information of the first reference signal, so that the terminal device or the network device can determine whether the configurations of the first reference signals of the M anchor point devices conflict.
  • the terminal device or network device redistributes the configuration information of the first reference signal to some or all of the M anchor point devices, and instructs the M anchor point devices to continue using it if there is no configuration conflict.
  • the existing configuration information of the first reference signal can ensure the precise positioning of the terminal device.
  • the terminal-side embodiment of the present application is described in detail above with reference to Figures 3 to 5.
  • the network-side embodiment of the present application is described in detail below with reference to Figure 7. It should be understood that the network-side embodiment and the terminal-side embodiment correspond to each other. A similar description may refer to the terminal side embodiment.
  • FIG. 7 is a schematic flowchart of a wireless communication method 400 according to an embodiment of the present application. As shown in Figure 7, the wireless communication method 400 may include at least part of the following content:
  • the network device determines whether the configurations of the first reference signals of the M anchor point devices conflict, where M is a positive integer;
  • S420 The network device redistributes the configuration information of the first reference signal to some or all of the M anchor point devices; or, the network device instructs the M anchor point devices to continue to use the existing third reference signal. Configuration information of a reference signal.
  • the anchor device may be a device used to assist terminal positioning and may send reference signals on the sidelink or measure received reference signals.
  • anchor device may also be called “anchor terminal” or “other terminal”, which is not limited by this application.
  • the M anchor point devices may be selected or determined by the terminal device. In other embodiments, the M anchor point devices may be selected or determined by the network device and indicated to the terminal device.
  • the first reference signal is a reference signal used for positioning.
  • the first reference signal may also be other reference signals, and this application is not limited thereto.
  • the first reference signal is a side row positioning reference signal (S-PRS).
  • S-PRS side row positioning reference signal
  • the network device in the above S420, in the case of a configuration conflict, reallocates the configuration information of the first reference signal to some or all of the M anchor point devices. For example, if the configurations of the first reference signals of some or all of the M anchor point devices conflict, in this case, the network device resets the configurations of the first reference signals of some or all of the M anchor point devices. Allocate configuration information of the first reference signal.
  • the network device instructs the M anchor point devices to continue to use the existing configuration information of the first reference signal. For example, the configurations of the first reference signals of all the anchor point devices among the M anchor point devices do not conflict. In this case, the network device instructs the M anchor point devices to continue to use the existing first reference signal. Signal configuration information. Optionally, the network device instructs or informs the M anchor point devices to continue to use the existing configuration information of the first reference signal through dedicated signaling.
  • the network device may obtain the configuration information of the first reference signal through broadcast or dedicated signaling.
  • the anchor device may send the S-PRS configuration information to the network device, such as through sidelink dedicated signaling or carrying the S-PRS configuration information in a broadcast. This operation can help the network device obtain the S-PRS configuration parameters of each anchor device at the first time, and determine whether the S-PRS parameter settings of each anchor device conflict or collide.
  • the network device may configure the configuration information of the first reference signal for such anchor device. For example, if the M anchor point devices include a second anchor point device, and the second anchor point device does not configure the configuration information of the first reference signal, the network device configures the second anchor point device. Configuration information of the first reference signal.
  • the network device receives first information, and the first information is used to indicate whether the configuration information of the first reference signal of the corresponding anchor device is allowed to be modified or updated.
  • the network device receives the first information sent by the anchor device 1, and the first information is used to indicate whether the configuration information of the first reference signal of the anchor device 1 is allowed to be modified or updated.
  • the network device receives the first information respectively sent by some or all of the M anchor point devices.
  • the first information is carried through broadcast or dedicated signaling.
  • the anchor device can notify the network device whether its configured S-PRS parameters can be modified or updated by broadcasting proprietary signaling (in certain cases, the configuration cannot be changed, such as the parameter configuration comes from other devices that are currently in use).
  • positioning terminal or gNB positioning terminal
  • the M anchor point devices include a first anchor point device, and the first information sent by the first anchor point device indicates configuration information of the first reference signal of the first anchor point device. If the configuration information of the first reference signal is not allowed to be modified or updated, the first anchor point device is not included in the anchor point devices that have redistributed the configuration information of the first reference signal. That is, for the anchor device whose configuration information of the first reference signal is not allowed to be modified or updated, the network device does not reallocate the configuration information of the first reference signal. Alternatively, for the anchor device whose configuration information of the first reference signal is not allowed to be modified or updated, the terminal device may reject or ignore the configuration information of the first reference signal that is reallocated to it.
  • the network device sets the priority of the first anchor device to low, or the network device lowers the priority of the first anchor device.
  • the criteria for the terminal device to select the anchor device the selected anchor device cannot both send a conflicting first reference signal (such as S-PRS) and indicate that it insists on using the allocated first reference signal (such as S-PRS), or the terminal device sets such an anchor device as a low-priority anchor device.
  • a conflicting first reference signal such as S-PRS
  • S-PRS conflicting first reference signal
  • the terminal device sets such an anchor device as a low-priority anchor device.
  • the network device receives second information; wherein the second information is used to indicate that the corresponding anchor device is configured with configuration information of the first reference signal.
  • the network device receives the second information respectively sent by some or all of the M anchor point devices.
  • the second information is carried through broadcast or dedicated signaling.
  • the second information is sent by replying to the inquiry.
  • the anchor device may send the second information by replying to the terminal device inquiry. In another implementation manner, the anchor device may send the second information by replying to the network device inquiry.
  • the second information is also used to indicate at least one of the following:
  • the corresponding anchor point device is located in an out-of-coverage communication scenario.
  • the first reference signal configured by the corresponding anchor point device is selected by itself.
  • the corresponding anchor point device measures the nearest base station (such as gNB ) is lower than the first threshold, and the corresponding anchor device measures the signal strength of the highest downlink path loss reference of the cell.
  • the anchor point device detects that the signal strength of the downlink path loss reference of the nearest base station (such as gNB) is lower than the first threshold, it can be indirectly deduced that the anchor point device is in an out-of-coverage scenario.
  • the nearest base station such as gNB
  • the signal strength is one of: RSRP, RSRQ, SINR.
  • the first threshold is configured by a network device, or the first threshold is agreed upon by a protocol.
  • the anchor device when the anchor device has been configured with the first reference signal (such as S-PRS), the anchor device can notify the terminal that it has configured the configuration information of the first reference signal by broadcasting or replying to the terminal inquiry.
  • the first reference signal such as S-PRS
  • the network device includes at least one of the following: access network device (such as gNB), location management function (Location Management Function, LMF) entity, access and mobility management function (Access and Mobility Management Function, AMF) entity.
  • access network device such as gNB
  • LMF Location Management Function
  • AMF Access and Mobility Management Function
  • the network device determines whether the configurations of the first reference signals of the M anchor point devices conflict. In the case of a configuration conflict, the network device resets the configurations for some or all of the M anchor point devices. The configuration information of the first reference signal is allocated, and if the configuration does not conflict, the network device instructs the M anchor devices to continue to use the existing configuration information of the first reference signal, thereby ensuring accurate positioning of the terminal device.
  • Figure 8 shows a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes:
  • the processing unit 510 is configured to determine whether the configurations of the first reference signals of the M anchor point devices conflict, where M is a positive integer;
  • the processing unit 510 is also configured to redistribute the configuration information of the first reference signal to some or all of the M anchor point devices; or, the processing unit 510 is also configured to instruct the M anchor point devices to continue Use the existing configuration information of the first reference signal.
  • the processing unit 510 is specifically used to:
  • the configuration information of the first reference signal is reallocated to some or all of the M anchor point devices.
  • the processing unit 510 is specifically used to:
  • the M anchor point devices are instructed to continue to use the existing configuration information of the first reference signal.
  • the terminal device 500 further includes: a communication unit 520;
  • the communication unit 520 is configured to receive first information, where the first information is used to indicate whether the configuration information of the first reference signal of the corresponding anchor device is allowed to be modified or updated.
  • the communication unit 520 is specifically used for:
  • the M anchor point devices include a first anchor point device, and the first information sent by the first anchor point device indicates configuration information of the first reference signal of the first anchor point device. If the configuration information of the first reference signal is not allowed to be modified or updated, the first anchor point device is not included in the anchor point devices that have redistributed the configuration information of the first reference signal.
  • the processing unit 510 is also configured to set the priority of the first anchor device to low, or the processing unit 510 is further configured to reduce the priority of the first anchor device.
  • the first information is carried via broadcast or dedicated signaling.
  • the terminal device 500 further includes: a communication unit 520;
  • the communication unit 520 is configured to obtain the configuration information of the first reference signal through broadcast or dedicated signaling.
  • the terminal device 500 further includes: a communication unit 520;
  • the communication unit 520 is used to receive the second information
  • the second information is used to indicate that the corresponding anchor point device is configured with configuration information of the first reference signal.
  • the second information is also used to indicate at least one of the following:
  • the corresponding anchor point device is located in a communication scenario outside the network coverage.
  • the first reference signal configured by the corresponding anchor point device is selected by itself.
  • the corresponding anchor point device measures the signal strength of the downlink path loss reference of the nearest base station to be lower than
  • the first threshold is the signal strength of the highest downlink path loss reference of the cell measured by the corresponding anchor point device.
  • this second information is carried via broadcast or dedicated signaling.
  • the second information is sent in response to the inquiry.
  • the processing unit 510 is also configured to provide The second anchor point device configures the configuration information of the first reference signal.
  • the first reference signal is a reference signal used for positioning.
  • the first reference signal is a side row positioning reference signal S-PRS.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • terminal device 500 may correspond to the terminal device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the terminal device 500 are respectively to implement the method shown in Figure 3
  • the corresponding process of the terminal equipment in 200 will not be repeated here for the sake of simplicity.
  • FIG. 9 shows a schematic block diagram of an anchor device 600 according to an embodiment of the present application.
  • the anchor device 600 includes:
  • Communication unit 610 configured to send configuration information of the first reference signal
  • the configuration information of the first reference signal is used to determine whether the configurations of the first reference signals of M anchor point devices conflict, M is a positive integer, and M>1.
  • the communication unit 610 is further configured to receive configuration information of the first reference signal that is reallocated thereto.
  • the anchor device 600 includes a processing unit 620;
  • the processing unit 620 is configured to reject or ignore the reallocated configuration information of the first reference signal.
  • the communication unit 610 is further configured to send first information, where the first information is used to indicate whether the configuration information of the first reference signal of the anchor device is allowed to be modified or updated.
  • the first information is carried via broadcast or dedicated signaling.
  • the communication unit 610 is specifically used for:
  • the configuration information of the first reference signal is sent through broadcast or dedicated signaling.
  • the communication unit 610 is also used to send second information
  • the second information is used to indicate that the anchor point device is configured with configuration information of the first reference signal.
  • the second information is also used to indicate at least one of the following:
  • the anchor point device is located in a communication scenario outside network coverage.
  • the first reference signal configured by the anchor point device is self-selected.
  • the anchor point device detects that the signal strength of the downlink path loss reference of the nearest base station is lower than the first threshold. , the anchor point device measures the signal strength of the downlink path loss reference of the highest cell.
  • this second information is carried via broadcast or dedicated signaling.
  • the second information is sent in response to the inquiry.
  • the first reference signal is a reference signal used for positioning.
  • the first reference signal is a side row positioning reference signal S-PRS.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • anchor point device 600 may correspond to the anchor point device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the anchor point device 600 are respectively to implement FIG. 6
  • the corresponding process of the anchor device in the method 300 shown is not repeated here for the sake of simplicity.
  • FIG 10 shows a schematic block diagram of a network device 700 according to an embodiment of the present application.
  • network device 700 includes:
  • the processing unit 710 is used to determine whether the configurations of the first reference signals of the M anchor point devices conflict, where M is a positive integer;
  • the processing unit 710 is also configured to redistribute the configuration information of the first reference signal to some or all of the M anchor point devices; or, the processing unit 710 is also configured to instruct the M anchor point devices to continue Use the existing configuration information of the first reference signal.
  • processing unit 710 is specifically used to:
  • the configuration information of the first reference signal is reallocated to some or all of the M anchor point devices.
  • processing unit 710 is specifically used to:
  • the M anchor point devices are instructed to continue to use the existing configuration information of the first reference signal.
  • the network device 700 includes a communication unit 720;
  • the communication unit 720 is configured to receive first information, where the first information is used to indicate whether the configuration information of the first reference signal of the corresponding anchor device is allowed to be modified or updated.
  • the communication unit 720 is specifically used to:
  • the M anchor point devices include a first anchor point device, and the first information sent by the first anchor point device indicates configuration information of the first reference signal of the first anchor point device. If the configuration information of the first reference signal is not allowed to be modified or updated, the first anchor point device is not included in the anchor point devices that have redistributed the configuration information of the first reference signal.
  • the processing unit 710 is also configured to set the priority of the first anchor device to low, or the processing unit 710 is further configured to reduce the priority of the first anchor device.
  • this first information is carried via dedicated signaling.
  • the communication unit 720 is configured to obtain the configuration information of the first reference signal through dedicated signaling.
  • the communication unit 720 is used to receive the second information
  • the second information is used to indicate that the corresponding anchor point device is configured with configuration information of the first reference signal.
  • the second information is also used to indicate at least one of the following:
  • the corresponding anchor point device is located in a communication scenario outside the network coverage.
  • the first reference signal configured by the corresponding anchor point device is selected by itself.
  • the corresponding anchor point device measures the signal strength of the downlink path loss reference of the nearest base station to be lower than
  • the first threshold is the signal strength of the highest downlink path loss reference of the cell measured by the corresponding anchor point device.
  • this second information is carried via broadcast or dedicated signaling.
  • the second information is sent in response to the inquiry.
  • the processing unit 710 is also configured to provide The second anchor point device configures the configuration information of the first reference signal.
  • the first reference signal is a reference signal used for positioning.
  • the first reference signal is a side row positioning reference signal S-PRS.
  • the network device includes at least one of the following: an access network device, a location management function LMF entity, and an access and mobility management function AMF entity.
  • the above-mentioned communication unit may be a communication interface or transceiver, or an input/output interface of a communication chip or a system on a chip.
  • the above-mentioned processing unit may be one or more processors.
  • the network device 700 may correspond to the network device in the method embodiment of the present application, and the above and other operations and/or functions of each unit in the network device 700 are respectively to implement the method shown in Figure 7
  • the corresponding process of the network equipment in 400 will not be repeated here for the sake of simplicity.
  • Figure 11 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 shown in Figure 11 includes a processor 810.
  • the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • communication device 800 may also include memory 820.
  • the processor 810 can call and run the computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated into the processor 810 .
  • the communication device 800 may also include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices, specifically, may send information or data to other devices, or Receive information or data from other devices.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 800 can be specifically a network device according to the embodiment of the present application, and the communication device 800 can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application.
  • the communication device 800 is not mentioned here. Again.
  • the communication device 800 may be an anchor device in the embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the anchor device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • the communication device 800 may be a terminal device according to the embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of brevity, the communication device 800 will not be mentioned here. Again.
  • Figure 12 is a schematic structural diagram of the device according to the embodiment of the present application.
  • the device 900 shown in Figure 12 includes a processor 910.
  • the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • device 900 may also include memory 920.
  • the processor 910 can call and run the computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated into the processor 910 .
  • the device 900 may also include an input interface 930.
  • the processor 910 can control the input interface 930 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the device 900 may also include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiment of the present application, and the device can implement the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of brevity, the details are not repeated here.
  • the device can be applied to the anchor device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the anchor device in the various methods of the embodiments of the present application. For the sake of brevity, they will not be repeated here. Repeat.
  • the device can be applied to the terminal device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application. For the sake of brevity, the details will not be described again.
  • the devices mentioned in the embodiments of this application may also be chips.
  • it can be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip or a system-on-a-chip, etc.
  • Figure 13 is a schematic block diagram of a communication system 1000 provided by an embodiment of the present application. As shown in Figure 13, the communication system 1000 includes a terminal device 1010, an anchor device 1020 and a network device 1030.
  • the terminal device 1010 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the anchor device 1020 can be used to implement the corresponding functions implemented by the anchor device in the above method
  • the network device 1030 can It is used to implement the corresponding functions implemented by the network device in the above method. For the sake of simplicity, they will not be described again here.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available processors.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • Embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiment of the present application. For the sake of simplicity, I won’t go into details here.
  • the computer-readable storage medium can be applied to the anchor device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the anchor device in the various methods of the embodiment of the present application, in order to It’s concise and I won’t go into details here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of simplicity, I won’t go into details here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network equipment in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application. For simplicity, in This will not be described again.
  • the computer program product can be applied to the anchor device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the anchor device in the various methods of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the anchor device in the various methods of the embodiment of the present application.
  • the computer program product can be applied to the terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For simplicity, in This will not be described again.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network equipment in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network equipment in the various methods of the embodiments of the present application.
  • the computer program For the sake of brevity, no further details will be given here.
  • the computer program can be applied to the anchor device in the embodiment of the present application.
  • the computer program When the computer program is run on the computer, the computer performs the corresponding steps implemented by the anchor device in the various methods of the embodiment of the present application. The process, for the sake of brevity, will not be repeated here.
  • the computer program can be applied to the terminal device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the terminal device in the various methods of the embodiments of the present application.
  • the computer program For the sake of brevity, no further details will be given here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions described are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法、终端设备、锚点设备和网络设备,终端设备确定不同锚点设备的用于定位的参考信号的配置是否冲突,在配置冲突的情况下设计了规避冲突的方法,从而可以确保终端设备的精准定位。该无线通信的方法,包括:终端设备确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;该终端设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息;或者,该终端设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。

Description

无线通信的方法、终端设备、锚点设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备、锚点设备和网络设备。
背景技术
网络覆盖外通信(out-of-coverage)场景下的侧行(sidelink)定位中,具有定位需求的目标终端和与基站(gNB)或发送接收点(Transmission Reception Point,TRP)作用类似的锚点设备都处于网络无连接的状态下,此种情况下,目标终端如何实现定位,是一个需要解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备、锚点设备和网络设备,终端设备确定不同锚点设备的用于定位的参考信号的配置是否冲突,在配置冲突的情况下设计了规避冲突的方法,从而可以确保终端设备的精准定位。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;
该终端设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息;或者,该终端设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,在配置冲突的情况下,该终端设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息。
在一些实施例中,在配置不冲突的情况下,该终端设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,该第一参考信号为用于定位的参考信号。
在一些实施例中,该第一参考信号为侧行定位参考信号(S-PRS)。
第二方面,提供了一种无线通信的方法,该方法包括:
锚点设备发送第一参考信号的配置信息;
其中,该第一参考信号的配置信息用于确定M个锚点设备的该第一参考信号的配置是否冲突,M为正整数,且M>1。
在一些实施例中,该第一参考信号为用于定位的参考信号。
在一些实施例中,该第一参考信号为侧行定位参考信号(S-PRS)。
第三方面,提供了一种无线通信的方法,该方法包括:
网络设备确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;
该网络设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息;或者,该网络设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,在配置冲突的情况下,该终端设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息。
在一些实施例中,在配置不冲突的情况下,该终端设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,该第一参考信号为用于定位的参考信号。
在一些实施例中,该第一参考信号为侧行定位参考信号(S-PRS)。
第四方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第五方面,提供了一种锚点设备,用于执行上述第二方面中的方法。
具体地,该锚点设备包括用于执行上述第二方面中的方法的功能模块。
第六方面,提供了一种网络设备,用于执行上述第三方面中的方法。
具体地,该网络设备包括用于执行上述第三方面中的方法的功能模块。
第七方面,提供了一种终端设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该终端设备执行上述第一方面中的方法。
第八方面,提供了一种锚点设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该网络设备执行上述第二方面中的方法。
第九方面,提供了一种网络设备,包括处理器和存储器;该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,使得该网络设备执行上述第三方面中的方法。
第十方面,提供了一种装置,用于实现上述第一方面至第三方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第三方面中的任一方面中的方法。
第十一方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
第十二方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
第十三方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第三方面中的任一方面中的方法。
通过上述第一方面的技术方案,终端设备确定M个锚点设备的第一参考信号的配置是否冲突,在配置冲突的情况下终端设备为M个锚点设备中部分或全部的锚点设备重新分配第一参考信号的配置信息,在配置不冲突的情况下终端设备指示M个锚点设备继续使用已有的第一参考信号的配置信息,从而可以确保终端设备的精准定位。
通过上述第二方面的技术方案,锚点设备发送第一参考信号的配置信息,从而,终端设备或网络设备可以确定M个锚点设备的第一参考信号的配置是否冲突,在配置冲突的情况下终端设备或网络设备为M个锚点设备中部分或全部的锚点设备重新分配第一参考信号的配置信息,在配置不冲突的情况下终端设备或网络设备指示M个锚点设备继续使用已有的第一参考信号的配置信息,进而,可以确保终端设备的精准定位。
通过上述第三方面的技术方案,网络设备确定M个锚点设备的第一参考信号的配置是否冲突,在配置冲突的情况下网络设备为M个锚点设备中部分或全部的锚点设备重新分配第一参考信号的配置信息,在配置不冲突的情况下网络设备指示M个锚点设备继续使用已有的第一参考信号的配置信息,从而可以确保终端设备的精准定位。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种multi-RTT的定位的示意性图。
图3是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图4和图5分别是本申请实施例提供的终端定位的示意性流程图。
图6是根据本申请实施例提供的另一种无线通信的方法的示意性流程图。
图7是根据本申请实施例提供的再一种无线通信的方法的示意性流程图。
图8是根据本申请实施例提供的一种终端设备的示意性框图。
图9是根据本申请实施例提供的一种锚点设备的示意性框图。
图10是根据本申请实施例提供的一种网络设备的示意性框图。
图11是根据本申请实施例提供的一种通信设备的示意性框图。
图12是根据本申请实施例提供的一种装置的示意性框图。
图13是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、物联网(internet of things,IoT)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器 到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景,或者应用于非独立(Non-Standalone,NSA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
在一些实施例中,本申请实施例中的通信系统可以应用于FR1频段(对应频段范围410MHz到7.125GHz),也可以应用于FR2频段(对应频段范围24.25GHz到52.6GHz),还可以应用于新的频段例如对应52.6GHz到71GHz频段范围或对应71GHz到114.25GHz频段范围的高频频段。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备、车载通信设备、无线通信芯片/专用集成电路(application specific integrated circuit,ASIC)/系统级芯片(System on Chip,SoC)等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备 110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,本文涉及第一通信设备和第二通信设备,第一通信设备可以是终端设备,例如手机,机器设施,用户前端设备(Customer Premise Equipment,CPE),工业设备,车辆等;第二通信设备可以是第一通信设备的对端通信设备,例如网络设备,手机,工业设备,车辆等。本文中以第一通信设备是终端设备和第二通信设备是网络设备为具体实例进行描述。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以是对现有LTE协议、NR协议、Wi-Fi协议或者与之相关的其它通信系统相关的协议的演进,本申请不对协议类型进行限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
在第16版本(Release 16,R16)和第17版本(Release 17,R17)中引入的定位架构主要是由终端(UE)、多个基站(gNB)、接入和移动性管理功能(Access and Mobility Management Function,AMF)实体和位置管理功能(Location Management Function,LMF)实体所组成。第一步,UE和/或gNB根据已知的配置式样发送探测参考信号(Sounding Reference Signal,SRS)和/或定位参考信号(positioning reference signals,PRS)。之后,gNB和/或UE再根据已知的配置式样对SRS和/或PRS进行测量,获取到离开角、到达角、距离、距离差等与定位相关的测量量。最后,这些测量量汇总到终端或者LMF执行定位,获取最终定位结果。
在5G定位系统中,不同终端/gNB发送的参考信号都应保持正交性,这样的话,能够保证系统中各方测量的信号固定来自一个点这个点所在位置,这种保证对于定位估计是基础性的。此外,正交性可以是在时/频/码至少之一域确保即可。
具体例如,可以基于多往返传输时间(multi Round Trip Time,multi-RTT)的定位方法来说明SRS和PRS的配置和对于它们的测量,如图2所示。在图2中第3a步,gNB为终端(UE)配置上行SRS的资源,继而在第5a步网络激活终端(UE)进行SRS的发射工作。在第6步,LMF通过NR定位协议a(New Radio Positioning Protocol a,NRPPa)测量请求(measurement Request)告知临近各gNB该终端(UE)的SRS资源配置,并要求各gNB对终端(UE)发送的SRS进行测量,并最终在第11步,各gNB将它们采集到的测量结果上报给LMF实体。此外,对于下行测量方向,在第7步和第8 步,网络先是将各gNB的独有的下行PRS配置信息发送给终端(UE),继而激活终端(UE)执行下行测量,最终在第10步,终端(UE)将测量结果通过长期演进定位协议(Evolution Positioning Protocol,LPP)提供位置信息的消息(ProvideLocationInformation msg)发送至LMF实体。
具体参考信号(Reference Signal,RS)配置以下行(downlink,DL)PRS为例。NR DL PRS的配置信息由LMF通过LPP协议信令提供给UE。DL PRS的参数配置是采用了四层信令结构,从顶层到底层表示为:
定位频率层(Positioning Frequency Layer,PFL);
发送接收点(Transmission Reception Point,TRP);
DL PRS资源集(PRS resource set);
DL PRS资源(PRS resource)。
在每个定位频率层(positioning frequency layer)里面,UE所配置的是多个TRP发送在同样频率点的DL PRS信号。而每个TRP里面可以配置一个或者两个DL PRS资源集,它们配置了这个TRP在某个频率点上发送的所有的DL PRS资源。而每个DL PRS资源集里面可以配置多个DL PRS资源,每个DL PRS资源可以代表一个TRP的发送波束而不同的DL PRS资源可以代表这个TRP的不同发送波束。
根据R16的规范,最多可以为一个终端(UE)提供4个定位频率层(PFL)的DL PRS配置。每一个定位频率层(PFL)的参数结构中提供了以下PRS信号的配置参数:
PRS信号的子载波间隔;
PRS信号的循环前缀(cyclic prefix,CP)长度;
PRS的频域资源带宽:这个参数取值是分配给PRS信号的物理资源块(Physical Resource Block,PRB)个数,PRS资源带宽最小值是24个PRB,颗粒度是4个PRB,而最大值是272个PRB;
PRS资源的频域起始频率位置:这个参数定义来PRS信号在频域分配的起始PRB的索引号,PRB的索引号是相对于PRS的点A(PointA)所定义的;
PRS信号的频域参考点PointA;
PRS信号的梳齿(comb)尺寸Comb-N。
在每个定位频率层(PFL)里面所配置的上述PRS参数会应用在这个定位频率层(PFL)所包含的所有PRS资源上。也就是说,在一个定位频率层(PFL)里面,来自多个不同TRP的所有PRS信号会使用同样的子载波间隔和CP长度,同样的梳齿尺寸,发送在同样的频率子带上,并且占用完全一样的带宽。这样的设计可以支持UE能够同时接收并测量发送同样频点上的来自多个不同的TRP的PRS信号。
TRP层的参数包括一个用于唯一识别这个定位TRP的ID参数,这个TRP的物理小区ID,这个TRP的NR小区全局标识(NR Cell Global Identity,NCGI)以及这个TRP的绝对无线频道编号(Absolute Radio Frequency Channel Number,ARFCN)。每个TRP层里面可以最多配置2个DL PRS资源集。DL PRS资源集这个层参数配置了以下这些参数,而这些参数会应用到这个资源集里面所包含的所有的DL PRS资源:
DL PRS资源集合识别ID(nr-DL-PRS-ResourceSetID);
DL PRS的传输周期和时隙偏移(dl-PRS-Periodicity-and-ResourceSetSlotOffset):这个参数定义了包含在这个DL PRS资源集里面的所有DL PRS资源的时域发送行为;可以配置的DL PRS的传输周期最小值是4毫秒,而最大值是10240毫秒;DL PRS的配置支持灵活的子载波间隔,包括15KHz,30KHz,60KHz和120KHz;在不同的子载波间隔情况下,可以配置的DL PRS传输周期值范围是一样的;
DL PRS资源的重复因子(dl-PRS-ResourceRepetitionFactor):这个参数定义了一个PRS资源在每个PRS周期内的重复传输次数,同一个DL PRS资源的重复传输可以被UE用来聚合多次传输的DL PRS信号能量从而可以增加DL PRS的覆盖距离和增加定位精度,在FR2系统中,DL PRS资源的重复传输被UE用来做接收波束扫描操作;UE可以用不同的接收波束来接收同一个DL PRS资源的重复传输从而找到最佳的TRP发送波束和UE接收波束匹配;另外一方面,DL PRS资源的重复发送会增加PRS的开销,在R16的规范中,DL PRS资源的重复因子取值为1,2,4,6,8,16和32。
DL PRS资源重复发送的时间间隔(dl-PRS-ResourceTimeGap):这个参数定义了同一个PRS资源的连续两次重复传输之间的时隙数;
DL PRS的静默(muting)配置:这个参数用来定义DL PRS信号在某些分配时频资源上不发送(称为muting),Muting是指DL PRS信号并不会在所有的分配的时频资源上发送,而是有意在某些指定的时频资源上不发送,这么做的目的一方面可以规避和其他信号比如SSB的冲突,另一方面可 以规避不同TRP发送的信号之间的干扰,例如有意在某些时刻上关掉某个TRP的DL PRS发送从而使得UE能够收到来自较远的TRP的DL PRS信号,PRS的muting操作将在后续的描述中做详细解释,这里就不做赘述了。
DL PRS资源所占的OFDM符号数(dl-PRS-NumSymbols):定义了一个DL PRS资源在一个时隙内部所分配的正交频分复用(Orthogonal frequency-division multiplexing,OFDM)符号数量。
如前所述,在一个DL PRS资源集这层配置里面所配置的所有参数会应用到这个资源集里面所包含的所有DL PRS资源。因此,在同一个DL PRS资源集里面的所有的DL PRS资源会以同样的周期发送,同样的重复传输次数,以及占用同样数量的OFDM符号。
每个DL PRS资源会配置如下的参数:
一个DL PRS资源识别ID(nr-DL-PRS-ResourceID);
DL PRS的序列ID(dl-PRS-SequenceID);
DL PRS的起始频域资源单元偏移(dl-PRS-CombSizeN-AndReOffset):这个参数定义了DL PRS资源在一个时隙内的第一个分配的OFDM符号上资源映射所用的频域资源单元偏移值,根据这个参数以及相对偏移值,UE就可以确定每个OFDM符号上资源映射所使用的频域资源单元偏移值;
DL PRS的资源时隙偏移(dl-PRS-ResourceSlotOffset):这个参数定义相对于DL PRS资源集的时隙偏移,这个参数可以确定每个DL PRS资源所处的时隙位置;
DL PRS的OFDM符号偏移(dl-PRS-ResourceSymbolOffset):这个参数定义了一个DL PRS资源在一个时隙内的时频资源分配位置,它指示的在一个时隙内的起始OFDM符号索引号;
DL PRS的QCL信息(dl-PRS-QCL-Info):这个参数提供了DL PRS信号的准共址信息(Quasi Co-Location,QCL)。
为便于更好的理解本申请实施例,对本申请相关的侧行(sidelink)定位进行说明。
在侧行(sidelink)定位的out-of-coverage场景,起着与gNB或TRP作用类似的锚点设备和定位目标终端都处于与5G系统无连接的状态下。该种情况下,它们的参考信号(如侧行定位参考信号(sidelink positioning reference signals,S-PRS))不受LMF实体所管控。在out-of-coverage场景下,系统通过锚点设备对定位目标终端发送的S-PRS执行测量,或者目标终端对锚点设备发送的S-PRS执行测量,结合锚点设备的位置信息,系统完成定位。
为便于更好的理解本申请实施例,对本申请所解决的问题进行说明。
out-of-coverage场景下,终端无法知晓选择到的锚点设备是否已经在传输S-PRS,或者各锚点(anchor)设备自行选择或者已在进行发送的PRS是否具有冲突(collision)的情况,如果出现冲突(collision),需要一定的机制予以规避。
基于上述问题,本申请提出了一种终端定位方案,终端设备可以确定不同锚点设备的用于定位的参考信号的配置是否冲突,在配置冲突的情况下设计了规避冲突的方法,从而可以确保终端设备的精准定位。
以下通过具体实施例详述本申请的技术方案。
图3是根据本申请实施例的无线通信的方法200的示意性流程图,如图3所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,终端设备确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;
S220,该终端设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息;或者,该终端设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在本申请实施例中,锚点设备可以是用于辅助终端定位的、在侧行链路上可以发送参考信号或者对接收的参考信号进行测量的设备。
在本申请实施例中,“锚点设备”也可以称之为“锚点终端”或“其他终端”,本申请对此并不限定。
在一些实施例中,M个锚点设备可以是终端设备选取或确定的。在另一些实施例中,M个锚点设备可以是网络设备选取或确定并指示给终端设备的。
在一些实施例中,该第一参考信号为用于定位的参考信号。当然,该第一参考信号也可以是其他参考信号,本申请对此并不限定。
在一些实施例中,该第一参考信号为侧行定位参考信号(S-PRS)。
在一些实施例中,上述S220中,在配置冲突的情况下,该终端设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息。具体例如,该M个锚点设备中部分或全部的锚点设备的第一参考信号的配置冲突,此种情况下,该终端设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息。
在一些实施例中,上述S220中,在配置不冲突的情况下,该终端设备指示该M个锚点设备继续 使用已有的该第一参考信号的配置信息。具体例如,该M个锚点设备中的全部锚点设备的第一参考信号的配置均不冲突,此种情况下,该终端设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。可选地,该终端设备通过专用信令指示或告知该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,该终端设备可以通过广播或专用信令获取该第一参考信号的配置信息。具体例如,锚点设备可以向具有定位需求的终端设备发送S-PRS的配置信息,如通过侧行专用信令或者广播中搭载S-PRS的配置信息。这么操作可以有利于终端设备第一时间获取各锚点设备的S-PRS配置参数,判断各锚点设备的S-PRS参数设置是否冲突或是否具有碰撞。
在一些实施例中,对于未配置有第一参考信号的配置信息的锚点设备,终端设备可以为此类锚点设备配置第一参考信号的配置信息。具体例如,在该M个锚点设备中包括第二锚点设备,且该第二锚点设备未配置该第一参考信号的配置信息的情况下,该终端设备为该第二锚点设备配置该第一参考信号的配置信息。
在一些实施例中,该终端设备接收第一信息,该第一信息用于指示对应的锚点设备的该第一参考信号的配置信息是否允许被修改或更新。例如,终端设备接收锚点设备1发送的第一信息,该第一信息用于指示该锚点设备1的该第一参考信号的配置信息是否允许被修改或更新。
可选地,该终端设备接收该M个锚点设备中部分或全部的锚点设备分别发送的该第一信息。具体例如,该第一信息通过广播或者专用信令承载。
具体的,锚点设备可以通过广播专有信令告知终端设备其配置的S-PRS参数是否可以被修改或更新(在一定情况下,配置是不可以被改变的,比如参数配置来源于其他正在定位的终端或者gNB)。
在一些实施例中,在该M个锚点设备中包括第一锚点设备,且该第一锚点设备发送的该第一信息指示该第一锚点设备的该第一参考信号的配置信息不允许被修改或更新的情况下,重新分配了该第一参考信号的配置信息的锚点设备中不包括该第一锚点设备。也即,对于第一参考信号的配置信息不允许被修改或更新的锚点设备,终端设备不为其重新分配第一参考信号的配置信息。或者,对于第一参考信号的配置信息不允许被修改或更新的锚点设备,可以拒绝或忽略终端设备为其重新分配第一参考信号的配置信息。
在一些实施例中,该终端设备将该第一锚点设备的优先级设置为低,或者,该终端设备降低该第一锚点设备的优先级。
在一些实施例中,终端设备选择锚点设备的标准:被选择的锚点设备不能既发送冲突的第一参考信号(如S-PRS),又标明坚持使用已分配的第一参考信号(如S-PRS),或者,终端设备将这样的锚点设备设为低优先级的锚点设备。
在一些实施例中,该终端设备接收第二信息;其中,该第二信息用于指示对应的锚点设备配置有该第一参考信号的配置信息。可选地,该终端设备接收该M个锚点设备中部分或全部的锚点设备分别发送的该第二信息。例如,该第二信息通过广播或专用信令承载。又例如,该第二信息通过回复问询的方式发送。
一种实现方式中,锚点设备可以通过回复终端设备问询的方式发送第二信息。另一种实现方式中,锚点设备可以通过回复网络设备问询的方式发送第二信息。
在一些实施例中,该第二信息还用于指示以下至少之一:
对应的锚点设备位于网络覆盖外通信(out-of-coverage)场景,对应的锚点设备已配置的该第一参考信号是自行选择的,对应的锚点设备测得最近的基站(如gNB)的下行路损参考(downlink pathloss reference)的信号强度低于第一阈值,对应的锚点设备测得最高的小区的下行路损参考的信号强度。
需要说明的是,锚点设备测得最近的基站(如gNB)的下行路损参考的信号强度低于第一阈值,则可以间接推导出该锚点设备处于out-of-coverage场景。
在一些实施例中,该信号强度为以下之一:参考信号接收功率(Reference Signal Received Power,RSRP),参考信号接收质量(Reference Signal Received Quality,RSRQ),信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)。
在一些实施例中,该第一阈值由网络设备配置,或者,该第一阈值由协议约定。
具体的,当锚点设备已经配置有第一参考信号(如S-PRS)时,锚点设备可以通过广播或者回复终端问询的方式告知终端其已配置了第一参考信号的配置信息。
因此,在本申请实施例中,终端设备确定M个锚点设备的第一参考信号的配置是否冲突,在配置冲突的情况下终端设备为M个锚点设备中部分或全部的锚点设备重新分配第一参考信号的配置信息,在配置不冲突的情况下终端设备指示M个锚点设备继续使用已有的第一参考信号的配置信息,从而可以确保终端设备的精准定位。
以下通过实施例1和实施例2详述本申请技术方案。
实施例1,如图4所示,终端设备首先收集锚点设备的S-PRS配置信息,之后终端设备判断锚点设备上报的S-PRS配置是否具有冲突情况,如是,终端设备需要为至少一个锚点设备重新分配S-PRS配置参数,以及将重新分配的S-PRS配置参数发送至该至少一个锚点设备。之后可选的,在确认锚点设备启用新的S-PRS配置参数之后,终端设备开启定位。
实施例2,如图5所示,终端设备首先收集锚点设备的S-PRS配置信息,之后终端设备判断锚点设备上报的S-PRS配置是否具有冲突情况,如是,终端设备为某一锚点设备重新分配S-PRS配置参数,然而,该锚点设备拒绝终端设备为其分配的S-PRS配置参数。以及终端设备转而为其他锚点设备重新分配S-PRS配置参数。之后可选的,在确认锚点设备启用新的S-PRS配置参数之后,终端设备开启定位。
上文结合图3至图5,详细描述了本申请的终端侧实施例,下文结合图6,详细描述本申请的锚点侧实施例,应理解,锚点侧实施例与终端侧实施例相互对应,类似的描述可以参照终端侧实施例。
图6是根据本申请实施例的无线通信的方法300的示意性流程图,如图6所示,该无线通信的方法300可以包括如下内容中的至少部分内容:
S310,锚点设备发送第一参考信号的配置信息;其中,该第一参考信号的配置信息用于确定M个锚点设备的该第一参考信号的配置是否冲突,M为正整数,且M>1。
在本申请实施例中,该锚点设备属于该M个锚点设备。
在本申请实施例中,锚点设备可以是用于辅助终端定位的、在侧行链路上可以发送参考信号或者对接收的参考信号进行测量的设备。
在本申请实施例中,“锚点设备”也可以称之为“锚点终端”或“其他终端”,本申请对此并不限定。
在一些实施例中,终端设备可以确定M个锚点设备的第一参考信号的配置是否冲突;在配置冲突的情况下,该终端设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息;和/或,在配置不冲突的情况下,该终端设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,网络设备可以确定M个锚点设备的第一参考信号的配置是否冲突;在配置冲突的情况下,该网络设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息;和/或,在配置不冲突的情况下,该网络设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。可选地,该网络设备包括以下至少之一:接入网设备(如gNB),定位管理功能(Location Management Function,LMF)实体,接入和移动性管理功能(Access and Mobility Management Function,AMF)实体。
在一些实施例中,M个锚点设备可以是终端设备选取或确定的。在另一些实施例中,M个锚点设备可以是网络设备选取或确定并指示给终端设备的。
在一些实施例中,该第一参考信号为用于定位的参考信号。当然,该第一参考信号也可以是其他参考信号,本申请对此并不限定。
在一些实施例中,该第一参考信号为侧行定位参考信号(S-PRS)。
在一些实施例中,该锚点设备接收为其重新分配的该第一参考信号的配置信息。
在一些实施例中,在该锚点设备的该第一参考信号的配置信息不允许被修改或更新的情况下,该锚点设备拒绝或忽略重新分配的该第一参考信号的配置信息。
在一些实施例中,该锚点设备发送第一信息,该第一信息用于指示该锚点设备的该第一参考信号的配置信息是否允许被修改或更新。可选地,该第一信息通过广播或者专用信令承载。
具体的,锚点设备可以通过广播专有信令告知终端设备其配置的S-PRS参数是否可以被修改或更新(在一定情况下,配置是不可以被改变的,比如参数配置来源于其他正在定位的终端或者gNB)。
在一些实施例中,对于第一参考信号的配置信息不允许被修改或更新的锚点设备,终端设备不为其重新分配第一参考信号的配置信息。或者,对于第一参考信号的配置信息不允许被修改或更新的锚点设备,可以拒绝或忽略终端设备为其重新分配第一参考信号的配置信息。
在一些实施例中,该锚点设备通过广播或专用信令发送该第一参考信号的配置信息。具体例如,锚点设备可以向具有定位需求的终端设备发送S-PRS的配置信息,如通过侧行专用信令或者广播中搭载S-PRS的配置信息。这么操作可以有利于终端设备第一时间获取各锚点设备的S-PRS配置参数,判断各锚点设备的S-PRS参数设置是否冲突或是否具有碰撞。
在一些实施例中,该锚点设备发送第二信息;其中,该第二信息用于指示该锚点设备配置有该第一参考信号的配置信息。可选地,该终端设备接收该M个锚点设备中部分或全部的锚点设备分别发送的该第二信息。例如,该第二信息通过广播或专用信令承载。又例如,该第二信息通过回复问询的 方式发送。
一种实现方式中,锚点设备可以通过回复终端设备问询的方式发送第二信息。另一种实现方式中,锚点设备可以通过回复网络设备问询的方式发送第二信息。
在一些实施例中,该第二信息还用于指示以下至少之一:
该锚点设备位于网络覆盖外通信场景,该锚点设备已配置的该第一参考信号是自行选择的,该锚点设备测得最近的基站的下行路损参考的信号强度低于第一阈值,该锚点设备测得最高的小区的下行路损参考的信号强度。
需要说明的是,锚点设备测得最近的基站(如gNB)的下行路损参考的信号强度低于第一阈值,则可以间接推导出该锚点设备处于out-of-coverage场景。
在一些实施例中,该信号强度为以下之一:RSRP,RSRQ,SINR。
在一些实施例中,该第一阈值由网络设备配置,或者,该第一阈值由协议约定。
具体的,当锚点设备已经配置有第一参考信号(如S-PRS)时,锚点设备可以通过广播或者回复终端问询的方式告知终端其已配置了第一参考信号的配置信息。
因此,在本申请实施例中,锚点设备发送第一参考信号的配置信息,从而,终端设备或网络设备可以确定M个锚点设备的第一参考信号的配置是否冲突,在配置冲突的情况下终端设备或网络设备为M个锚点设备中部分或全部的锚点设备重新分配第一参考信号的配置信息,在配置不冲突的情况下终端设备或网络设备指示M个锚点设备继续使用已有的第一参考信号的配置信息,进而,可以确保终端设备的精准定位。
上文结合图3至图5,详细描述了本申请的终端侧实施例,下文结合图7,详细描述本申请的网络侧实施例,应理解,网络侧实施例与终端侧实施例相互对应,类似的描述可以参照终端侧实施例。
图7是根据本申请实施例的无线通信的方法400的示意性流程图,如图7所示,该无线通信的方法400可以包括如下内容中的至少部分内容:
S410,网络设备确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;
S420,该网络设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息;或者,该网络设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在本申请实施例中,锚点设备可以是用于辅助终端定位的、在侧行链路上可以发送参考信号或者对接收的参考信号进行测量的设备。
在本申请实施例中,“锚点设备”也可以称之为“锚点终端”或“其他终端”,本申请对此并不限定。
在一些实施例中,M个锚点设备可以是终端设备选取或确定的。在另一些实施例中,M个锚点设备可以是网络设备选取或确定并指示给终端设备的。
在一些实施例中,该第一参考信号为用于定位的参考信号。当然,该第一参考信号也可以是其他参考信号,本申请对此并不限定。
在一些实施例中,该第一参考信号为侧行定位参考信号(S-PRS)。
在一些实施例中,上述S420中,在配置冲突的情况下,该网络设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息。具体例如,该M个锚点设备中部分或全部的锚点设备的第一参考信号的配置冲突,此种情况下,该网络设备为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息。
在一些实施例中,上述S420中,在配置不冲突的情况下,该网络设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。具体例如,该M个锚点设备中的全部锚点设备的第一参考信号的配置均不冲突,此种情况下,该网络设备指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。可选地,该网络设备通过专用信令指示或告知该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,该网络设备可以通过广播或专用信令获取该第一参考信号的配置信息。具体例如,锚点设备可以向网络设备发送S-PRS的配置信息,如通过侧行专用信令或者广播中搭载S-PRS的配置信息。这么操作可以有利于网络设备第一时间获取各锚点设备的S-PRS配置参数,判断各锚点设备的S-PRS参数设置是否冲突或是否具有碰撞。
在一些实施例中,对于未配置有第一参考信号的配置信息的锚点设备,网络设备可以为此类锚点设备配置第一参考信号的配置信息。具体例如,在该M个锚点设备中包括第二锚点设备,且该第二锚点设备未配置该第一参考信号的配置信息的情况下,该网络设备为该第二锚点设备配置该第一参考信号的配置信息。
在一些实施例中,该网络设备接收第一信息,该第一信息用于指示对应的锚点设备的该第一参考信号的配置信息是否允许被修改或更新。例如,网络设备接收锚点设备1发送的第一信息,该第一信 息用于指示该锚点设备1的该第一参考信号的配置信息是否允许被修改或更新。
可选地,该网络设备接收该M个锚点设备中部分或全部的锚点设备分别发送的该第一信息。具体例如,该第一信息通过广播或者专用信令承载。
具体的,锚点设备可以通过广播专有信令告知网络设备其配置的S-PRS参数是否可以被修改或更新(在一定情况下,配置是不可以被改变的,比如参数配置来源于其他正在定位的终端或者gNB)。
在一些实施例中,在该M个锚点设备中包括第一锚点设备,且该第一锚点设备发送的该第一信息指示该第一锚点设备的该第一参考信号的配置信息不允许被修改或更新的情况下,重新分配了该第一参考信号的配置信息的锚点设备中不包括该第一锚点设备。也即,对于第一参考信号的配置信息不允许被修改或更新的锚点设备,网络设备不为其重新分配第一参考信号的配置信息。或者,对于第一参考信号的配置信息不允许被修改或更新的锚点设备,可以拒绝或忽略终端设备为其重新分配第一参考信号的配置信息。
在一些实施例中,该网络设备将该第一锚点设备的优先级设置为低,或者,该网络设备降低该第一锚点设备的优先级。
在一些实施例中,终端设备选择锚点设备的标准:被选择的锚点设备不能既发送冲突的第一参考信号(如S-PRS),又标明坚持使用已分配的第一参考信号(如S-PRS),或者,终端设备将这样的锚点设备设为低优先级的锚点设备。
在一些实施例中,该网络设备接收第二信息;其中,该第二信息用于指示对应的锚点设备配置有该第一参考信号的配置信息。可选地,该网络设备接收该M个锚点设备中部分或全部的锚点设备分别发送的该第二信息。例如,该第二信息通过广播或专用信令承载。又例如,该第二信息通过回复问询的方式发送。
一种实现方式中,锚点设备可以通过回复终端设备问询的方式发送第二信息。另一种实现方式中,锚点设备可以通过回复网络设备问询的方式发送第二信息。
在一些实施例中,该第二信息还用于指示以下至少之一:
对应的锚点设备位于网络覆盖外通信(out-of-coverage)场景,对应的锚点设备已配置的该第一参考信号是自行选择的,对应的锚点设备测得最近的基站(如gNB)的下行路损参考(downlink pathloss reference)的信号强度低于第一阈值,对应的锚点设备测得最高的小区的下行路损参考的信号强度。
需要说明的是,锚点设备测得最近的基站(如gNB)的下行路损参考的信号强度低于第一阈值,则可以间接推导出该锚点设备处于out-of-coverage场景。
在一些实施例中,该信号强度为以下之一:RSRP,RSRQ,SINR。
在一些实施例中,该第一阈值由网络设备配置,或者,该第一阈值由协议约定。
具体的,当锚点设备已经配置有第一参考信号(如S-PRS)时,锚点设备可以通过广播或者回复终端问询的方式告知终端其已配置了第一参考信号的配置信息。
在一些实施例中,该网络设备包括以下至少之一:接入网设备(如gNB),定位管理功能(Location Management Function,LMF)实体,接入和移动性管理功能(Access and Mobility Management Function,AMF)实体。
因此,在本申请实施例中,网络设备确定M个锚点设备的第一参考信号的配置是否冲突,在配置冲突的情况下网络设备为M个锚点设备中部分或全部的锚点设备重新分配第一参考信号的配置信息,在配置不冲突的情况下网络设备指示M个锚点设备继续使用已有的第一参考信号的配置信息,从而可以确保终端设备的精准定位。
上文结合图3至图7,详细描述了本申请的方法实施例,下文结合图8至图10,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图8示出了根据本申请实施例的终端设备500的示意性框图。如图8所示,该终端设备500包括:
处理单元510,用于确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;
该处理单元510还用于为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息;或者,该处理单元510还用于指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,该处理单元510具体用于:
在配置冲突的情况下,为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息。
在一些实施例中,该处理单元510具体用于:
在配置不冲突的情况下,指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,该终端设备500还包括:通信单元520;
该通信单元520用于接收第一信息,该第一信息用于指示对应的锚点设备的该第一参考信号的配置信息是否允许被修改或更新。
在一些实施例中,该通信单元520具体用于:
接收该M个锚点设备中部分或全部的锚点设备分别发送的该第一信息。
在一些实施例中,在该M个锚点设备中包括第一锚点设备,且该第一锚点设备发送的该第一信息指示该第一锚点设备的该第一参考信号的配置信息不允许被修改或更新的情况下,重新分配了该第一参考信号的配置信息的锚点设备中不包括该第一锚点设备。
在一些实施例中,该处理单元510还用于将该第一锚点设备的优先级设置为低,或者,该处理单元510还用于降低该第一锚点设备的优先级。
在一些实施例中,该第一信息通过广播或者专用信令承载。
在一些实施例中,该终端设备500还包括:通信单元520;
该通信单元520用于通过广播或专用信令获取该第一参考信号的配置信息。
在一些实施例中,该终端设备500还包括:通信单元520;
该通信单元520用于接收第二信息;
其中,该第二信息用于指示对应的锚点设备配置有该第一参考信号的配置信息。
在一些实施例中,该第二信息还用于指示以下至少之一:
对应的锚点设备位于网络覆盖外通信场景,对应的锚点设备已配置的该第一参考信号是自行选择的,对应的锚点设备测得最近的基站的下行路损参考的信号强度低于第一阈值,对应的锚点设备测得最高的小区的下行路损参考的信号强度。
在一些实施例中,该第二信息通过广播或专用信令承载。
在一些实施例中,该第二信息通过回复问询的方式发送。
在一些实施例中,在该M个锚点设备中包括第二锚点设备,且该第二锚点设备未配置该第一参考信号的配置信息的情况下,该处理单元510还用于为该第二锚点设备配置该第一参考信号的配置信息。
在一些实施例中,该第一参考信号为用于定位的参考信号。
在一些实施例中,该第一参考信号为侧行定位参考信号S-PRS。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备500可对应于本申请方法实施例中的终端设备,并且终端设备500中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图9示出了根据本申请实施例的锚点设备600的示意性框图。如图9所示,该锚点设备600包括:
通信单元610,用于发送第一参考信号的配置信息;
其中,该第一参考信号的配置信息用于确定M个锚点设备的该第一参考信号的配置是否冲突,M为正整数,且M>1。
在一些实施例中,该通信单元610还用于接收为其重新分配的该第一参考信号的配置信息。
在一些实施例中,该锚点设备600包括处理单元620;
在该锚点设备的该第一参考信号的配置信息不允许被修改或更新的情况下,该处理单元620用于拒绝或忽略重新分配的该第一参考信号的配置信息。
在一些实施例中,该通信单元610还用于发送第一信息,该第一信息用于指示该锚点设备的该第一参考信号的配置信息是否允许被修改或更新。
在一些实施例中,该第一信息通过广播或者专用信令承载。
在一些实施例中,该通信单元610具体用于:
通过广播或专用信令发送该第一参考信号的配置信息。
在一些实施例中,该通信单元610还用于发送第二信息;
其中,该第二信息用于指示该锚点设备配置有该第一参考信号的配置信息。
在一些实施例中,该第二信息还用于指示以下至少之一:
该锚点设备位于网络覆盖外通信场景,该锚点设备已配置的该第一参考信号是自行选择的,该锚点设备测得最近的基站的下行路损参考的信号强度低于第一阈值,该锚点设备测得最高的小区的下行路损参考的信号强度。
在一些实施例中,该第二信息通过广播或专用信令承载。
在一些实施例中,该第二信息通过回复问询的方式发送。
在一些实施例中,该第一参考信号为用于定位的参考信号。
在一些实施例中,该第一参考信号为侧行定位参考信号S-PRS。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的锚点设备600可对应于本申请方法实施例中的锚点设备,并且锚点设备600中的各个单元的上述和其它操作和/或功能分别为了实现图6所示方法300中锚点设备的相应流程,为了简洁,在此不再赘述。
图10示出了根据本申请实施例的网络设备700的示意性框图。如图10所示,网络设备700包括:
处理单元710,用于确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;
该处理单元710还用于为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息;或者,该处理单元710还用于指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,该处理单元710具体用于:
在配置冲突的情况下,为该M个锚点设备中部分或全部的锚点设备重新分配该第一参考信号的配置信息。
在一些实施例中,该处理单元710具体用于:
在配置不冲突的情况下,指示该M个锚点设备继续使用已有的该第一参考信号的配置信息。
在一些实施例中,该网络设备700包括通信单元720;
该通信单元720用于接收第一信息,该第一信息用于指示对应的锚点设备的该第一参考信号的配置信息是否允许被修改或更新。
在一些实施例中,该通信单元720具体用于:
接收该M个锚点设备中部分或全部的锚点设备分别发送的该第一信息。
在一些实施例中,在该M个锚点设备中包括第一锚点设备,且该第一锚点设备发送的该第一信息指示该第一锚点设备的该第一参考信号的配置信息不允许被修改或更新的情况下,重新分配了该第一参考信号的配置信息的锚点设备中不包括该第一锚点设备。
在一些实施例中,该处理单元710还用于将该第一锚点设备的优先级设置为低,或者,该处理单元710还用于降低该第一锚点设备的优先级。
在一些实施例中,该第一信息通过专用信令承载。
在一些实施例中,该通信单元720用于通过专用信令获取该第一参考信号的配置信息。
在一些实施例中,该通信单元720用于接收第二信息;
其中,该第二信息用于指示对应的锚点设备配置有该第一参考信号的配置信息。
在一些实施例中,该第二信息还用于指示以下至少之一:
对应的锚点设备位于网络覆盖外通信场景,对应的锚点设备已配置的该第一参考信号是自行选择的,对应的锚点设备测得最近的基站的下行路损参考的信号强度低于第一阈值,对应的锚点设备测得最高的小区的下行路损参考的信号强度。
在一些实施例中,该第二信息通过广播或专用信令承载。
在一些实施例中,该第二信息通过回复问询的方式发送。
在一些实施例中,在该M个锚点设备中包括第二锚点设备,且该第二锚点设备未配置该第一参考信号的配置信息的情况下,该处理单元710还用于为该第二锚点设备配置该第一参考信号的配置信息。
在一些实施例中,该第一参考信号为用于定位的参考信号。
在一些实施例中,该第一参考信号为侧行定位参考信号S-PRS。
在一些实施例中,该网络设备包括以下至少之一:接入网设备,位置管理功能LMF实体,接入和移动性管理功能AMF实体。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备700可对应于本申请方法实施例中的网络设备,并且网络设备700中的各个单元的上述和其它操作和/或功能分别为了实现图7所示方法400中网络设备的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备800示意性结构图。图11所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图11所示,通信设备800还可以包括存储器820。其中,处理器810可以 从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
在一些实施例中,如图11所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备800具体可为本申请实施例的锚点设备,并且该通信设备800可以实现本申请实施例的各个方法中由锚点设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备800具体可为本申请实施例的终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的装置的示意性结构图。图12所示的装置900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图12所示,装置900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
在一些实施例中,该装置900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的锚点设备,并且该装置可以实现本申请实施例的各个方法中由锚点设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统1000的示意性框图。如图13所示,该通信系统1000包括终端设备1010、锚点设备1020和网络设备1030。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,该锚点设备1020可以用于实现上述方法中由锚点设备实现的相应的功能,以及该网络设备1030可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据 速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的锚点设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由锚点设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的锚点设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由锚点设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的锚点设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由锚点设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算 机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (55)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;
    所述终端设备为所述M个锚点设备中部分或全部的锚点设备重新分配所述第一参考信号的配置信息;或者,所述终端设备指示所述M个锚点设备继续使用已有的所述第一参考信号的配置信息。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备为所述M个锚点设备中部分或全部的锚点设备重新分配所述第一参考信号的配置信息,包括:
    在配置冲突的情况下,所述终端设备为所述M个锚点设备中部分或全部的锚点设备重新分配所述第一参考信号的配置信息。
  3. 如权利要求1所述的方法,其特征在于,所述终端设备指示所述M个锚点设备继续使用已有的所述第一参考信号的配置信息,包括:
    在配置不冲突的情况下,所述终端设备指示所述M个锚点设备继续使用已有的所述第一参考信号的配置信息。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第一信息,所述第一信息用于指示对应的锚点设备的所述第一参考信号的配置信息是否允许被修改或更新。
  5. 如权利要求4所述的方法,其特征在于,所述终端设备接收第一信息,包括:
    所述终端设备接收所述M个锚点设备中部分或全部的锚点设备分别发送的所述第一信息。
  6. 如权利要求4或5所述的方法,其特征在于,
    在所述M个锚点设备中包括第一锚点设备,且所述第一锚点设备发送的所述第一信息指示所述第一锚点设备的所述第一参考信号的配置信息不允许被修改或更新的情况下,重新分配了所述第一参考信号的配置信息的锚点设备中不包括所述第一锚点设备。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备将所述第一锚点设备的优先级设置为低,或者,所述终端设备降低所述第一锚点设备的优先级。
  8. 如权利要求4至7中任一项所述的方法,其特征在于,
    所述第一信息通过广播或者专用信令承载。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备通过广播或专用信令获取所述第一参考信号的配置信息。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二信息;
    其中,所述第二信息用于指示对应的锚点设备配置有所述第一参考信号的配置信息。
  11. 如权利要求10所述的方法,其特征在于,
    所述第二信息还用于指示以下至少之一:
    对应的锚点设备位于网络覆盖外通信场景,对应的锚点设备已配置的所述第一参考信号是自行选择的,对应的锚点设备测得最近的基站的下行路损参考的信号强度低于第一阈值,对应的锚点设备测得最高的小区的下行路损参考的信号强度。
  12. 如权利要求10或11所述的方法,其特征在于,所述第二信息通过广播或专用信令承载。
  13. 如权利要求12所述的方法,其特征在于,
    所述第二信息通过回复问询的方式发送。
  14. 如权利要求1至13中任一项所述的方法,其特征在于,
    在所述M个锚点设备中包括第二锚点设备,且所述第二锚点设备未配置所述第一参考信号的配置信息的情况下,所述方法还包括:
    所述终端设备为所述第二锚点设备配置所述第一参考信号的配置信息。
  15. 如权利要求1至14中任一项所述的方法,其特征在于,
    所述第一参考信号为用于定位的参考信号。
  16. 如权利要求15所述的方法,其特征在于,
    所述第一参考信号为侧行定位参考信号S-PRS。
  17. 一种无线通信的方法,其特征在于,包括:
    锚点设备发送第一参考信号的配置信息;
    其中,所述第一参考信号的配置信息用于确定M个锚点设备的所述第一参考信号的配置是否冲突,M为正整数,且M>1。
  18. 如权利要求17所述的方法,其特征在于,所述方法还包括:
    所述锚点设备接收为其重新分配的所述第一参考信号的配置信息。
  19. 如权利要求18所述的方法,其特征在于,所述方法还包括:
    在所述锚点设备的所述第一参考信号的配置信息不允许被修改或更新的情况下,所述锚点设备拒绝或忽略重新分配的所述第一参考信号的配置信息。
  20. 如权利要求17至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述锚点设备发送第一信息,所述第一信息用于指示所述锚点设备的所述第一参考信号的配置信息是否允许被修改或更新。
  21. 如权利要求20所述的方法,其特征在于,
    所述第一信息通过广播或者专用信令承载。
  22. 如权利要求17至21中任一项所述的方法,其特征在于,所述锚点设备发送第一参考信号的配置信息,包括:
    所述锚点设备通过广播或专用信令发送所述第一参考信号的配置信息。
  23. 如权利要求17至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述锚点设备发送第二信息;
    其中,所述第二信息用于指示所述锚点设备配置有所述第一参考信号的配置信息。
  24. 如权利要求23所述的方法,其特征在于,
    所述第二信息还用于指示以下至少之一:
    所述锚点设备位于网络覆盖外通信场景,所述锚点设备已配置的所述第一参考信号是自行选择的,所述锚点设备测得最近的基站的下行路损参考的信号强度低于第一阈值,所述锚点设备测得最高的小区的下行路损参考的信号强度。
  25. 如权利要求23或24所述的方法,其特征在于,所述第二信息通过广播或专用信令承载。
  26. 如权利要求25所述的方法,其特征在于,
    所述第二信息通过回复问询的方式发送。
  27. 如权利要求17至26中任一项所述的方法,其特征在于,
    所述第一参考信号为用于定位的参考信号。
  28. 如权利要求27所述的方法,其特征在于,
    所述第一参考信号为侧行定位参考信号S-PRS。
  29. 一种无线通信的方法,其特征在于,包括:
    网络设备确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;
    所述网络设备为所述M个锚点设备中部分或全部的锚点设备重新分配所述第一参考信号的配置信息;或者,所述网络设备指示所述M个锚点设备继续使用已有的所述第一参考信号的配置信息。
  30. 如权利要求29所述的方法,其特征在于,所述网络设备为所述M个锚点设备中部分或全部的锚点设备重新分配所述第一参考信号的配置信息,包括:
    在配置冲突的情况下,所述网络设备为所述M个锚点设备中部分或全部的锚点设备重新分配所述第一参考信号的配置信息。
  31. 如权利要求29所述的方法,其特征在于,所述网络设备指示所述M个锚点设备继续使用已有的所述第一参考信号的配置信息,包括:
    在配置不冲突的情况下,所述网络设备指示所述M个锚点设备继续使用已有的所述第一参考信号的配置信息。
  32. 如权利要求29至31中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收第一信息,所述第一信息用于指示对应的锚点设备的所述第一参考信号的配置信息是否允许被修改或更新。
  33. 如权利要求32所述的方法,其特征在于,所述网络设备接收第一信息,包括:
    所述网络设备接收所述M个锚点设备中部分或全部的锚点设备分别发送的所述第一信息。
  34. 如权利要求32或33所述的方法,其特征在于,
    在所述M个锚点设备中包括第一锚点设备,且所述第一锚点设备发送的所述第一信息指示所述第一锚点设备的所述第一参考信号的配置信息不允许被修改或更新的情况下,重新分配了所述第一参考信号的配置信息的锚点设备中不包括所述第一锚点设备。
  35. 如权利要求34所述的方法,其特征在于,所述方法还包括:
    所述网络设备将所述第一锚点设备的优先级设置为低,或者,所述网络设备降低所述第一锚点设备的优先级。
  36. 如权利要求32至35中任一项所述的方法,其特征在于,
    所述第一信息通过专用信令承载。
  37. 如权利要求29至36中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备通过专用信令获取所述第一参考信号的配置信息。
  38. 如权利要求29至37中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收第二信息;
    其中,所述第二信息用于指示对应的锚点设备配置有所述第一参考信号的配置信息。
  39. 如权利要求38所述的方法,其特征在于,
    所述第二信息还用于指示以下至少之一:
    对应的锚点设备位于网络覆盖外通信场景,对应的锚点设备已配置的所述第一参考信号是自行选择的,对应的锚点设备测得最近的基站的下行路损参考的信号强度低于第一阈值,对应的锚点设备测得最高的小区的下行路损参考的信号强度。
  40. 如权利要求38或39所述的方法,其特征在于,所述第二信息通过广播或专用信令承载。
  41. 如权利要求40所述的方法,其特征在于,
    所述第二信息通过回复问询的方式发送。
  42. 如权利要求29至41中任一项所述的方法,其特征在于,
    在所述M个锚点设备中包括第二锚点设备,且所述第二锚点设备未配置所述第一参考信号的配置信息的情况下,所述方法还包括:
    所述网络设备为所述第二锚点设备配置所述第一参考信号的配置信息。
  43. 如权利要求29至42中任一项所述的方法,其特征在于,
    所述第一参考信号为用于定位的参考信号。
  44. 如权利要求43所述的方法,其特征在于,
    所述第一参考信号为侧行定位参考信号S-PRS。
  45. 如权利要求29至44中任一项所述的方法,其特征在于,所述网络设备包括以下至少之一:接入网设备,位置管理功能LMF实体,接入和移动性管理功能AMF实体。
  46. 一种终端设备,其特征在于,包括:
    处理单元,用于确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;
    所述处理单元还用于为所述M个锚点设备中部分或全部的锚点设备重新分配所述第一参考信号的配置信息;或者,所述处理单元还用于指示所述M个锚点设备继续使用已有的所述第一参考信号的配置信息。
  47. 一种锚点设备,其特征在于,包括:
    通信单元,用于发送第一参考信号的配置信息;
    其中,所述第一参考信号的配置信息用于确定M个锚点设备的所述第一参考信号的配置是否冲突,M为正整数,且M>1。
  48. 一种网络设备,其特征在于,包括:
    处理单元,用于确定M个锚点设备的第一参考信号的配置是否冲突,M为正整数;
    所述处理单元还用于为所述M个锚点设备中部分或全部的锚点设备重新分配所述第一参考信号的配置信息;或者,所述处理单元还用于指示所述M个锚点设备继续使用已有的所述第一参考信号的配置信息。
  49. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述终端设备执行如权利要求1至16中任一项所述的方法。
  50. 一种锚点设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述锚点设备执行如权利要求17至28中任一项所述的方法。
  51. 一种网络设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,使得所述网络设备执行如权利要求29至45中任一项所述的方法。
  52. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至16中任一项所述的方法,或者,执行如权利要求17至28中任一项所述的方法,或者,执行如权利要求29至45中任一项所述的方法。
  53. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机 执行如权利要求1至16中任一项所述的方法,或者,执行如权利要求17至28中任一项所述的方法,或者,执行如权利要求29至45中任一项所述的方法。
  54. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至16中任一项所述的方法,或者,执行如权利要求17至28中任一项所述的方法,或者,执行如权利要求29至45中任一项所述的方法。
  55. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至16中任一项所述的方法,或者,执行如权利要求17至28中任一项所述的方法,或者,执行如权利要求29至45中任一项所述的方法。
PCT/CN2022/088406 2022-04-22 2022-04-22 无线通信的方法、终端设备、锚点设备和网络设备 WO2023201686A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088406 WO2023201686A1 (zh) 2022-04-22 2022-04-22 无线通信的方法、终端设备、锚点设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/088406 WO2023201686A1 (zh) 2022-04-22 2022-04-22 无线通信的方法、终端设备、锚点设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023201686A1 true WO2023201686A1 (zh) 2023-10-26

Family

ID=88418852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/088406 WO2023201686A1 (zh) 2022-04-22 2022-04-22 无线通信的方法、终端设备、锚点设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023201686A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111284A (zh) * 2017-11-14 2018-06-01 中兴通讯股份有限公司 参考信号的发送方法、参考信号的配置方法及装置
CN110999474A (zh) * 2017-08-09 2020-04-10 高通股份有限公司 用于定位参考信号(prs)管理的技术和装置
CN111565414A (zh) * 2019-02-13 2020-08-21 华为技术有限公司 一种确定定向定位参考信号的方法及装置
WO2021045565A1 (ko) * 2019-09-04 2021-03-11 엘지전자 주식회사 무선통신시스템에서 단말의 위치를 측정하는 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999474A (zh) * 2017-08-09 2020-04-10 高通股份有限公司 用于定位参考信号(prs)管理的技术和装置
CN108111284A (zh) * 2017-11-14 2018-06-01 中兴通讯股份有限公司 参考信号的发送方法、参考信号的配置方法及装置
CN111565414A (zh) * 2019-02-13 2020-08-21 华为技术有限公司 一种确定定向定位参考信号的方法及装置
WO2021045565A1 (ko) * 2019-09-04 2021-03-11 엘지전자 주식회사 무선통신시스템에서 단말의 위치를 측정하는 방법 및 장치

Similar Documents

Publication Publication Date Title
US11956658B2 (en) Wireless communication method, terminal device, and network device
KR20200082230A (ko) 자원 관리를 위한 장치 및 방법
US20230090640A1 (en) Wireless communication method and terminal device
CN115413045A (zh) 信息传输方法、终端设备和网络设备
WO2022027811A1 (zh) 无线通信的方法、终端设备和网络设备
US20220394503A1 (en) Wireless communication method and device
CN113068258A (zh) 无线通信的方法和装置
WO2023201686A1 (zh) 无线通信的方法、终端设备、锚点设备和网络设备
WO2022198545A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024000122A1 (zh) 无线通信的方法及设备
WO2023206128A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023044735A1 (zh) 无线通信的方法和终端设备
WO2023230806A1 (zh) 无线通信的方法及设备
WO2022027679A1 (zh) 无线通信方法、终端设备和网络设备
WO2022151256A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024098399A1 (zh) 无线感知的方法及设备
WO2022266966A1 (zh) 测量方法、测量配置方法、终端设备和网络设备
WO2023102914A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023279258A1 (zh) 资源选取的方法和终端设备
WO2023206004A1 (zh) 无线通信的方法、终端设备和网络设备
US20240032069A1 (en) Method for configuring a sidelink resource and communication apparatus
WO2022151425A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023000328A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023245492A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937922

Country of ref document: EP

Kind code of ref document: A1