WO2022027811A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022027811A1
WO2022027811A1 PCT/CN2020/119676 CN2020119676W WO2022027811A1 WO 2022027811 A1 WO2022027811 A1 WO 2022027811A1 CN 2020119676 W CN2020119676 W CN 2020119676W WO 2022027811 A1 WO2022027811 A1 WO 2022027811A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement interval
measurement
offsets
offset
terminal device
Prior art date
Application number
PCT/CN2020/119676
Other languages
English (en)
French (fr)
Inventor
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080102095.1A priority Critical patent/CN115804139A/zh
Publication of WO2022027811A1 publication Critical patent/WO2022027811A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a wireless communication method, a terminal device, and a network device.
  • the measurement mainly refers to the mobility measurement in the connected state.
  • the terminal device After the network device delivers the measurement configuration to the terminal device, the terminal device detects the signal quality status of the neighboring cell according to the measurement objects indicated in the measurement configuration, reporting configuration and other parameters, and feeds back the measurement report information to the network for network handover or improvement. Neighbor cell relationship list.
  • the measurement configuration may include a measurement interval (gap) configuration and a synchronization block measurement timing configuration (SS/PBCH block measurement timing configuration, SMTC) configuration, where the measurement gap configuration is used to indicate the time at which the terminal device performs inter-frequency/inter-system measurement , the SMTC configuration is used to indicate the time when the terminal equipment receives the measurement reference signal on the neighbor cell corresponding to the measurement object.
  • SS/PBCH block measurement timing configuration synchronization block measurement timing configuration
  • the coverage radius of the cell is small, and the difference between the signal transmission delay between the terminal equipment and the base station of the serving cell and the signal transmission delay between the terminal equipment and the base station of the neighboring cell is very small.
  • NR New Radio
  • satellite communication is considered to provide communication services to users. Due to the large coverage of satellites, the signal transmission delay between terminal equipment and different satellites is also quite different. In this case, how to perform neighbor measurement is an urgent problem to be solved.
  • Embodiments of the present application provide a wireless communication method, terminal device, and network device, which are beneficial to taking into account cell measurement of different signal transmission delays and ensuring mobile handover performance.
  • a first aspect provides a method for wireless communication, comprising: a terminal device receiving first configuration information sent by a network device, where the first configuration information is used to configure activated N groups of measurement interval configurations in K groups of measurement interval configurations , the N groups of measurement interval configurations include a plurality of different measurement interval offsets, and the measurement interval offsets are used to determine the time offsets of the measurement intervals in one cycle, where N is greater than 1 A positive integer, and N is less than K; the terminal device determines the time domain position where the measurement interval is located according to the N groups of measurement interval configurations; and performs neighbor cell measurement at the time domain position where the measurement interval is located.
  • a method for wireless communication including: a terminal device receiving first configuration information sent by a network device, where the first configuration information includes N measurement interval offsets, and the N measurement interval offsets Each measurement interval offset in the quantity is used to determine a time offset of the measurement interval within one cycle, and the N is a positive integer greater than 1; the terminal device determines the measurement according to the first configuration information The time domain position of the interval; at the time domain position of the measurement interval, a neighbor measurement is performed.
  • a method for wireless communication including: a terminal device receiving a first measurement interval configuration sent by a network device, wherein the first measurement interval configuration includes a first measurement interval duration, and the first measurement interval The interval duration is greater than or equal to the first threshold; the terminal device determines the time domain position of the measurement interval according to the first measurement interval configuration; and performs neighbor measurement at the time domain position where the measurement interval is located.
  • a method for wireless communication comprising: a network device sending first configuration information to a terminal device, where the first configuration information is used to configure activated N groups of measurement interval configurations in K groups of measurement interval configurations,
  • the N groups of measurement interval configurations include a plurality of different measurement interval offsets, and the measurement interval offsets are used to determine the time offsets of the measurement intervals in one cycle, wherein the N is a positive value greater than 1. Integer, and N is less than K.
  • a method for wireless communication comprising: a network device sending first configuration information to a terminal device, where the first configuration information includes N measurement interval offsets, the N measurement interval offsets Each measurement interval offset in is used to determine a time offset of the measurement interval within one cycle, and N is a positive integer greater than 1.
  • a method for wireless communication comprising: a network device sending a first measurement interval configuration to a terminal device, wherein the first measurement interval configuration includes a first measurement interval duration, the first measurement interval The duration is greater than or equal to the first threshold.
  • a terminal device for executing the methods in the foregoing first to third aspects or various implementation manners thereof.
  • the terminal device includes a unit for executing the methods in the first aspect to the third aspect or various implementation manners thereof.
  • a network device for executing the methods in the above-mentioned fourth to sixth aspects or various implementation manners thereof.
  • the network device includes a unit for performing the methods in the above-mentioned fourth to sixth aspects or various implementations thereof.
  • a terminal device in a ninth aspect, includes: a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the methods in the first aspect to the third aspect or various implementations thereof.
  • a network device comprising: a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the methods in the fourth aspect to the sixth aspect or various implementation manners thereof.
  • a chip is provided for implementing any one of the above-mentioned first to sixth aspects or the method in each of its implementations.
  • the chip includes: a processor for calling and running a computer program from a memory, so that a device installed with the chip executes any one of the above-mentioned first to sixth aspects or each of its implementations method.
  • a twelfth aspect provides a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first to sixth aspects or the respective implementations thereof.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to perform the method in any one of the above-mentioned first to sixth aspects or the implementations thereof.
  • a fourteenth aspect provides a computer program that, when run on a computer, causes the computer to perform the method in any one of the above-mentioned first to sixth aspects or the implementations thereof.
  • the embodiments of the present application are compatible with the existing SMTC configuration methods, and the network can better take into account the configuration by configuring multiple measurement interval offsets, multiple sets of measurement interval patterns, or configuring the duration of a larger measurement interval. Cell measurement of different signal transmission delays to ensure mobile handover performance.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2 to FIG. 4 are schematic interaction diagrams of the wireless communication method provided by the embodiment of the present application.
  • 5 to 7 are schematic block diagrams of terminal devices provided by embodiments of the present application.
  • FIG 8 to 10 are schematic block diagrams of network devices provided by embodiments of the present application.
  • FIG. 11 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STATION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • pre-definition may be implemented by pre-saving corresponding codes, forms, or other means that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the implementation method is not limited.
  • pre-defined may refer to the definition in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied in future communication systems, which are not limited in this application.
  • the measurement mainly refers to the mobility measurement in the connected state.
  • the UE After the network sends the measurement configuration to the UE, the UE detects the signal quality status of the neighboring cells according to the measurement objects indicated in the measurement configuration, reporting configuration and other parameters, and feeds back the measurement report information to the network for the network to perform handover or improve the relationship between neighboring cells. list.
  • the network device can send measurement configuration information to the connected terminal device through Radio Resource Control (RRC) signaling, and the terminal device performs measurements (such as intra-frequency, inter-frequency, Different Radio Access Technology (RAT)), and then report the measurement results to the network device.
  • RRC Radio Resource Control
  • RAT Radio Access Technology
  • the measurement configuration information includes the following content:
  • each measurement object indicates the time-frequency position to be measured, the subcarrier spacing of the reference signal, and the cell related to the measurement object.
  • the network device may further configure a cell offset (Offset) list, a blacklisted cell list and a whitelisted cell list.
  • each measurement object may correspond to a separate Evolved Universal Terrestrial Radio Access (E-UTRA) frequency point, a cell related to the E-UTRA frequency point.
  • the network device may further configure a cell offset (Offset) list, a blacklisted cell list and a whitelisted cell list.
  • the terminal device does not perform any operations on the cells in the blacklisted cell list.
  • the terminal device performs event evaluation and measurement reporting on the cells in the whitelisted cell list.
  • the network device For each measurement object, the network device configures a synchronization block measurement timing configuration (SS/PBCH block measurement timing configuration, SMTC), which is used to instruct the terminal device to receive the synchronization signal block (Synchronization Signal Block, SSB) time.
  • SS/PBCH block measurement timing configuration SS/PBCH block measurement timing configuration, SMTC
  • SSB Synchronization Signal Block
  • the SMTC configuration includes the period of the SMTC, the start time offset of the SMTC within a period (ie, the SMTC offset), the duration of the SMTC, and the like.
  • the SMTC configuration may support periods of ⁇ 5, 10, 20, 40, 80, 160 ⁇ ms and window lengths (ie, durations) of ⁇ 1, 2, 3, 4, 5 ⁇ ms, corresponding to each
  • the offset of the SMTC is strongly correlated with the period and takes the value ⁇ 0,...,period-1 ⁇ .
  • Each measurement object corresponds to one or more reporting configurations.
  • the reporting configuration may include, for example:
  • Reporting criterion that is, the triggering condition for the terminal device to perform measurement reporting, for example, it may be periodic triggering reporting or event triggering reporting.
  • Reference Signal Reference Signal
  • RS Reference Signal
  • synchronization signal/physical broadcast channel block synchronization signal/physical broadcast channel block, SS/PBCH block
  • channel state information reference Signal Channel State Information Reference Signal
  • Reporting format the measurement reporting amount of the terminal device for each cell and each beam (for example, Reference Signal Receiving Power (RSRP)).
  • RSRP Reference Signal Receiving Power
  • other related information may also be included, such as the maximum number of cells reported by the terminal device, the maximum number of beams reported for each cell, and the like.
  • a separate ID used to associate the measurement object with the reporting configuration is distinguished by the measurement identifier.
  • Time information used to instruct the terminal equipment to perform intra-frequency, inter-frequency or inter-RAT measurements is used to instruct the terminal equipment to perform intra-frequency, inter-frequency or inter-RAT measurements. Specifically, the terminal device performs intra-frequency, inter-frequency or inter-RAT measurement during the measurement gap.
  • the network device can configure the measurement interval configuration per UE (per UE) or the measurement interval configuration per frequency band (per FR) for the terminal device.
  • the network device can configure the measurement interval configuration corresponding to FR1 and FR2 respectively, where FR1 and FR2 represent different frequency bands.
  • each measurement interval configuration may include at least one of the following:
  • Measurement interval offset (gapOffset): the start time offset of the gap in one cycle
  • the duration of the measurement interval (eg mgl): the duration of each gap
  • Each measurement object corresponds to one or more reporting configurations.
  • the reporting configuration may include, for example:
  • Reporting criterion that is, the triggering condition for the terminal device to perform measurement reporting, for example, it may be periodic triggering reporting or event triggering reporting.
  • the triggering event can be, for example, several measurement events mentioned above.
  • the coverage radius of a cell is small, and the difference between the signal transmission delay between the UE and the base station of the serving cell and the signal transmission delay between the UE and the base station of the neighboring cell is small.
  • the signal propagation delay between UE and satellite increases greatly.
  • the signal transmission delay between the UE and different satellites is also quite different. If the measurement interval configuration method of the current terrestrial system is used, the terminal equipment may not be able to receive the SSBs of some cell sites with large transmission delay, and thus cannot know the channel quality status of these cell sites, which affects the results of measurement reporting.
  • the embodiments of the present application provide several neighboring cell measurement solutions, which are favorable for taking into account the measurement of reference signals on cells with different transmission delays, thereby improving the fairness of reported measurement results and ensuring mobile handover performance.
  • FIG. 2 is a schematic interaction diagram of a method 200 for wireless communication provided by an embodiment of the present application. As shown in FIG. 2, the method 200 may include at least some of the following contents:
  • the network device sends first configuration information to the terminal device, where the first configuration information includes N measurement interval offsets, and each measurement interval offset in the N measurement interval offsets is used to determine the measurement A time offset within one cycle, the N is a positive integer greater than 1;
  • the terminal device receives the first configuration information.
  • the terminal device determines the time domain position of the measurement interval according to the first configuration information
  • the terminal device performs neighbor cell measurement at the time domain position of the measurement interval.
  • the embodiments of the present application may be applicable to networks with large differences in signal transmission delays, such as NTN networks, or may also be applicable to other similar networks, and the present application is not limited thereto.
  • the first configuration information may be configured through high-layer signaling, and optionally, the high-layer signaling may be Radio Resource Control (Radio Resource Control, RRC) signaling.
  • the first configuration information may also be configured through system information, but the present application is not limited thereto.
  • the network device may configure multiple measurement interval offsets (ie gapoffsets) for the terminal device through RRC signaling and/or system information.
  • one frequency point may correspond to one or more measurement objects MO
  • one measurement object MO may correspond to one or more cells
  • one frequency point may correspond to one or more cells.
  • the N measurement interval offsets correspond to the same frequency point.
  • one frequency point can correspond to multiple measurement interval offsets.
  • the network device can configure the measurement interval offset corresponding to each frequency point, that is, the measurement interval offset can be configured according to each frequency point (per frequency layer).
  • the same frequency point may correspond to multiple cells. That is, the network device may configure multiple measurement interval offsets for the multiple cells. Wherein, each cell corresponds to one measurement interval offset, or one measurement interval offset may be applicable to at least one cell.
  • each measurement interval offset in the N measurement interval offsets corresponds to one frequency point.
  • one frequency point may correspond to one cell, or if one frequency point corresponds to multiple cells, the cells corresponding to the frequency point may be cells with little difference in signal transmission delays.
  • the N measurement interval offsets correspond to M frequency points, wherein the N is greater than M, wherein each frequency point in the M frequency points corresponds to the N measurements At least one of the interval offsets measures the interval offset. That is, one frequency point may correspond to one or more measurement interval offsets.
  • the cells corresponding to the one frequency may include multiple cells with large differences in signal transmission delays, and the multiple measurement The interval offset may be suitable for measurement of cells with different signal transmission delays.
  • the measurement interval offset configured by the network device is determined according to the SMTC offset of the corresponding frequency point.
  • the measurement interval offset is equal to the SMTC offset (SMTC offset) of the corresponding frequency point.
  • the N measurement interval offsets correspond to the same measurement object MO.
  • one MO may correspond to multiple measurement interval offsets.
  • the network device can configure the measurement interval offset corresponding to each MO, that is, the measurement interval offset can be configured according to each MO (per MO).
  • each measurement interval offset in the N measurement interval offsets corresponds to one MO.
  • one MO may correspond to one cell, or if one MO corresponds to multiple cells, the cells corresponding to the MO may be cells with little difference in signal transmission delays.
  • the N measurement interval offsets correspond to P MOs, where N is greater than P, and each MO in the P MOs corresponds to the N MOs At least one of the measurement interval offsets is measured interval offsets. That is, one MO may correspond to one or more measurement interval offsets.
  • the cells corresponding to the one MO may include multiple cells with relatively large signal transmission delays, and the multiple measurement interval offsets The quantity can be applied to the measurement of cells with different signal transmission delays.
  • the measurement interval offset configured by the network device is determined according to the SMTC offset of the corresponding MO.
  • the measurement interval offset is equal to the SMTC offset of the corresponding MO (SMTC offset).
  • the N measurement interval offsets correspond to N cells, wherein each cell may correspond to one measurement interval offset.
  • the N cells may be cells with large differences in signal transmission delays. That is, the measurement interval offset can be configured per cell.
  • the measurement interval offset configured by the network device is determined according to the SMTC offset of the corresponding cell.
  • the measurement interval offset is equal to the SMTC offset of the corresponding cell (SMTC offset).
  • the network equipment can configure different measurement interval offsets for cells, MOs or frequency points with different signal transmission delays, which is beneficial to ensure that the terminal equipment can measure the reference signals sent by neighboring cells with different signal transmission delays, thereby ensuring The impartiality of reported measurements.
  • the first configuration information further includes at least one of the following parameters:
  • Period of the measurement interval (corresponding to mgrp), duration of the measurement interval in one period (corresponding to mgl), timing advance of the measurement interval (mgta), reference serving cell indication (corresponding to refServCellIndicator).
  • the N measurement interval offsets may be configured independently, that is, may be configured independently of parameters such as the period of the measurement interval, the duration of the measurement interval, etc., for example, configured according to per frequency point or per cell configuration.
  • the terminal device may determine the time domain position of N kinds of measurement intervals according to the N measurement interval offsets and parameters such as the period and duration of the measurement interval, each of which The time domain position of the measurement interval may be determined according to one measurement interval offset among the N measurement interval offsets in combination with parameters such as the period and duration of the measurement interval.
  • the embodiment of the present application implements the configuration of multiple measurement intervals by configuring multiple measurement interval offsets, which is beneficial to SMTC covering multiple cells, thus taking into account the measurement of cells with different signal transmission delays, and ensuring mobile handover performance.
  • FIG. 3 is a schematic interaction diagram of another method 300 for wireless communication provided by an embodiment of the present application. As shown in FIG. 3 , the method 300 may include at least some of the following contents:
  • the network device sends at least one group of measurement interval offsets and N groups of measurement interval patterns to the terminal device, where each group of measurement interval offsets includes at least one measurement interval offset, and the measurement interval offset is used for Determine the time offset of the measurement interval in one cycle, each group of measurement interval patterns is used to determine the measurement cycle of the measurement interval and the duration of the measurement interval in a surrounding, the N is a positive integer greater than 1 ;
  • the terminal device receives the at least one group of measurement interval offsets and the N groups of measurement interval patterns.
  • the terminal device determines, according to the at least one group of measurement interval offsets and the N groups of measurement interval patterns, a time domain position where the measurement interval is located;
  • the terminal device performs neighbor cell measurement at the time domain position of the measurement interval.
  • the embodiments of the present application may be applicable to networks with large differences in signal transmission delays, such as NTN networks, or may also be applicable to other similar networks, and the present application is not limited thereto.
  • the at least one group of measurement interval offsets includes a group of measurement interval offsets, and the group of measurement interval offsets corresponds to the N groups of measurement interval patterns ( pattern). That is, the N groups of measurement interval patterns may share the group of measurement interval offsets, and the terminal device may determine the timing of various measurement intervals according to the group of measurement interval offsets and the N groups of measurement interval patterns. Domain location.
  • the terminal device may determine the time domains of N types of measurement intervals according to the one measurement interval offset and the N sets of measurement interval patterns For another example, if the set of measurement interval offsets includes two measurement interval offsets, the terminal device may determine 2N types of measurements according to the one measurement interval offset and the N groups of measurement interval patterns The time domain location of the interval.
  • the at least one group of measurement interval offsets includes N groups of measurement interval offsets, and the N groups of measurement interval offsets have a one-to-one correspondence with the N groups of measurement interval patterns.
  • each group of measurement interval patterns may correspond to an independent group of measurement interval offsets, and the terminal device may determine the time domain of at least N types of measurement intervals according to each group of measurement interval patterns and a corresponding group of measurement interval offsets Location.
  • the terminal device may determine the time domains of N kinds of measurement intervals according to the one measurement interval offset and a corresponding set of measurement interval patterns
  • the terminal device may determine 2N types of measurements according to the one measurement interval offset and a corresponding set of measurement interval patterns The time domain location of the interval.
  • the terminal device may further report first capability information to the network device, where the first capability information is used to indicate that the terminal device supports a specific measurement type.
  • the specific measurement type may be a demand-based measurement type, such as neighbor cell measurement for NTN scenarios, or measurement for a specific reference signal, for example, the specific reference signal may be PRS or the like.
  • the network device may configure the terminal device with the at least one set of measurement interval offsets and the N when the terminal device supports the specific measurement type. Group measurement interval pattern.
  • the terminal device may only configure a set of measurement interval offsets and a set of measurement interval patterns for the terminal device.
  • the N groups of measurement interval patterns are N groups in the K groups of measurement interval patterns.
  • the K groups of measurement interval patterns are dedicated measurement interval patterns of a specific measurement type.
  • the network device may, in the case that the terminal device supports the specific measurement type, determine N groups of measurement interval patterns from the K groups of measurement interval patterns for use in neighbor cell measurement of the terminal device.
  • the K groups of measurement interval configurations may be predefined.
  • the at least one group of measurement interval offsets and the N groups of measurement interval patterns may be configured through the same message or signaling, or may be configured through different messages or signaling. configuration, the present application is not limited to this.
  • the at least one set of measurement interval offsets is configured through high-layer signaling, and optionally, the high-layer signaling may be RRC signaling.
  • the at least one set of measurement interval offsets may also be configured through system information, but the present application is not limited thereto.
  • the N groups of measurement interval patterns are configured by high-layer signaling, and optionally, the high-layer signaling may be RRC signaling.
  • the N groups of measurement interval patterns may also be configured through system information, but the present application is not limited thereto.
  • each group of measurement interval patterns corresponds to at least one of the following parameters:
  • Period of the measurement interval (corresponding to mgrp), duration of the measurement interval in one period (corresponding to mgl).
  • the network device can indicate to the terminal device N sets of measurement interval patterns and at least one set of measurement interval offsets to determine the time domain positions of various measurement intervals. In this way, the terminal device can determine the time domain positions of various measurement intervals. It is beneficial to ensure that the terminal equipment can measure the reference signals sent by neighboring cells with different signal transmission delays, thereby ensuring the fairness of the reported measurement results.
  • the N groups of measurement interval patterns are configured per frequency band; or the N groups of measurement interval patterns are configured per terminal device, or the N groups of measurement interval patterns are configured per measurement object.
  • MO configured, or the N groups of measurement interval patterns are configured per cell;
  • the at least one set of measurement interval offsets is configured per frequency band; or the at least one set of measurement interval offsets is configured per terminal device, or the at least one set of measurement interval offsets is configured per measurement object MO. configured, or the at least one set of measurement interval offsets is configured per cell.
  • the configuration manner of the N groups of measurement interval patterns and the at least one group of measurement interval offsets may refer to the configuration manner of the N measurement interval offsets described in the foregoing embodiments, in order to It is concise and will not be repeated here.
  • FIG. 4 is a schematic interaction diagram of still another wireless communication method 400 provided by an embodiment of the present application. As shown in FIG. 4 , the method 400 may include at least some of the following contents:
  • the network device sends a first measurement interval configuration to the terminal device, where the first measurement interval configuration includes a first measurement interval duration, and the first measurement interval duration is greater than or equal to a first threshold;
  • the terminal device receives the first measurement interval configuration.
  • the terminal device determines the time domain position of the measurement interval according to the first measurement interval configuration
  • the terminal device performs neighbor cell measurement at the time domain position of the measurement interval.
  • the embodiments of the present application may be applicable to networks with large differences in signal transmission delays, such as NTN networks, or may also be applicable to other similar networks, and the present application is not limited thereto.
  • the network device can configure a measurement interval with a longer duration for the terminal device, which is beneficial to the STMC covering multiple cells, thereby ensuring that the terminal device receives reference signals sent by multiple cells and improves the measurement of neighboring cells.
  • the terminal device reports first capability information to the network device, where the first capability information is used to indicate that the terminal device supports a specific measurement type.
  • the specific measurement type may be a demand-based measurement type, such as neighbor cell measurement for NTN scenarios, or measurement for a specific reference signal, for example, the specific reference signal may be PRS or the like.
  • the network device may configure the terminal device with the first measurement interval configuration if the terminal device supports the specific measurement type.
  • the network device may further configure a second measurement interval configuration for the terminal device, the second measurement interval configuration includes a second measurement interval duration, and the second measurement interval duration less than the first threshold.
  • the first measurement interval configuration may be used in a scenario with a large difference in signal transmission delay, such as an NTN scenario, or in a specific measurement type, such as neighbor cell measurement in an NTN scenario. , or for measurements of specific reference signals, such as PTS measurements.
  • the second measurement interval configuration can be used in scenarios with little difference in signal transmission delay, such as terrestrial cellular networks, or measurement of conventional reference signals, such as synchronization signal blocks (Synchronization Signal Block, SSB), channel state information reference signals ( Channel State Information Reference Signal, CSI-RS), etc.
  • the first threshold is 10 ms, or may be other time lengths of SMTC that can cover multiple cells, which is not limited in this application.
  • the first measurement interval configuration may be configured through higher layer signaling, and optionally, the higher layer signaling may be RRC signaling.
  • the first measurement interval configuration may also be configured through system information, but the present application is not limited thereto. That is, the network device may configure the first measurement interval configuration for the terminal device through RRC signaling and/or system information.
  • the network device may configure the terminal device with a measurement interval configuration for PRS measurement, where the measurement interval configuration may include the duration of the measurement interval, the period of the measurement interval, and the duration of the measurement interval in a surrounding area. parameters such as time.
  • the duration of the measurement interval in the measurement interval configuration for PRS measurement is greater than the first threshold. Therefore, in some possible implementations, the measurement interval for PRS measurement may be multiplexed. The measurement interval is configured for neighbor measurement.
  • the network device may configure a first measurement interval pattern, and the first measurement interval pattern is used to determine the measurement period of the measurement interval and the duration of the measurement interval within a circumference, wherein, The duration parameter of the measurement interval in the newly added first measurement interval pattern is greater than the first threshold.
  • the first measurement interval pattern may be a measurement interval pattern for PRS measurement, or the first measurement interval pattern may also be a measurement interval pattern for the specific measurement type.
  • the first measurement interval pattern may correspond to a specific identifier, such as a measurement interval type identifier (MG pattern ID). The specific identified measurement interval pattern is used for the specific measurement type.
  • MG pattern ID measurement interval type identifier
  • the first measurement interval configuration may be determined according to the first measurement interval pattern and the first measurement interval duration.
  • the first measurement interval pattern and the first measurement interval duration may be configured through the same message, or may be configured through different information.
  • the embodiment of the present application is compatible with the existing SMTC configuration mode.
  • the interval pattern or the duration of a larger gap can be configured, so that the cell measurement of different signal transmission delays can be better taken into account, and the mobile handover performance can be guaranteed.
  • FIG. 5 shows a schematic block diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes:
  • the communication unit 510 is configured to receive first configuration information sent by a network device, where the first configuration information includes N measurement interval offsets, and each measurement interval offset in the N measurement interval offsets is used as a for determining a time offset of the measurement interval within one cycle, the N is a positive integer greater than 1;
  • a processing unit 520 configured to determine the time domain position of the measurement interval according to the first configuration information
  • neighbor measurements are performed.
  • the N measurement interval offsets correspond to the same frequency point
  • Each measurement interval offset in the N measurement interval offsets corresponds to a frequency point
  • the N measurement interval offsets correspond to M frequency points, wherein the N is greater than M, wherein each frequency point in the M frequency points corresponds to at least one of the N measurement interval offsets.
  • a measurement interval offset corresponds to M frequency points, wherein the N is greater than M, wherein each frequency point in the M frequency points corresponds to at least one of the N measurement interval offsets.
  • the measurement interval offset is determined according to the synchronization block measurement timing configuration SMTC offset of the corresponding frequency point.
  • the N measurement interval offsets correspond to the same measurement object MO;
  • Each measurement interval offset in the N measurement interval offsets corresponds to one MO;
  • the N measurement interval offsets correspond to P MOs, where N is greater than P, wherein each MO in the P MOs corresponds to at least one measurement interval in the N measurement interval offsets Offset.
  • the measurement interval offset is determined according to the SMTC offset of the corresponding MO.
  • the N measurement interval offsets correspond to N cells.
  • the measurement interval offset is determined according to the SMTC offset of the corresponding cell.
  • the first configuration information further includes at least one of the following parameters:
  • the period of the measurement interval, the duration of the measurement interval in one cycle, and the timing advance of the measurement interval refer to the serving cell indication.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 500 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of the various units in the terminal device 500 are for realizing the method shown in FIG. 2 respectively.
  • the corresponding process of the terminal device in 200 is not repeated here for brevity.
  • FIG. 6 shows a schematic block diagram of a terminal device 600 according to an embodiment of the present application.
  • the terminal device 600 includes:
  • a communication unit 610 configured to receive at least one group of measurement interval offsets and N groups of measurement interval patterns sent by the network device, wherein each group of measurement interval offsets includes at least one measurement interval offset, the measurement interval offset The quantity is used to determine the time offset of the measurement interval in one period, and each group of measurement interval patterns is used to determine the measurement period of the measurement interval and the duration of the measurement interval in one circumference, and the N is greater than 1 positive integer of ;
  • a processing unit 620 configured to determine the time domain position where the measurement interval is located according to the at least one group of measurement interval offsets and the N groups of measurement interval patterns;
  • the neighbor measurement is performed.
  • the at least one set of measurement interval offsets includes a set of measurement interval offsets, and the set of measurement interval offsets corresponds to the N sets of measurement interval patterns;
  • the at least one group of measurement interval offsets includes N groups of measurement interval offsets, and the N groups of measurement interval offsets are in one-to-one correspondence with the N groups of measurement interval patterns.
  • the communication unit 610 is further configured to:
  • the specific measurement type includes a positioning reference signal PRS measurement type.
  • the N groups of measurement interval patterns are N groups of K groups of measurement interval patterns, and the K groups of measurement interval patterns are dedicated measurement interval patterns of the specific measurement type. .
  • the at least one set of measurement interval offsets is determined according to a synchronization block measurement timing configuration SMTC offset configured by the network device.
  • the at least one group of measurement interval offsets is configured through RRC signaling or system messages; the N groups of measurement interval patterns are configured through RRC signaling or system messages.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 600 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 600 are respectively for realizing the method shown in FIG. 3 .
  • the corresponding process of the terminal device in 300 is not repeated here for brevity.
  • FIG. 7 shows a schematic block diagram of a terminal device 700 according to an embodiment of the present application.
  • the terminal device 700 includes:
  • a communication unit 710 configured to receive a first measurement interval configuration sent by a network device, where the first measurement interval configuration includes a first measurement interval duration, and the first measurement interval duration is greater than or equal to a first threshold;
  • a processing unit configured to determine the time domain position of the measurement interval according to the first measurement interval configuration
  • the neighbor measurement is performed.
  • the first measurement interval configuration is also used for positioning reference signal PRS measurement.
  • the duration of the first measurement interval is determined according to the multiple synchronization block measurement timing configuration SMTC.
  • the first measurement interval configuration further includes the following parameters: the period of the measurement interval, and the duration of the measurement interval in one period.
  • the first threshold is 10ms.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 700 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 700 are respectively for realizing the method shown in FIG. 4 .
  • the corresponding process of the terminal device in 400 is not repeated here for brevity.
  • FIG. 8 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 800 of FIG. 8 includes:
  • a communication unit 810 configured to send first configuration information to the terminal device, where the first configuration information includes N measurement interval offsets, and each measurement interval offset in the N measurement interval offsets is used for A time offset of the measurement interval within one cycle is determined, and the N is a positive integer greater than 1.
  • the N measurement interval offsets correspond to the same frequency
  • Each measurement interval offset in the N measurement interval offsets corresponds to a frequency point
  • the N measurement interval offsets correspond to M frequency points, wherein the N is greater than M, wherein each frequency point in the M frequency points corresponds to at least one of the N measurement interval offsets.
  • a measurement interval offset corresponds to M frequency points, wherein the N is greater than M, wherein each frequency point in the M frequency points corresponds to at least one of the N measurement interval offsets.
  • the measurement interval offset is determined according to the synchronization block measurement timing configuration SMTC offset of the corresponding frequency point.
  • the N measurement interval offsets correspond to the same measurement object MO;
  • Each measurement interval offset in the N measurement interval offsets corresponds to one MO;
  • the N measurement interval offsets correspond to P MOs, where N is greater than P, wherein each MO in the P MOs corresponds to at least one measurement interval in the N measurement interval offsets Offset.
  • the measurement interval offset is determined according to the SMTC offset of the corresponding MO.
  • the N measurement interval offsets correspond to N cells.
  • the measurement interval offset is determined according to the SMTC offset of the corresponding cell.
  • the first configuration information further includes at least one of the following parameters:
  • the period of the measurement interval, the duration of the measurement interval in one cycle, and the timing advance of the measurement interval refer to the serving cell indication.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 800 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 800 are respectively for realizing the method shown in FIG. 2 .
  • the corresponding process of the network device in 200 is not repeated here for brevity.
  • FIG. 9 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 900 of FIG. 9 includes:
  • a communication unit 910 configured to send at least one group of measurement interval offsets and N groups of measurement interval patterns to the terminal device, wherein each group of measurement interval offsets includes at least one measurement interval offset, the measurement interval offset It is used to determine the time offset of the measurement interval in one period, and each group of measurement interval patterns is used to determine the measurement period of the measurement interval and the duration of the measurement interval in one circumference, and the N is greater than 1. positive integer.
  • the at least one set of measurement interval offsets includes a set of measurement interval offsets, and the set of measurement interval offsets corresponds to the N sets of measurement interval patterns;
  • the at least one group of measurement interval offsets includes N groups of measurement interval offsets, and the N groups of measurement interval offsets are in one-to-one correspondence with the N groups of measurement interval patterns.
  • the communication unit 910 is further configured to:
  • the N groups of measurement interval patterns are N groups of K groups of measurement interval patterns, and the K groups of measurement interval patterns are dedicated measurement interval patterns of the specific measurement type;
  • the at least one group of measurement interval offsets is configured through radio resource control RRC signaling or system messages;
  • the network allows the N groups of measurement interval patterns to be configured through RRC signaling or system messages.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 900 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 900 are respectively for realizing the method shown in FIG. 3 .
  • the corresponding process of the network device in 300 is not repeated here for brevity.
  • FIG. 10 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 1000 of FIG. 10 includes:
  • the communication unit 1010 is configured to send a first measurement interval configuration to a terminal device, where the first measurement interval configuration includes a first measurement interval duration, and the first measurement interval duration is greater than or equal to a first threshold.
  • the first measurement interval configuration is also used for positioning reference signal PRS measurement.
  • the first measurement interval duration is determined according to the multiple sync block measurement timing configuration SMTC.
  • the first measurement interval configuration further includes the following parameters: the period of the measurement interval, and the duration of the measurement interval in one period.
  • the first threshold is 10ms.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 1000 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 1000 are respectively for realizing the method shown in FIG. 4 .
  • the corresponding process of the network device in 400 is not repeated here for brevity.
  • FIG. 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication device 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1100 may further include a memory 1120 .
  • the processor 1110 may call and run a computer program from the memory 1120 to implement the methods in the embodiments of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the communication device 1100 may further include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by the device.
  • the processor 1110 may control the transceiver 1130 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by the device.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 1100 may specifically be a network device in this embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 1100 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 1100 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 1200 may further include a memory 1220 .
  • the processor 1210 may call and run a computer program from the memory 1220 to implement the methods in the embodiments of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or may be integrated in the processor 1210.
  • the chip 1200 may further include an input interface 1230 .
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1200 may further include an output interface 1240 .
  • the processor 1210 may control the output interface 1240 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 13 is a schematic block diagram of a communication system 1300 provided by an embodiment of the present application. As shown in FIG. 13 , the communication system 1300 includes a terminal device 1310 and a network device 1320 .
  • the terminal device 1310 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1320 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信的方法、终端设备和网络设备,该方法包括:终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于配置K组测量间隔配置中的激活的N组测量间隔配置,所述N组测量间隔配置包括多个不同的测量间隔偏移量,所述测量间隔偏移量用于确定测量间隔在一个周期内的时间偏移量,其中,所述N为大于1的正整数,并且N小于K;所述终端设备根据所述N组测量间隔配置,确定测量间隔所在的时域位置;在所述测量间隔所在的时域位置上,执行邻区测量。

Description

无线通信的方法、终端设备和网络设备
本申请要求于2020年08月06日提交中国专利局、申请号为PCT/CN2020/107531、发明名称为“邻区测量的方法、终端设备和网络设备”的PCT专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,具体涉及一种无线通信的方法、终端设备和网络设备。
背景技术
测量主要是指连接状态下的移动性测量。网络设备给终端设备下发测量配置后,终端设备根据测量配置中指示的测量对象、上报配置等参数检测邻小区的信号质量状态,并将测量上报信息反馈给网络,用于网络进行切换或者完善邻小区关系列表。其中,测量配置可以包括测量间隔(gap)配置和同步块测量定时配置(SS/PBCH block measurement timing configuration,SMTC)配置,所述测量gap配置用于指示终端设备执行异频/异系统测量的时间,所述SMTC配置用于指示终端设备在测量对象对应的邻小区上接收测量参考信号的时间。
对于传统的陆地蜂窝系统,小区的覆盖半径较小,终端设备与服务小区基站之间的信号传输时延和终端设备与邻小区基站之间的信号传输时延差异很小。在新无线(New Radio,NR)系统中,考虑采用卫星通信的方式向用户提供通信服务,由于卫星的覆盖范围很大,终端设备与不同卫星之间的信号传输时延也存在较大差异,此情况下,如何执行邻区测量是一项亟需解决的问题。
发明内容
本申请实施例提供一种无线通信的方法、终端设备和网络设备,有利于兼顾不同信号传输时延的小区测量,保证移动切换性能。
第一方面,提供了一种无线通信的方法,包括:终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于配置K组测量间隔配置中的激活的N组测量间隔配置,所述N组测量间隔配置包括多个不同的测量间隔偏移量,所述测量间隔偏移量用于确定测量间隔在一个周期内的时间偏移量,其中,所述N为大于1的正整数,并且N小于K;所述终端设备根据所述N组测量间隔配置,确定测量间隔所在的时域位置;在所述测量间隔所在的时域位置上,执行邻区测量。
第二方面,提供了一种无线通信的方法,包括:终端设备接收网络设备发送的第一配置信息,所述第一配置信息包括N个测量间隔偏移量,所述N个测量间隔偏移量中的每个测量间隔偏移量用于确定测量间隔在一个周期内的一个时间偏移量,所述N为大于1的正整数;所述终端设备根据所述第一配置信息,确定测量间隔的时域位置;在所述测量间隔的时域位置上,执行邻区测量。
第三方面,提供了一种无线通信的方法,包括:终端设备接收网络设备发送的第一测量间隔配置,其中,所述第一测量间隔配置包括第一测量间隔持续时间,所述第一测量间隔持续时间大于或等于第一阈值;所述终端设备根据所述第一测量间隔配置,确定测量间隔的时域位置;在所述测量间隔所在的时域位置上,执行邻区测量。
第四方面,提供了一种无线通信的方法,包括:网络设备向终端设备发送第一配置信息,所述第一配置信息用于配置K组测量间隔配置中的激活的N组测量间隔配置,所述N组测量间隔配置包括多个不同的测量间隔偏移量,所述测量间隔偏移量用于确定测量间隔在一个周期内的时间偏移量,其中,所述N为大于1的正整数,并且N小于K。
第五方面,提供了一种无线通信的方法,包括:网络设备向终端设备发送第一配置信息,所述第一配置信息包括N个测量间隔偏移量,所述N个测量间隔偏移量中的每个 测量间隔偏移量用于确定测量间隔在一个周期内的一个时间偏移量,所述N为大于1的正整数。
第六方面,提供了一种无线通信的方法,包括:网络设备向终端设备发送第一测量间隔配置,其中,所述第一测量间隔配置包括第一测量间隔持续时间,所述第一测量间隔持续时间大于或等于第一阈值。
第七方面,提供了一种终端设备,用于执行上述第一方面至第三方面或其各种实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面至第三方面或其各种实现方式中的方法的单元。
第八方面,提供了一种网络设备,用于执行上述第四方面至第六方面或其各种实现方式中的方法。具体地,该网络设备包括用于执行上述第四方面至第六方面或其各种实现方式中的方法的单元。
第九方面,提供了一种终端设备,该终端设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面至第三方面或其各种实现方式中的方法。
第十方面,提供了一种网络设备,该网络设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第四方面至第六方面或其各种实现方式中的方法。
第十一方面,提供了一种芯片,用于实现上述第一方面至第六方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第六方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第六方面中的任一方面或其各实现方式中的方法。
第十三方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第六方面中的任一方面或其各实现方式中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第六方面中的任一方面或其各实现方式中的方法。
基于上述技术方案,本申请实施例兼容现有的SMTC配置方式,网络通过配置多个测量间隔偏移量、多组测量间隔图样或配置较大的测量间隔的持续时间,从而能够更好的兼顾不同信号传输时延的小区测量,保证移动切换性能。
附图说明
图1是本申请实施例提供的一种应用场景的示意性图。
图2至图4是本申请实施例提供的无线通信的方法的示意性交互图。
图5至图7是本申请实施例提供的终端设备的示意性框图。
图8至图10是本申请实施例提供的网络设备的示意性框图。
图11是本申请另一实施例提供的一种通信设备的示意性框图。
图12是本申请实施例提供的一种芯片的示意性框图。
图13是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能 设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,"预先定义"可以通过在设备(例如,包括终端设备和网络设备)中预 先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预先定义可以是指协议中定义的。
本申请实施例中,所述"协议"可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
测量主要是指连接状态下的移动性测量。网络给UE下发测量配置后,UE根据测量配置中指示的测量对象、上报配置等参数检测邻小区的信号质量状态,并将测量上报信息反馈给网络,用于网络进行切换或者完善邻小区关系列表。
在介绍本申请实施例之前,首先对相关技术做一介绍
一、测量配置
在NR系统中,网络设备可以通过无线资源控制(Radio Resource Control,RRC)信令向连接状态的终端设备发送测量配置信息,终端设备根据测量配置信息的内容进行测量(例如同频、异频、异无线接入技术(RAT)),然后将测量结果上报给网络设备。
可选地,所述测量配置信息包括如下内容:
1、测量对象(Measurement Object,MO)
对于同频测量和异频测量,每个测量对象指示要测量的时频位置和参考信号的子载波间隔,以及与该测量对象相关的小区。可选地,所述网络设备还可以配置小区偏移量(Offset)列表,黑名单小区列表和白名单小区列表。
对于异RAT测量,每个测量对象可以对应一个单独的演进的通用无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)频点,与该E-UTRA频点相关的小区。可选地,网络设备还可以配置小区偏移量(Offset)列表,黑名单小区列表和白名单小区列表。
在事件评估及测量上报中,终端设备不对黑名单小区列表中的小区进行任何操作。终端设备对白名单小区列表中的小区进行事件评估及测量上报。
对于每个测量对象,网络设备配置一个同步块测量定时配置(SS/PBCH block measurement timing configuration,SMTC),用于指示终端设备在该测量对象对应的邻小区上接收同步信号块(Synchronization Signal Block,SSB)的时间。
可选地,所述SMTC配置包括SMTC的周期,SMTC在一个周期内的起始时间偏移(即SMTC offset),SMTC的持续时间等。
在一些实施例中,SMTC配置可支持{5,10,20,40,80,160}毫秒的周期和{1,2,3,4,5}ms的窗口长度(即持续时间),相应的每个SMTC的offset与周期强相关取值为{0,…,周期-1}。
2、上报配置(Reporting Configuration)
每个测量对象对应一个或者多个上报配置。
可选地,上报配置例如可以包含:
上报准则:即终端设备进行测量上报的触发条件,例如可以是周期触发上报或者事件触发上报。
参考信号(Reference Signal,RS)类型:终端设备用于波束和小区测量的RS,例如可以是同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。
上报格式:终端设备针对每个小区和每个波束的测量上报量(例如,参考信号接收功率(Reference Signal Receiving Power,RSRP))。可选地,还可以包含其他相关信息,如终端设备上报的最大小区个数和针对每个小区上报的最大波束个数等。
3、测量标识(Measurement Identity)
单独的ID,用于将测量对象和上报配置进行关联。当一个测量对象同时与多个上报配置进行关联,或者一个上报配置也可以同时与多个测量对象进行关联时,通过测量标 识进行区分。
4、测量间隔(Measurement Gap)
用于指示终端设备执行同频、异频或异RAT测量的时间信息。具体地,终端设备在测量gap期间执行同频、异频或异RAT测量。
网络设备可以给终端设备配置每UE(per UE)的测量间隔配置或者每频段(per FR)的测量间隔配置。当配置per FR的测量间隔配置时,网络设备可以配置FR1和FR2分别对应的测量间隔配置,其中,FR1和FR2表示不同的频段。
可选地,每个测量间隔配置可以包括如下中的至少一项:
测量间隔的周期(mgrp);
测量间隔的定时提前(mgta);
测量间隔偏移量(gapOffset):gap在一个周期内的起始时间偏移;
测量间隔的持续长度(例如mgl):即每个gap的持续时间
参考服务小区指示(refServCellIndicator)。
二、上报配置(Reporting Configuration)
每个测量对象对应一个或者多个上报配置。
可选地,上报配置例如可以包含:
上报准则:即终端设备进行测量上报的触发条件,例如可以是周期触发上报或者事件触发上报。触发事件例如可以是前文所述的几种测量事件。
对于传统的陆地蜂窝系统,小区的覆盖半径较小,UE与服务小区基站之间的信号传输时延和UE与邻小区基站之间的信号传输时延差异很小。但是,在NTN中,UE与卫星之间的信号传播时延大幅增加。此外,由于卫星的覆盖范围很大,UE与不同卫星之间的信号传输时延也存在较大差异。如果沿用目前陆地系统的测量间隔配置方法,可能导致终端设备接收不到一些传输时延较大的小区基站的SSB,也就不能获知这些小区基站的信道质量状态,影响测量上报的结果。
有鉴于此,本申请实施例提供了几种邻区测量方案,有利于兼顾不同传输时延小区上的参考信号的测量,从而能够提升上报的测量结果的公正性,保证移动切换性能。
图2为本申请实施例提供的一种无线通信的方法200的示意性交互图。如图2所示,该方法200可以包括如下至少部分内容:
S210,网络设备向终端设备发送第一配置信息,所述第一配置信息包括N个测量间隔偏移量,所述N个测量间隔偏移量中的每个测量间隔偏移量用于确定测量间隔在一个周期内的一个时间偏移量,所述N为大于1的正整数;
对应地,所述终端设备接收所述第一配置信息。
S220,所述终端设备根据所述第一配置信息,确定测量间隔的时域位置;
S230,所述终端设备在所述测量间隔的时域位置上,执行邻区测量。
应理解,本申请实施例可以适用于信号传输时延相差较大的网络,例如NTN网络,或者也可以适用于其他类似的网络,本申请并不限于此。
可选地,在一些实施例中,所述第一配置信息可以通过高层信令配置,可选地,所述高层信令可以为无线资源控制(Radio Resource Control,RRC)信令。在另一些实施例中,所述第一配置信息也可以通过系统信息配置,本申请并不限于此。
即网络设备可以通过RRC信令和/或系统信息给终端设备配置多个测量间隔偏移量(即gapoffset)。
可选地,在本申请实施例中,一个频点可以对应一个或多个测量对象MO,一个测量对象MO可以对应一个或多个小区,即一个频点可以对应一个或多个小区。
在一些实施例中,所述N个测量间隔偏移量对应同一频点。
即一个频点可以对应多个测量间隔偏移量。对于不同的频点,网络设备可以配置每个频点对应的测量间隔偏移量,即测量间隔偏移量可以按照每个频点(per frequency  layer)配置。
可选地,此情况下,所述同一频点可以对应多个小区。即网络设备可以给该多个小区配置多个测量间隔偏移量。其中,每个小区对应一个测量间隔偏移量,或者一个测量间隔偏移量可以适用于至少一个小区。
在另一些实施例中,所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个频点。可选地,此情况下,一个频点可以对应一个小区,或者若一个频点对应多个小区,该频点对应的小区可以为信号传输时延相差不大的小区。
在又一些实施例中,所述N个测量间隔偏移量对应M个频点,其中,所述N大于M,其中,所述M个频点中的每个频点对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。即可以是一个频点可以对应一个或多个测量间隔偏移量。
可选地,在本申请实施例中,当一个频点对应多个测量间隔偏移量时,该一个频点对应的小区可以包括信号传输时延相差较大的多个小区,该多个测量间隔偏移量可以适用于不同信号传输时延的小区的测量。
可选地,在一些实施例中,网络设备配置的所述测量间隔偏移量根据对应的频点的SMTC偏移量确定。例如,该测量间隔偏移量等于对应的频点的SMTC偏移量(SMTC offset)。
可选地,在又一些实施例中,所述N测量间隔偏移量对应同一测量对象MO。
即一个MO可以对应多个测量间隔偏移量。对于不同的MO,网络设备可以配置每个MO对应的测量间隔偏移量,即测量间隔偏移量可以按照每个MO(per MO)配置。
可选地,在又一些实施例中,所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个MO。可选地,此情况下,一个MO可以对应一个小区,或者若一个MO对应多个小区,该MO对应的小区可以为信号传输时延相差不大的小区。
可选地,在又一些实施例中,所述N个测量间隔偏移量对应P个MO,其中,所述N大于P,其中,所述P个MO中的每个MO对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。即可以是一个MO可以对应一个或多个测量间隔偏移量。
可选地,在一些实施例中,当一个MO对应多个测量间隔偏移量时,该一个MO对应的小区可以包括信号传输时延相差较大的多个小区,该多个测量间隔偏移量可以适用于不同信号传输时延的小区的测量。
可选地,在一些实施例中,网络设备配置的测量间隔偏移量根据对应的MO的SMTC偏移量确定。例如,该测量间隔偏移量等于对应的MO的SMTC偏移量(SMTC offset)。
可选地,在又一些实施例中,所述N个测量间隔偏移量对应N个小区,其中,每个小区可以对应一个测量间隔偏移量。可选地,所述N个小区可以是信号传输时延相差较大的小区。即即测量间隔偏移量可以按照每个小区(per cell)配置。
可选地,在一些实施例中,网络设备配置的所述测量间隔偏移量根据对应的小区的SMTC偏移量确定。例如,该测量间隔偏移量等于对应的小区的SMTC偏移量(SMTC offset)。
综上,网络设备可以给不同信号传输时延的小区、MO或频点配置不同的测量间隔偏移量,有利于保证终端设备测量到不同信号传输时延的邻区发送的参考信号,从而保证上报的测量结果的公正性。
可选地,在一些实施例中,所述第一配置信息还包括以下参数中的至少一项:
测量间隔的周期(对应于mgrp),一个周期内测量间隔的持续时间(对应于mgl),测量间隔的定时提前(mgta),参考服务小区指示(对应于refServCellIndicator)。
在一些实施例中,所述N个测量间隔偏移量可以是独立配置的,即可以独立于所述测量间隔的周期、所述测量间隔的持续时间等参数进行配置,例如按照per频点配置或per小区配置。
在确定测量间隔的时域位置时,所述终端设备根据所述N个测量间隔偏移量结合所 述测量间隔的周期和持续时间等参数,可以确定N种测量间隔的时域位置,每种测量间隔的时域位置可以是根据所述N个测量间隔偏移量中的一个测量间隔偏移量结合所述测量间隔的周期和持续时间等参数确定的。
因此,本申请实施例通过配置多个测量间隔偏移量实现多种测量间隔的配置,有利于覆盖多个小区的SMTC,从而兼顾不同信号传输时延的小区的测量,保证移动切换性能。
图3为本申请实施例提供的另一种无线通信的方法300的示意性交互图。如图3所示,该方法300可以包括如下至少部分内容:
S310,网络设备向终端设备发送至少一组测量间隔偏移量和N组测量间隔图样,其中,每组测量间隔偏移量包括至少一个测量间隔偏移量,所述测量间隔偏移量用于确定测量间隔在一个周期内的时间偏移量,每组测量间隔图样用于确定所述测量间隔的测量周期和所述测量间隔在一个周围内的持续长度,所述N为大于1的正整数;
对应地,所述终端设备接收所述至少一组测量间隔偏移量和所述N组测量间隔图样。
S320,所述终端设备根据所述至少一组测量间隔偏移量和所述N组测量间隔图样,确定测量间隔所在的时域位置;
S330,所述终端设备在所述测量间隔的时域位置上,执行邻区测量。
应理解,本申请实施例可以适用于信号传输时延相差较大的网络,例如NTN网络,或者也可以适用于其他类似的网络,本申请并不限于此。
可选地,在一些实施例中,所述至少一组测量间隔偏移量(gapoffset)包括一组测量间隔偏移量,所述一组测量间隔偏移量对应所述N组测量间隔图样(pattern)。即所述N组测量间隔图样可以共享所述一组测量间隔偏移量,所述终端设备可以根据所述一组测量间隔偏移量和所述N组测量间隔图样确定多种测量间隔的时域位置。例如,若所述一组测量间隔偏移量包括一个测量间隔偏移量,所述终端设备可以根据所述一个测量间隔偏移量和所述N组测量间隔图样确定N种测量间隔的时域位置,又例如,若所述一组测量间隔偏移量包括二个测量间隔偏移量,所述终端设备可以根据所述一个测量间隔偏移量和所述N组测量间隔图样确定2N种测量间隔的时域位置。
可选地,在一些实施例中,所述至少一组测量间隔偏移量包括N组测量间隔偏移量,所述N组测量间隔偏移量和所述N组测量间隔图样一一对应。
即每组测量间隔图样可以对应独立的一组测量间隔偏移量,所述终端设备可以根据所述每组测量间隔图样和对应的一组测量间隔偏移量确定至少N种测量间隔的时域位置。例如,若所述一组测量间隔偏移量包括一个测量间隔偏移量,所述终端设备可以根据所述一个测量间隔偏移量和对应的一组测量间隔图样确定N种测量间隔的时域位置,又例如,若所述一组测量间隔偏移量包括二个测量间隔偏移量,所述终端设备可以根据所述一个测量间隔偏移量和对应的一组测量间隔图样确定2N种测量间隔的时域位置。
可选地,在一些实施例中,所述终端设备可以还可以向所述网络设备上报第一能力信息,所述第一能力信息用于指示所述终端设备支持特定测量类型。
可选地,所述特定测量类型可以是基于需求的测量类型,例如用于NTN场景的邻区测量,或者用于特定参考信号的测量等,该特定参考信号例如可以为PRS等。
可选地,在一些实施例中,所述网络设备可以在所述终端设备支持所述特定测量类型的情况下,给所述终端设备配置所述至少一组测量间隔偏移量和所述N组测量间隔图样。可选地,在其他情况下,所述终端设备可以只给终端设备配置一组测量间隔偏移量和一组测量间隔图样。
可选地,在一些实施例中,所述N组测量间隔图样为K组测量间隔图样中的N组。
可选地,在一些实施例中,所述K组测量间隔图样为特定测量类型的专用测量间隔图样。
可选地,所述网络设备可以在所述终端设备支持所述特定测量类型的情况下,在所 述K组测量间隔图样中确定N组测量间隔图样用于所述终端设备的邻区测量。
可选地,在一些实施例中,所述K组测量间隔配置可以是预定义的。
可选地,在一些实施例中,所述至少一组测量间隔偏移量和所述N组测量间隔图样可以是通过同一消息或信令配置的,或者也可以是通过不同的消息或信令配置的,本申请并不限于此。
可选地,所述至少一组测量间隔偏移量通过高层信令配置,可选地,所述高层信令可以为RRC信令。在另一些实施例中,所述至少一组测量间隔偏移量也可以通过系统信息配置,本申请并不限于此。
可选地,所述N组测量间隔图样通过高层信令配置,可选地,所述高层信令可以为RRC信令。在另一些实施例中,所述N组测量间隔图样也可以通过系统信息配置,本申请并不限于此。
可选地,在一些实施例中,所述每组测量间隔图样对应以下参数中的至少一项:
测量间隔的周期(对应于mgrp),一个周期内测量间隔的持续时间(对应于mgl)。
综上,网络设备可以向终端设备指示N组测量间隔图样和至少一组测量间隔偏移量确定多种测量间隔的时域位置,这样,终端设备可以确定多种测量间隔的时域位置,有利于保证终端设备可以测量到不同信号传输时延的邻区发送的参考信号,从而保证上报的测量结果的公正性。
可选地,在一些实施例中,所述N组测量间隔图样是每频段配置的;或者所述N组测量间隔图样是每终端设备配置的,或者所述N组测量间隔图样是每测量对象MO配置的,或者所述N组测量间隔图样是每小区配置的;
所述至少一组测量间隔偏移量是每频段配置的;或者所述至少一组测量间隔偏移量是每终端设备配置的,或者所述至少一组测量间隔偏移量是每测量对象MO配置的,或者所述至少一组测量间隔偏移量是每小区配置的。
应理解,在该实施例中,所述N组测量间隔图样和所述至少一组测量间隔偏移量的配置方式可以参考前述实施例中所述N个测量间隔偏移量的配置方式,为了简洁,这里不再赘述。
图4为本申请实施例提供的又一种无线通信的方法400的示意性交互图。如图4所示,该方法400可以包括如下至少部分内容:
S410,网络设备向终端设备发送第一测量间隔配置,其中,所述第一测量间隔配置包括第一测量间隔持续时间,所述第一测量间隔持续时间大于或等于第一阈值;
对应地,所述终端设备接收所述第一测量间隔配置。
S420,所述终端设备根据所述第一测量间隔配置,确定测量间隔的时域位置;
S430,所述终端设备在所述测量间隔的时域位置上,执行邻区测量。
应理解,本申请实施例可以适用于信号传输时延相差较大的网络,例如NTN网络,或者也可以适用于其他类似的网络,本申请并不限于此。
在本实施例中,网络设备可以给终端设备配置持续时间较长的测量间隔,有利于覆盖多个小区的STMC,从而能够保证终端设备接收到多个小区发送的参考信号,完善邻区的测量。
可选地,在一些实施例中,所述终端设备向所述网络设备上报第一能力信息,所述第一能力信息用于指示所述终端设备支持特定测量类型。
可选地,所述特定测量类型可以是基于需求的测量类型,例如用于NTN场景的邻区测量,或者用于特定参考信号的测量等,该特定参考信号例如可以为PRS等。
在一些实施例中,所述网络设备可以在所述终端设备支持所述特定测量类型的情况下,给所述终端设备配置所述第一测量间隔配置。
可选地,在一些实施例中,所述网络设备还可以给终端设备配置第二测量间隔配置,所述第二测量间隔配置中包括第二测量间隔持续时间,所述第二测量间隔持续时间小于 所述第一阈值。
可选地,在一些实施例中,所述第一测量间隔配置可以用于信号传输时延差异较大的场景,例如NTN场景,或者说,用于特定测量类型,例如NTN场景的邻区测量,或用于特定参考信号的测量,例如PTS测量。所述第二测量间隔配置可以用于信号传输时延差异不大的场景,例如陆地蜂窝网络,或者常规参考信号的测量,例如同步信号块(Synchronization Signal Block,SSB)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)等。
可选地,在一些实施例中,所述第一阈值为10ms,或者也可以为其他可以覆盖多个小区的SMTC的时间长度,本申请对此不作限定。
可选地,在一些实施例中,所述第一测量间隔配置可以通过高层信令配置,可选地,所述高层信令可以为RRC信令。在另一些实施例中,所述第一测量间隔配置也可以通过系统信息配置,本申请并不限于此。即网络设备可以通过RRC信令和/或系统信息给终端设备配置所述第一测量间隔配置。
可选地,在一些实施例中,网络设备可以给终端设备配置用于PRS测量的测量间隔配置,该测量间隔配置可以包括测量间隔的持续时间、测量间隔的周期、一个周围内测量间隔的持续时间等参数。
可选地,在一些实施例中,用于PRS测量的测量间隔配置中的测量间隔的持续时间大于所述第一阈值,因此,在一些可能的实现方式中,可以复用用于PRS测量的测量间隔配置进行邻区测量。
可选地,在一些实施例中,网络设备可以配置第一测量间隔图样,所述第一测量间隔图样用于确定测量间隔的测量周期和所述测量间隔在一个周围内的持续长度,其中,该新增的第一测量间隔图样中的测量间隔的持续时间参数大于所述第一阈值。
可选地,所述第一测量间隔图样可以是用于PRS测量的测量间隔图样,或者所述第一测量间隔图样也可以用于所述特定测量类型的测量间隔图样。可选地,该第一测量间隔图样可以对应一个特定标识,例如测量间隔类型标识(MG pattern ID)。该特定标识的测量间隔图样用于所述特定测量类型。
可选地,在一些实施例中,所述第一测量间隔配置可以根据所述第一测量间隔图样和第一测量间隔持续时间确定。其中,所述第一测量间隔图样和所述第一测量间隔持续时间可以是通过同一消息配置的,或者也可以是通过不同信息配置的。
综合前述实施例,针对信号传输时延差异较大或TA差异较大的网络,如NTN网络,本申请实施例在兼容现有的SMTC配置方式下,网络,通过配置多个gapoffset、多组测量间隔图样或配置较大的gap的持续时间,从而能够更好的兼顾不同信号传输时延的小区测量,保证移动切换性能。
上文结合图2至图4,详细描述了本申请的方法实施例,下文结合图5至图13,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图5示出了根据本申请实施例的终端设备500的示意性框图。如图5所示,该终端设备500包括:
通信单元510,用于接收网络设备发送的第一配置信息,所述第一配置信息包括N个测量间隔偏移量,所述N个测量间隔偏移量中的每个测量间隔偏移量用于确定测量间隔在一个周期内的一个时间偏移量,所述N为大于1的正整数;
处理单元520,用于根据所述第一配置信息,确定测量间隔的时域位置;
在所述测量间隔的时域位置上,执行邻区测量。
可选地,在一些实施例中,所述N个测量间隔偏移量对应同一频点;或者
所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个频点;或者
所述N个测量间隔偏移量对应M个频点,其中,所述N大于M,其中,所述M个 频点中的每个频点对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
可选地,在一些实施例中,所述测量间隔偏移量根据对应的频点的同步块测量定时配置SMTC偏移量确定。
可选地,在一些实施例中,所述N测量间隔偏移量对应同一测量对象MO;或
所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个MO;或者
所述N个测量间隔偏移量对应P个MO,其中,所述N大于P,其中,所述P个MO中的每个MO对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
可选地,所述测量间隔偏移量根据对应的MO的SMTC偏移量确定。
可选地,在一些实施例中,所述N个测量间隔偏移量对应N个小区。
可选地,所述测量间隔偏移量根据对应的小区的SMTC偏移量确定。
可选地,在一些实施例中,所述第一配置信息还包括以下参数中的至少一项:
测量间隔的周期,一个周期内测量间隔的持续时间,测量间隔的定时提前,参考服务小区指示。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备500可对应于本申请方法实施例中的终端设备,并且终端设备500中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图6示出了根据本申请实施例的终端设备600的示意性框图。如图6所示,该终端设备600包括:
通信单元610,用于接收网络设备发送的至少一组测量间隔偏移量和N组测量间隔图样,其中,每组测量间隔偏移量包括至少一个测量间隔偏移量,所述测量间隔偏移量用于确定测量间隔在一个周期内的时间偏移量,每组测量间隔图样用于确定所述测量间隔的测量周期和所述测量间隔在一个周围内的持续长度,所述N为大于1的正整数;
处理单元620,用于根据所述至少一组测量间隔偏移量和所述N组测量间隔图样,确定测量间隔所在的时域位置;
在所述测量间隔所在的时域位置上,执行邻区测量。
可选地,在一些实施例中,所述至少一组测量间隔偏移量包括一组测量间隔偏移量,所述一组测量间隔偏移量对应所述N组测量间隔图样;或者
所述至少一组测量间隔偏移量包括N组测量间隔偏移量,所述N组测量间隔偏移量和所述N组测量间隔图样一一对应。
可选地,在一些实施例中,所述通信单元610还用于:
向所述网络设备上报第一能力信息,所述第一能力信息用于指示所述终端设备支持特定测量类型。
可选地,在一些实施例中,所述特定测量类型包括定位参考信号PRS测量类型。
可选地,在一些实施例中,所述N组测量间隔图样为K组测量间隔图样中的N组,所述K组测量间隔图样为所述特定测量类型的专用测量间隔图样。。
可选地,在一些实施例中,所述至少一组测量间隔偏移量根据所述网络设备配置的同步块测量定时配置SMTC偏移量确定。
可选地,在一些实施例中,所述至少一组测量间隔偏移量通过无线资源控制RRC信令或系统消息配置;所述N组测量间隔图样通过RRC信令或系统消息配置
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备600可对应于本申请方法实施例中的终端设备,并且终端设备600中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法300中终端设备的相应流程,为了简洁,在此不再赘述。
图7示出了根据本申请实施例的终端设备700的示意性框图。如图7所示,该终端设备700包括:
通信单元710,用于接收网络设备发送的第一测量间隔配置,其中,所述第一测量间隔配置包括第一测量间隔持续时间,所述第一测量间隔持续时间大于或等于第一阈值;
处理单元,用于根据所述第一测量间隔配置,确定测量间隔的时域位置;以及
在所述测量间隔所在的时域位置上,执行邻区测量。
可选地,所述第一测量间隔配置还用于定位参考信号PRS测量。
可选地,所述第一测量间隔持续时间根据所述多个同步块测量定时配置SMTC确定。
可选地,在一些实施例中,所述第一测量间隔配置还包括以下参数:测量间隔的周期,一个周期内测量间隔的持续时间。
可选地,在一些实施例中,所述第一阈值为10ms。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备700可对应于本申请方法实施例中的终端设备,并且终端设备700中的各个单元的上述和其它操作和/或功能分别为了实现图4所示方法400中终端设备的相应流程,为了简洁,在此不再赘述。
图8是根据本申请实施例的网络设备的示意性框图。图8的网络设备800包括:
通信单元810,用于向终端设备发送第一配置信息,所述第一配置信息包括N个测量间隔偏移量,所述N个测量间隔偏移量中的每个测量间隔偏移量用于确定测量间隔在一个周期内的一个时间偏移量,所述N为大于1的正整数。
可选地,在一些实施例中,所述N测量间隔偏移量对应同一频点;或
所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个频点;或者
所述N个测量间隔偏移量对应M个频点,其中,所述N大于M,其中,所述M个频点中的每个频点对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
可选地,在一些实施例中,所述测量间隔偏移量根据对应的频点的同步块测量定时配置SMTC偏移量确定。
可选地,在一些实施例中,所述N测量间隔偏移量对应同一测量对象MO;或
所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个MO;或者
所述N个测量间隔偏移量对应P个MO,其中,所述N大于P,其中,所述P个MO中的每个MO对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
可选地,所述测量间隔偏移量根据对应的MO的SMTC偏移量确定。
可选地,在一些实施例中,所述N个测量间隔偏移量对应N个小区。
可选地,所述测量间隔偏移量根据对应的小区的SMTC偏移量确定。
可选地,在一些实施例中,所述第一配置信息还包括以下参数中的至少一项:
测量间隔的周期,一个周期内测量间隔的持续时间,测量间隔的定时提前,参考服务小区指示。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备800可对应于本申请方法实施例中的网络设备,并且网络设备800中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图9是根据本申请实施例的网络设备的示意性框图。图9的网络设备900包括:
通信单元910,用于向终端设备发送至少一组测量间隔偏移量和N组测量间隔图样,其中,每组测量间隔偏移量包括至少一个测量间隔偏移量,所述测量间隔偏移量用于确定测量间隔在一个周期内的时间偏移量,每组测量间隔图样用于确定所述测量间隔的测量周期和所述测量间隔在一个周围内的持续长度,所述N为大于1的正整数。
可选地,在一些实施例中,所述至少一组测量间隔偏移量包括一组测量间隔偏移量,所述一组测量间隔偏移量对应所述N组测量间隔图样;或者
所述至少一组测量间隔偏移量包括N组测量间隔偏移量,所述N组测量间隔偏移量和所述N组测量间隔图样一一对应。
可选地,在一些实施例中,所述通信单元910还用于:
接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示所述终端设备支持特定测量类型。
可选地,在一些实施例中,所述N组测量间隔图样为K组测量间隔图样中的N组,所述K组测量间隔图样为所述特定测量类型的专用测量间隔图样;
可选地,在一些实施例中,所述至少一组测量间隔偏移量通过无线资源控制RRC信令或系统消息配置;
对于支持第一能力的终端设备,网络允许所述N组测量间隔图样通过RRC信令或系统消息配置。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备900可对应于本申请方法实施例中的网络设备,并且网络设备900中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图10是根据本申请实施例的网络设备的示意性框图。图10的网络设备1000包括:
通信单元1010,用于向终端设备发送第一测量间隔配置,其中,所述第一测量间隔配置包括第一测量间隔持续时间,所述第一测量间隔持续时间大于或等于第一阈值。
可选地,在一些实施例中,所述第一测量间隔配置还用于定位参考信号PRS测量。
可选地,在一些实施例中,所述第一测量间隔持续时间根据所述多个同步块测量定时配置SMTC确定。
可选地,在一些实施例中,所述第一测量间隔配置还包括以下参数:测量间隔的周期,一个周期内测量间隔的持续时间。
可选地,在一些实施例中,所述第一阈值为10ms。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备1000可对应于本申请方法实施例中的网络设备,并且网络设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图4所示方法400中网络设备的相应流程,为了简洁,在此不再赘述。
图11是本申请实施例提供的一种通信设备1100示意性结构图。图11所示的通信设备1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,如图11所示,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1100具体可为本申请实施例的网络设备,并且该通信设备1100可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再 赘述。
可选地,该通信设备1100具体可为本申请实施例的移动终端/终端设备,并且该通信设备1100可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例的芯片的示意性结构图。图12所示的芯片1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,芯片1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,该芯片1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图13是本申请实施例提供的一种通信系统1300的示意性框图。如图13所示,该通信系统1300包括终端设备1310和网络设备1320。
其中,该终端设备1310可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1320可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access  Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单 元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (86)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备接收网络设备发送的至少一组测量间隔偏移量和N组测量间隔图样,其中,每组测量间隔偏移量包括至少一个测量间隔偏移量,所述测量间隔偏移量用于确定测量间隔在一个周期内的时间偏移量,每组测量间隔图样用于确定所述测量间隔的测量周期和所述测量间隔在一个周期内的持续长度,所述N为大于1的正整数;
    所述终端设备根据所述至少一组测量间隔偏移量和所述N组测量间隔图样,确定测量间隔所在的时域位置;
    在所述测量间隔所在的时域位置上,执行邻区测量。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一组测量间隔偏移量包括一组测量间隔偏移量,所述一组测量间隔偏移量对应所述N组测量间隔图样;或者
    所述至少一组测量间隔偏移量包括N组测量间隔偏移量,所述N组测量间隔偏移量和所述N组测量间隔图样一一对应。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备上报第一能力信息,所述第一能力信息用于指示所述终端设备支持特定测量类型。
  4. 根据权利要求3所述的方法,其特征在于,所述特定测量类型包括定位参考信号PRS测量类型。
  5. 根据权利要求3或4所述的方法,其特征在于,所述N组测量间隔图样为K组测量间隔图样中的N组,所述K组测量间隔图样为所述特定测量类型的专用测量间隔图样。
  6. 根据权利要求5所述的方法,其特征在于,所述至少一组测量间隔偏移量根据所述网络设备配置的同步块测量定时配置SMTC偏移量确定。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述至少一组测量间隔偏移量通过无线资源控制RRC信令或系统消息配置;
    所述N组测量间隔图样通过RRC信令或系统消息配置。
  8. 一种无线通信的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一配置信息,所述第一配置信息包括N个测量间隔偏移量,所述N个测量间隔偏移量中的每个测量间隔偏移量用于确定测量间隔在一个周期内的一个时间偏移量,所述N为大于1的正整数;
    所述终端设备根据所述第一配置信息,确定测量间隔的时域位置;
    在所述测量间隔的时域位置上,执行邻区测量。
  9. 根据权利要求8所述的方法,其特征在于,所述N个测量间隔偏移量对应同一频点;或者
    所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个频点;或者
    所述N个测量间隔偏移量对应M个频点,其中,所述N大于M,其中,所述M个频点中的每个频点对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
  10. 根据权利要求9所述的方法,其特征在于,所述测量间隔偏移量根据对应的频点的同步块测量定时配置SMTC偏移量确定。
  11. 根据权利要求8所述的方法,其特征在于,所述N测量间隔偏移量对应同一测量对象MO;或
    所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个MO;或者
    所述N个测量间隔偏移量对应P个MO,其中,所述N大于P,其中,所述P个MO中的每个MO对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
  12. 根据权利要求11所述的方法,其特征在于,所述测量间隔偏移量根据对应的MO的SMTC偏移量确定。
  13. 根据权利要求8所述的方法,其特征在于,所述N个测量间隔偏移量对应N个小区。
  14. 根据权利要求13所述的方法,其特征在于,所述测量间隔偏移量根据对应的小区的SMTC偏移量确定。
  15. 根据权利要求8-14中任一项所述的方法,其特征在于,所述第一配置信息还包括以下参数中的至少一项:
    测量间隔的周期,一个周期内测量间隔的持续时间,测量间隔的定时提前,参考服务小区指示。
  16. 一种无线通信的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一测量间隔配置,其中,所述第一测量间隔配置包括第一测量间隔持续时间,所述第一测量间隔持续时间大于或等于第一阈值;
    所述终端设备根据所述第一测量间隔配置,确定测量间隔的时域位置;
    在所述测量间隔所在的时域位置上,执行邻区测量。
  17. 根据权利要求16所述的方法,其特征在于,所述第一测量间隔配置还用于定位参考信号PRS测量。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第一测量间隔持续时间根据所述多个同步块测量定时配置SMTC确定。
  19. 根据权利要求16-18中任一项所述的方法,其特征在于,所述第一测量间隔配置还包括以下参数:测量间隔的周期,一个周期内测量间隔的持续时间。
  20. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第一阈值为10ms。
  21. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送至少一组测量间隔偏移量和N组测量间隔图样,其中,每组测量间隔偏移量包括至少一个测量间隔偏移量,所述测量间隔偏移量用于确定测量间隔在一个周期内的时间偏移量,每组测量间隔图样用于确定所述测量间隔的测量周期和所述测量间隔在一个周围内的持续长度,所述N为大于1的正整数。
  22. 根据权利要求21所述的方法,其特征在于,
    所述至少一组测量间隔偏移量包括一组测量间隔偏移量,所述一组测量间隔偏移量对应所述N组测量间隔图样;或者
    所述至少一组测量间隔偏移量包括N组测量间隔偏移量,所述N组测量间隔偏移量和所述N组测量间隔图样一一对应。
  23. 根据权利要求21或22所述的方法,其特征在于,所述网络设备向终端设备发送至少一个测量间隔偏移量和N组测量间隔图样,包括:
    在所述终端设备支持特定测量类型的情况下,向所述终端设备发送所述至少一组测量间隔偏移量和所述N组测量间隔图样。
  24. 根据权利要求21-23中任一项所述的方法,其特征在于,所述N组测量间隔图样为K组测量间隔图样中的N组,所述K组测量间隔图样为所述特定测量类型的专用测量间隔图样。
  25. 根据权利要求21-24中任一项所述的方法,其特征在于,所述至少一组测量间隔偏移量通过无线资源控制RRC信令或系统消息配置;
    所述N组测量间隔图样通过RRC信令或系统消息配置。
  26. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息包括N个测量间隔偏移量,所述N个测量间隔偏移量中的每个测量间隔偏移量用于确定测量间隔在一个周期内的一个时间偏移量,所述N为大于1的正整数。
  27. 根据权利要求26所述的方法,其特征在于,所述N测量间隔偏移量对应同一频点;或
    所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个频点;或者
    所述N个测量间隔偏移量对应M个频点,其中,所述N大于M,其中,所述M个频点中的每个频点对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
  28. 根据权利要求27所述的方法,其特征在于,所述测量间隔偏移量根据对应的频点的同步块测量定时配置SMTC偏移量确定。
  29. 根据权利要求26所述的方法,其特征在于,所述N测量间隔偏移量对应同一测量对象MO;或
    所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个MO;或者
    所述N个测量间隔偏移量对应P个MO,其中,所述N大于P,其中,所述P个MO中的每个MO对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
  30. 根据权利要求29所述的方法,其特征在于,所述测量间隔偏移量根据对应的MO的SMTC偏移量确定。
  31. 根据权利要求26所述的方法,其特征在于,所述N个测量间隔偏移量对应N个小区。
  32. 根据权利要求31所述的方法,其特征在于,所述测量间隔偏移量根据对应的小区的SMTC偏移量确定。
  33. 根据权利要求26-32中任一项所述的方法,其特征在于,所述第一配置信息还包括以下参数中的至少一项:
    测量间隔的周期,一个周期内测量间隔的持续时间,测量间隔的定时提前,参考服务小区指示。
  34. 一种无线通信的方法,其特征在于,包括:
    网络设备向终端设备发送第一测量间隔配置,其中,所述第一测量间隔配置包括第一测量间隔持续时间,所述第一测量间隔持续时间大于或等于第一阈值。
  35. 根据权利要求34所述的方法,其特征在于,所述第一测量间隔配置还用于定位参考信号PRS测量。
  36. 根据权利要求34或35所述的方法,其特征在于,所述第一测量间隔持续时间根据所述多个同步块测量定时配置SMTC确定。
  37. 根据权利要求34-36中任一项所述的方法,其特征在于,所述第一测量间隔配置还包括以下参数:测量间隔的周期,一个周期内测量间隔的持续时间。
  38. 根据权利要求34-37中任一项所述的方法,其特征在于,所述第一阈值为10ms。
  39. 一种终端设备,其特征在于,包括:
    通信单元,用于接收网络设备发送的至少一组测量间隔偏移量和N组测量间隔图样,其中,每组测量间隔偏移量包括至少一个测量间隔偏移量,所述测量间隔偏移量用于确定测量间隔在一个周期内的时间偏移量,每组测量间隔图样用于确定所述测量间隔的测量周期和所述测量间隔在一个周围内的持续长度,所述N为大于1的正整数;
    处理单元,用于根据所述至少一组测量间隔偏移量和所述N组测量间隔图样,确定测量间隔所在的时域位置;
    在所述测量间隔所在的时域位置上,执行邻区测量。
  40. 根据权利要求39所述的终端设备,其特征在于,所述至少一组测量间隔偏移量包括一组测量间隔偏移量,所述一组测量间隔偏移量对应所述N组测量间隔图样;或者
    所述至少一组测量间隔偏移量包括N组测量间隔偏移量,所述N组测量间隔偏移量和所述N组测量间隔图样一一对应。
  41. 根据权利要求39或40所述的终端设备,其特征在于,所述通信单元还用于:
    向所述网络设备上报第一能力信息,所述第一能力信息用于指示所述终端设备支持特定测量类型。
  42. 根据权利要求39-41中任一项所述的终端设备,其特征在于,所述特定测量类 型包括定位参考信号PRS测量类型。
  43. 根据权利要求39-42中任一项所述的终端设备,其特征在于,所述N组测量间隔图样为K组测量间隔图样中的N组,所述K组测量间隔图样为所述特定测量类型的专用测量间隔图样。。
  44. 根据权利要求39-43中任一项所述的终端设备,其特征在于,所述至少一组测量间隔偏移量根据所述网络设备配置的同步块测量定时配置SMTC偏移量确定。
  45. 根据权利要求39-44中任一项所述的终端设备,其特征在于,所述至少一组测量间隔偏移量通过无线资源控制RRC信令或系统消息配置;
    所述N组测量间隔图样通过RRC信令或系统消息配置。
  46. 一种终端设备,其特征在于,包括:
    通信单元,用于接收网络设备发送的第一配置信息,所述第一配置信息包括N个测量间隔偏移量,所述N个测量间隔偏移量中的每个测量间隔偏移量用于确定测量间隔在一个周期内的一个时间偏移量,所述N为大于1的正整数;
    处理单元,用于根据所述第一配置信息,确定测量间隔的时域位置;
    在所述测量间隔的时域位置上,执行邻区测量。
  47. 根据权利要求46所述的终端设备,其特征在于,所述N个测量间隔偏移量对应同一频点;或者
    所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个频点;或者
    所述N个测量间隔偏移量对应M个频点,其中,所述N大于M,其中,所述M个频点中的每个频点对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
  48. 根据权利要求47所述的终端设备,其特征在于,所述测量间隔偏移量根据对应的频点的同步块测量定时配置SMTC偏移量确定。
  49. 根据权利要求46所述的终端设备,其特征在于,所述N测量间隔偏移量对应同一测量对象MO;或
    所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个MO;或者
    所述N个测量间隔偏移量对应P个MO,其中,所述N大于P,其中,所述P个MO中的每个MO对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
  50. 根据权利要求49所述的终端设备,其特征在于,所述测量间隔偏移量根据对应的MO的SMTC偏移量确定。
  51. 根据权利要求46所述的终端设备,其特征在于,所述N个测量间隔偏移量对应N个小区。
  52. 根据权利要求51所述的终端设备,其特征在于,所述测量间隔偏移量根据对应的小区的SMTC偏移量确定。
  53. 根据权利要求46-52中任一项所述的终端设备,其特征在于,所述第一配置信息还包括以下参数中的至少一项:
    测量间隔的周期,一个周期内测量间隔的持续时间,测量间隔的定时提前,参考服务小区指示。
  54. 一种终端设备,其特征在于,包括:
    通信单元,用于接收网络设备发送的第一测量间隔配置,其中,所述第一测量间隔配置包括第一测量间隔持续时间,所述第一测量间隔持续时间大于或等于第一阈值;
    处理单元,用于根据所述第一测量间隔配置,确定测量间隔的时域位置;以及
    在所述测量间隔所在的时域位置上,执行邻区测量。
  55. 根据权利要求54所述的终端设备,其特征在于,所述第一测量间隔配置还用于定位参考信号PRS测量。
  56. 根据权利要求54或55所述的终端设备,其特征在于,所述第一测量间隔持续时间根据所述多个同步块测量定时配置SMTC确定。
  57. 根据权利要求54-56中任一项所述的终端设备,其特征在于,所述第一测量间隔配置还包括以下参数:测量间隔的周期,一个周期内测量间隔的持续时间。
  58. 根据权利要求54-57中任一项所述的终端设备,其特征在于,所述第一阈值为10ms。
  59. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送至少一组测量间隔偏移量和N组测量间隔图样,其中,每组测量间隔偏移量包括至少一个测量间隔偏移量,所述测量间隔偏移量用于确定测量间隔在一个周期内的时间偏移量,每组测量间隔图样用于确定所述测量间隔的测量周期和所述测量间隔在一个周围内的持续长度,所述N为大于1的正整数。
  60. 根据权利要求59所述的网络设备,其特征在于,所述至少一组测量间隔偏移量包括一组测量间隔偏移量,所述一组测量间隔偏移量对应所述N组测量间隔图样;或者
    所述至少一组测量间隔偏移量包括N组测量间隔偏移量,所述N组测量间隔偏移量和所述N组测量间隔图样一一对应。
  61. 根据权利要求59或60所述的网络设备,其特征在于,所述通信单元还用于:
    接收所述终端设备发送的第一能力信息,所述第一能力信息用于指示所述终端设备支持特定测量类型。
  62. 根据权利要求59-61中任一项所述的网络设备,其特征在于,所述N组测量间隔图样为K组测量间隔图样中的N组,所述K组测量间隔图样为所述特定测量类型的专用测量间隔图样。
  63. 根据权利要求59-62中任一项所述的网络设备,其特征在于,所述至少一组测量间隔偏移量通过无线资源控制RRC信令或系统消息配置;
    所述N组测量间隔图样通过RRC信令或系统消息配置。
  64. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送第一配置信息,所述第一配置信息包括N个测量间隔偏移量,所述N个测量间隔偏移量中的每个测量间隔偏移量用于确定测量间隔在一个周期内的一个时间偏移量,所述N为大于1的正整数。
  65. 根据权利要求64所述的网络设备,其特征在于,所述N测量间隔偏移量对应同一频点;或
    所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个频点;或者
    所述N个测量间隔偏移量对应M个频点,其中,所述N大于M,其中,所述M个频点中的每个频点对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
  66. 根据权利要求65所述的网络设备,其特征在于,所述测量间隔偏移量根据对应的频点的同步块测量定时配置SMTC偏移量确定。
  67. 根据权利要求64所述的网络设备,其特征在于,所述N测量间隔偏移量对应同一测量对象MO;或
    所述N个测量间隔偏移量中的每个测量间隔偏移量对应一个MO;或者
    所述N个测量间隔偏移量对应P个MO,其中,所述N大于P,其中,所述P个MO中的每个MO对应所述N个测量间隔偏移量中的至少一个测量间隔偏移量。
  68. 根据权利要求67所述的网络设备,其特征在于,所述测量间隔偏移量根据对应的MO的SMTC偏移量确定。
  69. 根据权利要求64所述的网络设备,其特征在于,所述N个测量间隔偏移量对应N个小区。
  70. 根据权利要求69所述的网络设备,其特征在于,所述测量间隔偏移量根据对应的小区的SMTC偏移量确定。
  71. 根据权利要求64-70中任一项所述的网络设备,其特征在于,所述第一配置信息还包括以下参数中的至少一项:
    测量间隔的周期,一个周期内测量间隔的持续时间,测量间隔的定时提前,参考服务小区指示。
  72. 一种网络设备,其特征在于,包括:
    通信单元,用于向终端设备发送第一测量间隔配置,其中,所述第一测量间隔配置包括第一测量间隔持续时间,所述第一测量间隔持续时间大于或等于第一阈值。
  73. 根据权利要求72所述的网络设备,其特征在于,所述第一测量间隔配置还用于定位参考信号PRS测量。
  74. 根据权利要求72或73所述的网络设备,其特征在于,所述第一测量间隔持续时间根据所述多个同步块测量定时配置SMTC确定。
  75. 根据权利要求72-74中任一项所述的网络设备,其特征在于,所述第一测量间隔配置还包括以下参数:测量间隔的周期,一个周期内测量间隔的持续时间。
  76. 根据权利要求72-75中任一项所述的网络设备,其特征在于,所述第一阈值为10ms。
  77. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至7中任一项所述的方法,或者如权利要求8-15中任一项所述的方法,或者如权利要求16至20中任一项所述的方法。
  78. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至7中任一项所述的方法,或者如权利要求8-15中任一项所述的方法,或者如权利要求16至20中任一项所述的方法。
  79. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至7中任一项所述的方法,或者如权利要求8-15中任一项所述的方法,或者如权利要求16至20中任一项所述的方法。
  80. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至7中任一项所述的方法,或者如权利要求8-15中任一项所述的方法,或者如权利要求16至20中任一项所述的方法。
  81. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至7中任一项所述的方法,或者如权利要求8-15中任一项所述的方法,或者如权利要求16至20中任一项所述的方法。
  82. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求21至25中任一项所述的方法,或如权利要求26-33中任一项所述的方法,或如权利要求34至38中任一项所述的方法。
  83. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求21至25中任一项所述的方法,或如权利要求26-33中任一项所述的方法,或如权利要求34至38中任一项所述的方法。
  84. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求21至25中任一项所述的方法,或如权利要求26-33中任一项所述的方法,或如权利要求34至38中任一项所述的方法。
  85. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求21至25中任一项所述的方法,或如权利要求26-33中任一项所述的方法,或如权利要求34至38中任一项所述的方法。
  86. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求21至25中任一项所述的方法,或如权利要求26-33中任一项所述的方法,或如权利要求34至38中任一项所述的方法。
PCT/CN2020/119676 2020-08-06 2020-09-30 无线通信的方法、终端设备和网络设备 WO2022027811A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080102095.1A CN115804139A (zh) 2020-08-06 2020-09-30 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/107531 2020-08-06
PCT/CN2020/107531 WO2022027489A1 (zh) 2020-08-06 2020-08-06 邻区测量的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022027811A1 true WO2022027811A1 (zh) 2022-02-10

Family

ID=80118616

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/107531 WO2022027489A1 (zh) 2020-08-06 2020-08-06 邻区测量的方法、终端设备和网络设备
PCT/CN2020/119676 WO2022027811A1 (zh) 2020-08-06 2020-09-30 无线通信的方法、终端设备和网络设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107531 WO2022027489A1 (zh) 2020-08-06 2020-08-06 邻区测量的方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US20230115662A1 (zh)
EP (1) EP4156761A4 (zh)
CN (2) CN115606231A (zh)
WO (2) WO2022027489A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151046A1 (zh) * 2022-02-11 2023-08-17 北京小米移动软件有限公司 一种信息配置方法/装置/设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220132565A1 (en) * 2020-10-22 2022-04-28 Qualcomm Incorporated Measurement times for radio resource management

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209247A1 (en) * 2017-05-12 2018-11-15 Intel IP Corporation Measurement design for next radio (nr) and long term evolution (lte)
WO2019033058A1 (en) * 2017-08-10 2019-02-14 Intel IP Corporation METHODS AND ARRANGEMENT FOR CONFIGURING MEASUREMENT INTERVALS
CN109803303A (zh) * 2017-11-16 2019-05-24 中国移动通信有限公司研究院 一种频点测量方法、测量配置方法、终端及基站
CN110557976A (zh) * 2018-03-30 2019-12-10 联发科技股份有限公司 无线通信系统的基于间隔的小区测量

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108541016B (zh) * 2013-04-03 2021-05-07 华为技术有限公司 一种进行异频小区测量的方法及装置
CN116156527A (zh) * 2017-05-11 2023-05-23 展讯通信(上海)有限公司 双连接下异频邻区的测量方法及系统
US10117139B1 (en) * 2017-09-19 2018-10-30 Qualcomm Incorporated Techniques and apparatuses for improved neighbor selection in 5G cellular systems
EP3487206A1 (en) * 2017-11-15 2019-05-22 Fujitsu Limited Measurement gap configuration for 5g
WO2020082211A1 (en) * 2018-10-22 2020-04-30 Qualcomm Incorporated On-demand measurement gap for inter-frequency rrm measurements
WO2020092732A1 (en) * 2018-11-01 2020-05-07 Intel Corporation Measurements in rrc_idle state in new radio (nr) systems
EP4054235A4 (en) * 2019-11-01 2022-11-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND DEVICE FOR MEASURING CELLS, AND DEVICE AND STORAGE MEDIUM
JP2023531936A (ja) * 2020-06-30 2023-07-26 クゥアルコム・インコーポレイテッド 測定ギャップの動的構成

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018209247A1 (en) * 2017-05-12 2018-11-15 Intel IP Corporation Measurement design for next radio (nr) and long term evolution (lte)
WO2019033058A1 (en) * 2017-08-10 2019-02-14 Intel IP Corporation METHODS AND ARRANGEMENT FOR CONFIGURING MEASUREMENT INTERVALS
CN109803303A (zh) * 2017-11-16 2019-05-24 中国移动通信有限公司研究院 一种频点测量方法、测量配置方法、终端及基站
CN110557976A (zh) * 2018-03-30 2019-12-10 联发科技股份有限公司 无线通信系统的基于间隔的小区测量

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Discussion on UE requirements with same MO configured by MN and SN", 3GPP DRAFT; R4-1805269 DISCUSSION ON UE REQUIREMENTS WITH SAME MO CONFIGURED BY MN AND SN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Melbourne, Australia; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051432049 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151046A1 (zh) * 2022-02-11 2023-08-17 北京小米移动软件有限公司 一种信息配置方法/装置/设备及存储介质

Also Published As

Publication number Publication date
EP4156761A4 (en) 2023-07-12
US20230115662A1 (en) 2023-04-13
EP4156761A1 (en) 2023-03-29
CN115606231A (zh) 2023-01-13
CN115804139A (zh) 2023-03-14
WO2022027489A1 (zh) 2022-02-10

Similar Documents

Publication Publication Date Title
US11956658B2 (en) Wireless communication method, terminal device, and network device
CN113709798B (zh) Rrm测量的方法、设备和存储介质
US11546044B2 (en) Wireless communication method, terminal device and network device
WO2021003624A1 (zh) Bwp切换方法和终端设备
US20230115662A1 (en) Method for neighboring cell measurement, terminal device and network device
WO2020186532A1 (zh) 无线通信方法、终端设备和网络设备
US11044701B2 (en) Communication method and communication apparatus
WO2022000310A1 (zh) 无线通信的方法、终端设备和网络设备
US20230354118A1 (en) Wireless communication method, terminal device and network device
WO2022021131A1 (zh) 重选初始带宽部分bwp的方法、终端设备和网络设备
CN113518420B (zh) 通信方法以及通信装置
TW201822486A (zh) 無線通信的方法和裝置
US20220394503A1 (en) Wireless communication method and device
WO2022198545A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151275A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022000301A1 (zh) 信号测量的方法、终端设备和网络设备
WO2021169380A1 (zh) 一种测量配置方法及设备
CN116941271A (zh) 测量方法、终端设备和网络设备
WO2024108526A1 (zh) 无线通信的方法, 终端设备和网络设备
WO2024000122A1 (zh) 无线通信的方法及设备
WO2022151256A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102914A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023130245A1 (zh) 通信方法、终端设备及网络设备
WO2022147796A1 (zh) 无线通信方法和终端设备
WO2022205555A1 (zh) 无线通信的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948405

Country of ref document: EP

Kind code of ref document: A1