WO2022000301A1 - 信号测量的方法、终端设备和网络设备 - Google Patents

信号测量的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2022000301A1
WO2022000301A1 PCT/CN2020/099409 CN2020099409W WO2022000301A1 WO 2022000301 A1 WO2022000301 A1 WO 2022000301A1 CN 2020099409 W CN2020099409 W CN 2020099409W WO 2022000301 A1 WO2022000301 A1 WO 2022000301A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
beam set
capability information
receiving beam
ssb
Prior art date
Application number
PCT/CN2020/099409
Other languages
English (en)
French (fr)
Inventor
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/099409 priority Critical patent/WO2022000301A1/zh
Priority to CN202080100048.3A priority patent/CN115428349A/zh
Publication of WO2022000301A1 publication Critical patent/WO2022000301A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a signal measurement method, a terminal device, and a network device.
  • the network device can configure the terminal device to measure the measurement reference signals of the neighboring cells of the same frequency, different frequencies or different networks within a specific time window to determine a better cell, wherein, A specific time window is a measurement interval (Measurement Gap, MG), and the measurement reference signal may include, for example, a synchronization signal block (Synchronization Signal Block, SSB, or SS block) and a channel state information reference signal (Channel State Information Reference Signal, CSI-RS) ).
  • a synchronization signal block Synchroms Block
  • CSI-RS Channel State Information Reference Signal
  • Measuring the serving cell and neighboring cells by a terminal device is a behavior that consumes the power of the terminal. How to perform downlink measurement to meet the power saving requirement of the terminal is an urgent problem to be solved.
  • Embodiments of the present application provide a signal measurement method, a terminal device, and a network device, which are beneficial to meet the power saving requirement of the terminal.
  • a first aspect provides a signal measurement method, comprising: a terminal device receiving first configuration information of a network device, the first configuration information including capability information of a receiving beam set, wherein the capability information of the receiving beam set It is used to indicate the number and/or width of beams included in the receiving beam set; the terminal device measures the measurement reference signal sent by the network device according to the first configuration information.
  • a signal measurement method including: a network device receiving capability information of a receive beamset supported by the terminal device and sent by a terminal device, wherein the capability information of the receive beamset is used to indicate the The number and/or width of beams included in the receiving beam set; the network device determines first configuration information according to capability information of the receiving beam set supported by the terminal device, where the first configuration information includes receiving beams for measurement set capability information; the network device sends the first configuration information to the terminal device.
  • a terminal device for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • the terminal device includes a unit for executing the method in the first aspect or any possible implementation manner of the first aspect.
  • a network device for executing the method in the second aspect or any possible implementation manner of the second aspect.
  • the network device includes a unit for executing the method in the second aspect or any possible implementation manner of the second aspect.
  • a terminal device in a fifth aspect, includes: a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device in a sixth aspect, includes: a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or each of its implementations.
  • a chip is provided for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor for invoking and running a computer program from a memory, so that a device on which the chip is installed executes any one of the above-mentioned first to second aspects or each of its implementations method.
  • a computer-readable storage medium for storing a computer program, the computer program causing a computer to execute the method in any one of the above-mentioned first aspect to the second aspect or each of its implementations.
  • a computer program product comprising computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above-mentioned first to second aspects or the respective implementations thereof.
  • a computer program which, when run on a computer, causes the computer to perform the method of any one of the above-mentioned first to second aspects or the respective implementations thereof.
  • the network device may send first configuration information to the terminal device, where the first configuration information is used to configure the number and/or width of beams used by the terminal device for measurement, for example, to a receive beam used for serving cell measurement.
  • the capability information of the set configures a larger number and/or narrower receive beams, and configures a smaller number and/or wider receive beams for the capability learning of the receive beam set used for neighbor cell measurement.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a signal measurement method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of cell measurement based on different Rx beam set configurations.
  • FIG. 4 is a schematic block diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a network device provided by an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a communication device provided by another embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • NTN Non-Terrestrial Networks
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • Wireless Fidelity Wireless Fidelity
  • WiFi fifth-generation communication
  • D2D Device to Device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the communication system in this embodiment of the present application may be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, a dual connectivity (Dual Connectivity, DC) scenario, or a standalone (Standalone, SA) distribution. web scene.
  • Carrier Aggregation, CA Carrier Aggregation, CA
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of the present application may be applied to an unlicensed spectrum, where the unlicensed spectrum may also be considered as a shared spectrum; or, the communication system in the embodiment of the present application may also be applied to a licensed spectrum, where, Licensed spectrum can also be considered unshared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, where the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal device can be a station (STATION, ST) in the WLAN, can be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, personal digital processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, next-generation communication systems such as end devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • a mobile phone Mobile Phone
  • a tablet computer Pad
  • a computer with a wireless transceiver function a virtual reality (Virtual Reality, VR) terminal device
  • augmented reality (Augmented Reality, AR) terminal Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device may be a device for communicating with a mobile device, and the network device may be an access point (Access Point, AP) in WLAN, or a base station (Base Transceiver Station, BTS) in GSM or CDMA , it can also be a base station (NodeB, NB) in WCDMA, it can also be an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or in-vehicle equipment, wearable devices and NR networks
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a High Elliptical Orbit (HEO) ) satellite etc.
  • the network device may also be a base station set in a location such as land or water.
  • a network device may provide services for a cell, and a terminal device communicates with the network device through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device (
  • the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • Pico cell Femto cell (Femto cell), etc.
  • These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area, and may communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with a communication function, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobility management entity, etc., which are not limited in this embodiment of the present application.
  • the "instruction" mentioned in the embodiments of the present application may be a direct instruction, an indirect instruction, or an associated relationship.
  • a indicates B it can indicate that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indicates B indirectly, such as A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • corresponding may indicate that there is a direct or indirect corresponding relationship between the two, or may indicate that there is an associated relationship between the two, or indicate and be instructed, configure and be instructed configuration, etc.
  • the measurement configuration delivered by the network device to the terminal device may be based on each frequency layer (per frequency layer), or may also be based on each measurement reference signal.
  • At least one of the following may be included:
  • the measurement period, or the SSB burst (burst), or the SMTC period can be 5ms, 10ms, 20ms, 40ms, 80ms, 60ms, etc.;
  • Measurement window offset SMTC offset (offset);
  • Measurement interval configuration MG type (pattern), measurement repetition period (MGRP), etc.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • SINR Signal to Interference plus Noise Ratio
  • At least one of the following may be included:
  • the measurement period for example, can be 5ms, 10ms, 20ms, 40ms, 80ms, 60ms, etc.;
  • Measurements such as RSRP, RSRQ, SINR, etc.
  • SSB and beam may have the following relationship:
  • a group of SSBs form an SS/PBCH burst set
  • SS/PBCH Burst set is sent periodically, for example, the period can be 5ms, 10ms, 20ms, 40ms, 80ms, 60ms, etc.;
  • the SS/PBCH Block with the same index (index) sent periodically and repeatedly is Quasi-co-located (QCL);
  • SSBs with different indices in the same SS/PBCH burst set generally do not assume a QCL relationship.
  • An SS/PBCH burst set can support beam sweeping, for example, an SSB that supports beam sweeping, taking an 8-beam system as an example, the 8 beams can correspond to 8 receive beam (Rx beam) directions.
  • Rx beam sets can be defined for the measurement of different measurement objects (Measurement Object, MO).
  • MO Measurement Object
  • the present application provides a signal measurement method, and the terminal device can perform measurement according to the capability information of the receiving beam set issued by the network device, which is beneficial to meet the power saving requirement of the terminal.
  • FIG. 2 is a schematic flowchart of a signal measurement method 200 according to an embodiment of the present application.
  • the method 200 may be executed by a terminal device in the communication system shown in FIG. 1 , and as shown in FIG. 2 , the method 200 may include at least some of the following contents:
  • the network device sends first configuration information to the terminal device, where the first configuration information includes capability information of a receiving beam set, where the capability information of the receiving beam set is used to indicate the number and/or the number of beams included in the receiving beam set or width;
  • the terminal device receives the first configuration information of the network device
  • the terminal device measures the measurement reference signal sent by the network device according to the first configuration information.
  • the measurement reference signal may be any downlink reference signal, for example, SSB, CSI-RS, position reference signal (positioning reference signals, PRS), phase tracking reference signal (Phase Tracking Reference Signal, PT-RS), A demodulation reference signal (Demodulation Reference Signal, DMRS), etc.
  • the demodulation reference signal may include a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), a physical downlink control channel (Physical Downlink Control Channel, PDCCH) and physical The DMRS demodulated by a broadcast channel (Physical Broadcast Channel, PBCH) is not limited to this.
  • the first configuration information may be configured by a network device.
  • the network device may use semi-static signaling, such as radio resource control (Radio Resource Control, RRC) signaling, Or dynamic signaling, such as downlink control information (Downlink Control Information, DCI), sends the first configuration information.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the first configuration information may be delivered to the terminal device together with the aforementioned measurement configuration, for example, the first configuration information may be carried in the measurement configuration.
  • the first configuration information may also be predefined, for example, the first configuration information defined by a standard may be preset in the memory of the terminal device.
  • the first configuration information may be applicable to all UEs, or each UE may correspond to one piece of first configuration information.
  • the first configuration information may be sent to the UE to which the first configuration information applies through a broadcast message.
  • the embodiments of the present application may be applied to the measurement of downlink reference signals, or in other optional embodiments, the embodiments of the present application may also be applied to the measurement of side-link reference signals.
  • the measurement reference The signal can be a reference signal related to a side line, for example, a side line synchronization signal block (Sidelink Synchronization Signal Block, S-SSB), a side line channel state information reference signal (Sidelink Channel State Information Reference Signal, SL CSI-RS), DMRS etc., wherein the DMRS includes solutions for Physical Sidelink Shared Channel (PSSCH), Physical Sidelink Shared Channel (PSSCH) and Physical Sidelink Broadcast Channel (PSBCH). tuned DMRS, the present application is not limited to this.
  • the first configuration information when applied to the measurement of sideline signals, may be configured by a network device, or may also be configured by other terminal devices, such as a group head terminal of a terminal group to which the terminal device belongs, Alternatively, it may be predefined or preconfigured, and the present application is not limited thereto.
  • the capability information of the receiving beam set may include any beam parameters that affect the measurement result, such as the number of beams, the width of the beam, the signal strength of the beam, the beam The coverage range, beam angle, etc., the application only takes the number of beams and the width of the beams as examples for description, but the application is not limited to this.
  • one receiving beam set may include a group of beams, and the capability information of the receiving beam set includes the number and/or width of the group of beams.
  • the number of the set of beams may be one or more.
  • the network device may configure different numbers of receive beams for the terminal device according to different scenario requirements, for example, configure a larger number of receive beams for the capability information of the receive beam set used for serving cell measurement, A smaller number of receive beams are configured for capability learning of the receive beam set used for neighbor cell measurement, and further, when the terminal device performs measurement based on the above configuration, it is beneficial to the power saving of the terminal device.
  • the set of beams may have two widths, such as a rough beam and a narrow beam, or there may be more types, for example, multiple width levels may be set, and different width levels may Corresponding to different coverage areas, or corresponding to different coverage angles, as an example, three width levels can be set, respectively corresponding to the coverage areas of 15 degrees, 20 degrees and 30 degrees, but the present application is not limited thereto.
  • the network device may also configure receive beams of different widths for the terminal device according to different scenario requirements, for example, configure a narrower receive beam for the capability information of the receive beam set used for measurement of the serving cell.
  • the capability of the receiving beam set used for measurement of neighboring cells learns to configure a wider receiving beam. It can be understood that the energy of the narrow beam is concentrated and the coverage is far, so the power consumption is larger. Further, when the terminal device performs measurement based on the above configuration, it is beneficial to Power saving of end devices.
  • the receiving beam set may be referred to as an Rx beam set
  • the capability information of a receiving beam set may be referred to as a set of Rx beam set configurations.
  • the first configuration information may include a set of Rx beam Set configurations, for example, Rx beam Set configuration 0 (8 beams, and/or fine), or may also include multiple sets of Rx beam Set configurations, for example, Rx beam Set configuration 0 (8 beams, and/or fine), Rx beam Set configuration 1 (8 beams, and/or rough), Rx beam Set configuration 2 (4 beams, fine), and Rx beam Set configuration 3 (4 beams , rough).
  • the method 200 before the S230, the method 200 further includes:
  • the terminal device reports capability information of the receiving beam set supported by the terminal device to the network device.
  • the capability information of the receiving beam set supported by the terminal device may be one or more, that is, the terminal device may support one or more sets of Rx beam Set configurations.
  • the network device may determine the first configuration information according to the capability information of the receiving beam set supported by the terminal device.
  • the first configuration information may include one or more capability information of receive beam sets supported by the terminal device, or may also include capability information of more receive beam sets, which the present application is not limited to.
  • the first configuration information includes capability information of a receiving beam set.
  • the capability information of the one receiving beam set can be used for downlink measurement in all scenarios of the terminal equipment, such as measurement based on different measurement reference signals, or measurement of different MOs, etc.
  • the measurement of the scene adopts this Rx beam Set configuration.
  • the first configuration information includes capability information of at least one receive beam set corresponding to at least one measurement reference signal, and the capability information of each receive beam set is used for measurement based on the corresponding measurement reference signal.
  • each measurement reference signal may correspond to a corresponding Rx beam Set configuration.
  • the measurement reference signal includes SSB and CSI-RS
  • the capability information of the at least one receive beam set includes capability information of the first receive beam set and the capability information of the second receive beam set, wherein the first receive beam set
  • the capability information of one receive beam set is used for SSB measurement
  • the capability information of the second receive beam set is used for CSI-RS measurement.
  • the SSB-based measurement may use the capability information of the first receive beam set, and the CSI-RS-based measurement may use the capability information of the second receive beam set.
  • the Rx beam Set configurations corresponding to different measurement reference signals may be determined according to measurement results obtained by measuring the serving cell based on the measurement reference signals.
  • the first configuration information includes capability information of receiving beam sets corresponding to at least one measurement object respectively, and the measurement of one measurement object is based on the capability information of the corresponding receiving beam set.
  • the capability information of the receiving beam set is configured per MO (per MO), that is, each MO may be configured corresponding to the corresponding Rx beam Set.
  • the measurement object corresponds to an intra-frequency measurement layer or an inter-frequency measurement layer.
  • the measurement object may be an intra-frequency cell, an inter-frequency cell, or an inter-system cell, or the measurement object may be an intra-frequency point or an inter-frequency frequency point or a different system of the serving cell of the terminal device.
  • the quantity of capability information of the receiving beam set corresponding to each measurement object is one or more.
  • the capability information of the receiving beam set corresponding to the measurement object includes the capability information of one receiving beam set, that is, each MO can be configured with a set of Rx beam Set configurations.
  • This set of Rx beam Set configurations can be used for the measurement of the MO in any situation, for example, the measurement of the MO based on any measurement reference signal. In other words, this set of Rx beam Set configurations can be used to measure the MO based on any measurement reference signal.
  • the capability information of the receiving beam set corresponding to the measurement object includes the capability information of multiple receiving beam sets, that is, each MO can be configured with multiple sets of Rx beam Set configurations.
  • the multiple sets of Rx beam Set configurations may be configured based on different measurement reference signals, or may also be configured based on other attributes.
  • the measurement may use the corresponding Rx beam Set configuration, and the present application is not limited to this.
  • the capability information of the receive beam set corresponding to the measurement object includes capability information of the third receive beam set and capability information of the fourth receive beam set, and the capability information of the third receive beam set is used for SSB measurement, the capability information of the fourth receiving beam set is used for CSI-RS measurement.
  • the corresponding Rx beam Set configurations are configured for different measurement objects through the first configuration information, which is beneficial to satisfy flexibility and better measurement accuracy for different MO measurements.
  • the corresponding Rx beam Set configurations are respectively configured according to different measurement reference signals, which is beneficial to ensure the consistency of measurement results when measuring the same MO based on different measurement reference signals.
  • the terminal device can determine which Rx beam Set configuration to use according to which measurement reference signal is based on which measurement reference signal to measure the MO. For example, if the MO is configured with SSB measurement, the terminal device can use the SSB measurement. The corresponding Rx beam Set configuration measures this MO. Or in some other embodiments, the terminal device may also determine which set of Rx beam Set configuration to use to measure the MO in combination with the association relationship of the measurement reference signal, or the QCL relationship.
  • the terminal device determines to perform measurement in the Rx beam Set configuration corresponding to the SSB and CSI-RS according to the association between CSI-RS and SSB The target Rx beam Set configuration used.
  • the corresponding Rx beam Set configuration may be used for measurement based on different measurement reference signals.
  • the measurement based on the SSB and the CSI-RS can use the Rx corresponding to the SSB beam Set configuration.
  • the SSB is the associated SSB of the CSI-RS, and the SSB and the CSI-RS do not satisfy the quasi-co-located QCL relationship, when the measurement is performed based on the SSB and the CSI-RS Any one of the multiple sets of Rx beam Set configurations or a specific set of Rx beam Set configurations can be used.
  • the fact that the SSB and the CSI-RS do not satisfy the quasi-co-located QCL relationship may mean that the beam directions of the CSI-RS and the SSB are different.
  • the selection is made according to the correlation of the measurement reference signal, which is beneficial to reduce unnecessary switching of the receiving beam used for measurement and improve the system performance.
  • the specific set of Rx beam Set configurations may be the first set of Rx beam Set configurations in multiple sets of Rx beam Set configurations, that is, Rx beam Set configuration 0, or the last set of multiple Rx beam Set configurations.
  • An Rx beam set configuration may be the first set of Rx beam Set configurations in multiple sets of Rx beam Set configurations, that is, Rx beam Set configuration 0, or the last set of multiple Rx beam Set configurations.
  • the specific set of Rx beam Set configurations may be a set of Rx beam Set configurations with the largest number of beams among the multiple sets of Rx beam Set configurations, or a set of Rx beam Set configurations with the largest number of beams and the narrowest .
  • the specific set of Rx beam Set configurations may be a set of Rx beam Set configurations with the least number of beams among the multiple sets of Rx beam Set configurations, or a set of Rx beam Set configurations with the least number and widest beams .
  • the multiple sets of Rx beam Set configurations may include a set of basic Rx beam Set configurations, or default configurations, and this set of basic Rx beam Set configurations may be Rx supported by all UEs beam Set configuration.
  • the basic Rx beam Set configuration may be determined based on the measurement result of the measurement reference signal on the serving cell. For example, within a period of time, the measurement reference signals on the serving cell may be measured based on different Rx beam Set configurations to obtain multiple sets of measurement results, and the basic Rx beam Set configuration may be further determined based on the multiple sets of measurement results.
  • the configuration of the Rx beam set corresponding to the optimal set of measurement results within a period of time can be used as the basic Rx beam set configuration, or the configuration of the Rx beam set corresponding to a set of measurement results satisfying a specific threshold can be used as the basic Rx beam set configuration Set configuration, etc., this application is not limited to this.
  • the first configuration information includes capability information of receiving beam sets corresponding to at least one frequency point respectively.
  • the capability information of the receiving beam set is configured per frequency layer, that is, each frequency point can be configured corresponding to the corresponding Rx beam Set.
  • one frequency point corresponds to one cell or to multiple cells. That is, a cell can support one frequency or multiple frequencies, and multiple cells can use the same frequency.
  • the Rx beam Set corresponding to each frequency point is configured as one set.
  • the measurement of the cell at this frequency point can use this set of Rx beam Set configuration.
  • this set of Rx beam Set configurations can be used for the measurement of different measurement reference signals on the cell of the frequency point.
  • the Rx beam Set corresponding to each frequency point is configured as multiple sets.
  • the multiple sets of Rx beam Set configurations may respectively correspond to multiple cells corresponding to the frequency point, then the measurement reference signals on different cells of the frequency point may be measured based on the Rx beam Set configuration corresponding to the cell. Take measurements.
  • the multiple sets of Rx beam Set configurations may correspond to different measurement reference signals respectively, and then the measurement of different reference signals on the cell of the frequency point may be based on the Rx beam Set configuration corresponding to the measurement reference signal.
  • the first configuration information includes capability information of receiving beam sets corresponding to at least one cell respectively.
  • the capability information of the receiving beam set is configured per cell, that is, each cell may be configured corresponding to the corresponding Rx beam Set.
  • one cell corresponds to one frequency point or corresponds to multiple frequency points. That is, a cell can support one frequency point or multiple frequency points.
  • the Rx beam Set corresponding to each cell point is configured as one set.
  • the measurement of different measurement reference signals on the cell of the frequency point can use this set of Rx beam Set configuration.
  • the Rx beam Set corresponding to each cell is configured as multiple sets.
  • the multiple sets of Rx beam Set configurations may correspond to different measurement reference signals respectively, and the measurement of different reference signals on the cell may be based on the Rx beam Set configurations corresponding to the measurement reference signals.
  • the multiple sets of Rx beam Set configurations may respectively correspond to multiple frequency points of the cell, then the measurement reference signals on different frequency points of the cell may be measured based on the Rx beam Set configurations corresponding to the frequency points. Measurement.
  • the measurement results obtained by measuring the same cell based on different Rx beam Set configurations may vary to a certain extent.
  • different cells are measured based on different Rx beam Set configurations, and then the network device reports the measurement results according to the measurement results.
  • Cell handover is performed, which causes the network to determine whether there is a problem in cell handover based on the measurement result.
  • the serving cell is measured based on the Rx beam Set configuration 0 (8 beams, and/or fine beam), and the neighbor cell is measured based on the Rx beam Set configuration 3 (4 beams, and/or rough).
  • the measurement result of the serving cell is usually 3 dB higher than the measurement result of the neighboring cell.
  • the first configuration information is further used to configure a measurement compensation amount
  • the measurement compensation amount is used to obtain the measurement compensation according to the capability information of the receiving beam set compensated for the measured amount.
  • the measurement compensation amount may also be predefined, for example, the measurement compensation amount defined by the standard may be preset in the memory of the terminal device, or a preconfigured , for example, configure the measurement compensation amount through semi-static signaling, such as RRC signaling or broadcast message.
  • the measurement compensation amount and the Rx beam Set configuration may be configured through the same message or signaling, or may also be configured through different messages or signaling.
  • the configuration information configures the measurement compensation amount as an example for description, but the present application is not limited to this.
  • the first configuration information includes capability information of a reference receive beam set (or referred to as a reference Rx beam Set configuration) and capability information of at least one non-reference receive beam set (non-reference Rx beam Set configuration), so
  • the measurement compensation amount is a compensation amount of at least one measurement amount relative to a reference measurement amount, wherein the at least one measurement amount is a measurement amount obtained by performing measurement according to the capability information of the at least one non-reference receiving beam set, and the reference The measurement quantity is a measurement quantity obtained by measuring according to the capability information of the reference receiving beam set.
  • the reference Rx beam Set configuration may be the reference Rx beam Set configuration described above, which may be the Rx beam Set configuration supported by all UEs.
  • the reference Rx beam Set configuration is determined according to a measurement result of a measurement reference signal (such as an SSB) on the serving cell of the terminal device.
  • a measurement reference signal such as an SSB
  • the measurement compensation amount may be determined according to a measurement result obtained by measuring measurement reference signals on the same cell based on different Rx beam Set configurations.
  • the measurement compensation amount may be determined according to a measurement result at a single moment, or may be determined according to a measurement result within a period of time, but the present application is not limited thereto.
  • the first configuration information includes at least one group of measurement compensation amounts, and each group of measurement compensation amounts corresponds to capability information of a non-reference receiving beam set.
  • the measurement compensation amount may be configured per Rx beam Set (per Rx beam Set configuration), that is, each non-reference Rx beam Set configuration may correspond to a set of measurement compensation amounts.
  • the non-reference Rx beam Set configuration includes the first non-reference Rx beam Set configuration, then when the measurement is performed based on the first non-reference Rx beam Set configuration, a set of measurement compensation amounts corresponding to the first non-reference Rx beam Set configuration can be used Compensate for measurement results.
  • Each group of measurement compensation includes one measurement compensation.
  • the one measurement compensation amount corresponds to at least one type of measurement amount, that is, different types of measurement results can be compensated using the one measurement compensation amount.
  • Each group of measurement compensation amounts includes multiple measurement compensation amounts.
  • the multiple measurement compensation amounts correspond to multiple types of measurement amounts, that is, different types of measurement results can be compensated using the corresponding measurement compensation amounts.
  • the measured quantity includes at least one of the following:
  • Reference signal received power RSRP Reference signal received quality RSRQ, signal to interference and noise ratio SINR.
  • Embodiment 6-2 The first configuration information includes multiple sets of measurement compensation amounts.
  • the multiple groups of measurement compensation amounts correspond to multiple measurement reference signals, and each group of measurement compensation amounts is used for compensating measurement amounts obtained by measuring based on the corresponding measurement reference signals.
  • the first configuration information includes two sets of measurement compensation amounts, respectively corresponding to SSB and CSI-RS, and the two sets of measurement compensation amounts are respectively used to compensate measurement results obtained by measuring based on SSB and CSI-RS. .
  • Each group of measurement compensation includes one measurement compensation.
  • the one measurement compensation amount corresponds to at least one type of measurement amount, that is, different types of measurement results can be compensated using the one measurement compensation amount.
  • Each group of measurement compensation amounts includes multiple measurement compensation amounts.
  • the multiple measurement compensation amounts correspond to multiple types of measurement amounts, that is, different types of measurement results can be compensated using the corresponding measurement compensation amounts.
  • Rx beam Set Configuration 0 can be the reference Rx beam set configuration, and the others are non-reference Rx beam set configurations.
  • Rx beam Set configuration 1, Rx beam Set configuration 2, and Rx beam Set configuration 3 respectively correspond to a measurement compensation amount.
  • Rx beam Set configuration 1, Rx beam Set configuration 2, and Rx beam Set configuration 3 respectively correspond to three measurement compensation amounts, which are respectively used for compensation when the measurement results are RSRP, RSRQ, and SINR.
  • Rx beam Set configuration 1, Rx beam Set configuration 2, and Rx beam Set configuration 3 correspond to one measurement compensation amount, respectively, or can also correspond to three measurement compensation amounts.
  • Embodiments 1-6 may be implemented independently, or may also be implemented in combination, and the present application is not limited thereto.
  • the method 200 further includes:
  • the terminal device compensates, according to the measurement compensation amount, the measurement amount obtained by performing the measurement based on the measurement reference signal;
  • the compensated measurement quantity is reported to the network device.
  • the compensated measurement results are reported to the network equipment during measurement reporting, which solves the inconsistency of measurement results when measuring and reporting based on different Rx beam Set configurations, and prevents network equipment from making mistakes during cell reselection or cell handover judgment, which in turn leads to the problem of RLF.
  • FIG. 4 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • a communication unit 410 configured to receive first configuration information of a network device, where the first configuration information includes capability information of a receiving beam set, where the capability information of the receiving beam set is used to indicate beams included in the receiving beam set number and/or width;
  • the processing unit 420 is configured to measure the measurement reference signal sent by the network device according to the first configuration information.
  • different terminal devices respectively correspond to corresponding first configuration information.
  • the first configuration information includes capability information of one receive beam set, where the capability information of one receive beam set is used for measurement based on all measurement reference signals.
  • the first configuration information includes capability information of at least one receive beam set corresponding to at least one measurement reference signal, and the capability information of each receive beam set is used for Measurement.
  • the measurement reference signal includes a synchronization signal block SSB and a channel state information reference signal CSI-RS
  • the capability information of the at least one receive beam set includes capability information of the first receive beam set and Capability information of the second receive beam set, wherein the capability information of the first receive beam set is used for SSB measurement, and the capability information of the second receive beam set is used for CSI-RS measurement.
  • the first configuration information includes capability information of a receiving beam set corresponding to at least one measurement object, wherein the quantity of capability information of a receiving beam set corresponding to each measurement object is one or more. multiple.
  • the measurement object corresponds to an intra-frequency measurement layer or an inter-frequency measurement layer.
  • the capability information of the receive beamset corresponding to the measurement object includes capability information of one receive beamset, and the capability information of one receive beamset is used for measurement of multiple measurement reference signals;
  • the capability information of the receive beam set corresponding to the measurement object includes capability information of multiple receive beam sets, corresponding to multiple measurement reference signals, and the capability information of each receive beam set is used for measurement based on the corresponding measurement reference signal.
  • the capability information of the receive beamset corresponding to the measurement object includes capability information of a third receive beamset and capability information of a fourth receive beamset, and the capability of the third receive beamset The information is used for SSB measurement, and the capability information of the fourth receiving beam set is used for CSI-RS measurement.
  • the processing unit 420 is specifically configured to:
  • a measurement object is configured with measurement based on SSB and CSI-RS, according to the association relationship between CSI-RS and SSB, it is determined in the capability information of the third receiving beam set and the capability information of the fourth receiving beam set.
  • the SSB or the CSI-RS is measured according to the capability information of the target receive beam set.
  • the measurement reference signal is the SSB
  • the capability information of the target receive beam set is the third receive beam collection capability information
  • the measurement reference signal is the CSI-RS
  • the capability information of the target receive beam set is the capability information of the fourth receive beam set
  • the measurement reference signal is the SSB or the CSI-RS
  • the The capability information of the target receiving beam set is the capability information of the third receiving beam set
  • the capability information of the target receiving beam set is any one of the capability information of the third receiving beam set and the capability information of the fourth receiving beam set.
  • the first configuration information includes capability information of receive beam sets corresponding to at least one frequency point respectively, wherein the quantity of capability information of receive beam sets corresponding to each frequency point is one or more. multiple.
  • one frequency point corresponds to one cell or to multiple cells.
  • the first configuration information includes capability information of receive beam sets corresponding to at least one cell, wherein the number of capability information of receive beam sets corresponding to each cell is one or more .
  • one cell corresponds to one frequency point or corresponds to multiple frequency points.
  • the first configuration information is further used to configure a measurement compensation amount, and the measurement compensation amount is used to compensate the measurement amount obtained by measuring according to the capability information of the receiving beam set;
  • the measurement compensation amount is preconfigured.
  • the first configuration information includes capability information of a reference receiving beam set and capability information of at least one non-reference receiving beam set
  • the measurement compensation amount is at least one measurement amount relative to a reference measurement.
  • the capability information of the reference receive beam set is used for measurement of the measurement reference signal on the serving cell of the terminal device.
  • the capability information of the reference receiving beam set is determined according to the measurement result of the measurement reference signal on the serving cell of the terminal device.
  • the first configuration information includes at least one group of measurement compensation amounts, and each group of measurement compensation amounts corresponds to capability information of a non-reference receive beam set.
  • the first configuration information includes multiple groups of measurement compensation amounts, the multiple measurement compensation amounts correspond to multiple measurement reference signals, and each group of measurement compensation amounts is used to compare the measurement reference signals based on the corresponding measurement compensation amount.
  • the signal is compensated by the measured quantity obtained by the measurement.
  • the first configuration information includes two sets of measurement compensation amounts, respectively corresponding to SSB and CSI-RS, and the two groups of measurement compensation amounts are respectively used to measure based on SSB and CSI-RS. The obtained measurement results are compensated.
  • each group of measurement compensation amounts includes at least one measurement compensation amount, the at least one measurement compensation amount corresponds to at least one type of measurement amount, and each measurement compensation amount is used for a corresponding type of measurement amount. compensation of the measured quantity.
  • the at least one type of measurement includes at least one of the following:
  • Reference signal received power RSRP Reference signal received quality RSRQ, signal to interference and noise ratio SINR.
  • the processing unit 420 is further configured to:
  • the communication unit 410 is further configured to: report the compensated measurement amount to the network device.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of the various units in the terminal device 400 are respectively for realizing the method shown in FIG. 2 .
  • the corresponding process of the terminal device in 200 is not repeated here for brevity.
  • FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 500 of FIG. 5 includes:
  • a communication unit 510 configured to receive capability information of a receiving beam set supported by the terminal device and sent by a terminal device, wherein the capability information of the receiving beam set is used to indicate the number and/or the number of beams included in the receiving beam set width;
  • the processing unit 520 is configured to determine first configuration information according to the capability information of the receiving beam set supported by the terminal device, where the first configuration information is used to configure the terminal device with the capability information of the receiving beam set used for measurement ;
  • the communication unit 510 is further configured to send the first configuration information to the terminal device.
  • different terminal devices respectively correspond to corresponding first configuration information.
  • the first configuration information includes capability information of one receive beam set, and the capability information of one receive beam set is used for measurement based on all measurement reference signals.
  • the first configuration information includes capability information of at least one receive beam set corresponding to at least one measurement reference signal, and the capability information of each receive beam set is used for Measurement.
  • the measurement reference signal includes a synchronization signal block SSB and a channel state information reference signal CSI-RS
  • the capability information of the at least one receive beam set includes capability information of the first receive beam set and Capability information of the second receive beam set, wherein the capability information of the first receive beam set is used for SSB measurement, and the capability information of the second receive beam set is used for CSI-RS-based measurement.
  • the first configuration information includes capability information of a receiving beam set corresponding to at least one measurement object, wherein the quantity of capability information of a receiving beam set corresponding to each measurement object is one or more. multiple.
  • the measurement object corresponds to an intra-frequency measurement layer or an inter-frequency measurement layer.
  • the capability information of the receive beamset corresponding to the measurement object includes capability information of one receive beamset, and the capability information of one receive beamset is used for measurement of multiple measurement reference signals;
  • the capability information of the receive beam set corresponding to the measurement object includes capability information of multiple receive beam sets, corresponding to multiple measurement reference signals, and the capability information of each receive beam set is used for measurement based on the corresponding measurement reference signal.
  • the capability information of the receive beamset corresponding to the measurement object includes capability information of a third receive beamset and capability information of a fourth receive beamset, and the capability of the third receive beamset The information is used for SSB measurement, and the capability information of the fourth receiving beam set is used for CSI-RS measurement.
  • the first configuration information is further used to configure the association relationship between the SSB and the CSI-RS.
  • the first configuration information includes capability information of receive beam sets corresponding to at least one frequency point respectively, wherein the quantity of capability information of receive beam sets corresponding to each frequency point is one or more. multiple.
  • one frequency point corresponds to one cell or to multiple cells.
  • the first configuration information includes capability information of receive beam sets corresponding to at least one cell, wherein the number of capability information of receive beam sets corresponding to each cell is one or more .
  • one cell corresponds to one frequency point or corresponds to multiple frequency points.
  • the first configuration information is further used to configure a measurement compensation amount, where the measurement compensation amount is used to compensate the measurement amount obtained by measuring according to the capability information of the receiving beam set.
  • the first configuration information includes capability information of a reference receiving beam set and capability information of at least one non-reference receiving beam set
  • the measurement compensation amount is at least one measurement amount relative to a reference measurement.
  • the capability information of the reference receive beam set is used for measurement of the measurement reference signal on the serving cell of the terminal device.
  • the capability information of the reference receiving beam set is determined according to the measurement result of the measurement reference signal on the serving cell of the terminal device.
  • the first configuration information includes at least one group of measurement compensation amounts, and each group of measurement compensation amounts corresponds to capability information of a non-reference receive beam set.
  • the first configuration information includes multiple groups of measurement compensation amounts, the multiple measurement compensation amounts correspond to multiple measurement reference signals, and each group of measurement compensation amounts is used to compare the measurement reference signals based on the corresponding measurement compensation amount.
  • the signal is compensated by the measured quantity obtained by the measurement.
  • the first configuration information includes two sets of measurement compensation amounts, respectively corresponding to SSB and CSI-RS, and the two groups of measurement compensation amounts are respectively used to measure based on SSB and CSI-RS. The obtained measurement results are compensated.
  • each group of measurement compensation amounts includes at least one measurement compensation amount, the at least one measurement compensation amount corresponds to at least one type of measurement amount, and each measurement compensation amount is used for a corresponding type of measurement amount. compensation of the measured quantity.
  • the at least one type of measurement includes at least one of the following:
  • Reference signal received power RSRP Reference signal received quality RSRQ, signal to interference and noise ratio SINR.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively for realizing the method shown in FIG. 2 .
  • the corresponding process of the network device in 200 is not repeated here for brevity.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 may call and run a computer program from the memory 620 to implement the methods in the embodiments of the present application.
  • the memory 620 may be a separate device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by a device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 600 may specifically be the network device in this embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 600 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from a memory, so as to implement the method in this embodiment of the present application.
  • the chip 700 may further include a memory 720 .
  • the processor 710 may call and run a computer program from the memory 720 to implement the methods in the embodiments of the present application.
  • the memory 720 may be a separate device independent of the processor 710 , or may be integrated in the processor 710 .
  • the chip 700 may further include an input interface 730 .
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 8 is a schematic block diagram of a communication system 900 provided by an embodiment of the present application. As shown in FIG. 8 , the communication system 900 includes a terminal device 910 and a network device 920 .
  • the terminal device 910 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 920 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Abstract

一种信号测量的方法、终端设备和网络设备,该方法包括:终端设备接收网络设备的第一配置信息,所述第一配置信息包括接收波束集的能力信息,其中,所述接收波束集的能力信息用于指示所述接收波束集包括的波束的数量和/或宽度;所述终端设备根据所述第一配置信息对测量参考信号进行测量。

Description

信号测量的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,具体涉及一种信号测量的方法、终端设备和网络设备。
背景技术
为了实现终端设备更好的移动性切换,网络设备可以配置终端设备在特定的时间窗口内对同频、异频或异网络的邻小区的测量参考信号进行测量以确定更优质的小区,其中,特定的时间窗口为测量间隔(Measurement Gap,MG),测量参考信号例如可以包括同步信号块(Synchronization Signal Block,SSB,或SS block)和信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。
终端设备对服务小区和邻小区进行测量是一种需要消耗终端电量的行为,如何进行下行测量以满足终端的省电需求是一项急需解决的问题。
发明内容
本申请实施例提供一种信号测量的方法、终端设备和网络设备,有利于满足终端的节电需求。
第一方面,提供了一种信号测量的方法,包括:终端设备接收网络设备的第一配置信息,所述第一配置信息包括接收波束集的能力信息,其中,所述接收波束集的能力信息用于指示所述接收波束集包括的波束的数量和/或宽度;所述终端设备根据所述第一配置信息对所述网络设备发送的测量参考信号进行测量。
第二方面,提供了一种信号测量的方法,包括:网络设备接收终端设备发送的所述终端设备支持的接收波束集的能力信息,其中,所述接收波束集的能力信息用于指示所述接收波束集包括的波束的数量和/或宽度;所述网络设备根据所述终端设备支持的接收波束集的能力信息,确定第一配置信息,所述第一配置信息包括用于测量的接收波束集的能力信息;所述网络设备向所述终端设备发送所述第一配置信息。
第三方面,提供了一种终端设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第一方面或第一方面的任一可能的实现方式中的方法的单元。
第四方面,提供了一种网络设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第二方面或第二方面的任一可能的实现方式中的方法的单元。
第五方面,提供了一种终端设备,该终端设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,该网络设备包括:包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第 二方面中的任一方面或其各实现方式中的方法。
基于上述技术方案,网络设备可以给终端设备发送第一配置信息,该第一配置信息用于配置终端设备进行测量所使用的波束的数量和/或宽度,例如给用于服务小区测量的接收波束集的能力信息配置较多数量和/或较窄的接收波束,给用于邻小区测量的接收波束集的能力学习配置较少数量和/或较宽的接收波束,进一步终端设备基于上述配置进行测量时,有利于终端设备的省电。
附图说明
图1是本申请实施例提供的一种应用场景的示意性图。
图2是本申请实施例提供的一种信号测量的方法的示意性图。
图3是基于不同的Rx beam set配置进行小区测量的示意性图。
图4是本申请实施例提供的一种终端设备的示意性框图。
图5是本申请实施例提供的一种网络设备的示意性框图。
图6是本申请另一实施例提供的一种通信设备的示意性框图。
图7是本申请实施例提供的一种芯片的示意性框图。
图8是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数 字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅 仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在一些情况中,网络设备给终端设备下发的测量配置可以是基于每个频率层(per frequency layer)的,或者也可以是基于每个测量参考信号的。
例如,对于基于SSB的测量配置,可以包括如下中的至少一项:
测量周期,或SSB突发(burst),或SMTC周期,例如可以为5ms,10ms,20ms,40ms,80ms,60ms等;
测量窗口:SMTC;
测量窗口偏移:SMTC偏移(offset);
测量间隔配置:MG类型(pattern),测量重复周期(MGRP)等。
测量量:例如参考信号接收功率(Reference Signal Receiving Power,RSRP),参考信号接收质量(Reference Signal Receiving Quality,RSRQ),信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)等。
例如,对于基于CSI-RS的测量配置,可以包括如下中的至少一项:
测量周期,例如可以为5ms,10ms,20ms,40ms,80ms,60ms等;
传输带宽;
测量带宽;
用于参考信号产生的参数;
子载波间隔;
用于RRM测量的CSI-RS和SSB的关联关系
CSI-RS时频资源;
测量量,例如RSRP,RSRQ,SINR等。
在一些场景中,SSB和波束(beam)可以具有如下关系:
一组SSB组成SS/PBCH突发集(burst set);
SS/PBCH Burst set是周期性发送的,例如周期可以为5ms,10ms,20ms,40ms,80ms,60ms等;
SS/PBCH Block与beam之间具有一定的对应关系:周期性重复发送的相同索引(index)的SS block是准共址(Quasi-co-located,QCL)的;
同一个SS/PBCH burst set中不同index的SSB一般不假设QCL关系。
一个SS/PBCH burst set可以支持波束扫描(beam sweeping),例如,支持波束扫描的SSB,以8波束系统为例,该8个波束可以对应到8个接收波束(Rx beam)方向。
在一些场景中,可以定义不同的接收波束集(Rx beam set)用于不同的测量对象(Measurement Object,MO)的测量,此情况下,如何定义接收波束集的属性满足终端设备的省电需求是一项急需解决的问题。
有鉴于此,本申请提供了一种信号测量的方法,终端设备可以根据网络设备下发的接收波束集的能力信息进行测量,有利于满足终端的省电需求。
图2为本申请实施例提供的一种信号测量的方法200的示意性流程图。该方法200可以由图1所示的通信系统中的终端设备执行,如图2所示,该方法200可以包括如下至少部分内容:
S230,网络设备向终端设备发送第一配置信息,所述第一配置信息包括接收波束集的能力信息,所述接收波束集的能力信息用于指示所述接收波束集包括的波束的数量和/或宽度;
S240,所述终端设备接收所述网络设备的所述第一配置信息;
S250,所述终端设备根据所述第一配置信息对所述网络设备发送的测量参考信号进行测量。
可选地,所述测量参考信号可以为任意下行参考信号,例如,SSB,CSI-RS,位置参考信号(positioning reference signals,PRS),相位跟踪参考信号(Phase Tracking Reference Signal,PT-RS),解调参考信号(Demodulation Reference Signal,DMRS)等,其中,解调参考信号可以包括用于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理广播信道(Physical Broadcast Channel,PBCH)解调的DMRS,本申请并不限于此。
应理解,在本申请实施例中,所述第一配置信息可以是网络设备配置的,例如,所述网络设备可以通过半静态信令,例如无线资源控制(Radio Resource Control,RRC)信令,或者动态信令,例如下行控制信息(Downlink Control Information,DCI)发送该第一配置信息。
可选地,在一些实施例中,所述第一配置信息可以和前文所述的测量配置一起下发给所述终端设备,例如所述第一配置信息可以承载在所述测量配置中。
可选地,在另一些实施例中,所述第一配置信息也可以是预定义的,例如可以将标准定义的该第一配置信息预设在所述终端设备的存储器中。
在本申请实施例中,所述第一配置信息可以是适用于所有UE的,或者也可以是每个UE对应一个第一配置信息,当所有UE对应相同的第一配置信息时,作为一个示例,所述第一配置信息可以通过广播消息发送给该第一配置信息所适用的UE。
应理解,本申请实施例可以应用于下行参考信号的测量中,或者在其他可选实施例中,本申请实施例也可以应用于侧行参考信号的测量中,此情况下,所述测量参考信号可以为侧行相关的参考信号,例如,侧行同步信号块(Sidelink Synchronization Signal Block,S-SSB)、侧行信道状态信息参考信号(Sidelink Channel State Information Reference Signal,SL CSI-RS)、DMRS等,其中,DMRS包括用于物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)、物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)和物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)解调的DMRS,本申请并不限于此。
应理解,当应用于侧行信号的测量中时,所述第一配置信息可以是网络设备配置的,或者也可以是其他终端设备配置的,例如所述终端设备所属终端组的组头终端,或者也可以是预定义,或者预配置的,本申请并不限于此。
需要说明的是,在本申请实施例中,所述接收波束集(Rx beam Set)的能力信息可以包括任意影响测量结果的波束参数,例如波束的数量,波束的宽度,波束的信号强度,波束的覆盖范围,波束的角度等,本申请仅以波束的数量和波束的宽度为例进行说明,但本申请并不限于此。
在本申请实施例中,一个接收波束集可以包括一组波束,接收波束集的能力信息包括所述一组波束的数量和/或宽度。
例如,所述一组波束的数量可以是一个或者也可以是多个。在一些实施例中,所述网络设备可以根据不同的场景需求为所述终端设备配置不同数量的接收波束,例如给用于服务小区测量的接收波束集的能力信息配置较多数量的接收波束,给用于邻小区测量的接收波束集的能力学习配置较少数量的接收波束,进一步终端设备基于上述配置进行测量时,有利于终端设备的省电。
又例如,所述一组波束的宽度可以有两种,例如宽(rough)波束和窄(fine)波束,或者也可以有更多种,例如,可以设置多种宽度等级,不同的宽度等级可以对应不同的覆盖范围,或者说对应不同的覆盖角度,作为一个示例,可以设置三种宽度等级,分别对应15度,20度和30度的覆盖范围,本申请并不限于此。在一些实施例中,所述网络设备也可以不同的场景需求为所述终端设备配置不同宽度的接收波束,例如给用于服务小区测量的接收波束集的能力信息配置较窄的接收波束,给用于邻小区测量的接收波束集的能力学习配置较宽的接收波束,可以理解,窄波束的能量集中,覆盖范围远,故功耗更大,进一步终端设备基于上述配置进行测量时,有利于终端设备的省电。
在本申请实施例中,所述接收波束集可以称为Rx beam Set,一个接收波束集的能力信息可以称 为一套Rx beam Set配置。所述第一配置信息可以包括一套Rx beam Set配置,例如,Rx beam Set配置0(8个beam,和/或fine),或者也可以包括多套Rx beam Set配置,例如,Rx beam Set配置0(8个beam,和/或fine)、Rx beam Set配置1(8个beam,和/或rough)、Rx beam Set配置2(4个beam,fine)和Rx beam Set配置3(4个beam,rough)。
可选地,在本申请一些实施例中,在所述S230之前,所述方法200还包括:
S210,所述终端设备向网络设备上报其支持的接收波束集的能力信息。
可选地,所述终端设备支持的接收波束集的能力信息可以是一个或多个,即所述终端设备可以支持一套或多套Rx beam Set配置。
进一步地,在S220中,所述网络设备可以根据所述终端设备支持的接收波束集的能力信息,确定所述第一配置信息。例如,所述第一配置信息可以包括所述终端设备支持的接收波束集的能力信息中的一个或多个,或者也可以包括更多个接收波束集的能力信息,本申请并不限于此。
以下,结合具体实施例,说明所述接收波束集的能力信息的具体配置方式。
实施例1:所述第一配置信息包括一个接收波束集的能力信息。
此情况下,所述一个接收波束集的能力信息可以用于终端设备的所有场景的下行测量,例如基于不同的测量参考信号的测量,或者对不同MO的测量等,即所述终端设备的不同场景的测量均采用这一套Rx beam Set配置。
实施例2:所述第一配置信息包括至少一个接收波束集的能力信息,对应至少一个测量参考信号,每个接收波束集的能力信息用于基于对应的测量参考信号的测量。
在该实施例2中,所述接收波束集的能力信息是每RS(per RS)配置的,即每个测量参考信号可以对应相应的Rx beam Set配置。
作为一示例,所述测量参考信号包括SSB和CSI-RS,所述至少一个接收波束集的能力信息包括第一接收波束集的能力信息和第二接收波束集的能力信息,其中,所述第一接收波束集的能力信息用于SSB的测量,所述第二接收波束集的能力信息用于CSI-RS的测量。
进一步地,基于SSB的测量可以使用所述第一接收波束集的能力信息,基于CSI-RS的测量可以使用所述第二接收波束集的能力信息。
可选地,不同测量参考信号对应的Rx beam Set配置可以根据基于该测量参考信号对服务小区进行测量得到的测量结果确定。
通过给不同的测量参考信号配置对应的一套Rx beam Set配置,有利于保证在基于不同的测量参考信号对同一个小区进行测量时得到的测量结果的一致性,从而能够避免基于不同的测量参考信号进行测量得到不同的测量结果影响后续的小区切换,导致无线链路失败(Radio Link Failure,RLF)的问题。
实施例3:所述第一配置信息包括至少一个测量对象分别对应的接收波束集的能力信息,对一个测量对象的测量基于对应的接收波束集的能力信息。
即在该实施例3中,所述接收波束集的能力信息是每MO(per MO)配置的,即每个MO可以对应相应的Rx beam Set配置。
可选地,在本申请实施例中,所述测量对象对应同频测量层或异频测量层。换言之,所述测量对象可以为同频小区或异频小区或者异系统小区,或者所述测量对象可以为所述终端设备的服务小区的同频频点或异频频点或者异系统。
可选地,每个测量对象对应的接收波束集的能力信息的数量为一个或多个。
作为示例3-1,所述测量对象对应的接收波束集的能力信息包括一个接收波束集的能力信息,即每个MO可以配置一套Rx beam Set配置。
这一套Rx beam Set配置可以用于任意情况下对该MO的测量,例如基于任意测量参考信号对该MO的测量。换言之,基于任意测量参考信号对该MO进行测量可以使用这一套Rx beam Set配置。
作为示例3-2,所述测量对象对应的接收波束集的能力信息包括多个接收波束集的能力信息,即每个MO可以配置多套Rx beam Set配置。
可选地,所述多套Rx beam Set配置可以基于不同的测量参考信号配置的,或者也可以基于其他属性配置的,例如,该MO对应的多个小区,则对该MO对应的不同小区进行测量可以使用对应的Rx beam Set配置,本申请并不限于此。
作为一个具体示例,所述测量对象对应的接收波束集的能力信息包括第三接收波束集的能力信息和第四接收波束集的能力信息,所述第三接收波束集的能力信息用于SSB的测量,所述第四接收波束集的能力信息用于CSI-RS的测量。
通过第一配置信息为不同的测量对象配置相应的Rx beam Set配置,有利于满足对不同MO测量的灵活性和更好的测量精度。
进一步地,对于同一个MO的Rx beam Set配置,根据不同的测量参考信号分别配置对应的Rx beam Set配置,有利于保证基于不同的测量参考信号对同一MO测量时的测量结果的一致性。
在该示例3-2中,所述终端设备可以根据基于哪个测量参考信号对该MO进行测量确定使用哪套Rx beam Set配置,例如若该MO配置了SSB测量,则该终端设备可以使用该SSB对应的Rx beam Set配置对该MO进行测量。或者在另一些实施例中,所述终端设备也可以结合测量参考信号的关联关系,或者QCL关系,确定使用哪套Rx beam Set配置对该MO进行测量。
作为一个实施例,若该MO配置了基于SSB和CSI-RS的测量,所述终端设备根据CSI-RS和SSB的关联关系,在所述SSB和CSI-RS对应Rx beam Set配置中确定进行测量所使用的目标Rx beam Set配置。
例如,若所述SSB和所述CSI-RS没有关联(associated)关系,则基于不同的测量参考信号进行测量可以使用对应的Rx beam Set配置。
又例如,若所述SSB为所述CSI-RS的关联SSB,并且,所述SSB和所述CSI-RS满足QCL关系,则基于SSB和所述CSI-RS进行测量均可以使用SSB对应的Rx beam Set配置。
再例如,若所述SSB为所述CSI-RS的关联SSB,并且,所述SSB和所述CSI-RS不满足准共址QCL关系,则基于所述SSB和所述CSI-RS进行测量时可以使用所述多套Rx beam Set配置中的任一套Rx beam Set配置或者特定的一套Rx beam Set配置。
可选地,在本申请实施例中,SSB和CSI-RS不满足准共址QCL关系可以指CSI-RS和SSB的波束方向不同。
在选择Rx beam Set配置时,根据测量参考信号的关联关系进行选择,有利于减小不必要的用于测量的接收波束的切换,提升系统性能。
可选地,所述特定的一套Rx beam Set配置可以是多套Rx beam Set配置中的第一套Rx beam Set配置,即Rx beam Set配置0,或者是多套Rx beam Set配置中的最后一套Rx beam Set配置。
可选地,所述特定的一套Rx beam Set配置可以所述多套Rx beam Set配置中的波束数量最多的一套Rx beam Set配置,或者波束数量最多且最窄的一套Rx beam Set配置。
可选地,所述特定的一套Rx beam Set配置可以所述多套Rx beam Set配置中的波束数量最少的一套Rx beam Set配置,或者波束数量最少且最宽的一套Rx beam Set配置。
可选地,在一些实施例中,所述多套Rx beam Set配置中可以包括一套基本Rx beam Set配置,或称默认配置,这一套基本Rx beam Set配置可以是所有UE均支持的Rx beam Set配置。
可选地,该基本Rx beam Set配置可以是基于服务小区上的测量参考信号的测量结果确定的。例如在一段时间内,可以基于不同的Rx beam Set配置对服务小区上的测量参考信号进行测量得到多组测量结果,进一步基于多组测量结果确定基本Rx beam Set配置。例如可以将一段时间内最优的一组测量结果所对应的Rx beam Set配置作为基本Rx beam Set配置,或者也可以将满足特定门限的一组测量结果所对应的Rx beam Set配置作为基本Rx beam Set配置等,本申请并不限于此。
实施例4:所述第一配置信息包括至少一个频点分别对应的接收波束集的能力信息。
即在该实施例4中,所述接收波束集的能力信息是每频点(per frequency layer)配置的,即每个频点可以对应相应的Rx beam Set配置。
可选地,在一些实施例中,一个频点对应一个小区或对应多个小区。即一个小区可以支持一个频 点或者多个频点,多个小区可以使用同一频点。
作为示例4-1,每个频点对应的Rx beam Set配置为一套。
则对该频点的小区的测量均可以使用这一套Rx beam Set配置。或者说,对该频点的小区上的不同测量参考信号的测量均可以使用这一套Rx beam Set配置。
作为示例4-2,每个频点对应的Rx beam Set配置为多套。
可选地,所述多套Rx beam Set配置可以分别对应该频点对应的多个小区,则对该频点的不同小区上的测量参考信号进行测量时可以基于该小区对应的Rx beam Set配置进行测量。
可选地,所述多套Rx beam Set配置可以分别对应不同的测量参考信号,则对该频点的小区上的不同参考信号的测量可以基于该测量参考信号对应的Rx beam Set配置。
实施例5:所述第一配置信息包括至少一个小区分别对应的接收波束集的能力信息。
即在该实施例5中,所述接收波束集的能力信息是每小区(per cell)配置的,即每个小区可以对应相应的Rx beam Set配置。
可选地,在一些实施例中,一个小区对应一个频点或对应多个频点。即一个小区可以支持一个频点或者多个频点。
作为示例5-1,每个小区点对应的Rx beam Set配置为一套。
则对该频点的小区上的不同测量参考信号的测量均可以使用这一套Rx beam Set配置。
作为示例5-2,每个小区对应的Rx beam Set配置为多套。
可选地,所述多套Rx beam Set配置可以分别对应不同的测量参考信号,则对该小区上的不同参考信号的测量可以基于该测量参考信号对应的Rx beam Set配置。
可选地,所述多套Rx beam Set配置可以分别对应该小区的多个频点,则对小区的不同频点上的测量参考信号进行测量时可以基于该频点对应的Rx beam Set配置进行测量。
在一些场景中,基于不同的Rx beam Set配置对同一小区进行测量可能得到的测量结果具有一定的差异,这样基于不同的Rx beam Set配置对不同的小区进行测量,进而网络设备根据上报的测量结果进行小区切换,这就导致网络基于该测量结果来判断是否小区切换时出现问题。
例如,如图3所示,基于Rx beam Set配置0(8个beam,和/或fine beam)对服务小区进行测量,基于Rx beam Set配置3(4个beam,和/或rough)对邻小区进行测量,由于窄波束能量集中、覆盖范围远,所以,服务小区的测量结果通常比邻小区的测量结果高3个dB。
基于该技术问题,进一步地,在本申请一些实施例中,所述第一配置信息还用于配置测量补偿量,所述测量补偿量用于对根据所述接收波束集的能力信息进行测量得到的测量量进行补偿。
可选地,在本申请另一些实施例中,所述测量补偿量也可以是预定义的,例如可以将标准定义的该测量补偿量预设在所述终端设备的存储器中,或者预配置的,例如通过半静态信令,例如RRC信令或广播消息等配置该测量补偿量。
应理解,在本申请实施例中,所述测量补偿量可以和所述Rx beam Set配置通过同一消息或信令配置,或者也可以通过不同的消息或信令配置,以下以通过所述第一配置信息配置所述测量补偿量为例进行说明,但本申请并不限于此。
在一些实施例中,所述第一配置信息包括基准接收波束集的能力信息(或称基准Rx beam Set配置)和至少一个非基准接收波束集的能力信息(非基准Rx beam Set配置),所述测量补偿量为至少一个测量量相对于基准测量量的补偿量,其中,所述至少一个测量量为根据所述至少一个非基准接收波束集的能力信息进行测量得到的测量量,所述基准测量量是根据所述基准接收波束集的能力信息进行测量得到的测量量。
可选地,所述基准Rx beam Set配置可以为前文所述的基准Rx beam Set配置,其可以是所有UE均支持的Rx beam Set配置。
进一步地,所述基准Rx beam Set配置的确定方式可以参考前文基准Rx beam Set配置的确定方式,为了简洁,这里不再赘述。
作为一个示例,所述基准Rx beam Set配置根据所述终端设备的服务小区上的测量参考信号(例 如SSB)的测量结果确定。
可选地,可以根据基于不同的Rx beam Set配置对同一小区上的测量参考信号进行测量得到的测量结果确定所述测量补偿量。
可选地,在本申请实施例中,可以根据单一时刻的测量结果确定所述测量补偿量,或者也可以根据一段时间内的测量结果确定所述测量补偿量,本申请并不限于此。
以下,结合实施例6,说明所述测量补偿量的具体实现方式。
实施例6
实施例6-1:所述第一配置信息包括至少一组测量补偿量,每组测量补偿量对应一个非基准接收波束集的能力信息。
即所述测量补偿量可以是每Rx beam Set配置(per Rx beam Set配置)的,即每个非基准Rx beam Set配置可以对应一组测量补偿量。
例如,非基准Rx beam Set配置包括第一非基准Rx beam Set配置,则基于第一非基准Rx beam Set配置进行测量时,可以根据该第一非基准Rx beam Set配置对应的一组测量补偿量对测量结果进行补偿。
方式1:每组测量补偿量包括一个测量补偿量。
可选地,所述一个测量补偿量对应至少一种类型的测量量,即不同类型的测量结果都可以使用该一个测量补偿量进行补偿。
方式2:每组测量补偿量包括多个测量补偿量。
可选地,所述多个测量补偿量对应多种类型的测量量,即不同类型的测量结果都可以使用对应的测量补偿量进行补偿。
可选地,所述测量量包括以下中的至少一种:
参考信号接收功率RSRP、参考信号接收质量RSRQ、信号干扰噪声比SINR。
实施例6-2:所述第一配置信息包括多组测量补偿量。
可选地,所述多组测量补偿量对应多种测量参考信号,每组测量补偿量用于对基于对应的测量参考信号进行测量得到的测量量进行补偿。
作为一个示例,所述第一配置信息包括两组测量补偿量,分别对应SSB和CSI-RS,所述两组测量补偿量分别用于对基于SSB和CSI-RS进行测量得到的测量结果进行补偿。
方式1:每组测量补偿量包括一个测量补偿量。
可选地,所述一个测量补偿量对应至少一种类型的测量量,即不同类型的测量结果都可以使用该一个测量补偿量进行补偿。
方式2:每组测量补偿量包括多个测量补偿量。
可选地,所述多个测量补偿量对应多种类型的测量量,即不同类型的测量结果都可以使用对应的测量补偿量进行补偿。
举个例子,对于前文所述的Rx beam Set配置0(8个beam,和/或fine beam),或者也可以包括多套Rx beam Set配置,例如,Rx beam Set配置0(8个beam,和/或fine)、Rx beam Set配置1(8个beam,和/或rough)、Rx beam Set配置2(4个beam,fine)和Rx beam Set配置3(4个beam,rough),Rx beam Set配置0可以为基准Rx beam Set配置,其他为非基准Rx beam Set配置。
作为一个示例,Rx beam Set配置1、Rx beam Set配置2和Rx beam Set配置3分别对应一个测量补偿量。
作为另一个示例,Rx beam Set配置1、Rx beam Set配置2和Rx beam Set配置3分别对应三个测量补偿量,分别用于测量结果为RSRP、RSRQ和SINR时的补偿。
作为又一个示例,可以具有两组测量补偿量,一组为SSB对应一组测量补偿量,另一组为CSI-RS对应的一组测量补偿量,对于每组测量补偿量来说,Rx beam Set配置1、Rx beam Set配置2和Rx beam Set配置3分别对应一个测量补偿量,或者也可以对应三个测量补偿量。
应理解,在本申请实施例中,上述实施例1-6可以单独实施,或者也可以结合实施,本申请并不 限于此。
进一步地,在本申请一些实施例中,所述方法200还包括:
所述终端设备根据所述测量补偿量,对基于所述测量参考信号进行测量得到的测量量进行补偿;
将补偿后的测量量上报给所述网络设备。
在测量上报时将补偿后的测量结果上报给网络设备,解决了基于不同的Rx beam Set配置进行测量上报时的测量结果的不一致性,避免了网络设备在小区重选或小区切换时做出错误的判断,进而导致RLF的问题。
上文结合图2至图3,详细描述了本申请的方法实施例,下文结合图4至图8,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图4示出了根据本申请实施例的终端设备400的示意性框图。如图4所示,该终端设备400包括:
通信单元410,用于接收网络设备的第一配置信息,所述第一配置信息包括接收波束集的能力信息,其中,所述接收波束集的能力信息用于指示所述接收波束集包括的波束的数量和/或宽度;
处理单元420,用于根据所述第一配置信息对所述网络设备发送的测量参考信号进行测量。
可选地,在一些实施例中,不同的终端设备分别对应相应的第一配置信息。
可选地,在一些实施例中,所述第一配置信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于基于所有测量参考信号的测量。
可选地,在一些实施例中,所述第一配置信息包括至少一个接收波束集的能力信息,对应至少一个测量参考信号,每个接收波束集的能力信息用于基于对应的测量参考信号的测量。
可选地,在一些实施例中,所述测量参考信号包括同步信号块SSB和信道状态信息参考信号CSI-RS,所述至少一个接收波束集的能力信息包括第一接收波束集的能力信息和第二接收波束集的能力信息,其中,所述第一接收波束集的能力信息用于SSB的测量,所述第二接收波束集的能力信息用于CSI-RS的测量。
可选地,在一些实施例中,所述第一配置信息包括至少一个测量对象分别对应的接收波束集的能力信息,其中,每个测量对象对应的接收波束集的能力信息的数量为一个或多个。
可选地,在一些实施例中,所述测量对象对应同频测量层或异频测量层。
可选地,在一些实施例中,所述测量对象对应的接收波束集的能力信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于多种测量参考信号的测量;或者
所述测量对象对应的接收波束集的能力信息包括多个接收波束集的能力信息,对应多种测量参考信号,每个接收波束集的能力信息用于基于对应的测量参考信号的测量。
可选地,在一些实施例中,所述测量对象对应的接收波束集的能力信息包括第三接收波束集的能力信息和第四接收波束集的能力信息,所述第三接收波束集的能力信息用于SSB的测量,所述第四接收波束集的能力信息用于CSI-RS的测量。
可选地,在一些实施例中,所述处理单元420具体用于:
若一个测量对象配置了基于SSB和CSI-RS的测量,根据CSI-RS和SSB的关联关系,在所述第三接收波束集的能力信息和所述第四接收波束集的能力信息中确定进行测量所使用的目标接收波束集的能力信息;
根据所述目标接收波束集的能力信息对所述SSB或所述CSI-RS进行测量。
可选地,在一些实施例中,若所述SSB和所述CSI-RS没有关联关系,所述测量参考信号为所述SSB,所述目标接收波束集的能力信息为所述第三接收波束集的能力信息;或者
若所述SSB和所述第二CSI-RS没有关联关系,所述测量参考信号为所述CSI-RS,所述目标接收波束集的能力信息为所述第四接收波束集的能力信息;或者
若所述SSB为所述CSI-RS的关联SSB,并且,所述SSB和所述CSI-RS满足准共址QCL关系,所述测量参考信号为所述SSB或所述CSI-RS,所述目标接收波束集的能力信息均为所述第三接收波束集的能力信息;或者
若所述SSB为所述CSI-RS的关联SSB,并且,所述SSB和所述CSI-RS不满足准共址QCL关 系,在所述测量参考信号为所述SSB或所述CSI-RS时,所述目标接收波束集的能力信息为所述第三接收波束集的能力信息和所述第四接收波束集的能力信息中任意一个。
可选地,在一些实施例中,所述第一配置信息包括至少一个频点分别对应的接收波束集的能力信息,其中,每个频点对应的接收波束集的能力信息的数量为一个或多个。
可选地,在一些实施例中,一个频点对应一个小区或对应多个小区。
可选地,在一些实施例中,所述第一配置信息包括至少一个小区分别对应的接收波束集的能力信息,其中,每个小区对应的接收波束集的能力信息的数量为一个或多个。
可选地,在一些实施例中,一个小区对应一个频点或对应多个频点。
可选地,在一些实施例中,所述第一配置信息还用于配置测量补偿量,所述测量补偿量用于对根据所述接收波束集的能力信息进行测量得到的测量量进行补偿;或者
所述测量补偿量是预配置的。
可选地,在一些实施例中,所述第一配置信息包括基准接收波束集的能力信息和至少一个非基准接收波束集的能力信息,所述测量补偿量为至少一个测量量相对于基准测量量的补偿量,其中,所述至少一个测量量为根据所述至少一个非基准接收波束集的能力信息进行测量得到的测量量,所述基准测量量是根据所述基准接收波束集的能力信息进行测量得到的测量量。
可选地,在一些实施例中,所述基准接收波束集的能力信息用于所述终端设备的服务小区上的测量参考信号的测量。
可选地,在一些实施例中,所述基准接收波束集的能力信息根据所述终端设备的服务小区上的测量参考信号的测量结果确定。
可选地,在一些实施例中,所述第一配置信息包括至少一组测量补偿量,每组测量补偿量对应一个非基准接收波束集的能力信息。
可选地,在一些实施例中,所述第一配置信息包括多组测量补偿量,所述多个测量补偿量对应多种测量参考信号,每组测量补偿量用于对基于对应的测量参考信号进行测量得到的测量量进行补偿。
可选地,在一些实施例中,所述第一配置信息包括两组测量补偿量,分别对应SSB和CSI-RS,所述两组测量补偿量分别用于对基于SSB和CSI-RS进行测量得到的测量结果进行补偿。
可选地,在一些实施例中,每组测量补偿量包括至少一个测量补偿量,所述至少一个测量补偿量对应至少一种类型的测量量,每个测量补偿量用于对应的一种类型的测量量的补偿。
可选地,在一些实施例中,所述至少一种类型的测量量包括以下中的至少一种:
参考信号接收功率RSRP、参考信号接收质量RSRQ、信号干扰噪声比SINR。
可选地,在一些实施例中,所述处理单元420还用于:
根据所述测量补偿量,对基于所述测量参考信号进行测量得到的测量量进行补偿;
所述通信单元410还用于:将补偿后的测量量上报给所述网络设备。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图5是根据本申请实施例的网络设备的示意性框图。图5的网络设备500包括:
通信单元510,用于接收终端设备发送的所述终端设备支持的接收波束集的能力信息,其中,所述接收波束集的能力信息用于指示所述接收波束集包括的波束的数量和/或宽度;
处理单元520,用于根据所述终端设备支持的接收波束集的能力信息,确定第一配置信息,所述第一配置信息用于给所述终端设备配置用于测量的接收波束集的能力信息;
所述通信单元510还用于向所述终端设备发送所述第一配置信息。
可选地,在一些实施例中,不同的终端设备分别对应相应的第一配置信息。
可选地,在一些实施例中,所述第一配置信息包括一个接收波束集的能力信息,所述一个接收波 束集的能力信息用于基于所有测量参考信号的测量。
可选地,在一些实施例中,所述第一配置信息包括至少一个接收波束集的能力信息,对应至少一个测量参考信号,每个接收波束集的能力信息用于基于对应的测量参考信号的测量。
可选地,在一些实施例中,所述测量参考信号包括同步信号块SSB和信道状态信息参考信号CSI-RS,所述至少一个接收波束集的能力信息包括第一接收波束集的能力信息和第二接收波束集的能力信息,其中,所述第一接收波束集的能力信息用于SSB的测量,所述第二接收波束集的能力信息用于基于CSI-RS的测量。
可选地,在一些实施例中,所述第一配置信息包括至少一个测量对象分别对应的接收波束集的能力信息,其中,每个测量对象对应的接收波束集的能力信息的数量为一个或多个。
可选地,在一些实施例中,所述测量对象对应同频测量层或异频测量层。
可选地,在一些实施例中,所述测量对象对应的接收波束集的能力信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于多种测量参考信号的测量;或者
所述测量对象对应的接收波束集的能力信息包括多个接收波束集的能力信息,对应多种测量参考信号,每个接收波束集的能力信息用于基于对应的测量参考信号的测量。
可选地,在一些实施例中,所述测量对象对应的接收波束集的能力信息包括第三接收波束集的能力信息和第四接收波束集的能力信息,所述第三接收波束集的能力信息用于SSB的测量,所述第四接收波束集的能力信息用于CSI-RS的测量。
可选地,在一些实施例中,所述第一配置信息还用于配置SSB和CSI-RS的关联关系。
可选地,在一些实施例中,所述第一配置信息包括至少一个频点分别对应的接收波束集的能力信息,其中,每个频点对应的接收波束集的能力信息的数量为一个或多个。
可选地,在一些实施例中,一个频点对应一个小区或对应多个小区。
可选地,在一些实施例中,所述第一配置信息包括至少一个小区分别对应的接收波束集的能力信息,其中,每个小区对应的接收波束集的能力信息的数量为一个或多个。
可选地,在一些实施例中,一个小区对应一个频点或对应多个频点。
可选地,在一些实施例中,所述第一配置信息还用于配置测量补偿量,所述测量补偿量用于对根据所述接收波束集的能力信息进行测量得到的测量量进行补偿。
可选地,在一些实施例中,所述第一配置信息包括基准接收波束集的能力信息和至少一个非基准接收波束集的能力信息,所述测量补偿量为至少一个测量量相对于基准测量量的补偿量,其中,所述至少一个测量量为根据所述至少一个非基准接收波束集的能力信息进行测量得到的测量量,所述基准测量量是根据所述基准接收波束集的能力信息进行测量得到的测量量。
可选地,在一些实施例中,所述基准接收波束集的能力信息用于所述终端设备的服务小区上的测量参考信号的测量。
可选地,在一些实施例中,所述基准接收波束集的能力信息根据所述终端设备的服务小区上的测量参考信号的测量结果确定。
可选地,在一些实施例中,所述第一配置信息包括至少一组测量补偿量,每组测量补偿量对应一个非基准接收波束集的能力信息。
可选地,在一些实施例中,所述第一配置信息包括多组测量补偿量,所述多个测量补偿量对应多种测量参考信号,每组测量补偿量用于对基于对应的测量参考信号进行测量得到的测量量进行补偿。
可选地,在一些实施例中,所述第一配置信息包括两组测量补偿量,分别对应SSB和CSI-RS,所述两组测量补偿量分别用于对基于SSB和CSI-RS进行测量得到的测量结果进行补偿。
可选地,在一些实施例中,每组测量补偿量包括至少一个测量补偿量,所述至少一个测量补偿量对应至少一种类型的测量量,每个测量补偿量用于对应的一种类型的测量量的补偿。
可选地,在一些实施例中,所述至少一种类型的测量量包括以下中的至少一种:
参考信号接收功率RSRP、参考信号接收质量RSRQ、信号干扰噪声比SINR。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系 统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200中网络设备的相应流程,为了简洁,在此不再赘述。
图6是本申请实施例提供的一种通信设备600示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8是本申请实施例提供的一种通信系统900的示意性框图。如图8所示,该通信系统900包括终端设备910和网络设备920。
其中,该终端设备910可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于 存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑 功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (106)

  1. 一种信号测量的方法,其特征在于,包括:
    终端设备接收网络设备的第一配置信息,所述第一配置信息包括接收波束集的能力信息,其中,所述接收波束集的能力信息用于指示所述接收波束集包括的波束的数量和/或宽度;
    所述终端设备根据所述第一配置信息对所述网络设备发送的测量参考信号进行测量。
  2. 根据权利要求1所述的方法,其特征在于,不同的终端设备分别对应相应的第一配置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一配置信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于基于所有测量参考信号的测量。
  4. 根据权利要求1或2所述的方法,其特征在于,所述第一配置信息包括至少一个接收波束集的能力信息,对应至少一个测量参考信号,每个接收波束集的能力信息用于对应的测量参考信号的测量。
  5. 根据权利要求4所述的方法,其特征在于,所述测量参考信号包括同步信号块SSB和信道状态信息参考信号CSI-RS,所述至少一个接收波束集的能力信息包括第一接收波束集的能力信息和第二接收波束集的能力信息,其中,所述第一接收波束集的能力信息用于SSB的测量,所述第二接收波束集的能力信息用于CSI-RS的测量。
  6. 根据权利要求1或2所述的方法,其特征在于,所述第一配置信息包括至少一个测量对象分别对应的接收波束集的能力信息,其中,每个测量对象对应的接收波束集的能力信息的数量为一个或多个。
  7. 根据权利要求6所述的方法,其特征在于,所述测量对象对应同频测量层或异频测量层。
  8. 根据权利要求6或7所述的方法,其特征在于,所述测量对象对应的接收波束集的能力信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于多种测量参考信号的测量;或者
    所述测量对象对应的接收波束集的能力信息包括多个接收波束集的能力信息,对应多种测量参考信号,每个接收波束集的能力信息用于对应的测量参考信号的测量。
  9. 根据权利要求8所述的方法,其特征在于,所述测量对象对应的接收波束集的能力信息包括第三接收波束集的能力信息和第四接收波束集的能力信息,所述第三接收波束集的能力信息用于SSB的测量,所述第四接收波束集的能力信息用于CSI-RS的测量。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备根据所述第一配置信息对所述网络设备发送的测量参考信号进行测量,包括:
    若一个测量对象配置了基于SSB和CSI-RS的测量,所述终端设备根据CSI-RS和SSB的关联关系,在所述第三接收波束集的能力信息和所述第四接收波束集的能力信息中确定进行测量所使用的目标接收波束集的能力信息;
    根据所述目标接收波束集的能力信息对所述SSB或所述CSI-RS进行测量。
  11. 根据权利要求10所述的方法,其特征在于,
    若所述SSB和所述CSI-RS没有关联关系,所述测量参考信号为所述SSB,所述目标接收波束集的能力信息为所述第三接收波束集的能力信息;或者
    若所述SSB和所述第二CSI-RS没有关联关系,所述测量参考信号为所述CSI-RS,所述目标接收波束集的能力信息为所述第四接收波束集的能力信息;或者
    若所述SSB为所述CSI-RS的关联SSB,并且,所述SSB和所述CSI-RS满足准共址QCL关系,所述测量参考信号为所述SSB或所述CSI-RS,所述目标接收波束集的能力信息均为所述第三接收波束集的能力信息;或者
    若所述SSB为所述CSI-RS的关联SSB,并且,所述SSB和所述CSI-RS不满足准共址QCL关系,在所述测量参考信号为所述SSB或所述CSI-RS时,所述目标接收波束集的能力信息为所述第三接收波束集的能力信息和所述第四接收波束集的能力信息中任意一个。
  12. 根据权利要求1或2所述的方法,其特征在于,所述第一配置信息包括至少一个频点分别对 应的接收波束集的能力信息,其中,每个频点对应的接收波束集的能力信息的数量为一个或多个。
  13. 根据权利要求12所述的方法,其特征在于,一个频点对应一个小区或对应多个小区。
  14. 根据权利要求1或2所述的方法,其特征在于,所述第一配置信息包括至少一个小区分别对应的接收波束集的能力信息,其中,每个小区对应的接收波束集的能力信息的数量为一个或多个。
  15. 根据权利要求14所述的方法,其特征在于,一个小区对应一个频点或对应多个频点。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,所述第一配置信息还用于配置测量补偿量,所述测量补偿量用于对根据所述接收波束集的能力信息进行测量得到的测量量进行补偿;或者所述测量补偿量是预配置的。
  17. 根据权利要求16所述的方法,其特征在于,所述第一配置信息包括基准接收波束集的能力信息和至少一个非基准接收波束集的能力信息,所述测量补偿量为至少一个测量量相对于基准测量量的补偿量,其中,所述至少一个测量量为根据所述至少一个非基准接收波束集的能力信息进行测量得到的测量量,所述基准测量量是根据所述基准接收波束集的能力信息进行测量得到的测量量。
  18. 根据权利要求17所述的方法,其特征在于,所述基准接收波束集的能力信息用于所述终端设备的服务小区上的测量参考信号的测量。
  19. 根据权利要求17或18所述的方法,其特征在于,所述基准接收波束集的能力信息根据所述终端设备的服务小区上的测量参考信号的测量结果确定。
  20. 根据权利要求17-19中任一项所述的方法,其特征在于,所述第一配置信息包括至少一组测量补偿量,每组测量补偿量对应一个非基准接收波束集的能力信息。
  21. 根据权利要求17-19中任一项所述的方法,其特征在于,所述第一配置信息包括多组测量补偿量,所述多个测量补偿量对应多种测量参考信号,每组测量补偿量用于对基于对应的测量参考信号进行测量得到的测量量进行补偿。
  22. 根据权利要求21所述的方法,其特征在于,所述第一配置信息包括两组测量补偿量,分别对应SSB和CSI-RS,所述两组测量补偿量分别用于对基于SSB和CSI-RS进行测量得到的测量结果进行补偿。
  23. 根据权利要求20-22中任一项所述的方法,其特征在于,每组测量补偿量包括至少一个测量补偿量,所述至少一个测量补偿量对应至少一种类型的测量量,每个测量补偿量用于对应的一种类型的测量量的补偿。
  24. 根据权利要求23所述的方法,其特征在于,所述至少一种类型的测量量包括以下中的至少一种:
    参考信号接收功率RSRP、参考信号接收质量RSRQ、信号干扰噪声比SINR。
  25. 根据权利要求16-24中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述测量补偿量,对基于所述测量参考信号进行测量得到的测量量进行补偿;
    将补偿后的测量量上报给所述网络设备。
  26. 一种信号测量的方法,其特征在于,包括:
    网络设备接收终端设备发送的所述终端设备支持的接收波束集的能力信息,其中,所述接收波束集的能力信息用于指示所述接收波束集包括的波束的数量和/或宽度;
    所述网络设备根据所述终端设备支持的接收波束集的能力信息,确定第一配置信息,所述第一配置信息包括用于测量的接收波束集的能力信息;
    所述网络设备向所述终端设备发送所述第一配置信息。
  27. 根据权利要求26所述的方法,其特征在于,不同的终端设备分别对应相应的第一配置信息。
  28. 根据权利要求26或27所述的方法,其特征在于,所述第一配置信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于基于所有测量参考信号的测量。
  29. 根据权利要求26或27所述的方法,其特征在于,所述第一配置信息包括至少一个接收波束集的能力信息,对应至少一个测量参考信号,每个接收波束集的能力信息用于对应的测量参考信号的测量。
  30. 根据权利要求29所述的方法,其特征在于,所述测量参考信号包括同步信号块SSB和信道状态信息参考信号CSI-RS,所述至少一个接收波束集的能力信息包括第一接收波束集的能力信息和第二接收波束集的能力信息,其中,所述第一接收波束集的能力信息用于SSB的测量,所述第二接收波束集的能力信息用于CSI-RS的测量。
  31. 根据权利要求26或27所述的方法,其特征在于,所述第一配置信息包括至少一个测量对象分别对应的接收波束集的能力信息,其中,每个测量对象对应的接收波束集的能力信息的数量为一个或多个。
  32. 根据权利要求31所述的方法,其特征在于,所述测量对象对应同频测量层或异频测量层。
  33. 根据权利要求31或32所述的方法,其特征在于,所述测量对象对应的接收波束集的能力信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于多种测量参考信号的测量;或者
    所述测量对象对应的接收波束集的能力信息包括多个接收波束集的能力信息,对应多种测量参考信号,每个接收波束集的能力信息用于对应的测量参考信号的测量。
  34. 根据权利要求33所述的方法,其特征在于,所述测量对象对应的接收波束集的能力信息包括第三接收波束集的能力信息和第四接收波束集的能力信息,所述第三接收波束集的能力信息用于SSB的测量,所述第四接收波束集的能力信息用于CSI-RS的测量。
  35. 根据权利要求34所述的方法,其特征在于,所述第一配置信息还用于配置SSB和CSI-RS的关联关系。
  36. 根据权利要求26或27所述的方法,其特征在于,所述第一配置信息包括至少一个频点分别对应的接收波束集的能力信息,其中,每个频点对应的接收波束集的能力信息的数量为一个或多个。
  37. 根据权利要求36所述的方法,其特征在于,一个频点对应一个小区或对应多个小区。
  38. 根据权利要求26或27所述的方法,其特征在于,所述第一配置信息包括至少一个小区分别对应的接收波束集的能力信息,其中,每个小区对应的接收波束集的能力信息的数量为一个或多个。
  39. 根据权利要求38所述的方法,其特征在于,一个小区对应一个频点或对应多个频点。
  40. 根据权利要求26-39中任一项所述的方法,其特征在于,所述第一配置信息还用于配置测量补偿量,所述测量补偿量用于对根据所述接收波束集的能力信息进行测量得到的测量量进行补偿。
  41. 根据权利要求40所述的方法,其特征在于,所述第一配置信息包括基准接收波束集的能力信息和至少一个非基准接收波束集的能力信息,所述测量补偿量为至少一个测量量相对于基准测量量的补偿量,其中,所述至少一个测量量为根据所述至少一个非基准接收波束集的能力信息进行测量得到的测量量,所述基准测量量是根据所述基准接收波束集的能力信息进行测量得到的测量量。
  42. 根据权利要求41所述的方法,其特征在于,所述基准接收波束集的能力信息用于所述终端设备的服务小区上的测量参考信号的测量。
  43. 根据权利要求41或42所述的方法,其特征在于,所述基准接收波束集的能力信息根据所述终端设备的服务小区上的测量参考信号的测量结果确定。
  44. 根据权利要求40-43中任一项所述的方法,其特征在于,所述第一配置信息包括至少一组测量补偿量,每组测量补偿量对应一个非基准接收波束集的能力信息。
  45. 根据权利要求40-43中任一项所述的方法,其特征在于,所述第一配置信息包括多组测量补偿量,所述多个测量补偿量对应多种测量参考信号,每组测量补偿量用于对基于对应的测量参考信号进行测量得到的测量量进行补偿。
  46. 根据权利要求45所述的方法,其特征在于,所述第一配置信息包括两组测量补偿量,分别对应SSB和CSI-RS,所述两组测量补偿量分别用于对基于SSB和CSI-RS进行测量得到的测量结果进行补偿。
  47. 根据权利要求44-46中任一项所述的方法,其特征在于,每组测量补偿量包括至少一个测量补偿量,所述至少一个测量补偿量对应至少一种类型的测量量,每个测量补偿量用于对应的一种类型的测量量的补偿。
  48. 根据权利要求47所述的方法,其特征在于,所述至少一种类型的测量量包括以下中的至少一种:
    参考信号接收功率RSRP、参考信号接收质量RSRQ、信号干扰噪声比SINR。
  49. 一种终端设备,其特征在于,包括:
    通信单元,用于接收网络设备的第一配置信息,所述第一配置信息包括接收波束集的能力信息,其中,所述接收波束集的能力信息用于指示所述接收波束集包括的波束的数量和/或宽度;
    处理单元,用于根据所述第一配置信息对所述网络设备发送的测量参考信号进行测量。
  50. 根据权利要求49所述的终端设备,其特征在于,不同的终端设备分别对应相应的第一配置信息。
  51. 根据权利要求49或50所述的终端设备,其特征在于,所述第一配置信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于基于所有测量参考信号的测量。
  52. 根据权利要求49或50所述的终端设备,其特征在于,所述第一配置信息包括至少一个接收波束集的能力信息,对应至少一个测量参考信号,每个接收波束集的能力信息用于对应的测量参考信号的测量。
  53. 根据权利要求52所述的终端设备,其特征在于,所述测量参考信号包括同步信号块SSB和信道状态信息参考信号CSI-RS,所述至少一个接收波束集的能力信息包括第一接收波束集的能力信息和第二接收波束集的能力信息,其中,所述第一接收波束集的能力信息用于SSB的测量,所述第二接收波束集的能力信息用于CSI-RS的测量。
  54. 根据权利要求49或50所述的终端设备,其特征在于,所述第一配置信息包括至少一个测量对象分别对应的接收波束集的能力信息,其中,每个测量对象对应的接收波束集的能力信息的数量为一个或多个。
  55. 根据权利要求54所述的终端设备,其特征在于,所述测量对象对应同频测量层或异频测量层。
  56. 根据权利要求54或55所述的终端设备,其特征在于,所述测量对象对应的接收波束集的能力信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于多种测量参考信号的测量;或者
    所述测量对象对应的接收波束集的能力信息包括多个接收波束集的能力信息,对应多种测量参考信号,每个接收波束集的能力信息用于对应的测量参考信号的测量。
  57. 根据权利要求56所述的终端设备,其特征在于,所述测量对象对应的接收波束集的能力信息包括第三接收波束集的能力信息和第四接收波束集的能力信息,所述第三接收波束集的能力信息用于SSB的测量,所述第四接收波束集的能力信息用于CSI-RS的测量。
  58. 根据权利要求57所述的终端设备,其特征在于,所述处理单元具体用于:
    若一个测量对象配置了基于SSB和CSI-RS的测量,根据CSI-RS和SSB的关联关系,在所述第三接收波束集的能力信息和所述第四接收波束集的能力信息中确定进行测量所使用的目标接收波束集的能力信息;
    根据所述目标接收波束集的能力信息对所述SSB或所述CSI-RS进行测量。
  59. 根据权利要求58所述的终端设备,其特征在于,
    若所述SSB和所述CSI-RS没有关联关系,所述测量参考信号为所述SSB,所述目标接收波束集的能力信息为所述第三接收波束集的能力信息;或者
    若所述SSB和所述第二CSI-RS没有关联关系,所述测量参考信号为所述CSI-RS,所述目标接收波束集的能力信息为所述第四接收波束集的能力信息;或者
    若所述SSB为所述CSI-RS的关联SSB,并且,所述SSB和所述CSI-RS满足准共址QCL关系,所述测量参考信号为所述SSB或所述CSI-RS,所述目标接收波束集的能力信息均为所述第三接收波束集的能力信息;或者
    若所述SSB为所述CSI-RS的关联SSB,并且,所述SSB和所述CSI-RS不满足准共址QCL关 系,在所述测量参考信号为所述SSB或所述CSI-RS时,所述目标接收波束集的能力信息为所述第三接收波束集的能力信息和所述第四接收波束集的能力信息中任意一个。
  60. 根据权利要求49或50所述的终端设备,其特征在于,所述第一配置信息包括至少一个频点分别对应的接收波束集的能力信息,其中,每个频点对应的接收波束集的能力信息的数量为一个或多个。
  61. 根据权利要求60所述的终端设备,其特征在于,一个频点对应一个小区或对应多个小区。
  62. 根据权利要求49或50所述的终端设备,其特征在于,所述第一配置信息包括至少一个小区分别对应的接收波束集的能力信息,其中,每个小区对应的接收波束集的能力信息的数量为一个或多个。
  63. 根据权利要求62所述的终端设备,其特征在于,一个小区对应一个频点或对应多个频点。
  64. 根据权利要求49-63中任一项所述的终端设备,其特征在于,所述第一配置信息还用于配置测量补偿量,所述测量补偿量用于对根据所述接收波束集的能力信息进行测量得到的测量量进行补偿;或者所述测量补偿量是预配置的。
  65. 根据权利要求64所述的终端设备,其特征在于,所述第一配置信息包括基准接收波束集的能力信息和至少一个非基准接收波束集的能力信息,所述测量补偿量为至少一个测量量相对于基准测量量的补偿量,其中,所述至少一个测量量为根据所述至少一个非基准接收波束集的能力信息进行测量得到的测量量,所述基准测量量是根据所述基准接收波束集的能力信息进行测量得到的测量量。
  66. 根据权利要求65所述的终端设备,其特征在于,所述基准接收波束集的能力信息用于所述终端设备的服务小区上的测量参考信号的测量。
  67. 根据权利要求65或66所述的终端设备,其特征在于,所述基准接收波束集的能力信息根据所述终端设备的服务小区上的测量参考信号的测量结果确定。
  68. 根据权利要求65-67中任一项所述的终端设备,其特征在于,所述第一配置信息包括至少一组测量补偿量,每组测量补偿量对应一个非基准接收波束集的能力信息。
  69. 根据权利要求65-67中任一项所述的终端设备,其特征在于,所述第一配置信息包括多组测量补偿量,所述多个测量补偿量对应多种测量参考信号,每组测量补偿量用于对基于对应的测量参考信号进行测量得到的测量量进行补偿。
  70. 根据权利要求69所述的终端设备,其特征在于,所述第一配置信息包括两组测量补偿量,分别对应SSB和CSI-RS,所述两组测量补偿量分别用于对基于SSB和CSI-RS进行测量得到的测量结果进行补偿。
  71. 根据权利要求68-70中任一项所述的终端设备,其特征在于,每组测量补偿量包括至少一个测量补偿量,所述至少一个测量补偿量对应至少一种类型的测量量,每个测量补偿量用于对应的一种类型的测量量的补偿。
  72. 根据权利要求71所述的终端设备,其特征在于,所述至少一种类型的测量量包括以下中的至少一种:
    参考信号接收功率RSRP、参考信号接收质量RSRQ、信号干扰噪声比SINR。
  73. 根据权利要求64-72中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    根据所述测量补偿量,对基于所述测量参考信号进行测量得到的测量量进行补偿;
    所述通信单元还用于:将补偿后的测量量上报给所述网络设备。
  74. 一种网络设备,其特征在于,包括:
    通信单元,用于接收终端设备发送的所述终端设备支持的接收波束集的能力信息,其中,所述接收波束集的能力信息用于指示所述接收波束集包括的波束的数量和/或宽度;
    处理单元,用于根据所述终端设备支持的接收波束集的能力信息,确定第一配置信息,所述第一配置信息包括用于测量的接收波束集的能力信息;
    向所述终端设备发送所述第一配置信息。
  75. 根据权利要求74所述的网络设备,其特征在于,不同的终端设备分别对应相应的第一配置 信息。
  76. 根据权利要求74或75所述的网络设备,其特征在于,所述第一配置信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于基于所有测量参考信号的测量。
  77. 根据权利要求74或75所述的网络设备,其特征在于,所述第一配置信息包括至少一个接收波束集的能力信息,对应至少一个测量参考信号,每个接收波束集的能力信息用于对应的测量参考信号的测量。
  78. 根据权利要求77所述的网络设备,其特征在于,所述测量参考信号包括同步信号块SSB和信道状态信息参考信号CSI-RS,所述至少一个接收波束集的能力信息包括第一接收波束集的能力信息和第二接收波束集的能力信息,其中,所述第一接收波束集的能力信息用于SSB的测量,所述第二接收波束集的能力信息用于CSI-RS的测量。
  79. 根据权利要求74或75所述的网络设备,其特征在于,所述第一配置信息包括至少一个测量对象分别对应的接收波束集的能力信息,其中,每个测量对象对应的接收波束集的能力信息的数量为一个或多个。
  80. 根据权利要求79所述的网络设备,其特征在于,所述测量对象对应同频测量层或异频测量层。
  81. 根据权利要求79或80所述的网络设备,其特征在于,所述测量对象对应的接收波束集的能力信息包括一个接收波束集的能力信息,所述一个接收波束集的能力信息用于多种测量参考信号的测量;或者
    所述测量对象对应的接收波束集的能力信息包括多个接收波束集的能力信息,对应多种测量参考信号,每个接收波束集的能力信息用于对应的测量参考信号的测量。
  82. 根据权利要求81所述的网络设备,其特征在于,所述测量对象对应的接收波束集的能力信息包括第三接收波束集的能力信息和第四接收波束集的能力信息,所述第三接收波束集的能力信息用于SSB的测量,所述第四接收波束集的能力信息用于CSI-RS的测量。
  83. 根据权利要求82所述的网络设备,其特征在于,所述第一配置信息还用于配置SSB和CSI-RS的关联关系。
  84. 根据权利要求74或75所述的网络设备,其特征在于,所述第一配置信息包括至少一个频点分别对应的接收波束集的能力信息,其中,每个频点对应的接收波束集的能力信息的数量为一个或多个。
  85. 根据权利要求84所述的网络设备,其特征在于,一个频点对应一个小区或对应多个小区。
  86. 根据权利要求74或75所述的网络设备,其特征在于,所述第一配置信息包括至少一个小区分别对应的接收波束集的能力信息,其中,每个小区对应的接收波束集的能力信息的数量为一个或多个。
  87. 根据权利要求86所述的网络设备,其特征在于,一个小区对应一个频点或对应多个频点。
  88. 根据权利要求74-87中任一项所述的网络设备,其特征在于,所述第一配置信息还用于配置测量补偿量,所述测量补偿量用于对根据所述接收波束集的能力信息进行测量得到的测量量进行补偿。
  89. 根据权利要求88所述的网络设备,其特征在于,所述第一配置信息包括基准接收波束集的能力信息和至少一个非基准接收波束集的能力信息,所述测量补偿量为至少一个测量量相对于基准测量量的补偿量,其中,所述至少一个测量量为根据所述至少一个非基准接收波束集的能力信息进行测量得到的测量量,所述基准测量量是根据所述基准接收波束集的能力信息进行测量得到的测量量。
  90. 根据权利要求89所述的网络设备,其特征在于,所述基准接收波束集的能力信息用于所述终端设备的服务小区上的测量参考信号的测量。
  91. 根据权利要求89或90所述的网络设备,其特征在于,所述基准接收波束集的能力信息根据所述终端设备的服务小区上的测量参考信号的测量结果确定。
  92. 根据权利要求89-91中任一项所述的网络设备,其特征在于,所述第一配置信息包括至少一 组测量补偿量,每组测量补偿量对应一个非基准接收波束集的能力信息。
  93. 根据权利要求89-91中任一项所述的网络设备,其特征在于,所述第一配置信息包括多组测量补偿量,所述多个测量补偿量对应多种测量参考信号,每组测量补偿量用于对基于对应的测量参考信号进行测量得到的测量量进行补偿。
  94. 根据权利要求93所述的网络设备,其特征在于,所述第一配置信息包括两组测量补偿量,分别对应SSB和CSI-RS,所述两组测量补偿量分别用于对基于SSB和CSI-RS进行测量得到的测量结果进行补偿。
  95. 根据权利要求92-94中任一项所述的网络设备,其特征在于,每组测量补偿量包括至少一个测量补偿量,所述至少一个测量补偿量对应至少一种类型的测量量,每个测量补偿量用于对应的一种类型的测量量的补偿。
  96. 根据权利要求95所述的网络设备,其特征在于,所述至少一种类型的测量量包括以下中的至少一种:
    参考信号接收功率RSRP、参考信号接收质量RSRQ、信号干扰噪声比SINR。
  97. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至25中任一项所述的方法。
  98. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至25中任一项所述的方法。
  99. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法。
  100. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至25中任一项所述的方法。
  101. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法。
  102. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求26至48中任一项所述的方法。
  103. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求26至48中任一项所述的方法。
  104. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求26至48中任一项所述的方法。
  105. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求26至48中任一项所述的方法。
  106. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求26至48中任一项所述的方法。
PCT/CN2020/099409 2020-06-30 2020-06-30 信号测量的方法、终端设备和网络设备 WO2022000301A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/099409 WO2022000301A1 (zh) 2020-06-30 2020-06-30 信号测量的方法、终端设备和网络设备
CN202080100048.3A CN115428349A (zh) 2020-06-30 2020-06-30 信号测量的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099409 WO2022000301A1 (zh) 2020-06-30 2020-06-30 信号测量的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2022000301A1 true WO2022000301A1 (zh) 2022-01-06

Family

ID=79317301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099409 WO2022000301A1 (zh) 2020-06-30 2020-06-30 信号测量的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN115428349A (zh)
WO (1) WO2022000301A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241401A1 (zh) * 2022-06-13 2023-12-21 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062937A1 (ko) * 2016-09-29 2018-04-05 엘지전자(주) 무선 통신 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
CN108024363A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种干扰处理方法及装置
CN109565325A (zh) * 2016-08-10 2019-04-02 三星电子株式会社 用于无线系统中的波束测量和管理的方法和设备
CN111052627A (zh) * 2017-09-11 2020-04-21 联想(新加坡)私人有限公司 用于发送设备能力信息的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565325A (zh) * 2016-08-10 2019-04-02 三星电子株式会社 用于无线系统中的波束测量和管理的方法和设备
WO2018062937A1 (ko) * 2016-09-29 2018-04-05 엘지전자(주) 무선 통신 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
CN108024363A (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 一种干扰处理方法及装置
CN111052627A (zh) * 2017-09-11 2020-04-21 联想(新加坡)私人有限公司 用于发送设备能力信息的方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023241401A1 (zh) * 2022-06-13 2023-12-21 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN115428349A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
CN113840322B (zh) 一种测量间隔配置方法及装置
AU2020213574B2 (en) Signal transmission method and apparatus
US11956658B2 (en) Wireless communication method, terminal device, and network device
WO2019242021A1 (zh) 信息测量方法、终端设备和网络设备
WO2021203884A1 (zh) 一种中继通信方法及相关设备
US20230115662A1 (en) Method for neighboring cell measurement, terminal device and network device
CN110506432B (zh) 一种协作小区确定方法及网络设备
CA3037580C (en) Beamforming information interaction method and network device
US20230209526A1 (en) Method for selecting initial bandwidth part (bwp), terminal device and network device
WO2021003624A1 (zh) Bwp切换方法和终端设备
WO2022021131A1 (zh) 重选初始带宽部分bwp的方法、终端设备和网络设备
WO2021237531A1 (zh) 一种测量方法及装置、终端设备、网络设备
WO2022000301A1 (zh) 信号测量的方法、终端设备和网络设备
US20230106995A1 (en) Wireless communication method and terminal device
US20220022255A1 (en) Signal transmission method and apparatus, and network device
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
WO2022198545A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151275A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141760A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023102914A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023283889A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021243604A1 (zh) 数据传输的方法和设备
WO2023201489A1 (zh) 通信方法、终端设备和网络设备
WO2024011588A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943701

Country of ref document: EP

Kind code of ref document: A1