WO2021243604A1 - 数据传输的方法和设备 - Google Patents

数据传输的方法和设备 Download PDF

Info

Publication number
WO2021243604A1
WO2021243604A1 PCT/CN2020/094189 CN2020094189W WO2021243604A1 WO 2021243604 A1 WO2021243604 A1 WO 2021243604A1 CN 2020094189 W CN2020094189 W CN 2020094189W WO 2021243604 A1 WO2021243604 A1 WO 2021243604A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
channel quality
threshold
target
available
Prior art date
Application number
PCT/CN2020/094189
Other languages
English (en)
French (fr)
Inventor
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/094189 priority Critical patent/WO2021243604A1/zh
Priority to CN202080099652.9A priority patent/CN115428527A/zh
Priority to PCT/CN2020/116551 priority patent/WO2021243887A1/zh
Publication of WO2021243604A1 publication Critical patent/WO2021243604A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to methods and devices for data transmission.
  • a remote terminal can be connected to the network device through a relay terminal, or can also be directly connected to the network device.
  • the relay terminal can be a layer 2 relay
  • the remote terminal can only connect to the network device in one way.
  • a data transmission method and device are provided, which can select a connection as a target connection when there is at least one connection between a remote terminal and a network device, and further perform data transmission with the network device through the target connection.
  • a data transmission method including: a remote terminal selects a target connection from a first connection and a second connection, wherein the first connection is a connection in which the remote terminal directly connects to a network device , The second connection is a connection in which the remote terminal connects to a network device through a relay terminal.
  • a data transmission device which is used to execute the method in the first aspect or its implementation manners.
  • the device includes a functional module for executing the method in the foregoing first aspect or each implementation manner thereof.
  • a device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the foregoing first aspect or each of its implementation manners.
  • a chip which is used to implement the method in the above-mentioned first aspect or each of its implementation manners.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the method in the above-mentioned first aspect or each of its implementation manners.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute the method in the above-mentioned first aspect or each of its implementation manners.
  • a computer program product including computer program instructions, which cause a computer to execute the method in the first aspect or its implementation manners.
  • a computer program which when running on a computer, causes the computer to execute the method in the first aspect or its implementation manners.
  • Fig. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a relay transmission provided by an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the connection of the remote terminal with the first connection as the target connection.
  • FIG. 5 is a schematic diagram of the connection of the remote terminal with the second connection as the target connection.
  • Fig. 6 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a circuit provided according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • NR New Radio
  • evolution system of NR system LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) unlicensed spectrum, NR-U) system, non-terrestrial communication network (Non-Terrestrial Networks, NTN) system, Universal Mobile Telecommunication System (UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), the fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC Dual Connectivity
  • SA standalone
  • the communication system in the embodiment of this application can be applied to unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or the communication system in the embodiment of this application can also be applied to licensed spectrum, where: Licensed spectrum can also be considered non-shared spectrum.
  • the embodiments of this application describe various embodiments in combination with network equipment and terminal equipment.
  • the terminal equipment may also be referred to as User Equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, and remote station. Station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • UE User Equipment
  • the terminal device can be a station (ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, and a personal digital processing unit.
  • ST station
  • cellular phone a cellular phone
  • cordless phone a Session Initiation Protocol (SIP) phone
  • WLL wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • computing devices or other processing devices connected to wireless modems computing devices or other processing devices connected to wireless modems
  • in-vehicle devices wearable devices
  • next-generation communication systems such as terminal devices in NR networks, or in the future Terminal equipment in the evolved Public Land Mobile Network (PLMN) network.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • land including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • First class can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, and an augmented reality (Augmented Reality, AR) terminal.
  • Equipment wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, and wireless terminal equipment in smart grid , Wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device used to communicate with mobile devices, the network device may be an access point (AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA It can also be a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB, or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, wearable device, and NR network
  • gNB network equipment in the PLMN network or the network equipment in the PLMN network that will evolve in the future, or the network equipment in the NTN network, etc.
  • the network device may have mobile characteristics, for example, the network device may be a mobile device.
  • the network equipment can be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, or a high elliptical orbit (High Elliptical Orbit, HEO). ) Satellite etc.
  • the network device may also be a base station installed in a location such as land or water.
  • the network equipment may provide services for the cell, and the terminal equipment communicates with the network equipment through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network equipment ( For example, the cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, Micro cell, and Pico cell ( Pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities, and other network entities, which are not limited in the embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, an indirect indication, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B relation.
  • correlate can mean that there is a direct correspondence or an indirect correspondence between the two, or that there is an association relationship between the two, or indicating and being instructed, configuring and being Configuration and other relationships.
  • a terminal device to a relay network may be used to implement remote UE communication.
  • the remote UE can be connected to the network equipment in a variety of connection methods:
  • Method A Use a relay network (UE-to-network relay) to realize communication with network equipment.
  • UE-to-network relay UE-to-network relay
  • the remote UE can connect to the network device through a one-hop or multi-hop relay UE.
  • the remote UE and the relay UE are connected and communicated through the PC5 interface, and the last-hop relay UE (that is, the relay UE directly connected to the network device) and the network device are connected and communicated through the Uu interface, thereby
  • the remote UE is connected to the network, for example, Evolved Packet Core (EPC) or 5G Core Network (5G Core Network, 5GC).
  • EPC Evolved Packet Core
  • 5G Core Network 5G Core Network
  • the relay UEs are connected and communicated through the PC5 interface.
  • Method B The remote UE is directly connected to the network device.
  • the remote UE may realize the connection and communication with the network device through the Uu interface.
  • the relay terminal may be a layer 2 relay or a layer 3 relay, for example.
  • IP Internet Protocol
  • MAC Media Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the layer 3 relay supports is the function of the IP layer, and optionally, it can also support the function of the upper layer of the IP layer.
  • the layer 3 relay can assume the function of the IP layer relay, passing data between the remote terminal and the network, and passing the side line between the remote terminal and the relay terminal Link connection.
  • the remote UE can be connected to the network device in the above two ways at the same time.
  • the terminal device directly connected to the network device is visible to it, that is, if the remote If the UE is connected to the network device through method A, the network device can only see the relay UE, and it is not clear which UE the relay UE is still connected to. Therefore, the network device and the remote UE perform data through any connection transmission.
  • the remote UE can only connect to the network device through one connection mode at the same time.
  • the remote UE can only connect to the network device through one connection mode at the same time.
  • the present application provides a data transmission method, which can solve the connection selection problem when there is at least one connection between the remote UE and the network device.
  • FIG. 3 is a schematic flowchart of a data transmission method 300 according to an embodiment of the present application. As shown in FIG. 3, the method 300 may include at least part of the following content:
  • the remote terminal selects a target connection between a first connection and a second connection, where the first connection is a connection where the remote terminal directly connects to a network device, and the second connection is a connection through which the remote terminal passes
  • the relay terminal is connected to the connection of the network equipment, and the remote terminal and the relay terminal are connected through a side link.
  • the embodiments of the present application may be applicable to scenarios where relay transmission is performed through layer 2 relay, or may also be applicable to other scenarios where connection selection is required, and the present application is not limited to this.
  • one connection is determined as the target connection, and data transmission is performed with the network device through the target connection, which is beneficial to ensure that the remote terminal and the network device Normal data transfer between.
  • flexible selection of connections in different scenarios can be realized, which helps ensure that a suitable connection is selected for data transmission in different situations, instead of using one connection for data transmission, which can improve data transmission performance. For example, when the link status corresponding to the first connection becomes worse, the second connection is selected, or when the remote terminal moves out of the coverage of the network device corresponding to the first connection, the second connection is selected, etc.
  • the first connection is a direct connection between the remote terminal and the network device, that is, there is no other terminal between the remote terminal and the network device, and the remote terminal can directly communicate with the network device.
  • the second connection is a connection in which the remote terminal connects to a network device through a relay terminal.
  • the number of relay terminals between the remote terminal and the network device is not limited here.
  • the remote terminal and the network device may be connected through one or more relay terminals.
  • the remote terminal can communicate with the network device through the one or more relay terminals.
  • the network device directly connected to the terminal device is an access network device in the communication system, for example, e-NB or g-NB.
  • the network device directly connected to the remote terminal is recorded as the first network device
  • the network device connected to the remote terminal through the relay terminal is recorded as the second network device.
  • the first network device and the second network device may be the same network device, or may also be different network devices, which is not limited in this application.
  • the remote terminal and the first network device may be connected through a first interface, and the first interface may be, for example, a Uu interface.
  • the first connection may be Called Uu connection.
  • the first interface may also be another interface used for communication between the terminal and the network device, and the embodiment of the present application is not limited to this.
  • the remote terminal and the relay terminal may be connected through a second interface, and the second interface may be, for example, a PC5 interface, which is directly connected to the second network device.
  • the relay terminal and the second network device may be connected through a third interface, and the third interface may be, for example, a Uu interface.
  • the second connection may include at least one PC5 connection and Uu connection.
  • the second interface may also be another interface used for communication between the terminal and the terminal, and the third interface may also be another interface used for communication between the terminal and the network device.
  • the embodiments of the present application are not limited to this.
  • the remote terminal selects the target connection from the first connection and the second connection can also be expressed as “the remote terminal selects the target interface from the first type of interface and the second type of interface", where the The first type of interface is an interface for direct communication between a remote terminal and a network device, for example, a Uu interface.
  • the second type of interface includes a third interface and a fourth interface, and the third interface is the remote terminal and a relay.
  • An interface for terminal communication for example, a PC5 interface
  • the fourth interface is an interface for communication between the relay terminal and a network device, for example, a Uu interface. Selecting the target interface from the first type of interface and the second type of interface, and further communicating through the target interface can also solve the above technical problem.
  • the remote terminal selects the target connection between the first connection and the second connection can also be expressed as “the remote terminal selects the target link between the first link and the second link", where the first A link is a link for direct communication between a remote terminal and a network device (or called a direct link, a direct link), and the second link includes a third link and a fourth link, so The third link is the communication link between the remote terminal and the relay terminal (or access link), and the fourth link is the communication link between the relay terminal and the network device (or access link).
  • Relay link selecting a target link from the first link and the second link, and further communicating through the target link can also solve the above technical problem.
  • the remote terminal may select the target connection according to the channel quality of the first connection and the channel quality of the second connection.
  • the remote terminal may also be based on other information, such as data transmission conditions in the first connection and the second connection, such as packet loss rate, reliability, transmission delay and other parameters.
  • data transmission conditions in the first connection and the second connection such as packet loss rate, reliability, transmission delay and other parameters.
  • the movement situation of the remote terminal, location information, etc. determine the target connection, and this application is not limited to this.
  • connection selection based on channel quality. For the sake of brevity, it will not be repeated here.
  • connection selection based on the channel quality can be based on the channel quality at a single moment, or can also be based on the channel quality within a period of time, and the application is not limited to this.
  • the remote terminal may perform connection selection according to a certain period, so that a suitable connection can be dynamically selected for data transmission according to the channel quality of the first connection and the second connection.
  • the period may be configured by the network device, or pre-configured, or determined by the terminal device itself.
  • the remote terminal may determine the period of connection selection according to its own historical connection selection situation.
  • the remote terminal may also perform connection selection based on a trigger event, and the application is not limited to this.
  • the connection selection is made according to the instructions of the network equipment or other terminal equipment.
  • the network device may send an instruction to the remote terminal when the load is heavy, instructing the remote terminal to select a connection, so that the remote terminal can switch to another connection. Or, when the moving range of the remote terminal exceeds a certain range, connection selection is performed.
  • the channel quality of the first connection may be determined according to the channel quality of the direct connection (or direct link) between the remote terminal and the first network device.
  • the channel quality of the first connection may be the channel quality of the direct connection (or direct link).
  • the channel quality of the first connection may be determined according to the measurement result of the downlink reference signal sent by the first network device.
  • the downlink reference signal includes, but is not limited to, at least one of the following: synchronization signal block (Synchronization Signal Block, SSB), channel state information reference signal (Channel State Information Reference Signal, CSI-RS), solution Modulation Reference Signal (DMRS), Primary Synchronization Signal (Sidelink Primary Synchronization Signal, PSS) and Secondary Synchronization Signal (SSS), etc.; synchronization signals include PSS and SSS; demodulation reference signals include those used for physical Downlink shared channel (Physical Downlink Shared Channel, PDSCH), physical downlink control channel (Physical Downlink Control Channel, PDCCH) and physical broadcast channel (Physical Broadcast Channel, PBCH) demodulated DMRS.
  • synchronization signal block Synchronization Signal Block
  • CSI-RS Channel State Information Reference Signal
  • DMRS Solution Modulation Reference Signal
  • PSS Primary Synchronization Signal
  • PSS Secondary Synchronization Signal
  • demodulation reference signals include those used for physical Downlink shared channel (Physical
  • the measurement result may be, for example, but not limited to at least one of the following: channel quality indicator (Channel Quantity Indicator, CQI), reference signal receiving power (Reference Signal Receiving Power, RSRP), reference signal receiving quality (Reference Signal Receiving Quality, RSRQ), Signal to Interference plus Noise Ratio (SINR).
  • CQI Channel Quality indicator
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • SINR Signal to Interference plus Noise Ratio
  • the second connection may include a third connection between the remote terminal and the relay terminal, and between the relay terminal and the second network device.
  • the fourth connection between.
  • the remote terminal and the relay terminal are connected through a side link.
  • the third connection may include the terminal device and the relay terminal. Side link connection between terminals.
  • relay terminal there may be a relay terminal between the remote terminal and the second network device, or there may be multiple relay terminals, and the relay terminal here may be the remote terminal and the second network device. Any relay terminal between the second network devices. For example, if there are multiple relay terminals between the remote terminal and the second network device, the relay terminal may be the relay terminal of the first hop, or the relay terminal of the last hop, or the like.
  • the relay terminal is a relay terminal directly connected to the second network device. That is, the relay terminal of the last hop.
  • the remote terminal is connected to the second network device through the relay terminal 1 and the relay terminal 2.
  • the second connection may include: the connection 1 between the remote terminal and the relay terminal 1 and the connection 2 between the relay terminal 1 and the second network device, where the connection 2 includes two connections, namely the middle The connection between the relay terminal 1 and the relay terminal 2, and the connection between the relay terminal 2 and the second network device.
  • the second connection may include: a connection 3 between the remote terminal and the relay terminal 2 and a connection 4 between the relay terminal 2 and the second network device, where the connection 3 includes two connections, namely The connection between the remote terminal and the relay terminal 1, and the connection between the relay terminal 1 and the relay terminal 2.
  • the second connection can be further subdivided into multiple direct connections, where all The direct connection is a connection between two directly communicating devices on the link between the remote terminal and the second network device.
  • the second connection may include: a direct connection between the remote terminal and the relay terminal 1, a direct connection between the relay terminal 1 and the relay terminal 2, and a direct connection between the relay terminal 2 and the network device.
  • the channel quality of the second connection may be determined according to the channel quality of some or all of the connections between the remote terminal and the second network device.
  • the second connection includes the third connection and the fourth connection
  • the channel quality of the second connection may be determined according to the channel quality of the third connection and/or the channel quality of the fourth connection .
  • the second connection includes multiple direct connections, and the channel quality of the second connection may be determined according to some or all of the multiple direct connections.
  • Example 1 and Example 2 are substantially the same.
  • example 1 is taken as an example to describe the method for determining the channel quality of the second connection, and the method for determining the channel quality of the second connection according to Example 2 is similar, and will not be repeated here.
  • the channel quality of the second connection is the channel quality of the third connection.
  • the channel quality of the second connection is the channel quality of the fourth connection.
  • the channel quality of the second connection is the maximum value or the minimum value of the channel quality of the third connection and the channel quality of the fourth connection.
  • the channel quality of the second connection is a product of the channel quality of the third connection and the channel quality of the fourth connection.
  • the channel quality of the first connection may be determined according to the stability of the channel quality of the third connection and the fourth connection, which helps to ensure that the channel quality of the selected channel is high. And a stable connection is used as the target connection to improve data transmission performance.
  • the channel quality of a connection is limited by the channel quality of the link with the lowest channel quality in this connection. Based on this, as an example, it is possible to first determine the difference between the channel quality of the third connection and the channel quality of the fourth connection within a period of time. When the difference satisfies the first condition, for example, the difference between the channel quality of the third connection and the channel quality of the fourth connection within a period of time is less than the first threshold, or the number less than the first threshold is greater than the second Threshold, in this case, it can be considered that the channel quality of the third connection is equivalent to the channel quality of the fourth connection.
  • the channel quality of the third connection and the channel quality of the fourth connection are weighted, averaging or product processing is performed to obtain the channel quality of the second connection.
  • the difference between the channel quality of the third connection and the channel quality of the fourth connection within a period of time is both greater than the third threshold, or a number greater than the third threshold.
  • the number is greater than the fourth threshold.
  • the second connection can be determined according to the channel quality of the fourth connection. The channel quality of the connection.
  • the method for determining the channel quality of the second connection is only an example, and should not constitute any limitation to this application.
  • This application may also use other methods to calculate the channel quality of the second connection.
  • the target connection is subsequently selected, It is only necessary to configure the channel quality threshold suitable for this method, and the application is not limited to this.
  • the channel quality of the third connection between the remote terminal and the relay terminal may be determined according to the measurement result of the sideline reference signal sent by the relay terminal.
  • the sideline reference signal includes, but is not limited to, at least one of the following: Sidelink Synchronization Signal Block (S-SSB), and Sidelink Channel State Information Reference Signal (S-SSB).
  • Reference Signal SL CSI-RS, Demodulation Reference Signal (DMRS), etc.; among them, S-SSB includes Sidelink Primary Synchronization Signal (S-PSS) and Sidelink Primary Synchronization Signal (S-PSS) Sidelink Secondary Synchronization Signal (S-SSS);
  • DMRS includes physical sidelink Shared Channel (PSSCH), Physical Sidelink Shared Channel (PSSCH) and Physical Sidelink Broadcast Channel (Physical Sidelink) Broadcast Channel, PSBCH) demodulated DMRS.
  • the measurement result may be, for example, but not limited to at least one of the following: side-line CQI, side-line reference signal receiving power (Sidelink-Reference Signal Receiving Power, SL-RSRP), side-line reference signal receiving quality (Sidelink-Reference Signal Receiving Quality, SL-RSRQ), Signal to Interference plus Noise Ratio (SINR).
  • side-line CQI side-line reference signal receiving power
  • SL-RSRP Side-line reference signal receiving power
  • SL-RSRQ Side-line reference signal receiving quality
  • SINR Signal to Interference plus Noise Ratio
  • the channel quality of the fourth connection between the relay terminal and the second network device may be determined according to the measurement result of the downlink reference signal sent by the second network device.
  • the downlink reference signal includes, but is not limited to: SSB, CSI-RS, DMRS, etc., for example.
  • SSB includes PSS and SSS
  • DMRS may include DMRS used for PDSCH, PDCCH, and PBCH demodulation.
  • the measurement result is, for example, but not limited to: RSRP, RSRQ, SINR.
  • the relay terminal may send the measurement result to the remote terminal, so that the remote terminal can be based on the downlink reference signal
  • the target connection is selected with reference to the measurement result of the channel.
  • the remote terminal may select the target connection according to the channel quality of the first connection and the second connection. For example, it may be determined that the connection with the better channel quality among the first connection and the second connection is the target connection. For another example, it may be determined that a connection with a channel quality higher than a certain threshold in the first connection and the second connection is the target connection.
  • the comparison when comparing based on channel quality, can be based on the measurement result of channel quality at a single moment, or the comparison can also be based on the measurement result of channel quality over a period of time. Comparing the measurement results of the channel quality over a period of time is beneficial to selecting a connection with a stable channel quality as the target connection, and further ensuring the reliability of data transmission.
  • the length of the period of time may be pre-configured or configured by a network device.
  • the comparison based on the channel quality within a period of time may include the measurement results of multiple channel qualities of the first connection and the second connection within a period of time. Compare directly or indirectly to obtain multiple comparison results, and further select the target connection according to the multiple comparison results.
  • multiple first measurement results and multiple second measurement results can be compared to obtain multiple comparison results, where the multiple first measurement results are the channel quality of the first connection in the first time period.
  • the multiple measurement results of the multiple second measurement results are multiple measurement results of the channel quality of the second connection in the second time period.
  • the specific connection is selected as the target connection.
  • the plurality of comparison results satisfying the specific condition may mean that the plurality of comparison results all satisfy the specific condition, or the number of the plurality of comparison results satisfying the specific condition is greater than a certain threshold.
  • the comparison based on the channel quality within a period of time may also refer to first performing the measurement results of the channel quality of the first connection and the second connection within a period of time. Processing, such as averaging, obtaining a comprehensive result of channel quality in this period of time, and further comparing the comprehensive results, etc.
  • the application is not limited to this.
  • the remote terminal first determines the available connections of the first connection and the second connection according to the channel quality of the first connection and the channel quality of the second connection, and further, according to the available connection Select the target connection.
  • the remote terminal may determine whether the first connection is available according to the channel quality of the first connection and a first threshold.
  • the channel quality of the first connection is higher than or equal to the first threshold, it is determined that the first connection is available, or if the channel quality of the first connection is lower than the first threshold, it is determined that the channel quality of the first connection is lower than the first threshold.
  • the first connection described is not available.
  • the channel quality of the first connection is higher than the first threshold, it is determined that the first connection is available, or if the channel quality of the first connection is equal to or lower than the first threshold, it is determined The first connection is not available.
  • the channel quality of the first connection is higher than the first threshold may mean that the channel quality of the first connection is higher than the first threshold within a period of time, or that the channel quality of the first connection is higher than the first threshold within a period of time. The number of times the channel quality of the connection is higher than the first threshold is greater than the first number threshold, etc.
  • the first count threshold may be pre-configured or configured by a network device.
  • that the channel quality of the first connection is lower than the first threshold may mean that the channel quality of the first connection is lower than the first threshold for a period of time, or that the channel quality of the first connection is lower than the first threshold for a period of time. The number of times the channel quality of is lower than the first threshold is greater than the second times threshold, etc.
  • the second count threshold may be pre-configured or configured by a network device.
  • the remote terminal may determine whether the second connection is available according to the channel quality of the second connection and a second threshold.
  • the channel quality of the second connection is higher than or equal to the second threshold, it is determined that the second connection is available, or if the channel quality of the second connection is lower than the second threshold, it is determined that the channel quality of the second connection is lower than the second threshold.
  • the second connection is not available.
  • the second connection is not available. If the channel quality of the second connection is higher than the second threshold, it is determined that the second connection is available, or if the channel quality of the first connection is equal to or lower than the second threshold, it is determined The second connection is not available.
  • the first threshold and the second threshold may be configured by a network device, or pre-configured, or predefined, which is not limited in this application.
  • the first threshold and the second threshold may be equal or different.
  • the channel quality of the second connection is higher than the second threshold may mean that the channel quality of the second connection is higher than the second threshold within a period of time, or that the channel quality of the first connection is higher than the second threshold within a period of time.
  • the number of times the channel quality of the connection is higher than the second threshold is greater than the third times threshold, and so on.
  • the third count threshold may be pre-configured or configured by a network device.
  • that the channel quality of the second connection is lower than the second threshold may mean that the channel quality of the second connection is lower than the second threshold within a period of time, or that the channel quality of the second connection is lower than the second threshold within a period of time.
  • the number of times the channel quality of is lower than the second threshold is greater than the fourth times threshold, etc.
  • the fourth count threshold may be pre-configured or configured by a network device.
  • the channel quality of the first connection may be determined according to the measurement result of the downlink reference signal.
  • the first threshold may be a threshold determined according to a measurement result of the downlink reference signal. For example, if the measurement result of the downlink reference signal is RSRP, the first threshold is the RSRP threshold. For another example, if the measurement result of the downlink reference signal is RSRQ, the first threshold is the RSRQ threshold.
  • the second threshold may also be determined according to the measurement result of the downlink reference signal and/or the sideline reference signal.
  • the second threshold may be a threshold determined according to a measurement result of a side-line reference signal.
  • the second threshold is the SL-RSRP threshold.
  • the second threshold is the SL-RSRQ threshold.
  • the second threshold is a threshold determined according to a measurement result of a downlink reference signal. For example, if the measurement result of the downlink reference signal is RSRP, the second threshold is the RSRP threshold. For another example, if the measurement result of the downlink reference signal is RSRQ, the second threshold is the RSRQ threshold.
  • the second threshold may be determined according to the measurement of the downlink reference signal The result and the measurement result of the sideline reference signal are determined.
  • the second threshold may be RSRP Threshold value *SL-RSRP threshold value, or the second threshold is RSRQ threshold value *SL-RSRQ threshold value, etc.
  • the remote terminal can choose The one available connection is the target connection, and further, the remote terminal can perform data transmission with the network device through the target connection.
  • the remote terminal may select a connection with a channel quality greater than the minimum channel quality threshold as the target connection, or select the first connection and the connection Among the second connections, the connection with the better channel quality is used as the target connection.
  • the minimum channel quality threshold may be pre-configured or configured by a network device.
  • the remote terminal may prefer the first connection as the target connection.
  • the remote terminal may further compare the channel quality of the first connection with the channel quality of the second connection, and select the target connection.
  • the remote terminal may directly compare the channel quality of the first connection with the channel quality of the second connection, and select the target connection.
  • the remote terminal determines that the first connection is the target connection.
  • the measurement results of the multiple channel qualities of the first connection within a period of time and the measurement results of the multiple channel qualities of the second connection within a period of time may be respectively compared to obtain multiple comparison results. Further, the target connection is selected according to the multiple comparison results.
  • the first connection is selected.
  • the remote terminal may further determine that the first connection is better than the second connection. For example, if the difference between the channel quality of the first connection and the channel quality of the second connection is greater than the third threshold, that is, the channel quality of the first connection is higher than that of the second connection. The degree of channel quality is higher than the third threshold, and in this case, the first connection is selected as the target connection.
  • the second connection is often a preferred connection, and only when the channel quality of the first connection is much higher than the channel quality of the second connection, the first connection is selected as the target connection.
  • the remote terminal selects the second connection as the target connection.
  • the measurement results of the multiple channel qualities of the first connection within a period of time and the measurement results of the multiple channel qualities of the second connection within a period of time may be respectively compared to obtain multiple comparison results. Further, the target connection is selected according to the multiple comparison results.
  • the second connection is selected.
  • the remote terminal may further determine that the first connection is better than the second connection. For example, if the difference between the channel quality of the first connection and the channel quality of the second connection is less than the fourth threshold, that is, the channel quality of the first connection is higher than that of the second connection. The degree of low channel quality is greater than the fourth threshold, and in this case, the second connection is selected as the target connection.
  • the first connection is often a preferred connection
  • the second connection is selected as the target connection only when the channel quality of the first connection is much worse than the channel quality of the second connection.
  • the third threshold and the fourth threshold may be configured by a network device, or pre-configured, or predefined, which is not limited in this application.
  • the channel quality of the first connection and the channel quality of the second connection may be unified into The same standard, for example, both are expressed as RSRP, or both are expressed as RSRQ, and the specific adjustment factor can be determined according to the relationship between different measurement results.
  • the channel quality of the first connection when the channel quality of the first connection is compared with the channel quality of the second connection, the channel quality of the first connection may not be compared with the channel quality of the second connection.
  • the third threshold and the fourth threshold can be configured appropriately to ensure the accuracy of the comparison result of the channel quality of the first connection and the channel quality of the second connection .
  • the remote terminal may indirectly compare the channel quality of the first connection and the channel quality of the second connection to determine the target connection.
  • the channel quality of the first connection is higher than the fifth threshold, and the channel quality of the second connection is lower than the sixth threshold, it is determined that the first connection is the target connection.
  • the channel quality of the first connection is higher than the fifth threshold may mean that the channel quality of the first connection is higher than the fifth threshold within a period of time, or the channel quality of the first connection is higher than the fifth threshold within a period of time.
  • the number of times the channel quality is higher than the fifth threshold is greater than the seventh times threshold, etc.
  • the seventh times threshold may be pre-configured or configured by a network device.
  • the channel quality of the second connection is lower than the sixth threshold may mean that the channel quality of the second connection is lower than the sixth threshold within a period of time, or the channel quality of the second connection is lower than the sixth threshold within a period of time.
  • the number of times the channel quality is lower than the sixth threshold is greater than the eighth threshold, etc.
  • the eighth times threshold may be pre-configured or configured by a network device.
  • the channel quality of the first connection is lower than the seventh threshold, and the channel quality of the second connection is higher than the eighth threshold, it is determined that the first connection is the target connection.
  • the channel quality of the first connection being lower than the seventh threshold may mean that the channel quality of the first connection is lower than the seventh threshold within a period of time, or the channel quality of the first connection within a period of time
  • the number of times lower than the seventh threshold is greater than the ninth times threshold and so on.
  • the ninth times threshold may be pre-configured or configured by a network device.
  • the channel quality of the second connection is higher than the eighth threshold may mean that the channel quality of the second connection is higher than the eighth threshold within a period of time, or that the channel quality of the second connection is higher than the eighth threshold within a period of time.
  • the number of times the channel quality is higher than the eighth threshold is greater than the tenth times threshold, etc.
  • the tenth times threshold may be pre-configured or configured by a network device.
  • the fifth threshold, the sixth threshold, the seventh threshold, and the eighth threshold may be configured by a network device, or pre-configured, or predefined, which is not limited in this application.
  • the fifth threshold is greater than the seventh threshold, and the sixth threshold is less than the eighth threshold.
  • the channel quality of the first connection and the channel quality of the second connection can be characterized by the same parameter, for example, both are characterized by RSRP or RSRQ, or can also be characterized by different parameters. For example, one is characterized by RSRP, and the other is characterized by RSRQ.
  • the fifth threshold and the seventh threshold are threshold values corresponding to the characteristic parameter of the channel quality of the first connection. For example, if the channel quality of the first connection is characterized by RSRP, the fifth threshold and the seventh threshold are both RSRP thresholds.
  • the sixth threshold and the eighth threshold are threshold values corresponding to the characteristic parameter of the channel quality of the second connection. For example, if the channel quality of the second connection is characterized by RSRP, the sixth threshold and the eighth threshold are RSRP thresholds.
  • the fifth threshold when the channel quality of the first connection and the channel quality of the second connection are characterized by the same parameter, the fifth threshold may be greater than or equal to the sixth threshold, so The seventh threshold is less than or equal to the eighth threshold.
  • the fifth threshold may be configured as a lower threshold, and the sixth threshold may be configured as a higher threshold; Or configure the seventh threshold as a lower threshold, and the eighth threshold as a higher threshold, so that the channel quality of the first connection is equivalent to the channel quality of the second connection or the first connection
  • the first connection is preferably used as the target connection to reduce the delay of data transmission.
  • the channel quality of the first connection is higher than the fifth threshold, and the channel quality of the second connection is lower than the sixth threshold, it can be considered that the channel quality of the first connection is sufficiently high The channel quality of the second connection is poor. In this case, selecting the first connection as the target connection helps ensure reliable data transmission between the network device and the terminal device.
  • the channel quality of the first connection is lower than the seventh threshold, and the channel quality of the second connection is higher than the eighth threshold. It can be considered that the channel quality of the first connection is higher. If bad, the channel quality of the second connection is sufficiently high. In this case, selecting the second connection as the target connection helps ensure reliable data transmission between the network device and the terminal device.
  • the remote terminal may directly compare the channel quality of the first connection with the channel quality of the second connection to select the target connection.
  • Embodiment 2 The difference from Embodiment 1 is that in this Embodiment 2, the availability of the first connection and the second connection may not be judged, and the channel quality of the first connection and the second connection may be selected directly. Target connection.
  • the specific selection method can refer to the description of Embodiment 1-1, which will not be repeated here.
  • the remote terminal may indirectly compare the channel quality of the first connection and the channel quality of the second connection to select the target connection.
  • Embodiment 3 the availability of the first connection and the second connection may not be judged, and the channel quality of the first connection and the second connection may be selected directly.
  • Target connection For the specific selection method, refer to the description of Embodiment 1-2, which will not be repeated here.
  • the remote terminal may use the first connection to communicate with a network device, for example, as shown in FIG. 4.
  • the remote terminal may use the second connection to communicate with the network device, as shown in FIG. 5.
  • the target connection is selected according to the channel quality of the at least one connection, and data is further transmitted with the network device through the target connection. It helps to ensure the reliability of data transmission between terminal equipment and network equipment. And flexible selection of connections in different scenarios can be realized, which helps to ensure that a suitable connection is selected for data transmission in different situations, instead of using one connection for data transmission, which can improve data transmission performance.
  • Fig. 6 shows a schematic block diagram of a data transmission device 400 according to an embodiment of the present application. As shown in FIG. 6, the device 400 includes:
  • the processing unit 410 is configured to select a target connection between a first connection and a second connection, where the first connection is a connection in which the device is directly connected to a network device, and the second connection is a connection in which the device passes through a relay terminal. Connecting the connection of the network equipment, the remote terminal and the relay terminal are connected through a side link.
  • the processing unit 410 is specifically configured to:
  • the target connection is selected according to the channel quality of the first connection and the channel quality of the second connection.
  • the second connection includes a third connection between the device and the relay terminal and a fourth connection between the relay terminal and the network device, wherein, The channel quality of the second connection is determined according to the channel quality of the third connection and/or the channel quality of the fourth connection.
  • the channel quality of the second connection is the channel quality of the third connection.
  • the channel quality of the second connection is the channel quality of the fourth connection.
  • the channel quality of the second connection is the maximum or minimum of the channel quality of the third connection and the channel quality of the fourth connection; or
  • the channel quality of the second connection is the product of the channel quality of the third connection and the channel quality of the fourth connection.
  • the processing unit 410 is further configured to:
  • the target connection is selected.
  • the processing unit 410 is further configured to:
  • the processing unit 410 is specifically configured to:
  • the channel quality of the first connection is lower than the first threshold, it is determined that the first connection is unavailable.
  • the processing unit 410 is further configured to:
  • the processing unit 410 is specifically configured to:
  • the processing unit 410 is further configured to:
  • the processing unit 410 is further configured to:
  • the target connection is selected according to the channel quality of the first connection and the channel quality of the second connection.
  • the processing unit 410 is specifically configured to:
  • the first connection is selected as the target connection.
  • the difference between the channel quality of the first connection and the channel quality of the second connection is greater than a third threshold.
  • the processing unit 410 is specifically configured to:
  • the second connection is selected as the target connection.
  • the difference between the channel quality of the first connection and the channel quality of the second connection is less than a fourth threshold.
  • the processing unit 410 is specifically configured to:
  • the channel quality of the first connection is higher than the fifth threshold, and the channel quality of the second connection is lower than the sixth threshold, select the first connection as the target connection;
  • the first connection is selected as the target connection.
  • the fifth threshold is greater than the seventh threshold, and the sixth threshold is less than the eighth threshold.
  • the fifth threshold and the seventh threshold are determined based on a measurement result of a downlink reference signal
  • the sixth threshold and the eighth threshold are determined based on a sideline reference signal and/or a downlink reference signal.
  • the measurement result of the reference signal is determined.
  • the first connection is a Uu connection
  • the second connection includes the PC5 connection between the device and the relay terminal and the connection between the relay terminal and the network device Uu connection.
  • the target connection is used for data transmission between the device and the network device.
  • the device 400 further includes:
  • the communication unit is configured to perform data transmission with the network device through the target connection.
  • the aforementioned communication unit may be a communication interface or a transceiver, or an input/output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • the device 400 according to the embodiment of the present application may correspond to the terminal device in the method embodiment of the present application, and the foregoing and other operations and/or functions of each unit in the device 400 are used to implement the method 300 shown in FIG. 3, respectively.
  • the corresponding process of the terminal device will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device 800 shown in FIG. 7 includes a processor 810, and the processor 810 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 800 may further include a memory 820.
  • the processor 810 may call and run a computer program from the memory 820 to implement the method in the embodiment of the present application.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 800 may specifically be a network device of an embodiment of the application, and the communication device 800 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, it will not be repeated here. .
  • the communication device 800 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 800 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • Fig. 8 is a schematic structural diagram of a circuit of an embodiment of the present application.
  • the circuit 900 shown in FIG. 8 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the circuit 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the circuit 900 may further include an input interface 930.
  • the processor 910 can control the input interface 930 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the circuit 900 may further include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the circuit can be applied to the network device in the embodiment of the present application, and the circuit can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the circuit can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the circuit can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the circuit can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the circuit can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the circuit can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the circuit mentioned in the embodiment of the present application may also be a circuit on a chip.
  • the chip may be, for example, a system-on-chip, a system-on-chip, a system-on-chip (system-on-chip, SOC) chip, or the like.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种数据传输的方法和设备,该方法包括:远端终端在第一连接和第二连接中选择目标连接,其中,所述第一连接为所述远端终端直接连接网络设备的连接,所述第二连接为所述远端终端通过中继终端连接网络设备的连接,所述远端终端和所述中继终端通过第三连接连接,所述第三连接包括侧行链路连接。

Description

数据传输的方法和设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及数据传输的方法和设备。
背景技术
在一些场景中,远端(remote)终端可以通过中继终端来连接至网络设备,或者也可以直接连接至网络设备。当中继终端可以为层2中继时,远端终端只能通过一种方式连接至网络设备,当远端终端和网络设备之间存在至少一个可用连接时,远端终端如何与网络设备进行数据传输是一项急需解决的问题。
发明内容
提供了一种数据传输的方法和设备,能够在远端终端和网络设备之间存在至少一个连接的情况下,选择一个连接作为目标连接,进一步通过该目标连接与网络设备进行数据传输。
第一方面,提供了一种数据传输的方法,包括:远端终端在第一连接和第二连接中选择目标连接,其中,所述第一连接为所述远端终端直接连接网络设备的连接,所述第二连接为所述远端终端通过中继终端连接网络设备的连接。
第二方面,提供了一种数据传输的设备,用于执行上述第一方面或其各实现方式中的方法。具体地,所述设备包括用于执行上述第一方面或其各实现方式中的方法的功能模块。
第三方面,提供了一种设备,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以执行上述第一方面或其各实现方式中的方法。
第四方面,提供了一种芯片,用于实现上述第一方面或其各实现方式中的方法。具体地,所述芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述第一方面或其各实现方式中的方法。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面或其各实现方式中的方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面或其各实现方式中的方法。
基于以上技术方案,在远端设备和网络设备之间可能存在至少一个连接的情况下,选择一个连接作为目标连接,进一步通过该目标连接与网络设备进行数据传输,有利于保证网络设备和远端终端之间的正常的数据传输。同时可以实现在不同的场景下的连接的灵活选择,有利于保证不同情况下选择合适的连接进行数据传输,而不是固定使用一个连接进行数据传输,能够提升数据传输性能。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图。
图2是本申请实施例提供的一种中继传输的示意图。
图3是根据本申请实施例提供的一种数据传输的方法的示意性流程图。
图4是远端终端以第一连接为目标连接的连接示意图。
图5是远端终端以第二连接为目标连接的连接示意图。
图6是根据本申请实施例提供的一种终端设备的示意性框图。
图7是根据本申请实施例提供的一种通信设备的示意性框图。
图8是根据本申请实施例提供的一种电路的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
可选地,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在一些场景中,可以利用终端设备到中继网络(UE-to-network relay)来实现远端(remote)UE的通信。远端UE可以有多种连接方式连接到网络设备:
方式A:利用中继网络(UE-to-network relay)来实现与网络设备的通信。
如图2所示,远端UE可以通过一跳或多跳中继UE连接到网络设备。
具体地,远端UE和中继UE之间通过PC5接口连接和通信,最后一跳中继UE(即与网络设备直连的中继UE)和网络设备之间通过Uu接口连接和通信,从而实现将远端UE连接至网络,例如,核心演进(Evolved Packet Core,EPC)或者5G核心网(5G Core Network,5GC)。
若存在多跳中继UE,中继UE之间通过PC5接口连接和通信。
方式B:远端UE直连至网络设备。
例如,所述远端UE可以通过Uu接口实现与网络设备的连接和通信。
中继终端例如可以是层2中继或者层3中继。
对于层2中继而言,其支持网络协议(Internet Protocol,IP)层和物理层之间的部分或全部层的功能,例如可以支持媒体接入控制(Media Access Control,MAC)层,无线链路控制(Radio Link Control,RLC)层,分组数据汇聚协议(Packet Data Convergence  Protocol,PDCP)层中的一种或多种功能。
层3中继支持的是IP层的功能,可选地,还可以支持IP层的上层的功能。当远端终端通过层3中继接入网络时,层3中继可以承担IP层中继的功能,在远端终端和网络之间传递数据,远端终端和中继终端之间通过侧行链路连接。
对于层3中继而言,远端UE可以同时通过上述两种方式连接至网络设备,对于网络设备而言,对其可见的是与所述网络设备直连的终端设备,即若所述远端UE通过方式A连接至网络设备,则所述网络设备只能看到中继UE,并不清楚中继UE还与哪些UE连接,因此,网络设备和远端UE之间通过任一连接进行数据传输。
对于层2中继而言,远端UE同一时间只能通过一种连接方式连接网络设备。当远端UE和网络设备之间存在至少一个可用连接的情况下,采用哪条连接与网络设备进行数据传输是一项急需解决的问题。
有鉴于此,本申请提供了一种数据传输的方法,可以解决远端UE和网络设备之间存在至少一种连接的情况下的连接选择问题。
图3是根据本申请实施例的数据传输的方法300的示意性流程图,如图3所示,该方法300可以包括如下内容中的至少部分内容:
S310,远端终端在第一连接和第二连接中选择目标连接,其中,所述第一连接为所述远端终端直接连接网络设备的连接,所述第二连接为所述远端终端通过中继终端连接网络设备的连接,所述远端终端和所述中继终端之间通过侧行链路连接。
本申请实施例可以适用于通过层2中继进行中继传输的场景中,或者也可以适用于其他需要进行连接选择的场景,本申请并不限于此。本申请实施例在远端设备和网络设备之间可能存在至少一个连接的情况下,确定一个连接作为目标连接,进一步通过该目标连接与网络设备进行数据传输,有利于保证远端终端和网络设备之间的正常数据传输。并且,可以实现在不同的场景下的连接的灵活选择,有利于保证不同情况下选择合适的连接进行数据传输,而不是固定使用一个连接进行数据传输,能够提升数据传输性能。例如,在第一连接对应的链路状况变差时,选择第二连接,或者在所述远端终端移出所述第一连接对应的网络设备的覆盖范围时,选择第二连接等。
所述第一连接为所述远端终端和网络设备直接连接,即所述远端终端和网络设备之间没有其他终端,所述远端终端可以和网络设备直接进行通信。
所述第二连接为所述远端终端通过中继终端连接网络设备的连接。应理解,这里不限定所述远端终端和网络设备之间的中继终端的数量,例如所述远端终端和网络设备可以通过一个或多个中继终端连接。换言之,所述远端终端可以通过所述一个或多个中继终端与所述网络设备进行通信。
可选地,在本申请实施例中,与终端设备直连的网络设备为通信系统中的接入网设备,例如,e-NB或者g-NB等。
为便于区分和说明,将与所述远端终端直接连接的网络设备记为第一网络设备,将与所述远端终端通过中继终端连接的网络设备记为第二网络设备。
可选地,所述第一网络设备和所述第二网络设备可以为同一网络设备,或者也可以为不同的网络设备,本申请对此不作限定。
可选地,在一些实施例中,所述远端终端和所述第一网络设备可以通过第一接口连接,所述第一接口例如可以为Uu接口,此情况下,所述第一连接可以称为Uu连接。在 其他可选实施例中,所述第一接口也可以为其他用于终端和网络设备之间通信的接口,本申请实施例并不限于此。
可选地,在一些实施例中,所述远端终端和中继终端之间可以通过第二接口连接,所述第二接口例如可以为PC5接口,与所述第二网络设备直接连接的中继终端和所述第二网络设备之间可以通过第三接口连接,所述第三接口例如可以为Uu接口。此情况下,所述第二连接可以包括至少一个PC5连接和Uu连接。在其他可选实施例中,所述所述第二接口也可以为其他用于终端和终端之间通信的接口,所述第三接口也可以为其他用于终端和网络设备之间通信的接口,本申请实施例并不限于此。
需要说明的是,“远端终端在第一连接和第二连接中选择目标连接”也可以表述为“远端终端在第一类接口和第二类接口中选择目标接口”,其中,所述第一类接口为远端终端和网络设备直接通信的接口,例如,Uu接口,所述第二类接口包括第三接口和第四接口,所述第三接口为所述远端终端和中继终端通信的接口,例如PC5接口,所述第四接口为所述中继终端和网络设备通信的接口,例如,Uu接口。在第一类接口和第二类接口中选择目标接口,进一步通过所述目标接口进行通信也可以解决上述技术问题。或者,“远端终端在第一连接和第二连接中选择目标连接”也可以表述为“远端终端在第一链路和第二链路中选择目标链路”,其中,所述第一链路为远端终端和网络设备直接通信的链路(或称直传链路、直连链路(Direct link)),所述第二链路包括第三链路和第四链路,所述第三链路为所述远端终端和中继终端通信的链路(或称接入链路),所述第四链路为所述中继终端和网络设备通信的链路(或称中继链路),在第一链路和第二链路中选择目标链路,进一步通过所述目标链路进行通信也可以解决上述技术问题。
应理解,本申请实施例的技术方案也可以采用其他类似的表述方式,本申请并不限于此,具体实现可以参考在第一连接和第二连接中选择目标连接的相关实现,为了简洁,这里不再赘述。
可选地,在本申请一些实施例中,所述远端终端可以根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接。
当然,在其他实施例中,所述远端终端也可以根据其他信息,例如所述第一连接和所述第二连接中的数据传输情况,例如丢包率,可靠性,传输时延等参数,所述远端终端的移动情况,位置信息等确定所述目标连接,本申请并不限于此。具体实现可以参考根据信道质量进行连接选择的相关实现,为了简洁,这里不再赘述。
应理解,在本申请实施例中,根据信道质量进行连接选择可以是根据单一时刻的信道质量进行连接选择,或者也可以是根据一段时间内的信道质量进行连接选择,本申请并不限于此。
在一些可选实施例中,所述远端终端可以按照一定的周期进行连接选择,从而能够动态根据所述第一连接和所述第二连接的信道质量选择合适的连接进行数据传输。可选地,所述周期可以是网络设备配置的,或者预配置的,或者终端设备自行确定的,例如,远端终端可以根据自己的历史连接选择情况确定进行连接选择的周期。
在另一些可选实施例中,所述远端终端也可以基于触发事件进行连接选择等,本申请并不限于此。例如,根据网络设备或其他终端设备的指示进行连接选择。比如,所述网络设备可以在负荷较大时,向所述远端终端发送指示,指示所述远端终端进行连接选择,以使所述远端终端切换到其他连接。或者在远端终端的移动范围超出某个范围时, 进行连接选择等。
在一些实施例中,所述第一连接的信道质量可以根据所述远端终端和所述第一网络设备的直接连接(或者,直连链路)的信道质量确定。例如所述第一连接的信道质量可以为所述直接连接(或说,直连链路)的信道质量。
在一些具体实现中,所述第一连接的信道质量可以根据所述第一网络设备发送的下行参考信号的测量结果确定。
可选地,所述下行参考信号例如包括但不限于以下中的至少一项:同步信号块(Synchronization Signal Block,SSB)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS),主同步信号(Sidelink Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)等;同步信号包括PSS和SSS;解调参考信号包括用于物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理广播信道(Physical Broadcast Channel,PBCH)解调的DMRS。
可选地,所述测量结果可以例如但不限于以下中的至少一项:信道质量指示(Channel Quantity Indicator,CQI),参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)。
可选地,在本申请一些实施例中,所述第二连接可以包括所述远端终端和所述中继终端之间的第三连接以及所述中继终端和所述第二网络设备之间的第四连接。
可选地,在一些实施例中,所述远端终端和所述中继终端之间通过侧行链路连接,此情况下,所述第三连接可以包括所述终端设备和所述中继终端之间的侧行链路连接。
应理解,所述远端终端和所述第二网络设备之间可以具有一个中继终端,或者也可以具有多个中继终端,这里的所述中继终端可以为所述远端终端和所述第二网络设备之间的任一中继终端。例如,若所述远端终端和所述第二网络设备之间具有多个中继终端,所述中继终端可以为第一跳的中继终端,或者最后一跳的中继终端等。
在一些具体实施例中,所述中继终端为与所述第二网络设备直接连接的中继终端。即最后一跳的中继终端。
举例说明,所述远端终端通过中继终端1和中继终端2连接到所述第二网络设备。
作为一个示例,所述第二连接可以包括:远端终端与中继终端1的连接1以及中继终端1与所述第二网络设备的连接2,其中,连接2包括两个连接,即中继终端1和中继终端2的连接,以及中继终端2和第二网络设备的连接。
作为又一个示例,所述第二连接可以包括:远端终端与中继终端2的连接3以及中继终端2与所述第二网络设备的连接4,其中,连接3包括两个连接,即远端终端和中继终端1的连接,以及中继终端1和中继终端2的连接。
在本申请另一些实施例中,若所述远端终端和所述第二网络设备之间具有多个中继终端,所述第二连接可以进一步细分为包括多个直接连接,其中,所述直接连接为所述远端终端与所述第二网络设备之间的链路上的两个直接通信的设备之间的连接。
接着上个例子,所述第二连接可以包括:远端终端与中继终端1的直接连接,中继终端1与中继终端2的直接连接,以及中继终端2与网络设备的直接连接。
可选地,在本申请实施例中,所述第二连接的信道质量可以根据所述远端终端与所述第二网络设备的连接中的部分或全部连接的信道质量确定。
作为示例1:所述第二连接包括所述第三连接和所述第四连接,所述第二连接的信道质量可以根据所述第三连接的信道质量和/或第四连接的信道质量确定。
作为示例2:所述第二连接包括多个直接连接,所述第二连接的信道质量可以根据所述多个直接连接中的部分或全部直接连接确定。
可以理解,当远端终端和网络设备之间只有一个中继终端时,示例1和示例2实质相同。
以下,以示例1为例说明所述第二连接的信道质量的确定方式,根据示例2确定所述第二连接的信道质量的实现方式类似,这里不再赘述。可选地,作为一个示例,所述第二连接的信道质量为所述第三连接的信道质量。
可选地,作为另一个示例,所述第二连接的信道质量为所述第四连接的信道质量。
可选地,作为又一个示例,所述第二连接的信道质量为所述第三连接的信道质量和所述第四连接的信道质量中的最大值或最小值。
可选地,作为再一个示例,所述第二连接的信道质量为所述第三连接的信道质量和所述第四连接的信道质量的乘积。
可选地,在另一些实施例中,也可以根据所述第三连接和所述第四连接的信道质量的稳定性,确定所述第一连接的信道质量,这样有利于保证选择信道质量高且稳定的连接作为目标连接,提升数据传输性能。
可以理解,一个连接的信道质量受限于这个连接中的信道质量最低的一段连接的信道质量。基于此,作为一个示例,可以首先判断一段时间内所述第三连接的信道质量和所述第四连接的信道质量的差值。当差值满足第一条件,例如,一段时间内所述第三连接的信道质量和所述第四连接的信道质量的差值均小于第一阈值,或者小于第一阈值的个数大于第二阈值,此情况下,可以认为所述第三连接的信道质量和所述第四连接的信道质量相当,因此,可以参考所述第三连接的信道质量和所述第四连接的信道质量来确定所述第二连接的信道质量,例如将所述第三连接的信道质量和所述第四连接的信道质量进行加权,求平均值或者做乘积处理等得到所述第二连接的信道质量。当差值不满足所述第一条件时,例如,一段时间内所述第三连接的信道质量和所述第四连接的信道质量的差值均大于第三阈值,或者大于第三阈值的个数大于第四阈值,此情况下,可以认为所述第三连接的信道质量整体高于所述第二连接的信道质量,因此,可以根据所述第四连接的信道质量来确定所述第二连接的信道质量。
以上,所述第二连接的信道质量的确定方式仅为示例,不应对本申请构成任何限定,本申请也可以采用其他方式计算所述第二连接的信道质量,在后续进行目标连接选择时,只需配置适用于该方式的信道质量门限值即可,本申请并不限于此。
在本申请实施例中,所述远端终端与中继终端之间的第三连接的信道质量可以根据所述中继终端发送的侧行参考信号的测量结果确定。
可选地,所述侧行参考信号例如包括但不限于以下中的至少一项:侧行同步信号块(Sidelink Synchronization Signal Block,S-SSB)、侧行信道状态信息参考信号(Sidelink Channel State Information Reference Signal,SL CSI-RS)、解调参考信号(Demodulation Reference Signal,DMRS)等;其中,S-SSB包括侧行主同步信号(Sidelink Primary  Synchronization Signal,S-PSS)和侧行辅同步信号(Sidelink Secondary Synchronization Signal,S-SSS);DMRS包括用于物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)、物理侧行共享信道(Physical Sidelink Shared Channel,PSSCH)和物理侧行广播信道(Physical Sidelink Broadcast Channel,PSBCH)解调的DMRS。
可选地,所述测量结果可以例如但不限于以下中的至少一项:侧行的CQI,侧行参考信号接收功率(Sidelink-Reference Signal Receiving Power,SL-RSRP)、侧行参考信号接收质量(Sidelink-Reference Signal Receiving Quality,SL-RSRQ)、信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR)。
在本申请实施例中,所述中继终端与所述第二网络设备之间的第四连接的信道质量可以根据所述第二网络设备发送的下行参考信号的测量结果确定。
可选地,所述下行参考信号例如包括但不限于:SSB、CSI-RS、DMRS等。其中,SSB包括PSS和SSS,DMRS可以包括用于PDSCH、PDCCH和PBCH解调的DMRS。
可选地,所述测量结果例如但不限于:RSRP、RSRQ、SINR。
可选地,在一些实施例中,所述中继终端在确定所述下行参考信号的测量结果之后,可以将所述测量结果发送给所述远端终端,从而远端终端可以根据所述下行参考信道的测量结果选择所述目标连接。
确定所述第一连接和所述第二连接的信道质量之后,进一步地,所述远端终端可以根据所述第一连接和所述第二连接的信道质量,选择所述目标连接。例如,可以确定所述第一连接和所述第二连接中信道质量更优的连接为所述目标连接。又例如,可以确定所述第一连接和所述第二连接中信道质量高于特定阈值的连接为所述目标连接。
以下,结合实施例1至实施例3,具体说明所述目标连接的选择方式。
需要说明的是,在本申请实施例中,根据信道质量进行比较时,可以是根据单一时刻的信道质量的测量结果进行比较,或者也可以是根据一段时间的信道质量的测量结果进行比较,根据一段时间内的信道质量的测量结果进行比较,有利于选择信道质量稳定好的连接作为目标连接,进一步能够保证数据传输的可靠性。
可选地,所述一段时间的长度可以是预配置的,或者网络设备配置的等。
可选地,在本申请一些实施例中,根据一段时间内的信道质量进行对比,可以包括根据一段时间内的所述第一连接和所述第二连接的多个信道质量的测量结果分别进行直接或间接比较,得到多个比较结果,进一步根据该多个比较结果选择所述目标连接。
例如可以将多个第一测量结果和多个第二测量结果分别进行比较,得到多个比较结果,其中,所述多个第一测量结果为第一时间段内所述第一连接的信道质量的多个测量结果,所述多个第二测量结果为第二时间段内所述第二连接的信道质量的多个测量结果。
进一步地,在所述多个比较结果满足特定条件时,选择特定连接作为目标连接。其中,所述多个比较结果满足特定条件可以是指所述多个比较结果均满足特定条件,或者所述多个比较结果满足特定条件的个数大于一定阈值。
可选地,在本申请另一些实施例中,根据一段时间内的信道质量进行对比,也可以指首先将一段时间内的所述第一连接和所述第二连接的信道质量的测量结果进行处理,例如求平均值,得到这一段时间内的信道质量的综合结果,进一步将该综合结果进行比较等,本申请并不限于此。
实施例1:
所述远端终端首先根据所述第一连接的信道质量和所述第二连接的信道质量,确定所述第一连接和所述第二连接中的可用连接,进一步地,根据所述可用连接选择所述目标连接。
可选地,作为一个实施例,所述远端终端可以根据所述第一连接的信道质量和第一门限,确定所述第一连接是否可用。
例如,若所述第一连接的信道质量高于或等于所述第一门限,确定所述第一连接可用,或者,若所述第一连接的信道质量低于所述第一门限,确定所述第一连接不可用。
又例如,若所述第一连接的信道质量高于所述第一门限,确定所述第一连接可用,或者,若所述第一连接的信道质量等于或低于所述第一门限,确定所述第一连接不可用。
可选地,所述第一连接的信道质量高于所述第一门限可以指一段时间内所述第一连连接的信道质量均高于所述第一门限,或者一段时间内所述第一连接的信道质量高于所述第一门限的次数大于第一次数阈值等。可选地,所述第一次数阈值可以是预配置的,或者网络设备配置的等。类似地,所述第一连接的信道质量低于所述第一门限可以指一段时间内所述第一连连接的信道质量均低于所述第一门限,或者一段时间内所述第一连接的信道质量低于所述第一门限的次数大于第二次数阈值等。可选地,所述第二次数阈值可以是预配置的,或者网络设备配置的等。
可选地,作为一个实施例,所述远端终端可以根据所述第二连接的信道质量和第二门限,确定所述第二连接是否可用。
例如,若所述第二连接的信道质量高于或等于所述第二门限,确定所述第二连接可用,或者,若所述第二连接的信道质量低于所述第二门限,确定所述第二连接不可用。
又例如,若所述第二连接的信道质量高于所述第二门限,确定所述第二连接可用,或者,若所述第一连接的信道质量等于或低于所述第二门限,确定所述第二连接不可用。
在一些实施例中,所述第一门限和所述第二门限可以是网络设备配置的,或者预配置的,或者预定义的,本申请对此不作限定。
可选地,所述第一门限和所述第二门限可以相等或者也可以不等。
可选地,所述第二连接的信道质量高于所述第二门限可以指一段时间内所述第二连连接的信道质量均高于所述第二门限,或者一段时间内所述第一连接的信道质量高于所述第二门限的次数大于第三次数阈值等。可选地,所述第三次数阈值可以是预配置的,或者网络设备配置的等。类似地,所述第二连接的信道质量低于所述第二门限可以指一段时间内所述第二连连接的信道质量均低于所述第二门限,或者一段时间内所述第二连接的信道质量低于所述第二门限的次数大于第四次数阈值等。可选地,所述第四次数阈值可以是预配置的,或者网络设备配置的等。
在一些实施例中,所述第一连接的信道质量可以根据下行参考信号的测量结果确定。作为一个示例,所述第一门限可以为根据所述下行参考信号的测量结果确定的门限值。例如,若所述下行参考信号的测量结果为RSRP,则所述第一门限为RSRP门限值。又例如,若所述下行参考信号的测量结果为RSRQ,则所述第一门限为RSRQ门限值。
类似地,所述第二门限也可以根据下行参考信号和/或侧行参考信号的测量结果确定。
作为一个示例,若所述第二连接的信道质量根据所述第三连接的信道质量确定,此情况下,所述第二门限可以为根据侧行参考信号的测量结果确定的门限值。例如,若所 述侧行参考信号的测量结果为SL-RSRP,则所述第二门限为SL-RSRP门限值。又例如,若所述侧行参考信号的测量结果为SL-RSRQ,则所述第二门限为SL-RSRQ门限值。
作为又一示例,若所述第二连接的信道质量根据所述第四连接的信道质量确定,此情况下,所述第二门限为根据下行参考信号的测量结果确定的门限值。例如,若所述下行参考信号的测量结果为RSRP,则所述第二门限为RSRP门限值。又例如,若所述下行参考信号的测量结果为RSRQ,则所述第二门限为RSRQ门限值。
作为再一示例,若所述第二连接的信道质量根据所述第三连接的信道质量和所述第四连接的信道质量确定,此情况下,所述第二门限可以根据下行参考信号的测量结果和侧行参考信号的测量结果确定。作为一个示例,若所述第二连接的信道质量为所述第三连接的信道质量和所述第四连接的信道质量的乘积,此情况下,可选地,所述第二门限可以为RSRP门限值*SL-RSRP门限值,或者,所述第二门限为RSRQ门限值*SL-RSRQ门限值等。
进一步地,若所述第一连接和所述第二连接中只存在一个可用连接,即只有所述第一连接可用或只有所述第二连接可用,此情况下,所述远端终端可以选择该一个可用连接为所述目标连接,进一步地,所述远端终端可以通过该目标连接与网络设备进行数据传输。
或者,若所述第一连接和所述第二连接中不存在可用连接,所述远端终端可以选择一个信道质量大于信道质量最小阈值的连接作为目标连接,或者选择所述第一连接和所述第二连接中信道质量更优的连接作为目标连接。可选地,所述信道质量最小阈值可以是预配置的,或者网络设备配置的。
或者,若所述第一连接和所述第二连接均为可用连接,作为一个实施例,由于所述第一连接是网络设备和远端终端之间的直接连接,通过此连接进行数据传输,时延较小,所述远端终端可以优选所述第一连接作为所述目标连接。或者,在其他实施例中,所述远端终端也可以进一步比较所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接。
实施例1-1:
所述远端终端可以将所述第一连接的信道质量和所述第二连接的信道质量进行直接对比,选择所述目标连接。
作为一个实施例,若所述第一连接的信道质量高于所述第二连接的信道质量,此情况下,所述远端终端确定所述第一连接为所述目标连接。
具体实现中,可以将一段时间内所述第一连接的多个信道质量的测量结果和一段时间内所述第二连接的多个信道质量的测量结果分别进行比较,得到多个比较结果。进一步地,根据所述多个比较结果,选择所述目标连接。
例如,在所述多个比较结果均为第一连接的信道质量的测量结果大于所述第二连接的信道质量的测量结果的情况下,选择所述第一连接。
在另一些实施例中,在所述第一连接的信道质量高于所述第二连接的信道质量的情况下,所述远端终端还可以进一步判断所述第一连接比所述第二连接的信道质量高的程度,例如若所述第一连接的信道质量与所述第二连接的信道质量的差值大于第三门限,即所述第一连接的信道质量比所述第二连接的信道质量高的程度大于所述第三门限,此情况下再选择所述第一连接为所述目标连接。
在此实施例中,第二连接往往为优选的连接,在第一连接的信道质量比所述第二连接的信道质量高很多的情况下,才选择所述第一连接作为目标连接。
作为另一个实施例,若所述第一连接的信道质量低于所述第二连接的信道质量,此情况下,所述远端终端选择所述第二连接为所述目标连接。
具体实现中,可以将一段时间内所述第一连接的多个信道质量的测量结果和一段时间内所述第二连接的多个信道质量的测量结果分别进行比较,得到多个比较结果。进一步地,根据所述多个比较结果,选择所述目标连接。
例如,在所述多个比较结果均为第一连接的信道质量的测量结果小于所述第二连接的信道质量的测量结果的情况下,选择所述第二连接。
在另一些实施例中,在所述第一连接的信道质量低于所述第二连接的信道质量的情况下,所述远端终端还可以进一步判断所述第一连接比所述第二连接的信道质量低的程度,例如若所述第一连接的信道质量与所述第二连接的信道质量的差值小于第四门限,即所述第一连接的信道质量比所述第二连接的信道质量低的程度大于所述第四门限,此情况下再选择所述第二连接为所述目标连接。
在此实施例中,所述第一连接往往为优选的连接,在第一连接的信道质量比所述第二连接的信道质量差很多的情况下,才选择所述第二连接作为目标连接。
可选地,在本申请一些实施例中,所述第三门限和所述第四门限可以是网络设备配置的,或者预配置的,或者预定义的,本申请对此不作限定。
在一些实施例中,将所述第一连接的信道质量和所述第二连接的信道质量进行比较时,可以首先将所述第一连接的信道质量和所述第二连接的信道质量统一为同一标准,例如均表示为RSRP,或均表示为RSRQ,具体的调整因子可以根据不同测量结果的关系确定。
在另一些实施例中,将所述第一连接的信道质量和所述第二连接的信道质量进行比较时,也可以不将所述第一连接的信道质量和所述第二连接的信道质量统一为同一标准,此情况下,可以配置合适的所述第三门限和所述第四门限,以保证所述第一连接的信道质量和所述第二连接的信道质量的比较结果的准确性。
实施例1-2:
所述远端终端可以将所述第一连接的信道质量和所述第二连接的信道质量进行间接对比,以确定所述目标连接。
作为一个实施例,若所述第一连接的信道质量高于第五门限,并且所述第二连接的信道质量低于第六门限,确定所述第一连接为所述目标连接。
可选地,所述第一连接的信道质量高于第五门限可以指一段时间内所述第一连连接的信道质量均高于所述第五门限,或者一段时间内所述第一连接的信道质量高于所述第五门限的次数大于第七次数阈值等。可选地,所述第七次数阈值可以是预配置的,或者网络设备配置的等。
可选地,所述第二连接的信道质量低于第六门限可以指一段时间内所述第二连连接的信道质量均低于所述第六门限,或者一段时间内所述第二连接的信道质量低于所述第六门限的次数大于第八次数阈值等。可选地,所述第八次数阈值可以是预配置的,或者网络设备配置的等。
作为另一实施例,若所述第一连接的信道质量低于第七门限,并且所述第二连接的 信道质量高于第八门限,确定所述第一连接为所述目标连接。
可选地,所述第一连接的信道质量低于第七门限可以指一段时间内所述第一连连接的信道质量均低于第七门限,或者一段时间内所述第一连接的信道质量低于第七门限的次数大于第九次数阈值等。可选地,所述第九次数阈值可以是预配置的,或者网络设备配置的等。
可选地,所述第二连接的信道质量高于第八门限可以指一段时间内所述第二连连接的信道质量均高于所述第八门限,或者一段时间内所述第二连接的信道质量高于所述第八门限的次数大于第十次数阈值等。可选地,所述第十次数阈值可以是预配置的,或者网络设备配置的等。
在本申请实施例中,所述第五门限、第六门限、第七门限和所述第八门限可以是网络设备配置的,或者预配置的,或者预定义的,本申请对此不作限定。
在一些实施例中,所述第五门限大于所述第七门限,所述第六门限小于所述第八门限。
在此实施例1-2中,所述第一连接的信道质量和所述第二连接的信道质量可以采用同一参数表征,例如,均采用RSRP或RSRQ表征,或者也可以采用不同的参数表征,例如,一个采用RSRP表征,另一个采用RSRQ表征。
所述第五门限和所述第七门限为所述第一连接的信道质量的表征参数对应的门限值。例如,若所述第一连接的信道质量采用RSRP表征,所述第五门限和所述第七门限均为RSRP门限值。
类似地,所述第六门限和所述第八门限为所述第二连接的信道质量的表征参数对应的门限值。例如,若所述第二连接的信道质量采用RSRP表征,所述第六门限和所述第八门限为RSRP门限值。
可选地,在一些实施例中,当所述第一连接的信道质量和所述第二连接的信道质量采用同一参数表征时,所述第五门限可以大于或等于所述第六门限,所述第七门限小于或等于所述第八门限。
可选地,在一些实施例中,为保证优选所述第一连接作为目标连接,此情况下,可以配置所述第五门限为较低的门限,所述第六门限为较高的门限;或者配置所述第七门限为较低的门限,所述第八门限为较高的门限,以使得在所述第一连接的信道质量和所述第二连接的信道质量相当或者所述第一连接的信道质量略低于所述第二连接的信道质量的情况下,优选所述第一连接作为目标连接,以降低数据传输的时延。
应理解,在本申请实施例中,所述第一连接的信道质量高于第五门限,并且所述第二连接的信道质量低于第六门限可以认为所述第一连接的信道质量足够高,所述第二连接的信道质量较差,此情况下,选择所述第一连接作为目标连接有利于保证网络设备和所述终端设备之间的数据的可靠传输。
还应理解,在本申请实施例中,所述第一连接的信道质量低于第七门限,并且所述第二连接的信道质量高于第八门限可以认为所述第一连接的信道质量较差,所述第二连接的信道质量足够高,此情况下,选择所述第二连接作为目标连接有利于保证网络设备和所述终端设备之间的数据的可靠传输。
实施例2:
所述远端终端可以将所述第一连接的信道质量和所述第二连接的信道质量进行直接 对比,以选择所述目标连接。
与实施例1不同的是:在该实施例2中,可以不对所述第一连接和所述第二连接的可用性做判断,直接根据所述第一连接和所述第二连接的信道质量选择目标连接。具体选择方式可以参考实施例1-1的描述,这里不再赘述。
实施例3:
所述远端终端可以将所述第一连接的信道质量和所述第二连接的信道质量进行间接对比,以选择所述目标连接。
与实施例1不同的是:在该实施例3中,可以不对所述第一连接和所述第二连接的可用性做判断,直接根据所述第一连接和所述第二连接的信道质量选择目标连接。具体选择方式可以参考实施例1-2的描述,这里不再赘述。
进一步地,当确定所述第一连接为所述目标连接时,所述远端终端可以使用所述第一连接与网络设备进行通信,例如图4所示。
或者,当确定所述第二连接为所述目标连接时,所述远端终端可以使用所述第二连接与网络设备进行通信,如图5所示。
因此,本申请实施例在所述远端设备和网络设备之间可能存在至少一个连接的情况下,根据该至少一个连接的信道质量选择目标连接,进一步通过该目标连接与网络设备进行数据传输,有利于保证终端设备和网络设备之间的数据传输的可靠性。并且可以实现在不同的场景下的连接的灵活选择,有利于保证不同情况下选择合适的连接进行数据传输,而不是固定使用一个连接进行数据传输,能够提升数据传输性能。
上文结合图3至图5,详细描述了本申请的方法实施例,下文结合图6至图8,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图6示出了根据本申请实施例的数据传输的设备400的示意性框图。如图6所示,该设备400包括:
处理单元410,用于在第一连接和第二连接中选择目标连接,其中,所述第一连接为所述设备直接连接网络设备的连接,所述第二连接为所述设备通过中继终端连接网络设备的连接,所述远端终端和所述中继终端之间通过侧行链路连接。
可选地,在一些实施例中,所述处理单元410具体用于:
根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接。
可选地,在一些实施例中,所述第二连接包括所述设备和所述中继终端之间的第三连接以及所述中继终端和网络设备之间的第四连接,其中,所述第二连接的信道质量是根据所述第三连接的信道质量和/或所述第四连接的信道质量确定的。
可选地,在一些实施例中,所述第二连接的信道质量为所述第三连接的信道质量;或
所述第二连接的信道质量为所述第四连接的信道质量;或
所述第二连接的信道质量为所述第三连接的信道质量和所述第四连接的信道质量中的最大值或最小值;或
所述第二连接的信道质量为所述第三连接的信道质量和所述第四连接的信道质量的乘积。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一连接的信道质量和所述第二连接的信道质量,确定所述第一连接和所述第二连接中的可用连接;
根据所述可用连接,选择所述目标连接。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第一连接的信道质量和第一门限,确定所述第一连接是否可用。
可选地,在一些实施例中,所述处理单元410具体用于:
若所述第一连接的信道质量高于或等于所述第一门限,确定所述第一连接可用;或
若所述第一连接的信道质量低于所述第一门限,确定所述第一连接不可用。
可选地,在一些实施例中,所述处理单元410还用于:
根据所述第二连接的信道质量和第二门限,确定所述第二连接是否可用。
可选地,在一些实施例中,所述处理单元410具体用于:
若所述第二连接的信道质量高于或等于所述第二门限,确定所述第二连接可用;或
若所述第二连接的信道质量低于所述第二门限,确定所述第二连接不可用。
可选地,在一些实施例中,所述处理单元410还用于:
若只有所述第一连接可用,选择所述第一连接为所述目标连接;或者
若只有所述第二连接可用,选择所述第一连接为所述目标连接。
可选地,在一些实施例中,所述处理单元410还用于:
若所述第一连接和所述第二连接均可用,根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接。
可选地,在一些实施例中,所述处理单元410具体用于:
若所述第一连接的信道质量高于所述第二连接的信道质量,选择所述第一连接为所述目标连接。
可选地,在一些实施例中,所述第一连接的信道质量与所述第二连接的信道质量的差值大于第三门限。
可选地,在一些实施例中,所述处理单元410具体用于:
若所述第一连接的信道质量低于所述第二连接的信道质量,选择所述第二连接为所述目标连接。
可选地,在一些实施例中,所述第一连接的信道质量与所述第二连接的信道质量的差值小于第四门限。
可选地,在一些实施例中,所述处理单元410具体用于:
若所述第一连接的信道质量高于第五门限,并且所述第二连接的信道质量低于第六门限,选择所述第一连接为所述目标连接;或
若所述第一连接的信道质量低于第七门限,并且所述第二连接的信道质量高于第八门限,选择所述第一连接为所述目标连接。
可选地,在一些实施例中,所述第五门限大于所述第七门限,所述第六门限小于所述第八门限。
可选地,在一些实施例中,所述第五门限和所述第七门限根据下行参考信号的测量结果确定,所述第六门限和所述第八门限根据侧行参考信号和/或下行参考信号的测量结果确定。
可选地,在一些实施例中,所述第一连接为Uu连接,所述第二连接包括所述设备和 所述中继终端之间的PC5连接和所述中继终端和网络设备之间的Uu连接。
可选地,在一些实施例中,所述目标连接用于所述设备和网络设备之间的数据传输。
可选地,在一些实施例中,所述设备400还包括:
通信单元,用于通过所述目标连接与所述网络设备进行数据传输。
可选地,在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的设备400可对应于本申请方法实施例中的终端设备,并且设备400中的各个单元的上述和其它操作和/或功能分别为了实现图3所示方法300中终端设备的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例提供的一种通信设备800示意性结构图。图7所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图7所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的移动终端/终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例的电路的示意性结构图。图8所示的电路900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,电路900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该电路900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该电路900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该电路可应用于本申请实施例中的网络设备,并且该电路可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该电路可应用于本申请实施例中的移动终端/终端设备,并且该电路可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例提到的电路也可以是芯片上的电路。所述芯片例如可以是系统级芯片,系统芯片,芯片系统或片上系统(System on Chip,SOC)芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算 机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说 对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (45)

  1. 一种数据传输的方法,其特征在于,包括:
    远端终端在第一连接和第二连接中选择目标连接,其中,所述第一连接为所述远端终端直接连接网络设备的连接,所述第二连接为所述远端终端通过中继终端连接网络设备的连接,所述远端终端和所述中继终端通过第三连接连接,所述第三连接包括侧行链路连接。
  2. 根据权利要求1所述的方法,其特征在于,所述远端终端在第一连接和第二连接中选择目标连接,包括:
    根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接。
  3. 根据权利要求2所述的方法,其特征在于,所述第二连接包括所述远端终端和所述中继终端之间的第三连接以及所述中继终端和网络设备之间的第四连接,其中,所述第二连接的信道质量是根据所述第三连接的信道质量和/或所述第四连接的信道质量确定的。
  4. 根据权利要求3所述的方法,其特征在于,所述第二连接的信道质量为所述第三连接的信道质量;或
    所述第二连接的信道质量为所述第四连接的信道质量;或
    所述第二连接的信道质量为所述第三连接的信道质量和所述第四连接的信道质量中的最大值或最小值;或
    所述第二连接的信道质量为所述第三连接的信道质量和所述第四连接的信道质量的乘积。
  5. 根据权利要求2-4中任一项所述的方法,其特征在于,所述根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接,包括:
    根据所述第一连接的信道质量和所述第二连接的信道质量,确定所述第一连接和所述第二连接中的可用连接;
    根据所述可用连接,选择所述目标连接。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一连接的信道质量和所述第二连接的信道质量,确定所述第一连接和所述第二连接中的可用连接,包括:
    根据所述第一连接的信道质量和第一门限,确定所述第一连接是否可用。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第一连接的信道质量和第一门限,确定所述第一连接是否可用,包括:
    若所述第一连接的信道质量高于或等于所述第一门限,确定所述第一连接可用;或
    若所述第一连接的信道质量低于所述第一门限,确定所述第一连接不可用。
  8. 根据权利要求5-7中任一项所述的方法,其特征在于,所述根据所述第一连接的信道质量和所述第二连接的信道质量,确定所述第一连接和所述第二连接中的可用连接,包括:
    根据所述第二连接的信道质量和第二门限,确定所述第二连接是否可用。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第二连接的信道质量和第二门限,确定所述第二连接是否可用,包括:
    若所述第二连接的信道质量高于或等于所述第二门限,确定所述第二连接可用;或
    若所述第二连接的信道质量低于所述第二门限,确定所述第二连接不可用。
  10. 根据权利要求5-9中任一项所述的方法,其特征在于,所述根据所述可用连接,选择所述目标连接,包括:
    若只有所述第一连接可用,选择所述第一连接为所述目标连接;或者
    若只有所述第二连接可用,选择所述第一连接为所述目标连接。
  11. 根据权利要求5-10中任一项所述的方法,其特征在于,所述根据所述可用连接,选择所述目标连接,包括:
    若所述第一连接和所述第二连接均可用,根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接。
  12. 根据权利要求2-11中任一项所述的方法,其特征在于,所述根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接,包括:
    若所述第一连接的信道质量高于所述第二连接的信道质量,选择所述第一连接为所述目标连接。
  13. 根据权利要求12所述的方法,其特征在于,所述第一连接的信道质量与所述第二连接的信道质量的差值大于第三门限。
  14. 根据权利要求2-11中任一项所述的方法,其特征在于,所述根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接,包括:
    若所述第一连接的信道质量低于所述第二连接的信道质量,选择所述第二连接为所述目标连接。
  15. 根据权利要求14所述的方法,其特征在于,所述第一连接的信道质量与所述第二连接的信道质量的差值小于第四门限。
  16. 根据权利要求2-11中任一项所述的方法,其特征在于,所述根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接,包括:
    若所述第一连接的信道质量高于第五门限,并且所述第二连接的信道质量低于第六门限,选择所述第一连接为所述目标连接;或
    若所述第一连接的信道质量低于第七门限,并且所述第二连接的信道质量高于第八门限,选择所述第一连接为所述目标连接。
  17. 根据权利要求16所述的方法,其特征在于,所述第五门限大于所述第七门限,所述第六门限小于所述第八门限。
  18. 根据权利要求16或17所述的方法,其特征在于,所述第五门限和所述第七门限根据下行参考信号的测量结果确定,所述第六门限和所述第八门限根据侧行参考信号和/或下行参考信号的测量结果确定。
  19. 根据权利要求1-18中任一项所述的方法,其特征在于,所述第一连接为Uu连接,所述第二连接包括所述远端终端和所述中继终端之间的PC5连接和所述中继终端和网络设备之间的Uu连接。
  20. 根据权利要求1-19中任一项所述的方法,其特征在于,所述目标连接用于所述远端终端和网络设备之间的数据传输。
  21. 一种数据传输的设备,其特征在于,包括:
    处理单元,用于在第一连接和第二连接中选择目标连接,其中,所述第一连接为所述设备直接连接网络设备的连接,所述第二连接为所述设备通过中继终端连接网络设备的连接,所述远端终端和所述中继终端通过第三连接连接,所述第三连接包括侧行链路 连接。
  22. 根据权利要求21所述的设备,其特征在于,所述处理单元具体用于:
    根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接。
  23. 根据权利要求22所述的设备,其特征在于,所述第二连接包括所述设备和所述中继终端之间的第三连接以及所述中继终端和网络设备之间的第四连接,其中,所述第二连接的信道质量是根据所述第三连接的信道质量和/或所述第四连接的信道质量确定的。
  24. 根据权利要求23所述的设备,其特征在于,所述第二连接的信道质量为所述第三连接的信道质量;或
    所述第二连接的信道质量为所述第四连接的信道质量;或
    所述第二连接的信道质量为所述第三连接的信道质量和所述第四连接的信道质量中的最大值或最小值;或
    所述第二连接的信道质量为所述第三连接的信道质量和所述第四连接的信道质量的乘积。
  25. 根据权利要求22-24中任一项所述的设备,其特征在于,所述处理单元还用于:
    根据所述第一连接的信道质量和所述第二连接的信道质量,确定所述第一连接和所述第二连接中的可用连接;
    根据所述可用连接,选择所述目标连接。
  26. 根据权利要求25所述的设备,其特征在于,所述处理单元还用于:
    根据所述第一连接的信道质量和第一门限,确定所述第一连接是否可用。
  27. 根据权利要求26所述的设备,其特征在于,所述处理单元具体用于:
    若所述第一连接的信道质量高于或等于所述第一门限,确定所述第一连接可用;或
    若所述第一连接的信道质量低于所述第一门限,确定所述第一连接不可用。
  28. 根据权利要求25-27中任一项所述的设备,其特征在于,所述处理单元还用于:
    根据所述第二连接的信道质量和第二门限,确定所述第二连接是否可用。
  29. 根据权利要求28所述的设备,其特征在于,所述处理单元具体用于:
    若所述第二连接的信道质量高于或等于所述第二门限,确定所述第二连接可用;或
    若所述第二连接的信道质量低于所述第二门限,确定所述第二连接不可用。
  30. 根据权利要求25-29中任一项所述的设备,其特征在于,所述处理单元还用于:
    若只有所述第一连接可用,选择所述第一连接为所述目标连接;或者
    若只有所述第二连接可用,选择所述第一连接为所述目标连接。
  31. 根据权利要求25-30中任一项所述的设备,其特征在于,所述处理单元还用于:
    若所述第一连接和所述第二连接均可用,根据所述第一连接的信道质量和所述第二连接的信道质量,选择所述目标连接。
  32. 根据权利要求22-31中任一项所述的设备,其特征在于,所述处理单元具体用于:
    若所述第一连接的信道质量高于所述第二连接的信道质量,选择所述第一连接为所述目标连接。
  33. 根据权利要求32所述的设备,其特征在于,所述第一连接的信道质量与所述第二连接的信道质量的差值大于第三门限。
  34. 根据权利要求22-31中任一项所述的设备,其特征在于,所述处理单元具体用于:
    若所述第一连接的信道质量低于所述第二连接的信道质量,选择所述第二连接为所述目标连接。
  35. 根据权利要求34所述的设备,其特征在于,所述第一连接的信道质量与所述第二连接的信道质量的差值小于第四门限。
  36. 根据权利要求22-31中任一项所述的设备,其特征在于,所述处理单元具体用于:若所述第一连接的信道质量高于第五门限,并且所述第二连接的信道质量低于第六门限,选择所述第一连接为所述目标连接;或
    若所述第一连接的信道质量低于第七门限,并且所述第二连接的信道质量高于第八门限,选择所述第一连接为所述目标连接。
  37. 根据权利要求36所述的设备,其特征在于,所述第五门限大于所述第七门限,所述第六门限小于所述第八门限。
  38. 根据权利要求36或37所述的设备,其特征在于,所述第五门限和所述第七门限根据下行参考信号的测量结果确定,所述第六门限和所述第八门限根据侧行参考信号和/或下行参考信号的测量结果确定。
  39. 根据权利要求21-38中任一项所述的设备,其特征在于,所述第一连接为Uu连接,所述第二连接包括所述设备和所述中继终端之间的PC5连接和所述中继终端和网络设备之间的Uu连接。
  40. 根据权利要求21-39中任一项所述的设备,其特征在于,所述目标连接用于所述设备和网络设备之间的数据传输。
  41. 一种设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至20中任一项所述的方法。
  42. 一种电路,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述电路的设备执行如权利要求1至20中任一项所述的方法。
  43. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法。
  44. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至20中任一项所述的方法。
  45. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至20中任一项所述的方法。
PCT/CN2020/094189 2020-06-03 2020-06-03 数据传输的方法和设备 WO2021243604A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/094189 WO2021243604A1 (zh) 2020-06-03 2020-06-03 数据传输的方法和设备
CN202080099652.9A CN115428527A (zh) 2020-06-03 2020-09-21 数据传输的方法和设备
PCT/CN2020/116551 WO2021243887A1 (zh) 2020-06-03 2020-09-21 数据传输的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/094189 WO2021243604A1 (zh) 2020-06-03 2020-06-03 数据传输的方法和设备

Publications (1)

Publication Number Publication Date
WO2021243604A1 true WO2021243604A1 (zh) 2021-12-09

Family

ID=78830106

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/094189 WO2021243604A1 (zh) 2020-06-03 2020-06-03 数据传输的方法和设备
PCT/CN2020/116551 WO2021243887A1 (zh) 2020-06-03 2020-09-21 数据传输的方法和设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116551 WO2021243887A1 (zh) 2020-06-03 2020-09-21 数据传输的方法和设备

Country Status (2)

Country Link
CN (1) CN115428527A (zh)
WO (2) WO2021243604A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076107A (zh) * 2009-11-24 2011-05-25 索尼公司 无线电通信设备、无线电通信系统、无线电通信方法和程序
CN103327550A (zh) * 2012-03-20 2013-09-25 中国移动通信集团公司 一种中继系统中小区选择方法、终端、中继节点和系统
CN105165072A (zh) * 2013-05-02 2015-12-16 交互数字专利控股公司 用于基于整体链路质量来选择实体的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076107A (zh) * 2009-11-24 2011-05-25 索尼公司 无线电通信设备、无线电通信系统、无线电通信方法和程序
CN103327550A (zh) * 2012-03-20 2013-09-25 中国移动通信集团公司 一种中继系统中小区选择方法、终端、中继节点和系统
CN105165072A (zh) * 2013-05-02 2015-12-16 交互数字专利控股公司 用于基于整体链路质量来选择实体的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Uu/PC5 V2V Link Selection", 3GPP TSG RAN WG2 MEETING #93 R2-161189, 19 February 2016 (2016-02-19), XP051065744 *

Also Published As

Publication number Publication date
WO2021243887A1 (zh) 2021-12-09
CN115428527A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2021203884A1 (zh) 一种中继通信方法及相关设备
WO2020073257A1 (zh) 无线通信方法和终端设备
CN115707036A (zh) 传输数据的方法和装置
CN113573408A (zh) 一种资源协调方法及装置
WO2022021131A1 (zh) 重选初始带宽部分bwp的方法、终端设备和网络设备
WO2022021130A1 (zh) 选择初始带宽部分bwp的方法、终端设备和网络设备
WO2021226967A1 (zh) 切换的方法和设备
US20230107139A1 (en) Relay discovery method and terminal
US20220394503A1 (en) Wireless communication method and device
US11805565B2 (en) Wireless communication method and terminal device
WO2021243604A1 (zh) 数据传输的方法和设备
WO2022155975A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021248391A1 (zh) 无线通信的方法和终端设备
CN115699873A (zh) 中继节点切换方法、终端设备和网络设备
WO2023102693A1 (zh) 无线通信的方法、远端终端和网络设备
WO2022233011A1 (zh) 建立连接的方法和终端设备
WO2022082434A1 (zh) 用于终端间通信的方法、终端设备和网络设备
WO2022193240A1 (zh) 网络选择的方法、终端设备和网络设备
US20230224763A1 (en) Wireless communication method, terminal device, and network device
WO2023092456A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024011588A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022133977A1 (zh) 服务质量QoS控方法、终端设备和网络设备
US20230090887A1 (en) Relay communication method and device
WO2021237428A1 (zh) 取消传输配置授权上行信道的方法、终端设备和网络设备
WO2023141760A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938857

Country of ref document: EP

Kind code of ref document: A1