WO2023283889A1 - 无线通信的方法、终端设备和网络设备 - Google Patents

无线通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023283889A1
WO2023283889A1 PCT/CN2021/106561 CN2021106561W WO2023283889A1 WO 2023283889 A1 WO2023283889 A1 WO 2023283889A1 CN 2021106561 W CN2021106561 W CN 2021106561W WO 2023283889 A1 WO2023283889 A1 WO 2023283889A1
Authority
WO
WIPO (PCT)
Prior art keywords
ncsg
patterns
pattern
duration
time window
Prior art date
Application number
PCT/CN2021/106561
Other languages
English (en)
French (fr)
Inventor
张晋瑜
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180097506.7A priority Critical patent/CN117356125A/zh
Priority to PCT/CN2021/106561 priority patent/WO2023283889A1/zh
Publication of WO2023283889A1 publication Critical patent/WO2023283889A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a wireless communication method, a terminal device, and a network device.
  • the terminal equipment can be based on multiple measurement interval (Measurement Gap, MG) pattern (pattern) Take measurements.
  • MG Measurement Gap
  • NR New Radio
  • Embodiments of the present application provide a wireless communication method, a terminal device, and a network device.
  • the terminal device has the ability to support NCSG and MG concurrently, so that measurement can be performed more flexibly and measurement performance can be improved.
  • a wireless communication method includes:
  • the terminal device determines that it has the capability of supporting NCSG and MG concurrently.
  • a wireless communication method in a second aspect, includes:
  • the network device receives the first information sent by the terminal device
  • the first information is used to indicate that the terminal device has the capability of supporting NCSG and MG concurrently.
  • a terminal device configured to execute the method in the first aspect above.
  • the terminal device includes a functional module for executing the method in the first aspect above.
  • a network device configured to execute the method in the second aspect above.
  • the network device includes a functional module for executing the method in the second aspect above.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the first aspect above.
  • a sixth aspect provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect above.
  • an apparatus for implementing the method in any one of the first aspect to the second aspect above.
  • the device includes: a processor, configured to invoke and run a computer program from the memory, so that the device installed with the device executes the method in any one of the above first to second aspects.
  • a computer-readable storage medium for storing a computer program, and the computer program causes a computer to execute the method in any one of the above-mentioned first aspect to the second aspect.
  • a computer program product including computer program instructions, the computer program instructions causing a computer to execute the method in any one of the above first to second aspects.
  • a computer program which, when running on a computer, causes the computer to execute the method in any one of the above first to second aspects.
  • the terminal equipment has the ability to support the NCSG and MG concurrently, so that the measurement can be performed more flexibly and the measurement performance can be improved.
  • FIG. 1 is a schematic diagram of a communication system architecture applied in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a time-domain relationship of multiple MG patterns provided by the present application.
  • Fig. 3 is a schematic diagram of an MG and an NCSG in a synchronization scenario provided by the present application.
  • Fig. 4 is a schematic diagram of an MG and an NCSG in an asynchronous scenario provided by the present application.
  • Fig. 5 is a schematic flowchart of a wireless communication method provided according to an embodiment of the present application.
  • 6 to 8 are schematic diagrams of target time windows provided according to embodiments of the present application.
  • Fig. 9 is a schematic flowchart of another wireless communication method provided according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a terminal device provided according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a network device provided according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication device provided according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of an apparatus provided according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a communication system provided according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system , New Radio (NR) system, evolution system of NR system, LTE (LTE-based access to unlicensed spectrum, LTE-U) system on unlicensed spectrum, NR (NR-based access to unlicensed spectrum) on unlicensed spectrum unlicensed spectrum (NR-U) system, Non-Terrestrial Networks (NTN) system, Universal Mobile Telecommunications System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (Wireless Fidelity, WiFi), fifth-generation communication (5th-Generation, 5G) system or other communication systems, etc.
  • GSM Global System of Mobile
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) meshing scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent meshing scene
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to a licensed spectrum, Wherein, the licensed spectrum can also be regarded as a non-shared spectrum.
  • the embodiments of the present application describe various embodiments in conjunction with network equipment and terminal equipment, wherein the terminal equipment may also be referred to as user equipment (User Equipment, UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • user equipment User Equipment, UE
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • wireless communication device user agent or user device
  • the terminal device can be a station (STATION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital assistant (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, next-generation communication systems such as terminal devices in NR networks, or future Terminal equipment in the evolved public land mobile network (Public Land Mobile Network, PLMN) network, etc.
  • PLMN Public Land Mobile Network
  • the terminal device can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites) superior).
  • the terminal device may be a mobile phone (Mobile Phone), a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal device, an augmented reality (Augmented Reality, AR) terminal Equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self driving, wireless terminal equipment in remote medical, wireless terminal equipment in smart grid , wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • a virtual reality (Virtual Reality, VR) terminal device an augmented reality (Augmented Reality, AR) terminal Equipment
  • wireless terminal equipment in industrial control wireless terminal equipment in self driving
  • wireless terminal equipment in remote medical wireless terminal equipment in smart grid
  • wireless terminal equipment in transportation safety wireless terminal equipment in smart city, or wireless terminal equipment in smart home.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the network device may be a device for communicating with the mobile device, and the network device may be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA , or a base station (NodeB, NB) in WCDMA, or an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an NR network A network device or a base station (gNB) in a network device or a network device in a future evolved PLMN network or a network device in an NTN network.
  • AP Access Point
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • Evolutional Node B, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • eNB evolved base station
  • gNB base station
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network equipment may be a satellite, balloon station.
  • the satellite can be a low earth orbit (low earth orbit, LEO) satellite, a medium earth orbit (medium earth orbit, MEO) satellite, a geosynchronous earth orbit (geosynchronous earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite. ) Satellite etc.
  • the network device may also be a base station installed on land, in water, or other locations.
  • the network device may provide services for a cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell, and the cell may be a network device ( For example, a cell corresponding to a base station), the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell), and the small cell here may include: a metro cell (Metro cell), a micro cell (Micro cell), a pico cell ( Pico cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the transmission resources for example, frequency domain resources, or spectrum resources
  • the cell may be a network device (
  • the cell may belong to a macro base station, or may belong to a base station corresponding to a small cell (Small cell)
  • the small cell here may include: a metro cell (Metro cell), a micro cell (Micro
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with terminal devices located in the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. This embodiment of the present application does not limit it.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which is not limited in this embodiment of the present application.
  • a device with a communication function in the network/system in the embodiment of the present application may be referred to as a communication device.
  • the communication equipment may include a network equipment 110 and a terminal equipment 120 with communication functions.
  • the network equipment 110 and the terminal equipment 120 may be the specific equipment described above, and will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in this embodiment of the present application.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • the network device can configure the terminal device to measure the reference signal of the target neighboring cell within a specific time window, where the target neighboring cell can be the same-frequency neighboring cell or a different-frequency neighboring cell or a different-network neighboring cell. Area.
  • the measurement of the reference signal may be Reference Signal Received Power (Reference Signal Received Power, RSRP), or Reference Signal Received Quality (Reference Signal Received Quality, RSRQ), or Signal to Interference plus Noise Ratio (Signal to Interference plus Noise Ratio , SINR).
  • the specific time window is called the measurement interval.
  • FR Frequency range
  • FR1 and FR2 frequency ranges
  • Table 1 the frequency ranges corresponding to FR1 and FR2 are shown in Table 1 below.
  • FR1 is also called sub 6GHz frequency band
  • FR2 is also called mm wave band. It should be noted that the frequency ranges corresponding to FR1 and FR2 are not limited to the frequency ranges shown in Table 1, and can also be adjusted.
  • the terminal device According to whether the terminal device supports the ability of FR1 and FR2 to work independently, there are two types of gaps in the measurement interval, one is the user equipment granularity measurement interval (per UE gap), and the other is the frequency band granularity measurement interval (per FR gap). Further, per FR gap is divided into per FR1gap and per FR2 gap. Among them, per UE gap is also called gapUE, per FR1 gap is also called gapFR1, and per FR2 gap is also called gapFR2. At the same time, the terminal device introduces a capability indication of whether to support FR1 and FR2 to work independently. This capability indication is called independentGapConfig.
  • This capability indication is used by the network device to determine whether the measurement interval of the per FR type can be configured for the terminal device, such as per FR1gap , per FR2 gap. Specifically, if the capability indication is used to indicate that the terminal device supports FR1 and FR2 to work independently, the network device can configure a per FR measurement interval; if the capability indication is used to indicate that the terminal device does not support FR1 and FR2 to work independently, the network device does not The measurement interval of per FR type can be configured, and only the measurement interval of per UE type (that is, per UE gap) can be configured for terminal devices.
  • the per FR1 gap, per FR2 gap, and per UE gap are described below.
  • the measurement interval belonging to the per FR1gap type is only applicable to the measurement of FR1.
  • the per FR1gap and per UE gap do not support simultaneous configuration.
  • the configuration rule of the MG is related to the frequency point of the serving cell and the frequency point of the target cell.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRA-NR Dual Connectivity, EN-DC Evolved Universal Terrestrial Radio Access
  • the master node (Master Node, MN) is the long-term evolution ( Long Term Evolution, LTE) standard
  • the secondary node Secondary Node, SN
  • only the MN can configure per FR1gap.
  • per FR2 gap (that is, gapFR2): The measurement interval belonging to the per FR2 gap type is only applicable to the measurement of FR2.
  • the per FR2 gap and per UE gap do not support simultaneous configuration.
  • per FR2 gap and per FR1gap support simultaneous configuration.
  • the terminal device can perform independent measurements on FR1 and FR2, and the terminal device can be configured with a per FR gap type measurement interval, such as per FR1gap type measurement Interval, measurement interval per FR2 gap type.
  • the measurement interval belonging to the per UE gap type applies to measurements in all frequency bands (including FR1 and FR2).
  • MN In EN-DC mode, MN is in LTE mode, SN is in NR mode, and only MN can configure per UE gap. If per UE gap is configured, per FR gap (such as per FR1 gap, per FR2 gap) cannot be configured again.
  • the terminal device During the duration of a measurement interval of type per UE gap, the terminal device is not allowed to transmit any data and is not expected to adjust the receivers of the primary and secondary carriers.
  • the network device configures the measurement configuration (i.e. MeasConfig) through radio resource control (Radio Resource Control, RRC) dedicated signaling, as shown in Table 2 below.
  • MeasConfig includes the measurement gap configuration and the measurement object configuration, wherein the measurement gap configuration is measGapConfig, and the measurement The object configuration is measObjectToAddModList.
  • the configuration information of a measurement interval includes: measurement interval offset (ie gapOffset), measurement interval repetition period (Measurement Gap Repetition Period, MGRP), and measurement interval length (Measurement Gap Length, MGL). Among them, the measurement interval offset is used to determine the starting point of the measurement interval.
  • the type of a measurement interval can be per UE gap, or per FR1 gap, or per FR2 gap.
  • There are 26 types of measurement interval patterns (referred to as interval patterns for short), and different interval patterns correspond to different MGRPs and/or MGLs. Some interval patterns are used for FR1 measurement, corresponding to per FR1gap; some interval patterns are used for FR2 measurement, corresponding to per FR2 gap.
  • the configuration information of a measurement object can configure the synchronization block measurement timing configuration (SS/PBCH block measurement timing configuration, SMTC) associated with the measurement object, and the SMTC configuration can support ⁇ 5, 10, 20, 40, 80, 160 ⁇ milliseconds ( ms) period, and ⁇ 1,2,3,4,5 ⁇ ms window length, SMTC time offset (time offset) is strongly correlated with the period, the value is ⁇ 0,...,period-1, ⁇ . Since the carrier frequency is no longer included in the measurement object, the SMTC can be configured independently for each measurement object (Measurement Object, MO) instead of each frequency point.
  • MO Measurement Object
  • MG Measurement Gap
  • RRM Radio Resource Management
  • MG Measurement Gap
  • the specific number of MGs used is determined by the capability of the terminal device, for example , if the terminal device supports MG (per-FR gap) per frequency band (FR), you can configure an MG pattern (pattern) on FR1 and FR2 respectively, and if it supports MG (per-UE gap) per UE, only A MG pattern can be configured.
  • SSB Synchronization Signal Block
  • SMTC Synchronization Measurement Timing Configuration
  • PRS positioning reference signals
  • the enhanced version introduces multiple simultaneous and independent MG patterns, so that different SMTC configurations, and/or reference signals (such as SSB, CSI-RS, PRS), and/or different radio access Radio Access Technology (RAT) (Evolved Universal Terrestrial Radio Access Network (Evolved Universal Terrestrial Radio Access Network, E-UTRAN), NR) can better complete the measurement work.
  • SMTC configurations such as SSB, CSI-RS, PRS
  • RAT Radio Access Technology
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • NR Radio Access Technology
  • multiple MG patterns can include the following three relationships: fully overlapped (fully overlapped, FO), partially overlapped (partial overlapped) and completely overlapped. Not overlapping (fully non-overlapped, FNO).
  • Partial overlapped between multiple MG patterns is divided into the following three types:
  • Partially-partial overlapped Every gap occasion of one MG is partially covered by gap occasion of another MG with the different periodicity), taking MG1 and MG2 as examples, as shown in Figure 2, each interval opportunity of MG2 is partially covered by the interval opportunity of MG1, and the periods of MG1 and MG2 are different.
  • the terminal device can only perform measurement on one MG in the conflicting MG occasion.
  • NCSG Network Control Small Gap
  • NCSG can reduce the interruption time required for measurement. As shown in Figure 3 and Figure 4, only VIL1 and VIL2 at the beginning and end of the NCSG pattern will cause a short interruption. ) can maintain measurement and data transmission and reception of the serving cell at the same time, and can effectively reduce the time of data interruption while ensuring measurement. Obviously, whether a user can support NCSG is a capability, for example, whether the UE has idle RF resources.
  • NCSG#0 and NCSG#2 are based on MG pattern#0, which are applicable to synchronous and asynchronous scenarios respectively; NCSG#1 and NCSG#3 are based on MG pattern#1 (NCSG's
  • the Visible Interruption Repetition Period (VIRP) is equal to the Measurement Gap Repetition Period (MGRP) of the MG
  • the VIL1+ML+VIL2 of the NCSG is equal to the MGL of the MG), which are applicable to synchronous and asynchronous scenarios respectively.
  • the MG and NCSG in the synchronous scenario may be shown in Figure 3
  • the MG and NCSG in the asynchronous scenario may be shown in Figure 4.
  • the visible interruption length Visible Interruption Length, VIL
  • the UE needs to perform radio frequency adjustment, etc., and cannot perform data transmission.
  • this application proposes a concurrent NCSG and MG solution, which can perform measurement more flexibly and improve measurement performance.
  • FIG. 5 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application. As shown in FIG. 5 , the wireless communication method 200 may include at least part of the following content:
  • the terminal device determines that it has the capability of supporting NCSG and MG concurrently.
  • the terminal device has the capability of supporting NCSG and MG concurrently, which can also be understood as: the terminal device has the capability of supporting NCSG and MG at the same time, or the terminal device has the capability of supporting NCSG and MG coexistence. This application is not limited to this.
  • the terminal device determines that it has the capability of supporting NCSG and MG concurrently. Certainly, the terminal device may also determine that it has the capability of supporting NCSG and MG concurrently based on other parameters, which is not limited in this application.
  • the terminal device sends the first information
  • the first information is used to indicate that the terminal device has the capability of supporting NCSG and MG concurrently.
  • the terminal device sends the first information to the network device. That is, the terminal equipment reports that it has the capability of supporting NCSG and MG concurrently.
  • the terminal device may also send the first information to other terminals, which is not limited in this embodiment of the present application.
  • the first information is sent through radio resource control (Radio Resource Control, RRC) signaling or uplink control information (Uplink Control Information, UCI) signaling.
  • RRC Radio Resource Control
  • UCI Uplink Control Information
  • the terminal device indicates whether to support the function of NCSG and MG concurrently through a signaling (such as enableNcsgForMultipleMGP), and when the value is true, it indicates that it supports the function of NCSG and MGP concurrently.
  • a signaling such as enableNcsgForMultipleMGP
  • the terminal device sends second information, where the second information is used to indicate X;
  • X represents the maximum number of MG patterns supported by the terminal device, or X represents the maximum number of NCSG patterns supported by the terminal device, or X represents the maximum number of MG patterns and NCSG patterns supported by the terminal device.
  • the terminal device sends the second information to the network device. That is, the terminal device reports the parameter X.
  • the terminal device may also send the second information to other terminals, which is not limited in this embodiment of the present application.
  • the second information is sent through RRC signaling or UCI signaling.
  • the terminal device acquires M NCSG patterns and N MG patterns configured by the network device; wherein, M and N are positive integers.
  • the network device may configure the M NCSG patterns and the N MG patterns for the terminal device.
  • one NCSG pattern may include multiple occasions, and the period of the occasion is the period of the NCSG pattern.
  • one MG pattern may include multiple occasions, and the period of the occasion is the period of the MG pattern.
  • the terminal device receives third information sent by the network device, where the third information is used to configure the M NCSG patterns and the N MG patterns. That is, the network device can configure the M NCSG patterns and the N MG patterns for the terminal device through one signaling.
  • the third information is sent through RRC signaling or downlink control information (Downlink Control Information, DCI) signaling or system message.
  • DCI Downlink Control Information
  • the terminal device receives multiple pieces of information sent by the network device, where the multiple pieces of information are used to configure the M NCSG patterns and the N MG patterns. That is, the network device may configure the M NCSG patterns and the N MG patterns for the terminal device through multiple signalings.
  • the M NCSG patterns are configured through one signaling, and the N MG patterns are configured through another signaling.
  • the M NCSG patterns are respectively configured through M pieces of signaling, and the N MG patterns are respectively configured through N pieces of signaling.
  • the time domain relationship between the M NCSG patterns can refer to the relevant description of the above-mentioned FIG. 2
  • the time domain relationship between the N MG patterns can refer to the above-mentioned relevant description of FIG. 2
  • the M For the time-domain relationship between the NCSG pattern and the N MG patterns, reference may be made to the relevant description in FIG. 2 above, and details will not be repeated here.
  • M+N ⁇ X1 M+N ⁇ X1, where X1 represents the maximum number of MG patterns supported by the terminal device. That is, the NCSG pattern can be regarded as a special MG pattern.
  • X1 represents the maximum number of MG patterns supported by the terminal device
  • X2 represents the maximum number of NCSG patterns supported by the terminal device.
  • X3 represents the maximum number of MG patterns and NCSG patterns supported by the terminal device
  • X2 represents the maximum number of NCSG patterns supported by the terminal device
  • the X1 configuration granularity includes but is not limited to at least one of the following: user equipment and frequency band. That is, X1 can be calculated according to per-UE or per-FR respectively.
  • the X1 configuration granularity includes but is not limited to at least one of the following: active serving cell (active serving cell or active victim serving cell), serving component carrier (serving Component carrier, serving CC), frequency band combination (band -combination). That is, X1 can be calculated according to per-active serving cell or per-serving CC or per-band-combination respectively.
  • the X2 configuration granularity includes at least one of the following: user equipment and frequency band. That is, X2 can be calculated according to per-UE or per-FR respectively.
  • the X2 configuration granularity includes at least one of the following: activated serving cell, serving carrier component, and frequency band combination (band-combination). That is, X2 can be calculated according to per-active serving cell or per-serving CC or per-band-combination respectively.
  • the X3 configuration granularity includes at least one of the following: user equipment and frequency band. That is, X3 can be calculated according to per-UE or per-FR respectively.
  • the X3 configuration granularity includes at least one of the following: activated serving cell, serving carrier component, and frequency band combination (band-combination). That is, X3 can be calculated according to per-active serving cell or per-serving CC or per-band-combination respectively.
  • the terminal device As an example, assume that the number of concurrent (concurrent) MG patterns supported by the terminal equipment is 2, and only per-UE type MG patterns are supported. If the terminal device also has the ability to support NCSG, the terminal device supports the concurrent configuration of NCSG and MG by default. Taking limiting the total number of NCSG patterns and MG patterns as an example here, the total number of NCSG patterns and MG patterns that the network is allowed to configure for the terminal device does not exceed 2.
  • the maximum allowable interruption ratio Rmax is determined through network indication or terminal capability reporting.
  • the sum of the outage ratios of the M NCSG patterns and the outage ratios of the N MG patterns does not exceed a first threshold. That is, when the network device configures M NCSG patterns and N MG patterns, it needs to limit the total interruption ratio to not exceed the first threshold.
  • the first threshold is 10%.
  • the first threshold is pre-configured or agreed by a protocol, or the first threshold is configured by a network device.
  • the outage ratio of the M NCSG patterns does not exceed the second threshold, and/or, the outage ratio of the N MG patterns does not exceed the third threshold. That is, when configuring M NCSG patterns and N MG patterns, the network device needs to limit the outage ratio of M NCSG patterns to not exceed the second threshold and the outage ratio of N MG patterns to not exceed the third threshold.
  • the interruption duration of the NCSG patterns in the M NCSG patterns includes a visible interruption length (Visible Interruption Length, VIL) duration in the NCSG patterns.
  • VIL Visible Interruption Length
  • time unit of the VIL may be absolute time such as ms, or the number of time slots (slots).
  • the interruption duration of the NCSG pattern in the M NCSG patterns includes the VIL duration and the scheduling limit duration in the NCSG pattern.
  • time unit of the scheduling limit duration may be an absolute time such as ms, or may be the number of symbols.
  • the interruption duration of the NCSG patterns in the M NCSG patterns includes the duration of the NCSG pattern, or, the interruption duration of the NCSG patterns in the M NCSG patterns includes the VIL duration and the measurement duration in the NCSG patterns (Measurement Length, ML).
  • the scheduling restriction duration of the NCSG patterns in the M NCSG patterns is determined based on the number of synchronization signal blocks (Synchronization Signal Block, SSB) to be tested in the NCSG patterns.
  • SSB Synchronization Signal Block
  • the scheduling restriction duration of the NCSG patterns in the M NCSG patterns is determined based on at least one of the following:
  • Frequency range whether the frequency band of the terminal device is time division duplex (Time Division Duplex, TDD) or frequency division duplex (Frequency Division Duplex, FDD) bandwidth, SSB index (derivedSSB_IndexFromCell) in the cell configuration, the terminal Whether the device supports synchronous reception of data and SSB parameters (simultaneousRxDataSSB-DiffNumerology).
  • the interruption duration of the MG pattern in the N MG patterns includes a measurement interval length (MGL) of the MG pattern.
  • MLL measurement interval length
  • the outage ratio is calculated based on at least one of the following granularities: activated serving cell granularity, serving carrier component granularity.
  • the interruption time may only consider symbols that are not allowed to be sent upstream, or, the interruption time may consider symbols that are neither allowed to be sent nor received.
  • the uplink transmission corresponds to at least one of the following: Physical Uplink Control Channel (Physical Uplink Control Channel, PUCCH), Physical Uplink Shared Channel (Physical Uplink Shared Channel, PUSCH), and Sounding Reference Signal (Sounding Reference Signal, SRS).
  • Physical Uplink Control Channel Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • the downlink reception corresponds to at least one of the following: Physical Downlink Control Channel (Physical Downlink Control Channel, PDCCH), Physical Downlink Shared Channel (Physical Downlink Shared Channel, PDSCH), Tracking reference signal (Tracking reference signal, TRS), and channel The channel state information reference signal (Channel State Information Reference Signal, CSI-RS) corresponding to the quality indication (Channel Quantity Indicator, CQI).
  • Physical Downlink Control Channel Physical Downlink Control Channel
  • PDCCH Physical Downlink Shared Channel
  • PDSCH Physical Downlink Shared Channel
  • Tracking reference signal Tracking reference signal
  • TRS Tracking reference signal
  • TRS Tracking reference signal
  • CSI-RS Channel State Information Reference Signal
  • CQI Channel Quantity Indicator
  • the terminal device calculates the outage ratio within the target time window; and/or, the terminal device calculates the outage ratio of the M NCSG patterns; and/or, the terminal device calculates the outage ratio of the N MG patterns Proportion.
  • the duration of the target time window is pre-configured or agreed by the protocol, or, the duration of the target time window is configured by the network device, or, the duration of the target time window is based on the NCSG cycle and/or MG period is determined.
  • the target time window is a time window with a fixed length.
  • the duration of the target time window is pre-configured or agreed by a protocol, or the duration of the target time window is configured by the network device.
  • the target time window is a multiple of the NCSG cycle, or the target time window is a multiple of the MG cycle, or the target time window is a multiple of the NCSG cycle and the MG cycle (such as all cycles of the NCSG pattern and the MG pattern least common multiple of ).
  • the M NCSG patterns and the N MG patterns are all active intervals.
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 1.
  • R represents the interruption ratio
  • L i represents the interruption duration of the i-th NCSG pattern in the target time window among the M NCSG patterns
  • L j represents the j-th MG pattern in the N MG patterns in the target time window.
  • Interrupt duration within the time window Y indicates the duration of the target time window.
  • the network device configures two NCSG patterns and one MG pattern for the terminal device, and there is no overlap in the time domain.
  • the two NCSG patterns are denoted as NCSG1 and NCSG2 respectively
  • the MG pattern is denoted as MG1
  • the duration of the target time window is Y
  • the target time window includes 1 timing of NCSG1, 1 timing of NCSG2, and 1 timing of MG1 opportunity.
  • L is the sum of the interruption time caused by all NCSG opportunities and MG opportunities in the target time window, that is, L is equal to the interruption time of NCSG1 (L1)+the interruption time of NCSG2 (L2)+the interruption of MG1
  • the time (L3), that is, the interruption ratio R can be calculated based on the above formula 1.
  • the interruption time of the MG opportunity is the length of the MGL.
  • the terminal device calculates the outage ratios of the M NCSG patterns according to the following formula 2.
  • R 1 represents the interruption ratio of the M NCSG patterns
  • L i represents the interruption duration of the i-th NCSG pattern in the target time window among the M NCSG patterns
  • Y represents the duration of the target time window.
  • the terminal device calculates the interruption ratio of the N MG patterns according to the following formula 3.
  • R2 represents the interruption ratio of the N MG patterns
  • L j represents the interruption duration of the jth MG pattern in the N MG patterns within the target time window
  • Y represents the duration of the target time window
  • the network device configures two NCSG patterns and one MG pattern for the terminal device, and there is no overlap in the time domain.
  • the two NCSG patterns are denoted as NCSG1 and NCSG2 respectively
  • the MG pattern is denoted as MG1
  • the duration of the target time window is Y
  • the target time window includes 2 timings of NCSG1, 1 timing of NCSG2, and 2 timings of MG1 opportunity.
  • the outage ratio of two NCSG patterns ie, NCSG1 and NCSG2
  • the outage ratio of one MG pattern ie, MG1
  • there is an overlapping area within the target time window 160ms. For example, if the NCSG period is 20ms, there will be 8 NCSG occasions (occasions) in the target time window, but only 2 NCSG occasions and MG occasions (such as The period of MG is 80ms) overlapped, and the other 6 NCSG timings did not, and the non-overlapping part is still calculated according to the normal NCSG.
  • the timing of the default MG pattern will override the timing of the NCSG pattern, and it will only be calculated based on the timing of the MG pattern; or,
  • the sum of the interruption times caused by the timing of the NCSG pattern and the timing of the MG pattern minus the part of repeated calculation is taken as the interruption time; or,
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 4.
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg represents the interruption duration of the N MG patterns within the target time window
  • Y represents the duration of the target time window.
  • the network device configures two NCSG patterns and one MG pattern for the terminal device, the two NCSG patterns are respectively marked as NCSG1 and NCSG2, the MG pattern is marked as MG1, and the duration of the target time window is Y , including 1 opportunity of NCSG1, 1 opportunity of NCSG2, and 2 opportunities of MG1 in the target time window, and within the target time window, the first opportunity of NCSG1 (NCSG opportunity 1 of NCSG1) and the first opportunity of MG1
  • the two opportunities (MG opportunity 1 of MG1) overlap in the time domain.
  • the interruption ratio in the target time window can be calculated based on the above formula 4. That is, the overlapping area calculates the interruption time according to MG1, that is, the interruption time of NCSG1 is no longer considered in the overlapping area in FIG. 8 , and only the interruption time MGL of MG1 is considered.
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 5.
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of the MG patterns in the target time window except for the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L represents the overlapping interruption of the i-th NCSG pattern
  • the duration obtained by subtracting the duration of the overlapping area from the sum of the duration and the overlap interruption duration of the j th MG pattern
  • Y represents the duration of the target time window.
  • the network device configures two NCSG patterns and one MG pattern for the terminal device, the two NCSG patterns are respectively marked as NCSG1 and NCSG2, the MG pattern is marked as MG1, and the duration of the target time window is Y , including 1 opportunity of NCSG1, 1 opportunity of NCSG2, and 2 opportunities of MG1 in the target time window, and within the target time window, the first opportunity of NCSG1 (NCSG opportunity 1 of NCSG1) and the first opportunity of MG1
  • the two opportunities (MG opportunity 1 of MG1) overlap in the time domain.
  • the interruption ratio in the target time window can be calculated based on the above formula 5. That is to say, the sum of the respective interruption times of MG1 and NCSG1 minus the interruption time has an overlapping length of time, which can be regarded as the intersection of the two interruption times.
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 6.
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of MG patterns other than the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L i indicates the interruption of the k-th opportunity of the i-th NCSG pattern
  • L j represents the duration obtained after multiplying the interruption duration of the t-th opportunity of the j-th MG pattern and the target sharing factor
  • Y represents the duration of the target time window
  • the target sharing factor is a sharing factor between the i-th NCSG pattern and the j-th MG pattern.
  • the network device configures two NCSG patterns and one MG pattern for the terminal device, the two NCSG patterns are respectively marked as NCSG1 and NCSG2, the MG pattern is marked as MG1, and the duration of the target time window is Y , including 1 opportunity of NCSG1, 1 opportunity of NCSG2, and 2 opportunities of MG1 in the target time window, and within the target time window, the first opportunity of NCSG1 (NCSG opportunity 1 of NCSG1) and the first opportunity of MG1
  • the two opportunities (MG opportunity 1 of MG1) overlap in the time domain.
  • the interruption ratio in the target time window can be calculated based on the above formula 6.
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 7.
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of the MG patterns in the target time window except for the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L"' represents the i-th NCSG pattern and The interrupt duration of the actually used or activated interval in the j th MG pattern
  • Y represents the duration of the target time window.
  • the actually used or activated intervals between the i-th NCSG pattern and the j-th MG pattern are determined based on priority information of the NCSG pattern and the MG pattern.
  • the network device configures two NCSG patterns and one MG pattern for the terminal device, the two NCSG patterns are respectively marked as NCSG1 and NCSG2, the MG pattern is marked as MG1, and the duration of the target time window is Y , including 1 opportunity of NCSG1, 1 opportunity of NCSG2, and 2 opportunities of MG1 in the target time window, and within the target time window, the first opportunity of NCSG1 (NCSG opportunity 1 of NCSG1) and the first opportunity of MG1
  • the two opportunities (MG opportunity 1 of MG1) overlap in the time domain.
  • the interruption ratio in the target time window can be calculated based on the above formula 7.
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 8.
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window, L represents the overlap interrupt duration of the ith NCSG pattern and the overlap interrupt duration of the j NCSG pattern and the duration obtained after subtracting the duration of the overlapping region, Y represents the duration of the target time window.
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 9.
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window L i represents the duration obtained by multiplying the interrupt duration of the k-th opportunity of the i-th NCSG pattern by the target sharing factor
  • L j represents the duration of the j-th
  • Y represents the duration of the target time window
  • the target sharing factor is the difference between the i-th NCSG pattern and the j-th NCSG pattern sharing factor among them.
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 10.
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window L" represents the interrupt duration of the interval between the i NCSG pattern and the j NCSG pattern that is actually used or activated
  • Y represents the duration of the target time window.
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 11.
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the duration of interruption of the outer MG pattern within the target time window L represents the duration obtained after the sum of the overlap interruption duration of the ith MG pattern and the overlap interruption duration of the j MG pattern minus the duration of the overlapping region
  • Y represents the duration of the target time window.
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 12:
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the interrupt duration of the MG pattern outside the target time window L i represents the duration obtained by multiplying the interrupt duration of the k-th opportunity of the i-th MG pattern by the target sharing factor
  • L j represents the duration of the j-th MG pattern
  • Y represents the duration of the target time window
  • the target sharing factor is the difference between the i-th MG pattern and the j-th MG pattern sharing factor among them.
  • the terminal device calculates the interruption ratio in the target time window according to the following formula 13.
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the interrupt duration of the outer MG patterns in the target time window L" represents the interrupt duration of the interval between the i MG pattern and the j MG pattern that is actually used or activated
  • Y represents the duration of the target time window.
  • the terminal device has the capability of supporting NCSG and MG concurrently, so that measurement can be performed more flexibly and measurement performance can be improved.
  • the embodiment of the present application clarifies the interruption ratio in the case of concurrent configuration of NCSG patterns and MG patterns, ensuring that the network will not cause too much interruption to normal data transmission when configuring N MG patterns and M NCSG patterns .
  • terminal-side embodiment of the present application is described in detail above in conjunction with FIG. 5 to FIG. 8
  • network-side embodiment of the present application is described in detail below in conjunction with FIG. 9 . It should be understood that the network-side embodiment and the terminal-side embodiment correspond to each other. For similar descriptions, reference may be made to the terminal-side embodiments.
  • FIG. 9 is a schematic flowchart of a wireless communication method 300 according to an embodiment of the present application. As shown in FIG. 9 , the wireless communication method 300 may include at least part of the following content:
  • the network device receives first information sent by the terminal device, where the first information is used to indicate that the terminal device has the capability of supporting NCSG and MG concurrently.
  • the network device receives second information sent by the terminal device, where the second information is used to indicate X;
  • X represents the maximum number of MG patterns supported by the terminal device, or X represents the maximum number of NCSG patterns supported by the terminal device, or X represents the maximum number of MG patterns and NCSG patterns supported by the terminal device.
  • the network device sends third information to the terminal device, where the third information is used to configure M NCSG patterns and N MG patterns, where M and N are positive integers.
  • the network device sends multiple pieces of information to the terminal device, where the multiple pieces of information are used to configure M NCSG patterns and N MG patterns, where M and N are positive integers.
  • M+N ⁇ X1 M+N ⁇ X1, where X1 represents the maximum number of MG patterns supported by the terminal device.
  • X1 represents the maximum number of MG patterns supported by the terminal device
  • X2 represents the maximum number of NCSG patterns supported by the terminal device.
  • X3 represents the maximum number of MG patterns and NCSG patterns supported by the terminal device
  • X2 represents the maximum number of NCSG patterns supported by the terminal device
  • the configuration granularity of X1 includes at least one of the following: user equipment and frequency band; or, the configuration granularity of X1 includes at least one of the following: activated serving cells and serving carrier components.
  • the configuration granularity of X2 includes at least one of the following: user equipment and frequency band; or, the configuration granularity of X2 includes at least one of the following: activated serving cells and serving carrier components.
  • the X3 configuration granularity includes at least one of the following: user equipment and frequency band; or, the X3 configuration granularity includes at least one of the following: activated serving cell, serving carrier unit.
  • the sum of the outage ratios of the M NCSG patterns and the outage ratios of the N MG patterns does not exceed a first threshold.
  • the first threshold is pre-configured or agreed by a protocol, or the first threshold is configured by a network device.
  • the outage ratio of the M NCSG patterns does not exceed the second threshold, and/or, the outage ratio of the N MG patterns does not exceed the third threshold.
  • the second threshold is pre-configured or agreed by a protocol, or the second threshold is configured by the network device.
  • the third threshold is pre-configured or agreed by a protocol, or the third threshold is configured by a network device.
  • the network device obtains the outage ratio within the target time window; and/or, the network device obtains the outage ratios of the M NCSG patterns; and/or, the network device obtains the outage ratios of the N MG patterns Proportion.
  • the duration of the target time window is pre-configured or agreed by the protocol, or, the duration of the target time window is configured by the network device, or, the duration of the target time window is based on the NCSG cycle and/or MG period is determined.
  • the interruption ratio in the target time window is calculated according to the following formula:
  • R represents the interruption ratio
  • L i represents the interruption duration of the i-th NCSG pattern in the target time window among the M NCSG patterns
  • L j represents the j-th MG pattern in the N MG patterns in the target time window.
  • Interrupt duration within the time window Y indicates the duration of the target time window.
  • the interruption ratio of the M NCSG patterns is calculated according to the following formula:
  • R 1 represents the interruption ratio of the M NCSG patterns
  • L i represents the interruption duration of the i-th NCSG pattern in the target time window among the M NCSG patterns
  • Y represents the duration of the target time window.
  • the interruption ratio of the N MG patterns is calculated according to the following formula:
  • R2 represents the interruption ratio of the N MG patterns
  • L j represents the interruption duration of the jth MG pattern in the N MG patterns within the target time window
  • Y represents the duration of the target time window
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the interruption ratio in the target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg represents the interruption duration of the N MG patterns within the target time window
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the interruption ratio in the target time window is calculated by the terminal device according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of the MG patterns in the target time window except for the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L represents the overlapping interruption of the i-th NCSG pattern
  • the duration obtained by subtracting the duration of the overlapping area from the sum of the duration and the overlap interruption duration of the j th MG pattern
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the interruption ratio in the target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of MG patterns other than the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L i indicates the interruption of the k-th opportunity of the i-th NCSG pattern
  • L j represents the duration obtained after multiplying the interruption duration of the t-th opportunity of the j-th MG pattern and the target sharing factor
  • Y represents the duration of the target time window
  • the target sharing factor is a sharing factor between the i-th NCSG pattern and the j-th MG pattern.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the interruption ratio in the target time window is calculated by the terminal device according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of the MG patterns in the target time window except for the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L"' represents the i-th NCSG pattern and The interrupt duration of the actually used or activated interval in the j th MG pattern
  • Y represents the duration of the target time window.
  • the actually used or activated intervals between the i-th NCSG pattern and the j-th MG pattern are determined based on priority information of the NCSG pattern and the MG pattern.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th NCSG pattern among the M NCSG patterns
  • the interruption ratio in the target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window, L represents the overlap interrupt duration of the ith NCSG pattern and the overlap interrupt duration of the j NCSG pattern and the duration obtained after subtracting the duration of the overlapping region, Y represents the duration of the target time window.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th NCSG pattern among the M NCSG patterns
  • the interruption ratio in the target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window L i represents the duration obtained by multiplying the interrupt duration of the k-th opportunity of the i-th NCSG pattern by the target sharing factor
  • L j represents the duration of the j-th
  • Y represents the duration of the target time window
  • the target sharing factor is the difference between the i-th NCSG pattern and the j-th NCSG pattern sharing factor among them.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th NCSG pattern among the M NCSG patterns
  • the interruption ratio in the target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window L" represents the interrupt duration of the interval between the i NCSG pattern and the j NCSG pattern that is actually used or activated
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th MG pattern among the N MG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the interruption ratio in the target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the duration of interruption of the outer MG pattern within the target time window L represents the duration obtained after the sum of the overlap interruption duration of the ith MG pattern and the overlap interruption duration of the j MG pattern minus the duration of the overlapping region
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th MG pattern among the N MG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the interruption ratio in the target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the interrupt duration of the MG pattern outside the target time window L i represents the duration obtained by multiplying the interrupt duration of the k-th opportunity of the i-th MG pattern by the target sharing factor
  • L j represents the duration of the j-th MG pattern
  • Y represents the duration of the target time window
  • the target sharing factor is the difference between the i-th MG pattern and the j-th MG pattern sharing factor among them.
  • the k-th opportunity of the i-th MG pattern among the N MG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the interruption ratio in the target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the interrupt duration of the outer MG patterns in the target time window L" represents the interrupt duration of the interval between the i MG pattern and the j MG pattern that is actually used or activated
  • Y represents the duration of the target time window.
  • the interruption duration of the NCSG patterns in the M NCSG patterns includes a visible interruption length (Visible Interruption Length, VIL) duration in the NCSG patterns.
  • VIL visible Interruption Length
  • the interruption duration of the NCSG pattern in the M NCSG patterns includes the VIL duration and the scheduling limit duration in the NCSG pattern.
  • the interruption duration of the NCSG pattern in the M NCSG patterns includes the duration of the NCSG pattern, or, the interruption duration of the NCSG pattern in the M NCSG patterns includes the VIL duration and ML in the NCSG pattern.
  • the scheduling restriction duration of the NCSG pattern in the M NCSG patterns is determined based on the number of SSBs to be tested in the NCSG pattern.
  • the scheduling restriction duration of the NCSG patterns in the M NCSG patterns is determined based on at least one of the following:
  • Frequency band range whether the terminal device works in TDD or FDD bandwidth, SSB index in the cell configuration, whether the terminal device supports synchronous data reception and SSB parameters.
  • the interruption duration of the MG pattern in the N MG patterns includes the MGL of the MG pattern.
  • the outage ratio is calculated based on at least one of the following granularities: activated serving cell granularity, serving carrier component granularity.
  • the terminal device has the capability of supporting NCSG and MG concurrently, so that measurement can be performed more flexibly and measurement performance can be improved.
  • the embodiment of the present application clarifies the interruption ratio in the case of concurrent configuration of NCSG patterns and MG patterns, ensuring that the network will not cause too much interruption to normal data transmission when configuring N MG patterns and M NCSG patterns .
  • Fig. 10 shows a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes:
  • the processing unit 410 is configured to determine that it has the capability of supporting network-controllable small-interval NCSG and measurement interval MG concurrently.
  • the processing unit 410 is specifically used for:
  • the terminal device has the capability of simultaneously supporting the NCSG pattern and the capability of at least one MG pattern, it is determined that it has the capability of supporting the NCSG and MG concurrently.
  • the terminal device 400 also includes:
  • a communication unit 420 configured to send the first information
  • the first information is used to indicate that the terminal device has the capability of supporting NCSG and MG concurrently.
  • the terminal device 400 also includes:
  • a communication unit 420 configured to send second information, where the second information is used to indicate X;
  • X represents the maximum number of MG patterns supported by the terminal device, or X represents the maximum number of NCSG patterns supported by the terminal device, or X represents the maximum number of MG patterns and NCSG patterns supported by the terminal device.
  • the terminal device 400 also includes:
  • the communication unit 420 is configured to acquire M NCSG patterns and N MG patterns configured by the network device; wherein, M and N are positive integers.
  • the communication unit 420 is specifically configured to receive third information sent by the network device, where the third information is used to configure the M NCSG patterns and the N MG patterns.
  • the communication unit 420 is specifically configured to receive multiple pieces of information sent by the network device, where the multiple pieces of information are used to configure the M NCSG patterns and the N MG patterns.
  • M+N ⁇ X1 M+N ⁇ X1, where X1 represents the maximum number of MG patterns supported by the terminal device.
  • X1 represents the maximum number of MG patterns supported by the terminal device
  • X2 represents the maximum number of NCSG patterns supported by the terminal device.
  • X3 represents the maximum number of MG patterns and NCSG patterns supported by the terminal device
  • X2 represents the maximum number of NCSG patterns supported by the terminal device
  • the X1 configuration granularity includes at least one of the following: user equipment, frequency band; or,
  • the X1 configuration granularity includes at least one of the following: activating a serving cell and a serving carrier component.
  • the X2 configuration granularity includes at least one of the following: user equipment, frequency band; or,
  • the X2 configuration granularity includes at least one of the following: activating a serving cell and a serving carrier component.
  • the X3 configuration granularity includes at least one of the following: user equipment, frequency band; or,
  • the X3 configuration granularity includes at least one of the following: activating a serving cell and a serving carrier unit.
  • the sum of the outage ratios of the M NCSG patterns and the outage ratios of the N MG patterns does not exceed a first threshold.
  • the outage ratio of the M NCSG patterns does not exceed the second threshold, and/or, the outage ratio of the N MG patterns does not exceed the third threshold.
  • the processing unit 410 is also used to calculate the outage ratio in the target time window; and/or, the processing unit 410 is also used to calculate the outage ratio of the M NCSG patterns; and/or, the processing unit 410 is also used to calculate the interruption ratio of the N MG patterns.
  • the duration of the target time window is pre-configured or agreed by the protocol, or, the duration of the target time window is configured by the network device, or, the duration of the target time window is based on the NCSG cycle and/or MG period is determined.
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio
  • L i represents the interruption duration of the i-th NCSG pattern in the target time window among the M NCSG patterns
  • L j represents the j-th MG pattern in the N MG patterns in the target time window.
  • Interrupt duration within the time window Y indicates the duration of the target time window.
  • the processing unit 410 is specifically configured to: calculate the interruption ratio of the M NCSG patterns according to the following formula:
  • R 1 represents the interruption ratio of the M NCSG patterns
  • L i represents the interruption duration of the i-th NCSG pattern in the target time window among the M NCSG patterns
  • Y represents the duration of the target time window.
  • the processing unit 410 is specifically configured to: calculate the interruption ratio of the N MG patterns according to the following formula:
  • R2 represents the interruption ratio of the N MG patterns
  • L j represents the interruption duration of the jth MG pattern in the N MG patterns within the target time window
  • Y represents the duration of the target time window
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • k and t are positive integers
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg represents the interruption duration of the N MG patterns within the target time window
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • k and t are positive integers
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of the MG patterns in the target time window except for the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L represents the overlapping interruption of the i-th NCSG pattern
  • the duration obtained by subtracting the duration of the overlapping area from the sum of the duration and the overlap interruption duration of the j th MG pattern
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • k and t are positive integers
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of MG patterns other than the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L i indicates the interruption of the k-th opportunity of the i-th NCSG pattern
  • L j represents the duration obtained after multiplying the interruption duration of the t-th opportunity of the j-th MG pattern and the target sharing factor
  • Y represents the duration of the target time window
  • the target sharing factor is a sharing factor between the i-th NCSG pattern and the j-th MG pattern.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • k and t are positive integers
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of the MG patterns in the target time window except for the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L"' represents the i-th NCSG pattern and The interrupt duration of the actually used or activated interval in the j th MG pattern
  • Y represents the duration of the target time window.
  • the actually used or activated intervals between the i-th NCSG pattern and the j-th MG pattern are determined based on priority information of the NCSG pattern and the MG pattern.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th NCSG pattern among the M NCSG patterns
  • k and t are positive integers
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window, L represents the overlap interrupt duration of the ith NCSG pattern and the overlap interrupt duration of the j NCSG pattern and the duration obtained after subtracting the duration of the overlapping region, Y represents the duration of the target time window.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th NCSG pattern among the M NCSG patterns
  • k and t are positive integers
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window L i represents the duration obtained by multiplying the interrupt duration of the k-th opportunity of the i-th NCSG pattern by the target sharing factor
  • L j represents the duration of the j-th
  • Y represents the duration of the target time window
  • the target sharing factor is the difference between the i-th NCSG pattern and the j-th NCSG pattern sharing factor among them.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th NCSG pattern among the M NCSG patterns
  • k and t are positive integers
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window L" represents the interrupt duration of the interval between the i NCSG pattern and the j NCSG pattern that is actually used or activated
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th MG pattern among the N MG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the duration of interruption of the outer MG pattern within the target time window L represents the duration obtained after the sum of the overlap interruption duration of the ith MG pattern and the overlap interruption duration of the j MG pattern minus the duration of the overlapping region
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th MG pattern among the N MG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the interrupt duration of the MG pattern outside the target time window L i represents the duration obtained by multiplying the interrupt duration of the k-th opportunity of the i-th MG pattern by the target sharing factor
  • L j represents the duration of the j-th MG pattern
  • Y represents the duration of the target time window
  • the target sharing factor is the difference between the i-th MG pattern and the j-th MG pattern sharing factor among them.
  • the k-th opportunity of the i-th MG pattern among the N MG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the processing unit 410 is specifically configured to: calculate the interruption ratio in the target time window according to the following formula:
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the interrupt duration of the outer MG patterns in the target time window L" represents the interrupt duration of the interval between the i MG pattern and the j MG pattern that is actually used or activated
  • Y represents the duration of the target time window.
  • the interruption duration of the NCSG patterns in the M NCSG patterns includes the visible interruption length VIL duration in the NCSG patterns; or, the interruption duration of the NCSG patterns in the M NCSG patterns includes the duration of the NCSG patterns in the NCSG patterns VIL duration and scheduling limit duration; or, the interruption duration of the NCSG pattern in the M NCSG patterns includes the duration of the NCSG pattern, or, the interruption duration of the NCSG pattern in the M NCSG patterns includes the VIL duration in the NCSG pattern and the measurement duration ML.
  • the scheduling restriction duration of the NCSG pattern in the M NCSG patterns is determined based on the number of synchronization signal blocks SSB to be tested in the NCSG pattern.
  • the scheduling restriction duration of the NCSG patterns in the M NCSG patterns is determined based on at least one of the following:
  • Frequency band range whether the terminal device works in time division duplex TDD or frequency division duplex FDD bandwidth, SSB index in the cell configuration, whether the terminal device supports synchronous data reception and SSB parameters.
  • the interruption duration of the MG pattern in the N MG patterns includes the measurement interval length MGL of the MG pattern.
  • the outage ratio is calculated based on at least one of the following granularities: activated serving cell granularity, serving carrier component granularity.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the aforementioned processing unit may be one or more processors.
  • terminal device 400 may correspond to the terminal device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the terminal device 400 are respectively in order to realize the For the sake of brevity, the corresponding processes of the terminal device in the wireless communication method 200 are not repeated here.
  • Fig. 11 shows a schematic block diagram of a network device 500 according to an embodiment of the present application.
  • the network device 500 includes:
  • a communication unit 510 configured to receive first information sent by the terminal device
  • the first information is used to indicate that the terminal device has the capability of supporting network-controllable small interval NCSG and measurement interval MG concurrently.
  • the communication unit 510 is configured to receive second information sent by the terminal device, where the second information is used to indicate X;
  • X represents the maximum number of MG patterns supported by the terminal device, or X represents the maximum number of NCSG patterns supported by the terminal device, or X represents the maximum number of MG patterns and NCSG patterns supported by the terminal device.
  • the communication unit 510 is configured to send third information to the terminal device, where the third information is used to configure M NCSG patterns and N MG patterns, where M and N are positive integers.
  • the communication unit 510 is configured to send multiple pieces of information to the terminal device, where the multiple pieces of information are used to configure M NCSG patterns and N MG patterns, where M and N are positive integers.
  • M+N ⁇ X1 M+N ⁇ X1, where X1 represents the maximum number of MG patterns supported by the terminal device.
  • X1 represents the maximum number of MG patterns supported by the terminal device
  • X2 represents the maximum number of NCSG patterns supported by the terminal device.
  • X3 represents the maximum number of MG patterns and NCSG patterns supported by the terminal device
  • X2 represents the maximum number of NCSG patterns supported by the terminal device
  • the X1 configuration granularity includes at least one of the following: user equipment, frequency band; or,
  • the X1 configuration granularity includes at least one of the following: activating a serving cell and a serving carrier component.
  • the X2 configuration granularity includes at least one of the following: user equipment, frequency band; or,
  • the X2 configuration granularity includes at least one of the following: activating a serving cell and a serving carrier component.
  • the X3 configuration granularity includes at least one of the following: user equipment, frequency band; or,
  • the X3 configuration granularity includes at least one of the following: activating a serving cell and a serving carrier unit.
  • the sum of the outage ratios of the M NCSG patterns and the outage ratios of the N MG patterns does not exceed a first threshold.
  • the outage ratio of the M NCSG patterns does not exceed the second threshold, and/or, the outage ratio of the N MG patterns does not exceed the third threshold.
  • the communication unit 510 is also used to obtain the outage ratio within the target time window; and/or, the communication unit 510 is also used to obtain the outage ratio of the M NCSG patterns; and/or, the communication unit 510 is also used to obtain the interruption ratio of the N MG patterns.
  • the duration of the target time window is pre-configured or agreed by the protocol, or, the duration of the target time window is configured by the network device, or, the duration of the target time window is based on the NCSG cycle and/or MG period is determined.
  • the percentage of outages within this target time window is calculated according to the following formula:
  • R represents the interruption ratio
  • L i represents the interruption duration of the i-th NCSG pattern in the target time window among the M NCSG patterns
  • L j represents the j-th MG pattern in the N MG patterns in the target time window.
  • Interrupt duration within the time window Y indicates the duration of the target time window.
  • the interruption ratio of the M NCSG patterns is calculated according to the following formula:
  • R 1 represents the interruption ratio of the M NCSG patterns
  • L i represents the interruption duration of the i-th NCSG pattern in the target time window among the M NCSG patterns
  • Y represents the duration of the target time window.
  • the interruption ratio of the N MG patterns is calculated according to the following formula:
  • R2 represents the interruption ratio of the N MG patterns
  • L j represents the interruption duration of the jth MG pattern in the N MG patterns within the target time window
  • Y represents the duration of the target time window
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • k and t are positive integers
  • the percentage of outages within this target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg represents the interruption duration of the N MG patterns within the target time window
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • k and t are positive integers
  • the interruption ratio within the target time window is calculated by the terminal device according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of the MG patterns in the target time window except for the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L represents the overlapping interruption of the i-th NCSG pattern
  • the duration obtained by subtracting the duration of the overlapping area from the sum of the duration and the overlap interruption duration of the j th MG pattern
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • k and t are positive integers
  • the percentage of outages within this target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of MG patterns other than the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L i indicates the interruption of the k-th opportunity of the i-th NCSG pattern
  • L j represents the duration obtained after multiplying the interruption duration of the t-th opportunity of the j-th MG pattern and the target sharing factor
  • Y represents the duration of the target time window
  • the target sharing factor is a sharing factor between the i-th NCSG pattern and the j-th MG pattern.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • k and t are positive integers
  • the interruption ratio within the target time window is calculated by the terminal device according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the interruption duration of the NCSG patterns in the M NCSG patterns except for the k-th opportunity of the i-th NCSG pattern in the target time window
  • L mg indicates the interruption duration of the MG patterns in the target time window except for the t-th opportunity of the j-th MG pattern in the N MG patterns
  • L"' represents the i-th NCSG pattern and The interrupt duration of the actually used or activated interval in the j th MG pattern
  • Y represents the duration of the target time window.
  • the actually used or activated intervals between the i-th NCSG pattern and the j-th MG pattern are determined based on priority information of the NCSG pattern and the MG pattern.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th NCSG pattern among the M NCSG patterns
  • k and t are positive integers
  • the percentage of outages within this target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window, L represents the overlap interrupt duration of the ith NCSG pattern and the overlap interrupt duration of the j NCSG pattern and the duration obtained after subtracting the duration of the overlapping region, Y represents the duration of the target time window.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th NCSG pattern among the M NCSG patterns
  • k and t are positive integers
  • the percentage of outages within this target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window L i represents the duration obtained by multiplying the interrupt duration of the k-th opportunity of the i-th NCSG pattern by the target sharing factor
  • L j represents the duration of the j-th
  • Y represents the duration of the target time window
  • the target sharing factor is the difference between the i-th NCSG pattern and the j-th NCSG pattern sharing factor among them.
  • the k-th opportunity of the i-th NCSG pattern among the M NCSG patterns is at the same time as the t-th opportunity of the j-th NCSG pattern among the M NCSG patterns
  • k and t are positive integers
  • the percentage of outages within this target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L ncsg ' represents the difference between the k-th opportunity of the i-th NCSG pattern and the t-th opportunity of the j-th NCSG pattern in the M NCSG patterns
  • the interrupt duration of the outer NCSG pattern in the target time window L" represents the interrupt duration of the interval between the i NCSG pattern and the j NCSG pattern that is actually used or activated
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th MG pattern among the N MG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the percentage of outages within this target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the duration of interruption of the outer MG pattern within the target time window L represents the duration obtained after the sum of the overlap interruption duration of the ith MG pattern and the overlap interruption duration of the j MG pattern minus the duration of the overlapping region
  • Y represents the duration of the target time window.
  • the k-th opportunity of the i-th MG pattern among the N MG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the percentage of outages within this target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the interrupt duration of the MG pattern outside the target time window L i represents the duration obtained by multiplying the interrupt duration of the k-th opportunity of the i-th MG pattern by the target sharing factor
  • L j represents the j-th
  • Y represents the duration of the target time window
  • the target sharing factor is the difference between the i-th MG pattern and the j-th MG pattern sharing factor among them.
  • the k-th opportunity of the i-th MG pattern among the N MG patterns is at the same time as the t-th opportunity of the j-th MG pattern among the N MG patterns
  • the percentage of outages within this target time window is calculated according to the following formula:
  • R represents the interruption ratio in the target time window
  • L mg ′ represents the difference between the k-th opportunity of the i-th MG pattern and the t-th opportunity of the j-th MG pattern among the N MG patterns.
  • the interrupt duration of the outer MG patterns in the target time window L" represents the interrupt duration of the interval between the i MG pattern and the j MG pattern that is actually used or activated
  • Y represents the duration of the target time window.
  • the interruption duration of the NCSG pattern in the M NCSG patterns includes the visible interruption length VIL duration in the NCSG pattern; or,
  • the interruption duration of the NCSG pattern in the M NCSG patterns includes the VIL duration and the scheduling restriction duration in the NCSG pattern; or,
  • the interruption duration of the NCSG pattern in the M NCSG patterns includes the duration of the NCSG pattern, or, the interruption duration of the NCSG pattern in the M NCSG patterns includes the VIL duration and the measurement duration ML in the NCSG pattern.
  • the scheduling restriction duration of the NCSG pattern in the M NCSG patterns is determined based on the number of synchronization signal blocks SSB to be tested in the NCSG pattern.
  • the scheduling restriction duration of the NCSG patterns in the M NCSG patterns is determined based on at least one of the following:
  • Frequency band range whether the terminal device works in time division duplex TDD or frequency division duplex FDD bandwidth, SSB index in the cell configuration, whether the terminal device supports synchronous data reception and SSB parameters.
  • the interruption duration of the MG pattern in the N MG patterns includes the measurement interval length MGL of the MG pattern.
  • the outage ratio is calculated based on at least one of the following granularities: activated serving cell granularity, serving carrier component granularity.
  • the above-mentioned communication unit may be a communication interface or a transceiver, or an input-output interface of a communication chip or a system-on-chip.
  • the network device 500 may correspond to the network device in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the network device 500 are respectively in order to realize the For the sake of brevity, the corresponding flow of the network device in the wireless communication method 300 is not repeated here.
  • Fig. 12 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device 600 shown in FIG. 12 includes a processor 610, and the processor 610 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620 .
  • the processor 610 can invoke and run a computer program from the memory 620, so as to implement the method in the embodiment of the present application.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include antennas, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, the Let me repeat.
  • the communication device 600 may specifically be the terminal device of the embodiment of the present application, and the communication device 600 may implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. Let me repeat.
  • Fig. 13 is a schematic structural diagram of a device according to an embodiment of the present application.
  • the apparatus 700 shown in FIG. 13 includes a processor 710, and the processor 710 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 700 may further include a memory 720 .
  • the processor 710 can invoke and run a computer program from the memory 720, so as to implement the method in the embodiment of the present application.
  • the memory 720 may be an independent device independent of the processor 710 , or may be integrated in the processor 710 .
  • the device 700 may further include an input interface 730 .
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 700 may further include an output interface 740 .
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the device can be applied to the terminal device in the embodiment of the present application, and the device can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, details are not repeated here.
  • the device mentioned in the embodiment of the present application may also be a chip.
  • it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • FIG. 14 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 14 , the communication system 800 includes a terminal device 810 and a network device 820 .
  • the terminal device 810 can be used to realize the corresponding functions realized by the terminal device in the above method
  • the network device 820 can be used to realize the corresponding functions realized by the network device in the above method. repeat.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program enables the computer to execute the corresponding process implemented by the terminal device in each method of the embodiment of the present application. For the sake of brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions enable the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application. For brevity, This will not be repeated here.
  • the computer program product can be applied to the terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the computer program instructions cause the computer to execute the corresponding processes implemented by the terminal device in the methods of the embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding process implemented by the network device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the computer program can be applied to the terminal device in the embodiment of the present application.
  • the computer program executes the corresponding process implemented by the terminal device in each method of the embodiment of the present application, For the sake of brevity, details are not repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信的方法、终端设备和网络设备,终端设备具有支持NCSG和MG并发的能力,从而可以更为灵活的进行测量,提升测量性能。该无线通信的方法,包括:终端设备确定其具有支持NCSG和MG并发的能力。

Description

无线通信的方法、终端设备和网络设备 技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种无线通信的方法、终端设备和网络设备。
背景技术
为了支持终端设备在多个频点上的同步信号块(Synchronization Signal Block,SSB)测量,或者对多个参考信号的测量,终端设备可以基于多个测量间隔(Measurement Gap,MG)图样(pattern)进行测量。然而,在新空口(New Radio,NR)系统中,对基于多个MG图样的测量提出了更高的要求,此情况下,终端设备如何执行测量是一项亟需解决的问题。
发明内容
本申请实施例提供了一种无线通信的方法、终端设备和网络设备,终端设备具有支持NCSG和MG并发的能力,从而可以更为灵活的进行测量,提升测量性能。
第一方面,提供了一种无线通信的方法,该方法包括:
终端设备确定其具有支持NCSG和MG并发的能力。
第二方面,提供了一种无线通信的方法,该方法包括:
网络设备接收终端设备发送的第一信息;
其中,该第一信息用于指示该终端设备具有支持NCSG和MG并发的能力。
第三方面,提供了一种终端设备,用于执行上述第一方面中的方法。
具体地,该终端设备包括用于执行上述第一方面中的方法的功能模块。
第四方面,提供了一种网络设备,用于执行上述第二方面中的方法。
具体地,该网络设备包括用于执行上述第二方面中的方法的功能模块。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面中的方法。
第七方面,提供了一种装置,用于实现上述第一方面至第二方面中的任一方面中的方法。
具体地,该装置包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该装置的设备执行如上述第一方面至第二方面中的任一方面中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,所述计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面中的方法。
通过上述技术方案,终端设备具有支持NCSG和MG并发的能力,从而可以更为灵活的进行测量,提升测量性能。
附图说明
图1是本申请实施例应用的一种通信系统架构的示意性图。
图2是本申请提供的一种多个MG图样的时域关系的示意性图。
图3是本申请提供的一种同步场景下MG和NCSG的示意性图。
图4是本申请提供的一种异步场景下MG和NCSG的示意性图。
图5是根据本申请实施例提供的一种无线通信的方法的示意性流程图。
图6至图8分别是根据本申请实施例提供的目标时间窗口的示意性图。
图9是根据本申请实施例提供的另一种无线通信的方法的示意性流程图。
图10是根据本申请实施例提供的一种终端设备的示意性框图。
图11是根据本申请实施例提供的一种网络设备的示意性框图。
图12是根据本申请实施例提供的一种通信设备的示意性框图。
图13是根据本申请实施例提供的一种装置的示意性框图。
图14是根据本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。针对本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新空口(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
在一些实施例中,本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备可以是WLAN中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备,或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
在本申请实施例中,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。
在本申请实施例中,终端设备可以是手机(Mobile Phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备或智慧家庭(smart home)中的无线终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
在本申请实施例中,网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者 未来演进的PLMN网络中的网络设备或者NTN网络中的网络设备等。
作为示例而非限定,在本申请实施例中,网络设备可以具有移动特性,例如网络设备可以为移动的设备。在一些实施例中,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。在一些实施例中,网络设备还可以为设置在陆地、水域等位置的基站。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端设备,在一些实施例中,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
在一些实施例中,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
为了终端设备更好实现移动性切换,网络设备可以配置终端设备在特定的时间窗口内测量目标邻区的参考信号,其中,目标邻区可以是同频邻区或者异频邻区或者异网络邻区。作为示例,参考信号的测量可以是参考信号接收功率(Reference Signal Received Power,RSRP)、或者参考信号接收质量(Reference Signal Received Quality,RSRQ)、或者信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。特定的时间窗口称为测量间隔。
NR系统的研究主要考虑两个频段(Frequency range,FR),分别为FR1和FR2,其中,FR1和FR2对应的频率范围如下表1所示,FR1又称为sub 6GHz频段,FR2又称为毫米波频段。需要说明的是,FR1和FR2对应的频率范围并不局限于表1所示的频率范围,也可以进行调整。
表1
频段 频率范围
FR1 450MHz-6GHz
FR2 24.25GHz-52.6GHz
根据终端设备是否支持FR1和FR2独立工作的能力,测量间隔的gap类型有两种,一种是用户设备粒度测量间隔(per UE gap),另一种是频段粒度测量间隔(per FR gap),进一步,per FR gap又分为per FR1gap和per FR2 gap。其中,per UE gap又称为gapUE,per FR1gap又称为gapFR1,per FR2 gap又称为gapFR2。与此同时,终端设备引入了是否支持FR1和FR2独立工作的能力指示,该能力指示称为independentGapConfig,该能力指示用于网络设备确定是否能够配置per FR类型的测量间隔给终端设备,例如per FR1gap、per FR2 gap。具体地,若能力指示用于指示终端设备支持FR1和FR2独立工作,则网络设备能够配置per FR类型的测量间隔;若能力指示用于指示终端设备不支持FR1和FR2独立工作,则网络设备不能够配置per FR类型的测量间隔,仅能够配置per UE类型的测量间隔(即per UE gap)给终端设备。
以下对per FR1gap、per FR2 gap、以及per UE gap进行说明。
per FR1gap(即gapFR1):属于per FR1gap类型的测量间隔只适用于FR1的测量。per FR1gap与per UE gap不支持同时配置。MG的配置规则与服务小区的频点、目标小区的频点有关。
在演进的通用无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)和NR双连接(E-UTRA-NR Dual Connectivity,EN-DC)模式下,主节点(Master Node,MN)为长期演进(Long Term Evolution,LTE)制式,辅节点(Secondary Node,SN)为NR制式,只有MN可以配置per FR1gap。
per FR2 gap(即gapFR2):属于per FR2 gap类型的测量间隔只适用于FR2的测量。per FR2 gap与per UE gap不支持同时配置。per FR2 gap和per FR1gap支持同时配置。
若终端设备支持FR1和FR2独立工作的能力(即independent gap能力),则终端设备可以针对FR1和FR2进行独立测量,该终端设备可以被配置per FR gap类型的测量间隔,例如per FR1gap类型的测量间隔,per FR2 gap类型的测量间隔。
per UE gap(gapUE):属于per UE gap类型的测量间隔适用于所有频段(包括FR1和FR2)的测量。
在EN-DC模式下,MN为LTE制式,SN为NR制式,只有MN可以配置per UE gap。若配置了per UE gap,则per FR gap(如per FR1gap,per FR2 gap)不可以再配置。
在per UE gap类型的测量间隔的持续时间内,终端设备不允许发送任何数据,也不期望调整主载波和辅载波的接收机。
(2)测量配置
网络设备通过无线资源控制(Radio Resource Control,RRC)专用信令配置测量配置(即MeasConfig),如下表2所示,MeasConfig包括测量间隔配置和测量对象配置,其中,测量间隔配置即为measGapConfig,测量对象配置即为measObjectToAddModList。
一个测量间隔的配置信息有:测量间隔偏置(即gapOffset)、测量间隔重复周期(Measurement Gap Repetition Period,MGRP)、测量间隔的时长(Measurement Gap Length,MGL)。其中,测量间隔偏置用于确定测量间隔的起点。
一个测量间隔的类型可以是per UE gap,或者是per FR1gap,或者是per FR2 gap。测量间隔的图样(简称为间隔图样)支持26种,不同的间隔图样对应的MGRP和/或MGL不同。有些间隔图样用于FR1的测量,对应于per FR1gap;有些间隔图样用于FR2的测量,对应于per FR2 gap。
一个测量对象的配置信息中可以配置与该测量对象关联的同步块测量定时配置(SS/PBCH block measurement timing configuration,SMTC),SMTC的配置可支持{5,10,20,40,80,160}毫秒(ms)的周期,以及{1,2,3,4,5}ms的窗口长度,SMTC的时间偏置(time offset)与周期是强相关的,取值为{0,…,周期-1,}。由于测量对象中不再包含载频,SMTC可以独立按每个测量对象(Measurement Object,MO)而不是每个频点来配置。
为便于更好的理解本申请实施例,以下对本申请相关的多个同时共存的MG图样(multiple concurrent and independent MG patterns)进行说明。
终端设备在执行无线资源管理(Radio Resource Management,RRM)或定位测量时,终端设备只能采用一个或两个测量间隔(Measurement Gap,MG),具体采用几个MG由终端设备的能力决定,例如,如果终端设备支持每频段(FR)的MG(per-FR gap),则可以在FR1和FR2上分别配置一个MG图样(pattern),如果支持每UE的MG(per-UE gap),则只能配置一个MG pattern。
当终端设备被配置进行多个频点同步信号块(Synchronization Signal Block,SSB)测量(不同的频点上对应不同的同步测量时间配置(Synchronization Measurement Timing Configuration,SMTC)窗口)或多种不同的参考信号(如SSB,信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),定位参考信号(positioning reference signals,PRS)等)时,仅采用一个MG pattern配置可能无法将所有的信号都包含在MG中,从而造成有些信号无法准确测量或者MG的浪费。为了解决这一问题,增强版本的引入多个同时且独立的MG pattern,以便于在不同的SMTC配置,和/或参考信号(如SSB,CSI-RS,PRS),和/或不同的无线接入技术(Radio Access Technology,RAT)(演进的通用无线接入网络(Evolved Universal Terrestrial Radio Access Network,E-UTRAN),NR)下能够较好地完成测量工作。
多个MG pattern之间的时域关系(即是否冲突)还很灵活,多个MG图样之间具体可以包括以下三种关系:完全重叠(fully overlapped,FO)、部分重叠(partial overlapped)和完全不重叠(fully non-overlapped,FNO)。
多个MG图样之间完全不重叠(FNO):2个MG图样的所有时机在时域上不相交(All gap occasions of 2MGs are disjoint in time),以MG1和MG2为例,如图2所示,MG1和MG2的所有时机在时域上不相交。
多个MG图样之间完全重叠(FO):一个MG图样的每个间隔时机被另一个具有相同周期性的MG图样的每个间隔时机完全覆盖(Every gap occasion of one MG is fully covered by every gap occasion of another MG with the same periodicity)。以MG1和MG2为例,如图2所示,在情况1中,MG1和MG2具有相同的测量间隔长度(Measurement Gap Length,MGL),在情况2中,MG1和MG2具有不同的MGL。
多个MG图样之间部分重叠(partial overlapped)又分为以下三种:
完全部分重叠(Fully-partial overlapped,FPO):一个MG图样的每个间隔时机被具有相同周期性的另一个MG图样的每个间隔时机部分重叠(Every gap occasion of one MG is partially overlapped by every gap occasion of another MG with the same periodicity),以MG1和MG2为例,如图2所示,MG1的每个间隔时机被具有相同周期性的MG2的每个间隔时机部分重叠;
部分完全重叠(Partially-fully overlapped,PFO):一个MG图样的每个间隔时机都被另一个不同周期MG图样的间隔时机完全覆盖(Every gap occasion of one MG is fully covered by gap occasion of another MG with the different periodicity),以MG1和MG2为例,如图2所示,MG2的每个间隔时机都被MG1的间隔时机完全覆盖,且MG1和MG2的周期不同;
部分部分重叠(Partially-partial overlapped,PPO):一个MG图样的每个间隔时机都被另一个不同周期MG图样的间隔时机部分覆盖(Every gap occasion of one MG is partially covered by gap occasion of another MG with the different periodicity),以MG1和MG2为例,如图2所示,MG2的每个间隔时机都被MG1的间隔时机部分覆盖,且MG1和MG2的周期不同。
当两个MG时机(occasion)在时域上冲突时,终端设备只能在冲突的MG occasion中的一个MG上进行测量。
为便于更好的理解本申请实施例,以下对本申请相关的网络可控制的小间隔(Network Control Small Gap,NCSG)进行说明。
NCSG相比于MG可以减小测量所需的中断时间,如图3和图4所示,NCSG图样(pattern)中只有首尾的VIL1和VIL2会造成短暂的中断,在测量长度(Measurement Length,ML)中可以同时保持测量和服务小区的数据收发,可以在保证测量的同时有效地减少数据中断的时间。显然,用户是否能支持NCSG是一种能力,例如UE是否有空闲的RF资源。
LTE协议中定义了如下4种NCSG pattern,其中NCSG#0和NCSG#2是基于MG pattern#0,分别适用于同步和异步场景;NCSG#1和NCSG#3是基于MG pattern#1(NCSG的可见中断的重复周期(Visible Interruption Repetition Period,VIRP)等于MG的测量间隔重复周期(Measurement Gap Repetition Period,MGRP),NCSG的VIL1+ML+VIL2等于MG的MGL),分别适用于同步和异步场景,同步场景下的MG和NCSG可以如图3所示,异步场景下的MG和NCSG可以如图4所示。在可见中断长度(Visible Interruption Length,VIL)中UE需要进行射频调整等,无法进行数据传输。
现阶段,多个同时共存的MG(multiple concurrent and independent MG)和NCSG是分开配置的,无法满足NR中测量的需求。
基于上述问题,本申请提出了一种NCSG和MG并发的方案,可以更为灵活的进行测量,提升测量性能。
以下通过具体实施例详述本申请的技术方案。
图5是根据本申请实施例的无线通信的方法200的示意性流程图,如图5所示,该无线通信的方法200可以包括如下内容中的至少部分内容:
S210,终端设备确定其具有支持NCSG和MG并发的能力。
在一些实施例中,终端设备具有支持NCSG和MG并发的能力,也可以理解为:终端设备具有支持NCSG和MG同时使用的能力,或者,终端设备具有支持NCSG和MG共存的能力。本申请对此并不限定。
在一些实施例中,在该终端设备具有同时支持NCSG图样的能力和至少一个MG图样的能力的情况下,该终端设备确定其具有支持NCSG和MG并发的能力。当然,该终端设备也可以基于其他参数确定其具有支持NCSG和MG并发的能力,本申请对此并不限定。
在一些实施例中,该终端设备发送第一信息;
其中,该第一信息用于指示该终端设备具有支持NCSG和MG并发的能力。
具体例如,终端设备向网络设备发送该第一信息。也即,终端设备上报其具有支持NCSG和MG并发的能力。当然,终端设备也可以向其他终端发送该第一信息,本申请实施例对此并不限定。
在一些实施例中,该第一信息通过无线资源控制(Radio Resource Control,RRC)信令或上行控制信息(Uplink Control Information,UCI)信令发送。
具体例如,终端设备通过一个信令(如enableNcsgForMultipleMGP)指示是否支持NCSG和MG并发这一功能,取值为真时表示支持NCSG与MGP并发这一功能。
在一些实施例中,该终端设备发送第二信息,该第二信息用于指示X;
其中,X表示该终端设备最大支持的MG图样的数量,或者,X表示该终端设备最大支持的NCSG图样的数量,或者,X表示该终端设备最大支持的MG图样和NCSG图样的数量。
具体例如,终端设备向网络设备发送该第二信息。也即,终端设备上报参数X。当然,终端设备也可以向其他终端发送该第二信息,本申请实施例对此并不限定。
在一些实施例中,该第二信息通过RRC信令或UCI信令发送。
在一些实施例中,该终端设备获取网络设备配置的M个NCSG图样和N个MG图样;其中,M和N为正整数。
具体的,在网络设备获知终端设备具有支持NCSG和MG并发的能力之后,该网络设备可以为该终端设备配置该M个NCSG图样和该N个MG图样。
在一些实施例中,在M个NCSG图样中,一个NCSG图样可以包括多个时机(occasion),该时机的周期即为该NCSG图样的周期。
在一些实施例中,在N个MG图样中,一个MG图样可以包括多个时机(occasion),该时机的周期即为该MG图样的周期。
在一些实施例中,该终端设备接收该网络设备发送的第三信息,该第三信息用于配置该M个NCSG图样和该N个MG图样。也即,该网络设备可以通过一条信令为该终端设备配置该M个NCSG图样和该N个MG图样。
在一些实施例中,该第三信息通过RRC信令或下行控制信息(Downlink Control Information,DCI)信令或系统消息发送。
在一些实施例中,该终端设备接收该网络设备发送的多个信息,其中,该多个信息用于配置该M个NCSG图样和该N个MG图样。也即,该网络设备可以通过多条信令为该终端设备配置该M个NCSG图样和该N个MG图样。
例如,该M个NCSG图样通过一条信令配置,该N个MG图样通过另一条信令配置。
又例如,该M个NCSG图样分别通过M条信令配置,该N个MG图样分别通过N条信令配置。
在一些实施例中,该M个NCSG图样之间的时域关系可以参考上述图2的相关描述,该N个MG图样之间的时域关系可以参考上述图2的相关描述,以及该M个NCSG图样和该N个MG图样之间的时域关系可以参考上述图2的相关描述,在此不再赘述。
在一些实施例中,M+N≤X1,其中,X1表示该终端设备最大支持的MG图样的数量。也即,可以将NCSG图样视为一种特殊的MG图样。
在一些实施例中,N≤X1,和/或,M≤X2;
其中,X1表示该终端设备最大支持的MG图样的数量,X2表示该终端设备最大支持的NCSG图样的数量。
在一些实施例中,M+N≤X3,且X2<X3;
其中,X3表示该终端设备最大支持的MG图样和NCSG图样的数量,X2表示该终端设备最大支持的NCSG图样的数量。
在一些实施例中,该X1的配置粒度包括但不限于以下至少之一:用户设备、频段。也即,X1可以按照per-UE或per-FR来分别计算。
在一些实施例中,该X1的配置粒度包括但不限于以下至少之一:激活服务小区(active serving cell或active victim serving cell)、服务载波单元(serving Component carrier,serving CC)、频段组合(band-combination)。也即,X1可以按照per-active serving cell或per-serving CC或per-band-combination来分别计算。
在一些实施例中,该X2的配置粒度包括以下至少之一:用户设备、频段。也即,X2可以按照per-UE或per-FR来分别计算。
在一些实施例中,该X2的配置粒度包括以下至少之一:激活服务小区、服务载波单元、频段组合(band-combination)。也即,X2可以按照per-active serving cell或per-serving CC或per-band-combination来分别计算。
在一些实施例中,该X3的配置粒度包括以下至少之一:用户设备、频段。也即,X3可以按照per-UE或per-FR来分别计算。
在一些实施例中,该X3的配置粒度包括以下至少之一:激活服务小区、服务载波单元、频段组合(band-combination)。也即,X3可以按照per-active serving cell或per-serving CC或per-band-combination来分别计算。
作为一个示例,假设终端设备所支持的共存(concurrent)MG图样的个数为2个,且仅支持per-UE类型的MG图样。如果终端设备还具有支持NCSG的能力,则终端设备默认支持NCSG和MG并发配置。这里以限制NCSG图样和MG图样的总个数为例,允许网络配置给该终端设备的NCSG图样和MG图样的总个数不超过2个。
作为另一个示例,假设终端设备所支持的共存(concurrent)MG图样的个数为2个,且仅支持per-UE类型的MG图样。只有当终端设备上报能力表示其支持NCSG与MG并发配置时,才允许网络给该终端设备同时配置NCSG图样和MG图样。这里以分别限制NCSG图样和MG图样的个数为例,终端设备所支持的MG图样和NCSG图样的个数分别是X1=2,X2=2。网络配置需要保证所配置的MG图样和NCSG图样的个数均不能超过终端设备的能力。
在本申请实施例中,为了避免M个NCSG图样和N个MG图样对服务小区的数据传输造成过长的中断时间而影响吞吐量性能,需要限制M个NCSG图样和N个MG图样所导致的中断比例。比如通过网络指示或终端能力上报,确定所允许的最大中断比例Rmax。网络设备在配置NCSG图样和MG图样时需要保证实际中断比例不得超过该上限值。
在一些实施例中,该M个NCSG图样的中断比例与该N个MG图样的中断比例之和不超过第一阈值。也即,网络设备在配置M个NCSG图样和N个MG图样时,需要限制总的中断比例不超过第一阈值。例如,该第一阈值为10%。
在一些实施例中,该第一阈值为预配置或协议约定的,或者,该第一阈值为网络设备配置的。
在一些实施例中,该M个NCSG图样的中断比例不超过第二阈值,和/或,该N个MG图样的中断比例不超过第三阈值。也即,网络设备在配置M个NCSG图样和N个MG图样时,需要分别限制M个NCSG图样的中断比例不超过第二阈值和N个MG图样的中断比例不超过第三阈值。
在一些实施例中,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的可见中断长度(Visible Interruption Length,VIL)时长。例如,NCSG图样中首尾两端的中断时间,即中断时间L1=VIL1+VIL2,其中,VIL1和VIL2可以如上图3或图4所示。
需要说明的是,VIL的时间单位可以是绝对时间如ms,也可以是时隙(slot)个数。
在一些实施例中,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的VIL时长和调度限制时长。例如,NCSG图样中首尾两端的中断时间和调度限制时长,即中断时间L1=VIL1+VIL2+VILsr,其中,VIL1和VIL2可以如上图3或图4所示,VILsr为调度限制时长。
需要说明的是,调度限制时长的时间单位可以是绝对时间如ms,也可以是符号个数。
在一些实施例中,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样的时长,或者,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的VIL时长和测量时长(Measurement Length,ML)。例如,NCSG图样中首尾两端的中断时间和ML时长,即中断时间L1=VIL1+VIL2+ML,其中,VIL1、VIL2和ML可以如上图3或图4所示。
在一些实施例中,该M个NCSG图样中的NCSG图样的调度限制时长基于该NCSG图样中待测的同步信号块(Synchronization Signal Block,SSB)的数量确定。
在一些实施例中,该M个NCSG图样中的NCSG图样的调度限制时长基于以下至少之一确定:
频段范围(FR range)、该终端设备工作的频段是时分双工(Time Division Duplex,TDD)还是 频分双工(Frequency Division Duplex,FDD)带宽、小区配置中的SSB索引(deriveSSB_IndexFromCell)、该终端设备是否支持同步接收数据和SSB参数(simultaneousRxDataSSB-DiffNumerology)。
在一些实施例中,该N个MG图样中的MG图样的中断时长包括该MG图样的测量间隔长度(MGL)。
在一些实施例中,该中断比例基于以下粒度中的至少之一进行计算:激活服务小区粒度、服务载波单元粒度。
在一些实施例中,该中断时间可以只考虑不允许上行发送的符号,或者,该中断时间考虑既不允许发送也不允许接收的符号。
具体例如,上行发送对应以下至少之一:物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、探测参考信号(Sounding Reference Signal,SRS)。
具体例如,下行接收对应以下至少之一:物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、跟踪参考信号(Tracking reference signal,TRS)、与信道质量指示(Channel Quantity Indicator,CQI)对应的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。
在一些实施例中,该终端设备计算目标时间窗口内的中断比例;和/或,该终端设备计算该M个NCSG图样的中断比例;和/或,该终端设备计算该N个MG图样的中断比例。
在一些实施例中,该目标时间窗口的时长为预配置或协议约定的,或者,该目标时间窗口的时长为网络设备配置的,或者,该目标时间窗口的时长为基于NCSG周期和/或MG周期确定的。
具体例如,该目标时间窗口为一个固定长度的时间窗口,此种情况下,该目标时间窗口的时长为预配置或协议约定的,或者,该目标时间窗口的时长为网络设备配置的。
具体又例如,该目标时间窗口为NCSG周期的倍数,或者,该目标时间窗口为MG周期的倍数,或者,该目标时间窗口为NCSG周期和MG周期的倍数(如NCSG图样和MG图样的所有周期的最小公倍数)。
在一些实施例中,该目标时间窗口内不存在重叠区域,此种情况下,该M个NCSG图样和该N个MG图样均为激活的间隔。
在一些实施例中,在该目标时间窗口内不存在重叠区域的情况下,该终端设备根据以下公式1计算该目标时间窗口内的中断比例。
Figure PCTCN2021106561-appb-000001
其中,R表示中断比例,L i表示该M个NCSG图样中的第i个NCSG图样在该目标时间窗口内的中断时长,L j表示该N个MG图样中的第j个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
具体例如,如图6所示,网络设备为终端设备配置了2个NCSG图样和1个MG图样,且在时域上没有任何重叠。具体的,2个NCSG图样分别记为NCSG1和NCSG2,MG图样记为MG1,目标时间窗口的时长为Y,在目标时间窗口内包括NCSG1的1个时机、NCSG2的1个时机、MG1的1个时机。R=L/Y,其中,L为目标时间窗口内所有NCSG时机和MG时机所造成的中断时间的总和,即L等于NCSG1的中断时间(L1)+NCSG2的中断时间(L2)+MG1的中断时间(L3),也即,可以基于上述公式1计算中断比例R。具体的,MG时机的中断时间就是MGL的长度。NCSG时机的中断时间可以根据以下方式来计算,以NCSG1为例,其中断时间记为L1:NCSG1中首尾两端的中断时间,即L1=VIL1+VIL2;或者,NCSG的总长度,即L1=VIL1+VIL2+ML;或者,NCSG中首尾两端的VIL1+VIL2的长度和ML内调度限制的时间(VILsr),比如图6中所示的待测SSB符号以及SSB符号前后各一个符号,即L1=VIL1+VIL2+VILsr。
在一些实施例中,在该目标时间窗口内不存在重叠区域的情况下,该终端设备根据以下公式2计算该M个NCSG图样的中断比例。
Figure PCTCN2021106561-appb-000002
其中,R 1表示该M个NCSG图样的中断比例,L i表示该M个NCSG图样中的第i个NCSG图 样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内不存在重叠区域的情况下,该终端设备根据以下公式3计算该N个MG图样的中断比例。
Figure PCTCN2021106561-appb-000003
其中,R 2表示该N个MG图样的中断比例,L j表示该N个MG图样中的第j个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
具体例如,如图7所示,网络设备为终端设备配置了2个NCSG图样和1个MG图样,且在时域上没有任何重叠。具体的,2个NCSG图样分别记为NCSG1和NCSG2,MG图样记为MG1,目标时间窗口的时长为Y,在目标时间窗口内包括NCSG1的2个时机、NCSG2的1个时机、MG1的2个时机。可以基于上述公式2计算2个NCSG图样(即NCSG1和NCSG2)的中断比例,和/或,基于上述公式3计算1个MG图样(即MG1)的中断比例。
在一些实施例中,目标时间窗口(160ms)内存在重叠区域,例如,NCSG周期为20ms,该目标时间窗口内会有8个NCSG时机(occasion),但只有2个NCSG时机与MG时机(如MG的周期为80ms)重叠了,其他6个NCSG时机没有,那没有重叠的部分还是按照正常的NCSG来计算。
在一些实施例中,在NCSG图样和MG图样有重叠时机(overlapping occasion)的情况下,计算中断时间/比例时:
默认MG图样的时机会覆盖NCSG图样的时机,只根据MG图样的时机来计算;或者,
将NCSG图样的时机与MG图样的时机的各自所造成的中断时间之和减去重复计算的部分作为中断时间;或者,
根据NCSG图样的时机和MG图样的时机的共享因子来确定;或者,
根据优先级信息确定实际使用的是哪种间隔类型,计算中断比例时只考虑实际使用的间隔时机。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;此种情况下,该终端设备根据以下公式4计算该目标时间窗口内的中断比例。
Figure PCTCN2021106561-appb-000004
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg表示该N个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
具体例如,如图8所示,网络设备为终端设备配置了2个NCSG图样和1个MG图样,2个NCSG图样分别记为NCSG1和NCSG2,MG图样记为MG1,目标时间窗口的时长为Y,在目标时间窗口内包括NCSG1的1个时机、NCSG2的1个时机、MG1的2个时机,且在目标时间窗口内,NCSG1的第1个时机(NCSG1的NCSG时机1)与MG1的第1个时机(MG1的MG时机1)在时域上存在重叠区域,此种情况下,可以基于上述公式4计算目标时间窗口内的中断比例。也即,重叠区域按照MG1来计算中断时间,即图8中发生重叠区域不再考虑NCSG1的中断时间,只考虑MG1的中断时间MGL。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;此种情况下,该终端设备根据以下公式5计算该目标时间窗口内的中断比例。
Figure PCTCN2021106561-appb-000005
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L表示该第i个NCSG图样的重叠中断时长与该第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
具体例如,如图8所示,网络设备为终端设备配置了2个NCSG图样和1个MG图样,2个NCSG图样分别记为NCSG1和NCSG2,MG图样记为MG1,目标时间窗口的时长为Y,在目标时间窗口内包括NCSG1的1个时机、NCSG2的1个时机、MG1的2个时机,且在目标时间窗口内,NCSG1的第1个时机(NCSG1的NCSG时机1)与MG1的第1个时机(MG1的MG时机1)在时域上存在重叠区域,此种情况下,可以基于上述公式5计算目标时间窗口内的中断比例。也即,MG1和NCSG1各自的中断时间之和减去中断时间有重叠的时间长度,可以认为两者中断时间的交集部分。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;此种情况下,该终端设备根据以下公式6计算该目标时间窗口内的中断比例。
Figure PCTCN2021106561-appb-000006
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样的中断时长,L i表示该第i个NCSG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个MG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个NCSG图样与该第j个MG图样之间的共享因子。
具体例如,如图8所示,网络设备为终端设备配置了2个NCSG图样和1个MG图样,2个NCSG图样分别记为NCSG1和NCSG2,MG图样记为MG1,目标时间窗口的时长为Y,在目标时间窗口内包括NCSG1的1个时机、NCSG2的1个时机、MG1的2个时机,且在目标时间窗口内,NCSG1的第1个时机(NCSG1的NCSG时机1)与MG1的第1个时机(MG1的MG时机1)在时域上存在重叠区域,此种情况下,可以基于上述公式6计算目标时间窗口内的中断比例。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;此种情况下,该终端设备根据以下公式7计算该目标时间窗口内的中断比例。
Figure PCTCN2021106561-appb-000007
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L″′表示该第i个NCSG图样和该第j个MG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该第i个NCSG图样和该第j个MG图样中实际使用或激活的间隔为基于NCSG图样和MG图样的优先级信息确定的。
具体例如,如图8所示,网络设备为终端设备配置了2个NCSG图样和1个MG图样,2个NCSG图样分别记为NCSG1和NCSG2,MG图样记为MG1,目标时间窗口的时长为Y,在目标时间窗口内包括NCSG1的1个时机、NCSG2的1个时机、MG1的2个时机,且在目标时间窗口内,NCSG1的第1个时机(NCSG1的NCSG时机1)与MG1的第1个时机(MG1的MG时机1)在时域上存在重叠区域,此种情况下,可以基于上述公式7计算目标时间窗口内的中断比例。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;此种情况下,该终端设备根据以下公式8计算该目标时间窗口内的中断比例。
Figure PCTCN2021106561-appb-000008
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的 中断时长,L表示该第i个NCSG图样的重叠中断时长与该第j个NCSG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;此种情况下,该终端设备根据以下公式9计算该目标时间窗口内的中断比例。
Figure PCTCN2021106561-appb-000009
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的中断时长,L i表示该第i个NCSG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个NCSG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个NCSG图样与该第j个NCSG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;此种情况下,该终端设备根据以下公式10计算该目标时间窗口内的中断比例。
Figure PCTCN2021106561-appb-000010
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的中断时长,L″表示该第i个NCSG图样和该第j个NCSG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;此种情况下,该终端设备根据以下公式11计算该目标时间窗口内的中断比例。
Figure PCTCN2021106561-appb-000011
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L表示该第i个MG图样的重叠中断时长与该第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;此种情况下,该终端设备根据以下公式12计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000012
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L i表示该第i个MG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个MG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个MG图样与该第j个MG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;此种情况下,该终端设备根据以下公式13计算该目标时间窗口内的中断比例。
Figure PCTCN2021106561-appb-000013
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L″表示该第i个MG图样和该第j个MG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在本申请实施例中,终端设备具有支持NCSG和MG并发的能力,从而可以更为灵活的进行测量,提升测量性能。
进一步地,本申请实施例明确了在NCSG图样和MG图样并发配置的情况下的中断比例,保证了网络在配置N个MG图样和M个NCSG图样时不会对正常数据传输造成过多的中断。
上文结合图5至图8,详细描述了本申请的终端侧实施例,下文结合图9,详细描述本申请的网络侧实施例,应理解,网络侧实施例与终端侧实施例相互对应,类似的描述可以参照终端侧实施例。
图9是根据本申请实施例的无线通信的方法300的示意性流程图,如图9所示,该无线通信的方法300可以包括如下内容中的至少部分内容:
S310,网络设备接收终端设备发送的第一信息;其中,该第一信息用于指示该终端设备具有支持NCSG和MG并发的能力。
在一些实施例中,该网络设备接收该终端设备发送的第二信息,该第二信息用于指示X;
其中,X表示该终端设备最大支持的MG图样的数量,或者,X表示该终端设备最大支持的NCSG图样的数量,或者,X表示该终端设备最大支持的MG图样和NCSG图样的数量。
在一些实施例中,该网络设备向该终端设备发送第三信息,该第三信息用于配置M个NCSG图样和N个MG图样,其中,M和N为正整数。
在一些实施例中,该网络设备向该终端设备发送多个信息,其中,该多个信息用于配置M个NCSG图样和N个MG图样,其中,M和N为正整数。
在一些实施例中,M+N≤X1,其中,X1表示该终端设备最大支持的MG图样的数量。
在一些实施例中,N≤X1,和/或,M≤X2;
其中,X1表示该终端设备最大支持的MG图样的数量,X2表示该终端设备最大支持的NCSG图样的数量。
在一些实施例中,M+N≤X3,且X2<X3;
其中,X3表示该终端设备最大支持的MG图样和NCSG图样的数量,X2表示该终端设备最大支持的NCSG图样的数量。
在一些实施例中,该X1的配置粒度包括以下至少之一:用户设备、频段;或者,该X1的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
在一些实施例中,该X2的配置粒度包括以下至少之一:用户设备、频段;或者,该X2的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
在一些实施例中,该X3的配置粒度包括以下至少之一:用户设备、频段;或者,该X3的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
在一些实施例中,该M个NCSG图样的中断比例与该N个MG图样的中断比例之和不超过第一阈值。
在一些实施例中,该第一阈值为预配置或协议约定的,或者,该第一阈值为网络设备配置的。
在一些实施例中,该M个NCSG图样的中断比例不超过第二阈值,和/或,该N个MG图样的中断比例不超过第三阈值。
在一些实施例中,该第二阈值为预配置或协议约定的,或者,该第二阈值为网络设备配置的。
在一些实施例中,该第三阈值为预配置或协议约定的,或者,该第三阈值为网络设备配置的。
在一些实施例中,该网络设备获取目标时间窗口内的中断比例;和/或,该网络设备获取该M个NCSG图样的中断比例;和/或,该网络设备获取该N个MG图样的中断比例。
在一些实施例中,该目标时间窗口的时长为预配置或协议约定的,或者,该目标时间窗口的时长为网络设备配置的,或者,该目标时间窗口的时长为基于NCSG周期和/或MG周期确定的。
在一些实施例中,该目标时间窗口内不存在重叠区域;该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000014
其中,R表示中断比例,L i表示该M个NCSG图样中的第i个NCSG图样在该目标时间窗口内的中断时长,L j表示该N个MG图样中的第j个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该目标时间窗口内不存在重叠区域;该M个NCSG图样的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000015
其中,R 1表示该M个NCSG图样的中断比例,L i表示该M个NCSG图样中的第i个NCSG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该目标时间窗口内不存在重叠区域;该N个MG图样的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000016
其中,R 2表示该N个MG图样的中断比例,L j表示该N个MG图样中的第j个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000017
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg表示该N个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;该目标时间窗口内的中断比例是该终端设备根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000018
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L表示该第i个NCSG图样的重叠中断时长与该第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000019
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG 图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样的中断时长,L i表示该第i个NCSG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个MG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个NCSG图样与该第j个MG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;该目标时间窗口内的中断比例是该终端设备根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000020
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L″′表示该第i个NCSG图样和该第j个MG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该第i个NCSG图样和该第j个MG图样中实际使用或激活的间隔为基于NCSG图样和MG图样的优先级信息确定的。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000021
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的中断时长,L表示该第i个NCSG图样的重叠中断时长与该第j个NCSG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000022
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的中断时长,L i表示该第i个NCSG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个NCSG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个NCSG图样与该第j个NCSG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000023
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的 中断时长,L″表示该第i个NCSG图样和该第j个NCSG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000024
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L表示该第i个MG图样的重叠中断时长与该第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000025
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L i表示该第i个MG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个MG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个MG图样与该第j个MG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000026
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L″表示该第i个MG图样和该第j个MG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的可见中断长度(Visible Interruption Length,VIL)时长。
在一些实施例中,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的VIL时长和调度限制时长。
在一些实施例中,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样的时长,或者,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的VIL时长和ML。
在一些实施例中,该M个NCSG图样中的NCSG图样的调度限制时长基于该NCSG图样中待测的SSB的数量确定。
在一些实施例中,该M个NCSG图样中的NCSG图样的调度限制时长基于以下至少之一确定:
频段范围、该终端设备工作的频段是TDD还是FDD带宽、小区配置中的SSB索引、该终端设备是否支持同步接收数据和SSB参数。
在一些实施例中,该N个MG图样中的MG图样的中断时长包括该MG图样的MGL。
在一些实施例中,该中断比例基于以下粒度中的至少之一进行计算:激活服务小区粒度、服务载波单元粒度。
在本申请实施例中,终端设备具有支持NCSG和MG并发的能力,从而可以更为灵活的进行测量,提升测量性能。
进一步地,本申请实施例明确了在NCSG图样和MG图样并发配置的情况下的中断比例,保证了网络在配置N个MG图样和M个NCSG图样时不会对正常数据传输造成过多的中断。
上文结合图5至图9,详细描述了本申请的方法实施例,下文结合图10至图11,详细描述本申请的装置实施例,应理解,装置实施例与方法实施例相互对应,类似的描述可以参照方法实施例。
图10示出了根据本申请实施例的终端设备400的示意性框图。如图10所示,该终端设备400包括:
处理单元410,用于确定其具有支持网络可控制的小间隔NCSG和测量间隔MG并发的能力。
在一些实施例中,该处理单元410具体用于:
在该终端设备具有同时支持NCSG图样的能力和至少一个MG图样的能力的情况下,确定其具有支持NCSG和MG并发的能力。
在一些实施例中,该终端设备400还包括:
通信单元420,用于发送第一信息;
其中,该第一信息用于指示该终端设备具有支持NCSG和MG并发的能力。
在一些实施例中,该终端设备400还包括:
通信单元420,用于发送第二信息,该第二信息用于指示X;
其中,X表示该终端设备最大支持的MG图样的数量,或者,X表示该终端设备最大支持的NCSG图样的数量,或者,X表示该终端设备最大支持的MG图样和NCSG图样的数量。
在一些实施例中,该终端设备400还包括:
通信单元420,用于获取网络设备配置的M个NCSG图样和N个MG图样;其中,M和N为正整数。
在一些实施例中,该通信单元420具体用于接收该网络设备发送的第三信息,该第三信息用于配置该M个NCSG图样和该N个MG图样。
在一些实施例中,该通信单元420具体用于接收该网络设备发送的多个信息,其中,该多个信息用于配置该M个NCSG图样和该N个MG图样。
在一些实施例中,M+N≤X1,其中,X1表示该终端设备最大支持的MG图样的数量。
在一些实施例中,N≤X1,和/或,M≤X2;
其中,X1表示该终端设备最大支持的MG图样的数量,X2表示该终端设备最大支持的NCSG图样的数量。
在一些实施例中,M+N≤X3,且X2<X3;
其中,X3表示该终端设备最大支持的MG图样和NCSG图样的数量,X2表示该终端设备最大支持的NCSG图样的数量。
在一些实施例中,该X1的配置粒度包括以下至少之一:用户设备、频段;或者,
该X1的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
在一些实施例中,该X2的配置粒度包括以下至少之一:用户设备、频段;或者,
该X2的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
在一些实施例中,该X3的配置粒度包括以下至少之一:用户设备、频段;或者,
该X3的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
在一些实施例中,该M个NCSG图样的中断比例与该N个MG图样的中断比例之和不超过第一阈值。
在一些实施例中,该M个NCSG图样的中断比例不超过第二阈值,和/或,该N个MG图样的中断比例不超过第三阈值。
在一些实施例中,该处理单元410还用于计算目标时间窗口内的中断比例;和/或,该处理单元410还用于计算该M个NCSG图样的中断比例;和/或,该处理单元410还用于计算该N个MG图样的中断比例。
在一些实施例中,该目标时间窗口的时长为预配置或协议约定的,或者,该目标时间窗口的时长为网络设备配置的,或者,该目标时间窗口的时长为基于NCSG周期和/或MG周期确定的。
在一些实施例中,该目标时间窗口内不存在重叠区域;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000027
其中,R表示中断比例,L i表示该M个NCSG图样中的第i个NCSG图样在该目标时间窗口内的中断时长,L j表示该N个MG图样中的第j个MG图样在该目标时间窗口内的中断时长,Y表示 该目标时间窗口的时长。
在一些实施例中,该目标时间窗口内不存在重叠区域;
该处理单元410具体用于:根据以下公式计算该M个NCSG图样的中断比例:
Figure PCTCN2021106561-appb-000028
其中,R 1表示该M个NCSG图样的中断比例,L i表示该M个NCSG图样中的第i个NCSG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该目标时间窗口内不存在重叠区域;
该处理单元410具体用于:根据以下公式计算该N个MG图样的中断比例:
Figure PCTCN2021106561-appb-000029
其中,R 2表示该N个MG图样的中断比例,L j表示该N个MG图样中的第j个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000030
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg表示该N个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000031
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L表示该第i个NCSG图样的重叠中断时长与该第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000032
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样的中断时长,L i表示该第i个NCSG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个MG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个NCSG图样与该第j个MG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000033
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L″′表示该第i个NCSG图样和该第j个MG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该第i个NCSG图样和该第j个MG图样中实际使用或激活的间隔为基于NCSG图样和MG图样的优先级信息确定的。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000034
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的中断时长,L表示该第i个NCSG图样的重叠中断时长与该第j个NCSG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000035
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的中断时长,L i表示该第i个NCSG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个NCSG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个NCSG图样与该第j个NCSG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000036
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的中断时长,L″表示该第i个NCSG图样和该第j个NCSG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000037
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L表示该第i个MG图样的重叠中断时长与该第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000038
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L i表示该第i个MG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个MG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个MG图样与该第j个MG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该处理单元410具体用于:根据以下公式计算该目标时间窗口内的中断比例:
Figure PCTCN2021106561-appb-000039
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L″表示该第i个MG图样和该第j个MG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的可见中断长度VIL时长;或者,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的VIL时长和调度限制时长;或者,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样的时长,或者,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的VIL时长和测量时长ML。
在一些实施例中,该M个NCSG图样中的NCSG图样的调度限制时长基于该NCSG图样中待测的同步信号块SSB的数量确定。
在一些实施例中,该M个NCSG图样中的NCSG图样的调度限制时长基于以下至少之一确定:
频段范围、该终端设备工作的频段是时分双工TDD还是频分双工FDD带宽、小区配置中的SSB索引、该终端设备是否支持同步接收数据和SSB参数。
在一些实施例中,该N个MG图样中的MG图样的中断时长包括该MG图样的测量间隔长度MGL。
在一些实施例中,该中断比例基于以下粒度中的至少之一进行计算:激活服务小区粒度、服务载波单元粒度。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。上述处理单元可以是一个或多个处理器。
应理解,根据本申请实施例的终端设备400可对应于本申请方法实施例中的终端设备,并且终端设备400中的各个单元的上述和其它操作和/或功能分别为了实现图5所示的无线通信的方法200中终端设备的相应流程,为了简洁,在此不再赘述。
图11示出了根据本申请实施例的网络设备500的示意性框图。如图11所示,该网络设备500包括:
通信单元510,用于接收终端设备发送的第一信息;
其中,该第一信息用于指示该终端设备具有支持网络可控制的小间隔NCSG和测量间隔MG并 发的能力。
在一些实施例中,该通信单元510用于接收该终端设备发送的第二信息,该第二信息用于指示X;
其中,X表示该终端设备最大支持的MG图样的数量,或者,X表示该终端设备最大支持的NCSG图样的数量,或者,X表示该终端设备最大支持的MG图样和NCSG图样的数量。
在一些实施例中,该通信单元510用于向该终端设备发送第三信息,该第三信息用于配置M个NCSG图样和N个MG图样,其中,M和N为正整数。
在一些实施例中,该通信单元510用于向该终端设备发送多个信息,其中,该多个信息用于配置M个NCSG图样和N个MG图样,其中,M和N为正整数。
在一些实施例中,M+N≤X1,其中,X1表示该终端设备最大支持的MG图样的数量。
在一些实施例中,N≤X1,和/或,M≤X2;
其中,X1表示该终端设备最大支持的MG图样的数量,X2表示该终端设备最大支持的NCSG图样的数量。
在一些实施例中,M+N≤X3,且X2<X3;
其中,X3表示该终端设备最大支持的MG图样和NCSG图样的数量,X2表示该终端设备最大支持的NCSG图样的数量。
在一些实施例中,该X1的配置粒度包括以下至少之一:用户设备、频段;或者,
该X1的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
在一些实施例中,该X2的配置粒度包括以下至少之一:用户设备、频段;或者,
该X2的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
在一些实施例中,该X3的配置粒度包括以下至少之一:用户设备、频段;或者,
该X3的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
在一些实施例中,该M个NCSG图样的中断比例与该N个MG图样的中断比例之和不超过第一阈值。
在一些实施例中,该M个NCSG图样的中断比例不超过第二阈值,和/或,该N个MG图样的中断比例不超过第三阈值。
在一些实施例中,该通信单元510还用于获取目标时间窗口内的中断比例;和/或,该通信单元510还用于获取该M个NCSG图样的中断比例;和/或,该通信单元510还用于获取该N个MG图样的中断比例。
在一些实施例中,该目标时间窗口的时长为预配置或协议约定的,或者,该目标时间窗口的时长为网络设备配置的,或者,该目标时间窗口的时长为基于NCSG周期和/或MG周期确定的。
在一些实施例中,该目标时间窗口内不存在重叠区域;
该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000040
其中,R表示中断比例,L i表示该M个NCSG图样中的第i个NCSG图样在该目标时间窗口内的中断时长,L j表示该N个MG图样中的第j个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该目标时间窗口内不存在重叠区域;
该M个NCSG图样的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000041
其中,R 1表示该M个NCSG图样的中断比例,L i表示该M个NCSG图样中的第i个NCSG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该目标时间窗口内不存在重叠区域;
该N个MG图样的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000042
其中,R 2表示该N个MG图样的中断比例,L j表示该N个MG图样中的第j个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000043
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg表示该N个MG图样在该目标时间窗口内的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该目标时间窗口内的中断比例是该终端设备根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000044
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L表示该第i个NCSG图样的重叠中断时长与该第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000045
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样的中断时长,L i表示该第i个NCSG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个MG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个NCSG图样与该第j个MG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该目标时间窗口内的中断比例是该终端设备根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000046
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机之外的NCSG图样在该目标时间窗口内的中断时长,L mg″表示该N个MG图样中除该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L″′表示该第i个NCSG图样和该第j个MG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该第i个NCSG图样和该第j个MG图样中实际使用或激活的间隔为基于NCSG图样和MG图样的优先级信息确定的。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000047
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的中断时长,L表示该第i个NCSG图样的重叠中断时长与该第j个NCSG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000048
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的中断时长,L i表示该第i个NCSG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个NCSG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个NCSG图样与该第j个NCSG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该M个NCSG图样中的第i个NCSG图样的第k个时机与该M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000049
其中,R表示该目标时间窗口内的中断比例,L ncsg′表示该M个NCSG图样中除该第i个NCSG图样的该第k个时机和该第j个NCSG图样的该第t个时机之外的NCSG图样在该目标时间窗口内的中断时长,L″表示该第i个NCSG图样和该第j个NCSG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000050
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L表示该第i个MG图样的重叠中断时长与该第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示该目标时间窗口的时长。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000051
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长, L i表示该第i个MG图样的该第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示该第j个MG图样的该第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示该目标时间窗口的时长,该目标共享因子为该第i个MG图样与该第j个MG图样之间的共享因子。
在一些实施例中,在该目标时间窗口内,该N个MG图样中的第i个MG图样的第k个时机与该N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
该目标时间窗口内的中断比例是根据以下公式计算得到的:
Figure PCTCN2021106561-appb-000052
其中,R表示该目标时间窗口内的中断比例,L mg′表示该N个MG图样中除该第i个MG图样的该第k个时机和该第j个MG图样的该第t个时机之外的MG图样在该目标时间窗口内的中断时长,L″表示该第i个MG图样和该第j个MG图样中实际使用或激活的间隔的中断时长,Y表示该目标时间窗口的时长。
在一些实施例中,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的可见中断长度VIL时长;或者,
该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的VIL时长和调度限制时长;或者,
该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样的时长,或者,该M个NCSG图样中的NCSG图样的中断时长包括该NCSG图样中的VIL时长和测量时长ML。
在一些实施例中,该M个NCSG图样中的NCSG图样的调度限制时长基于该NCSG图样中待测的同步信号块SSB的数量确定。
在一些实施例中,该M个NCSG图样中的NCSG图样的调度限制时长基于以下至少之一确定:
频段范围、该终端设备工作的频段是时分双工TDD还是频分双工FDD带宽、小区配置中的SSB索引、该终端设备是否支持同步接收数据和SSB参数。
在一些实施例中,该N个MG图样中的MG图样的中断时长包括该MG图样的测量间隔长度MGL。
在一些实施例中,该中断比例基于以下粒度中的至少之一进行计算:激活服务小区粒度、服务载波单元粒度。
在一些实施例中,上述通信单元可以是通信接口或收发器,或者是通信芯片或者片上系统的输入输出接口。
应理解,根据本申请实施例的网络设备500可对应于本申请方法实施例中的网络设备,并且网络设备500中的各个单元的上述和其它操作和/或功能分别为了实现图9所示的无线通信的方法300中网络设备的相应流程,为了简洁,在此不再赘述。
图12是本申请实施例提供的一种通信设备600示意性结构图。图12所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图12所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
在一些实施例中,如图12所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该通信设备600具体可为本申请实施例的终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的装置的示意性结构图。图13所示的装置700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图13所示,装置700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
在一些实施例中,该装置700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该装置可应用于本申请实施例中的终端设备,并且该装置可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图14是本申请实施例提供的一种通信系统800的示意性框图。如图14所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (81)

  1. 一种无线通信的方法,其特征在于,包括:
    终端设备确定其具有支持网络可控制的小间隔NCSG和测量间隔MG并发的能力。
  2. 如权利要求1所述的方法,其特征在于,所述终端设备确定其具有支持NCSG和MGP并发的能力,包括:
    在所述终端设备具有同时支持NCSG图样的能力和至少一个MG图样的能力的情况下,所述终端设备确定其具有支持NCSG和MG并发的能力。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送第一信息;
    其中,所述第一信息用于指示所述终端设备具有支持NCSG和MG并发的能力。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送第二信息,所述第二信息用于指示X;
    其中,X表示所述终端设备最大支持的MG图样的数量,或者,X表示所述终端设备最大支持的NCSG图样的数量,或者,X表示所述终端设备最大支持的MG图样和NCSG图样的数量。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备获取网络设备配置的M个NCSG图样和N个MG图样;其中,M和N为正整数。
  6. 如权利要求5所述的方法,其特征在于,所述终端设备获取网络设备配置的M个NCSG图样和N个MG图样,包括:
    所述终端设备接收所述网络设备发送的第三信息,所述第三信息用于配置所述M个NCSG图样和所述N个MG图样。
  7. 如权利要求5所述的方法,其特征在于,所述终端设备获取网络设备配置的M个NCSG图样和N个MG图样,包括:
    所述终端设备接收所述网络设备发送的多个信息,其中,所述多个信息用于配置所述M个NCSG图样和所述N个MG图样。
  8. 如权利要求5至7中任一项所述的方法,其特征在于,
    M+N≤X1,其中,X1表示所述终端设备最大支持的MG图样的数量。
  9. 如权利要求5至7中任一项所述的方法,其特征在于,
    N≤X1,和/或,M≤X2;
    其中,X1表示所述终端设备最大支持的MG图样的数量,X2表示所述终端设备最大支持的NCSG图样的数量。
  10. 如权利要求5至7中任一项所述的方法,其特征在于,
    M+N≤X3,且X2<X3;
    其中,X3表示所述终端设备最大支持的MG图样和NCSG图样的数量,X2表示所述终端设备最大支持的NCSG图样的数量。
  11. 如权利要求8或9所述的方法,其特征在于,
    所述X1的配置粒度包括以下至少之一:用户设备、频段;
    或者,
    所述X1的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
  12. 如权利要求9或10所述的方法,其特征在于,
    所述X2的配置粒度包括以下至少之一:用户设备、频段;
    或者,
    所述X2的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
  13. 如权利要求10所述的方法,其特征在于,
    所述X3的配置粒度包括以下至少之一:用户设备、频段;
    或者,
    所述X3的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
  14. 如权利要求5至13中任一项所述的方法,其特征在于,
    所述M个NCSG图样的中断比例与所述N个MG图样的中断比例之和不超过第一阈值。
  15. 如权利要求5至13中任一项所述的方法,其特征在于,所述M个NCSG图样的中断比例不超过第二阈值,和/或,所述N个MG图样的中断比例不超过第三阈值。
  16. 如权利要求5至15中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备计算目标时间窗口内的中断比例;
    和/或,
    所述终端设备计算所述M个NCSG图样的中断比例;
    和/或,
    所述终端设备计算所述N个MG图样的中断比例。
  17. 如权利要求16所述的方法,其特征在于,所述目标时间窗口的时长为预配置或协议约定的,或者,所述目标时间窗口的时长为网络设备配置的,或者,所述目标时间窗口的时长为基于NCSG周期和/或MG周期确定的。
  18. 如权利要求16或17所述的方法,其特征在于,所述目标时间窗口内不存在重叠区域;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100001
    其中,R表示中断比例,L i表示所述M个NCSG图样中的第i个NCSG图样在所述目标时间窗口内的中断时长,L j表示所述N个MG图样中的第j个MG图样在所述目标时间窗口内的中断时长,Y表示所述目标时间窗口的时长。
  19. 如权利要求16或17所述的方法,其特征在于,所述目标时间窗口内不存在重叠区域;
    所述终端设备计算所述M个NCSG图样的中断比例,包括:
    所述终端设备根据以下公式计算所述M个NCSG图样的中断比例:
    Figure PCTCN2021106561-appb-100002
    其中,R 1表示所述M个NCSG图样的中断比例,L i表示所述M个NCSG图样中的第i个NCSG图样在所述目标时间窗口内的中断时长,Y表示所述目标时间窗口的时长。
  20. 如权利要求16或17所述的方法,其特征在于,所述目标时间窗口内不存在重叠区域;
    所述终端设备计算所述N个MG图样的中断比例,包括:
    所述终端设备根据以下公式计算所述N个MG图样的中断比例:
    Figure PCTCN2021106561-appb-100003
    其中,R 2表示所述N个MG图样的中断比例,L j表示所述N个MG图样中的第j个MG图样在所述目标时间窗口内的中断时长,Y表示所述目标时间窗口的时长。
  21. 如权利要求16或17所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100004
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L mg表示所述N个MG图样在所述目标时间窗口内的中断时长,Y表示所述目标时间窗口的时长。
  22. 如权利要求16或17所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100005
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L mg″表示所述N个MG图样中除所述第j个MG图样的所述第t个时机之外的MG图样在所述目标时间窗口内的中断时长,L表示所述第i个NCSG图样的重叠中断时长与所述第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示所述目标时间窗口的时长。
  23. 如权利要求16或17所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100006
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L mg″表示所述N个MG图样中除所述第j个MG图样的所述第t个时机之外的MG图样的中断时长,L i表示所述第i个NCSG图样的所述第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示所述第j个MG图样的所述第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示所述目标时间窗口的时长,所述目标共享因子为所述第i个NCSG图样与所述第j个MG图样之间的共享因子。
  24. 如权利要求16或17所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100007
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L mg″表示所述N个MG图样中除所述第j个MG图样的所述第t个时机之外的MG图样在所述目标时间窗口内的中断时长,L″′表示所述第i个NCSG图样和所述第j个MG图样中实际使用或激活的间隔的中断时长,Y表示所述目标时间窗口的时长。
  25. 如权利要求24所述的方法,其特征在于,所述第i个NCSG图样和所述第j个MG图样中实际使用或激活的间隔为基于NCSG图样和MG图样的优先级信息确定的。
  26. 如权利要求16或17所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100008
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机和所述第j个NCSG图样的所述第t个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L表示所述第i个NCSG图样的重叠中断时长与所述第j个NCSG图样的 重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示所述目标时间窗口的时长。
  27. 如权利要求16或17所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100009
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机和所述第j个NCSG图样的所述第t个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L i表示所述第i个NCSG图样的所述第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示所述第j个NCSG图样的所述第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示所述目标时间窗口的时长,所述目标共享因子为所述第i个NCSG图样与所述第j个NCSG图样之间的共享因子。
  28. 如权利要求16或17所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100010
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机和所述第j个NCSG图样的所述第t个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L″表示所述第i个NCSG图样和所述第j个NCSG图样中实际使用或激活的间隔的中断时长,Y表示所述目标时间窗口的时长。
  29. 如权利要求16或17所述的方法,其特征在于,在所述目标时间窗口内,所述N个MG图样中的第i个MG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100011
    其中,R表示所述目标时间窗口内的中断比例,L mg′表示所述N个MG图样中除所述第i个MG图样的所述第k个时机和所述第j个MG图样的所述第t个时机之外的MG图样在所述目标时间窗口内的中断时长,L表示所述第i个MG图样的重叠中断时长与所述第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示所述目标时间窗口的时长。
  30. 如权利要求16或17所述的方法,其特征在于,在所述目标时间窗口内,所述N个MG图样中的第i个MG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100012
    其中,R表示所述目标时间窗口内的中断比例,L mg′表示所述N个MG图样中除所述第i个MG图样的所述第k个时机和所述第j个MG图样的所述第t个时机之外的MG图样在所述目标时间窗口内的中断时长,L i表示所述第i个MG图样的所述第k个时机的中断时长与目标共享因子相乘之后得 到的时长,L j表示所述第j个MG图样的所述第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示所述目标时间窗口的时长,所述目标共享因子为所述第i个MG图样与所述第j个MG图样之间的共享因子。
  31. 如权利要求16或17所述的方法,其特征在于,在所述目标时间窗口内,所述N个MG图样中的第i个MG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述终端设备计算所述目标时间窗口内的中断比例,包括:
    所述终端设备根据以下公式计算所述目标时间窗口内的中断比例:
    Figure PCTCN2021106561-appb-100013
    其中,R表示所述目标时间窗口内的中断比例,L mg′表示所述N个MG图样中除所述第i个MG图样的所述第k个时机和所述第j个MG图样的所述第t个时机之外的MG图样在所述目标时间窗口内的中断时长,L″表示所述第i个MG图样和所述第j个MG图样中实际使用或激活的间隔的中断时长,Y表示所述目标时间窗口的时长。
  32. 如权利要求5至31中任一项所述的方法,其特征在于,
    所述M个NCSG图样中的NCSG图样的中断时长包括所述NCSG图样中的可见中断长度VIL时长;或者,
    所述M个NCSG图样中的NCSG图样的中断时长包括所述NCSG图样中的VIL时长和调度限制时长;或者,
    所述M个NCSG图样中的NCSG图样的中断时长包括所述NCSG图样的时长,或者,所述M个NCSG图样中的NCSG图样的中断时长包括所述NCSG图样中的VIL时长和测量时长ML。
  33. 如权利要求32所述的方法,其特征在于,所述M个NCSG图样中的NCSG图样的调度限制时长基于所述NCSG图样中待测的同步信号块SSB的数量确定。
  34. 如权利要求32所述的方法,其特征在于,所述M个NCSG图样中的NCSG图样的调度限制时长基于以下至少之一确定:
    频段范围、所述终端设备工作的频段是时分双工TDD还是频分双工FDD带宽、小区配置中的SSB索引、所述终端设备是否支持同步接收数据和SSB参数。
  35. 如权利要求5至34中任一项所述的方法,其特征在于,
    所述N个MG图样中的MG图样的中断时长包括所述MG图样的测量间隔长度MGL。
  36. 如权利要求15至31中任一项所述的方法,其特征在于,所述中断比例基于以下粒度中的至少之一进行计算:激活服务小区粒度、服务载波单元粒度。
  37. 一种无线通信的方法,其特征在于,包括:
    网络设备接收终端设备发送的第一信息;
    其中,所述第一信息用于指示所述终端设备具有支持网络可控制的小间隔NCSG和测量间隔MG并发的能力。
  38. 如权利要求37所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的第二信息,所述第二信息用于指示X;
    其中,X表示所述终端设备最大支持的MG图样的数量,或者,X表示所述终端设备最大支持的NCSG图样的数量,或者,X表示所述终端设备最大支持的MG图样和NCSG图样的数量。
  39. 如权利要求37或38所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三信息,所述第三信息用于配置M个NCSG图样和N个MG图样,其中,M和N为正整数。
  40. 如权利要求37或38所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送多个信息,其中,所述多个信息用于配置M个NCSG图样和N个MG图样,其中,M和N为正整数。
  41. 如权利要求39或40所述的方法,其特征在于,
    M+N≤X1,其中,X1表示所述终端设备最大支持的MG图样的数量。
  42. 如权利要求39或40所述的方法,其特征在于,
    N≤X1,和/或,M≤X2;
    其中,X1表示所述终端设备最大支持的MG图样的数量,X2表示所述终端设备最大支持的NCSG图样的数量。
  43. 如权利要求39或40所述的方法,其特征在于,
    M+N≤X3,且X2<X3;
    其中,X3表示所述终端设备最大支持的MG图样和NCSG图样的数量,X2表示所述终端设备最大支持的NCSG图样的数量。
  44. 如权利要求41或42所述的方法,其特征在于,
    所述X1的配置粒度包括以下至少之一:用户设备、频段;
    或者,
    所述X1的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
  45. 如权利要求42或43所述的方法,其特征在于,
    所述X2的配置粒度包括以下至少之一:用户设备、频段;
    或者,
    所述X2的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
  46. 如权利要求43所述的方法,其特征在于,
    所述X3的配置粒度包括以下至少之一:用户设备、频段;
    或者,
    所述X3的配置粒度包括以下至少之一:激活服务小区、服务载波单元。
  47. 如权利要求39至46中任一项所述的方法,其特征在于,
    所述M个NCSG图样的中断比例与所述N个MG图样的中断比例之和不超过第一阈值。
  48. 如权利要求39至46中任一项所述的方法,其特征在于,所述M个NCSG图样的中断比例不超过第二阈值,和/或,所述N个MG图样的中断比例不超过第三阈值。
  49. 如权利要求39至48中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备获取目标时间窗口内的中断比例;
    和/或,
    所述网络设备获取所述M个NCSG图样的中断比例;
    和/或,
    所述网络设备获取所述N个MG图样的中断比例。
  50. 如权利要求49所述的方法,其特征在于,所述目标时间窗口的时长为预配置或协议约定的,或者,所述目标时间窗口的时长为网络设备配置的,或者,所述目标时间窗口的时长为基于NCSG周期和/或MG周期确定的。
  51. 如权利要求49或50所述的方法,其特征在于,所述目标时间窗口内不存在重叠区域;
    所述目标时间窗口内的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100014
    其中,R表示中断比例,L i表示所述M个NCSG图样中的第i个NCSG图样在所述目标时间窗口内的中断时长,L j表示所述N个MG图样中的第j个MG图样在所述目标时间窗口内的中断时长,Y表示所述目标时间窗口的时长。
  52. 如权利要求49或50所述的方法,其特征在于,所述目标时间窗口内不存在重叠区域;
    所述M个NCSG图样的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100015
    其中,R 1表示所述M个NCSG图样的中断比例,L i表示所述M个NCSG图样中的第i个NCSG图样在所述目标时间窗口内的中断时长,Y表示所述目标时间窗口的时长。
  53. 如权利要求49或50所述的方法,其特征在于,所述目标时间窗口内不存在重叠区域;
    所述N个MG图样的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100016
    其中,R 2表示所述N个MG图样的中断比例,L j表示所述N个MG图样中的第j个MG图样在所述目标时间窗口内的中断时长,Y表示所述目标时间窗口的时长。
  54. 如权利要求49或50所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述目标时间窗口内的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100017
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L mg表示所述N个MG图样在所述目标时间窗口内的中断时长,Y表示所述目标时间窗口的时长。
  55. 如权利要求49或50所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述目标时间窗口内的中断比例是所述终端设备根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100018
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L mg″表示所述N个MG图样中除所述第j个MG图样的所述第t个时机之外的MG图样在所述目标时间窗口内的中断时长,L表示所述第i个NCSG图样的重叠中断时长与所述第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示所述目标时间窗口的时长。
  56. 如权利要求49或50所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述目标时间窗口内的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100019
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L mg″表示所述N个MG图样中除所述第j个MG图样的所述第t个时机之外的MG图样的中断时长,L i表示所述第i个NCSG图样的所述第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示所述第j个MG图样的所述第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示所述目标时间窗口的时长,所述目标共享因子为所述第i个NCSG图样与所述第j个MG图样之间的共享因子。
  57. 如权利要求49或50所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述目标时间窗口内的中断比例是所述终端设备根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100020
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L mg″表示所述N个MG图样中除所述第j个MG图样的所述第t个时机之外的MG图样在所述目标时间窗口内的中断 时长,L″′表示所述第i个NCSG图样和所述第j个MG图样中实际使用或激活的间隔的中断时长,Y表示所述目标时间窗口的时长。
  58. 如权利要求57所述的方法,其特征在于,所述第i个NCSG图样和所述第j个MG图样中实际使用或激活的间隔为基于NCSG图样和MG图样的优先级信息确定的。
  59. 如权利要求49或50所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述目标时间窗口内的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100021
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机和所述第j个NCSG图样的所述第t个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L表示所述第i个NCSG图样的重叠中断时长与所述第j个NCSG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示所述目标时间窗口的时长。
  60. 如权利要求49或50所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述目标时间窗口内的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100022
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机和所述第j个NCSG图样的所述第t个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L i表示所述第i个NCSG图样的所述第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示所述第j个NCSG图样的所述第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示所述目标时间窗口的时长,所述目标共享因子为所述第i个NCSG图样与所述第j个NCSG图样之间的共享因子。
  61. 如权利要求49或50所述的方法,其特征在于,在所述目标时间窗口内,所述M个NCSG图样中的第i个NCSG图样的第k个时机与所述M个NCSG图样中的第j个NCSG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述目标时间窗口内的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100023
    其中,R表示所述目标时间窗口内的中断比例,L ncsg′表示所述M个NCSG图样中除所述第i个NCSG图样的所述第k个时机和所述第j个NCSG图样的所述第t个时机之外的NCSG图样在所述目标时间窗口内的中断时长,L″表示所述第i个NCSG图样和所述第j个NCSG图样中实际使用或激活的间隔的中断时长,Y表示所述目标时间窗口的时长。
  62. 如权利要求49或50所述的方法,其特征在于,在所述目标时间窗口内,所述N个MG图样中的第i个MG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述目标时间窗口内的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100024
    其中,R表示所述目标时间窗口内的中断比例,L mg′表示所述N个MG图样中除所述第i个MG图样的所述第k个时机和所述第j个MG图样的所述第t个时机之外的MG图样在所述目标时间窗口内的中断时长,L表示所述第i个MG图样的重叠中断时长与所述第j个MG图样的重叠中断时长之和减去重叠区域的时长之后得到的时长,Y表示所述目标时间窗口的时长。
  63. 如权利要求49或50所述的方法,其特征在于,在所述目标时间窗口内,所述N个MG图样中的第i个MG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述目标时间窗口内的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100025
    其中,R表示所述目标时间窗口内的中断比例,L mg′表示所述N个MG图样中除所述第i个MG图样的所述第k个时机和所述第j个MG图样的所述第t个时机之外的MG图样在所述目标时间窗口内的中断时长,L i表示所述第i个MG图样的所述第k个时机的中断时长与目标共享因子相乘之后得到的时长,L j表示所述第j个MG图样的所述第t个时机的中断时长与目标共享因子相乘之后得到的时长,Y表示所述目标时间窗口的时长,所述目标共享因子为所述第i个MG图样与所述第j个MG图样之间的共享因子。
  64. 如权利要求49或50所述的方法,其特征在于,在所述目标时间窗口内,所述N个MG图样中的第i个MG图样的第k个时机与所述N个MG图样中的第j个MG图样的第t个时机在时域上存在重叠区域,k和t为正整数;
    所述目标时间窗口内的中断比例是根据以下公式计算得到的:
    Figure PCTCN2021106561-appb-100026
    其中,R表示所述目标时间窗口内的中断比例,L mg′表示所述N个MG图样中除所述第i个MG图样的所述第k个时机和所述第j个MG图样的所述第t个时机之外的MG图样在所述目标时间窗口内的中断时长,L″表示所述第i个MG图样和所述第j个MG图样中实际使用或激活的间隔的中断时长,Y表示所述目标时间窗口的时长。
  65. 如权利要求39至64中任一项所述的方法,其特征在于,
    所述M个NCSG图样中的NCSG图样的中断时长包括所述NCSG图样中的可见中断长度VIL时长;或者,
    所述M个NCSG图样中的NCSG图样的中断时长包括所述NCSG图样中的VIL时长和调度限制时长;或者,
    所述M个NCSG图样中的NCSG图样的中断时长包括所述NCSG图样的时长,或者,所述M个NCSG图样中的NCSG图样的中断时长包括所述NCSG图样中的VIL时长和测量时长ML。
  66. 如权利要求65所述的方法,其特征在于,所述M个NCSG图样中的NCSG图样的调度限制时长基于所述NCSG图样中待测的同步信号块SSB的数量确定。
  67. 如权利要求65所述的方法,其特征在于,所述M个NCSG图样中的NCSG图样的调度限制时长基于以下至少之一确定:
    频段范围、所述终端设备工作的频段是时分双工TDD还是频分双工FDD带宽、小区配置中的SSB索引、所述终端设备是否支持同步接收数据和SSB参数。
  68. 如权利要求39至67中任一项所述的方法,其特征在于,
    所述N个MG图样中的MG图样的中断时长包括所述MG图样的测量间隔长度MGL。
  69. 如权利要求49至64中任一项所述的方法,其特征在于,所述中断比例基于以下粒度中的至少之一进行计算:激活服务小区粒度、服务载波单元粒度。
  70. 一种终端设备,其特征在于,包括:
    处理单元,用于确定其具有支持网络可控制的小间隔NCSG和测量间隔MG并发的能力。
  71. 一种网络设备,其特征在于,包括:
    通信单元,用于接收终端设备发送的第一信息;
    其中,所述第一信息用于指示所述终端设备具有支持网络可控制的小间隔NCSG和测量间隔MG并发的能力。
  72. 一种终端设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至36中任一项所述的方法。
  73. 一种网络设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述 处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求37至69中任一项所述的方法。
  74. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至36中任一项所述的方法。
  75. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求37至69中任一项所述的方法。
  76. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至36中任一项所述的方法。
  77. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求37至69中任一项所述的方法。
  78. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至36中任一项所述的方法。
  79. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求37至69中任一项所述的方法。
  80. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1至36中任一项所述的方法。
  81. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求37至69中任一项所述的方法。
PCT/CN2021/106561 2021-07-15 2021-07-15 无线通信的方法、终端设备和网络设备 WO2023283889A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180097506.7A CN117356125A (zh) 2021-07-15 2021-07-15 无线通信的方法、终端设备和网络设备
PCT/CN2021/106561 WO2023283889A1 (zh) 2021-07-15 2021-07-15 无线通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/106561 WO2023283889A1 (zh) 2021-07-15 2021-07-15 无线通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023283889A1 true WO2023283889A1 (zh) 2023-01-19

Family

ID=84918920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106561 WO2023283889A1 (zh) 2021-07-15 2021-07-15 无线通信的方法、终端设备和网络设备

Country Status (2)

Country Link
CN (1) CN117356125A (zh)
WO (1) WO2023283889A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107637120A (zh) * 2015-04-09 2018-01-26 英特尔Ip公司 基于每个分量载波的增强的测量间隙配置的信令
CN108282794A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种测量方法、装置及系统
US20180337949A1 (en) * 2017-05-18 2018-11-22 Bank Of America Corporation Security enhancement tool for a target computer system operating within a complex web of interconnected systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107637120A (zh) * 2015-04-09 2018-01-26 英特尔Ip公司 基于每个分量载波的增强的测量间隙配置的信令
CN108282794A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种测量方法、装置及系统
US20180337949A1 (en) * 2017-05-18 2018-11-22 Bank Of America Corporation Security enhancement tool for a target computer system operating within a complex web of interconnected systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on NCSG", 3GPP DRAFT; R4-2110913, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Electronic Meeting; 20210519 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052009324 *

Also Published As

Publication number Publication date
CN117356125A (zh) 2024-01-05

Similar Documents

Publication Publication Date Title
WO2020147131A1 (zh) 无线通信方法、终端设备和网络设备
US11956658B2 (en) Wireless communication method, terminal device, and network device
US11546044B2 (en) Wireless communication method, terminal device and network device
US20230115662A1 (en) Method for neighboring cell measurement, terminal device and network device
US20220338262A1 (en) Information determination method, information indication method, terminal device, and network device
WO2021003624A1 (zh) Bwp切换方法和终端设备
WO2022032599A1 (zh) 测量方法和终端设备
WO2021253455A1 (zh) 无线通信方法、终端设备和网络设备
US20230327731A1 (en) Measurement parameter determination method, terminal device, chip, and storage medium
US20220394503A1 (en) Wireless communication method and device
US20230007682A1 (en) Data transmission method, terminal device and network device
WO2023283889A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022151085A1 (zh) 波束管理方法、终端设备和网络设备
WO2022021035A1 (zh) 测量方法、终端设备和网络设备
WO2022000301A1 (zh) 信号测量的方法、终端设备和网络设备
WO2021062869A1 (zh) 无线通信方法和终端设备
WO2023108556A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023205977A1 (zh) 通信方法、终端设备和网络设备
WO2023102914A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022266966A1 (zh) 测量方法、测量配置方法、终端设备和网络设备
WO2023035144A1 (zh) 无线通信的方法、终端设备和网络设备
US20230362872A1 (en) Wireless communication method, terminal device, and network device
WO2024108526A1 (zh) 无线通信的方法, 终端设备和网络设备
WO2023197260A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023141760A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949675

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097506.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE