WO2022183341A1 - 一种测量间隔的配置方法及装置、终端设备、网络设备 - Google Patents

一种测量间隔的配置方法及装置、终端设备、网络设备 Download PDF

Info

Publication number
WO2022183341A1
WO2022183341A1 PCT/CN2021/078531 CN2021078531W WO2022183341A1 WO 2022183341 A1 WO2022183341 A1 WO 2022183341A1 CN 2021078531 W CN2021078531 W CN 2021078531W WO 2022183341 A1 WO2022183341 A1 WO 2022183341A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement interval
bwp
preconfigured
activated
dedicated
Prior art date
Application number
PCT/CN2021/078531
Other languages
English (en)
French (fr)
Inventor
王淑坤
胡荣贻
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180075610.6A priority Critical patent/CN116438839A/zh
Priority to CN202310945172.5A priority patent/CN116828524A/zh
Priority to PCT/CN2021/078531 priority patent/WO2022183341A1/zh
Priority to EP21928432.0A priority patent/EP4243484A4/en
Publication of WO2022183341A1 publication Critical patent/WO2022183341A1/zh
Priority to US18/210,251 priority patent/US11979766B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular, to a method and apparatus for configuring a measurement interval, a terminal device, and a network device.
  • the network side may configure a dedicated bandwidth part (Band Width Part, BWP) of one or more serving cells (Serving Cell) for the terminal device.
  • BWP Band Width Part
  • the activated dedicated BWPs can be switched among the multiple dedicated BWPs.
  • different dedicated BWPs activated by the serving cell may change whether the measurement interval for a certain frequency point needs to be changed, in other words, the number of frequency points measured using a certain measurement interval will also change. Therefore, configuring the measurement interval according to the user equipment (User Equipment, UE) granularity will cause a problem of poor flexibility, and how to configure the measurement interval needs to be further improved.
  • User Equipment User Equipment
  • Embodiments of the present application provide a method and device for configuring a measurement interval, a terminal device, and a network device.
  • the terminal device receives first configuration information sent by the network device, where the first configuration information is used to determine at least one preconfigured measurement interval, and each preconfigured measurement interval in the at least one preconfigured measurement interval is associated with a measurement interval index .
  • the network device sends first configuration information to the terminal device, where the first configuration information is used to determine at least one preconfigured measurement interval, and each preconfigured measurement interval in the at least one preconfigured measurement interval is associated with a measurement interval index.
  • the device for configuring the measurement interval provided by the embodiment of the present application is applied to a terminal device, and the device includes:
  • a receiving unit configured to receive first configuration information sent by a network device, where the first configuration information is used to determine at least one preconfigured measurement interval, where each preconfigured measurement interval in the at least one preconfigured measurement interval is associated with one measurement interval Interval index association.
  • the device for configuring the measurement interval provided by the embodiment of the present application is applied to network equipment, and the device includes:
  • a sending unit configured to send first configuration information to the terminal device, where the first configuration information is used to determine at least one preconfigured measurement interval, where each preconfigured measurement interval in the at least one preconfigured measurement interval is associated with one measurement interval Index association.
  • the terminal device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned method for configuring the measurement interval.
  • the network device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned method for configuring the measurement interval.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned method for configuring the measurement interval.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for configuring the measurement interval.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables the computer to execute the above-mentioned method for configuring the measurement interval.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause the computer to execute the above-mentioned method for configuring the measurement interval.
  • the computer program provided by the embodiment of the present application when running on the computer, causes the computer to execute the above-mentioned method for configuring the measurement interval.
  • the network device preconfigures at least one preconfigured measurement interval through the first configuration information, and through the preconfigured measurement interval, the measurement interval configuration can be configured according to the BWP granularity, and the application of the measurement interval is flexible and effective.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is the schematic diagram of the Beam sweeping provided by the embodiment of the application.
  • FIG. 3 is a schematic diagram of an SSB provided by an embodiment of the present application.
  • Fig. 4 is the schematic diagram of the SSB burst set cycle provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of an SMTC provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a measurement interval provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for configuring a measurement interval provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram 1 of a configuration device for measuring intervals provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram 2 of a structure of a configuration device for measuring intervals provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communications capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between the terminals 120 .
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • Enhanced Mobile Broadband eMBB
  • Ultra Reliable Low Latency Communication URLLC
  • Massive Machine Type Communication mMTC
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB since eMBB may be deployed in different scenarios, such as indoor, urban, rural, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • EN-DC LTE-NR Dual Connectivity
  • an LTE base station eNB acts as a master node (Master Node, MN)
  • an NR base station gNB or en-gNB
  • SN secondary node
  • NE-DC NE-DC
  • 5GC-EN-DC NR DC
  • NE-DC the NR base station acts as the MN
  • the eLTE base station acts as the SN, connecting to the 5GC core network.
  • the eLTE base station acts as the MN, and the NR base station acts as the SN, connecting to the 5GC core network.
  • the NR base station acts as the MN, and the NR base station acts as the SN, connecting to the 5GC core network.
  • NR can also be deployed independently. NR will be deployed on high frequencies in the future.
  • the synchronization signal of 5G is given in the form of a synchronization signal block (SS/PBCH block, SSB), including the primary synchronization signal (Primary Synchronisation Signal, PSS), A secondary synchronization signal (Secondary Synchronisation Signal, SSS), and a physical broadcast channel (Physical Broadcast Channel, PBCH), as shown in Figure 3.
  • PSS Primary Synchronisation Signal
  • SSS Secondary Synchronisation Signal
  • SSS Secondary Synchronisation Signal
  • PBCH Physical Broadcast Channel
  • the 5G synchronization signal appears periodically in the time domain in the form of a synchronization signal burst set (SS burst set), as shown in Figure 4.
  • the actual number of beams transmitted in each cell is determined by the configuration on the network side, but the frequency point where the cell is located determines the maximum number of beams that can be configured, as shown in Table 1 below.
  • Frequency Range L (maximum number of beams) Greater than 3(2.4)GHz 4 3(2.4)GHz—6GHz 8
  • the measurement signal can be the SSB measurement, that is, the SSS signal in the SSB or the demodulation reference signal (Demodulation Reference Signal, DMRS) signal of the PBCH is measured to obtain the beam measurement result and the cell. measurement results.
  • a terminal device in a radio resource control (Radio Resource Control, RRC) connection state can also configure a channel status indicator reference signal (Channel Status Indicator Reference Signal, CSI-RS) as a reference signal for cell measurement.
  • CSI-RS Channel Status Indicator Reference Signal
  • the network side configures the SSB measurement timing configuration (SS/PBCH block measurement timing configuration, SMTC) for the terminal device, and the terminal device only needs to measure within the SMTC window, as shown in Figure 5.
  • SS/PBCH block measurement timing configuration SS/PBCH block measurement timing configuration
  • the network side will also configure the terminal device with the actual SSB transmission location measured by the UE, such as all measurements
  • Radio resource management (Radio Resource Management, RRM) measurement is divided into two types: intra-frequency measurement and inter-frequency measurement.
  • measurement interval configuration may be required. Referring to Table 2 below, the measurement interval configuration includes the following information: measurement interval period (MGRP), measurement interval offset (GapOffset), measurement interval duration (MGL), timing reference (MGTA), and the like.
  • MGRP represents the repetition period of the measurement interval
  • GapOffset represents the offset of the starting position of the measurement interval relative to the starting position of an MGRP
  • MGL represents the duration of the measurement interval.
  • MGTA is used to determine the timing of the measurement interval.
  • the network side needs to configure the measurement interval. During the duration of the measurement interval, the terminal equipment stops all services and measurement of serving cells. In addition, intra-frequency measurements may also require measurement intervals.
  • NR supports the measurement interval configured by UE granularity (per UE) and the measurement interval configured by FR granularity (per FR).
  • the related configuration of the interval can also be referred to as the per-FR gap configuration.
  • the MN determines the per UE gap configuration and the associated gap sharing configuration. Further, the MN will send the per UE gap configuration to the terminal device, and the MN will also notify the SN about the per UE gap configuration and the gap purpose (such as per-UE). Further, the SN will notify the MN about the FR1 frequency list and the FR2 frequency list to be configured by the SN as interval configuration auxiliary information.
  • MN determines FR1 gap configuration and related gap sharing configuration; SN determines FR2 gap configuration and related gap sharing configuration. Further, the MN will configure the per FR1 gap to the terminal device, and the MN will also notify the SN about the per FR1 gap configuration and the gap purpose (such as per-FR1). Further, the MN notifies the SN of the FR2 frequency list to be configured by the MN as the interval configuration assistance information, and the SN notifies the MN of the FR1 frequency list to be configured by the SN as the interval configuration assistance information.
  • MN decides both FR1 gap configuration and related gap sharing configuration, and FR2 gap configuration and related gap sharing. Further, for NE-DC, MN informs SN about per FR1 gap configuration, SN provides gap demand request to MN, but does not need any frequency list; for NR-DC, MN informs SN about per FR1 gap configuration, per FR2 gap configuration and gap purpose, the SN can indicate to the MN the FR1 frequency list and FR2 frequency list to be configured by the SN.
  • Table 3 shows the configuration of the 24 interval patterns.
  • the measurement period (ie MGRP) and the measurement duration (ie MGL) corresponding to different interval patterns are different, some interval patterns are used for the measurement of FR1 frequency points, and some interval patterns are used for the measurement of FR2 frequency points.
  • the measurement interval is configured to the terminal equipment through RRC dedicated signaling, which is a configuration parameter of the per UE.
  • the maximum channel bandwidth can be 400MHZ (called a wideband carrier), which is very large compared to the maximum 20M bandwidth of LTE. If the terminal device remains operating on the broadband carrier, the power consumption of the terminal device is very large. Therefore, it is suggested that the radio frequency (RF) bandwidth of the terminal device can be adjusted according to the actual throughput of the terminal device.
  • RF radio frequency
  • BWP the concept of BWP is introduced, and the motivation of BWP is to optimize the power consumption of terminal equipment. For example, if the rate of the terminal device is very low, a smaller BWP can be configured for the terminal device. If the rate requirement of the terminal device is very high, a larger BWP can be configured for the terminal device.
  • BWPs can be configured for the terminal device.
  • Another purpose of BWP is to trigger the coexistence of multiple basic parameter sets (numerology) in a cell, for example, BWP1 corresponds to Numerology1, and BWP2 corresponds to Numerology2.
  • the terminal device in the idle state or inactive state resides on the initial BWP (initial BWP).
  • the initial BWP is visible to the terminal device in the idle state or inactive state, and the terminal device can obtain the master information block (Master Information) from the initial BWP.
  • Master Information Master Information
  • Block, MIB remaining minimum system information
  • RMSI Remaining Minimum System Information
  • OSI Ole System Information
  • paging paging
  • a terminal can be configured with up to 4 uplink BWPs and up to 4 downlink BWPs through RRC dedicated signaling, but only one uplink BWP and downlink BWP can be activated at the same time.
  • the first activated BWP among the configured BWPs may be indicated.
  • the terminal device when the terminal device is in the RRC connection state, it can also switch between different BWPs through downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the first activated BWP is the first activated BWP configured in the RRC dedicated signaling.
  • the configuration of the BWP is based on the granularity of the serving cell, and the network side may configure one or more dedicated BWPs for the serving cell for the terminal device.
  • one or more dedicated BWPs (such as up to 4 uplink BWPs and up to 4 downlink BWPs) can be configured for the serving cell, and only one dedicated BWP can be activated at the same time (such as one uplink BWP) and/or a downstream BWP is activated).
  • the activated dedicated BWPs can be switched among the multiple dedicated BWPs.
  • different dedicated BWPs activated by the serving cell may change whether the measurement interval for a certain frequency point needs to be changed, in other words, the number of frequency points measured using a certain measurement interval will also change. Therefore, configuring the measurement interval according to the UE granularity will cause a problem of poor flexibility. How to configure the measurement interval and how to select the measurement interval needs to be further improved.
  • the network device in this embodiment of the present application may be a base station, which is not limited thereto, and the network device may also be other devices having a control function.
  • FIG. 7 is a schematic flowchart of a method for configuring a measurement interval provided by an embodiment of the present application. As shown in FIG. 7 , the method for configuring a measurement interval includes the following steps:
  • Step 701 The network device sends first configuration information to the terminal device, and the terminal device receives the first configuration information sent by the network device, where the first configuration information is used to determine at least one preconfigured measurement interval, the at least one preconfigured measurement interval Each preconfigured measurement interval in is associated with a measurement interval index.
  • the first configuration information is carried in RRC dedicated signaling.
  • the network device configures at least one pre-configured measurement interval (Pre-configured gap) to the terminal device through RRC dedicated signaling.
  • each preconfigured measurement interval configuration is used to determine a type of measurement interval (or interval pattern), and each preconfigured measurement interval configuration is associated with a measurement interval index, which can also be understood as, each measurement interval (or say interval pattern) is associated with a measurement interval index.
  • the measurement interval index may be a gap index (gap index) or a gap pattern identifier (gap pattern id) or the like.
  • the determination (or selection) of the measurement interval is performed according to the BWP granularity, so that a flexible application measurement interval can be implemented.
  • the following describes how different types of BWPs determine their associated measurement intervals.
  • the dedicated BWP may determine its associated measurement interval in the following manner.
  • Manner 1-1 The network device sends second configuration information to the terminal device, and the terminal device receives the second configuration information sent by the network device, where the second configuration information includes at least one serving cell configuration, so Each serving cell configuration in the at least one serving cell configuration includes at least one dedicated BWP configuration, and a measurement interval index is associated with each dedicated BWP in at least part of the at least one dedicated BWP; the terminal device is based on the The first configuration information and the second configuration information are used to determine a measurement interval associated with each dedicated BWP in the at least part of the dedicated BWPs.
  • the second configuration information is carried in RRC dedicated signaling.
  • the measurement interval index associated with the dedicated BWP may be carried in the dedicated BWP configuration corresponding to the dedicated BWP.
  • the network device configures at least one serving cell to the terminal device through RRC dedicated signaling.
  • each serving cell configuration includes at least one dedicated BWP configuration, and each dedicated BWP configuration is associated with a measurement interval index.
  • the measurement interval index can be gap index or gap pattern id, etc.
  • the network device configures 4 serving cells to the terminal device through RRC dedicated signaling, and each serving cell configuration includes 4 dedicated BWP configurations, then there are a total of 16 dedicated BWP configurations, and each of the 16 dedicated BWP configurations
  • Each dedicated BWP configuration carries a measurement interval index, which is used to associate with the dedicated BWP determined by the dedicated BWP configuration.
  • the above-mentioned dedicated BWP may be a downlink BWP or an uplink BWP.
  • Manner 1-2 If the second dedicated BWP is not configured with an associated preconfigured measurement interval, the terminal device determines the measurement interval associated with the second dedicated BWP based on the measurement configuration in the RRC connection reconfiguration message; or, if The second dedicated BWP is configured with an associated preconfigured measurement interval, and the terminal device determines the preconfigured measurement interval associated with the second dedicated BWP as the measurement interval of the second dedicated BWP.
  • the measurement configuration in the RRC connection reconfiguration message may also be called MeasConfig, for example, MeasConfig in R15. It should be pointed out that the network device will configure the measurement interval through MeasConfig in the RRC connection reconfiguration message.
  • a terminal device when a terminal device switches to a dedicated BWP, if the dedicated BWP is configured with an associated pre-configured measurement interval, the terminal device uses the pre-configured measurement interval as the measurement interval associated with the dedicated BWP, ignoring the measurement configured in MeasConfig. interval; if the dedicated BWP is not configured with an associated preconfigured measurement interval, the terminal device uses the measurement interval configured in MeasConfig as the associated measurement interval of the dedicated BWP.
  • the initial BWP may be default or indicated by a network device.
  • the initial BWP can determine its associated measurement interval in the following way.
  • Manner 2-1 The network device sends third configuration information to the terminal device, and the terminal device receives the third configuration information sent by the network device, where the third configuration information is used to determine the first measurement interval,
  • the first measurement interval is an initial BWP associated measurement interval; and the terminal device determines, based on the third configuration information, that the initial BWP associated measurement interval is the first measurement interval.
  • the third configuration information further includes first indication information, where the first indication information is used to indicate that the first measurement interval is an initial BWP associated measurement interval.
  • the third configuration information is carried in a system broadcast message; or, the third configuration information is carried in RRC dedicated signaling.
  • the system broadcast message is, for example, SIB1.
  • the network device configures a measurement interval (ie, the first measurement interval) in SIB1, and at the same time indicates that the measurement interval is the measurement interval associated with the initial BWP.
  • the first measurement interval can also be understood as a measurement interval that is activated or enabled when the terminal device switches to the initial BWP, where the terminal device switches to the initial BWP can also be understood as the initial BWP being activated.
  • the network device configures a measurement interval (ie, the first measurement interval) through RRC dedicated signaling, and at the same time indicates that the measurement interval is the measurement interval associated with the initial BWP.
  • the first measurement interval can also be understood as a measurement interval that is activated or enabled when the terminal device switches to the initial BWP, where the terminal device switches to the initial BWP can also be understood as the initial BWP being activated.
  • Manner 2-2 The terminal device determines the measurement interval associated with the first BWP based on the measurement configuration in the RRC connection reconfiguration message. Wherein, the first BWP is an initial BWP.
  • the measurement configuration in the RRC connection reconfiguration message may also be called MeasConfig, for example, MeasConfig in R15. It should be pointed out that the network device will configure the measurement interval through MeasConfig in the RRC connection reconfiguration message.
  • the measurement interval associated with the initial BWP is the measurement interval configured in the measurement configuration in the RRC connection reconfiguration message, which may be default or indicated by the network device.
  • Manner 2-3 The terminal device determines the measurement interval associated with the first BWP based on the measurement interval associated with the default BWP (default BWP). Wherein, the first BWP is an initial BWP.
  • the default BWP may be default or indicated by a network device.
  • the terminal device may use the measurement interval associated with the default BWP.
  • the measurement interval associated with the initial BWP is the measurement interval associated with the default BWP, which may be default or indicated by a network device.
  • Manner 2-4 The terminal device determines the measurement interval associated with the first BWP based on the preconfigured measurement interval associated with the first dedicated BWP. Wherein, the first BWP is an initial BWP.
  • the dedicated BWP configuration corresponding to the first dedicated BWP carries second indication information, where the second indication information is used to indicate that the preconfigured measurement interval associated with the first dedicated BWP is also the first BWP associated measurement interval.
  • the measurement interval associated with the initial BWP borrows the measurement interval associated with a certain dedicated BWP.
  • a dedicated BWP that is not configured with an associated preconfigured measurement interval may determine its associated measurement interval in the following manner.
  • the terminal device determines the measurement interval associated with the first BWP based on the measurement configuration in the RRC connection reconfiguration message.
  • the first BWP is a dedicated BWP that is not configured with an associated preconfigured measurement interval.
  • the measurement configuration in the RRC connection reconfiguration message may also be called MeasConfig, for example, MeasConfig in R15. It should be pointed out that the network device will configure the measurement interval through MeasConfig in the RRC connection reconfiguration message.
  • the terminal device switches to a dedicated BWP, if the dedicated BWP is not configured with an associated preconfigured measurement interval, the terminal device uses the measurement interval configured in MeasConfig as the measurement interval associated with the dedicated BWP.
  • Manner 3-2 The terminal device determines the measurement interval associated with the first BWP based on the measurement interval associated with the default BWP (default BWP).
  • the first BWP is a dedicated BWP that is not configured with an associated preconfigured measurement interval.
  • the default BWP may be default or indicated by a network device.
  • the terminal device may use the default BWP associated measurement interval as the dedicated BWP associated measurement interval.
  • the terminal device determines the measurement interval associated with the first BWP based on the preconfigured measurement interval associated with the first dedicated BWP.
  • the first BWP is a dedicated BWP that is not configured with an associated preconfigured measurement interval.
  • the dedicated BWP configuration corresponding to the first dedicated BWP carries second indication information, where the second indication information is used to indicate that the preconfigured measurement interval associated with the first dedicated BWP is also the first BWP associated measurement interval.
  • the terminal device when the terminal device switches to a dedicated BWP, if the dedicated BWP is not configured with an associated preconfigured measurement interval, the terminal device borrows the preconfigured measurement interval associated with the first dedicated BWP as the dedicated BWP associated measurement interval.
  • the dormant BWP has no associated measurement interval, and the dormant BWP is prohibited from configuring a preconfigured measurement interval.
  • the reference timing of the preconfigured measurement interval may be determined in the following manner:
  • the timing information of the preconfigured measurement interval is determined with reference to the timing information of a primary cell (PCell) or a primary and secondary cell (PScell).
  • PCell primary cell
  • PScell primary and secondary cell
  • the timing information of the preconfigured measurement interval is determined with reference to timing information of a first serving cell, and the first serving cell is determined based on the configuration of the network device, for example, the network device The identifier of the first serving cell is configured, and the timing information used to indicate the preconfigured measurement interval is determined with reference to the timing information of the first serving cell.
  • Manner C The timing information of the preconfigured measurement interval is determined with reference to the timing information of the serving cell where the dedicated BWP associated with the preconfigured measurement interval is located.
  • each preconfigured measurement interval in the at least one preconfigured measurement interval corresponds to a priority
  • the indication information used to indicate the priority of the preconfigured measurement interval is carried in the configuration information of the preconfigured measurement interval; or, the indication information used to indicate the priority of the preconfigured measurement interval is carried in the In the dedicated BWP configuration associated with the measurement interval.
  • the network device configures at least one preconfigured measurement interval to the terminal device through RRC dedicated signaling, wherein each preconfigured measurement interval is configured with a priority.
  • the network device configures at least one preconfigured measurement interval to the terminal device through RRC dedicated signaling, the network device configures at least one dedicated BWP through RRC dedicated signaling, and each dedicated BWP is associated with a preconfigured measurement interval and an indication.
  • a priority indication of this preconfigured measurement interval The higher the priority of a preconfigured measurement interval, the more preferentially the preconfigured measurement interval is activated or enabled.
  • the priority of the preconfigured measurement interval is changed by a first instruction, and the first instruction is carried in the DCI or MAC CE. That is to say, the priority of the preconfigured measurement interval can be dynamically changed through the instruction carried in the DCI or MAC CE.
  • the priority of the measurement interval determined by the measurement configuration in the RRC connection reconfiguration message may also be determined. For example, default the priority of the measurement interval configured in MeasConfig to the lowest or highest, or configure a priority indication.
  • the terminal device is configured with multiple serving cells, and the multiple serving cells correspond to multiple activated BWPs; each activated BWP in the multiple activated BWPs is associated with a measurement interval, how to determine the final The measurement interval to be activated or enabled needs to be specified and is explained below.
  • the terminal device selects at least one measurement interval from the plurality of measurement intervals as the activated or enabled measurement interval based on the priority of the measurement interval associated with each of the plurality of activated BWPs.
  • the preconfigured measurement interval configured in the first configuration information is a measurement interval of UE granularity.
  • the terminal device selects a measurement interval with the highest priority from the plurality of measurement intervals as the activated or enabled measurement interval based on the priority of the measurement interval associated with each of the plurality of activated BWPs.
  • the dormant BWP has no associated measurement interval, and if a certain cell is in the dormant BWP, the dormant BWP does not participate in the competition for measurement interval selection.
  • BWP1 is associated with gap1
  • BWP2 is associated with gap2
  • BWP2 is associated with gap3
  • BWP4 has no associated gap. Then, select the gap with the highest priority from gap, gap2 and gap3 as the final activated or enabled measurement interval.
  • all BWPs have associated measurement intervals, and the manner of determining the measurement intervals associated with BWPs may refer to the aforementioned related solutions, and all BWPs participate in the competition for measurement interval selection. For example: there are a total of 4 activated BWPs, among which, BWP1 is associated with gap1, BWP2 is associated with gap2, BWP2 is associated with gap3, and BWP4 is associated with gap4. Then, select the gap with the highest priority from gap, gap2, gap3 and gap4 as the final activated or enabled measurement interval.
  • the preconfigured measurement interval configured in the first configuration information is a measurement interval of FR granularity.
  • the terminal device determines, from the plurality of activated BWPs, a first activated BWP list associated with the FR1 preconfigured measurement interval, and a second activated BWP list associated with the FR2 preconfigured measurement interval; the terminal device is based on the first activated BWP list.
  • a priority of the measurement interval associated with each activated BWP in the activated BWP list select a measurement interval from the first activated BWP list as the activated or enabled FR1 measurement interval; the terminal device is based on the second activation
  • one measurement interval is selected from the second activated BWP list as the activated or enabled FR2 measurement interval.
  • the first configuration information includes a first preconfigured measurement interval list and a second preconfigured measurement interval list
  • the first preconfigured measurement interval list includes one or more FR1 preconfigured measurement intervals
  • the second preconfigured measurement interval list includes one or more FR2 preconfigured measurement intervals.
  • the first preconfigured measurement interval list may also be referred to as FR1 gap list
  • the second preconfigured measurement interval list may also be referred to as FR2 gap list.
  • the first preconfigured measurement interval list is associated with an FR1 indication, and the FR1 indication is used to indicate that each preconfigured measurement interval in the first preconfigured measurement interval list belongs to the FR1 preconfigured measurement interval;
  • the second preconfigured measurement interval The interval list is associated with a FR2 indication, and the FR2 indication is used to indicate that each preconfigured measurement interval in the second preconfigured measurement interval list belongs to the FR2 preconfigured measurement interval; wherein, FR1 in the first preconfigured measurement interval list
  • the numbering range of the measurement interval index of the preconfigured measurement interval completely overlaps or partially overlaps or does not overlap with the numbering range of the measurement interval index of the FR2 preconfigured measurement interval in the second preconfigured measurement interval list.
  • FR1 indication and FR2 indication may be displayed or implicitly indicated.
  • the above-mentioned FR1 indication and FR2 indication may be carried in the first configuration information.
  • the measurement interval index of each preconfigured measurement interval in the first preconfigured measurement interval list and the second preconfigured measurement interval can be used overlappingly, in order to distinguish whether a measurement interval index indicates a preconfigured measurement interval in the first preconfigured measurement interval list or a preconfigured measurement interval in the second preconfigured measurement interval list.
  • Measurement interval in addition to a measurement interval index associated with the dedicated BWP, an indication is also associated, where the indication is the FR1 indication or the FR2 indication, and the indication is used to determine the preconfigured measurement interval index associated with the dedicated BWP.
  • the preconfigured measurement interval is the FR1 preconfigured measurement interval or the FR2 preconfigured measurement interval.
  • the first configuration information includes a preconfigured measurement interval list
  • the preconfigured measurement interval list includes one or more FR1 preconfigured measurement intervals and one or more FR2 preconfigured measurement intervals .
  • Each FR1 preconfigured measurement interval in the preconfigured measurement interval list is associated with a measurement interval index, and each FR2 preconfigured measurement interval is also associated with a measurement interval index; wherein, the FR1 in the preconfigured measurement interval list
  • the numbering range of the measurement interval index of the preconfigured measurement interval does not overlap with the numbering range of the measurement interval index of the FR2 preconfigured measurement interval.
  • the activated or enabled measurement interval is reselected under the trigger of at least one of the following events:
  • Event 1 The secondary cell is activated and the first activated BWP is not a dormant BWP;
  • Event 2 The secondary cell is activated and the first activated BWP is configured with an associated preconfigured measurement interval
  • Event 3 The secondary cell is activated and the first activated BWP is not a dormant BWP and the first activated BWP is configured with an associated preconfigured measurement interval;
  • Event 4 The secondary cell is deactivated and the currently activated BWP is not a dormant BWP;
  • Event 5 The secondary cell is deactivated and the currently activated BWP is configured with an associated preconfigured measurement interval
  • Event 6 The secondary cell is deactivated and the currently activated BWP is not a dormant BWP and the currently activated BWP is configured with an associated preconfigured measurement interval;
  • Event 7 The activated BWP of the secondary cell is switched from the source BWP to the target BWP, the target BWP is a dormant BWP and the source BWP is configured with an associated pre-configured measurement interval;
  • Event 8 The activated BWP of the secondary cell is switched from the source BWP to the target BWP, the source BWP is a dormant BWP and the target BWP is configured with an associated preconfigured measurement interval;
  • Event 9 The active BWP of the serving cell is switched from the source BWP to the target BWP, and the original BWP and one of the target BWPs are configured with an associated pre-configured measurement interval;
  • Event 10 The active BWP of the serving cell is switched from the source BWP to the target BWP, the original BWP and the target BWP are both configured with associated preconfigured measurement intervals and the preconfigured measurement intervals of the original BWP and the target BWP are different .
  • the above technical solutions of the embodiments of the present application realize the pre-configuration of measurement intervals, and clarify how various types of BWPs determine their associated measurement intervals, and set their priorities for the measurement intervals.
  • the final selected measurement interval is determined, so that the application of the measurement interval is flexible and effective.
  • FIG. 8 is a schematic structural diagram 1 of a configuration device for measuring interval provided by an embodiment of the present application, which is applied to terminal equipment.
  • the configuration device for measuring interval includes:
  • a receiving unit 801 configured to receive first configuration information sent by a network device, where the first configuration information is used to determine at least one preconfigured measurement interval, and each preconfigured measurement interval in the at least one preconfigured measurement interval is associated with one Measurement interval index association.
  • the first configuration information is carried in RRC dedicated signaling.
  • the receiving unit 801 is further configured to receive second configuration information sent by the network device, where the second configuration information includes at least one serving cell configuration, and the at least one serving cell configuration includes Each serving cell configuration includes at least one dedicated BWP configuration, and each dedicated BWP in at least a portion of the at least one dedicated BWP is associated with a measurement interval index;
  • the apparatus further includes: a determining unit 802 configured to determine, based on the first configuration information and the second configuration information, a measurement interval associated with each dedicated BWP in the at least part of the dedicated BWPs.
  • the second configuration information is carried in RRC dedicated signaling.
  • the receiving unit 801 is further configured to receive third configuration information sent by the network device, where the third configuration information is used to determine a first measurement interval, where the first measurement interval is The measurement interval for the initial BWP association;
  • the apparatus further includes: a determining unit 802, configured to determine, based on the third configuration information, the measurement interval associated with the initial BWP as the first measurement interval.
  • the third configuration information further includes first indication information, where the first indication information is used to indicate that the first measurement interval is an initial BWP associated measurement interval.
  • the third configuration information is carried in a system broadcast message; or,
  • the third configuration information is carried in RRC dedicated signaling.
  • the apparatus further comprises:
  • the determining unit 802 is configured to determine the measurement interval associated with the first BWP based on the measurement configuration in the RRC connection reconfiguration message.
  • the apparatus further comprises:
  • the determining unit 802 is configured to determine the measurement interval associated with the first BWP based on the measurement interval associated with the default BWP.
  • the apparatus further comprises:
  • a determining unit 802 configured to determine the measurement interval associated with the first BWP based on the preconfigured measurement interval associated with the first dedicated BWP.
  • the dedicated BWP configuration corresponding to the first dedicated BWP carries second indication information, where the second indication information is used to indicate that the preconfigured measurement interval associated with the first dedicated BWP is also the first The measurement interval associated with the BWP.
  • the first BWP is an initial BWP; or,
  • the first BWP is a dedicated BWP that is not configured with an associated preconfigured measurement interval.
  • the apparatus further comprises:
  • a determining unit 802 configured to determine the measurement interval associated with the second dedicated BWP based on the measurement configuration in the RRC connection reconfiguration message if the second dedicated BWP is not configured with an associated preconfigured measurement interval; or, if the second dedicated BWP is not configured with an associated preconfigured measurement interval
  • the BWP is configured with an associated preconfigured measurement interval, and the preconfigured measurement interval associated with the second dedicated BWP is determined as the measurement interval of the second dedicated BWP.
  • the timing information of the preconfigured measurement interval is determined with reference to the timing information of PCell or PScell; or,
  • the timing information of the preconfigured measurement interval is determined with reference to the timing information of the first serving cell, and the first serving cell is determined based on the configuration of the network device; or,
  • the timing information of the preconfigured measurement interval is determined with reference to the timing information of the serving cell where the dedicated BWP associated with the preconfigured measurement interval is located.
  • each of the at least one preconfigured measurement interval corresponds to a priority
  • the indication information for indicating the priority of the preconfigured measurement interval is carried in the configuration information of the preconfigured measurement interval; or,
  • the indication information for indicating the priority of the preconfigured measurement interval is carried in the dedicated BWP configuration associated with the preconfigured measurement interval.
  • the priority of the preconfigured measurement interval is changed by a first instruction, and the first instruction is carried in the DCI or MAC CE.
  • the terminal device is configured with multiple serving cells, and the multiple serving cells correspond to multiple activated BWPs;
  • the apparatus further includes: a selection unit 803 configured to select at least one measurement interval from the plurality of measurement intervals as the activated or enabled measurement based on the priority of the measurement interval associated with each of the plurality of activated BWPs interval.
  • the preconfigured measurement interval configured in the first configuration information is a measurement interval of UE granularity
  • the selecting unit 803 is configured to, based on the priority of the measurement interval associated with each of the plurality of activated BWPs, select a measurement interval with the highest priority from the plurality of measurement intervals as the activated or enabled measurement interval .
  • the preconfigured measurement interval configured in the first configuration information is a measurement interval of FR granularity
  • the selecting unit 803 is configured to determine, from the plurality of activated BWPs, a first activated BWP list associated with the FR1 preconfigured measurement interval, and a second activated BWP list associated with the FR2 preconfigured measurement interval; a priority of the measurement interval associated with each activated BWP in the activated BWP list, select a measurement interval from the first activated BWP list as the activated or enabled FR1 measurement interval; based on the measurement interval in the second activated BWP list For the priority of the measurement interval associated with each activated BWP, one measurement interval is selected from the second activated BWP list as the activated or enabled FR2 measurement interval.
  • the first configuration information includes a first preconfigured measurement interval list and a second preconfigured measurement interval list
  • the first preconfigured measurement interval list includes one or more FR1 preconfigured measurement intervals
  • the second preconfigured measurement interval list includes one or more FR2 preconfigured measurement intervals.
  • the first preconfigured measurement interval list is associated with an FR1 indication, and the FR1 indication is used to indicate that each preconfigured measurement interval in the first preconfigured measurement interval list belongs to the FR1 preconfigured measurement interval ;
  • the second preconfigured measurement interval list is associated with a FR2 indication, where the FR2 indication is used to indicate that each preconfigured measurement interval in the second preconfigured measurement interval list belongs to the FR2 preconfigured measurement interval;
  • the numbering range of the measurement interval index of the FR1 preconfigured measurement interval in the first preconfigured measurement interval list and the numbering range of the measurement interval index of the FR2 preconfigured measurement interval in the second preconfigured measurement interval list are both Overlapping or partial or non-overlapping.
  • an indication is also associated, the indication is the FR1 indication or the FR2 indication, and the indication is used to determine the pre-configuration associated with the dedicated BWP
  • the preconfigured measurement interval indicated by the measurement interval index is the FR1 preconfigured measurement interval or the FR2 preconfigured measurement interval.
  • the first configuration information includes a preconfigured measurement interval list
  • the preconfigured measurement interval list includes one or more FR1 preconfigured measurement intervals and one or more FR2 preconfigured measurement intervals .
  • each FR1 preconfigured measurement interval in the preconfigured measurement interval list is associated with a measurement interval index, and each FR2 preconfigured measurement interval is also associated with a measurement interval index;
  • the numbering range of the measurement interval index of the FR1 preconfigured measurement interval in the preconfigured measurement interval list does not overlap with the numbering range of the measurement interval index of the FR2 preconfigured measurement interval.
  • the activated or enabled measurement interval is reselected upon triggering of at least one of the following events:
  • the secondary cell is activated and the first activated BWP is not a dormant BWP;
  • the secondary cell is activated and the first activated BWP is configured with an associated preconfigured measurement interval;
  • the secondary cell is activated and the first activated BWP is not a dormant BWP and the first activated BWP is configured with an associated preconfigured measurement interval;
  • the secondary cell is deactivated and the currently activated BWP is not a dormant BWP;
  • the secondary cell is deactivated and the currently activated BWP is configured with an associated preconfigured measurement interval
  • the secondary cell is deactivated and the currently activated BWP is not a dormant BWP and the currently activated BWP is configured with an associated preconfigured measurement interval;
  • the active BWP of the secondary cell is switched from a source BWP to a target BWP, where the target BWP is a dormant BWP and the source BWP is configured with an associated preconfigured measurement interval;
  • the active BWP of the secondary cell is switched from a source BWP to a target BWP, where the source BWP is a dormant BWP and the target BWP is configured with an associated preconfigured measurement interval;
  • the active BWP of the serving cell is switched from the source BWP to the target BWP, and one of the original BWP and the target BWP is configured with an associated pre-configured measurement interval;
  • the active BWP of the serving cell is switched from the source BWP to the target BWP, the original BWP and the target BWP are both configured with an associated preconfigured measurement interval, and the original BWP and the target BWP have different preconfigured measurement intervals.
  • FIG. 9 is a schematic structural diagram 2 of a configuration device for a measurement interval provided by an embodiment of the present application, which is applied to a network device.
  • the configuration device for a measurement interval includes:
  • a sending unit 901 configured to send first configuration information to a terminal device, where the first configuration information is used to determine at least one preconfigured measurement interval, and each preconfigured measurement interval in the at least one preconfigured measurement interval is associated with one measurement interval Interval index association.
  • the first configuration information is carried in RRC dedicated signaling.
  • the sending unit 901 is further configured to send second configuration information to the terminal device, where the second configuration information includes at least one serving cell configuration, the at least one serving cell configuration in the Each serving cell configuration includes at least one dedicated BWP configuration, with each dedicated BWP of at least a portion of the at least one dedicated BWP being associated with a measurement interval index.
  • the second configuration information is carried in RRC dedicated signaling.
  • the sending unit 901 is further configured to send third configuration information to the terminal device, where the third configuration information is used to determine a first measurement interval, where the first measurement interval is an initial The measurement interval associated with the BWP.
  • the third configuration information further includes first indication information, where the first indication information is used to indicate that the first measurement interval is an initial BWP associated measurement interval.
  • the third configuration information is carried in a system broadcast message; or,
  • the third configuration information is carried in RRC dedicated signaling.
  • the timing information of the preconfigured measurement interval is determined with reference to the timing information of PCell or PScell; or,
  • the timing information of the preconfigured measurement interval is determined with reference to the timing information of the first serving cell, and the first serving cell is determined based on the configuration of the network device; or,
  • the timing information of the preconfigured measurement interval is determined with reference to the timing information of the serving cell where the dedicated BWP associated with the preconfigured measurement interval is located.
  • each of the at least one preconfigured measurement interval corresponds to a priority
  • the indication information for indicating the priority of the preconfigured measurement interval is carried in the configuration information of the preconfigured measurement interval; or,
  • the indication information for indicating the priority of the preconfigured measurement interval is carried in the dedicated BWP configuration associated with the preconfigured measurement interval.
  • the priority of the preconfigured measurement interval is changed by a first instruction, and the first instruction is carried in the DCI or MAC CE.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 may call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 1000 may further include a memory 1020 .
  • the processor 1010 may call and run a computer program from the memory 1020 to implement the methods in the embodiments of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the communication device 1000 may further include a transceiver 1030, and the processor 1010 may control the transceiver 1030 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by the device.
  • the processor 1010 may control the transceiver 1030 to communicate with other devices, specifically, may send information or data to other devices, or receive other devices Information or data sent by the device.
  • the transceiver 1030 may include a transmitter and a receiver.
  • the transceiver 1030 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 1000 may specifically be the network device in this embodiment of the present application, and the communication device 1000 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For the sake of brevity, details are not repeated here. .
  • the communication device 1000 may specifically be the mobile terminal/terminal device of the embodiments of the present application, and the communication device 1000 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, for the sake of brevity. , and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1100 shown in FIG. 11 includes a processor 1110, and the processor 1110 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 1100 may further include a memory 1120 .
  • the processor 1110 may call and run a computer program from the memory 1120 to implement the methods in the embodiments of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated in the processor 1110.
  • the chip 1100 may further include an input interface 1130 .
  • the processor 1110 may control the input interface 1130 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 1100 may further include an output interface 1140 .
  • the processor 1110 may control the output interface 1140 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 12 is a schematic block diagram of a communication system 1200 provided by an embodiment of the present application. As shown in FIG. 12 , the communication system 1200 includes a terminal device 1210 and a network device 1220 .
  • the terminal device 1210 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1220 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种测量间隔的配置方法及装置、终端设备、网络设备,该方法包括:终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。

Description

一种测量间隔的配置方法及装置、终端设备、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种测量间隔的配置方法及装置、终端设备、网络设备。
背景技术
网络侧可以为终端设备配置一个或多个服务小区(Serving Cell)的专用带宽部分(Band Width Part,BWP)。对于每个服务小区来说,可以为该服务小区配置一个或多个专用BWP,同一时刻只能有一个专用BWP被激活。对于一个服务小区来说,若该服务小区配置了多个专用BWP,则其激活的专用BWP可以在多个专用BWP之间进行切换。
然而,服务小区激活的专用BWP不同,可能使得针对某个频点的测量是否需要测量间隔发生改变,换句话说,使用某个测量间隔测量的频点数目也会发生变化。所以,按照用户设备(User Equipment,UE)粒度去配置测量间隔会出现灵活性较差的问题,如何配置测量间隔需要进一步完善。
发明内容
本申请实施例提供一种测量间隔的配置方法及装置、终端设备、网络设备。
本申请实施例提供的测量间隔的配置方法,包括:
终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
本申请实施例提供的测量间隔的配置方法,所述方法包括:
网络设备向终端设备发送第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
本申请实施例提供的测量间隔的配置装置,应用于终端设备,所述装置包括:
接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
本申请实施例提供的测量间隔的配置装置,应用于网络设备,所述装置包括:
发送单元,用于向终端设备发送第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量间隔的配置方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量间隔的配置方法。
本申请实施例提供的芯片,用于实现上述的测量间隔的配置方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的测量间隔的配置方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的测量间隔的配置方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的测量间隔的配置方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的测量间隔的配置方法。
通过上述技术方案,网络设备通过第一配置信息预配置至少一个预配置测量间隔,通过预配 置测量间隔可以实现按照BWP粒度对测量间隔配置进行配置,得测量间隔的应用灵活有效。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的Beam sweeping的示意图;
图3是本申请实施例提供的SSB的示意图;
图4是本申请实施例提供的SSB burst set周期的示意图;
图5是本申请实施例提供的SMTC的示意图;
图6是本申请实施例提供的测量间隔的示意图;
图7是本申请实施例提供的测量间隔的配置方法的流程示意图;
图8是本申请实施例提供的测量间隔的配置装置的结构组成示意图一;
图9是本申请实施例提供的测量间隔的配置装置的结构组成示意图二;
图10是本申请实施例提供的一种通信设备示意性结构图;
图11是本申请实施例的芯片的示意性结构图;
图12是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra Reliable Low Latency Communication,URLLC)、大规模机器类通信(massive Machine Type Communication,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧密配合(tight interworking)的工作模式。
为了能够尽快实现5G网络部署和商业应用,3GPP首先完成第一个5G版本,即EN-DC(LTE-NR Dual Connectivity)。在EN-DC中,LTE基站(eNB)作为主节点(Master Node,MN),NR基站(gNB或en-gNB)作为辅节点(Secondary Node,SN),连接EPC核心网。在R15后期,将支持其他DC模式,即NE-DC,5GC-EN-DC,NR DC。在NE-DC中,NR基站作为MN,eLTE基站作为SN,连接5GC核心网。在5GC-EN-DC中,eLTE基站作为MN,NR基站作为SN,连接5GC核心网。在NR DC中,NR基站作为MN,NR基站作为SN,连接5GC核心网。
NR也可以独立部署。NR将来会部署在高频上,为了提高覆盖,在5G中,通过引入波束扫描(beam sweeping)的机制来满足覆盖的需求(用空间换覆盖,用时间换空间),如图2所示。在引入beam sweeping后,每个波束方向上都需要发送同步信号,5G的同步信号以同步信号块(SS/PBCH block,SSB)的形式给出,包含主同步信号(Primary Synchronisation Signal,PSS)、辅同步信号(Secondary Synchronisation Signal,SSS)、和物理广播信道(Physical Broadcast Channel,PBCH),如图3所示。5G的同步信号以同步信号突发组(SS burst set)的形式在时域上周期性出现,如图4所示。
每个小区的实际传输的beam个数通过网络侧配置来确定,但是小区所在的频点决定了可以配置最多的beam个数,如下表1所示。
频率范围 L(最多的beam个数)
大于3(2.4)GHz 4
3(2.4)GHz—6GHz 8
6GHz—52.6GHz 64
表1
在无线资源管理(Radio Resource Management,RRM)测量中,测量信号可以是SSB测量,即测量SSB中的SSS信号或者PBCH的解调参考信号(Demodulation Reference Signal,DMRS)信号来获取beam测量结果以及小区测量结果。此外,处于无线资源控制(Radio Resource Control,RRC)连接状态的终端设备还可以配置信道状态指示参考信号(Channel Status Indicator Reference Signal,CSI-RS)作为小区测量的参考信号。
对于基于SSB的测量,每个小区的SSB的实际传输位置可能不同,SS burst set周期也可能不同。所以为了让终端设备在测量过程中节能,网络侧给终端设备配置SSB测量定时配置(SS/PBCH block measurement timing configuration,SMTC),终端设备只需要在SMTC窗口内进行测量,如图5所示。
由于每个小区实际传输的SSB的位置可能是不同的,所以为了让终端设备尽快能够找到实际传输的SSB的位置,网络侧还会给终端设备配置UE测量的实际的SSB传输位置,例如所有测量小区的SSB实际传输位置的并集,比如,在3-6GHz时,网络侧指示比特图(bitmap):10100110,通过该比特图通知终端设备只对8个SSB的候选位置中的SSB索引(SSB index)为0,2,5,6的SSB做测量。
无线资源管理(Radio Resource Management,RRM)测量分为同频测量和异频测量两种。对于异频测量,可能需要测量间隔配置。参照如下表2所示,测量间隔配置包括以下信息:测量间隔周期(MGRP)、测量间隔偏置(GapOffset)、测量间隔时长(MGL)、定时参考(MGTA)等。
Figure PCTCN2021078531-appb-000001
表2
测量间隔配置中的各个信息可以参照图6所示,其中,MGRP代表测量间隔重复的周期,GapOffset代表测量间隔的起始位置相对于一个MGRP的起始位置的偏移,MGL代表测量间隔的时长,MGTA用于确定测量间隔的定时。
对于RRC连接状态的终端设备来说,如果要作异频或者异系统测量,则需要网络侧配置测量间隔,在测量间隔的持续时间内,终端设备停止所有业务和服务小区的测量等。此外,同频测量也可能需要测量间隔。
NR支持UE粒度(per UE)配置的测量间隔和FR粒度(per FR)配置的测量间隔,其中,per UE配置的测量间隔的相关配置也可以称为per-UE gap配置,per FR配置的测量间隔的相关配置也可以称为per-FR gap配置。
对于per-UE gap配置:
MN决定per UE gap配置和相关的共享间隔(gap sharing)配置。进一步,MN会将per UE gap配置发送给终端设备,MN还会通知SN关于per UE gap配置以及gap purpose(如per-UE)。进一步,SN会通知MN关于SN要配置的FR1频率列表和FR2频率列表作为间隔配置辅助信息。
对于per-FR gap配置:
1)对于NG-DC或者EN-DC来说:MN决定FR1 gap配置和相关的gap sharing配置;SN决定FR2 gap配置和相关的gap sharing配置。进一步,MN会将per FR1 gap配置给终端设备,MN还会通知SN关于per FR1 gap配置以及gap purpose(如per-FR1)。进一步,MN通知SN关于MN要配置的FR2频率列表作为间隔配置辅助信息,SN通知MN关于SN要配置的FR1频率列表作为间隔配置辅助信息。
2)对于NE-DC和NR-DC来说,MN同时决定FR1 gap配置和相关的gap sharing配置,以及FR2 gap配置和相关的gap sharing。进一步,对于NE-DC来说,MN通知SN关于per FR1 gap配置,SN向MN提供gap需求请求,但不需要任何频率列表;对于NR-DC来说,MN通知SN关于per FR1 gap配置,per FR2 gap配置以及gap purpose,SN可以给MN指示关于SN要配置的FR1频率列表和FR2频率列表。
测量间隔的类型有很多种,以下表3给出了24种间隔图样的配置。不同的间隔图样对应的测量周期(即MGRP)和测量时长(即MGL)是不同的,有些间隔图样用于FR1的频点的测量,有些间隔图样用于FR2频点的测量。
Figure PCTCN2021078531-appb-000002
表3
在NR中,测量间隔是通过RRC专用信令配置给终端设备的,是per UE的配置参数。
在5G中,最大的信道带宽可以是400MHZ(称为宽带载波(wideband carrier)),相比于LTE最大20M带宽来说,宽带载波的带宽很大。如果终端设备保持工作在宽带载波上,则终端设备的功率消耗非常大。所以建议终端设备的射频(Radio Frequency,RF)带宽可以根据终端设备实际的吞吐量来调整。为此,引入BWP的概念,BWP的动机是优化终端设备的功率消耗。例如终端设备的速率很低,可以给终端设备配置小一点的BWP,如果终端设备的速率要求很高,则可以给终端设备配置大一点的BWP。如果终端设备支持高速率,或者工作在载波聚合(Carrier Aggregation,CA)模式下,可以给终端设备配置多个BWP。BWP的另一个目的就是触发一个小区中多个基础参数集(numerology)共存,例如BWP1对应numerology1,BWP2对应numerology2。
空闲状态或者非激活状态的终端设备驻留在初始BWP(initial BWP)上,初始BWP对于空闲状态或者非激活状态的终端设备是可见的,终端设备从初始BWP上可以获取主信息块(Master Information Block,MIB),剩余最小系统信息(Remaining Minimum System Information,RMSI),其他系统信息(Other System Information,OSI)以及寻呼(paging)等信息。
对于RRC连接状态的终端设备,通过RRC专用信令可以给一个终端配置最多4个上行BWP和最多4个下行BWP,但同一时刻只能有一个上行BWP和下行BWP被激活。在RRC专用信令中,可以指示所配置的BWP中第一个激活的BWP。同时在终端设备处于RRC连接状态的过程中,也可以通过下行控制信息(Downlink Control Information,DCI)在不同的BWP之间切换。当处于非激活状态的载波,进入激活状态后,第一个激活的BWP为RRC专用信令中配置的第一个激活的BWP。
BWP的配置是以服务小区为粒度的,网络侧可以为终端设备配置一个或多个服务小区的专用BWP。对于每个服务小区来说,可以为该服务小区配置一个或多个专用BWP(如最多4个上行BWP和最多4个下行BWP),同一时刻只能有一个专用BWP被激活(如一个上行BWP和/或一个下行BWP被激活)。对于一个服务小区来说,若该服务小区配置了多个专用BWP,则其激活的专用BWP可以在多个专用BWP之间进行切换。
然而,服务小区激活的专用BWP不同,可能使得针对某个频点的测量是否需要测量间隔发生改变,换句话说,使用某个测量间隔测量的频点数目也会发生变化。所以,按照UE粒度去配置测量间隔会出现灵活性较差的问题,如何配置测量间隔以及如何选择测量间隔需要进一步完善。
为此,提出了本申请实施例的以下技术方案。需要说明的是,本申请实施例中的网络设备可以是基站,不局限于此,网络设备还可以是其他具有控制功能的设备。
图7是本申请实施例提供的测量间隔的配置方法的流程示意图,如图7所示,所述测量间隔的配置方法包括以下步骤:
步骤701:网络设备向终端设备发送第一配置信息,终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
在一些可选实施方式中,所述第一配置信息携带在RRC专用信令中。
举个例子:网络设备通过RRC专用信令配置至少一个预配置测量间隔(Pre-configured gap)给终端设备。其中,每个预配置测量间隔配置用于确定一种类型的测量间隔(或者说间隔图样),每个预配置测量间隔配置与一个测量间隔索引关联,也可以理解为,每个测量间隔(或者说间隔图样)与一个测量间隔索引关联。这里,测量间隔索引可以是间隔索引(gap index)或者间隔图样标识(gap pattern id)等。
本申请实施例中,测量间隔的确定(或者说选取)是按照BWP粒度进行的,从而可以实现灵活的应用测量间隔。以下对不同类型的BWP如何确定其关联的测量间隔进行说明。
方案一:专用BWP
本申请实施例中,专用BWP可以通过以下方式确定其关联的测量间隔。
方式1-1:所述网络设备向所述终端设备发送第二配置信息,所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息包括至少一个服务小区配置,所述至少一个服务小区配置中的每个服务小区配置包括至少一个专用BWP配置,所述至少一个专用BWP中的至少部分专用BWP中的每个专用BWP关联一个测量间隔索引;所述终端设备基于所述第一配置信息和所述第二配置信息,确定所述至少部分专用BWP中的每个专用BWP关联的测量间隔。
在一些可选实施方式中,所述第二配置信息携带在RRC专用信令中。
在一些可选实施方式中,专用BWP关联的测量间隔索引可以携带在该专用BWP对应的专用BWP配置中。
举个例子:网络设备通过RRC专用信令配置至少一个服务小区配置给终端设备。其中,每个服务小区配置中包括至少一个专用BWP配置,每个专用BWP配置与一个测量间隔索引关联。这里,测量间隔索引可以是gap index或者gap pattern id等。例如:网络设备通过RRC专用信令配置4个服务小区配置给终端设备,每个服务小区配置中包括4个专用BWP配置,那么,总共有16个专用BWP配置,16个专用BWP配置中的每个专用BWP配置中都携带一个测量间隔索引,用于关联该专用BWP配置所确定的专用BWP。
上述方案中,可选地,上述专用BWP可以是下行BWP,也可以是上行BWP。
方式1-2:若第二专用BWP未配置有关联的预配置测量间隔,则所述终端设备基于RRC连接重配置消息中的测量配置确定所述第二专用BWP关联的测量间隔;或者,若第二专用BWP配置有关联的预配置测量间隔,则所述终端设备将所述第二专用BWP关联的预配置测量间隔确定为所述第二专用BWP的测量间隔。
这里,RRC连接重配置消息中的测量配置也可以称为MeasConfig,例如R15中的MeasConfig。需要指出的是,网络设备会在RRC连接重配置消息中通过MeasConfig配置测量间隔。
举个例子:当终端设备切换到专用BWP时,若该专用BWP配置了关联的预配置测量间隔,则终端设备将该预配置测量间隔作为该专用BWP关联的测量间隔,忽略MeasConfig中配置的测量间隔;若该专用BWP未配置关联的预配置测量间隔,则终端设备将MeasConfig中配置的测量间隔作为该专用BWP关联的测量间隔。
方案二:初始BWP(initial BWP)
本申请实施例中,初始BWP可以是默认的或者通过网络设备指示。初始BWP可以通过以下方式确定其关联的测量间隔。
方式2-1:所述网络设备向所述终端设备发送第三配置信息,所述终端设备接收所述网络设备发送的第三配置信息,所述第三配置信息用于确定第一测量间隔,所述第一测量间隔为初始BWP关联的测量间隔;所述终端设备基于所述第三配置信息,确定初始BWP关联的测量间隔为所述第一测量间隔。
在一些可选实施方式中,所述第三配置信息还包括第一指示信息,所述第一指示信息用于指示所述第一测量间隔为初始BWP关联的测量间隔。
在一些可选实施方式中,所述第三配置信息携带在系统广播消息中;或者,所述第三配置信息携带在RRC专用信令中。这里,系统广播消息例如是SIB1。
举个例子:网络设备在SIB1中配置一个测量间隔(即第一测量间隔),同时指示该测量间隔为初始BWP关联的测量间隔。这里,第一测量间隔也可以理解为终端设备切换到初始BWP时激活或者启用的测量间隔,其中,终端设备切换到初始BWP也可以理解为初始BWP被激活。
举个例子:网络设备通过RRC专用信令配置一个测量间隔(即第一测量间隔),同时指示该测量间隔为初始BWP关联的测量间隔。这里,第一测量间隔也可以理解为终端设备切换到初始BWP时激活或者启用的测量间隔,其中,终端设备切换到初始BWP也可以理解为初始BWP被激活。
方式2-2:所述终端设备基于RRC连接重配置消息中的测量配置,确定第一BWP关联的测量间隔。其中,所述第一BWP为初始BWP。
这里,RRC连接重配置消息中的测量配置也可以称为MeasConfig,例如R15中的MeasConfig。需要指出的是,网络设备会在RRC连接重配置消息中通过MeasConfig配置测量间隔。其中,初始BWP关联的测量间隔为RRC连接重配置消息中的测量配置中配置的测量间隔,可以是默认的或者通过网络设备指示。
方式2-3:所述终端设备基于默认BWP(default BWP)关联的测量间隔,确定第一BWP关联的测量间隔。其中,所述第一BWP为初始BWP。
这里,默认BWP可以是默认的或者通过网络设备指示。当终端设备被切换到初始BWP时,终端设备可以使用默认BWP关联的测量间隔。其中,初始BWP关联的测量间隔为默认BWP关联的测量间隔,可以是默认的或者通过网络设备指示。
方式2-4:所述终端设备基于第一专用BWP关联的预配置测量间隔,确定第一BWP关联的测量间隔。其中,所述第一BWP为初始BWP。
在一些可选实施方式中,所述第一专用BWP对应的专用BWP配置中携带第二指示信息,所述第二指示信息用于指示所述第一专用BWP关联的预配置测量间隔也是第一BWP关联的测量间隔。
举个例子:当终端设备被切换到初始BWP时,初始BWP关联的测量间隔借用某个专用BWP关联的测量间隔。
方案三:未配置有关联的预配置测量间隔的专用BWP
本申请实施例中,未配置有关联的预配置测量间隔的专用BWP可以通过以下方式确定其关联的测量间隔。
方式3-1:所述终端设备基于RRC连接重配置消息中的测量配置,确定第一BWP关联的测量间隔。其中,所述第一BWP为未配置有关联的预配置测量间隔的专用BWP。
这里,RRC连接重配置消息中的测量配置也可以称为MeasConfig,例如R15中的MeasConfig。需要指出的是,网络设备会在RRC连接重配置消息通过MeasConfig配置测量间隔。当终端设备切换到专用BWP时,如果该专用BWP没有配置关联的预配置测量间隔,则终端设备使用MeasConfig中配置的测量间隔作为该专用BWP关联的测量间隔。
方式3-2:所述终端设备基于默认BWP(default BWP)关联的测量间隔,确定第一BWP关联的测量间隔。其中,所述第一BWP为未配置有关联的预配置测量间隔的专用BWP。
这里,默认BWP可以是默认的或者通过网络设备指示。当终端设备切换到专用BWP时,如果该专用BWP没有配置关联的预配置测量间隔,则终端设备可以使用默认BWP关联的测量间隔作为该专用BWP关联的测量间隔。
方式3-3:所述终端设备基于第一专用BWP关联的预配置测量间隔,确定第一BWP关联的测量间隔。其中,所述第一BWP为未配置有关联的预配置测量间隔的专用BWP。
在一些可选实施方式中,所述第一专用BWP对应的专用BWP配置中携带第二指示信息,所 述第二指示信息用于指示所述第一专用BWP关联的预配置测量间隔也是第一BWP关联的测量间隔。
举个例子:当终端设备切换到专用BWP时,如果该专用BWP没有配置关联的预配置测量间隔,则终端设备借用第一专用BWP关联的预配置测量间隔作为该专用BWP关联的测量间隔。
方案四:休眠BWP(dormant BWP)
本申请实施例中,休眠BWP没有关联的测量间隔,休眠BWP禁止配置预配置测量间隔。
本申请实施例中,预配置测量间隔的参考定时可以通过以下方式确定:
方式A:在一些可选实施方式中,所述预配置测量间隔的定时信息参考主小区(PCell)或者主辅小区(PScell)的定时信息确定。
方式B:在一些可选实施方式中,所述预配置测量间隔的定时信息参考第一服务小区的定时信息确定,所述第一服务小区基于所述网络设备的配置确定,例如所述网络设备配置第一服务小区的标识,用于指示预配置测量间隔的定时信息参考第一服务小区的定时信息确定。
方式C:所述预配置测量间隔的定时信息参考该预配置测量间隔关联的专用BWP所在的服务小区的定时信息确定。
本申请实施例中,所述至少一个预配置测量间隔中的每个预配置测量间隔对应一个优先级;
用于指示所述预配置测量间隔的优先级的指示信息携带在该预配置测量间隔的配置信息中;或者,用于指示所述预配置测量间隔的优先级的指示信息携带在与该预配置测量间隔关联的专用BWP配置中。
举个例子:网络设备通过RRC专用信令配置至少一个预配置测量间隔给终端设备,其中,每个预配置测量间隔都配置一个优先级。一个预配置测量间隔的优先级越高,代表该预配置测量间隔越被优先激活或者启用。
举个例子:网络设备通过RRC专用信令配置至少一个预配置测量间隔给终端设备,网络设备通过RRC专用信令配置至少一个专用BWP,每个专用BWP关联一个预配置测量间隔,同时关联一个指示该预配置测量间隔的优先级指示。一个预配置测量间隔的优先级越高,代表该预配置测量间隔越被优先激活或者启用。
在一些可选实施方式中,所述预配置测量间隔的优先级通过第一指令改变,所述第一指令携带在DCI或者MAC CE中。也就说,预配置测量间隔的优先级可以通过DCI或者MAC CE中携带的指令动态改变。
本申请实施例中,也可以针对RRC连接重配置消息中的测量配置所确定的测量间隔,确定其优先级。例如:将MeasConfig中配置的测量间隔的优先级默认最低或者最高或者配置一个优先级指示。
本申请实施例中,所述终端设备被配置有多个服务小区,所述多个服务小区对应有多个激活BWP;多个激活BWP中的每个激活BWP都关联一个测量间隔,如何确定最终激活或者启用的测量间隔需要明确,以下对其进行说明。
本申请实施例中,所述终端设备基于所述多个激活BWP中的每个激活BWP关联的测量间隔的优先级,从多个测量间隔中选择至少一个测量间隔作为激活或者启用的测量间隔。
方案I)所述第一配置信息中配置的预配置测量间隔是UE粒度的测量间隔。
所述终端设备基于所述多个激活BWP中的每个激活BWP关联的测量间隔的优先级,从多个测量间隔中选择优先级最高的一个测量间隔作为激活或者启用的测量间隔。
需要说明的是,休眠BWP是没有关联的测量间隔的,如果某个小区处于休眠BWP,那么,该休眠BWP不参与测量间隔选取的竞争。
在一些可选实施方式中,对于多个激活BWP来说,并不要求其中全部BWP都有关联的测量间隔;对于没有关联的测量间隔的激活BWP,不参与测量间隔选取的竞争。例如:总共有4个激活BWP,其中,BWP1关联gap1,BWP2关联gap2,BWP2关联gap3,BWP4没有关联的gap。那么,从gap,gap2和gap3中选取优先级最高的gap作为最终激活或者启用的测量间隔。
在一些可选实施方式中,对于多个激活BWP来说,全部BWP都有关联的测量间隔,BWP关联的测量间隔的确定方式可以参照前述相关方案,全部BWP都参与测量间隔选取的竞争。例如:总共有4个激活BWP,其中,BWP1关联gap1,BWP2关联gap2,BWP2关联gap3,BWP4关联gap4。那么,从gap,gap2,gap3和gap4中选取优先级最高的gap作为最终激活或者启用的测量间隔。
方案II)所述第一配置信息中配置的预配置测量间隔是FR粒度的测量间隔。
所述终端设备从所述多个激活BWP中确定与FR1预配置测量间隔关联的第一激活BWP列 表,以及与FR2预配置测量间隔关联的第二激活BWP列表;所述终端设备基于所述第一激活BWP列表中的每个激活BWP关联的测量间隔的优先级,从所述第一激活BWP列表中选择一个测量间隔作为激活或者启用的FR1测量间隔;所述终端设备基于所述第二激活BWP列表中的每个激活BWP关联的测量间隔的优先级,从所述第二激活BWP列表中选择一个测量间隔作为激活或者启用的FR2测量间隔。
在一些可选实施方式中,所述第一配置信息包括第一预配置测量间隔列表和第二预配置测量间隔列表,所述第一预配置测量间隔列表包括一个或多个FR1预配置测量间隔,所述第二预配置测量间隔列表包括一个或多个FR2预配置测量间隔。这里,第一预配置测量间隔列表也可以称为FR1 gap list,第二预配置测量间隔列表也可以称为FR2 gap list。
所述第一预配置测量间隔列表关联FR1指示,所述FR1指示用于指示所述第一预配置测量间隔列表中的各个预配置测量间隔属于FR1预配置测量间隔;所述第二预配置测量间隔列表关联FR2指示,所述FR2指示用于指示所述第二预配置测量间隔列表中的各个预配置测量间隔属于FR2预配置测量间隔;其中,所述第一预配置测量间隔列表中的FR1预配置测量间隔的测量间隔索引的编号范围与所述第二预配置测量间隔列表中的FR2预配置测量间隔的测量间隔索引的编号范围全部重叠或者部分重叠或者不重叠。
需要说明的是,上述FR1指示和FR2指示可以显示或者隐式指示。例如:上述FR1指示和FR2指示可以携带在所述第一配置信息中。
由于第一预配置测量间隔列表关联FR1指示,第二预配置测量间隔列表关联FR2指示,因此,第一预配置测量间隔列表中的各个预配置测量间隔的测量间隔索引和第二预配置测量间隔列表中的各个预配置测量间隔的测量间隔索引可以重叠使用,为了区分一个测量间隔索引指示的是第一预配置测量间隔列表中的预配置测量间隔还是第二预配置测量间隔列表中的预配置测量间隔,专用BWP关联一个测量间隔索引以外,还关联一个指示,所述指示为所述FR1指示或者所述FR2指示,所述指示用于确定所述专用BWP关联的预配置测量间隔索引所指示的预配置测量间隔是FR1预配置测量间隔还是FR2预配置测量间隔。
在一些可选实施方式中,所述第一配置信息包括一个预配置测量间隔列表,所述预配置测量间隔列表包括一个或多个FR1预配置测量间隔,以及一个或多个FR2预配置测量间隔。
所述预配置测量间隔列表中的每个FR1预配置测量间隔与一个测量间隔索引关联,每个FR2预配置测量间隔也与一个测量间隔索引关联;其中,所述预配置测量间隔列表中的FR1预配置测量间隔的测量间隔索引的编号范围与FR2预配置测量间隔的测量间隔索引的编号范围不重叠。
按照上述方案选择最终激活或者启用的测量间隔后,所述激活或者启用的测量间隔在以下至少一种事件的触发下重新选择:
事件1:辅小区被激活且第一个激活的BWP不是休眠BWP;
事件2:辅小区被激活且第一个激活的BWP配置有关联的预配置测量间隔;
事件3:辅小区被激活且第一个激活的BWP不是休眠BWP且第一个激活的BWP配置有关联的预配置测量间隔;
事件4:辅小区被去激活且当前激活的BWP不是休眠BWP;
事件5:辅小区被去激活且当前激活的BWP配置有关联的预配置测量间隔;
事件6:辅小区被去激活且当前激活的BWP不是休眠BWP且当前激活的BWP配置有关联的预配置测量间隔;
事件7:辅小区的激活BWP从源BWP切换到目标BWP,所述目标BWP为休眠BWP且所述源BWP配置有关联的预配置测量间隔;
事件8:辅小区的激活BWP从源BWP切换到目标BWP,所述源BWP为休眠BWP且所述目标BWP配置有关联的预配置测量间隔;
事件9:服务小区的激活BWP从源BWP切换到目标BWP,所述原BWP和所述目标BWP中的一个BWP配置有关联的预配置测量间隔;
事件10:服务小区的激活BWP从源BWP切换到目标BWP,所述原BWP和所述目标BWP均配置有关联的预配置测量间隔且所述原BWP和所述目标BWP的预配置测量间隔不同。
本申请实施例的上述技术方案,实现了测量间隔的预配置,并且明确了多种类型的BWP如何确定其关联的测量间隔,以及针对测量间隔设置其优先级,如此可以按照测量间隔的优先级确定最终选择的测量间隔,使得测量间隔的应用灵活有效。
图8是本申请实施例提供的测量间隔的配置装置的结构组成示意图一,应用于终端设备,如图 8所示,所述测量间隔的配置装置包括:
接收单元801,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
在一些可选实施方式中,所述第一配置信息携带在RRC专用信令中。
在一些可选实施方式中,所述接收单元801,还用于接收所述网络设备发送的第二配置信息,所述第二配置信息包括至少一个服务小区配置,所述至少一个服务小区配置中的每个服务小区配置包括至少一个专用BWP配置,所述至少一个专用BWP中的至少部分专用BWP中的每个专用BWP关联一个测量间隔索引;
所述装置还包括:确定单元802,用于基于所述第一配置信息和所述第二配置信息,确定所述至少部分专用BWP中的每个专用BWP关联的测量间隔。
在一些可选实施方式中,所述第二配置信息携带在RRC专用信令中。
在一些可选实施方式中,所述接收单元801,还用于接收所述网络设备发送的第三配置信息,所述第三配置信息用于确定第一测量间隔,所述第一测量间隔为初始BWP关联的测量间隔;
所述装置还包括:确定单元802,用于基于所述第三配置信息,确定初始BWP关联的测量间隔为所述第一测量间隔。
在一些可选实施方式中,所述第三配置信息还包括第一指示信息,所述第一指示信息用于指示所述第一测量间隔为初始BWP关联的测量间隔。
在一些可选实施方式中,所述第三配置信息携带在系统广播消息中;或者,
所述第三配置信息携带在RRC专用信令中。
在一些可选实施方式中,所述装置还包括:
确定单元802,用于基于RRC连接重配置消息中的测量配置,确定第一BWP关联的测量间隔。
在一些可选实施方式中,所述装置还包括:
确定单元802,用于基于默认BWP关联的测量间隔,确定第一BWP关联的测量间隔。
在一些可选实施方式中,所述装置还包括:
确定单元802,用于基于第一专用BWP关联的预配置测量间隔,确定第一BWP关联的测量间隔。
在一些可选实施方式中,所述第一专用BWP对应的专用BWP配置中携带第二指示信息,所述第二指示信息用于指示所述第一专用BWP关联的预配置测量间隔也是第一BWP关联的测量间隔。
在一些可选实施方式中,所述第一BWP为初始BWP;或者,
所述第一BWP为未配置有关联的预配置测量间隔的专用BWP。
在一些可选实施方式中,所述装置还包括:
确定单元802,用于若第二专用BWP未配置有关联的预配置测量间隔,则基于RRC连接重配置消息中的测量配置确定所述第二专用BWP关联的测量间隔;或者,若第二专用BWP配置有关联的预配置测量间隔,则将所述第二专用BWP关联的预配置测量间隔确定为所述第二专用BWP的测量间隔。
在一些可选实施方式中,所述预配置测量间隔的定时信息参考PCell或者PScell的定时信息确定;或者,
所述预配置测量间隔的定时信息参考第一服务小区的定时信息确定,所述第一服务小区基于所述网络设备的配置确定;或者,
所述预配置测量间隔的定时信息参考该预配置测量间隔关联的专用BWP所在的服务小区的定时信息确定。
在一些可选实施方式中,所述至少一个预配置测量间隔中的每个预配置测量间隔对应一个优先级;
用于指示所述预配置测量间隔的优先级的指示信息携带在该预配置测量间隔的配置信息中;或者,
用于指示所述预配置测量间隔的优先级的指示信息携带在与该预配置测量间隔关联的专用BWP配置中。
在一些可选实施方式中,所述预配置测量间隔的优先级通过第一指令改变,所述第一指令携 带在DCI或者MAC CE中。
在一些可选实施方式中,所述终端设备被配置有多个服务小区,所述多个服务小区对应有多个激活BWP;
所述装置还包括:选择单元803,用于基于所述多个激活BWP中的每个激活BWP关联的测量间隔的优先级,从多个测量间隔中选择至少一个测量间隔作为激活或者启用的测量间隔。
在一些可选实施方式中,所述第一配置信息中配置的预配置测量间隔是UE粒度的测量间隔;
所述选择单元803,用于基于所述多个激活BWP中的每个激活BWP关联的测量间隔的优先级,从多个测量间隔中选择优先级最高的一个测量间隔作为激活或者启用的测量间隔。
在一些可选实施方式中,所述第一配置信息中配置的预配置测量间隔是FR粒度的测量间隔;
所述选择单元803,用于从所述多个激活BWP中确定与FR1预配置测量间隔关联的第一激活BWP列表,以及与FR2预配置测量间隔关联的第二激活BWP列表;基于所述第一激活BWP列表中的每个激活BWP关联的测量间隔的优先级,从所述第一激活BWP列表中选择一个测量间隔作为激活或者启用的FR1测量间隔;基于所述第二激活BWP列表中的每个激活BWP关联的测量间隔的优先级,从所述第二激活BWP列表中选择一个测量间隔作为激活或者启用的FR2测量间隔。
在一些可选实施方式中,所述第一配置信息包括第一预配置测量间隔列表和第二预配置测量间隔列表,所述第一预配置测量间隔列表包括一个或多个FR1预配置测量间隔,所述第二预配置测量间隔列表包括一个或多个FR2预配置测量间隔。
在一些可选实施方式中,所述第一预配置测量间隔列表关联FR1指示,所述FR1指示用于指示所述第一预配置测量间隔列表中的各个预配置测量间隔属于FR1预配置测量间隔;
所述第二预配置测量间隔列表关联FR2指示,所述FR2指示用于指示所述第二预配置测量间隔列表中的各个预配置测量间隔属于FR2预配置测量间隔;
其中,所述第一预配置测量间隔列表中的FR1预配置测量间隔的测量间隔索引的编号范围与所述第二预配置测量间隔列表中的FR2预配置测量间隔的测量间隔索引的编号范围全部重叠或者部分重叠或者不重叠。
在一些可选实施方式中,专用BWP关联一个测量间隔索引以外,还关联一个指示,所述指示为所述FR1指示或者所述FR2指示,所述指示用于确定所述专用BWP关联的预配置测量间隔索引所指示的预配置测量间隔是FR1预配置测量间隔还是FR2预配置测量间隔。
在一些可选实施方式中,所述第一配置信息包括一个预配置测量间隔列表,所述预配置测量间隔列表包括一个或多个FR1预配置测量间隔,以及一个或多个FR2预配置测量间隔。
在一些可选实施方式中,所述预配置测量间隔列表中的每个FR1预配置测量间隔与一个测量间隔索引关联,每个FR2预配置测量间隔也与一个测量间隔索引关联;
其中,所述预配置测量间隔列表中的FR1预配置测量间隔的测量间隔索引的编号范围与FR2预配置测量间隔的测量间隔索引的编号范围不重叠。
在一些可选实施方式中,所述激活或者启用的测量间隔在以下至少一种事件的触发下重新选择:
辅小区被激活且第一个激活的BWP不是休眠BWP;
辅小区被激活且第一个激活的BWP配置有关联的预配置测量间隔;
辅小区被激活且第一个激活的BWP不是休眠BWP且第一个激活的BWP配置有关联的预配置测量间隔;
辅小区被去激活且当前激活的BWP不是休眠BWP;
辅小区被去激活且当前激活的BWP配置有关联的预配置测量间隔;
辅小区被去激活且当前激活的BWP不是休眠BWP且当前激活的BWP配置有关联的预配置测量间隔;
辅小区的激活BWP从源BWP切换到目标BWP,所述目标BWP为休眠BWP且所述源BWP配置有关联的预配置测量间隔;
辅小区的激活BWP从源BWP切换到目标BWP,所述源BWP为休眠BWP且所述目标BWP配置有关联的预配置测量间隔;
服务小区的激活BWP从源BWP切换到目标BWP,所述原BWP和所述目标BWP中的一个BWP配置有关联的预配置测量间隔;
服务小区的激活BWP从源BWP切换到目标BWP,所述原BWP和所述目标BWP均配置有关 联的预配置测量间隔且所述原BWP和所述目标BWP的预配置测量间隔不同。
本领域技术人员应当理解,本申请实施例的上述测量间隔的配置装置的相关描述可以参照本申请实施例的测量间隔的配置方法的相关描述进行理解。
图9是本申请实施例提供的测量间隔的配置装置的结构组成示意图二,应用于网络设备,如图9所示,所述测量间隔的配置装置包括:
发送单元901,用于向终端设备发送第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
在一些可选实施方式中,所述第一配置信息携带在RRC专用信令中。
在一些可选实施方式中,所述发送单元901,还用于向所述终端设备发送第二配置信息,所述第二配置信息包括至少一个服务小区配置,所述至少一个服务小区配置中的每个服务小区配置包括至少一个专用BWP配置,所述至少一个专用BWP中的至少部分专用BWP中的每个专用BWP关联一个测量间隔索引。
在一些可选实施方式中,所述第二配置信息携带在RRC专用信令中。
在一些可选实施方式中,所述发送单元901,还用于向所述终端设备发送第三配置信息,所述第三配置信息用于确定第一测量间隔,所述第一测量间隔为初始BWP关联的测量间隔。
在一些可选实施方式中,所述第三配置信息还包括第一指示信息,所述第一指示信息用于指示所述第一测量间隔为初始BWP关联的测量间隔。
在一些可选实施方式中,所述第三配置信息携带在系统广播消息中;或者,
所述第三配置信息携带在RRC专用信令中。
在一些可选实施方式中,所述预配置测量间隔的定时信息参考PCell或者PScell的定时信息确定;或者,
所述预配置测量间隔的定时信息参考第一服务小区的定时信息确定,所述第一服务小区基于所述网络设备的配置确定;或者,
所述预配置测量间隔的定时信息参考该预配置测量间隔关联的专用BWP所在的服务小区的定时信息确定。
在一些可选实施方式中,所述至少一个预配置测量间隔中的每个预配置测量间隔对应一个优先级;
用于指示所述预配置测量间隔的优先级的指示信息携带在该预配置测量间隔的配置信息中;或者,
用于指示所述预配置测量间隔的优先级的指示信息携带在与该预配置测量间隔关联的专用BWP配置中。
在一些可选实施方式中,所述预配置测量间隔的优先级通过第一指令改变,所述第一指令携带在DCI或者MAC CE中。
本领域技术人员应当理解,本申请实施例的上述测量间隔的配置装置的相关描述可以参照本申请实施例的测量间隔的配置方法的相关描述进行理解。
图10是本申请实施例提供的一种通信设备1000示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图10所示的通信设备1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,通信设备1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,如图10所示,通信设备1000还可以包括收发器1030,处理器1010可以控制该收发器1030与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1030可以包括发射机和接收机。收发器1030还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1000具体可为本申请实施例的网络设备,并且该通信设备1000可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1000具体可为本申请实施例的移动终端/终端设备,并且该通信设备1000可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘 述。
图11是本申请实施例的芯片的示意性结构图。图11所示的芯片1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图11所示,芯片1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
可选地,该芯片1100还可以包括输入接口1130。其中,处理器1110可以控制该输入接口1130与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1100还可以包括输出接口1140。其中,处理器1110可以控制该输出接口1140与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图12是本申请实施例提供的一种通信系统1200的示意性框图。如图12所示,该通信系统1200包括终端设备1210和网络设备1220。
其中,该终端设备1210可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1220可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (80)

  1. 一种测量间隔的配置方法,所述方法包括:
    终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
  2. 根据权利要求1所述的方法,所述第一配置信息携带在无线资源控制RRC专用信令中。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第二配置信息,所述第二配置信息包括至少一个服务小区配置,所述至少一个服务小区配置中的每个服务小区配置包括至少一个专用带宽部分BWP配置,所述至少一个专用BWP中的至少部分专用BWP中的每个专用BWP关联一个测量间隔索引;
    所述终端设备基于所述第一配置信息和所述第二配置信息,确定所述至少部分专用BWP中的每个专用BWP关联的测量间隔。
  4. 根据权利要求3所述的方法,其中,所述第二配置信息携带在RRC专用信令中。
  5. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    所述终端设备接收所述网络设备发送的第三配置信息,所述第三配置信息用于确定第一测量间隔,所述第一测量间隔为初始BWP关联的测量间隔;
    所述终端设备基于所述第三配置信息,确定初始BWP关联的测量间隔为所述第一测量间隔。
  6. 根据权利要求5所述的方法,其中,所述第三配置信息还包括第一指示信息,所述第一指示信息用于指示所述第一测量间隔为初始BWP关联的测量间隔。
  7. 根据权利要求5或6所述的方法,其中,
    所述第三配置信息携带在系统广播消息中;或者,
    所述第三配置信息携带在RRC专用信令中。
  8. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    所述终端设备基于RRC连接重配置消息中的测量配置,确定第一BWP关联的测量间隔。
  9. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    所述终端设备基于默认BWP关联的测量间隔,确定第一BWP关联的测量间隔。
  10. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    所述终端设备基于第一专用BWP关联的预配置测量间隔,确定第一BWP关联的测量间隔。
  11. 根据权利要求10所述的方法,其中,所述第一专用BWP对应的专用BWP配置中携带第二指示信息,所述第二指示信息用于指示所述第一专用BWP关联的预配置测量间隔也是第一BWP关联的测量间隔。
  12. 根据权利要求8至11中任一项所述的方法,其中,
    所述第一BWP为初始BWP;或者,
    所述第一BWP为未配置有关联的预配置测量间隔的专用BWP。
  13. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    若第二专用BWP未配置有关联的预配置测量间隔,则所述终端设备基于RRC连接重配置消息中的测量配置确定所述第二专用BWP关联的测量间隔;或者,
    若第二专用BWP配置有关联的预配置测量间隔,则所述终端设备将所述第二专用BWP关联的预配置测量间隔确定为所述第二专用BWP的测量间隔。
  14. 根据权利要求1至13中任一项所述的方法,其中,
    所述预配置测量间隔的定时信息参考主小区PCell或者主辅小区PScell的定时信息确定;或者,
    所述预配置测量间隔的定时信息参考第一服务小区的定时信息确定,所述第一服务小区基于所述网络设备的配置确定;或者,
    所述预配置测量间隔的定时信息参考该预配置测量间隔关联的专用BWP所在的服务小区的定时信息确定。
  15. 根据权利要求1至14中任一项所述的方法,其中,所述至少一个预配置测量间隔中的每个预配置测量间隔对应一个优先级;
    用于指示所述预配置测量间隔的优先级的指示信息携带在该预配置测量间隔的配置信息中;或者,
    用于指示所述预配置测量间隔的优先级的指示信息携带在与该预配置测量间隔关联的专用BWP配置中。
  16. 根据权利要求15所述的方法,其中,所述预配置测量间隔的优先级通过第一指令改变,所述第一指令携带在下行控制信息DCI或者媒体接入控制控制单元MAC CE中。
  17. 根据权利要求1至16中任一项所述的方法,其中,所述终端设备被配置有多个服务小区,所述多个服务小区对应有多个激活BWP;所述方法还包括:
    所述终端设备基于所述多个激活BWP中的每个激活BWP关联的测量间隔的优先级,从多个测量间隔中选择至少一个测量间隔作为激活或者启用的测量间隔。
  18. 根据权利要求17所述的方法,其中,所述第一配置信息中配置的预配置测量间隔是用户设备UE粒度的测量间隔;
    所述终端设备基于所述多个激活BWP中的每个激活BWP关联的测量间隔的优先级,从多个测量间隔中选择至少一个测量间隔作为激活或者启用的测量间隔,包括:
    所述终端设备基于所述多个激活BWP中的每个激活BWP关联的测量间隔的优先级,从多个测量间隔中选择优先级最高的一个测量间隔作为激活或者启用的测量间隔。
  19. 根据权利要求17所述的方法,其中,所述第一配置信息中配置的预配置测量间隔是频段FR粒度的测量间隔;
    所述终端设备基于所述多个激活BWP中的每个激活BWP关联的测量间隔的优先级,从多个测量间隔中选择至少一个测量间隔作为激活或者启用的测量间隔,包括:
    所述终端设备从所述多个激活BWP中确定与FR1预配置测量间隔关联的第一激活BWP列表,以及与FR2预配置测量间隔关联的第二激活BWP列表;
    所述终端设备基于所述第一激活BWP列表中的每个激活BWP关联的测量间隔的优先级,从所述第一激活BWP列表中选择一个测量间隔作为激活或者启用的FR1测量间隔;
    所述终端设备基于所述第二激活BWP列表中的每个激活BWP关联的测量间隔的优先级,从所述第二激活BWP列表中选择一个测量间隔作为激活或者启用的FR2测量间隔。
  20. 根据权利要求19所述的方法,其中,所述第一配置信息包括第一预配置测量间隔列表和第二预配置测量间隔列表,所述第一预配置测量间隔列表包括一个或多个FR1预配置测量间隔,所述第二预配置测量间隔列表包括一个或多个FR2预配置测量间隔。
  21. 根据权利要求20所述的方法,其中,
    所述第一预配置测量间隔列表关联FR1指示,所述FR1指示用于指示所述第一预配置测量间隔列表中的各个预配置测量间隔属于FR1预配置测量间隔;
    所述第二预配置测量间隔列表关联FR2指示,所述FR2指示用于指示所述第二预配置测量间隔列表中的各个预配置测量间隔属于FR2预配置测量间隔;
    其中,所述第一预配置测量间隔列表中的FR1预配置测量间隔的测量间隔索引的编号范围与所述第二预配置测量间隔列表中的FR2预配置测量间隔的测量间隔索引的编号范围全部重叠或者部分重叠或者不重叠。
  22. 根据权利要求21所述的方法,其中,专用BWP关联一个测量间隔索引以外,还关联一个指示,所述指示为所述FR1指示或者所述FR2指示,所述指示用于确定所述专用BWP关联的预配置测量间隔索引所指示的预配置测量间隔是FR1预配置测量间隔还是FR2预配置测量间隔。
  23. 根据权利要求19所述的方法,其中,所述第一配置信息包括一个预配置测量间隔列表,所述预配置测量间隔列表包括一个或多个FR1预配置测量间隔,以及一个或多个FR2预配置测量间隔。
  24. 根据权利要求23所述的方法,其中,所述预配置测量间隔列表中的每个FR1预配置测量间隔与一个测量间隔索引关联,每个FR2预配置测量间隔也与一个测量间隔索引关联;
    其中,所述预配置测量间隔列表中的FR1预配置测量间隔的测量间隔索引的编号范围与FR2预配置测量间隔的测量间隔索引的编号范围不重叠。
  25. 根据权利要求17至24中任一项所述的方法,其中,所述激活或者启用的测量间隔在以下至少一种事件的触发下重新选择:
    辅小区被激活且第一个激活的BWP不是休眠BWP;
    辅小区被激活且第一个激活的BWP配置有关联的预配置测量间隔;
    辅小区被激活且第一个激活的BWP不是休眠BWP且第一个激活的BWP配置有关联的预配置测量间隔;
    辅小区被去激活且当前激活的BWP不是休眠BWP;
    辅小区被去激活且当前激活的BWP配置有关联的预配置测量间隔;
    辅小区被去激活且当前激活的BWP不是休眠BWP且当前激活的BWP配置有关联的预配置测量间隔;
    辅小区的激活BWP从源BWP切换到目标BWP,所述目标BWP为休眠BWP且所述源BWP配置有关联的预配置测量间隔;
    辅小区的激活BWP从源BWP切换到目标BWP,所述源BWP为休眠BWP且所述目标BWP配置有关联的预配置测量间隔;
    服务小区的激活BWP从源BWP切换到目标BWP,所述原BWP和所述目标BWP中的一个BWP配置有关联的预配置测量间隔;
    服务小区的激活BWP从源BWP切换到目标BWP,所述原BWP和所述目标BWP均配置有关联的预配置测量间隔且所述原BWP和所述目标BWP的预配置测量间隔不同。
  26. 一种测量间隔的配置方法,所述方法包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
  27. 根据权利要求26所述的方法,其中,所述第一配置信息携带在RRC专用信令中。
  28. 根据权利要求26或27所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息包括至少一个服务小区配置,所述至少一个服务小区配置中的每个服务小区配置包括至少一个专用BWP配置,所述至少一个专用BWP中的至少部分专用BWP中的每个专用BWP关联一个测量间隔索引。
  29. 根据权利要求28所述的方法,其中,所述第二配置信息携带在RRC专用信令中。
  30. 根据权利要求26或27所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送第三配置信息,所述第三配置信息用于确定第一测量间隔,所述第一测量间隔为初始BWP关联的测量间隔。
  31. 根据权利要求30所述的方法,其中,所述第三配置信息还包括第一指示信息,所述第一指示信息用于指示所述第一测量间隔为初始BWP关联的测量间隔。
  32. 根据权利要求30或31所述的方法,其中,
    所述第三配置信息携带在系统广播消息中;或者,
    所述第三配置信息携带在RRC专用信令中。
  33. 根据权利要求26至32中任一项所述的方法,其中,
    所述预配置测量间隔的定时信息参考PCell或者PScell的定时信息确定;或者,
    所述预配置测量间隔的定时信息参考第一服务小区的定时信息确定,所述第一服务小区基于所述网络设备的配置确定;或者,
    所述预配置测量间隔的定时信息参考该预配置测量间隔关联的专用BWP所在的服务小区的定时信息确定。
  34. 根据权利要求26至33中任一项所述的方法,其中,所述至少一个预配置测量间隔中的每个预配置测量间隔对应一个优先级;
    用于指示所述预配置测量间隔的优先级的指示信息携带在该预配置测量间隔的配置信息中;或者,
    用于指示所述预配置测量间隔的优先级的指示信息携带在与该预配置测量间隔关联的专用BWP配置中。
  35. 根据权利要求34所述的方法,其中,所述预配置测量间隔的优先级通过第一指令改变,所述第一指令携带在DCI或者MAC CE中。
  36. 一种测量间隔的配置装置,应用于终端设备,所述装置包括:
    接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
  37. 根据权利要求36所述的装置,其中,所述第一配置信息携带在RRC专用信令中。
  38. 根据权利要求36或37所述的装置,其中,
    所述接收单元,还用于接收所述网络设备发送的第二配置信息,所述第二配置信息包括至少一个服务小区配置,所述至少一个服务小区配置中的每个服务小区配置包括至少一个专用BWP配置,所述至少一个专用BWP中的至少部分专用BWP中的每个专用BWP关联一个测量间隔索引;
    所述装置还包括:确定单元,用于基于所述第一配置信息和所述第二配置信息,确定所述至少部分专用BWP中的每个专用BWP关联的测量间隔。
  39. 根据权利要求38所述的装置,其中,所述第二配置信息携带在RRC专用信令中。
  40. 根据权利要求36或37所述的装置,其中,
    所述接收单元,还用于接收所述网络设备发送的第三配置信息,所述第三配置信息用于确定第一测量间隔,所述第一测量间隔为初始BWP关联的测量间隔;
    所述装置还包括:确定单元,用于基于所述第三配置信息,确定初始BWP关联的测量间隔为所述第一测量间隔。
  41. 根据权利要求40所述的装置,其中,所述第三配置信息还包括第一指示信息,所述第一指示信息用于指示所述第一测量间隔为初始BWP关联的测量间隔。
  42. 根据权利要求40或41所述的装置,其中,
    所述第三配置信息携带在系统广播消息中;或者,
    所述第三配置信息携带在RRC专用信令中。
  43. 根据权利要求36或37所述的装置,其中,所述装置还包括:
    确定单元,用于基于RRC连接重配置消息中的测量配置,确定第一BWP关联的测量间隔。
  44. 根据权利要求36或37所述的装置,其中,所述装置还包括:
    确定单元,用于基于默认BWP关联的测量间隔,确定第一BWP关联的测量间隔。
  45. 根据权利要求36或37所述的装置,其中,所述装置还包括:
    确定单元,用于基于第一专用BWP关联的预配置测量间隔,确定第一BWP关联的测量间隔。
  46. 根据权利要求45所述的装置,其中,所述第一专用BWP对应的专用BWP配置中携带第二指示信息,所述第二指示信息用于指示所述第一专用BWP关联的预配置测量间隔也是第一BWP关联的测量间隔。
  47. 根据权利要求43至46中任一项所述的装置,其中,
    所述第一BWP为初始BWP;或者,
    所述第一BWP为未配置有关联的预配置测量间隔的专用BWP。
  48. 根据权利要求36或37所述的装置,其中,所述装置还包括:
    确定单元,用于若第二专用BWP未配置有关联的预配置测量间隔,则基于RRC连接重配置消息中的测量配置确定所述第二专用BWP关联的测量间隔;或者,若第二专用BWP配置有关联的预配置测量间隔,则将所述第二专用BWP关联的预配置测量间隔确定为所述第二专用BWP的测量间隔。
  49. 根据权利要求36至48中任一项所述的装置,其中,
    所述预配置测量间隔的定时信息参考PCell或者PScell的定时信息确定;或者,
    所述预配置测量间隔的定时信息参考第一服务小区的定时信息确定,所述第一服务小区基于所述网络设备的配置确定;或者,
    所述预配置测量间隔的定时信息参考该预配置测量间隔关联的专用BWP所在的服务小区的定时信息确定。
  50. 根据权利要求36至49中任一项所述的装置,其中,所述至少一个预配置测量间隔中的每个预配置测量间隔对应一个优先级;
    用于指示所述预配置测量间隔的优先级的指示信息携带在该预配置测量间隔的配置信息中;或者,
    用于指示所述预配置测量间隔的优先级的指示信息携带在与该预配置测量间隔关联的专用BWP配置中。
  51. 根据权利要求50所述的装置,其中,所述预配置测量间隔的优先级通过第一指令改变,所述第一指令携带在DCI或者MAC CE中。
  52. 根据权利要求36至51中任一项所述的装置,其中,所述终端设备被配置有多个服务小区,所述多个服务小区对应有多个激活BWP;
    所述装置还包括:选择单元,用于基于所述多个激活BWP中的每个激活BWP关联的测量间 隔的优先级,从多个测量间隔中选择至少一个测量间隔作为激活或者启用的测量间隔。
  53. 根据权利要求52所述的装置,其中,所述第一配置信息中配置的预配置测量间隔是UE粒度的测量间隔;
    所述选择单元,用于基于所述多个激活BWP中的每个激活BWP关联的测量间隔的优先级,从多个测量间隔中选择优先级最高的一个测量间隔作为激活或者启用的测量间隔。
  54. 根据权利要求52所述的装置,其中,所述第一配置信息中配置的预配置测量间隔是FR粒度的测量间隔;
    所述选择单元,用于从所述多个激活BWP中确定与FR1预配置测量间隔关联的第一激活BWP列表,以及与FR2预配置测量间隔关联的第二激活BWP列表;基于所述第一激活BWP列表中的每个激活BWP关联的测量间隔的优先级,从所述第一激活BWP列表中选择一个测量间隔作为激活或者启用的FR1测量间隔;基于所述第二激活BWP列表中的每个激活BWP关联的测量间隔的优先级,从所述第二激活BWP列表中选择一个测量间隔作为激活或者启用的FR2测量间隔。
  55. 根据权利要求54所述的装置,其中,所述第一配置信息包括第一预配置测量间隔列表和第二预配置测量间隔列表,所述第一预配置测量间隔列表包括一个或多个FR1预配置测量间隔,所述第二预配置测量间隔列表包括一个或多个FR2预配置测量间隔。
  56. 根据权利要求55所述的装置,其中,
    所述第一预配置测量间隔列表关联FR1指示,所述FR1指示用于指示所述第一预配置测量间隔列表中的各个预配置测量间隔属于FR1预配置测量间隔;
    所述第二预配置测量间隔列表关联FR2指示,所述FR2指示用于指示所述第二预配置测量间隔列表中的各个预配置测量间隔属于FR2预配置测量间隔;
    其中,所述第一预配置测量间隔列表中的FR1预配置测量间隔的测量间隔索引的编号范围与所述第二预配置测量间隔列表中的FR2预配置测量间隔的测量间隔索引的编号范围全部重叠或者部分重叠或者不重叠。
  57. 根据权利要求56所述的装置,其中,专用BWP关联一个测量间隔索引以外,还关联一个指示,所述指示为所述FR1指示或者所述FR2指示,所述指示用于确定所述专用BWP关联的预配置测量间隔索引所指示的预配置测量间隔是FR1预配置测量间隔还是FR2预配置测量间隔。
  58. 根据权利要求54所述的装置,其中,所述第一配置信息包括一个预配置测量间隔列表,所述预配置测量间隔列表包括一个或多个FR1预配置测量间隔,以及一个或多个FR2预配置测量间隔。
  59. 根据权利要求58所述的装置,其中,所述预配置测量间隔列表中的每个FR1预配置测量间隔与一个测量间隔索引关联,每个FR2预配置测量间隔也与一个测量间隔索引关联;
    其中,所述预配置测量间隔列表中的FR1预配置测量间隔的测量间隔索引的编号范围与FR2预配置测量间隔的测量间隔索引的编号范围不重叠。
  60. 根据权利要求52至59中任一项所述的装置,其中,所述激活或者启用的测量间隔在以下至少一种事件的触发下重新选择:
    辅小区被激活且第一个激活的BWP不是休眠BWP;
    辅小区被激活且第一个激活的BWP配置有关联的预配置测量间隔;
    辅小区被激活且第一个激活的BWP不是休眠BWP且第一个激活的BWP配置有关联的预配置测量间隔;
    辅小区被去激活且当前激活的BWP不是休眠BWP;
    辅小区被去激活且当前激活的BWP配置有关联的预配置测量间隔;
    辅小区被去激活且当前激活的BWP不是休眠BWP且当前激活的BWP配置有关联的预配置测量间隔;
    辅小区的激活BWP从源BWP切换到目标BWP,所述目标BWP为休眠BWP且所述源BWP配置有关联的预配置测量间隔;
    辅小区的激活BWP从源BWP切换到目标BWP,所述源BWP为休眠BWP且所述目标BWP配置有关联的预配置测量间隔;
    服务小区的激活BWP从源BWP切换到目标BWP,所述原BWP和所述目标BWP中的一个BWP配置有关联的预配置测量间隔;
    服务小区的激活BWP从源BWP切换到目标BWP,所述原BWP和所述目标BWP均配置有 关联的预配置测量间隔且所述原BWP和所述目标BWP的预配置测量间隔不同。
  61. 一种测量间隔的配置装置,应用于网络设备,所述装置包括:
    发送单元,用于向终端设备发送第一配置信息,所述第一配置信息用于确定至少一个预配置测量间隔,所述至少一个预配置测量间隔中的每个预配置测量间隔与一个测量间隔索引关联。
  62. 根据权利要求61所述的装置,其中,所述第一配置信息携带在RRC专用信令中。
  63. 根据权利要求61或62所述的装置,其中,所述发送单元,还用于向所述终端设备发送第二配置信息,所述第二配置信息包括至少一个服务小区配置,所述至少一个服务小区配置中的每个服务小区配置包括至少一个专用BWP配置,所述至少一个专用BWP中的至少部分专用BWP中的每个专用BWP关联一个测量间隔索引。
  64. 根据权利要求63所述的装置,其中,所述第二配置信息携带在RRC专用信令中。
  65. 根据权利要求61或62所述的装置,其中,所述发送单元,还用于向所述终端设备发送第三配置信息,所述第三配置信息用于确定第一测量间隔,所述第一测量间隔为初始BWP关联的测量间隔。
  66. 根据权利要求65所述的装置,其中,所述第三配置信息还包括第一指示信息,所述第一指示信息用于指示所述第一测量间隔为初始BWP关联的测量间隔。
  67. 根据权利要求65或66所述的装置,其中,
    所述第三配置信息携带在系统广播消息中;或者,
    所述第三配置信息携带在RRC专用信令中。
  68. 根据权利要求61至67中任一项所述的装置,其中,
    所述预配置测量间隔的定时信息参考PCell或者PScell的定时信息确定;或者,
    所述预配置测量间隔的定时信息参考第一服务小区的定时信息确定,所述第一服务小区基于所述网络设备的配置确定;或者,
    所述预配置测量间隔的定时信息参考该预配置测量间隔关联的专用BWP所在的服务小区的定时信息确定。
  69. 根据权利要求61至68中任一项所述的装置,其中,所述至少一个预配置测量间隔中的每个预配置测量间隔对应一个优先级;
    用于指示所述预配置测量间隔的优先级的指示信息携带在该预配置测量间隔的配置信息中;或者,
    用于指示所述预配置测量间隔的优先级的指示信息携带在与该预配置测量间隔关联的专用BWP配置中。
  70. 根据权利要求69所述的装置,其中,所述预配置测量间隔的优先级通过第一指令改变,所述第一指令携带在DCI或者MAC CE中。
  71. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至25中任一项所述的方法。
  72. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求26至35中任一项所述的方法。
  73. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至25中任一项所述的方法。
  74. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求26至35中任一项所述的方法。
  75. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法。
  76. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求26至35中任一项所述的方法。
  77. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至25中任一项所述的方法。
  78. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求26至35中任一项所述的方法。
  79. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至25中任一项所述的方法。
  80. 一种计算机程序,所述计算机程序使得计算机执行如权利要求26至35中任一项所述的 方法。
PCT/CN2021/078531 2021-03-01 2021-03-01 一种测量间隔的配置方法及装置、终端设备、网络设备 WO2022183341A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180075610.6A CN116438839A (zh) 2021-03-01 2021-03-01 一种测量间隔的配置方法及装置、终端设备、网络设备
CN202310945172.5A CN116828524A (zh) 2021-03-01 2021-03-01 一种测量间隔的配置方法及装置、终端设备、网络设备
PCT/CN2021/078531 WO2022183341A1 (zh) 2021-03-01 2021-03-01 一种测量间隔的配置方法及装置、终端设备、网络设备
EP21928432.0A EP4243484A4 (en) 2021-03-01 2021-03-01 MEASURING INTERVAL CONFIGURATION METHOD AND DEVICE AS WELL AS TERMINAL DEVICE AND NETWORK DEVICE
US18/210,251 US11979766B2 (en) 2021-03-01 2023-06-15 Measurement gap configuration method and apparatus, and terminal device and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078531 WO2022183341A1 (zh) 2021-03-01 2021-03-01 一种测量间隔的配置方法及装置、终端设备、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/210,251 Continuation US11979766B2 (en) 2021-03-01 2023-06-15 Measurement gap configuration method and apparatus, and terminal device and network device

Publications (1)

Publication Number Publication Date
WO2022183341A1 true WO2022183341A1 (zh) 2022-09-09

Family

ID=83153793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078531 WO2022183341A1 (zh) 2021-03-01 2021-03-01 一种测量间隔的配置方法及装置、终端设备、网络设备

Country Status (4)

Country Link
US (1) US11979766B2 (zh)
EP (1) EP4243484A4 (zh)
CN (2) CN116438839A (zh)
WO (1) WO2022183341A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230232256A1 (en) * 2021-05-04 2023-07-20 Apple Inc. MEASUREMENT GAP CONFIGURATION FOR A FREQUENCY RANGE EQUAL TO OR LARGER THAN 52.6 GHz

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109756995A (zh) * 2017-11-01 2019-05-14 北京展讯高科通信技术有限公司 网络侧设备、终端及其邻区测量方法
CN109803304A (zh) * 2017-11-16 2019-05-24 维沃移动通信有限公司 测量间隔的指示方法和设备
CN111132220A (zh) * 2017-10-28 2020-05-08 Oppo广东移动通信有限公司 配置测量间隔的方法、终端设备和网络设备
CN111372303A (zh) * 2018-12-26 2020-07-03 华为技术有限公司 一种寻呼消息的监听方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734812B1 (ko) * 2010-03-29 2017-05-12 삼성전자 주식회사 이동통신시스템 및 그 이동 통신 시스템에서 캐리어 메저먼트 방법
EP2687041B1 (en) * 2011-03-15 2018-11-07 Telefonaktiebolaget LM Ericsson (publ) A method and a base station for allocating measurement gaps
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
WO2019066587A1 (en) * 2017-09-28 2019-04-04 Intel IP Corporation COMMUNICATION NETWORK APPARATUS FOR UPLINK PLANNING
CN117042160A (zh) * 2017-10-24 2023-11-10 Lg电子株式会社 基站和由基站执行的方法
US11576085B2 (en) * 2017-10-25 2023-02-07 Qualcomm Incorporated Secondary cell activation and deactivation enhancements in new radio
WO2019100396A1 (zh) 2017-11-27 2019-05-31 华为技术有限公司 异频小区测量方法、设备、芯片及存储介质
WO2020086514A1 (en) * 2018-10-23 2020-04-30 Intel Corporation Measurement gap enhancements
US11627624B2 (en) * 2019-07-25 2023-04-11 FG Innovation Company Limited Method and apparatus for handling LBT failure
CN112399460B (zh) 2019-08-16 2022-05-13 华为技术有限公司 用于测量的方法与装置
CN112788678B (zh) * 2019-11-08 2022-05-13 华为技术有限公司 一种测量配置方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132220A (zh) * 2017-10-28 2020-05-08 Oppo广东移动通信有限公司 配置测量间隔的方法、终端设备和网络设备
CN109756995A (zh) * 2017-11-01 2019-05-14 北京展讯高科通信技术有限公司 网络侧设备、终端及其邻区测量方法
CN109803304A (zh) * 2017-11-16 2019-05-24 维沃移动通信有限公司 测量间隔的指示方法和设备
CN111372303A (zh) * 2018-12-26 2020-07-03 华为技术有限公司 一种寻呼消息的监听方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Further discussion on gap sharing", 3GPP DRAFT; R4-1810695, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Gothenburg, SE; 20180820 - 20180824, 10 August 2018 (2018-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051579624 *
INTEL CORPORATION, APPLE: "Motivation for introduction of a new R17 SI/WI on measurement gap enhancements", 3GPP DRAFT; RP-200332, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20200316 - 20200319, 11 March 2020 (2020-03-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051865364 *
See also references of EP4243484A4 *

Also Published As

Publication number Publication date
CN116828524A (zh) 2023-09-29
EP4243484A1 (en) 2023-09-13
US11979766B2 (en) 2024-05-07
EP4243484A4 (en) 2024-01-10
US20230328571A1 (en) 2023-10-12
CN116438839A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
US20220264393A1 (en) Cell configuration method and apparatus, terminal device, and network device
WO2020191683A1 (zh) 一种测量间隔配置方法及装置、终端、网络设备
US11317464B2 (en) Cell state management method and apparatus, terminal device, and network device
JP7319394B2 (ja) 測定制御方法および装置、端末、ネットワーク機器
US11812291B2 (en) Method for configuring measurement information, terminal device, and network device
WO2020232611A1 (zh) 一种小区重选方法及装置、终端
US20230087417A1 (en) Measurement Method and Apparatus, Terminal Device, and Network Device
WO2020056596A1 (zh) 一种邻区关系的维护方法及装置、网络设备
WO2020143055A1 (zh) 一种测量配置方法及装置、终端
WO2020082248A1 (zh) 一种控制终端移动性的方法及装置、终端
US11979766B2 (en) Measurement gap configuration method and apparatus, and terminal device and network device
WO2022027489A1 (zh) 邻区测量的方法、终端设备和网络设备
WO2021120131A1 (zh) 一种测量配置方法及装置、终端设备、网络设备
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2020227860A1 (zh) 一种终端能力确定方法及装置、终端
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
WO2020087212A1 (zh) 侧行链路中确定传输模式的方法、终端设备和网络设备
WO2020000142A1 (zh) 无线通信方法、网络设备和终端设备
WO2022109955A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
JP7428809B2 (ja) 測定方法、装置及び端末デバイス
WO2022183336A1 (zh) 一种测量间隔的确定方法及装置、终端设备
WO2022151194A1 (zh) 一种测量方法及装置、终端设备
WO2017148400A1 (zh) 用于无线接入的方法和装置
WO2022204896A1 (zh) 一种确定smtc的方法及装置、终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021928432

Country of ref document: EP

Effective date: 20230607

NENP Non-entry into the national phase

Ref country code: DE