WO2021120131A1 - 一种测量配置方法及装置、终端设备、网络设备 - Google Patents

一种测量配置方法及装置、终端设备、网络设备 Download PDF

Info

Publication number
WO2021120131A1
WO2021120131A1 PCT/CN2019/126767 CN2019126767W WO2021120131A1 WO 2021120131 A1 WO2021120131 A1 WO 2021120131A1 CN 2019126767 W CN2019126767 W CN 2019126767W WO 2021120131 A1 WO2021120131 A1 WO 2021120131A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
ssb
smtc
terminal device
frequency layer
Prior art date
Application number
PCT/CN2019/126767
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/126767 priority Critical patent/WO2021120131A1/zh
Priority to CN201980100972.9A priority patent/CN114467326B/zh
Publication of WO2021120131A1 publication Critical patent/WO2021120131A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to a measurement configuration method and device, terminal equipment, and network equipment.
  • the actual transmission position of the SSB of each cell may be different, and the period of the synchronization signal burst set (SS burst set) may also be different. Therefore, in order to enable the terminal device to save energy during the measurement process, the network side will configure the terminal device with SSB Measurement Timing Configuration (SSB Measurement Timing Configuration, SMTC), and the terminal device only needs to perform measurement in the SMTC window.
  • SSB Measurement Timing Configuration SSB Measurement Timing Configuration
  • an additional SMTC configuration will be introduced.
  • the original SMTC configuration is suitable for cells with a shorter SSB period, and the newly introduced SMTC configuration is suitable for cells with a longer SSB period.
  • only one SSB measurement (SSB-ToMeasure) configuration is currently configured in the standard to indicate the index set of the SSB to be measured in the SMCT window.
  • SSB-ToMeasure only one SSB measurement
  • the embodiments of the present application provide a measurement configuration method and device, terminal equipment, and network equipment.
  • the terminal device receives first configuration information sent by the network device, where the first configuration information includes the configuration of at least one frequency layer; the configuration of each frequency layer in the at least one frequency layer includes the first SMTC configuration and the second SMTC Configuration
  • the configuration of each frequency layer in the at least one frequency layer further includes one or two SSB measurement configurations, and the one or two SSB measurement configurations are used to determine the SSB set to be measured in the first SMTC window And the SSB set to be measured in the second SMTC window.
  • the network device sends first configuration information to the terminal device, where the first configuration information includes the configuration of at least one frequency layer; the configuration of each frequency layer in the at least one frequency layer includes the first SMTC configuration and the second SMTC configuration ;
  • the configuration of each frequency layer in the at least one frequency layer further includes one or two SSB measurement configurations, and the one or two SSB measurement configurations are used to determine the SSB set to be measured in the first SMTC window And the SSB set to be measured in the second SMTC window.
  • the measurement configuration device provided in the embodiment of the present application is applied to a terminal device, and the device includes:
  • the receiving unit is configured to receive first configuration information sent by a network device, where the first configuration information includes the configuration of at least one frequency layer; the configuration of each frequency layer in the at least one frequency layer includes the first SMTC configuration and The second SMTC configuration;
  • the configuration of each frequency layer in the at least one frequency layer further includes one or two SSB measurement configurations, and the one or two SSB measurement configurations are used to determine the SSB set to be measured in the first SMTC window And the SSB set to be measured in the second SMTC window.
  • the measurement configuration device provided in the embodiment of the present application is applied to network equipment, and the device includes:
  • the sending unit is configured to send first configuration information to the terminal device, where the first configuration information includes the configuration of at least one frequency layer; the configuration of each frequency layer in the at least one frequency layer includes the first SMTC configuration and the first SMTC configuration. Two SMTC configuration;
  • the configuration of each frequency layer in the at least one frequency layer further includes one or two SSB measurement configurations, and the one or two SSB measurement configurations are used to determine the SSB set to be measured in the first SMTC window And the SSB set to be measured in the second SMTC window.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the measurement configuration method described above.
  • the network device provided by the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the measurement configuration method described above.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned measurement configuration method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the measurement configuration method described above.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned measurement configuration method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned measurement configuration method.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the measurement configuration method described above.
  • the network device can configure one or two SSB measurement configurations for the terminal device, and the one or two SSB measurement configurations can determine the SSB set to be measured in the first SMTC window and in the second SMTC window
  • the set of SSBs to be measured clarifies the use of SSB measurement configuration.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of Beam sweeping provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of an SSB provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the SSB burst set period provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of SMTC provided by an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a measurement configuration method provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram 1 of the structural composition of a measurement configuration device provided by an embodiment of the application.
  • FIG. 8 is a second schematic diagram of the structural composition of the measurement configuration device provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a chip of an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication system or future communication system etc.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB, or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network side device in a 5G network, or a network device in a future communication system, etc.
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via a wired line, such as via a public switched telephone network (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/send communication signals; and/or an Internet of Things (IoT) device.
  • PSTN public switched telephone network
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscribe
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminals 120.
  • the 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • 5G 5th Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communication
  • mMTC Massive Machine Type Communication
  • eMBB still targets users to obtain multimedia content, services and data, and its demand is growing very rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, rural areas, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in conjunction with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety protection, etc.
  • Typical features of mMTC include: high connection density, small data volume, delay-insensitive services, low-cost modules and long service life.
  • NR can also be deployed independently. NR will be deployed at high frequencies in the future.
  • a beam sweeping mechanism is introduced to meet the coverage requirements (using space for coverage and time for space), as shown in Figure 2.
  • synchronization signals need to be sent in each beam direction.
  • 5G synchronization signals are given in the form of SSB, including primary synchronization signal (Primary Synchronization Signal, PSS), secondary synchronization signal (Secondary Synchronization Signal, SSS) , And physical broadcast channel (Physical Broadcast Channel, PBCH), as shown in Figure 3.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the actual number of beams transmitted in each cell is determined by the network side configuration, but the frequency point where the cell is located determines the maximum number of beams that can be configured, as shown in Table 1 below.
  • Frequency Range L (the maximum number of beams) up to 3(2.4)GHz 4 3(2.4)GHz-6GHz 8 6GHz—52.6GHz 64
  • the measurement signal can be SSB measurement, that is, the SSS signal in the SSB or the demodulation reference signal (Demodulation Reference Signal, DMRS) signal of the PBCH is measured to obtain the beam measurement result and the cell Measurement results.
  • a terminal device in a radio resource control (Radio Resource Control, RRC) connection state can also configure a channel status indicator reference signal (Channel Status Indicator Reference Signal, CSI-RS) as a reference signal for cell measurement.
  • CSI-RS Channel Status Indicator Reference Signal
  • the actual transmission position of the SSB in each cell may be different, and the SS burst set period may also be different. Therefore, in order to allow the terminal equipment to save energy during the measurement process, the network side configures the terminal equipment with SMTC, and the terminal equipment only needs to perform measurement in the SMTC window, as shown in Figure 5.
  • the network side will also configure the terminal device with the actual measured SSB transmission location, such as the locations of all measured cells.
  • the union of the actual transmission positions of the SSB indicates a bitmap: 10100110, which is used to notify the terminal device that only the SSB index of the candidate positions of the 8 SSBs is 0, 2, SSB of 5 and 6 is measured.
  • the configuration of the bitmap is shown in Table 2 below:
  • the measurement configuration in the inactive state comes from the network system broadcast configuration.
  • the configuration information is configured per cell, such as a list of measured inter-frequency points, as shown in Table 3 below:
  • the measurement configuration of the connection state is configured through dedicated radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the period of the SSB is generally relatively long (for example, the SSB period is 160 ms), and for the macro cell that meets the coverage requirement, the period of the SSB is generally relatively short (for example, the SSB period is 20 ms).
  • the period of the SMTC window is generally configured as 160ms. Because the SMTC window of 160 ms can ensure that the SSB of all cells can be measured.
  • this kind of SMTC configuration will cause a delay in cell reselection for a cell with a short SSB cycle, which may affect service performance. Therefore, an additional SMTC configuration is introduced in R16 to meet the cell measurement requirements of different SSB cycles.
  • the newly introduced SMTC configuration is suitable for cells with a longer SSB period, and the original SMTC configuration is suitable for cells with a shorter SSB period.
  • the newly introduced SMTC configuration is used to determine the SMTC window of a longer period
  • the original SMTC configuration is used to determine the SMTC window of a shorter period.
  • SSB measurement configuration only one SSB-ToMeasure (referred to as SSB measurement configuration) is configured in the standard, which is used to indicate the index set of the SSB measured in the SMCT window.
  • SSB measurement configuration For the two SMTC configurations, how to use the SSB measurement configuration is not yet clear.
  • the network side will also configure two SMTC configurations, and also configure one SSB-ToMeasure.
  • the above problems also exist in connected terminal devices. In order to clarify which SSB measurement configuration is used for each SMTC configuration of the two SMTC configurations, the following technical solutions of the embodiments of the present application are proposed.
  • FIG. 6 is a schematic flowchart of a measurement configuration method provided by an embodiment of the application. As shown in FIG. 6, the measurement configuration method includes the following steps:
  • Step 601 The terminal device receives first configuration information sent by the network device, where the first configuration information includes the configuration of at least one frequency layer; the configuration of each frequency layer in the at least one frequency layer includes the first SMTC configuration and The second SMTC configuration; wherein, the configuration of each frequency layer in the at least one frequency layer further includes one or two SSB measurement configurations, and the one or two SSB measurement configurations are used to determine whether to be within the first SMTC window The SSB set to be measured and the SSB set to be measured in the second SMTC window.
  • the network device sends the first configuration information to the terminal device, and correspondingly, the terminal device receives the first configuration information sent by the network device.
  • the network device may be a base station, such as a gNB.
  • the terminal device may be in an idle state, an inactive state, or a connected state.
  • the technical solutions of the embodiments of the present application will be described in detail below in combination with different RRC states.
  • the terminal device is a terminal device in an idle state or an inactive state.
  • the network device sends a system broadcast message to the terminal device. Accordingly, the terminal device receives the system broadcast message sent by the network device, and the system broadcast message carries the first configuration information. Further, optionally, the system broadcast message includes at least one of the following: SIB2, SIB4.
  • the first configuration information is a configuration for an idle state or an inactive state.
  • the first configuration information includes the configuration of at least one frequency layer.
  • the configuration of each frequency layer in the at least one frequency layer includes a first SMTC configuration and a second SMTC configuration.
  • the first SMTC configuration is used to determine the first SMTC window.
  • the first SMTC configuration may include period information of the first SMTC window, size information of the first SMTC window, and the first SMTC window. Offset information of the window, etc.
  • the second SMTC configuration is used to determine the second SMTC window.
  • the second SMTC configuration may include period information of the second SMTC window, size information of the second SMTC window, and offset of the second SMTC window. Shift information, etc.
  • the first SMTC configuration is an original SMTC configuration
  • the second SMTC configuration is a newly introduced additional SMTC configuration
  • the first SMTC configuration is suitable for a cell with a longer SSB period
  • the second SMTC configuration is suitable for a cell with a shorter SSB period.
  • the cells are grouped according to the SSB period, the cells with the longer SSB period are grouped into one group, and the cells with the shorter SSB period are grouped into another group.
  • the longer SSB period and the shorter SSB period may be divided by a threshold, for example, the SSB period greater than the threshold is divided into a longer SSB period, and the SSB period less than or equal to the threshold is divided into a shorter SSB period.
  • the first SMTC configuration carries first indication information, and the first indication information is used to indicate a first cell list for performing SSB measurement using the first SMTC window; and/or, the first The second SMTC configuration carries second indication information, and the second indication information is used to indicate a second cell list for performing SSB measurement using the second SMTC window.
  • the first cell list includes identification information of one or more cells with a longer SSB period
  • the second cell list includes identification information of one or more cells with a shorter SSB period.
  • one or more cells with a longer SSB period use the first SMTC window to perform SSB measurement
  • one or more cells with a shorter SSB period use the second SMTC window to perform SSB measurement.
  • the SSB measurement configuration includes a first bitmap, each bit in the first bitmap corresponds to an SSB index, and the value of the bit is used to indicate the corresponding bit Whether the SSB indicated by the SSB index needs to be measured.
  • the first bitmap is 10100110, and the bitmap is used to notify the terminal device to only perform measurement on the SSB whose index is 0, 2, 5, and 6 among the candidate positions of the 8 SSBs.
  • the first SSB measurement configuration is used by the terminal device to determine whether the configuration is in the first SMTC window and the second SMTC window.
  • the terminal device determines the SSB set to be measured in the first SMTC window based on the one SSB measurement configuration; if the terminal device is in the second SMTC window, If the SSB measurement is performed in the SMTC window, the terminal device determines the SSB set to be measured in the second SMTC window based on the one SSB measurement configuration.
  • SIB2 and/or SIB4 two SMTC configurations (that is, the first SMTC configuration and the second SMTC configuration) are configured in the configuration of each frequency layer.
  • Each SMTC configuration in the two SMTC configurations is configured with a cell list, and the cell list is used to specify the cells that can be measured using the SMTC window corresponding to the SMTC configuration.
  • SIB2 includes intra-frequency configuration (intra-frequency configuration)
  • SIB4 includes inter-frequency configuration (inter-frequency configuration).
  • SSB-ToMeasure configuration information is shown in Table 4 below.
  • the two SSB measurement configurations include a first SSB measurement configuration and a second SSB measurement configuration
  • the first An SSB measurement configuration is used for the terminal device to determine the SSB set to be measured in the first SMTC window
  • the second SSB measurement configuration is used for the terminal device to determine the SSB set to be measured in the second SMTC window.
  • the terminal device determines the SSB set to be measured in the first SMTC window based on the first SSB measurement configuration; if the terminal device is in the second SMTC SSB measurement is performed in the window, the terminal device determines the SSB set to be measured in the second SMTC window based on the second SSB measurement configuration; wherein, the two SSB measurement configurations include the first SSB measurement configuration and The second SSB measurement configuration.
  • SIB2 and/or SIB4 two SMTC configurations (that is, the first SMTC configuration and the second SMTC configuration) are configured in the configuration of each frequency layer.
  • Each SMTC configuration in the two SMTC configurations is configured with a cell list, and the cell list is used to specify the cells that can be measured using the SMTC window corresponding to the SMTC configuration.
  • SIB2 includes intra-frequency configuration (intra-frequency configuration)
  • SIB4 includes inter-frequency configuration (inter-frequency configuration).
  • an additional SSB-ToMeasur (such as SSB-ToMeasur2) is also configured, and the terminal device performs measurement in the two SMTC windows respectively.
  • SSB-ToMeasure IE used to carry the first SSB measurement configuration
  • SSB-ToMeasure IE used to carry the first SSB measurement configuration
  • SSB-ToMeasure2IE (for carrying the second SSB measurement configuration) is used to constrain the measured SSB index set. Further, if SSB-ToMeasure2 is not configured, the terminal device uses SSB-ToMeasure to constrain the set of SSBs that perform measurement in the SMTC window configured by smtc2-LP IE. If SSB-ToMeasure is also not configured, the terminal device measures all SSBs, and the specific configuration information is shown in Table 5 below.
  • the terminal device is a terminal device in an active state
  • the network device sends an RRC message to the terminal device, and correspondingly, the terminal device receives the RRC message sent by the network device, and the RRC message carries the first configuration information.
  • the first configuration information is the configuration for the active state.
  • the first configuration information includes the configuration of at least one frequency layer.
  • the configuration of each frequency layer in the at least one frequency layer includes a first SMTC configuration and a second SMTC configuration.
  • the first SMTC configuration is used to determine the first SMTC window.
  • the first SMTC configuration may include period information of the first SMTC window, size information of the first SMTC window, and the first SMTC window. Offset information of the window, etc.
  • the second SMTC configuration is used to determine the second SMTC window.
  • the second SMTC configuration may include period information of the second SMTC window, size information of the second SMTC window, and offset of the second SMTC window. Shift information, etc.
  • the first SMTC configuration is an original SMTC configuration
  • the second SMTC configuration is a newly introduced additional SMTC configuration
  • the first SMTC configuration is suitable for a cell with a longer SSB period
  • the second SMTC configuration is suitable for a cell with a shorter SSB period.
  • the cells are grouped according to the SSB period, the cells with the longer SSB period are grouped into one group, and the cells with the shorter SSB period are grouped into another group.
  • the longer SSB period and the shorter SSB period may be divided by a threshold, for example, the SSB period greater than the threshold is divided into a longer SSB period, and the SSB period less than or equal to the threshold is divided into a shorter SSB period.
  • the first SMTC configuration carries first indication information, and the first indication information is used to indicate a first cell list for performing SSB measurement using the first SMTC window; and/or, the first The second SMTC configuration carries second indication information, and the second indication information is used to indicate a second cell list for performing SSB measurement using the second SMTC window.
  • the first cell list includes identification information of one or more cells with a longer SSB period
  • the second cell list includes identification information of one or more cells with a shorter SSB period.
  • one or more cells with a longer SSB period use the first SMTC window to perform SSB measurement
  • one or more cells with a shorter SSB period use the second SMTC window to perform SSB measurement.
  • the SSB measurement configuration includes a first bitmap, each bit in the first bitmap corresponds to an SSB index, and the value of the bit is used to indicate the corresponding bit Whether the SSB indicated by the SSB index needs to be measured.
  • the first bitmap is 10100110, and the bitmap is used to notify the terminal device to only perform measurement on the SSB whose index is 0, 2, 5, and 6 among the candidate positions of the 8 SSBs.
  • the first SSB measurement configuration is used by the terminal device to determine whether the configuration is in the first SMTC window and the second SMTC window.
  • the terminal device determines the SSB set to be measured in the first SMTC window based on the one SSB measurement configuration; if the terminal device is in the second SMTC window, If the SSB measurement is performed in the SMTC window, the terminal device determines the SSB set to be measured in the second SMTC window based on the one SSB measurement configuration.
  • two SMTC configurations are configured in the configuration of each measurement object.
  • Each SMTC configuration in the two SMTC configurations is configured with a cell list, and the cell list is used to specify the cells that can be measured using the SMTC window corresponding to the SMTC configuration.
  • the SSB signal is configured in the configuration of the measurement object, and an SSB-ToMeasure is configured in the configuration of the SSB signal, when the terminal device performs the measurement in the two SMTC windows respectively, the SSB-ToMeasure is used to constrain the measured SSB index set.
  • SSB-ToMeasure configuration information is shown in Table 6 and Table 7 below.
  • the two SSB measurement configurations include a first SSB measurement configuration and a second SSB measurement configuration
  • the first An SSB measurement configuration is used for the terminal device to determine the SSB set to be measured in the first SMTC window
  • the second SSB measurement configuration is used for the terminal device to determine the SSB set to be measured in the second SMTC window.
  • the terminal device determines the SSB set to be measured in the first SMTC window based on the first SSB measurement configuration; if the terminal device is in the second SMTC SSB measurement is performed in the window, the terminal device determines the SSB set to be measured in the second SMTC window based on the second SSB measurement configuration; wherein, the two SSB measurement configurations include the first SSB measurement configuration and The second SSB measurement configuration.
  • two SMTC configurations (that is, the first SMTC configuration and the second SMTC configuration) are configured in the configuration of each measurement object.
  • Each SMTC configuration in the two SMTC configurations is configured with a cell list, and the cell list is used to specify the cells that can be measured using the SMTC window corresponding to the SMTC configuration.
  • the SSB signal is configured in the configuration of the measurement object, and two SSB-ToMeasures (ie, SSB-ToMeasure and SSB-ToMeasure2) are configured in the configuration of the SSB signal.
  • SSB-ToMeasure When the terminal device performs measurement in the two SMTC windows, respectively Use the corresponding SSB-ToMeasure to constrain the measured SSB index set. For example, when the terminal device performs measurement in the SMTC window configured by smtc1IE (used to carry the first SMTC configuration), SSB-ToMeasure IE (used to carry the first SSB measurement configuration) is used to constrain the measured SSB index set.
  • SSB-ToMeasure2IE for carrying the second SSB measurement configuration
  • SSB-ToMeasure2IE for carrying the second SSB measurement configuration
  • the terminal device uses SSB-ToMeasure to constrain the set of SSBs that perform measurement in the SMTC window configured by smtc2IE. If SSB-ToMeasure is also not configured, the terminal device measures all SSBs, and the specific configuration information is shown in Table 8 below.
  • a corresponding ssb-ToMeasure is configured for each SMTC window, so as to achieve the purpose of saving power for the terminal device.
  • the two SMTC windows need to be measured respectively.
  • FIG. 7 is a schematic diagram 1 of the structural composition of the measurement configuration device provided by an embodiment of the application, which is applied to terminal equipment. As shown in FIG. 7, the measurement configuration device includes:
  • the receiving unit 701 is configured to receive first configuration information sent by a network device, where the first configuration information includes the configuration of at least one frequency layer; the configuration of each frequency layer in the at least one frequency layer includes the first SMTC configuration And the second SMTC configuration;
  • the configuration of each frequency layer in the at least one frequency layer further includes one or two SSB measurement configurations, and the one or two SSB measurement configurations are used to determine the SSB set to be measured in the first SMTC window And the SSB set to be measured in the second SMTC window.
  • the first SMTC configuration carries first indication information, and the first indication information is used to indicate a first cell list for performing SSB measurement using the first SMTC window; and/or, the first The second SMTC configuration carries second indication information, and the second indication information is used to indicate a second cell list for performing SSB measurement using the second SMTC window.
  • the apparatus further includes a determining unit 702; when the configuration of each frequency layer in the at least one frequency layer includes an SSB measurement configuration, the determining unit 702 is configured to: The terminal device performs SSB measurement in the first SMTC window, and then determines the SSB set to be measured in the first SMTC window based on the one SSB measurement configuration; if the terminal device performs SSB in the second SMTC window For measurement, the SSB set to be measured in the second SMTC window is determined based on the one SSB measurement configuration.
  • the apparatus further includes a determining unit 702; when the configuration of each frequency layer in the at least one frequency layer includes two SSB measurement configurations, the determining unit 702 is configured to If the terminal device performs SSB measurement in the first SMTC window, determine the SSB set to be measured in the first SMTC window based on the first SSB measurement configuration; if the terminal device performs SSB in the second SMTC window For measurement, the SSB set to be measured in the second SMTC window is determined based on the second SSB measurement configuration; wherein, the two SSB measurement configurations include the first SSB measurement configuration and the second SSB measurement configuration.
  • the SSB measurement configuration includes a first bitmap, each bit in the first bitmap corresponds to an SSB index, and the value of the bit is used to indicate the bit Whether the SSB indicated by the corresponding SSB index needs to be measured.
  • the terminal device is a terminal device in an idle state or an inactive state
  • the receiving unit 701 is configured to receive a system broadcast message sent by a network device, where the system broadcast message carries the first configuration information.
  • system broadcast message includes at least one of the following: SIB2, SIB4.
  • the terminal device is a terminal device in an activated state
  • the receiving unit 701 is configured to receive an RRC message sent by a network device, where the RRC message carries the first configuration information.
  • FIG. 8 is a second structural diagram of the measurement configuration device provided by an embodiment of the application, which is applied to network equipment. As shown in FIG. 8, the measurement configuration device includes:
  • the sending unit 801 is configured to send first configuration information to a terminal device, where the first configuration information includes the configuration of at least one frequency layer; the configuration of each frequency layer in the at least one frequency layer includes the first SMTC configuration and The second SMTC configuration;
  • the configuration of each frequency layer in the at least one frequency layer further includes one or two SSB measurement configurations, and the one or two SSB measurement configurations are used to determine the SSB set to be measured in the first SMTC window And the SSB set to be measured in the second SMTC window.
  • the first SMTC configuration carries first indication information, and the first indication information is used to indicate a first cell list for performing SSB measurement using the first SMTC window; and/or, the first The second SMTC configuration carries second indication information, and the second indication information is used to indicate a second cell list for performing SSB measurement using the second SMTC window.
  • each frequency layer in the at least one frequency layer includes one SSB measurement configuration
  • the first SSB measurement configuration is used for the terminal device to determine the SSB set to be measured in the first SMTC window and the second SMTC window.
  • the two SSB measurement configurations include a first SSB measurement configuration and a second SSB measurement configuration. Measurement configuration
  • the first SSB measurement configuration is used for the terminal device to determine the SSB set that needs to be measured in the first SMTC window;
  • the second SSB measurement configuration is used for the terminal device to determine the SSB set that needs to be measured in the second SMTC window.
  • the SSB measurement configuration includes a first bitmap, each bit in the first bitmap corresponds to an SSB index, and the value of the bit is used to indicate the bit Whether the SSB indicated by the corresponding SSB index needs to be measured.
  • the sending unit 801 is configured to send a system broadcast message to a terminal device, where the system broadcast message carries the first configuration information.
  • system broadcast message includes at least one of the following: SIB2, SIB4.
  • the sending unit 801 is configured to send an RRC message to a terminal device, where the RRC message carries the first configuration information.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 900 may further include a memory 920.
  • the processor 910 may call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be a network device of an embodiment of the application, and the communication device 900 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For the sake of brevity, details are not repeated here. .
  • the communication device 900 may specifically be a mobile terminal/terminal device of an embodiment of the present application, and the communication device 900 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • FIG. 10 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1000 may further include a memory 1020.
  • the processor 1010 can call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be called a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 11 is a schematic block diagram of a communication system 1100 according to an embodiment of the present application. As shown in FIG. 11, the communication system 1100 includes a terminal device 1110 and a network device 1120.
  • the terminal device 1110 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1120 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种测量配置方法及装置、终端设备、网络设备,其中,所述方法包括:终端设备接收网络设备发送的第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。

Description

一种测量配置方法及装置、终端设备、网络设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种测量配置方法及装置、终端设备、网络设备。
背景技术
对于基于同步信号块(SS/PBCH block,SSB)的测量,每个小区的SSB的实际传输位置可能不同,同步信号突发组(SS burst set)的周期也可能不同。所以为了让终端设备在测量过程中节能,网络侧会给终端设备配置SSB测量定时配置(SSB Measurement Timing Configuration,SMTC),终端设备只需要在SMTC窗口内进行测量即可。
为了满足不同SSB周期的小区测量需求,会引入一个额外的SMTC配置,原来的SMTC配置适用于具有较短SSB周期的小区,新引入的SMTC配置适用于具有较长SSB周期的小区。另一方面,目前标准上只配置了一个SSB测量(SSB-ToMeasure)配置,用于指示SMCT窗口内需要测量的SSB的索引(index)集合。但是针对两个SMTC配置,如何使用SSB测量配置尚未明确。
发明内容
本申请实施例提供一种测量配置方法及装置、终端设备、网络设备。
本申请实施例提供的测量配置方法,包括:
终端设备接收网络设备发送的第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;
其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。
本申请实施例提供的测量配置方法,包括:
网络设备向终端设备发送第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;
其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。
本申请实施例提供的测量配置装置,应用于终端设备,所述装置包括:
接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;
其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB 集合以及在第二SMTC窗口内需要测量的SSB集合。
本申请实施例提供的测量配置装置,应用于网络设备,所述装置包括:
发送单元,用于向终端设备发送第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;
其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量配置方法。
本申请实施例提供的网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的测量配置方法。
本申请实施例提供的芯片,用于实现上述的测量配置方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的测量配置方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的测量配置方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的测量配置方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的测量配置方法。
通过上述技术方案,网络设备可以为终端设备配置一个或两个SSB测量配置,通过所述一个或两个SSB测量配置可以确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合,明确了SSB测量配置的使用方式。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的Beam sweeping的示意图;
图3为本申请实施例提供的SSB的示意图;
图4为本申请实施例提供的SSB burst set周期的示意图;
图5为本申请实施例提供的SMTC的示意图;
图6为本申请实施例提供的测量配置方法的流程示意图;
图7为本申请实施例提供的测量配置装置的结构组成示意图一;
图8为本申请实施例提供的测量配置装置的结构组成示意图二;
图9是本申请实施例提供的一种通信设备示意性结构图;
图10是本申请实施例的芯片的示意性结构图;
图11是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1 示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra Reliable Low Latency Communication,URLLC)、大规模机器类通信(massive Machine Type Communication,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧密配合(tight interworking)的工作模式。
NR也可以独立部署。NR将来会部署在高频上,为了提高覆盖,在5G中,通过引入波束扫描(beam sweeping)的机制来满足覆盖的需求(用空间换覆盖,用时间换空间),如图2所示。在引入beam sweeping后,每个波束方向上都需要发送同步信号,5G的同步信号以SSB的形式给出,包含主同步信号(Primary Synchronisation Signal,PSS)、辅同步信号(Secondary Synchronisation Signal,SSS)、和物理广播信道(Physical Broadcast Channel,PBCH),如图3所示。5G的同步信号以SS burst set的形式在时域上周期性出现,如图4所示。
每个小区的实际传输的beam个数通过网络侧配置来确定,但是小区所在的频点决定了可以配置最多的beam个数,如下表1所示。
频率范围 L(最多的beam个数)
up to 3(2.4)GHz 4
3(2.4)GHz—6GHz 8
6GHz—52.6GHz 64
表1
在无线资源管理(Radio Resource Management,RRM)测量中,测量信号可以是 SSB测量,即测量SSB中的SSS信号或者PBCH的解调参考信号(Demodulation Reference Signal,DMRS)信号来获取beam测量结果以及小区测量结果。此外,处于无线资源控制(Radio Resource Control,RRC)连接状态的终端设备还可以配置信道状态指示参考信号(Channel Status Indicator Reference Signal,CSI-RS)作为小区测量的参考信号。
对于基于SSB的测量,每个小区的SSB的实际传输位置可能不同,SS burst set周期也可能不同。所以为了让终端设备在测量过程中节能,网络侧给终端设备配置SMTC,终端设备只需要在SMTC窗口内进行测量,如图5所示。
由于每个小区实际传输的SSB的位置可能是不同的,所以为了让终端设备尽快能够找到实际传输的SSB的位置,网络侧还会给终端设备配置实际测量的SSB传输位置,例如所有测量小区的SSB实际传输位置的并集,比如,在3-6GHz时,指示比特图(bitmap):10100110,该比特图用于通知终端设备只对8个SSB的候选位置中的SSB index为0,2,5,6的SSB做测量。比特图的配置见下表2所示:
Figure PCTCN2019126767-appb-000001
表2
对于空闲(idle)态,非激活(inactive)态的测量配置来自网络系统广播配置。这些配置信息都是以小区为粒度(per cell)配置的,例如测量的异频频点列表等,如下表3所示:
Figure PCTCN2019126767-appb-000002
Figure PCTCN2019126767-appb-000003
表3
对于连接状态的测量配置通过无线资源控制(Radio Resource Control,RRC)专用信令配置。
目前,系统广播中针对每个频率层只配置一个SMTC。但是考虑到当前一个频率层部署的小区有宏小区(主要满足覆盖需求),还有小小区(主要满足容量需求)。对于满足容量需求的小小区,一般SSB的周期比较长(例如SSB周期为160ms),而满足覆盖需求的宏小区,一般SSB比较短(例如SSB周期为20ms)。若只配置一个SMTC,则SMTC窗口的周期一般配置为160ms。因为160ms的SMTC窗口才能保证所有小区的SSB都可以被测量到。但是这种SMTC配置对于SSB周期较短的小区来说,会导致小区重选延迟,可能影响业务性能。所以R16中引入一个额外的SMTC配置,以满足不同SSB周期的小区测量需求。新引入的SMTC配置适用于具有较长SSB周期的小区,原来的SMTC配置适用于具有较短SSB周期的小区。或者说,新引入的SMTC配置用于确定较长周期的SMTC窗口,原来的SMTC配置用于确定较短周期的SMTC窗口。
目前标准上只配置了一个SSB-ToMeasure(简称为SSB测量配置),用于指示SMCT 窗口内测量的SSB的index集合。但是目前针对两个SMTC配置,如何使用SSB测量配置尚未明确。另一方面,如果两个SMTC配置使用同一个SSB测量配置的话,会导致终端设备测量多余的SSB,从而导致耗电增加。对于连接态的终端设备,网络侧也会配置两个SMTC配置,同样也配置了一个SSB-ToMeasure,上述问题同样存在于连接态的终端设备。为了明确两个SMTC配置中的每个SMTC配置使用哪个SSB测量配置,提出了本申请实施例的以下技术方案。
图6为本申请实施例提供的测量配置方法的流程示意图,如图6所示,所述测量配置方法包括以下步骤:
步骤601:终端设备接收网络设备发送的第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。
本申请实施例中,网络设备向终端设备发送第一配置信息,相应地,终端设备接收网络设备发送的第一配置信息。进一步,可选地,所述网络设备可以是基站,如gNB。
本申请实施例中,所述终端设备可以处于空闲态或非激活态或连接态。以下结合不同的RRC状态对本申请实施例的技术方案进行详细说明。
Figure PCTCN2019126767-appb-000004
所述终端设备为处于空闲态或非激活态的终端设备。
网络设备向终端设备发送系统广播消息,相应地,所述终端设备接收网络设备发送的系统广播消息,所述系统广播消息携带所述第一配置信息。进一步,可选地,所述系统广播消息包括以下至少之一:SIB2、SIB4。
这里,所述第一配置信息是针对空闲态或非激活态的配置。所述第一配置信息包括至少一个频率层的配置,这里,所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置。
本申请实施例中,所述第一SMTC配置用于确定第一SMTC窗口,具体地,所述第一SMTC配置可以包括第一SMTC窗口的周期信息、第一SMTC窗口的大小信息、第一SMTC窗口的偏移信息等。同理,所述第二SMTC配置用于确定第二SMTC窗口,具体地,所述第二SMTC配置可以包括第二SMTC窗口的周期信息、第二SMTC窗口的大小信息、第二SMTC窗口的偏移信息等。
实际实现时,所述第一SMTC配置为原有的SMTC配置,所述第二SMTC配置为新引入的一个额外的SMTC配置。可选地,所述第一SMTC配置适用于具有较长SSB周期的小区,所述第二SMTC配置适用于具有较短SSB周期的小区。具体地,按照SSB周期对小区进行分组,将具有较长SSB周期的小区分为一组,将具有较短SSB周期的小区分为另一组。这里,较长SSB周期和较短SSB周期可以通过一个阈值来划分,例如将SSB周期大于阈值的划分成较长SSB周期,将SSB周期小于等于阈值的划分成较短SSB周期。
在一可选实施方式中,所述第一SMTC配置携带第一指示信息,所述第一指示信息用于指示使用第一SMTC窗口执行SSB测量的第一小区列表;和/或,所述第二SMTC配置携带第二指示信息,所述第二指示信息用于指示使用第二SMTC窗口执行SSB测量的第二小区列表。
举个例子:所述第一小区列表包括了具有较长SSB周期的一个或多个小区的标识信息,所述第二小区列表包括了具有较短SSB周期的一个或多个小区的标识信息。其中,具有较长SSB周期的一个或多个小区使用第一SMTC窗口执行SSB测量,具有较短SSB周期的一个或多个小区使用第二SMTC窗口执行SSB测量。
本申请实施例中,所述SSB测量配置包括第一比特图,所述第一比特图中的每个比特位与一个SSB索引对应,所述比特位的取值用于表示该比特位对应的SSB索引所指示的SSB是否需要测量。例如,第一比特图为10100110,该比特图用于通知终端设备只对8个SSB的候选位置中的SSB index为0,2,5,6的SSB做测量。
以下结合一个SSB测量配置和两个SSB测量配置这两种情况,分别对终端设备如何确定需要测量的SSB集合进行描述。
1)所述至少一个频率层中的每个频率层的配置中包括一个SSB测量配置的情况下,所述第一SSB测量配置用于所述终端设备确定在第一SMTC窗口和第二SMTC窗口内需要测量的SSB集合。
若所述终端设备在第一SMTC窗口内执行SSB测量,则所述终端设备基于所述一个SSB测量配置确定在所述第一SMTC窗口内需要测量的SSB集合;若所述终端设备在第二SMTC窗口内执行SSB测量,则所述终端设备基于所述一个SSB测量配置确定在所述第二SMTC窗口内需要测量的SSB集合。
具体实现时,在SIB2和/或SIB4中,每个频率层的配置中都配置了两个SMTC配置(即第一SMTC配置和第二SMTC配置)。两个SMTC配置中的每个SMTC配置都配置了一个小区列表,该小区列表用于指定可以使用该SMTC配置对应的SMTC窗口测量的小区。需要说明的是,SIB2包括频内配置(intra frequency的配置),SIB4包括频间配置(inter frequency的配置)。进一步,SIB2和/或SIB4中每个频率层的配置中配置了一个SSB-ToMeasure,则终端设备在两个SMTC窗口中分别执行测量时,均使用SSB-ToMeasure来约束测量的SSB index集合,SSB-ToMeasure的配置信息如下表4所示。
Figure PCTCN2019126767-appb-000005
表4
2)所述至少一个频率层中的每个频率层的配置中包括两个SSB测量配置的情况下,所述两个SSB测量配置包括第一SSB测量配置和第二SSB测量配置,所述第一SSB测量配置用于所述终端设备确定在第一SMTC窗口内需要测量的SSB集合;所述第二SSB测量配置用于所述终端设备确定在第二SMTC窗口内需要测量的SSB集合。
若所述终端设备在第一SMTC窗口内执行SSB测量,则所述终端设备基于第一SSB测量配置确定在所述第一SMTC窗口内需要测量的SSB集合;若所述终端设备在第二SMTC窗口内执行SSB测量,则所述终端设备基于第二SSB测量配置确定在所述第二SMTC窗口内需要测量的SSB集合;其中,所述两个SSB测量配置包括所述第一SSB测量配置和所述第二SSB测量配置。
具体实现时,在SIB2和/或SIB4中,每个频率层的配置中都配置了两个SMTC配置(即第一SMTC配置和第二SMTC配置)。两个SMTC配置中的每个SMTC配置都配置了一个小区列表,该小区列表用于指定可以使用该SMTC配置对应的SMTC窗口测量的小区。需要说明的是,SIB2包括频内配置(intra frequency的配置),SIB4包括频间配置(inter frequency的配置)。进一步,SIB2和/或SIB4中每个频率层的配置中除了配置一个SSB-ToMeasure以外,还额外配置一个SSB-ToMeasur(例如SSB-ToMeasur2),则终端设备在两个SMTC窗口中分别执行测量时,分别使用各自对应的SSB-ToMeasure来约束测量的SSB index集合。例如当终端设备在smtc IE(用 于承载第一SMTC配置)配置的SMTC窗口内执行测量时使用SSB-ToMeasure IE(用于承载第一SSB测量配置)来约束测量的SSB index集合。当终端设备在smtc2-LP IE(用于承载第二SMTC配置)配置的SMTC窗口内执行测量时使用SSB-ToMeasure2IE(用于承载第二SSB测量配置)来约束测量的SSB index集合。进一步,如果SSB-ToMeasure2没有被配置,则终端设备使用SSB-ToMeasure来约束在smtc2-LP IE配置的SMTC窗口执行测量的SSB集合。如果SSB-ToMeasure也没有被配置,则终端设备测量所有的SSB,具体配置信息参照如下表5所示。
Figure PCTCN2019126767-appb-000006
表5
Figure PCTCN2019126767-appb-000007
所述终端设备为处于激活态的终端设备
网络设备向终端设备发送RRC消息,相应地,所述终端设备接收网络设备发送的RRC消息,所述RRC消息携带所述第一配置信息。
这里,所述第一配置信息是针对激活态的配置。所述第一配置信息包括至少一个频率层的配置,这里,所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置。
本申请实施例中,所述第一SMTC配置用于确定第一SMTC窗口,具体地,所述第一SMTC配置可以包括第一SMTC窗口的周期信息、第一SMTC窗口的大小信息、第一SMTC窗口的偏移信息等。同理,所述第二SMTC配置用于确定第二SMTC窗口,具体地,所述第二SMTC配置可以包括第二SMTC窗口的周期信息、第二SMTC窗口的大小信息、第二SMTC窗口的偏移信息等。
实际实现时,所述第一SMTC配置为原有的SMTC配置,所述第二SMTC配置为新引入的一个额外的SMTC配置。可选地,所述第一SMTC配置适用于具有较长SSB周期的小区,所述第二SMTC配置适用于具有较短SSB周期的小区。具体地,按照SSB周期对小区进行分组,将具有较长SSB周期的小区分为一组,将具有较短SSB周期的小区分为另一组。这里,较长SSB周期和较短SSB周期可以通过一个阈值来划分,例如将SSB周期大于阈值的划分成较长SSB周期,将SSB周期小于等于阈值的划分成较短SSB周期。
在一可选实施方式中,所述第一SMTC配置携带第一指示信息,所述第一指示信息用于指示使用第一SMTC窗口执行SSB测量的第一小区列表;和/或,所述第二SMTC配置携带第二指示信息,所述第二指示信息用于指示使用第二SMTC窗口执行SSB测量的第二小区列表。
举个例子:所述第一小区列表包括了具有较长SSB周期的一个或多个小区的标识信息,所述第二小区列表包括了具有较短SSB周期的一个或多个小区的标识信息。其中,具有较长SSB周期的一个或多个小区使用第一SMTC窗口执行SSB测量,具有较短SSB周期的一个或多个小区使用第二SMTC窗口执行SSB测量。
本申请实施例中,所述SSB测量配置包括第一比特图,所述第一比特图中的每个比特位与一个SSB索引对应,所述比特位的取值用于表示该比特位对应的SSB索引所指 示的SSB是否需要测量。例如,第一比特图为10100110,该比特图用于通知终端设备只对8个SSB的候选位置中的SSB index为0,2,5,6的SSB做测量。
以下结合一个SSB测量配置和两个SSB测量配置这两种情况,分别对终端设备如何确定需要测量的SSB集合进行描述。
1)所述至少一个频率层中的每个频率层的配置中包括一个SSB测量配置的情况下,所述第一SSB测量配置用于所述终端设备确定在第一SMTC窗口和第二SMTC窗口内需要测量的SSB集合。
若所述终端设备在第一SMTC窗口内执行SSB测量,则所述终端设备基于所述一个SSB测量配置确定在所述第一SMTC窗口内需要测量的SSB集合;若所述终端设备在第二SMTC窗口内执行SSB测量,则所述终端设备基于所述一个SSB测量配置确定在所述第二SMTC窗口内需要测量的SSB集合。
具体实现时,在连接态的测量配置中,每个测量对象的配置中配置了两个SMTC配置(即第一SMTC配置和第二SMTC配置)。两个SMTC配置中的每个SMTC配置都配置了一个小区列表,该小区列表用于指定可以使用该SMTC配置对应的SMTC窗口测量的小区。进一步,测量对象的配置中配置了SSB信号,SSB信号的配置中配置了一个SSB-ToMeasure,则终端设备在两个SMTC窗口中分别执行测量时,均使用SSB-ToMeasure来约束测量的SSB index集合,SSB-ToMeasure的配置信息如下表6和表7所示。
Figure PCTCN2019126767-appb-000008
Figure PCTCN2019126767-appb-000009
表6
Figure PCTCN2019126767-appb-000010
表7
2)所述至少一个频率层中的每个频率层的配置中包括两个SSB测量配置的情况下,所述两个SSB测量配置包括第一SSB测量配置和第二SSB测量配置,所述第一SSB测量配置用于所述终端设备确定在第一SMTC窗口内需要测量的SSB集合;所述第二SSB测量配置用于所述终端设备确定在第二SMTC窗口内需要测量的SSB集合。
若所述终端设备在第一SMTC窗口内执行SSB测量,则所述终端设备基于第一SSB测量配置确定在所述第一SMTC窗口内需要测量的SSB集合;若所述终端设备在第二SMTC窗口内执行SSB测量,则所述终端设备基于第二SSB测量配置确定在所述第二SMTC窗口内需要测量的SSB集合;其中,所述两个SSB测量配置包括所述第一SSB测量配置和所述第二SSB测量配置。
具体实现时,在连接态的测量配置中,每个测量对象的配置中配置了两个SMTC配置(即第一SMTC配置和第二SMTC配置)。两个SMTC配置中的每个SMTC配置都配置了一个小区列表,该小区列表用于指定可以使用该SMTC配置对应的SMTC窗口测量的小区。进一步,测量对象的配置中配置了SSB信号,SSB信号的配置中配置了两个SSB-ToMeasure(即SSB-ToMeasure和SSB-ToMeasure2),则终端设备在两个SMTC窗口中分别执行测量时,分别使用各自对应的SSB-ToMeasure来约束测量的SSB index集合。例如当终端设备在smtc1IE(用于承载第一SMTC配置)配置的SMTC窗口内执行测量时使用SSB-ToMeasure IE(用于承载第一SSB测量配置)来约束测量的SSB index集合。当终端设备在smtc2IE(用于承载第二SMTC配置)配置的SMTC窗口内执行测量时使用SSB-ToMeasure2IE(用于承载第二SSB测量配置)来约束测量的SSB index集合。进一步,如果SSB-ToMeasure2没有被配置,则终端设备使用SSB-ToMeasure来约束在smtc2IE配置的SMTC窗口执行测量的SSB集合。如果SSB-ToMeasure也没有被配置,则终端设备测量所有的SSB,具体配置信息参照如下表8所示。
Figure PCTCN2019126767-appb-000011
表8
通过本申请实施例的技术方案,为每个SMTC窗口配置对应的ssb-ToMeasure,从而达到终端设备省电的目的。另一方面,针对不同的ssb-ToMeasure配置情况(如没有配置ssb-ToMeasure,或者配置了1个ssb-ToMeasure,或者配置了2个ssb-ToMeasure),分别明确了两个SMTC窗口内需要测量的SSB。
图7为本申请实施例提供的测量配置装置的结构组成示意图一,应用于终端设备,如图7所示,所述测量配置装置包括:
接收单元701,用于接收网络设备发送的第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;
其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。
在一可选实施方式中,所述第一SMTC配置携带第一指示信息,所述第一指示信息用于指示使用第一SMTC窗口执行SSB测量的第一小区列表;和/或,所述第二SMTC配置携带第二指示信息,所述第二指示信息用于指示使用第二SMTC窗口执行SSB测量的第二小区列表。
在一可选实施方式中,所述装置还包括确定单元702;所述至少一个频率层中的每个频率层的配置中包括一个SSB测量配置的情况下,所述确定单元702,用于若所述终端设备在第一SMTC窗口内执行SSB测量,则基于所述一个SSB测量配置确定在所述第一SMTC窗口内需要测量的SSB集合;若所述终端设备在第二SMTC窗口内执行SSB测量,则基于所述一个SSB测量配置确定在所述第二SMTC窗口内需要测量的SSB集合。
在一可选实施方式中,所述装置还包括确定单元702;所述至少一个频率层中的每个频率层的配置中包括两个SSB测量配置的情况下,所述确定单元702,用于若所述终端设备在第一SMTC窗口内执行SSB测量,则基于第一SSB测量配置确定在所述第一SMTC窗口内需要测量的SSB集合;若所述终端设备在第二SMTC窗口内执 行SSB测量,则基于第二SSB测量配置确定在所述第二SMTC窗口内需要测量的SSB集合;其中,所述两个SSB测量配置包括所述第一SSB测量配置和所述第二SSB测量配置。
在一可选实施方式中,所述SSB测量配置包括第一比特图,所述第一比特图中的每个比特位与一个SSB索引对应,所述比特位的取值用于表示该比特位对应的SSB索引所指示的SSB是否需要测量。
在一可选实施方式中,所述终端设备为处于空闲态或非激活态的终端设备;
所述接收单元701,用于接收网络设备发送的系统广播消息,所述系统广播消息携带所述第一配置信息。
在一可选实施方式中,所述系统广播消息包括以下至少之一:SIB2、SIB4。
在一可选实施方式中,所述终端设备为处于激活态的终端设备;
所述接收单元701,用于接收网络设备发送的RRC消息,所述RRC消息携带所述第一配置信息。
本领域技术人员应当理解,本申请实施例的上述测量配置装置的相关描述可以参照本申请实施例的测量配置方法的相关描述进行理解。
图8为本申请实施例提供的测量配置装置的结构组成示意图二,应用于网络设备,如图8所示,所述测量配置装置包括:
发送单元801,用于向终端设备发送第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;
其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。
在一可选实施方式中,所述第一SMTC配置携带第一指示信息,所述第一指示信息用于指示使用第一SMTC窗口执行SSB测量的第一小区列表;和/或,所述第二SMTC配置携带第二指示信息,所述第二指示信息用于指示使用第二SMTC窗口执行SSB测量的第二小区列表。
在一可选实施方式中,所述至少一个频率层中的每个频率层的配置中包括一个SSB测量配置的情况下,
所述第一SSB测量配置用于所述终端设备确定在第一SMTC窗口和第二SMTC窗口内需要测量的SSB集合。
在一可选实施方式中,所述至少一个频率层中的每个频率层的配置中包括两个SSB测量配置的情况下,所述两个SSB测量配置包括第一SSB测量配置和第二SSB测量配置,
所述第一SSB测量配置用于所述终端设备确定在第一SMTC窗口内需要测量的SSB集合;
所述第二SSB测量配置用于所述终端设备确定在第二SMTC窗口内需要测量的SSB集合。
在一可选实施方式中,所述SSB测量配置包括第一比特图,所述第一比特图中的每个比特位与一个SSB索引对应,所述比特位的取值用于表示该比特位对应的SSB索引所指示的SSB是否需要测量。
在一可选实施方式中,所述发送单元801,用于向终端设备发送系统广播消息,所述系统广播消息携带所述第一配置信息。
在一可选实施方式中,所述系统广播消息包括以下至少之一:SIB2、SIB4。
在一可选实施方式中,所述发送单元801,用于向终端设备发送RRC消息,所述RRC消息携带所述第一配置信息。
本领域技术人员应当理解,本申请实施例的上述测量配置装置的相关描述可以参照本申请实施例的测量配置方法的相关描述进行理解。
图9是本申请实施例提供的一种通信设备900示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本申请实施例的移动终端/终端设备,并且该通信设备900可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统1100的示意性框图。如图11所示,该通信系统1100包括终端设备1110和网络设备1120。
其中,该终端设备1110可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1120可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (42)

  1. 一种测量配置方法,所述方法包括:
    终端设备接收网络设备发送的第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SSB测量定时配置SMTC配置和第二SMTC配置;
    其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个同步信号块SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。
  2. 根据权利要求1所述的方法,其中,
    所述第一SMTC配置携带第一指示信息,所述第一指示信息用于指示使用第一SMTC窗口执行SSB测量的第一小区列表;和/或,
    所述第二SMTC配置携带第二指示信息,所述第二指示信息用于指示使用第二SMTC窗口执行SSB测量的第二小区列表。
  3. 根据权利要求1或2所述的方法,其中,所述至少一个频率层中的每个频率层的配置中包括一个SSB测量配置的情况下,所述方法还包括:
    若所述终端设备在第一SMTC窗口内执行SSB测量,则所述终端设备基于所述一个SSB测量配置确定在所述第一SMTC窗口内需要测量的SSB集合;
    若所述终端设备在第二SMTC窗口内执行SSB测量,则所述终端设备基于所述一个SSB测量配置确定在所述第二SMTC窗口内需要测量的SSB集合。
  4. 根据权利要求1或2所述的方法,其中,所述至少一个频率层中的每个频率层的配置中包括两个SSB测量配置的情况下,所述方法还包括:
    若所述终端设备在第一SMTC窗口内执行SSB测量,则所述终端设备基于第一SSB测量配置确定在所述第一SMTC窗口内需要测量的SSB集合;
    若所述终端设备在第二SMTC窗口内执行SSB测量,则所述终端设备基于第二SSB测量配置确定在所述第二SMTC窗口内需要测量的SSB集合;
    其中,所述两个SSB测量配置包括所述第一SSB测量配置和所述第二SSB测量配置。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述SSB测量配置包括第一比特图,所述第一比特图中的每个比特位与一个SSB索引对应,所述比特位的取值用于表示该比特位对应的SSB索引所指示的SSB是否需要测量。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述终端设备为处于空闲态或非激活态的终端设备;
    所述终端设备接收网络设备发送的第一配置信息,包括:
    所述终端设备接收网络设备发送的系统广播消息,所述系统广播消息携带所述第一配置信息。
  7. 根据权利要求6所述的方法,其中,所述系统广播消息包括以下至少之一:SIB2、SIB4。
  8. 根据权利要求1至5中任一项所述的方法,其中,所述终端设备为处于激活态的终端设备;
    所述终端设备接收网络设备发送的第一配置信息,包括:
    所述终端设备接收网络设备发送的无线资源控制RRC消息,所述RRC消息携带所述第一配置信息。
  9. 一种测量配置方法,所述方法包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;
    其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。
  10. 根据权利要求9所述的方法,其中,
    所述第一SMTC配置携带第一指示信息,所述第一指示信息用于指示使用第一SMTC窗口执行SSB测量的第一小区列表;和/或,
    所述第二SMTC配置携带第二指示信息,所述第二指示信息用于指示使用第二SMTC窗口执行SSB测量的第二小区列表。
  11. 根据权利要求9或10所述的方法,其中,所述至少一个频率层中的每个频率层的配置中包括一个SSB测量配置的情况下,
    所述第一SSB测量配置用于所述终端设备确定在第一SMTC窗口和第二SMTC窗口内需要测量的SSB集合。
  12. 根据权利要求9或10所述的方法,其中,所述至少一个频率层中的每个频率层的配置中包括两个SSB测量配置的情况下,所述两个SSB测量配置包括第一SSB测量配置和第二SSB测量配置,
    所述第一SSB测量配置用于所述终端设备确定在第一SMTC窗口内需要测量的SSB集合;
    所述第二SSB测量配置用于所述终端设备确定在第二SMTC窗口内需要测量的SSB集合。
  13. 根据权利要求9至12中任一项所述的方法,其中,所述SSB测量配置包括第一比特图,所述第一比特图中的每个比特位与一个SSB索引对应,所述比特位的取值用于表示该比特位对应的SSB索引所指示的SSB是否需要测量。
  14. 根据权利要求9至13中任一项所述的方法,其中,所述网络设备向终端设备发送第一配置信息,包括:
    所述网络设备向终端设备发送系统广播消息,所述系统广播消息携带所述第一配置信息。
  15. 根据权利要求14所述的方法,其中,所述系统广播消息包括以下至少之一:SIB2、SIB4。
  16. 根据权利要求9至13中任一项所述的方法,其中,所述网络设备向终端设备发送第一配置信息,包括:
    所述网络设备向终端设备发送RRC消息,所述RRC消息携带所述第一配置信息。
  17. 一种测量配置装置,应用于终端设备,所述装置包括:
    接收单元,用于接收网络设备发送的第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;
    其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。
  18. 根据权利要求17所述的装置,其中,
    所述第一SMTC配置携带第一指示信息,所述第一指示信息用于指示使用第一 SMTC窗口执行SSB测量的第一小区列表;和/或,
    所述第二SMTC配置携带第二指示信息,所述第二指示信息用于指示使用第二SMTC窗口执行SSB测量的第二小区列表。
  19. 根据权利要求17或18所述的装置,其中,所述装置还包括确定单元;所述至少一个频率层中的每个频率层的配置中包括一个SSB测量配置的情况下,所述确定单元,用于若所述终端设备在第一SMTC窗口内执行SSB测量,则基于所述一个SSB测量配置确定在所述第一SMTC窗口内需要测量的SSB集合;若所述终端设备在第二SMTC窗口内执行SSB测量,则基于所述一个SSB测量配置确定在所述第二SMTC窗口内需要测量的SSB集合。
  20. 根据权利要求17或18所述的装置,其中,所述装置还包括确定单元;所述至少一个频率层中的每个频率层的配置中包括两个SSB测量配置的情况下,所述确定单元,用于若所述终端设备在第一SMTC窗口内执行SSB测量,则基于第一SSB测量配置确定在所述第一SMTC窗口内需要测量的SSB集合;若所述终端设备在第二SMTC窗口内执行SSB测量,则基于第二SSB测量配置确定在所述第二SMTC窗口内需要测量的SSB集合;其中,所述两个SSB测量配置包括所述第一SSB测量配置和所述第二SSB测量配置。
  21. 根据权利要求17至20中任一项所述的装置,其中,所述SSB测量配置包括第一比特图,所述第一比特图中的每个比特位与一个SSB索引对应,所述比特位的取值用于表示该比特位对应的SSB索引所指示的SSB是否需要测量。
  22. 根据权利要求17至21中任一项所述的装置,其中,所述终端设备为处于空闲态或非激活态的终端设备;
    所述接收单元,用于接收网络设备发送的系统广播消息,所述系统广播消息携带所述第一配置信息。
  23. 根据权利要求22所述的装置,其中,所述系统广播消息包括以下至少之一:SIB2、SIB4。
  24. 根据权利要求17至21中任一项所述的装置,其中,所述终端设备为处于激活态的终端设备;
    所述接收单元,用于接收网络设备发送的RRC消息,所述RRC消息携带所述第一配置信息。
  25. 一种测量配置装置,应用于网络设备,所述装置包括:
    发送单元,用于向终端设备发送第一配置信息,所述第一配置信息包括至少一个频率层的配置;所述至少一个频率层中的每个频率层的配置中包括第一SMTC配置和第二SMTC配置;
    其中,所述至少一个频率层中的每个频率层的配置中还包括一个或两个SSB测量配置,所述一个或两个SSB测量配置用于确定在第一SMTC窗口内需要测量的SSB集合以及在第二SMTC窗口内需要测量的SSB集合。
  26. 根据权利要求25所述的装置,其中,
    所述第一SMTC配置携带第一指示信息,所述第一指示信息用于指示使用第一SMTC窗口执行SSB测量的第一小区列表;和/或,
    所述第二SMTC配置携带第二指示信息,所述第二指示信息用于指示使用第二SMTC窗口执行SSB测量的第二小区列表。
  27. 根据权利要求25或26所述的装置,其中,所述至少一个频率层中的每个频率层的配置中包括一个SSB测量配置的情况下,
    所述第一SSB测量配置用于所述终端设备确定在第一SMTC窗口和第二SMTC窗 口内需要测量的SSB集合。
  28. 根据权利要求25或26所述的装置,其中,所述至少一个频率层中的每个频率层的配置中包括两个SSB测量配置的情况下,所述两个SSB测量配置包括第一SSB测量配置和第二SSB测量配置,
    所述第一SSB测量配置用于所述终端设备确定在第一SMTC窗口内需要测量的SSB集合;
    所述第二SSB测量配置用于所述终端设备确定在第二SMTC窗口内需要测量的SSB集合。
  29. 根据权利要求25知28中任一项所述的装置,其中,所述SSB测量配置包括第一比特图,所述第一比特图中的每个比特位与一个SSB索引对应,所述比特位的取值用于表示该比特位对应的SSB索引所指示的SSB是否需要测量。
  30. 根据权利要求25至29中任一项所述的装置,其中,所述发送单元,用于向终端设备发送系统广播消息,所述系统广播消息携带所述第一配置信息。
  31. 根据权利要求30所述的装置,其中,所述系统广播消息包括以下至少之一:SIB2、SIB4。
  32. 根据权利要求25至29中任一项所述的装置,其中,所述发送单元,用于向终端设备发送RRC消息,所述RRC消息携带所述第一配置信息。
  33. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至8中任一项所述的方法。
  34. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求9至16中任一项所述的方法。
  35. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至8中任一项所述的方法。
  36. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求9至16中任一项所述的方法。
  37. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至8中任一项所述的方法。
  38. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求9至16中任一项所述的方法。
  39. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至8中任一项所述的方法。
  40. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求9至16中任一项所述的方法。
  41. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至8中任一项所述的方法。
  42. 一种计算机程序,所述计算机程序使得计算机执行如权利要求9至16中任一项所述的方法。
PCT/CN2019/126767 2019-12-19 2019-12-19 一种测量配置方法及装置、终端设备、网络设备 WO2021120131A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/126767 WO2021120131A1 (zh) 2019-12-19 2019-12-19 一种测量配置方法及装置、终端设备、网络设备
CN201980100972.9A CN114467326B (zh) 2019-12-19 2019-12-19 一种测量配置方法及装置、终端设备、网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/126767 WO2021120131A1 (zh) 2019-12-19 2019-12-19 一种测量配置方法及装置、终端设备、网络设备

Publications (1)

Publication Number Publication Date
WO2021120131A1 true WO2021120131A1 (zh) 2021-06-24

Family

ID=76478066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126767 WO2021120131A1 (zh) 2019-12-19 2019-12-19 一种测量配置方法及装置、终端设备、网络设备

Country Status (2)

Country Link
CN (1) CN114467326B (zh)
WO (1) WO2021120131A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113766589A (zh) * 2021-09-18 2021-12-07 展讯通信(上海)有限公司 一种测量方法、通信装置、芯片及其模组设备
CN114339917A (zh) * 2021-12-31 2022-04-12 展讯通信(上海)有限公司 异系统邻区搜索方法及装置、存储介质、终端设备
CN114401548A (zh) * 2021-11-23 2022-04-26 Oppo广东移动通信有限公司 频点调度方法、装置、计算机设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110100492A (zh) * 2017-11-28 2019-08-06 联发科技股份有限公司 信道状态信息参考信号无线资源管理测量
US20190306734A1 (en) * 2018-03-30 2019-10-03 Mediatek Inc. Gap-based cell measurement in wireless communication system
CN110475281A (zh) * 2018-05-11 2019-11-19 英特尔公司 用于测量对象合并的准则

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110100492A (zh) * 2017-11-28 2019-08-06 联发科技股份有限公司 信道状态信息参考信号无线资源管理测量
US20190306734A1 (en) * 2018-03-30 2019-10-03 Mediatek Inc. Gap-based cell measurement in wireless communication system
CN110475281A (zh) * 2018-05-11 2019-11-19 英特尔公司 用于测量对象合并的准则

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ORANGE, AT&T, VODAFONE, TELECOM ITALIA S.P.A., CMCC, SAMSUNG, ERICSSON: "Introduction of a second SMTC for inter-RAT cell reselection", 3GPP DRAFT; R2-1913269 CR36331-F60 SECOND SMTC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing , China; 20191014 - 20191018, 3 October 2019 (2019-10-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051791281 *
ORANGE, AT&T, VODAFONE, TELECOM ITALIA S.P.A., CMCC, SAMSUNG, ERICSSON: "Introduction of a second SMTC per frequency carrier in idle/inactive", 3GPP DRAFT; R2-1913258 CR38331-F60 SECOND SMTC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chongqing , China; 20191014 - 20191018, 3 October 2019 (2019-10-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051791270 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113766589A (zh) * 2021-09-18 2021-12-07 展讯通信(上海)有限公司 一种测量方法、通信装置、芯片及其模组设备
CN113766589B (zh) * 2021-09-18 2024-05-28 展讯通信(上海)有限公司 一种测量方法、通信装置、芯片及其模组设备
CN114401548A (zh) * 2021-11-23 2022-04-26 Oppo广东移动通信有限公司 频点调度方法、装置、计算机设备和存储介质
CN114339917A (zh) * 2021-12-31 2022-04-12 展讯通信(上海)有限公司 异系统邻区搜索方法及装置、存储介质、终端设备

Also Published As

Publication number Publication date
CN114467326B (zh) 2023-11-10
CN114467326A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2021098568A1 (zh) 一种能力信息发送方法、接收方法及装置
WO2019242021A1 (zh) 信息测量方法、终端设备和网络设备
WO2021092860A1 (zh) 一种小区配置方法及装置、终端设备、网络设备
WO2021249001A1 (zh) 一种小区测量方法及装置
WO2019242722A1 (zh) 一种测量控制方法及装置、终端设备
WO2020154925A1 (zh) 一种协调测量配置的方法及装置、网络设备、终端
WO2021232245A1 (zh) 一种测量方法及装置、终端设备、网络设备
WO2020232611A1 (zh) 一种小区重选方法及装置、终端
WO2020199220A1 (zh) 接收信息、发送信息的方法和设备
WO2020124462A1 (zh) 一种小区选择或重选方法及装置、终端
WO2020243972A1 (zh) 一种控制测量的方法及装置、终端、网络设备
WO2021114206A1 (zh) 一种cli测量的方法及装置、终端设备、网络设备
WO2020143055A1 (zh) 一种测量配置方法及装置、终端
WO2021120131A1 (zh) 一种测量配置方法及装置、终端设备、网络设备
WO2020082248A1 (zh) 一种控制终端移动性的方法及装置、终端
WO2021237531A1 (zh) 一种测量方法及装置、终端设备、网络设备
WO2020227860A1 (zh) 一种终端能力确定方法及装置、终端
WO2019241969A1 (zh) 配置测量信息的方法、终端设备和网络设备
WO2020093399A1 (zh) 无线通信方法、网络设备和终端设备
JP2022508844A (ja) サイドリンクにおける伝送モードの決定方法、端末装置及びネットワーク装置
WO2021212258A1 (zh) 一种上报指示信息的方法及装置、终端设备、网络设备
WO2021142700A1 (zh) 一种测量方法及装置、终端设备
WO2020000142A1 (zh) 无线通信方法、网络设备和终端设备
TW202002552A (zh) 一種資訊傳輸方法及裝置、終端設備、網路設備
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956949

Country of ref document: EP

Kind code of ref document: A1