WO2022204896A1 - 一种确定smtc的方法及装置、终端设备 - Google Patents

一种确定smtc的方法及装置、终端设备 Download PDF

Info

Publication number
WO2022204896A1
WO2022204896A1 PCT/CN2021/083674 CN2021083674W WO2022204896A1 WO 2022204896 A1 WO2022204896 A1 WO 2022204896A1 CN 2021083674 W CN2021083674 W CN 2021083674W WO 2022204896 A1 WO2022204896 A1 WO 2022204896A1
Authority
WO
WIPO (PCT)
Prior art keywords
smtc
configuration
target cell
terminal device
target
Prior art date
Application number
PCT/CN2021/083674
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/083674 priority Critical patent/WO2022204896A1/zh
Priority to CN202180080072.XA priority patent/CN116569587A/zh
Publication of WO2022204896A1 publication Critical patent/WO2022204896A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the embodiments of the present application relate to the technical field of mobile communications, and in particular, to a method, apparatus, and terminal device for determining a synchronization signal block measurement timing configuration (SS/PBCH block Measurement Timing Configuration, SMTC).
  • SS/PBCH block Measurement Timing Configuration SS/PBCH block Measurement Timing Configuration
  • the network device configures the SMTC of the target cell for the terminal device, so that the terminal device can use the SMTC to search for the target cell, so as to achieve the purpose of quickly searching for the target cell.
  • the network device does not configure the SMTC of the target cell for the terminal device, it needs to be clarified how to realize the fast search of the target cell.
  • Embodiments of the present application provide a method and apparatus for determining an SMTC, a terminal device, a chip, and a computer-readable storage medium.
  • the terminal device receives a first radio resource control (Radio Resource Control, RRC) message sent by the network device, where the first RRC message carries the configuration information of the target cell;
  • RRC Radio Resource Control
  • the terminal device determines, from the first measurement configuration, a first measurement object associated with the target cell, and the first measurement object is associated with the first measurement object.
  • the terminal device determines a target SMTC configuration from the first SMTC configuration and the second SMTC configuration, where the target SMTC configuration is used to determine the SMTC used for searching the target cell.
  • the apparatus for determining SMTC provided by the embodiment of the present application is applied to terminal equipment, and the apparatus includes:
  • a receiving unit configured to receive a first RRC message sent by a network device, where the first RRC message carries configuration information of a target cell;
  • a determining unit configured to determine, from the first measurement configuration, a first measurement object associated with the target cell if the configuration information of the target cell does not include the SMTC configuration of the target cell, and the first measurement object is associated with A first SMTC configuration and a second SMTC configuration; a target SMTC configuration is determined from the first SMTC configuration and the second SMTC configuration, where the target SMTC configuration is used to determine the SMTC used for searching the target cell.
  • the terminal device provided by the embodiments of the present application includes a processor and a memory.
  • the memory is used for storing a computer program
  • the processor is used for calling and running the computer program stored in the memory to execute the above-mentioned method for determining the SMTC.
  • the chip provided by the embodiment of the present application is used to implement the above-mentioned method for determining the SMTC.
  • the chip includes: a processor for invoking and running a computer program from the memory, so that the device installed with the chip executes the above-mentioned method for determining the SMTC.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned method for determining an SMTC.
  • the computer program product provided by the embodiments of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned method for determining an SMTC.
  • the computer program provided by the embodiment of the present application when running on a computer, causes the computer to execute the above-mentioned method for determining the SMTC.
  • the terminal device determines the first measurement object that is associated with the target cell from the existing first measurement configuration, and then according to the first measurement object
  • the first SMTC configuration and the second SMTC configuration associated with the measurement object determine the target SMTC configuration used for the target cell search, so as to achieve the purpose of quickly searching for the target cell.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • Fig. 2 is the schematic diagram of the Beam sweeping provided by the embodiment of the application.
  • FIG. 3 is a schematic diagram of an SSB provided by an embodiment of the present application.
  • Fig. 4 is the schematic diagram of the SSB burst set cycle provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of an SMTC provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for determining an SMTC provided by an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a device for determining SMTC provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication systems or future communication systems etc.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or referred to as a communication terminal, a terminal).
  • the network device 110 may provide communication coverage for a particular geographic area and may communicate with terminals located within the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the
  • the network device can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network-side device in a 5G network, or a network device in a future communication system.
  • the communication system 100 also includes at least one terminal 120 located within the coverage of the network device 110 .
  • Terminal includes, but is not limited to, connections via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connections; and/or another data connection/network; and/or via a wireless interface, e.g. for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/transmit a communication signal; and/or an Internet of Things (IoT) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • WLAN Wireless Local Area Networks
  • digital television networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter
  • IoT Internet of Things
  • a terminal arranged to communicate through a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radio telephones with data processing, facsimile, and data communications capabilities; may include radio telephones, pagers, Internet/Intranet PDAs with networking access, web browsers, memo pads, calendars, and/or Global Positioning System (GPS) receivers; and conventional laptop and/or palmtop receivers or others including radiotelephone transceivers electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • a terminal may refer to an access terminal, user equipment (UE), subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal (Device to Device, D2D) communication may be performed between terminals 120.
  • the 5G communication system or the 5G network may also be referred to as a new radio (New Radio, NR) system or an NR network.
  • New Radio NR
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices, and the coverage of each network device may include other numbers of terminals. This embodiment of the present application This is not limited.
  • the communication system 100 may further include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • a device having a communication function in the network/system may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal 120 with a communication function, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may further include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • 5G 3rd Generation Partnership Project
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communication
  • mMTC Massive Machine Type Communication
  • eMBB still aims at users' access to multimedia content, services and data, and its demand is growing rapidly.
  • eMBB since eMBB may be deployed in different scenarios, such as indoor, urban, rural, etc., its capabilities and requirements are also quite different, so it cannot be generalized and must be analyzed in detail in combination with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety assurance, etc.
  • Typical features of mMTC include: high connection density, small data volume, latency-insensitive services, low cost and long service life of the module.
  • EN-DC LTE-NR Dual Connectivity
  • the LTE base station acts as a master node (Master Node, MN)
  • the NR base station acts as a secondary node (Secondary Node, SN), and is connected to the Evolved Packet Core network (EPC).
  • EPC Evolved Packet Core network
  • NE-DC NR-LTE Dual Connectivity
  • 5GC-EN-DC NR DC.
  • NE-DC the NR base station acts as the MN
  • the LTE base station acts as the SN, connecting to the 5G core network (5GC).
  • 5GC 5G core network
  • the LTE base station is used as MN, and the NR base station is used as SN, which is connected to 5GC.
  • the NR base station acts as the MN, and the NR base station acts as the SN, which is connected to the 5GC.
  • NR can also be deployed independently. NR will be deployed on high frequencies in the future.
  • the synchronization signal of 5G is given in the form of a synchronization signal block (SS/PBCH Block, SSB), including the primary synchronization signal (Primary Synchronisation Signal, PSS), A secondary synchronization signal (Secondary Synchronisation Signal, SSS), and a physical broadcast channel (Physical Broadcast Channel, PBCH), as shown in Figure 3.
  • the 5G synchronization signal appears periodically in the time domain in the form of a synchronization signal burst set (SS burst set). As shown in Figure 4, the period of the SS burst set can also be called the period of the SSB.
  • the actual number of beams (beams) transmitted in each cell is determined by the configuration on the network side, but the frequency point where the cell is located determines the maximum number of beams that can be configured, as shown in Table 1 below.
  • Frequency Range L (maximum number of beams) (2.4) GHz or less 4 3(2.4)GHz—6GHz 8 6GHz—52.6GHz 64
  • the measured reference signal can be SSB, that is, the SSS signal in the SSB or the demodulation reference signal (Demodulation Reference Signal, DMRS) signal of the PBCH is measured to obtain beam measurement results and Cell measurement results.
  • a terminal device in a radio resource control (Radio Resource Control, RRC) connection state can also configure a channel status indicator reference signal (Channel Status Indicator Reference Signal, CSI-RS) as a reference signal for cell measurement.
  • CSI-RS Channel Status Indicator Reference Signal
  • the network side configures the terminal device with the SSB measurement timing configuration (SS/PBCH block measurement timing configuration, SMTC). measurements, as shown in Figure 5.
  • SS/PBCH block measurement timing configuration SS/PBCH block measurement timing configuration
  • the network side will also configure the terminal device with the actual SSB transmission location measured by the terminal device, such as all
  • Table 2 The union of the actual transmission positions of the SSBs of the measurement cells is shown in Table 2 below.
  • the length of the bitmap is 8 bits. Assuming that the bitmap of 8 bits length is 10100110, then the terminal device only needs to set the SSB indices in the candidate positions of the 8 SSBs as 0, 2, 5, 6 SSB to do the measurement.
  • the SMTC used when searching for the target cell will be configured for the terminal device, and the purpose of speeding up the search to the target cell can be achieved through the SMTC.
  • the RRM measurement configuration (hereinafter referred to as the first measurement configuration) is used to have the same SSB frequency and/or the target cell.
  • the SMTC configured in the measurement object of the SSB subcarrier spacing is used as the SMTC used for searching for the target cell.
  • an additional SMTC in order to finely measure the measurement of the cell corresponding to the serving frequency, in addition to the original SMTC, an additional SMTC will be configured, wherein the additional SMTC is associated with a physical cell identifier (Physical Cell Identifier). Identity, PCI) list, used to indicate which cells at this frequency can use the additional SMTC for measurement.
  • PCI Physical Cell Identifier
  • Table 3 shows the configuration content of the measurement object (measObjectNR) of the NR frequency point, where "smtc1" corresponds to the original SMTC, and "smtc2" corresponds to the additional SMTC.
  • FIG. 6 is a schematic flowchart of a method for determining SMTC provided by an embodiment of the present application. As shown in FIG. 6 , the method for SMTC includes the following steps:
  • Step 601 The terminal device receives the first RRC message sent by the network device, where the first RRC message carries the configuration information of the target cell; if the configuration information of the target cell does not include the SMTC configuration of the target cell, the terminal device from the A first measurement object associated with the target cell is determined in the first measurement configuration, and the first measurement object is associated with the first SMTC configuration and the second SMTC configuration.
  • the network device is an access network element, and optionally, the network device may be a base station.
  • the first measurement configuration is received by the terminal device before the first RRC message.
  • the first measurement configuration is an RRM measurement configuration.
  • the RRM measurement configuration includes the configuration of one or more measurement objects.
  • For the configuration of each measurement object it further includes SSB frequency point information, SSB subcarrier spacing information, and 1 or 2 SMTC configurations.
  • SSB frequency point information For the configuration of each measurement object, it further includes SSB frequency point information, SSB subcarrier spacing information, and 1 or 2 SMTC configurations.
  • some measurement objects will be associated with 1 SMTC configuration (that is, the configuration of the measurement object contains 1 SMTC configuration), while some measurement objects will be associated with 2 SMTC configurations (that is, the configuration of the measurement object contains 2 SMTC configurations.
  • Table 3 shows two examples of SMTC configurations).
  • the SMTC is configured to determine the time window for measuring the SSB, and the SMTC may be understood as the SSB measurement window, and the description of the SMTC may also be replaced by the SMTC window.
  • the SMTC configuration includes at least one of the following information: the period of the SMTC, the length of the SMTC, and the offset of the SMTC. Among them, the offset of the SMTC is used to determine the starting position of the SMTC.
  • the measurement that is, the search
  • the target cell may be searched based on an SMTC configuration. Specifically, the terminal device searches for the SSB corresponding to the target cell in the corresponding SMTC according to the SMTC configuration.
  • the network device configures the terminal device with configuration information of the target cell. If the configuration information of the target cell includes the SMTC configuration of the target cell, the terminal device determines to search for the target cell according to the SMTC configuration. SMTC used; if the configuration information of the target cell does not include the SMTC configuration of the target cell, the terminal device determines from the first measurement configuration a first measurement object that is associated with the target cell, and then according to the first measurement configuration The SMTC configuration of the measurement object determines the SMTC used by the search target cell.
  • the following describes how to determine the first measurement object associated with the target cell from the first measurement configuration.
  • the first RRC message is an RRC release message
  • the RRC release message carries the SSB frequency point information and/or the SSB subcarrier interval information of the target cell.
  • the terminal device determines, according to the SSB frequency point information and/or SSB subcarrier spacing information of the target cell, a measurement object with the SSB frequency point and/or the SSB subcarrier spacing from the first measurement configuration, as The first measurement object.
  • the network device sends an RRC release message to the terminal device, and the RRC release message carries the configuration information of the target cell.
  • the configuration information of the target cell includes, for example, the SSB frequency point information and SSB subcarrier interval information of the target cell. If the configuration information of the target cell does not include the SMTC configuration, the terminal device determines from the RRM measurement configuration that the SSB frequency point and/or the SSB frequency point and/or the The measurement object of the SSB subcarrier spacing.
  • the content carried in the RRC release message refers to Table 4 below.
  • the terminal device obtains the SSB frequency point information of the target cell according to the following information paths in the RRC release message:
  • the terminal device obtains the SSB subcarrier spacing information of the target cell according to the following information paths in the RRC release message:
  • the terminal device determines, according to the acquired SSB frequency point information and/or SSB subcarrier interval information of the target cell, a measurement object with the same frequency point and subcarrier interval in the RRM measurement configuration, such as MeasObjectNR.
  • the first RRC message is an RRC reconfiguration message
  • the RRC reconfiguration message carries SSB frequency point information and/or SSB subcarrier spacing information of the target cell.
  • the terminal device determines, according to the SSB frequency point information and/or SSB subcarrier spacing information of the target cell, a measurement object with the SSB frequency point and/or the SSB subcarrier spacing from the first measurement configuration, as The first measurement object.
  • the network device sends an RRC reconfiguration message to the terminal device.
  • the RRC reconfiguration message carries the configuration information of the target cell, and the configuration information of the target cell includes, for example, the SSB frequency point information and the SSB subcarrier interval information of the target cell. If the configuration information of the target cell does not include the SMTC configuration, the terminal device determines from the RRM measurement configuration that the SSB frequency point and/or the SSB frequency point and/or the The measurement object of the SSB subcarrier spacing.
  • the content carried by the RRC reconfiguration message refers to Table 5 below.
  • the terminal device obtains the SSB frequency point information of the target cell according to the following information paths in the RRC reconfiguration message:
  • the terminal device obtains the SSB subcarrier spacing information of the target cell according to the following information paths in the RRC reconfiguration message:
  • the terminal device determines, according to the acquired SSB frequency point information and/or SSB subcarrier interval information of the target cell, a measurement object with the same frequency point and subcarrier interval in the RRM measurement configuration, such as MeasObjectNR.
  • Step 602 The terminal device determines a target SMTC configuration from the first SMTC configuration and the second SMTC configuration, where the target SMTC configuration is used to determine the SMTC used for searching the target cell.
  • the terminal device may determine the target SMTC configuration in the following manner.
  • the The terminal device determines the second SMTC configuration as the target SMTC configuration. If the frequency of the target cell is different from the frequency of the original serving cell and/or the PCI of the target cell does not belong to the PCI list associated with the second SMTC configuration, the terminal device configures the first SMTC Determined for the target SMTC configuration.
  • the configuration information of MeasObjectNR includes smtc1 configuration and smtc2 configuration; if the frequency of the target cell is the same as the frequency of the serving cell before receiving the RRC release message, and/or, If the PCI of the target cell is in the PCI list associated with smtc2, use smtc2 in MeasObjectNR as the target SMTC; otherwise, use smtc1 in MeasObjectNR as the target SMTC.
  • the configuration information of MeasObjectNR includes smtc1 configuration and smtc2 configuration; if the frequency of the target cell is the same as that of the source cell or the original serving cell, and/or if the target If the PCI of the cell (ie, the PhysCellId configured in ServingCellConfigCommo in Table 5) is in the PCI list associated with smtc2, use smtc2 in MeasObjectNR as the target SMTC; otherwise, use smtc1 in MeasObjectNR as the target SMTC.
  • the second SMTC configuration is at least used to determine the period of the second SMTC
  • the first SMTC configuration is at least used to determine the period of the first SMTC
  • the period of the second SMTC is smaller than the period of the second SMTC. Describe the period of the first SMTC.
  • the first SMTC corresponds to smtc1 in Table 3
  • the second SMTC corresponds to smtc2 in Table 3
  • the period of smtc2 is smaller than that of smtc1, in other words, the period of smtc2 is shorter than that of smtc1, so proceed according to smtc2 Search can find the target cell faster.
  • the terminal device determines the SMTC used to search for the target cell based on the target SMTC configuration, and uses the SMTC to search for the target cell.
  • the terminal device determines the first SMTC configuration as the target SMTC configuration by default.
  • the terminal device uses the SMTC configuration corresponding to smtc1 configured in the measurement object with the same SSB frequency and SSB subcarrier interval as the target cell.
  • Target cell search if the network device does not configure the SMTC configuration of the target cell, the terminal device uses the SMTC configuration corresponding to smtc1 configured in the measurement object with the same SSB frequency and SSB subcarrier interval as the target cell. Target cell search.
  • the terminal device searches for the target cell according to the default SMTC configuration.
  • the default SMTC configuration is used to determine the default SSB cycle, and the terminal device can search for the target cell according to the default SSB cycle.
  • the default SSB period is eg 5ms.
  • the default SSB period may also be other values, and the protocol may specify the value of the default SSB period.
  • the terminal device determines the measurement object according to the SSB frequency point and the SSB subcarrier interval, and then obtains the target SMTC configuration according to the configuration of the measurement object, so as to realize the purpose of quickly searching for the target cell according to the target SMTC configuration.
  • FIG. 7 is a schematic structural composition diagram of an apparatus for determining SMTC provided by an embodiment of the present application, which is applied to terminal equipment. As shown in FIG. 7 , the apparatus for determining SMTC includes:
  • a receiving unit 701 configured to receive a first RRC message sent by a network device, where the first RRC message carries configuration information of a target cell;
  • a determining unit 702 configured to determine, from a first measurement configuration, a first measurement object associated with the target cell if the configuration information of the target cell does not include the SMTC configuration of the target cell, the first measurement object.
  • the first SMTC configuration and the second SMTC configuration are associated; the target SMTC configuration is determined from the first SMTC configuration and the second SMTC configuration, and the target SMTC configuration is used to determine the SMTC used for searching the target cell.
  • the first RRC message is an RRC release message
  • the RRC release message carries the SSB frequency point information and/or the SSB subcarrier interval information of the target cell.
  • the first RRC message is an RRC reconfiguration message
  • the RRC reconfiguration message carries SSB frequency point information and/or SSB subcarrier spacing information of the target cell.
  • the determining unit 702 is configured to, according to the SSB frequency point information and/or SSB subcarrier spacing information of the target cell, determine the SSB frequency point and/or the SSB subcarrier interval information from the first measurement configuration. Or the measurement object of the SSB subcarrier spacing is used as the first measurement object.
  • the determining unit 702 is configured to, if the frequency of the target cell is the same as the frequency of the original serving cell and/or the PCI of the target cell belongs to the one associated with the second SMTC configuration PCI list, the second SMTC configuration is determined as the target SMTC configuration.
  • the determining unit 702 is configured to, if the frequency of the target cell and the frequency of the original serving cell are different and/or the PCI of the target cell does not belong to the second SMTC configuration association PCI list, then the first SMTC configuration is determined as the target SMTC configuration.
  • the determining unit 702 is configured to determine the first SMTC configuration as the target SMTC configuration by default.
  • the second SMTC configuration is at least used to determine the period of the second SMTC
  • the first SMTC configuration is at least used to determine the period of the first SMTC
  • the period of the second SMTC is smaller than the period of the second SMTC. Period of the first SMTC.
  • the apparatus further comprises:
  • the searching unit 703 is configured to search for the target cell according to the default SMTC configuration if the first measurement object having an associated relationship with the target cell is not determined from the first measurement configuration.
  • the first measurement configuration is received by the terminal device before the first RRC message.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 800 shown in FIG. 8 includes a processor 810, and the processor 810 may call and run a computer program from a memory to implement the methods in the embodiments of the present application.
  • the communication device 800 may further include a memory 820 .
  • the processor 810 may call and run a computer program from the memory 820 to implement the methods in the embodiments of the present application.
  • the memory 820 may be a separate device independent of the processor 810 , or may be integrated in the processor 810 .
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices, specifically, may send information or data to other devices, or receive other Information or data sent by a device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include antennas, and the number of the antennas may be one or more.
  • the communication device 800 may specifically be the network device in this embodiment of the present application, and the communication device 800 may implement the corresponding processes implemented by the network device in each method in the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 800 may specifically be the mobile terminal/terminal device in the embodiments of the present application, and the communication device 800 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method in the embodiments of the present application. , and will not be repeated here.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the chip 900 may further include a memory 920 .
  • the processor 910 may call and run a computer program from the memory 920 to implement the methods in the embodiments of the present application.
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated in the processor 910 .
  • the chip 900 may further include an input interface 930 .
  • the processor 910 may control the input interface 930 to communicate with other devices or chips, and specifically, may acquire information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940 .
  • the processor 910 may control the output interface 940 to communicate with other devices or chips, and specifically, may output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application, which is not repeated here for brevity.
  • the chip can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip can implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • FIG. 10 is a schematic block diagram of a communication system 1000 provided by an embodiment of the present application. As shown in FIG. 10 , the communication system 1000 includes a terminal device 1010 and a network device 1020 .
  • the terminal device 1010 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1020 can be used to implement the corresponding functions implemented by the network device in the above method. For brevity, details are not repeated here. .
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM, PROM), an erasable programmable read-only memory (Erasable PROM, EPROM), an electrically programmable read-only memory (Erasable PROM, EPROM). Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be Random Access Memory (RAM), which acts as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • synchronous link dynamic random access memory Synchlink DRAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • Embodiments of the present application further provide a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the network device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer program enables the computer to execute the corresponding processes implemented by the network device in the various methods of the embodiments of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application. , and are not repeated here for brevity.
  • Embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. Repeat.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the present application, For brevity, details are not repeated here.
  • the embodiments of the present application also provide a computer program.
  • the computer program can be applied to the network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to execute the corresponding processes implemented by the network device in each method of the embodiments of the present application. For the sake of brevity. , and will not be repeated here.
  • the computer program may be applied to the mobile terminal/terminal device in the embodiments of the present application, and when the computer program is run on the computer, the mobile terminal/terminal device implements the various methods of the computer program in the embodiments of the present application.
  • the corresponding process for the sake of brevity, will not be repeated here.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种确定SMTC的方法及装置、终端设备,该方法包括:终端设备接收网络设备发送的第一无线资源控制RRC消息,该第一RRC消息携带目标小区的配置信息;若该目标小区的配置信息未包括目标小区的SMTC配置,则终端设备从第一测量配置中确定与该目标小区具有关联关系的第一测量对象,该第一测量对象关联第一SMTC配置和第二SMTC配置(601);终端设备从第一SMTC配置和第二SMTC配置中确定目标SMTC配置,该目标SMTC配置用于确定搜索该目标小区使用的SMTC(602)。

Description

一种确定SMTC的方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种确定同步信号块测量定时配置(SS/PBCH block Measurement Timing Configuration,SMTC)的方法及装置、终端设备。
背景技术
在一些移动性场景中,网络设备会为终端设备配置目标小区的SMTC,如此,终端设备可以使用该SMTC搜索目标小区,从而达到快速搜索目标小区的目的。
然而,在网络设备没有为终端设备配置目标小区的SMTC的情况下,如何实现目标小区的快速搜索需要明确。
发明内容
本申请实施例提供一种确定SMTC的方法及装置、终端设备、芯片、计算机可读存储介质。
本申请实施例提供的确定SMTC的方法,包括:
终端设备接收网络设备发送的第一无线资源控制(Radio Resource Control,RRC)消息,所述第一RRC消息携带目标小区的配置信息;
若所述目标小区的配置信息未包括目标小区的SMTC配置,则所述终端设备从第一测量配置中确定与所述目标小区具有关联关系的第一测量对象,所述第一测量对象关联第一SMTC配置和第二SMTC配置;
所述终端设备从所述第一SMTC配置和所述第二SMTC配置中确定目标SMTC配置,所述目标SMTC配置用于确定搜索所述目标小区使用的SMTC。
本申请实施例提供的确定SMTC的装置,应用于终端设备,所述装置包括:
接收单元,用于接收网络设备发送的第一RRC消息,所述第一RRC消息携带目标小区的配置信息;
确定单元,用于若所述目标小区的配置信息未包括目标小区的SMTC配置,则从第一测量配置中确定与所述目标小区具有关联关系的第一测量对象,所述第一测量对象关联第一SMTC配置和第二SMTC配置;从所述第一SMTC配置和所述第二SMTC配置中确定目标SMTC配置,所 述目标SMTC配置用于确定搜索所述目标小区使用的SMTC。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的确定SMTC的方法。
本申请实施例提供的芯片,用于实现上述的确定SMTC的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的确定SMTC的方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的确定SMTC的方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的确定SMTC的方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的确定SMTC的方法。
通过上述技术方案,在网络设备未给终端设备配置目标小区的SMTC配置的情况下,终端设备从已有的第一测量配置中确定与目标小区具有关联关系的第一测量对象,进而根据第一测量对象关联的第一SMTC配置和第二SMTC配置确定用于目标小区搜索的目标SMTC配置,从而达到快速搜索目标小区的目的。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的Beam sweeping的示意图;
图3是本申请实施例提供的SSB的示意图;
图4是本申请实施例提供的SSB burst set周期的示意图;
图5是本申请实施例提供的SMTC的示意图;
图6是本申请实施例提供的确定SMTC的方法的流程示意图;
图7是本申请实施例提供的确定SMTC的装置的结构组成示意图;
图8是本申请实施例提供的一种通信设备示意性结构图;
图9是本申请实施例的芯片的示意性结构图;
图10是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实 施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通 信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(Enhance Mobile Broadband,eMBB)、低时延高可靠通信(Ultra Reliable Low Latency Communication,URLLC)、大规模机器类通信(massive Machine Type Communication,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期 在LTE投资,提出了LTE和NR之间紧密配合(tight interworking)的工作模式。
为了能够尽快实现5G网络部署和商业应用,3GPP首先完成第一个5G版本,即LTE-NR双连接(LTE-NR Dual Connectivity,EN-DC)。在EN-DC中,LTE基站作为主节点(Master Node,MN),NR基站作为辅节点(Secondary Node,SN),连接演进型分组核心网(Evolved Packet Core network,EPC)。在R15后期,将支持其他双连接(Dual Connectivity,DC)模式,即NR-LTE双连接(NR-LTE Dual Connectivity,NE-DC),5GC-EN-DC,NR DC。在NE-DC中,NR基站作为MN,LTE基站作为SN,连接5G核心网(5GC)。在5GC-EN-DC中,LTE基站作为MN,NR基站作为SN,连接5GC。在NR DC中,NR基站作为MN,NR基站作为SN,连接5GC。
NR也可以独立部署。NR将来会部署在高频上,为了提高覆盖,在5G中,通过引入波束扫描(beam sweeping)的机制来满足覆盖的需求(用空间换覆盖,用时间换空间),如图2所示。在引入beam sweeping后,每个波束方向上都需要发送同步信号,5G的同步信号以同步信号块(SS/PBCH Block,SSB)的形式给出,包含主同步信号(Primary Synchronisation Signal,PSS)、辅同步信号(Secondary Synchronisation Signal,SSS)、和物理广播信道(Physical Broadcast Channel,PBCH),如图3所示。5G的同步信号以同步信号突发组(SS burst set)的形式在时域上周期性出现,如图4所示,SS burst set的周期也可以称为SSB的周期。
每个小区的实际传输的波束(beam)个数通过网络侧配置来确定,但是小区所在的频点决定了可以配置最多的beam个数,如下表1所示。
频率范围 L(最多的beam个数)
(2.4)GHz以下 4
3(2.4)GHz—6GHz 8
6GHz—52.6GHz 64
表1
在无线资源管理(Radio Resource Management,RRM)测量中,测量的参考信号可以是SSB,即测量SSB中的SSS信号或者PBCH的解调参考信号(Demodulation Reference Signal,DMRS)信号来获取beam测量结果以及小区测量结果。此外,处于无线资源控制(Radio Resource Control,RRC)连接状态的终端设备还可以配置信道状态指示参考信号(Channel Status Indicator Reference Signal,CSI-RS)作为小区测量的参考信号。
对于基于SSB的测量,每个小区的SSB的实际传输位置可能不同,SS burst set的周期也可能不同。所以为了让终端设备在测量过程中节能,网络侧给终端设备配置SSB测量定时配置(SS/PBCH block measurement timing configuration,SMTC),SMTC可以理解为SSB的测量窗口,终端设备只需 要在SMTC内进行测量,如图5所示。
由于每个小区实际传输的SSB的位置可能是不同的,所以为了让终端设备尽快能够找到实际传输的SSB的位置,网络侧还会给终端设备配置终端设备测量的实际的SSB传输位置,例如所有测量小区的SSB实际传输位置的并集,如下表2所示。作为示例,在3-6GHz时,bitmap的长度为8比特,假设8比特长度的bitmap为10100110,那么,终端设备只需要对8个SSB的候选位置中的SSB索引为0,2,5,6的SSB做测量。
Figure PCTCN2021083674-appb-000001
表2
在一些移动性场景中,例如切换过程、主辅小区(Primary Secondary Cell,PSCell)添加过程,PSCell变更过程、辅小区(Secondary Cell,SCell)添加过程、SCell变更过程、重定向过程等,网络设备会给终端设备配置搜索目标小区时使用的SMTC,通过SMTC可以实现加快搜索到目标小区的目的。
然而,在网络设备没有为终端设备配置目标小区的SMTC的情况下,如何实现目标小区的快速搜索需要明确。为此,提出了本申请实施例的以下技术方案。
本申请实施例的技术方案中,在网络设备没有为终端设备配置目标小区的SMTC的情况下,使用RRM测量配置(以下称为第一测量配置)中和目标小区具有相同SSB频点和/或SSB子载波间隔的测量对象中配置的SMTC作为搜索目标小区使用的SMTC。
在RRM测量配置中,为了精细测量服务频点对应小区的测量,一个测量对象的配置中除了原有的SMTC以外,还会配置额外的SMTC,其中,额外的SMTC关联一个物理小区标识(Physical Cell Identity,PCI)列表,用于指示该频点哪些小区的测量可以使用该额外的SMTC。以下表3给出了NR频点的测量对象(measObjectNR)的配置内容,其中,“smtc1”对应于原有的SMTC,“smtc2”对应于额外的SMTC。
Figure PCTCN2021083674-appb-000002
Figure PCTCN2021083674-appb-000003
表3
在一个测量对象的配置中配置有2个SMTC的情况下,使用哪一个SMTC作为目标小区搜索使用的SMTC需要明确。
图6是本申请实施例提供的确定SMTC的方法的流程示意图,如图6所示,所述SMTC的方法包括以下步骤:
步骤601:终端设备接收网络设备发送的第一RRC消息,所述第一RRC消息携带目标小区的配置信息;若所述目标小区的配置信息未包括目标小区的SMTC配置,则所述终端设备从第一测量配置中确定与所述目标小区具有关联关系的第一测量对象,所述第一测量对象关联第一SMTC配置和第二SMTC配置。
本申请实施例中,网络设备为接入网网元,可选地,网络设备可以是基站。
本申请实施例中,所述第一测量配置在所述第一RRC消息之前被所述终端设备接收。
在一些可选实施方式中,所述第一测量配置为RRM测量配置。RRM测量配置可以参照前述相关技术方案的描述。为便于理解,这里再对RRM测量配置进行一些说明,RRM测量配置包含一个或多个测量对象的配置,对于每个测量对象的配置来说,进一步包含SSB频点信息、SSB子载波间隔信息、以及1个或2个SMTC配置。需要说明的是,有些测量对象会关联1个SMTC配置(即测量对象的配置中包含1个SMTC配置),而有些测量对象会关联2个SMTC配置(即测量对象的配置中包含2个SMTC配置,例如上述表3示意出2个SMTC配置的例子)。
本申请实施例中,SMTC配置用于确定测量SSB的时间窗口,可以将SMTC理解为SSB测量窗口,SMTC的描述也可以替换为SMTC窗口。在一些可选实施方式中,SMTC配置包括如下至少一种信息:SMTC的周期、SMTC的长度、SMTC的偏置。其中,SMTC的偏置用于确定SMTC的起 始位置。
需要说明的是,对于一个小区的测量(也即搜索),是通过测量该小区的SSB来实现的。为了实现终端设备快速搜索目标小区,可以基于一个SMTC配置来搜索目标小区,具体地,终端设备根据SMTC配置在相应的SMTC内搜索目标小区对应的SSB。
本申请实施例中,在移动性场景下,网络设备为终端设备配置目标小区的配置信息,若所述目标小区的配置信息包括目标小区的SMTC配置,则终端设备根据该SMTC配置确定搜索目标小区使用的SMTC;若所述目标小区的配置信息未包括目标小区的SMTC配置,则所述终端设备从第一测量配置中确定与所述目标小区具有关联关系的第一测量对象,进而根据第一测量对象的SMTC配置确定搜索目标小区使用的SMTC。
以下对如何从第一测量配置中确定与所述目标小区具有关联关系的第一测量对象进行说明。
在一些可选实施方式中,所述第一RRC消息为RRC释放消息,所述RRC释放消息携带目标小区的SSB频点信息和/或SSB子载波间隔信息。所述终端设备根据所述目标小区的SSB频点信息和/或SSB子载波间隔信息,从第一测量配置中确定具有所述SSB频点和/或所述SSB子载波间隔的测量对象,作为第一测量对象。
在RRC重定向过程中,网络设备向终端设备发送RRC释放消息,RRC释放消息携带目标小区的配置信息,目标小区的配置信息例如有:目标小区的SSB频点信息、SSB子载波间隔信息。目标小区的配置信息中未包含SMTC配置的情况下,终端设备根据目标小区的SSB频点信息和/或SSB子载波间隔信息,从RRM测量配置中确定具有所述SSB频点和/或所述SSB子载波间隔的测量对象。在一个示例中,RRC释放消息中携带的内容参照以下表4。
Figure PCTCN2021083674-appb-000004
Figure PCTCN2021083674-appb-000005
表4
参照表4,终端设备根据RRC释放消息中的以下信息路径获取到目标小区的SSB频点信息:
RedirectedCarrierInfo→CarrierInfoNR→carrierFreq。
参照表4,终端设备根据RRC释放消息中的以下信息路径获取到目标小区的SSB子载波间隔信息:
RedirectedCarrierInfo→CarrierInfoNR→ssbSubcarrierSpacing。
终端设备根据获取到的目标小区的SSB频点信息和/或SSB子载波间隔信息,确定RRM测量配置中具有相同频点和子载波间隔的测量对象,如MeasObjectNR。
在一些可选实施方式中,所述第一RRC消息为RRC重配置消息,所述RRC重配置消息携带目标小区的SSB频点信息和/或SSB子载波间隔信息。所述终端设备根据所述目标小区的SSB频点信息和/或SSB子载波间隔信息,从第一测量配置中确定具有所述SSB频点和/或所述SSB子载波间隔的测量对象,作为第一测量对象。
在切换过程(如NR PCell切换过程、NR PSCell切换过程)、或者NR PSCell添加过程、或者PSCell变更过程、或者SCell添加过程、或者SCell变更过程等场景下,网络设备向终端设备发送RRC重配置消息,RRC重配置消息携带目标小区的配置信息,目标小区的配置信息例如有:目标小区的SSB频点信息、SSB子载波间隔信息。目标小区的配置信息中未包含SMTC配置的情况下,终端设备根据目标小区的SSB频点信息和/或SSB子载波间隔信息,从RRM测量配置中确定具有所述SSB频点和/或所述SSB子载波间隔的测量对象。在一个示例中,RRC重配置消息携带的内容参照以下表5。
Figure PCTCN2021083674-appb-000006
表5
参照表5,终端设备根据RRC重配置消息中的以下信息路径获取到目标小区的SSB频点信息:
ServingCellConfigCommo→DownlinkConfigCommon→FrequencyInfoDL→absoluteFrequencySSB。
参照表5,终端设备根据RRC重配置消息中的以下信息路径获取到目标小区的SSB子载波间隔信息:
CellGroupConfig→SpCellConfig→ReconfigurationWithSync→ServingCe llConfigCommon→ssbSubcarrierSpacing。
终端设备根据获取到的目标小区的SSB频点信息和/或SSB子载波间隔信息,确定RRM测量配置中具有相同频点和子载波间隔的测量对象,如MeasObjectNR。
步骤602:所述终端设备从所述第一SMTC配置和所述第二SMTC配置中确定目标SMTC配置,所述目标SMTC配置用于确定搜索所述目标小区使用的SMTC。
本申请实施例中,终端设备可以通过以下方式确定目标SMTC配置。
方式一
在一些可选实施方式中,若所述目标小区的频点和原服务小区的频点相同和/或所述目标小区的物理小区标识PCI属于所述第二SMTC配置关联的PCI列表,则所述终端设备将所述第二SMTC配置确定为目标SMTC配置。若所述目标小区的频点和原服务小区的频点不同和/或所述目标小区的PCI不属于所述第二SMTC配置关联的PCI列表,则所述终端设备将所述第一SMTC配置确定为目标SMTC配置。
举个例子:以第一测量对象为MeasObjectNR为例,MeasObjectNR的配置信息包括smtc1配置和smtc2配置;如果目标小区的频点和收到RRC释放消息之前的服务小区的频点相同,和/或,目标小区的PCI在smtc2关联的PCI列表中,则使用MeasObjectNR中的smtc2作为目标SMTC;否则使用MeasObjectNR中的smtc1作为目标SMTC。
举个例子:以第一测量对象为MeasObjectNR为例,MeasObjectNR的配置信息包括smtc1配置和smtc2配置;如果目标小区的频点和源小区或者与原服务小区的频点相同,和/或,如果目标小区的PCI(即表5中的ServingCellConfigCommo中配置的PhysCellId)在smtc2关联的PCI列表中,则使用MeasObjectNR中的smtc2作为目标SMTC;否则使用MeasObjectNR中的smtc1作为目标SMTC。
需要说明的是,上述方案中,所述第二SMTC配置至少用于确定第二SMTC的周期,所述第一SMTC配置至少用于确定第一SMTC的周期,所述第二SMTC的周期小于所述第一SMTC的周期。
作为示例,第一SMTC对应于表3中的smtc1,第二SMTC对应于表3中的smtc2,smtc2的周期小于smtc1的周期,换句话说,smtc2的周期比smtc1的周期短,因此按照smtc2进行搜索可以更快找到目标小区。
本申请实施例中,终端设备通过上述方式确定出目标SMTC配置后,基于目标SMTC配置确定搜索目标小区使用的SMTC,并使用该SMTC搜索目标小区。
方式二
在一些可选实施方式中,所述终端设备默认将所述第一SMTC配置确定为目标SMTC配置。
这里,无论是何种移动性场景,如果网络设备没有配置目标小区的SMTC配置,则终端设备使用和目标小区具有相同SSB频点和SSB子载波间隔的测量对象中配置的smtc1对应的SMTC配置进行目标小区的搜索。
上述方案中,若所述终端设备从第一测量配置中未确定出与所述目标小区具有关联关系的第一测量对象,则所述终端设备按照默认的SMTC配置搜索所述目标小区。这里,默认的SMTC配置用于确定默认SSB周期,终端设备可以按照默认SSB周期搜索目标小区。作为示例,默认SSB周期例如为5ms。当然,默认SSB周期还可以是其他数值,协议可以规定默认SSB周期的数值。
本申请实施例的技术方案中,明确了终端设备如何根据SSB频点和SSB子载波间隔确定测量对象,进而根据测量对象的配置获取目标SMTC配置,实现了根据目标SMTC配置快速搜索目标小区的目的。
图7是本申请实施例提供的确定SMTC的装置的结构组成示意图,应用于终端设备,如图7所示,所述确定SMTC的装置包括:
接收单元701,用于接收网络设备发送的第一RRC消息,所述第一RRC消息携带目标小区的配置信息;
确定单元702,用于若所述目标小区的配置信息未包括目标小区的SMTC配置,则从第一测量配置中确定与所述目标小区具有关联关系的第一测量对象,所述第一测量对象关联第一SMTC配置和第二SMTC配置;从所述第一SMTC配置和所述第二SMTC配置中确定目标SMTC配置,所述目标SMTC配置用于确定搜索所述目标小区使用的SMTC。
在一些可选实施方式中,所述第一RRC消息为RRC释放消息,所述RRC释放消息携带目标小区的SSB频点信息和/或SSB子载波间隔信息。
在一些可选实施方式中,所述第一RRC消息为RRC重配置消息,所述RRC重配置消息携带目标小区的SSB频点信息和/或SSB子载波间隔信息。
在一些可选实施方式中,所述确定单元702,用于根据所述目标小区的SSB频点信息和/或SSB子载波间隔信息,从第一测量配置中确定具有所述SSB频点和/或所述SSB子载波间隔的测量对象,作为第一测量对象。
在一些可选实施方式中,所述确定单元702,用于若所述目标小区的频点和原服务小区的频点相同和/或所述目标小区的PCI属于所述第二SMTC配置关联的PCI列表,则将所述第二SMTC配置确定为目标SMTC配置。
在一些可选实施方式中,所述确定单元702,用于若所述目标小区的频点和原服务小区的频点不同和/或所述目标小区的PCI不属于所述第二SMTC配置关联的PCI列表,则将所述第一SMTC配置确定为目标SMTC 配置。
在一些可选实施方式中,所述确定单元702,用于默认将所述第一SMTC配置确定为目标SMTC配置。
在一些可选实施方式中,所述第二SMTC配置至少用于确定第二SMTC的周期,所述第一SMTC配置至少用于确定第一SMTC的周期,所述第二SMTC的周期小于所述第一SMTC的周期。
在一些可选实施方式中,所述装置还包括:
搜索单元703,用于若从第一测量配置中未确定出与所述目标小区具有关联关系的第一测量对象,则按照默认的SMTC配置搜索所述目标小区。
在一些可选实施方式中,所述第一测量配置在所述第一RRC消息之前被所述终端设备接收。
本领域技术人员应当理解,本申请实施例的上述确定SMTC的装置的相关描述可以参照本申请实施例的确定SMTC的方法的相关描述进行理解。
图8是本申请实施例提供的一种通信设备800示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图8所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图8所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图8所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本申请实施例的网络设备,并且该通信设备800可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本申请实施例的移动终端/终端设备,并且该通信设备800可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图9是本申请实施例的芯片的示意性结构图。图9所示的芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图10是本申请实施例提供的一种通信系统1000的示意性框图。如图10所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中 由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only  Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (25)

  1. 一种确定同步信号块测量定时配置SMTC的方法,所述方法包括:
    终端设备接收网络设备发送的第一无线资源控制RRC消息,所述第一RRC消息携带目标小区的配置信息;
    若所述目标小区的配置信息未包括目标小区的SMTC配置,则所述终端设备从第一测量配置中确定与所述目标小区具有关联关系的第一测量对象,所述第一测量对象关联第一SMTC配置和第二SMTC配置;
    所述终端设备从所述第一SMTC配置和所述第二SMTC配置中确定目标SMTC配置,所述目标SMTC配置用于确定搜索所述目标小区使用的SMTC。
  2. 根据权利要求1所述的方法,其中,所述第一RRC消息为RRC释放消息,所述RRC释放消息携带目标小区的同步信号块SSB频点信息和/或SSB子载波间隔信息。
  3. 根据权利要求1所述的方法,其中,所述第一RRC消息为RRC重配置消息,所述RRC重配置消息携带目标小区的SSB频点信息和/或SSB子载波间隔信息。
  4. 根据权利要求2或3所述的方法,其中,所述终端设备从第一测量配置中确定与所述目标小区具有关联关系的第一测量对象,包括:
    所述终端设备根据所述目标小区的SSB频点信息和/或SSB子载波间隔信息,从第一测量配置中确定具有所述SSB频点和/或所述SSB子载波间隔的测量对象,作为第一测量对象。
  5. 根据权利要求1至4中任一项所述的方法,其中,所述终端设备从所述第一SMTC配置和所述第二SMTC配置中确定目标SMTC配置,包括:
    若所述目标小区的频点和原服务小区的频点相同和/或所述目标小区的物理小区标识PCI属于所述第二SMTC配置关联的PCI列表,则所述终端设备将所述第二SMTC配置确定为目标SMTC配置。
  6. 根据权利要求1至4中任一项所述的方法,其中,所述终端设备从所述第一SMTC配置和所述第二SMTC配置中确定目标SMTC配置,包括:
    若所述目标小区的频点和原服务小区的频点不同和/或所述目标小区的PCI不属于所述第二SMTC配置关联的PCI列表,则所述终端设备将所述第一SMTC配置确定为目标SMTC配置。
  7. 根据权利要求1至4中任一项所述的方法,其中,所述终端设备从所述第一SMTC配置和所述第二SMTC配置中确定目标SMTC配置,包括:
    所述终端设备默认将所述第一SMTC配置确定为目标SMTC配置。
  8. 根据权利要求1至7中任一项所述的方法,其中,所述第二SMTC配置至少用于确定第二SMTC的周期,所述第一SMTC配置至少用于确定第一SMTC的周期,所述第二SMTC的周期小于所述第一SMTC的周期。
  9. 根据权利要求1至8中任一项所述的方法,其中,所述方法还包括:
    若所述终端设备从第一测量配置中未确定出与所述目标小区具有关联关系的第一测量对象,则所述终端设备按照默认的SMTC配置搜索所述目标小区。
  10. 根据权利要求1至9中任一项所述的方法,其中,所述第一测量配置在所述第一RRC消息之前被所述终端设备接收。
  11. 一种确定SMTC的装置,应用于终端设备,所述装置包括:
    接收单元,用于接收网络设备发送的第一RRC消息,所述第一RRC消息携带目标小区的配置信息;
    确定单元,用于若所述目标小区的配置信息未包括目标小区的SMTC配置,则从第一测量配置中确定与所述目标小区具有关联关系的第一测量对象,所述第一测量对象关联第一SMTC配置和第二SMTC配置;从所述第一SMTC配置和所述第二SMTC配置中确定目标SMTC配置,所述目标SMTC配置用于确定搜索所述目标小区使用的SMTC。
  12. 根据权利要求11所述的装置,其中,所述第一RRC消息为RRC释放消息,所述RRC释放消息携带目标小区的SSB频点信息和/或SSB子载波间隔信息。
  13. 根据权利要求11所述的装置,其中,所述第一RRC消息为RRC重配置消息,所述RRC重配置消息携带目标小区的SSB频点信息和/或SSB子载波间隔信息。
  14. 根据权利要求12或13所述的装置,其中,所述确定单元,用于根据所述目标小区的SSB频点信息和/或SSB子载波间隔信息,从第一测量配置中确定具有所述SSB频点和/或所述SSB子载波间隔的测量对象,作为第一测量对象。
  15. 根据权利要求11至14中任一项所述的装置,其中,所述确定单元,用于若所述目标小区的频点和原服务小区的频点相同和/或所述目标小区的PCI属于所述第二SMTC配置关联的PCI列表,则将所述第二SMTC配置确定为目标SMTC配置。
  16. 根据权利要求11至14中任一项所述的装置,其中,所述确定单元,用于若所述目标小区的频点和原服务小区的频点不同和/或所述目标小区的PCI不属于所述第二SMTC配置关联的PCI列表,则将所述第一SMTC配置确定为目标SMTC配置。
  17. 根据权利要求11至14中任一项所述的装置,其中,所述确定单元,用于默认将所述第一SMTC配置确定为目标SMTC配置。
  18. 根据权利要求11至17中任一项所述的装置,其中,所述第二SMTC配置至少用于确定第二SMTC的周期,所述第一SMTC配置至少用于确定第一SMTC的周期,所述第二SMTC的周期小于所述第一SMTC的周期。
  19. 根据权利要求11至18中任一项所述的装置,其中,所述装置还包括:
    搜索单元,用于若从第一测量配置中未确定出与所述目标小区具有关联关系的第一测量对象,则按照默认的SMTC配置搜索所述目标小区。
  20. 根据权利要求11至19中任一项所述的装置,其中,所述第一测量配置在所述第一RRC消息之前被所述终端设备接收。
  21. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至10中任一项所述的方法。
  22. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至10中任一项所述的方法。
  23. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
  24. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至10中任一项所述的方法。
  25. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至10中任一项所述的方法。
PCT/CN2021/083674 2021-03-29 2021-03-29 一种确定smtc的方法及装置、终端设备 WO2022204896A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/083674 WO2022204896A1 (zh) 2021-03-29 2021-03-29 一种确定smtc的方法及装置、终端设备
CN202180080072.XA CN116569587A (zh) 2021-03-29 2021-03-29 一种确定smtc的方法及装置、终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083674 WO2022204896A1 (zh) 2021-03-29 2021-03-29 一种确定smtc的方法及装置、终端设备

Publications (1)

Publication Number Publication Date
WO2022204896A1 true WO2022204896A1 (zh) 2022-10-06

Family

ID=83457357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083674 WO2022204896A1 (zh) 2021-03-29 2021-03-29 一种确定smtc的方法及装置、终端设备

Country Status (2)

Country Link
CN (1) CN116569587A (zh)
WO (1) WO2022204896A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033688A1 (en) * 2018-08-10 2020-02-13 Intel Corporation Techniques for gap-based feedback measurement in new radio wireless cellular network
CN110943818A (zh) * 2018-09-25 2020-03-31 维沃移动通信有限公司 配置方法、接收方法、终端及网络侧设备
CN110972289A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 无线资源管理rrm测量的方法和装置
CN111294876A (zh) * 2019-05-24 2020-06-16 展讯通信(上海)有限公司 小区切换方法及装置、存储介质、终端
CN112398628A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 同步信号块测量配置的配置、使用方法及设备、装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033688A1 (en) * 2018-08-10 2020-02-13 Intel Corporation Techniques for gap-based feedback measurement in new radio wireless cellular network
CN110943818A (zh) * 2018-09-25 2020-03-31 维沃移动通信有限公司 配置方法、接收方法、终端及网络侧设备
CN110972289A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 无线资源管理rrm测量的方法和装置
CN111294876A (zh) * 2019-05-24 2020-06-16 展讯通信(上海)有限公司 小区切换方法及装置、存储介质、终端
CN112398628A (zh) * 2019-08-15 2021-02-23 大唐移动通信设备有限公司 同步信号块测量配置的配置、使用方法及设备、装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"RAN4-AH-1807 Meeting report", 3GPP DRAFT; R4-1809602, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Gothenburg, Sweden; 20180820 - 20180824, 17 August 2018 (2018-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051578652 *
HUAWEI, HISILICON: "Discussion on the impact of dual SMTC periodicities on intra-frequency carrier", 3GPP DRAFT; R4-1812982 DISCUSSION ON THE IMPACT OF DUAL SMTCS ON INTRA-FREQUENCY CARRIER_V3, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Chengdu, China; 20181008 - 20181012, 28 September 2018 (2018-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051581677 *

Also Published As

Publication number Publication date
CN116569587A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2020191683A1 (zh) 一种测量间隔配置方法及装置、终端、网络设备
WO2021092860A1 (zh) 一种小区配置方法及装置、终端设备、网络设备
WO2019242722A1 (zh) 一种测量控制方法及装置、终端设备
WO2020154925A1 (zh) 一种协调测量配置的方法及装置、网络设备、终端
WO2019242154A1 (zh) 信息测量方法、终端设备和网络设备
WO2020087524A1 (zh) 非授权频段上ssb的传输方法和设备
WO2019242712A1 (zh) 一种能力交互方法及相关设备
US20230019965A1 (en) Signal transmission method and device and terminal
WO2020232611A1 (zh) 一种小区重选方法及装置、终端
WO2020124462A1 (zh) 一种小区选择或重选方法及装置、终端
US11812291B2 (en) Method for configuring measurement information, terminal device, and network device
JP7179092B2 (ja) 隣接セル関係の維持方法および装置、ネットワーク機器
US20220046632A1 (en) Communication method in d2d system, terminal device, and network device
WO2020143055A1 (zh) 一种测量配置方法及装置、终端
WO2020082248A1 (zh) 一种控制终端移动性的方法及装置、终端
WO2021237531A1 (zh) 一种测量方法及装置、终端设备、网络设备
WO2020073258A1 (zh) 一种同步指示方法、终端设备及网络设备
TW202007211A (zh) 一種訊息配置方法及裝置、通信設備
WO2021120131A1 (zh) 一种测量配置方法及装置、终端设备、网络设备
WO2020227860A1 (zh) 一种终端能力确定方法及装置、终端
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
WO2020061851A1 (zh) 无线通信方法和基站
WO2020087306A1 (zh) 一种窗口配置方法及装置、终端、网络设备
WO2022183341A1 (zh) 一种测量间隔的配置方法及装置、终端设备、网络设备
WO2020000142A1 (zh) 无线通信方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180080072.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933582

Country of ref document: EP

Kind code of ref document: A1