WO2021169380A1 - 一种测量配置方法及设备 - Google Patents

一种测量配置方法及设备 Download PDF

Info

Publication number
WO2021169380A1
WO2021169380A1 PCT/CN2020/125997 CN2020125997W WO2021169380A1 WO 2021169380 A1 WO2021169380 A1 WO 2021169380A1 CN 2020125997 W CN2020125997 W CN 2020125997W WO 2021169380 A1 WO2021169380 A1 WO 2021169380A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
terminal device
base station
measurement
cell
Prior art date
Application number
PCT/CN2020/125997
Other languages
English (en)
French (fr)
Inventor
王洲
王键
金乐
刘海义
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021169380A1 publication Critical patent/WO2021169380A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports

Definitions

  • This application relates to the field of communication technology, and in particular to a measurement configuration method and equipment.
  • the terminal equipment In a communication system, in order to ensure the service continuity and communication quality of the terminal equipment, the terminal equipment usually needs to perform cell measurement, thereby realizing cell reselection and cell handover.
  • the types of cell measurement include intra-frequency measurement and inter-frequency/different system measurement.
  • the terminal device When a terminal device initially accesses or performs inter-frequency/different system measurement in the process of radio resource control (radio resource control, RRC) connected state (RRC_connective), the terminal device generally needs to use the gap measurement method to perform cell measurement, the specific process Including: In the gap, the terminal device receives the reference signal of the neighboring cell, and measures the reference signal of the neighboring cell. After the measurement is completed, the terminal device sends a measurement report (measurement report) to the base station that manages the serving cell. Then the base station switches the terminal equipment to the cell with better signal quality according to the measurement report.
  • RRC radio resource control
  • the base station that manages the serving cell needs to perform measurement configuration and send the measurement configuration information to the terminal device.
  • the measurement configuration information that the terminal device can receive can determine the location of each gap to perform neighboring cell measurement.
  • the gap length is 6 milliseconds (ms).
  • the measurement configuration information includes: measurement gap repetition period (MGRP) (also known as gap period), measurement gap length (measurement gap length, MGL) (abbreviated as gap length), and measurement gap offset Shift (gap offset).
  • the measurement configuration information may also include information such as a measurement report reporting strategy and a list of neighbor cells to be measured.
  • the terminal equipment in the gap should be able to receive the reference signals of all neighboring cells to be measured.
  • the position of the gap is determined by the terminal equipment according to the timing of the serving cell, and the time domain position of each neighboring cell sending the reference signal is determined according to the timing of the corresponding neighboring cell. Therefore, the gap determined by the terminal device according to the measurement configuration information may not contain the time-domain positions of the reference signals of some neighboring cells to be measured. As a result, the terminal device cannot receive the reference signals of these neighboring cells to be measured, and thus cannot complete the measurement of all the reference signals of the neighboring cells to be measured. Measurement of the cell.
  • This application provides a measurement configuration method and equipment to increase the probability that the measurement gap covers the reference signals of all neighboring cells to be measured during the cell measurement process of the terminal equipment, and to improve the success rate and efficiency of the cell measurement of the terminal equipment.
  • the embodiments of the present application provide a measurement configuration method, which can be applied to various scenarios in the communication system shown in FIG. 2 where inter-frequency/different-system measurement needs to be performed in a gap measurement mode.
  • the method includes: a base station sends first measurement configuration information to a terminal device, where the first measurement configuration information is used to notify that there are M i gaps used by the terminal device for cell measurement in a gap period, and M i Is an integer greater than 1.
  • the base station After determining that the cell measurement of the terminal device fails, the base station notifies the terminal device to subsequently use multiple gaps to perform cell measurement in the same gap period. In this way, in the subsequent cell measurement process, the probability that the terminal device receives the reference signal of the neighboring cell to be measured within multiple gaps of a gap period can be increased. Therefore, this method can improve the success rate of the cell measurement of the terminal device and efficient.
  • the terminal device may be arranged gap offset information in the first measurement, to accurately determine the position of the i-th gap M.
  • the M i may comply with the formula: T1 is the reference signal transmission period of the neighboring cell to be measured, where r is a positive number less than or equal to L, and L is the gap length previously configured by the base station for the terminal device.
  • r may be set to 5 ms.
  • this method can ensure that the terminal device receives the reference signals of all neighboring cells to be measured within the gap period, thereby ensuring that the terminal device can successfully complete cell measurement as soon as possible.
  • the r can be set to 5ms.
  • the terminal device Since the terminal device has already performed cell measurement at the previous gap location, and the cell measurement failed (the measurement results of all neighboring cells to be measured are not obtained), the gap location is removed, and the terminal device can still perform the next cell measurement. cell measurement during a gap in the period of the reference signal receive other M to be measured in the i-th neighbor cell gap, thereby obtaining the measurement results of other cells to be measured.
  • the terminal equipment and the base station can combine the measurement results obtained in the last cell measurement and the measurement results obtained in the current cell measurement to obtain the measurement results of all neighboring cells to be measured, thereby ensuring that the terminal equipment can be used as quickly as possible
  • the successful completion of the cell measurement can ultimately improve the cell measurement efficiency and success rate of the terminal device.
  • the base station can double the number of gaps.
  • the multiple k can be set by considering the requirements of actual scenarios for cell measurement efficiency and success rate, and/or requirements for throughput rate of terminal equipment. For example, in order to minimize the impact of cell measurement on the throughput of terminal equipment, the value of k can be set to 2.
  • the gap M i th adjacent offset difference between two or more Lx of the gap L is the gap length of the base station of the terminal device configuration, x is less than L Positive number.
  • x may be set to 1 ms.
  • the first measurement configuration information may also be used to notify
  • the reporting strategy of the measurement report is periodic triggering, or a reporting strategy that prefers the arrival time first in periodic triggering or event triggering.
  • the method further includes: the base station sends second measurement configuration information to the terminal device;
  • the second measurement configuration information is used to notify: the terminal device stops performing cell measurement; or the second measurement configuration information is used to notify at least one of the following:
  • the number of gaps included in the gap period and used by the terminal device for cell measurement is restored to one;
  • the value of the gap period used by the terminal device for cell measurement is adjusted from S1 to S2, where S2>S1.
  • the base station can report to the terminal device Send the second measurement configuration information to compensate for the service throughput rate of the terminal device.
  • the method before the base station sends the first measurement configuration information to the terminal device, the method further includes: the base station determines that the terminal device cell measurement fails.
  • the embodiments of the present application provide a measurement configuration method, which can be applied to various scenarios in the communication system shown in FIG. 2 where inter-frequency/different-system measurement needs to be performed in a gap measurement mode.
  • the method includes: a terminal device receives first measurement configuration information from a base station, where the first measurement configuration information is used to notify that there are M i gaps used by the terminal device for cell measurement in a gap period, and M i the terminal apparatus according to the first measurement configuration information to determine the position of the i-th gap M in the gap period, and cell measurements within each gap; is an integer greater than 1.
  • the M i may comply with the formula: T1 is the reference signal transmission period of the neighboring cell to be measured, where r is a positive number less than or equal to L, and L is the gap length configured by the base station for the terminal device.
  • an embodiment of the present application provides a communication device, including a unit for performing each step in any of the above aspects.
  • an embodiment of the present application provides a communication device, including at least one processing element and at least one storage element, wherein the at least one storage element is used to store programs and data, and the at least one processing element is used to read and execute The program and data stored by the storage element enable the method provided in any of the above aspects of the present application to be implemented.
  • an embodiment of the present application provides a communication system, including a base station and a terminal device, wherein the base station has the function of executing the method provided in the first aspect of the present application, and the terminal device is capable of executing the second aspect of the present application. The function of the provided method.
  • the embodiments of the present application also provide a computer program, which when the computer program runs on a computer, causes the computer to execute the method provided in the first aspect or the second aspect.
  • the embodiments of the present application also provide a computer-readable storage medium in which a computer program is stored.
  • the computer program is executed by a computer, the computer is caused to execute the first The method provided by the aspect or the second aspect.
  • an embodiment of the present application also provides a chip, which is used to read a computer program stored in a memory to execute the method provided in the first aspect or the second aspect.
  • an embodiment of the present application also provides a chip system, which includes a processor, and is configured to support a computer device to implement the method provided in any one of the foregoing aspects.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • Figure 1A is a schematic diagram of gap measurement in the prior art
  • FIG. 1B is a schematic diagram of the gap position provided by an embodiment of this application.
  • FIG. 1C is a schematic diagram of the time domain position of the reference signal of the NR cell provided by an embodiment of this application;
  • FIG. 1D is a schematic diagram of time-domain positions of reference signals of gap and NR cells provided by an embodiment of this application;
  • FIG. 2 is an architecture diagram of a communication system provided by an embodiment of this application.
  • FIG. 3 is a flowchart of a measurement configuration method provided by an embodiment of the application.
  • 4A is a schematic diagram of a first example of gap quantity adjustment provided by an embodiment of this application.
  • 4B is a schematic diagram of a second example of gap quantity adjustment provided by an embodiment of this application.
  • FIG. 4C is a schematic diagram of a third example of adjusting the number of gaps provided by an embodiment of the application.
  • 4D is a schematic diagram of a fourth example of gap quantity adjustment provided by an embodiment of this application.
  • FIG. 5 is a structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 6 is a structural diagram of a communication device provided by an embodiment of this application.
  • the present application provides a measurement configuration method and device, which are used to increase the probability that the measurement gap covers the reference signals of all neighboring cells to be measured during the cell measurement process of the terminal device, and improve the efficiency of the cell measurement of the terminal device.
  • the method and the device are based on the same technical idea. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • Terminal equipment is a device that provides users with voice and/or data connectivity.
  • the terminal equipment may also be called user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), and so on.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile Internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • a base station is a device that connects terminal equipment to a wireless network in a communication system.
  • the base station can also be referred to as a network device, and can also be referred to as a radio access network (RAN) node (or device).
  • RAN radio access network
  • base stations are: gNB, evolved Node B (eNB), transmission reception point (TRP), radio network controller (RNC), node B (Node B) , NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), or baseband unit (baseband unit) , BBU) etc.
  • eNB evolved Node B
  • TRP transmission reception point
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station for example, home evolved NodeB, or home Node B, HNB
  • baseband unit baseband unit
  • the base station may include a centralized unit (CU) node and a distributed unit (DU) node.
  • CU centralized unit
  • DU distributed unit
  • This structure splits the protocol layer of the eNB in the long term evolution (LTE) system. Some of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU. Centralized control of DU.
  • Measurement configuration information which is sent by the base station to the terminal equipment, to enable the terminal equipment to perform cell measurement based on the measurement configuration information.
  • the base station can send the measurement configuration information through RRC signaling.
  • the measurement configuration information may, but is not limited to, include at least one of the following measurement parameters: a measurement object, a list of neighbor cells to be measured, or gap configuration parameters (gap period, gap length, gap start position).
  • the base station may further send the measurement configuration information again to instruct the base station to adjust the value of at least one of the above measurement parameters. In this way, the base station can flexibly reconfigure the measurement parameters.
  • the base station instructs the base station to adjust the value of any measurement parameter through the measurement configuration information, which may include but is not limited to the following forms:
  • the measurement configuration information includes the adjusted value of the measurement parameter.
  • the measurement configuration information includes the adjustment value of the measurement parameter, and the adjustment value may be the difference between the adjusted value of the measurement parameter and the value before the adjustment.
  • the measurement configuration information includes an adjustment instruction of the measurement parameter.
  • the terminal device may determine the adjusted value of the measurement parameter in accordance with the adjustment instruction of the measurement parameter in a manner agreed with the base station.
  • the measurement report is obtained by the terminal equipment after cell measurement and reported to the base station.
  • the measurement report may include the measurement result of the terminal device on the at least one neighboring cell to be measured (the measurement result of the at least one neighboring cell to be measured)
  • the measurement result is the actual measurement value), or includes the measurement results of all measured neighboring cells (wherein, the measurement results of the neighboring cells to be measured for which the terminal device does not receive the reference signal are empty or zero).
  • the terminal device may not report the measurement report, or the reported measurement report is empty, or each neighbor cell to be measured in the reported measurement report The measurement result of is empty or zero.
  • the measurement result of each neighboring cell to be measured may be the signal quality parameter of the neighboring cell to be measured.
  • the signal quality parameter may include one or more of the following parameters:
  • RSRP Reference signal received power
  • SINR signal to interference plus noise ratio
  • RSSI received signal strength indication
  • RSRQ reference signal received quality
  • the types of cell measurement include: same frequency measurement, different frequency/different system measurement.
  • intra-frequency measurement means that the neighboring cell to be measured and the serving cell of the terminal device are in the same carrier frequency.
  • Inter-frequency/system measurement means that the neighboring cell to be measured and the serving cell of the terminal device are not on the same carrier frequency.
  • terminal equipment receives and sends signals through a radio frequency channel, and a set of radio frequency channels generally work on a carrier frequency.
  • the terminal equipment can use one of the radio frequency channels to adjust to the carrier frequency of the serving cell to receive the serving cell.
  • the terminal equipment can also adjust other radio frequency channels to the carrier frequency of the neighboring cell to receive the reference signal of the neighboring cell. In this way, the terminal device can perform cell measurement without suspending service transmission.
  • the terminal equipment cannot perform service transmission and cell measurement at the same time, because the terminal equipment needs to adjust the radio frequency channel to the carrier frequency of the serving cell.
  • the terminal device stops interacting with the serving cell, and adjusts the radio frequency path to the carrier frequency of the neighboring cell to receive the reference signal of the neighboring cell.
  • the base station sends measurement configuration information to the terminal device to configure the terminal device for gap measurement.
  • the value of the gap period ie MGRP
  • MNL maximum value of the gap length
  • GNL maximum value of the gap length
  • Gapoffset The range can be 0-39, or 0-79, etc.
  • the terminal device can calculate the time domain position of the gap according to the above gap configuration parameters, as shown in Figure 1B. Specifically, the terminal device can calculate the time domain position of the gap with reference to the following formula:
  • subframe gapoffset mod 10
  • SFN is the system frame number of the serving cell of the terminal device
  • subframe is the subframe in the system frame of the SFN.
  • the terminal equipment in the gap configured for the terminal equipment in the base station should be able to receive the reference signals of all neighboring cells to be measured, so that the terminal equipment can achieve Measurement of all neighboring cells to be measured.
  • the time domain position of the gap is determined by the terminal device according to the timing of the serving cell, and the time domain position of the reference signal of each neighboring cell is determined according to the timing of the corresponding neighboring cell.
  • fourth generation long term evolution The 4 th Generation, 4G) communication technology (long term evolution, LTE) cell reference signal - reference signal cell (cell reference signal, CRS) are uniformly distributed in each sub-frame of.
  • 4G Long term evolution
  • LTE long term evolution
  • CRS cell reference signal
  • the fifth generation (The 5 th Generation, 5G) new air interface communication technologies (new radio, NR) cell reference signal - block synchronization signal (synchronization signal block, SSB) is sent in the period Yes, and multiple SSBs can be sent in a period, but the multiple SSBs are concentrated in a certain time window in the period to form an SSB burst.
  • the SSB period can be 5 ms, 10 ms, 20 ms, 40 ms, 80 ms, or 160 ms, etc.
  • the SSB period of different NR cells can also be different.
  • the SSB burst can be transmitted in the first or second 5ms.
  • the time domain position of the gap determined by the terminal device according to the timing of the serving cell and the received measurement configuration information may not include the time domain position of the reference signal of some neighboring cells to be measured.
  • the terminal device may only be able to receive the reference signal of neighboring cell a, but not the neighboring cell within the gap of each gap period. b reference signal. Obviously, this will cause the terminal equipment to be unable to receive the reference signals of all neighboring cells to be measured in the gap at a fixed location, and thus unable to complete the measurement of all the cells to be measured, which will cause the terminal equipment to continue to fail in cell measurement.
  • this application provides a measurement configuration method and equipment.
  • the base station can notify the terminal device to subsequently use multiple gaps to perform cell measurement in the same gap period. In this way, in the subsequent cell measurement process, the probability that the terminal device receives the reference signal of the neighboring cell to be measured within multiple gaps of a gap period can be increased. Therefore, this method can improve the success rate of the cell measurement of the terminal device and efficient.
  • FIG. 2 shows the architecture of a possible communication system to which the measurement configuration method provided in the embodiment of the present application is applicable.
  • the communication system includes: a base station 201 (base station 201a, base station 201b, and base station 201c in the figure), and terminal equipment 202.
  • the base station 201 is responsible for providing wireless access-related services for the terminal device 202, realizing wireless physical layer functions, resource scheduling and wireless resource management, quality of service (QoS) management, wireless access control, and mobile The function of sexual management (such as cell reselection and handover).
  • QoS quality of service
  • Each base station 201 is responsible for managing at least one cell. As shown in the figure, base station 201a is responsible for managing cell A, base station 201b is responsible for managing cell B, and base station 201c is responsible for managing cell C and cell D.
  • each cell uses a corresponding carrier frequency to provide access services for terminal equipment.
  • the frequency points used by different cells may be the same or different.
  • this application does not limit the communication technology used by each cell, and the communication technology used by different cells may be the same or different.
  • cell A, cell B, cell C, and cell D are all LTE cells using 4G communication technology; or cell A, cell B, cell C, and cell D are all NR cells using 5G communication technology; or cell A , Cell B, Cell C and Cell D, some of the cells are LTE cells, and some of the cells are NR cells.
  • the terminal device 202 is a device that accesses the network through a cell managed by the base station 201.
  • the base station 201 and the terminal device 202 are connected through a Uu interface, so as to realize the communication between the terminal device 202 and the base station 201.
  • the architecture shown in Figure 2 can be applied to a variety of communication scenarios, for example, the fifth generation (The 5th Generation, 5G) communication system, the future sixth generation communication system and other evolving communication systems, long-term evolution (Long Term Evolution, LTE) communication system, vehicle to everything (V2X), long-term evolution-Internet of Vehicles (LTE-vehicle, LTE-V), vehicle to vehicle (V2V), Internet of Vehicles, machine Communication (Machine Type Communications, MTC), Internet of Things (IoT), Long Term Evolution-Machine to Machine (LTE-Machine to Machine, LTE-M), Machine to Machine (M2M) and other communication scenarios middle.
  • long-term evolution Long Term Evolution, LTE
  • V2X vehicle to everything
  • V2X long-term evolution-Internet of Vehicles
  • LTE-vehicle, LTE-V long-term evolution-Internet of Vehicles
  • V2V vehicle to vehicle
  • Internet of Vehicles Internet of Vehicles
  • Machine Communication Machine Type Communications, MTC
  • the measurement configuration method provided in the embodiments of the present application is applicable to various scenarios in the communication system shown in FIG. 2 where inter-frequency/inter-system measurement needs to be performed through gap measurement methods, for example, LTE measurement scenarios in 4G communication technology, and The following scenarios supporting Dual Connectivity (DC) technology in 5G communication technology: EN-DC (EUTRA-NR Dual Connectivity) scenarios, NE-DC (NR-EUTRA Dual Connectivity), NR-DC, and non-DC scenarios , SA scene and NSA scene in 5G communication technology.
  • EN-DC EUTRA-NR Dual Connectivity
  • NE-DC NR-EUTRA Dual Connectivity
  • NR-DC NR-DC
  • non-DC scenarios SA scene and NSA scene in 5G communication technology.
  • the terminal device 202 accesses the cell A managed by the base station 201a (cell A is a serving cell), and the cell B, the cell C, and the cell D are neighboring cells determined by the base station 201a for the terminal device 202.
  • the base station 201a sends measurement configuration information to the terminal device 202, where the measurement configuration information includes gap configuration parameters and a list of neighboring cells to be measured (including cell B, cell C, and cell D);
  • the terminal device 202 determines the time domain position of the gap according to the measurement configuration information, and performs cell measurement in the gap, and reports the measurement report to the base station 201a after the measurement is completed; the base station 201a switches the terminal device according to the signal quality parameters of each cell in the measurement report To the cell with better signal quality.
  • cell A is the primary cell (primary cell, PCell) of the terminal device 202
  • the base station 201a is the primary base station of the terminal device 202.
  • the base station 201a sends measurement configuration information to the terminal device 202, where the measurement configuration information includes gap configuration parameters and a list of neighboring cells to be measured (including cell B, cell C, and cell D);
  • the terminal device 202 determines the time domain of the gap according to the measurement configuration information Position, and perform cell measurement in the gap, and report a measurement report to the base station 201a after the measurement is completed;
  • the base station 201a configures a secondary cell (SCell) for the terminal device 202 according to the signal quality parameters of each cell in the measurement report, so as to achieve Add a secondary cell group (SCG) to the terminal device 202.
  • SCell secondary cell group
  • an embodiment of the present application provides a measurement configuration method.
  • the method can be applied to various scenarios in the communication system shown in FIG. 2 where inter-frequency/different-system measurement needs to be performed in a gap measurement mode.
  • the base station can notify the terminal device to subsequently use multiple gaps to perform cell measurement in the same gap period.
  • the probability that the terminal device receives the reference signals of all neighboring cells to be measured within multiple gaps in a gap period can be increased. Therefore, this method can improve the success rate of the terminal device cell measurement. And efficiency.
  • the measurement configuration method provided by the embodiment of the present application will be described below in conjunction with the flowchart shown in FIG. 3. It should be noted that the method flowchart shown in FIG. 3 does not limit the measurement configuration method provided in this application, and the measurement configuration method provided in this application may include more or fewer steps than the method shown in FIG. 3.
  • the base station sends first measurement configuration information to a terminal device, where the first measurement configuration information is used to configure a gap used when the terminal device performs cell measurement.
  • the terminal device receives the first measurement configuration information from the base station.
  • the first measurement configuration information may be traditional measurement configuration information, which may include gap configuration parameters (gap period, gap length, and gap offset), and may also include a list of neighboring cells to be measured and a measurement report. Escalation strategy and other information.
  • the first measurement configuration information may be measurement gap configuration (measGapConfig) signaling or measurement configuration (measConfig) signaling.
  • the gap length is L
  • the gap period is S1
  • the gap offset is f 0 .
  • the terminal device performing cell measurement in the gap includes: the terminal device receives the reference signal of the neighbor cell to be measured in the gap, and determines the measurement result of the neighbor cell to be measured.
  • the time domain positions of the reference signals of all neighboring cells to be measured may not be covered in the gap, for example, as shown in Figure 1D. Therefore, in the gap, the terminal device may only receive a part of the reference signal of the cell to be measured. Signal, or the reference signal of all the cells to be measured is not received, and the cell measurement of the terminal device fails at this time.
  • the terminal device may, but is not limited to, notify the base station in the following manner:
  • the terminal device may not send a measurement report to the base station according to the report strategy of the measurement report, or according to an agreement or an agreement with the base station.
  • the terminal device may send a measurement report carrying measurement results of some neighboring cells to be measured to the base station.
  • the terminal device may send a measurement report carrying the measurement results of all neighboring cells to be measured to the base station, and the measurement results of the neighboring cells to be measured that are not measured by the terminal device in the measurement report are invalid.
  • the measurement result of the cell to be measured that is not measured by the terminal device may be empty, zero, or an indicator used to indicate that the measurement result is invalid.
  • the terminal device may send a notification message to the terminal device, where the notification message is used to notify the base station that the terminal device cell measurement fails.
  • the first measurement report contains the measurement results of some neighboring cells to be measured; when the terminal device uses the third method, the first measurement report includes all The measurement result of the cell to be measured, and only the measurement result of the neighboring cell to be measured measured by the terminal device is valid.
  • S304 The base station determines that the cell measurement of the terminal device fails.
  • the base station may also determine that the terminal device cell measurement fails in the following manner:
  • Manner 1 The base station does not receive a measurement report from the terminal device within a set time period, and it is determined that the cell measurement of the terminal device fails.
  • Manner 2 The base station receives a first measurement report from the terminal device, and when the base station determines that the first measurement report does not include measurement results of all the cells to be measured, it determines that the terminal device cell measurement fails.
  • Manner 3 The base station receives a first measurement report from the terminal device, and when the base station determines that there are invalid measurement results of some cells to be measured in the first measurement report, it determines that the terminal device cell measurement fails.
  • the base station increases the number of gaps used by the terminal device for subsequent cell measurement in the gap period, and determines that the gap period includes M i gaps used by the terminal device for subsequent cell measurement.
  • M i is an integer greater than 1.
  • the base station may, but is not limited to, increase the number of gaps in the gap period, that is, determine M 1 in the following manner.
  • Method 1 M i conforms to the formula: T1 is the reference signal transmission period of the neighboring cell to be measured.
  • r is a positive number less than or equal to L
  • L is the gap length configured by the base station for the terminal device.
  • the i-th difference M offset two adjacent gap may be less than or equal to the gap length of the gap L, L may be 6ms, in order to avoid delays
  • the jitter has an impact on the cell measurement r can be set to 5ms. Since in the gap period of the terminal device may be continuously measured by the cell gap M i th consecutive, therefore, the embodiment ensures that the terminal device receives the reference signal to all neighbor cells to be measured in the gap period, so as to ensure The terminal device can successfully complete the cell measurement as soon as possible.
  • the base station can use the gap offset f 0 configured last time, or reset a new one. The offset of the gap.
  • each of M i th gap offset between the gap of the two offset values are fixed or configured by the base station neighboring the base station may be disposed only in the gap of the first number M i a gap is offset f i, a; or reconfigured by the base station in the i-th offset of each gap the gap M.
  • the base station may remove the gap location used in the last cell measurement failure in the gap period.
  • M i conforms to the formula: M i th and the gap in the first gap offset f i
  • T1 is the reference signal transmission period of the neighboring cell to be measured
  • M i-1 is the number of gaps included in the gap period configured for the terminal device by the base station last time
  • f i-1,b is the last time the base station The offset of the last gap in the gap period configured for the terminal device.
  • the terminal device has already performed cell measurement at the last gap position, and the cell measurement fails (the measurement results of all neighboring cells to be measured are not obtained), therefore, the gap position is removed.
  • the terminal device can still receive reference signals of other neighboring cells to be measured within the M i gaps in one gap period in the next cell measurement process, so as to obtain measurement results of other cells to be measured.
  • each of M i th gap offset between the gap of the two offset values are fixed or configured by the base station neighboring the base station may be disposed only in the gap of the first number M i a gap is offset f i, a; or reconfigured by the base station in the i-th offset of each gap the gap M.
  • the terminal equipment and the base station can combine the measurement results obtained in the last cell measurement and the measurement results obtained in this cell measurement to obtain the measurement results of all neighboring cells to be measured, thereby ensuring that the terminal equipment The cell measurement can be successfully completed as soon as possible, and ultimately the cell measurement efficiency and success rate of the terminal device can be improved.
  • the base station can double the number of gaps.
  • the multiple k can be set by considering the requirements of the actual scenario for the cell measurement efficiency and success rate, and/or the requirements for the throughput rate of the terminal device. For example, in order to minimize the impact of cell measurement on the throughput of terminal equipment, the value of k can be set to 2.
  • each of M i th gap offset between the gap of the two offset values are fixed or configured by the base station neighboring the base station may be disposed only in the gap of the first number M i a gap is offset f i, a; or reconfigured by the base station in the i-th offset of each gap the gap M.
  • f 1,a f 0
  • the base station may further adjust the reporting strategy of the measurement report as: periodic triggering, or It is a reporting strategy that prefers the arrival time first in periodic triggering or event triggering.
  • the base station sends second measurement configuration information to the terminal device.
  • the second measurement configuration information is used to notify that M 1 gaps used by the terminal device for cell measurement are included in the gap period.
  • the terminal device receives the second measurement configuration information from the base station.
  • the second measurement configuration information may comprise: the gap M i th offset of each of the gap.
  • the second measurement configuration information may be included in the gap M i th first gap offset f i, a, of course, a difference may also comprise an offset each adjacent two of the gap.
  • the second measurement configuration information may also include other configuration information to the base number of gap M i and the like.
  • the second measurement configuration information is also used to notify that the reporting strategy of the measurement report is periodic triggering, or is preferred in periodic triggering or event triggering. Reporting strategy with first arrival time.
  • the second measurement configuration information may be multiple pieces of information.
  • the second measurement configuration information may include but is not limited to: signaling 1 including gap configuration information, and information for configuring the reporting strategy of measurement results.
  • the signaling 1 may include an indication to keep the gap length and the gap period unchanged, or include the gap length L and the gap period S1 configured by the base station last time, and may also include the first gap in the M i gaps.
  • Offset configuration information such as the offset or the offset of each gap, or the offset difference between two adjacent gaps.
  • S306 The terminal device according to the second measurement configuration information M i th position of the gap in the gap is determined in a cell used for the measurement period, and cell measurements within each gap.
  • the terminal equipment may be based on the gap length and gap period configured by the base station, and the content contained in the second measurement configuration information (the number of gaps, the offset of the first gap, or each gap offset, a difference or offset between adjacent two gap offset configuration information and the like), determining the position of a gap of M i.
  • the process of the terminal device performing cell measurement in each gap is the same as that of S302. Therefore, the process of performing cell measurement by the terminal device can refer to the above description of S302, which will not be repeated here.
  • the cell measurement of the terminal device may succeed or fail.
  • the terminal equipment may send the first cell to the base station through S307 after the secondary cell measurement.
  • Measurement report When the terminal device fails to measure the cell, the terminal device can also notify the base station of the failure of the current cell measurement by using the four methods described in S302.
  • the measurement report sent by the terminal device each time may only include the neighboring cell to be measured.
  • the measurement result of may also include the measurement result of the neighboring cell to be measured measured by the terminal device this time and each time before, which is not limited in this application.
  • the measurement report sent to the base station contains the measurement report of the terminal device this time. And the measurement results of all neighboring cells to be measured that were measured each time before.
  • the terminal device sends a second measurement report to the base station.
  • the base station receives the second measurement report from the terminal device. As shown in the figure, this step is optional.
  • the terminal device reports the second measurement report according to the reporting strategy.
  • S308 The base station determines that the cell measurement of the terminal device is successful according to the second measurement report.
  • the base station may also determine that the terminal device has failed the current cell measurement in the same manner as in S304, and then, the base station may also increase the number of gaps again (refer to S304a-S308 for the specific process), or with adjustment of the i-th offset manner the gap M, the gap of the terminal equipment is configured, the terminal device until a successful measurement cell.
  • the base station may send the third measurement configuration information to the terminal device after S305 or after S308 determines that the cell measurement of the terminal device is successful.
  • the base station of the terminal device receives the third measurement configuration information.
  • the third measurement configuration information is used to indicate that the terminal device stops performing cell measurement.
  • the third measurement configuration information may specifically instruct the terminal device to stop performing cell measurement within a set time period; or the terminal device may, after receiving the third measurement configuration information, set time Stop cell measurement within the segment.
  • the third measurement configuration information may, but is not limited to, be used to indicate at least one of the following:
  • the number of gaps included in the gap period and used by the terminal device for cell measurement is restored to one;
  • the value of the gap period used when the terminal device performs cell measurement is adjusted from S1 to S2, where S2>S1.
  • the terminal device in S306 continuously uses M i gaps to perform cell measurement in one gap period, although the terminal device has a higher success rate for cell measurement in S306, this will affect the terminal device.
  • the business throughput rate of the equipment has been affected.
  • the subsequent service throughput rate of the terminal device can be guaranteed or improved.
  • the terminal device no longer performs cell measurement.
  • the terminal device again determines the cell measurement used for the next cell measurement according to the gap number and/or gap period indicated by the third measurement configuration information. Position of the gap, and perform cell measurement within the determined gap.
  • the process of the terminal device performing cell measurement in the determined gap is the same as that of S302. Therefore, the process of performing cell measurement by the terminal device can refer to the above description of S302, which will not be repeated here.
  • the terminal device after the terminal device performs cell measurement, it can also notify the base station of the measurement result of the neighboring cell to be measured by the terminal device.
  • the base station sends various measurement configuration information to the terminal device, and the terminal device sends a measurement report or notification message to the base station, both of which can be implemented through RRC signaling. , This application does not limit this.
  • the base station after determining that the cell measurement of the terminal device fails, the base station notifies the terminal device to subsequently use multiple gaps to perform cell measurement in the same gap period. In this way, in the subsequent cell measurement process, the probability that the terminal device receives the reference signal of the neighboring cell to be measured within multiple gaps of a gap period can be increased. Therefore, this method can improve the success rate of the cell measurement of the terminal device and efficient.
  • this application also provides an example of a method for adjusting the number of gaps. See Figure 4A. After the base station determines that the cell measurement of the terminal device fails, the number of gaps that can be configured in a gap period becomes In order to prevent time jitter and maximize the service throughput of the terminal device, the offset difference between two adjacent gaps is Lx, that is, there is an overlapping part of length x between two adjacent gaps.
  • the neighbor cell to be measured configured by the base station for the terminal device is 4, and the reference signal transmission period of each adjacent cell to be measured is 20ms.
  • the base station can adjust the number of gaps in a gap period to 4, and the offset of the first gap is the same as the gap offset configured for the terminal device last time.
  • the terminal device can receive the reference signal of the neighboring cell to be measured 1 in gap1,..., the reference signal of the neighboring cell to be measured 4 is received in gap4, and finally the terminal device can pass 4 cell measurements, The measurement results of all neighboring cells to be measured are measured, so as to achieve a successful cell measurement as soon as possible.
  • This example can improve the efficiency and success rate of the cell measurement of the terminal device.
  • this application also provides another example of a method for adjusting the number of gaps. See Figure 4B.
  • the base station determines that the cell measurement of the terminal device fails, the number of gaps that can be configured in a gap period becomes In order to ensure the throughput rate of the terminal equipment, the base station removes the gap position used in the last cell measurement of the terminal equipment.
  • the offset difference between two adjacent gaps is Lx, that is, there is an overlap of length x between two adjacent gaps. .
  • the neighbor cell to be measured configured by the base station for the terminal device is 4, and the reference signal transmission period of each adjacent cell to be measured is 20ms.
  • the base station can adjust the number of gaps in a gap period to 3, and the offset of the first gap is increased by 5ms compared with the gap offset configured for the terminal device last time.
  • the terminal device can receive the reference signal of the neighboring cell to be measured 2 in gap1,..., the reference signal of the neighboring cell to be measured 4 is received in gap3, and finally the terminal device can pass three cell measurements, After measuring the measurement results of the neighboring cells 2-4 to be measured, combined with the previously measured measurement results of the neighboring cell 1 to be measured, the terminal device realizes that the cell measurement is successful.
  • This example can also improve the efficiency and success rate of the cell measurement of the terminal device, and at the same time can reduce the influence of the cell measurement on the throughput rate of the terminal device.
  • this application also provides another example of a method for adjusting the number of gaps. See Figure 4C and Figure 4D.
  • the number of gaps may be configured to double in one gap period.
  • the base station may exclude the gap position used in the last cell measurement of the terminal equipment.
  • the offset difference between two adjacent gaps is Lx, that is, there is an overlapping part of length x between two adjacent gaps. , As shown in Figure 4C.
  • the base station can also disperse the gap positions to cover as many reference signal time domain positions of adjacent cells as possible (that is, the offset difference between two adjacent gaps is greater than 6ms), as shown in Figure 4D Show.
  • the base station sets the number of gaps in one gap period to 2, and the offset difference between the two gaps is 5 ms.
  • the terminal device can receive the reference signal of the neighboring cell 2 to be measured in gap1, and the reference signal of the neighboring cell 3 to be measured in gap2.
  • the terminal device still fails the cell measurement, the terminal device can obtain the measurement results of the two neighboring cells to be measured through these two cell measurements.
  • the terminal device can achieve a successful cell measurement.
  • This embodiment can also improve the efficiency and success rate of the cell measurement of the terminal device, and at the same time can reduce the influence of the cell measurement on the throughput rate of the terminal device.
  • the base station sets the number of gaps in one gap period to 2, and the offset difference between the two gaps is 8 ms.
  • the terminal device can receive the reference signal of the neighboring cell to be measured 2 in gap1, and the reference signal of the neighboring cell to be measured 3 and the neighboring cell 4 to be measured in gap2.
  • the terminal device can measure the measurement results of the neighboring cells 2-4 to be measured through these two cell measurements, and combining the previously measured measurement results of the neighboring cell 1 to be measured, the terminal device achieves a successful cell measurement.
  • This example can also improve the efficiency and success rate of the cell measurement of the terminal device, and at the same time can reduce the influence of the cell measurement on the throughput rate of the terminal device.
  • the base station uses the example shown in FIG. 4C or FIG. 4D to double the number of gaps in the gap period, the terminal device still fails to measure, and the base station can continue to measure the gaps in the gap period.
  • the number of gaps is doubled, so that the number of gaps in the gap period becomes 4, 8, 16, etc., until the terminal device cell measurement is successful; or the base station will no longer increase the number of gaps and only adjust the gap offset. Therefore, the adjusted gap can cover the time-domain position of the reference signal of the neighboring cell to be measured that has not yet been measured by the terminal device, and the cell measurement is completed as soon as possible.
  • an embodiment of the present application also provides a communication device.
  • the structure of the device is shown in FIG. 5 and includes a communication unit 501 and a processing unit 502.
  • the communication device can be applied to the base station or terminal equipment in the communication system shown in FIG. 2 and can implement the measurement configuration method shown in FIG. 3 above.
  • the function of each unit in the device 500 is introduced below:
  • the function of the communication unit 501 is to receive and send signals.
  • the communication unit 501 may be implemented by a radio frequency circuit, wherein the radio frequency circuit includes an antenna.
  • the function of the processing unit 502 when the communication device 500 is applied to a base station will be introduced below.
  • the processing unit 502 is configured to send first measurement configuration information to the terminal device through the communication unit 501, where the first measurement configuration information is used to notify that the gap period contains M i cells for the terminal device to perform cell
  • the gap used for measurement, M i is an integer greater than 1.
  • the first measurement configuration information includes the offset of each of the M i gaps; or the first measurement configuration information includes the offset of each of the M i gaps.
  • the M i conforms to the formula: T1 is the reference signal transmission period of the neighboring cell to be measured, where r is a positive number less than or equal to L, and L is the gap length configured by the base station for the terminal device.
  • the gap M i th offset of two adjacent difference gap greater than or equal to Lx L is the gap length of the base station of the terminal device configuration, x is less than Positive number of L.
  • the first measurement configuration information is also used to notify that the reporting strategy of the measurement report is a periodic trigger, or a reporting strategy that preferably arrives first in a periodic trigger or an event trigger.
  • the processing unit 502 may be further configured to send the first measurement configuration information to the terminal device through the communication unit 501, and then send the first measurement configuration information to the terminal device through the communication unit 501.
  • the terminal device sends second measurement configuration information; wherein the second measurement configuration information is used to notify: the terminal device stops performing cell measurement; or the second measurement configuration information is used to notify at least one of the following:
  • the number of gaps included in the gap period and used by the terminal device for cell measurement is restored to one;
  • the value of the gap period used by the terminal device for cell measurement is adjusted from S1 to S2, where S2>S1.
  • the processing unit 502 may be further configured to determine that the terminal device cell measurement fails before sending the first measurement configuration information to the terminal device through the communication unit 501.
  • the function of the processing unit 502 when the communication device 500 is applied to a terminal device will be introduced below.
  • the processing unit 502 is configured to receive first measurement configuration information from the base station through the communication unit 501, where the first measurement configuration information is used to notify that the gap period includes M i for the terminal device to perform cell measurement used gap, M i is an integer greater than 1; and the configuration information of the first measurement, to determine the position of the i-th gap M in the gap period, and measure in each cell gap.
  • the first measurement configuration information includes the offset of each of the M i gaps; or the first measurement configuration information includes the offset of each of the M i gaps. The offset of the first gap.
  • the M i conforms to the formula: T1 is the reference signal transmission period of the neighboring cell to be measured, where r is a positive number less than or equal to L, and L is the gap length configured by the base station for the terminal device.
  • each function in each embodiment of the present application can be integrated into one processing unit, or it can exist alone physically, or two or more units can be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiments of the present application also provide a communication device, which can be applied to the base station or terminal device in the communication system shown in FIG. 2 and can implement the measurement configuration method shown in FIG. 3.
  • the communication network device includes: a transceiver 601, a processor 602, and a memory 603. Wherein, the transceiver 601, the processor 602, and the memory 603 are connected to each other.
  • the transceiver 601, the processor 602, and the memory 603 are connected to each other through a bus 604.
  • the bus 604 may be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 6, but it does not mean that there is only one bus or one type of bus.
  • the transceiver 601 is used to receive and send signals to realize communication and interaction with other devices.
  • the processor 602 is configured to implement the measurement configuration method in the embodiment shown in FIG. 3.
  • the processor 602 when the communication device 600 is applied to a base station, the processor 602 is specifically configured to: send first measurement configuration information to the terminal device through the transceiver 601, where the first measurement The configuration information is used to notify that M i gaps used by the terminal device for cell measurement are included in the gap period, and M i is an integer greater than 1.
  • M i is an integer greater than 1.
  • the processor 602 when the communication device 600 is applied to a terminal device, the processor 602 is specifically configured to: receive first measurement configuration information from a base station through the transceiver 601, wherein the first The measurement configuration information is used to notify that there are M i gaps used by the terminal device for cell measurement in the gap period, where M i is an integer greater than 1; and according to the first measurement configuration information, determine within the gap period the gap of the i-th position M, and measured within each cell gap.
  • M i is an integer greater than 1
  • the memory 603 is used to store program instructions and data.
  • the program instructions may include program code, and the program code includes computer operation instructions.
  • the memory 603 may include a random access memory (RAM), and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the processor 602 executes the program instructions stored in the memory 603, and uses the data stored in the memory 603 to implement the above-mentioned functions, thereby realizing the measurement configuration method provided in the above-mentioned embodiment.
  • the embodiments of the present application also provide a computer program, which when the computer program runs on a computer, causes the computer to execute the measurement configuration method provided by the embodiment shown in FIG. 3.
  • the embodiments of the present application also provide a computer-readable storage medium in which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer executes the implementation shown in FIG. 3 The measurement configuration method provided by the example.
  • an embodiment of the present application also provides a chip, which is used to read a computer program stored in a memory to implement the measurement configuration method provided by the embodiment shown in FIG. 3.
  • the embodiments of the present application provide a chip system including a processor, which is used to support a computer device to implement functions related to the base station or terminal equipment in the embodiment shown in FIG. 3.
  • the chip system further includes a memory, and the memory is used to store necessary programs and data of the computer device.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • this application provides a measurement configuration method and device.
  • the base station After determining that the cell measurement of the terminal device fails, the base station notifies the terminal device to subsequently use multiple gaps to perform cell measurement in the same gap period. In this way, in the subsequent cell measurement process, the probability that the terminal device receives the reference signal of the neighboring cell to be measured within multiple gaps of a gap period can be increased. Therefore, this method can improve the success rate of the cell measurement of the terminal device and efficient.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

本申请实施例提供了一种测量配置方法及设备,用以在终端设备进行小区测量过程中,提高测量gap覆盖所有待测量邻小区的参考信号的概率,提高终端设备小区测量的成功率和效率。在该方法中,基站在确定终端设备小区测量失败后,通知终端设备后续在同一个gap周期内使用多个gap进行小区测量。这样,在后续小区测量过程中,终端设备在一个gap周期的多个gap内接收到待测量邻小区的参考信号的概率可以提高,因此,该方法可以提高所述终端设备小区测量的成功率和效率。

Description

一种测量配置方法及设备
相关申请的交叉引用
本申请要求在2020年02月25日提交中国专利局、申请号为202010117181.1、申请名称为“一种测量配置方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种测量配置方法及设备。
背景技术
在通信系统中,为了保证终端设备的业务连续性和通信质量,终端设备通常需要进行小区测量,从而实现小区重选(reselection)和小区切换(handover)。其中小区测量的种类包括同频测量、异频/异系统测量。
当终端设备初始接入或在无线资源控制(radio resource control,RRC)连接态(RRC_connective)的过程中进行异频/异系统测量,终端设备一般需要采用gap测量的测量方式进行小区测量,具体过程包括:在gap内终端设备接收邻小区的参考信号,并对邻小区的参考信号进行测量。在测量完成后终端设备向管理服务小区的基站发送测量报告(measurement report)。然后基站再根据测量报告将终端设备切换到信号质量更好的小区上。
目前,终端设备在进行小区测量之前,需要由管理服务小区的基站进行测量配置,并将测量配置信息发送给终端设备。终端设备可以接收到的测量配置信息,确定每个gap的位置,以进行邻小区测量。通常gap长度为6毫秒(ms)。其中,测量配置信息中包含:测量gap重复周期(measurement gap repetition period,MGRP)(又称为gap周期)、测量gap长度(measurement gap length,MGL)(简称为gap长度),和测量gap的偏移量(gap offset)。可选的,所述测量配置信息中还可以包括测量报告的上报策略、以及待测量邻小区列表等信息。
为了提高小区测量效率,在gap内终端设备应该能够接收到所有待测量邻小区的参考信号。然而,gap的位置为终端设备根据服务小区的定时确定的,而每个邻小区发送参考信号的时域位置是根据相应的邻小区的定时确定的。因此,终端设备根据测量配置信息确定的gap可能不包含某些待测量邻小区的参考信号的时域位置,导致终端设备无法接收到这些待测量邻小区的参考信号,进而无法完成对所有待测量小区的测量。
发明内容
本申请提供了一种测量配置方法及设备,用以在终端设备进行小区测量过程中,提高测量gap覆盖所有待测量邻小区的参考信号的概率,提高终端设备小区测量的成功率和效率。
第一方面,本申请实施例提供了一种测量配置方法,该方法可以应用于图2所示的通信系统中需要通过gap测量方式进行异频/异系统测量的各种场景中。该方法包括:基站向 终端设备发送第一测量配置信息,其中,所述第一测量配置信息用于通知在gap周期内包含M i个用于所述终端设备进行小区测量使用的gap,M i为大于1的整数。
通过该方法,基站在确定终端设备小区测量失败后,通知终端设备后续在同一个gap周期内使用多个gap进行小区测量。这样,在后续小区测量过程中,终端设备在一个gap周期的多个gap内接收到待测量邻小区的参考信号的概率可以提高,因此,该方法可以提高所述终端设备小区测量的成功率和效率。
在一种可能的设计中,所述第一测量配置信息中包含所述M i个gap中每个gap的偏移量;或者所述第一测量配置信息中包含所述M i个gap中首个gap的偏移量f i,a。通过该设计,所述终端设备可以根据所述第一测量配置信息中的gap的偏移量,准确地确定所述M i个gap的位置。
在一种可能的设计中,所述M i可以符合公式:
Figure PCTCN2020125997-appb-000001
T1为待测量邻小区的参考信号发送周期,其中,r为小于或等于L的正数,L为所述基站之前为所述终端设备配置的gap长度。示例性的,当所述基站之前未所述终端设备配置的gap长度L为LTE技术中规定的gap长度6ms时,r可以设置为5ms。
通过该设计,由于所述M i个gap可以覆盖所有待测量邻小区的参考信号时域位置,且在一个gap周期内所述终端设备可以持续通过所述M i个gap连续进行小区测量。因此,该方式可以保证所述终端设备在gap周期内接收到所有待测量邻小区的参考信号,从而保证所述终端设备可以尽快成功完成小区测量。
在一种可能的设计中,所述M i符合公式:
Figure PCTCN2020125997-appb-000002
且所述M i个gap中首个gap的偏移量f i,a符合公式:f i,a=f i-1,b+r;其中,T1为待测量邻小区的参考信号发送周期,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量,f i-1,b为所述基站上一次为所述终端设备配置的gap周期内的最后一个gap的偏移量,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。同以上设计,所述r可以设置为5ms。
由于所述终端设备在上一次的gap位置已经进行了小区测量,且小区测量失败(未得到全部待测量邻小区的测量结果),因此,将该gap位置剔除,所述终端设备依然可以在下一次小区测量过程中,在一个gap周期内的所述M i个gap内接收其他待测量邻小区的参考信号,从而得到其他待测量小区的测量结果。通过该设计,所述终端设备和所述基站可以结合上一次小区测量得到的测量结果以及本次小区测量得到的测量结果,得到所有待测量邻小区的测量结果,从而保证所述终端设备可以尽快成功完成小区测量,最终可以提高所述终端设备的小区测量效率和成功率。
在一种可能的设计中,所述M i也可以符合公式:M i=k*M i-1,其中,k为大于2的整数,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量。
通过该设计,所述基站可以成倍的增加gap的数量。其中,倍数k可以实际场景对小区测量效率和成功率的要求,和/或,对终端设备的吞吐率的要求综合考量设置。例如,为了尽量减少小区测量对终端设备吞吐率的影响,k的取值可以设置为2。
在一种可能的设计中,所述M i个gap中相邻两个gap的偏移量差值等于或大于L-x,L为所述基站为所述终端设备配置的gap长度,x为小于L的正数。示例性的,为了避免时间抖动,x可以设置为1ms。
在一种可能的设计中,为了加快所述终端设备的测量报告的上报时间,以使所述基站可以尽快为终端设备进行小区切换或添加SCG,所述第一测量配置信息还可以用于通知测 量报告的上报策略为周期触发,或者为在周期触发或事件触发中优选到达时间在先的上报策略。
在一种可能的设计中,所述基站向所述终端设备发送所述第一测量配置信息之后,还包括:所述基站向所述终端设备发送第二测量配置信息;
其中,所述第二测量配置信息用于通知:所述终端设备停止进行小区测量;或者所述第二测量配置信息用于通知以下至少一项:
在gap周期内包含的用于所述终端设备进行小区测量使用的gap数量恢复为1个;
所述终端设备进行小区测量时使用的gap周期取值从S1调整为S2,其中,S2>S1。
由于在一个gap周期内所述终端设备进行小区测量的gap数量有所增加,因此可能会对所述终端设备的业务吞吐率有所影响,因此通过该设计,所述基站可以向所述终端设备发送第二测量配置信息,以补偿所述终端设备的业务吞吐率。
在一种可能的设计中,所述S2可以符合公式:S2=b*S1,其中,b为大于2的整数。
在一种可能的设计中,所述基站向所述终端设备发送所述第一测量配置信息之前,所述方法还包括:所述基站确定所述终端设备小区测量失败。
第二方面,本申请实施例提供了一种测量配置方法,该方法可以应用于图2所示的通信系统中需要通过gap测量方式进行异频/异系统测量的各种场景中。该方法包括:终端设备从基站接收第一测量配置信息,其中,所述第一测量配置信息用于通知在gap周期内包含M i个用于所述终端设备进行小区测量使用的gap,M i为大于1的整数;所述终端设备根据所述第一测量配置信息,在gap周期内确定所述M i个gap的位置,并在每个gap内进行小区测量。
在一种可能的设计中,所述第一测量配置信息中包含所述M i个gap中每个gap的偏移量;或者所述第一测量配置信息中包含所述M i个gap中首个gap的偏移量。
在一种可能的设计中,所述M i可以符合公式:
Figure PCTCN2020125997-appb-000003
T1为待测量邻小区的参考信号发送周期,其中,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
在一种可能的设计中,所述M i还可以符合公式:
Figure PCTCN2020125997-appb-000004
且所述M i个gap中首个gap的偏移量f i,a符合公式:f i,a=f i-1,b+r;其中,T1为待测量邻小区的参考信号发送周期,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量,f i-1,b为所述基站上一次为所述终端设备配置的gap周期内的最后一个gap的偏移量,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
在一种可能的设计中,所述M i也可以符合公式:M i=k*M i-1,其中,k为大于2的整数,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量。
第三方面,本申请实施例提供了一种通信装置,包括用于执行以上任一方面中各个步骤的单元。
第四方面,本申请实施例提供了一种通信设备,包括至少一个处理元件和至少一个存储元件,其中该至少一个存储元件用于存储程序和数据,该至少一个处理元件用于读取并执行存储元件存储的程序和数据,以使得本申请以上任一方面提供的方法被实现。
第五方面,本申请实施例提供了一种通信系统,包括基站和终端设备,其中,所述基站具有执行本申请第一方面提供的方法的功能,所述终端设备具有执行本申请第二方面提供的方法的功能。
第六方面,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或第二方面提供的方法。
第七方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序被计算机执行时,使得所述计算机执行上述第一方面或第二方面提供的方法。
第八方面,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,以执行上述第一方面或第二方面提供的方法。
第九方面,本申请实施例还提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现上述任一方面提供的方法。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
图1A为现有技术中的gap测量的示意图;
图1B为本申请实施例提供的gap位置示意图;
图1C为本申请实施例提供的NR小区的参考信号的时域位置示意图;
图1D为本申请实施例提供的gap与NR小区的参考信号的时域位置示意图;
图2为本申请实施例提供的一种通信系统的架构图;
图3为本申请实施例提供的一种测量配置方法的流程图;
图4A为本申请实施例提供的第一种gap数量调整实例示意图;
图4B为本申请实施例提供的第二种gap数量调整实例示意图;
图4C为本申请实施例提供的第三种gap数量调整实例示意图;
图4D为本申请实施例提供的第四种gap数量调整实例示意图;
图5为本申请实施例提供的一种通信装置的结构图;
图6为本申请实施例提供的一种通信设备的结构图。
具体实施方式
本申请提供一种测量配置方法及设备,用以在终端设备进行小区测量过程中,提高测量gap覆盖所有待测量邻小区的参考信号的概率,提高终端设备小区测量的效率。其中,方法和设备是基于同一技术构思的,由于方法及设备解决问题的原理相似,因此设备与方法的实施可以相互参见,重复之处不再赘述。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端设备,是一种向用户提供语音和/或数据连通性的设备。终端设备又可以称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。
例如,终端设备可以为具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无 人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)、基站,是通信系统中将终端设备接入到无线网络的设备。所述基站作为无线接入网中的节点,又可以称为网络设备,还可以称为无线接入网(radio access network,RAN)节点(或设备)。
目前,一些基站的举例为:gNB、演进型节点B(evolved Node B,eNB)、传输接收点(transmission reception point,TRP)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB),或基带单元(base band unit,BBU)等。
另外,在一种网络结构中,所述基站可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。这种结构将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
3)、测量配置信息,为基站发送给终端设备的,用于使终端设备根据测量配置信息,进行小区测量。通常,基站可以通过RRC信令发送所述测量配置信息。其中,测量配置信息中可以但不限于包含以下至少一项测量参数:测量对象、待测量邻小区列表,或gap配置参数(gap周期、gap长度、gap的起始位置)。
在本申请实施例中,当基站向终端设备发送一次测量配置信息后,基站还可以通过再次发送测量配置信息,以指示基站对以上至少一项测量参数的取值进行调整。这样,基站可以灵活地对测量参数的重新配置。
其中,基站通过测量配置信息指示基站对任一项测量参数的取值进行调整,可以但不限于包括以下形式:
所述测量配置信息中包含该测量参数调整后的取值。
所述测量配置信息中包含该测量参数的调整值,所述调整值可以为该测量参数的调整后的取值与调整前的取值之间的差值。
所述测量配置信息中包含测量参数的调整指示。终端设备可以根据所述测量参数的调整指示,按照与基站约定的方式,确定该测量参数调整后的取值。
4)、测量报告,由终端设备进行小区测量后得到并上报给基站。
在终端设备在gap内接收到至少一个待测量邻小区的参考信号的情况下,测量报告中可以包含终端设备对所述至少一个待测量邻小区的测量结果(所述至少一个待测量邻小区的测量结果为实际测量值),或者包含所有测量邻小区的测量结果(其中,终端设备未接收参考信号的待测量邻小区的测量结果为空或零)。
在终端设备在gap内未接收到待测量邻小区的参考信号的情况下,所述终端设备可以不上报测量报告,或者上报的测量报告为空,或者上报的测量报告中每个待测量邻小区的测量结果为空或零。
示例性的,每个待测量邻小区的测量结果可以为该待测量邻小区的信号质量参数。可选的,信号质量参数可以包含以下参数中的一项或多项:
参考信号接收功率(reference signal received power,RSRP)、信干噪比(signal to  interference plus noise ratio,SINR)、接收信号强度指示(received signal strength indication,RSSI)、参考信号接收质量(reference signal received quality,RSRQ)。
5)、“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
需要说明的是,本申请中所涉及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
下面先对传统的gap测量方式进行描述。
小区测量的种类包括:同频测量、异频/异系统测量。其中,同频测量是指待测量的邻小区与终端设备的服务小区在同一个载波频点中。异频/系统测量是指待测量的邻小区与终端设备的服务小区不在同一个载波频点上。
通常终端设备通过射频通路实现信号的接收和发送,而一套射频通路一般工作在一个载波频点上。
终端设备初始接入或RRC连接态的过程中,在终端设备内部设置有多套射频通路的情况下,终端设备可以使用其中一套射频通路调整到服务小区的载波频点上,以接收服务小区的信号和向服务小区发送信号,同时终端设备还可以将其他射频通路调整到邻小区的载波频点上,以接收邻小区的参考信号。这样,终端设备可以在不暂停业务传输的情况下,进行小区测量。
然而,在终端设备内部仅设置一套射频通路的情况下,参阅图1A所示,终端设备不能同时进行业务传输和小区测量,因为终端设备需要将射频通路调整到服务小区的载波频点上,以接收服务小区的信号和向服务小区发送信号;在gap内,终端设备停止与服务小区的交互,并将该射频通路调整到邻小区的载波频点上,以接收邻小区的参考信号。
基站通过向终端设备发送测量配置信息,以对终端设备进行gap测量进行配置。在测量配置信息中的gap配置参数中,gap周期(即MGRP)的取值可以为40ms、80ms等;gap长度(MGL)的取值最大为6ms;gap的偏移量(gapoffset)的取值范围可以是0-39,或者是0-79等。终端设备可以根据以上gap配置参数,计算gap的时域位置,如图1B所示。具体的,所述终端设备可以参考以下公式计算gap的时域位置:
T=MGRP/10;
SFN mod T=FLOOR(gapoffset/10);
subframe=gapoffset mod 10;
其中,SFN为终端设备的服务小区的系统帧号,subframe为在该SFN的系统帧中的子帧。
为了保证终端设备的小区测量效率,提高终端设备的小区测量的成功率,在基站为终端设备配置的gap内终端设备应该能够接收到所有待测量邻小区的参考信号,这样所述终端设备可以实现对所有待测量邻小区的测量。
然而,gap的时域位置为终端设备根据服务小区的定时确定的,而每个邻小区的参考信号的时域位置是根据相应的邻小区的定时确定的。
例如,第四代(The 4 th Generation,4G)通信技术中的长期演进(long term evolution, LTE)小区的参考信号——小区参考信号(cell reference signal,CRS)是均匀分布在每个子帧上的。
又例如,参阅图1C,第五代(The 5 th Generation,5G)通信技术中的新空口(new radio,NR)小区的参考信号——同步信号块(synchronization signal block,SSB)是按照周期发送的,且在一个周期内可以有多个SSB被发送,但是所述多个SSB都集中在该周期内的某个时间窗口内形成一个SSB burst。其中,SSB周期可以为5ms、10ms、20ms,40ms、80ms,或160ms等,且不同NR小区的SSB周期也可以不同。示例性的,假设SSB周期为20ms,SSB burst可以集中在第一个或第二个5ms被发送。
因此,终端设备根据服务小区的定时,和接收的测量配置信息确定的gap的时域位置可能不包含某些待测量邻小区的参考信号的时域位置。假设gap周期为40ms,邻小区的SSB周期为20ms,如图1D中所示,那么终端设备在每个gap周期的gap内可能仅能够接收到邻小区a的参考信号,而不能接收到邻小区b的参考信号。显然,这就会导致终端设备在固定位置的gap内无法接收到所有待测量邻小区的参考信号,从而无法完成对所有待测量小区的测量,进而导致终端设备的小区测量持续失败。
为了解决上述问题,本申请提供了一种测量配置方法及设备。在本申请实施例提供的方案中,基站可以通知终端设备后续在同一个gap周期内使用多个gap进行小区测量。这样,在后续小区测量过程中,终端设备在一个gap周期的多个gap内接收到待测量邻小区的参考信号的概率可以提高,因此,该方法可以提高所述终端设备小区测量的成功率和效率。
下面结合附图对本申请实施例进行具体说明。
图2示出了本申请实施例提供的测量配置方法适用的一种可能的通信系统的架构。参阅图2所示,在该通信系统中包括:基站201(如图中的基站201a、基站201b、基站201c、),以及终端设备202。
所述基站201,负责为所述终端设备202提供无线接入有关的服务,实现无线物理层功能、资源调度和无线资源管理、服务质量(Quality of Service,QoS)管理、无线接入控制以及移动性管理(例如小区的重选和切换)功能。
每个基站201负责管理至少一个小区。如图所示,基站201a负责管理小区A,基站201b负责管理小区B,基站201c负责管理小区C和小区D。
在该通信系统中,每个小区均使用相应的载波频点为终端设备提供接入服务。需要说明的是,不同小区使用的频点可能相同,也可能不相同。另外,本申请不限定每个小区使用的通信技术,且不同的小区使用的通信技术可以相同,也可以不同。示例性的,小区A、小区B、小区C和小区D均为使用4G通信技术的LTE小区;或者小区A、小区B、小区C和小区D均为使用5G通信技术的NR小区;或者小区A、小区B、小区C和小区D中部分小区为LTE小区,部分小区为NR小区。
所述终端设备202,为通过所述基站201管理的小区接入网络的设备。
所述基站201和所述终端设备202之间通过Uu接口连接,从而实现所述终端设备202和所述基站201之间的通信。
另外,图2所示的架构可以应用到多种通信场景中,例如,第五代(The 5th Generation,5G)通信系统、未来的第六代通信系统和演进的其他通信系统、长期演进(Long Term  Evolution,LTE)通信系统、车到万物(vehicle to everything,V2X)、长期演进-车联网(LTE-vehicle,LTE-V)、车到车(vehicle to vehicle,V2V)、车联网、机器类通信(Machine Type Communications,MTC)、物联网(internet of things,IoT)、长期演进-机器到机器(LTE-machine to machine,LTE-M)、机器到机器(machine to machine,M2M)等通信场景中。
本申请实施例提供的测量配置方法适用于如图2所示的通信系统中需要通过gap测量方式进行异频/异系统测量的各种场景中,例如,4G通信技术中的LTE测量场景,以及5G通信技术中的支持双连接(Dual Connectivity,DC)技术的以下场景:EN-DC(EUTRA-NR Dual Connectivity)场景、NE-DC(NR-EUTRA Dual Connectivity),NR-DC,以及非DC场景,5G通信技术中的SA场景和NSA场景。
假设终端设备202接入基站201a管理的小区A(小区A为服务小区),小区B、小区C和小区D为所述基站201a为终端设备202确定的邻小区。
例如,在LTE测量场景和非DC场景中,基站201a向终端设备202发送测量配置信息,其中测量配置信息中包含gap配置参数和待测量邻小区列表(包含小区B、小区C和小区D);终端设备202根据测量配置信息确定gap的时域位置,并在gap内进行小区测量,测量完成后向基站201a上报测量报告;基站201a根据测量报告中的各个小区的信号质量参数,将终端设备切换到信号质量更好的小区上。
又例如,在各个支持双连接技术的场景中,小区A为终端设备202的主小区(primary cell,PCell),基站201a为终端设备202的主基站。基站201a向终端设备202发送测量配置信息,其中测量配置信息中包含gap配置参数和待测量邻小区列表(包含小区B、小区C和小区D);终端设备202根据测量配置信息确定gap的时域位置,并在gap内进行小区测量,测量完成后向基站201a上报测量报告;基站201a根据测量报告中的各个小区的信号质量参数,为终端设备202配置辅小区(secondary cell,SCell),从而实现为终端设备202添加辅小区组(secondary cell group,SCG)。
为了提高终端设备小区测量的成功率和效率,本申请实施例提供了一种测量配置方法。其中,该方法可以应用于图2所示的通信系统中需要通过gap测量方式进行异频/异系统测量的各种场景中。通过该方案,基站可以通知终端设备后续在同一个gap周期内使用多个gap进行小区测量。这样,在后续小区测量过程中,终端设备在一个gap周期的多个gap内接收到所有待测量邻小区的参考信号的概率可以提高,因此,该方法可以提高所述终端设备小区测量的成功率和效率。
下面结合图3所示的流程图,对本申请实施例提供的测量配置方法进行说明。需要说明的是,图3所示的方法流程图并不对本申请提供的测量配置方法构成限定,本申请提供的测量配置方法可以包含比图3所示的方法更多或更少的步骤。
S301:基站向终端设备发送第一测量配置信息,其中所述第一测量配置信息中用于配置所述终端设备进行小区测量时使用的gap。所述终端设备从所述基站接收所述第一测量配置信息。
示例性的,所述第一测量配置信息可以为传统的测量配置信息,其中可以包含gap配置参数(gap周期、gap长度和gap的偏移量),还可以包含待测量邻小区列表、测量报告 的上报策略等信息。例如,所述第一测量配置信息可以为测量间隙配置(measGapConfig)信令或测量配置(measConfig)信令。
其中,基站通过第一测量配置信息为终端设备配置的gap的长度可以但不限于为LTE通信技术规定的gap长度6ms。在本申请实施例以下描述和实例中,仅以L=6为例进行说明。
S302:所述终端设备根据所述第一测量配置信息,确定本次小区测量使用的gap的位置(其中,该gap周期内的gap数量为1个,即M 0=1),如图1B所示,并在确定的gap内进行小区测量。其中gap长度为L,gap周期为S1,gap的偏移量为f 0
在本申请实施例中,所述终端设备在gap内进行小区测量,包括:所述终端设备在该gap内接收待测量邻小区的参考信号,并确定待测量邻小区的测量结果。
需要说明的是,在该gap内可能无法覆盖所有待测量邻小区的参考信号时域位置,例如图1D所示,因此,在该gap内所述终端设备可能只接收到部分待测量小区的参考信号,或者未接收到所有待测量小区的参考信号,此时所述终端设备小区测量失败。
在所述终端设备小区测量失败的情况下,所述终端设备可以但不限于通过以下方式通知所述基站:
方式一:所述终端设备可以根据测量报告的上报策略,或者按照协议或与基站之间的约定,不向所述基站发送测量报告。
方式二:所述终端设备可以向所述基站发送携带部分待测量邻小区的测量结果的测量报告。
方式三:所述终端设备可以向所述基站发送携带全部待测量邻小区的测量结果的测量报告,且在该测量报告中所述终端设备未测量的待测量邻小区的测量结果无效。示例性的,所述终端设备未测量的待测量小区的测量结果可以为空、为零,或为用于指示测量结果为无效的指示符。
方式四:所述终端设备可以向终端设备发送通知消息,所述通知消息用于通知所述基站:所述终端设备小区测量失败。
S303:当所述终端设备采用以上方式二或方式三通知所述基站小区测量失败时,所述终端设备向所述基站发送第一测量报告。所述基站从所述终端设备接收所述第一测量报告。如图所示,此步骤为可选步骤。
其中,当所述终端设备采用上述方式二时,所述第一测量报告中包含部分待测量邻小区的测量结果;当所述终端设备采用上述方式三时,所述第一测量报告中包含全部待测量小区的测量结果,且只有所述终端设备测量到的待测量邻小区的测量结果是有效的。
S304:所述基站确定所述终端设备小区测量失败。
与上述S302中所述终端设备通知所述基站小区测量失败的方式相对应的,所述基站也可以通过以下方式,确定所述终端设备小区测量失败:
方式一:所述基站在设定时长内未从所述终端设备接收到测量报告,确定所述终端设备小区测量失败。
方式二:所述基站从所述终端设备接收第一测量报告,当所述基站确定所述第一测量报告中未包含全部待测量小区的测量结果时,确定所述终端设备小区测量失败。
方式三:所述基站从所述终端设备接收第一测量报告,当所述基站确定所述第一测量报告中存在部分待测量小区的测量结果无效时,确定所述终端设备小区测量失败。
方式四:所述基站从所述终端设备接收所述通知消息时,确定所述终端设备小区测量失败。
S304a:所述基站对终端设备后续在gap周期内进行小区测量时使用的gap数量进行增加,确定在gap周期内包含M i个用于所述终端设备进行后续小区测量时使用的gap,M i为大于1的整数。
可选的,在本申请实施例中,所述基站可以但不限于通过以下方式,增加gap周期内的gap数量,即确定M 1。其中,i为gap数量的调整次数,首次调整时,i=1。
方式一:M i符合公式:
Figure PCTCN2020125997-appb-000005
T1为待测量邻小区的参考信号发送周期。在gap数量首次调整的场景中,
Figure PCTCN2020125997-appb-000006
其中,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
为了提高所述终端设备的小区测量效率和成功率,所述M i个gap中相邻两个gap的偏移量差值可以小于或等于gap的长度L,L可以为6ms,为了避免时延抖动对小区测量产生影响r可以设置为5ms。由于在gap周期内所述终端设备可以持续通过所述M i个gap连续进行小区测量,因此,该方式可以保证所述终端设备在gap周期内接收到所有待测量邻小区的参考信号,从而保证所述终端设备可以尽快成功完成小区测量。
另外,由于通过方式一,所述M i个gap可以覆盖所有待测量邻小区的参考信号时域位置,因此,所述基站可以沿用上一次配置的gap的偏移量f 0,或者重新设置新的gap的偏移量。
其中,当M i个gap中每相邻两个gap的偏移量之间的偏移量均为固定值或所述基站已配置时,所述基站可以仅配置所述M i个gap中首个gap的偏移量f i,a;或者所述基站重新配置所述M i个gap中每个gap的偏移量。
方式二:所述基站可以将在gap周期内上一次小区测量失败使用的gap位置进行剔除。M i符合公式:
Figure PCTCN2020125997-appb-000007
且所述M i个gap中首个gap的偏移量f i,a可以符合公式:f i,a=f i-1,b+r。其中,T1为待测量邻小区的参考信号发送周期,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量,f i-1,b为所述基站上一次为所述终端设备配置的gap周期内的最后一个gap的偏移量。
在gap数量首次调整的场景中,
Figure PCTCN2020125997-appb-000008
且f 1,a=f 0+r。
与方式一类似的,由于所述终端设备在上一次的gap位置已经进行了小区测量,且小区测量失败(未得到全部待测量邻小区的测量结果),因此,将该gap位置剔除,所述终端设备依然可以在下一次小区测量过程中,在一个gap周期内的所述M i个gap内接收其他待测量邻小区的参考信号,从而得到其他待测量小区的测量结果。
其中,当M i个gap中每相邻两个gap的偏移量之间的偏移量均为固定值或所述基站已配置时,所述基站可以仅配置所述M i个gap中首个gap的偏移量f i,a;或者所述基站重新配置所述M i个gap中每个gap的偏移量。
显然,通过方式二,所述终端设备和所述基站可以结合上一次小区测量得到的测量结果以及本次小区测量得到的测量结果,得到所有待测量邻小区的测量结果,从而保证所述终端设备可以尽快成功完成小区测量,最终可以提高所述终端设备的小区测量效率和成功率。
方式三:M i=k*M i-1,其中,k为大于2的整数,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量。
在方式三中,所述基站可以成倍的增加gap的数量。其中,倍数k可以实际场景对小区测量效率和成功率的要求,和/或,对终端设备的吞吐率的要求综合考量设置。例如,为了尽量减少小区测量对终端设备吞吐率的影响,k的取值可以设置为2。
其中,当M i个gap中每相邻两个gap的偏移量之间的偏移量均为固定值或所述基站已配置时,所述基站可以仅配置所述M i个gap中首个gap的偏移量f i,a;或者所述基站重新配置所述M i个gap中每个gap的偏移量。在gap数量首次调整的场景中,f 1,a=f 0,或者f 1,a=f 0+r(即将在gap周期内上一次小区测量失败使用的gap位置进行剔除)。
另外,为了加快所述终端设备的测量报告的上报时间,以使所述基站可以尽快为终端设备进行小区切换或添加SCG,所述基站还可以进一步调整测量报告的上报策略为:周期触发,或者为在周期触发或事件触发中优选到达时间在先的上报策略。
S305:所述基站向所述终端设备发送第二测量配置信息。其中,所述第二测量配置信息用于通知在gap周期内包含M 1个用于所述终端设备进行小区测量使用的gap。所述终端设备从所述基站接收所述第二测量配置信息。
通过以上描述可知,所述第二测量配置信息中可以包含:所述M i个gap中每个gap的偏移量。或者,所述第二测量配置信息中可以包含所述M i个gap中首个gap的偏移量f i,a,当然还可以包含每相邻两个gap的偏移量差值。此外,所述第二测量配置信息中还可以包含所述基站配置的gap数量M i等其他信息。
在所述基站在S304a中还确定调整测量报告的上报策略时,相应的,所述第二测量配置信息还用于通知测量报告的上报策略为周期触发,或者为在周期触发或事件触发中优选到达时间在先的上报策略。
可选的,所述第二测量配置信息可以为多个信息,例如,所述第二测量配置信息可以但不限于包含:包含gap配置信息的信令1,和配置测量结果的上报策略的信令2。当然信令1中可以包含保持gap长度和gap周期不变的指示,或包含所述基站上一次为其配置的gap长度L和gap周期S1,还可以包含所述M i个gap中首个gap的偏移量或每个gap的偏移量,或相邻两个gap之间的偏移量差值等偏移量配置信息。
S306:所述终端设备根据所述第二测量配置信息,在gap周期内确定下一次小区测量使用的所述M i个gap的位置,并在每个gap内进行小区测量。
在本步骤中,所述终端设备可以根据所述基站配置的gap长度和gap周期,以及所述第二测量配置信息中包含的内容(gap的数量、首个gap的偏移量或每个gap的偏移量,或相邻两个gap之间的偏移量差值等偏移量配置信息),确定所述M i个gap的位置。
在本步骤中,所述终端设备在每个gap内进行小区测量的过程与S302相同,因此所述终端设备进行小区测量的过程可以参见以上对S302的描述,此处不再赘述。
另外,由于各种原因,在每个gap进行小区测量后,所述终端设备的小区测量可能成功,也可能会失败。当所述终端设备小区测量成功(通过首次小区测量直至本次小区测量,得到了所有待测量小区的测量结果)时,所述终端设备可以在该次小区测量后通过S307向所述基站发送第二测量报告;当所述终端设备小区测量失败时,所述终端设备同样还可以通过S302中描述的4中方式通知所述基站本次小区测量失败。
其中,需要说明的是,在所述终端设备每次小区测量后均向基站发送测量报告的情况下,所述终端设备每次发送的测量报告中可以仅包含该次测量到的待测量邻小区的测量结果,也可以包含所述终端设备在本次以及在之前每次测量到的待测量邻小区的测量结果, 本申请对此不作限定。当所述终端设备在小区测量失败后不向所述基站发送测量报告的情况下,所述终端设备在确定小区测量成功时,向所述基站发送的测量报告中包含所述终端设备在本次以及在之前每次测量到的所有待测量邻小区的测量结果。
S307:所述终端设备向所述基站发送第二测量报告。所述基站从所述终端设备接收所述第二测量报告。如图所示,此步骤为可选的步骤。
当所述第二测量配置信息还用于指示测量报告的上报策略时,所述终端设备按照所述该上报策略上报所述第二测量报告。
S308:所述基站根据所述第二测量报告确定所述终端设备小区测量成功。
可选的,所述基站还可以同S304中的方式,确定所述终端设备本次小区测量失败,然后,所述基站还可以通过再次增加gap数量的方式(具体过程可以参考S304a-S308),或者采用调整所述M i个gap的偏移量的方式,对所述终端设备使用的gap进行配置,直至所述终端设备小区测量成功。
S309:所述基站可以在S305之后,或者S308确定所述终端设备小区测量成功之后,向所述终端设备发送第三测量配置信息。所述终端设备所述基站接收所述第三测量配置信息。
在一种实施方式中,所述第三测量配置信息用于指示:所述终端设备停止进行小区测量。可选的,所述第三测量配置信息可以具体指示所述终端设备在设定时间段内停止进行小区测量;或者所述终端设备在接收到所述第三测量配置信息后,在设定时间段内停止进行小区测量。
在另一种实施方式中,所述第三测量配置信息可以但不限于用于指示以下至少一项:
在gap周期内包含的用于所述终端设备进行小区测量使用的gap数量恢复为1个;
所述终端设备进行小区测量时使用的gap周期取值从S1调整为S2,其中S2>S1。示例性的,所述S2符合公式:S2=b*S1,其中,b为大于2的整数。
通过以上描述可知,由于S306中所述终端设备在一个gap周期内连续通过M i个gap进行小区测量,虽然所述终端设备通过S306进行小区测量的成功率较高,但是这会对所述终端设备的业务吞吐率有所影响。综上,通过以上任一种实施方式,可以保证或提高所述终端设备后续的业务吞吐率。
S310:在所述第三测量配置信息为上述第一种实施方式情况下,所述终端设备不再进行小区测量。在所述第三测量配置信息为上述第二种实施方式的情况下,所述终端设备再次根据所述第三测量配置信息指示的gap数量和/或gap周期,确定再下一次小区测量使用的gap的位置,并在确定的gap内进行小区测量。
在本步骤中,所述终端设备在确定的gap内进行小区测量的过程与S302相同,因此所述终端设备进行小区测量的过程可以参见以上对S302的描述,此处不再赘述。
当然,当所述终端设备进行小区测量后,还可以通知所述基站所述终端设备对待测量邻小区的测量结果。
还需要说明的是,在本申请实施例中,所述基站向所述终端设备发送各个测量配置信息,以及所述终端设备向所述基站发送测量报告或通知消息,都可以通过RRC信令实现,本申请对此不作限定。
本申请实施例提供的测量配置方法中,基站在确定终端设备小区测量失败后,通知终端设备后续在同一个gap周期内使用多个gap进行小区测量。这样,在后续小区测量过程 中,终端设备在一个gap周期的多个gap内接收到待测量邻小区的参考信号的概率可以提高,因此,该方法可以提高所述终端设备小区测量的成功率和效率。
基于图3所示的实施例,本申请还提供了一种gap数量的调整方法实例。参阅图4A所示。所述基站在确定终端设备的小区测量失败后,可以配置在一个gap周期gap的数量变为
Figure PCTCN2020125997-appb-000009
为了预防时间抖动,以及尽量提高所述终端设备的业务吞吐率,相邻两个gap之间的偏移量差值为L-x,即相邻两个gap之间存在长度为x的重叠部分。
如图4A所示,假设基站为终端设备首次配置的gap配置为gap的偏移量=0ms,gap周期为40ms,gap长度=6ms;所述基站为所述终端设备配置的待测量邻小区为4个,且每个待测量邻小区的参考信号的发送周期均为20ms。基站可以将一个gap周期的gap数量调整为4个,且首个gap的偏移量与上一次为终端设备配置的gap偏移量相同。
这样,所述终端设备可以在gap1内接收到待测量邻小区1的参考信号,……,在gap4内接收到待测量邻小区4的参考信号,最终所述终端设备可以通过4次小区测量,测量到所有待测量邻小区的测量结果,从而尽快实现小区测量成功。该实例可以提高所述终端设备的小区测量的效率和成功率。
基于图3所示的实施例,本申请还提供了另一种gap数量的调整方法实例。参阅图4B所示。所述基站在确定终端设备的小区测量失败后,可以配置在一个gap周期gap的数量变为
Figure PCTCN2020125997-appb-000010
为了保证终端设备的吞吐率,所述基站将上一次终端设备小区测量使用的gap位置进行剔除。另外,为了预防时间抖动,以及尽量提高所述终端设备的业务吞吐率,相邻两个gap之间的偏移量差值为L-x,即相邻两个gap之间存在长度为x的重叠部分。
如图4B所示,假设基站为终端设备首次配置的gap配置为gap的偏移量=0ms,gap周期为40ms,gap长度=6ms;所述基站为所述终端设备配置的待测量邻小区为4个,且每个待测量邻小区的参考信号的发送周期均为20ms。基站可以将一个gap周期的gap数量调整为3个,且首个gap的偏移量与上一次为终端设备配置的gap偏移量相比,增加5ms。
这样,所述终端设备可以在gap1内接收到待测量邻小区2的参考信号,……,在gap3内接收到待测量邻小区4的参考信号,最终所述终端设备可以通过3次小区测量,测量到待测量邻小区2-4的测量结果,结合之前测量到的待测量邻小区1的测量结果,所述终端设备实现了小区测量成功。该实例也可以提高所述终端设备的小区测量的效率和成功率,同时也可以降低小区测量对终端设备的吞吐率的影响。
基于图3所示的实施例,本申请还提供了又一种gap数量的调整方法实例。参阅图4C和图4D所示。所述基站在确定终端设备的小区测量失败后,可以配置在一个gap周期gap的数量变为原来的2倍。为了保证终端设备的吞吐率,所述基站可以将上一次终端设备小区测量使用的gap位置进行剔除。
另外,为了预防时间抖动,以及尽量提高所述终端设备的业务吞吐率,相邻两个gap之间的偏移量差值为L-x,即相邻两个gap之间存在长度为x的重叠部分,如图4C中所示。
所述基站还可以将gap的位置分散,以覆盖尽可能多的待测量邻小区的参考信号时域位置(即相邻两个gap之间的偏移量差值大于6ms),如图4D所示。
假设基站为终端设备首次配置的gap配置为gap的偏移量=0ms,gap周期为40ms,gap长度=6ms;所述基站为所述终端设备配置的待测量邻小区为4个,且每个待测量邻小区的参考信号的发送周期均为20ms。
如图4C所示,所述基站确定所述终端设备小区测量失败后,将一个gap周期内的gap数量设置为2个,且这两个gap之间的偏移量差值为5ms。这样,所述终端设备可以在gap1内接收到待测量邻小区2的参考信号,在gap2内接收到待测量邻小区3的参考信号。虽然所述终端设备依然小区测量失败,但是终端设备可以通过这两次小区测量,获得两个待测量邻小区的测量结果。只要所述终端设备在通过后续的小区测量,得到待测量邻小区4的测量结果之后,结合之前测量到的待测量邻小区1-3的测量结果,所述终端设备即可实现小区测量成功。该实施例也可以提高所述终端设备的小区测量的效率和成功率,同时也可以降低小区测量对终端设备的吞吐率的影响。
如图4D所示,所述基站确定所述终端设备小区测量失败后,将一个gap周期内的gap数量设置为2个,且这两个gap之间的偏移量差值为8ms。这样,所述终端设备可以在gap1内接收到待测量邻小区2的参考信号,在gap2内接收到待测量邻小区3和待测量邻小区4的参考信号。最终所述终端设备可以通过这两次小区测量,测量到待测量邻小区2-4的测量结果,结合之前测量到的待测量邻小区1的测量结果,所述终端设备实现了小区测量成功。该实例也可以提高所述终端设备的小区测量的效率和成功率,同时也可以降低小区测量对终端设备的吞吐率的影响。
需要说明的是,当所述基站采用如图4C或图4D所示的实例,对gap周期内的gap数量加倍后,所述终端设备依然测量失败,后续所述基站可以继续对gap周期内的gap数量进行加倍,使gap周期内的gap数量变为4个、8个、16个等,直至所述终端设备小区测量成功;或者后续所述基站不再增加gap数量,只调整gap的偏移量,以使调整后的gap可以覆盖终端设备还未测量到的待测量邻小区的参考信号时域位置,尽快完成小区测量。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该装置的结构如图5所示,包括通信单元501和处理单元502。所述通信装置可以应用于图2所示的通信系统中的基站或终端设备,并可以实现以上图3所示的测量配置方法。下面对装置500中的各个单元的功能进行介绍:
其中所述通信单元501的功能为接收和发送信号。所述通信单元501可以通过射频电路实现,其中,所述射频电路中包含天线。
下面对所述通信装置500应用于基站时所述处理单元502的功能进行介绍。
处理单元502,用于通过所述通信单元501向终端设备发送第一测量配置信息,其中,所述第一测量配置信息用于通知在gap周期内包含M i个用于所述终端设备进行小区测量使用的gap,M i为大于1的整数。
在一种可能的实施方式中,所述第一测量配置信息中包含所述M i个gap中每个gap的偏移量;或者所述第一测量配置信息中包含所述M i个gap中首个gap的偏移量f i,a
在一种可能的实施方式中,所述M i符合公式:
Figure PCTCN2020125997-appb-000011
T1为待测量邻小区的参考信号发送周期,其中,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
在一种可能的实施方式中,所述M i符合公式:
Figure PCTCN2020125997-appb-000012
且所述M i个gap中首 个gap的偏移量f i,a符合公式:f i,a=f i-1,b+5ms;其中,T1为待测量邻小区的参考信号发送周期,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量,f i-1,b为所述基站上一次为所述终端设备配置的gap周期内的最后一个gap的偏移量,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
在一种可能的实施方式中,所述M i符合公式:M i=k*M i-1,其中,k为大于2的整数,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量。
在一种可能的实施方式中,所述M i个gap中相邻两个gap的偏移量差值等于或大于L-x,L为所述基站为所述终端设备配置的gap长度,x为小于L的正数。
在一种可能的实施方式中,所述第一测量配置信息还用于通知测量报告的上报策略为周期触发,或者为在周期触发或事件触发中优选到达时间在先的上报策略。
在一种可能的实施方式中,所述处理单元502,还可以用于在通过所述通信单元501向所述终端设备发送所述第一测量配置信息之后,通过所述通信单元501向所述终端设备发送第二测量配置信息;其中,所述第二测量配置信息用于通知:所述终端设备停止进行小区测量;或者所述第二测量配置信息用于通知以下至少一项:
在gap周期内包含的用于所述终端设备进行小区测量使用的gap数量恢复为1个;
所述终端设备进行小区测量时使用的gap周期取值从S1调整为S2,其中,S2>S1。
在一种可能的实施方式中,所述S2符合公式:S2=b*S1,其中,b为大于2的整数。
在一种可能的实施方式中,所述处理单元502,还可以用于在通过所述通信单元501向所述终端设备发送所述第一测量配置信息之前,确定所述终端设备小区测量失败。
下面对所述通信装置500应用于终端设备时所述处理单元502的功能进行介绍。
处理单元502,用于通过所述通信单元501从基站接收第一测量配置信息,其中,所述第一测量配置信息用于通知在gap周期内包含M i个用于所述终端设备进行小区测量使用的gap,M i为大于1的整数;以及根据所述第一测量配置信息,在gap周期内确定所述M i个gap的位置,并在每个gap内进行小区测量。
在一种可能的实施方式中,所述第一测量配置信息中包含所述M i个gap中每个gap的偏移量;或者所述第一测量配置信息中包含所述M i个gap中首个gap的偏移量。
在一种可能的实施方式中,所述M i符合公式:
Figure PCTCN2020125997-appb-000013
T1为待测量邻小区的参考信号发送周期,其中,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
在一种可能的实施方式中,所述M i符合公式:
Figure PCTCN2020125997-appb-000014
且所述M i个gap中首个gap的偏移量f i,a符合公式:f i,a=f i-1,b+r;其中,T1为待测量邻小区的参考信号发送周期,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量,f i-1,b为所述基站上一次为所述终端设备配置的gap周期内的最后一个gap的偏移量,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
在一种可能的实施方式中,所述M i符合公式:M i=k*M i-1,其中,k为大于2的整数,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量。
需要说明的是,本申请以上实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式 实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
基于相同的技术构思,本申请实施例还提供了一种通信设备,该通信设备可以应用于图2所示的通信系统中的基站或终端设备,并可以实现如图3所示测量配置方法。参阅图6所示,所述通信网络设备包括:收发器601、处理器602以及存储器603。其中,所述收发器601、所述处理器602以及所述存储器603之间相互连接。
可选的,所述收发器601、所述处理器602以及所述存储器603之间通过总线604相互连接。所述总线604可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述收发器601,用于接收和发送信号,实现与其他设备之间的通信交互。所述处理器602,用于实现如图3所示的实施例中的测量配置方法。
在一种实施方式中,当所述通信设备600应用于基站时,所述处理器602具体用于:通过所述收发器601向终端设备发送第一测量配置信息,其中,所述第一测量配置信息用于通知在gap周期内包含M i个用于所述终端设备进行小区测量使用的gap,M i为大于1的整数。具体描述可以参照以上实施例中的相关描述,此处不再赘述。
在另一种实施方式中,当所述通信设备600应用于终端设备时,所述处理器602具体用于:通过所述收发器601从基站接收第一测量配置信息,其中,所述第一测量配置信息用于通知在gap周期内包含M i个用于所述终端设备进行小区测量使用的gap,M i为大于1的整数;以及根据所述第一测量配置信息,在gap周期内确定所述M i个gap的位置,并在每个gap内进行小区测量。具体可以参照以上实施例中的描述,此处不再赘述。
所述存储器603,用于存放程序指令和数据等。具体地,程序指令可以包括程序代码,该程序代码包括计算机操作指令。存储器603可能包含随机存取存储器(random access memory,RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器602执行存储器603所存放的程序指令,并使用所述存储器603中存储的数据,实现上述功能,从而实现上述实施例提供的测量配置方法。
基于以上实施例,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行图3所示的实施例提供的测量配置方法。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,所述计算机程序被计算机执行时,使得计算机执行图3所示的实施例提供的测量配置方法。
基于以上实施例,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,实现图3所示的实施例提供的测量配置方法。
基于以上实施例,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持计算机装置实现图3所示的实施例中基站或终端设备所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器用于保存该计算机装置必要的程序和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
综上所述,本申请提供了一种测量配置方法及装置。在该方法中,基站在确定终端设备小区测量失败后,通知终端设备后续在同一个gap周期内使用多个gap进行小区测量。这样,在后续小区测量过程中,终端设备在一个gap周期的多个gap内接收到待测量邻小区的参考信号的概率可以提高,因此,该方法可以提高所述终端设备小区测量的成功率和效率。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种测量配置方法,其特征在于,包括:
    基站向终端设备发送第一测量配置信息,其中,所述第一测量配置信息用于通知在gap周期内包含M i个用于所述终端设备进行小区测量使用的gap,M i为大于1的整数。
  2. 如权利要求1所述的方法,其特征在于,所述第一测量配置信息中包含所述M i个gap中每个gap的偏移量;或者
    所述第一测量配置信息中包含所述M i个gap中首个gap的偏移量f i,a
  3. 如权利要求1或2所述的方法,其特征在于,所述M i符合公式:
    Figure PCTCN2020125997-appb-100001
    T1为待测量邻小区的参考信号发送周期,其中,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
  4. 如权利要求1或2所述的方法,其特征在于,所述M i符合公式:
    Figure PCTCN2020125997-appb-100002
    且所述M i个gap中首个gap的偏移量f i,a符合公式:f i,a=f i-1,b+r;
    其中,T1为待测量邻小区的参考信号发送周期,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量,f i-1,b为所述基站上一次为所述终端设备配置的gap周期内的最后一个gap的偏移量,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
  5. 如权利要求1或2所述的方法,其特征在于,所述M i符合公式:M i=k*M i-1,其中,k为大于2的整数,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述M i个gap中相邻两个gap的偏移量差值等于或大于L-x,L为所述基站为所述终端设备配置的gap长度,x为小于L的正数。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一测量配置信息还用于通知测量报告的上报策略为周期触发,或者为在周期触发或事件触发中优选到达时间在先的上报策略。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述基站向所述终端设备发送所述第一测量配置信息之后,还包括:
    所述基站向所述终端设备发送第二测量配置信息;
    其中,所述第二测量配置信息用于通知:所述终端设备停止进行小区测量;或者
    所述第二测量配置信息用于通知以下至少一项:
    在gap周期内包含的用于所述终端设备进行小区测量使用的gap数量恢复为1个;
    所述终端设备进行小区测量时使用的gap周期取值从S1调整为S2,其中,S2>S1。
  9. 如权利要求8所述的方法,其特征在于,所述S2符合公式:S2=b*S1,其中,b为大于2的整数。
  10. 如权利要求1-9任一项所述的方法,其特征在于,所述基站向所述终端设备发送所述第一测量配置信息之前,所述方法还包括:
    所述基站确定所述终端设备小区测量失败。
  11. 一种测量配置方法,其特征在于,包括:
    终端设备从基站接收第一测量配置信息,其中,所述第一测量配置信息用于通知在gap周期内包含M i个用于所述终端设备进行小区测量使用的gap,M i为大于1的整数;
    所述终端设备根据所述第一测量配置信息,在gap周期内确定所述M i个gap的位置,并在每个gap内进行小区测量。
  12. 如权利要求11所述的方法,其特征在于,所述第一测量配置信息中包含所述M i个gap中每个gap的偏移量;或者所述第一测量配置信息中包含所述M i个gap中首个gap的偏移量。
  13. 如权利要求11或12所述的方法,其特征在于,所述M i符合公式:
    Figure PCTCN2020125997-appb-100003
    T1为待测量邻小区的参考信号发送周期,其中,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
  14. 如权利要求11或12所述的方法,其特征在于,所述M i符合公式:
    Figure PCTCN2020125997-appb-100004
    且所述M i个gap中首个gap的偏移量f i,a符合公式:f i,a=f i-1,b+r;
    其中,T1为待测量邻小区的参考信号发送周期,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量,f i-1,b为所述基站上一次为所述终端设备配置的gap周期内的最后一个gap的偏移量,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
  15. 如权利要求11或12所述的方法,其特征在于,所述M i符合公式:M i=k*M i-1,其中,k为大于2的整数,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量。
  16. 一种基站,其特征在于,包括:
    通信单元,用于接收和发送信号;
    处理单元,用于通过所述通信单元向终端设备发送第一测量配置信息,其中,所述第一测量配置信息用于通知在gap周期内包含M i个用于所述终端设备进行小区测量使用的gap,M i为大于1的整数。
  17. 如权利要求16所述的基站,其特征在于,所述第一测量配置信息中包含所述M i个gap中每个gap的偏移量;或者
    所述第一测量配置信息中包含所述M i个gap中首个gap的偏移量f i,a
  18. 如权利要求16或17所述的基站,其特征在于,所述M i符合公式:
    Figure PCTCN2020125997-appb-100005
    T1为待测量邻小区的参考信号发送周期,其中,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
  19. 如权利要求16或17所述的基站,其特征在于,所述M i符合公式:
    Figure PCTCN2020125997-appb-100006
    且所述M i个gap中首个gap的偏移量f i,a符合公式:f i,a=f i-1,b+r;
    其中,T1为待测量邻小区的参考信号发送周期,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量,f i-1,b为所述基站上一次为所述终端设备配置的gap周期内的最后一个gap的偏移量,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
  20. 如权利要求16或17所述的基站,其特征在于,M i符合公式:M i=k*M i-1,其中,k为大于2的整数,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量。
  21. 如权利要求16-20任一项所述的基站,其特征在于,所述M i个gap中相邻两个gap的偏移量差值等于或大于L-x,L为所述基站为所述终端设备配置的gap长度,x为小于L的正数。
  22. 如权利要求16-21任一项所述的基站,其特征在于,所述第一测量配置信息还用 于通知测量报告的上报策略为周期触发,或者为在周期触发或事件触发中优选到达时间在先的上报策略。
  23. 如权利要求16-22任一项所述的基站,其特征在于,所述处理单元,还用于:
    在通过所述通信单元向所述终端设备发送所述第一测量配置信息之后,通过所述通信单元向所述终端设备发送第二测量配置信息;
    其中,所述第二测量配置信息用于通知:所述终端设备停止进行小区测量;或者
    所述第二测量配置信息用于通知以下至少一项:
    在gap周期内包含的用于所述终端设备进行小区测量使用的gap数量恢复为1个;
    所述终端设备进行小区测量时使用的gap周期取值从S1调整为S2,其中,S2>S1。
  24. 如权利要求23所述的基站,其特征在于,所述S2符合公式:S2=b*S1,其中,b为大于2的整数。
  25. 如权利要求16-24任一项所述的基站,其特征在于,所述处理单元,还用于:
    在通过所述通信单元向所述终端设备发送所述第一测量配置信息之前,确定所述终端设备小区测量失败。
  26. 一种终端设备,其特征在于,包括:
    通信单元,用于接收和发送信号;
    处理单元,用于通过所述通信单元从基站接收第一测量配置信息,其中,所述第一测量配置信息用于通知在gap周期内包含M i个用于所述终端设备进行小区测量使用的gap,M i为大于1的整数;以及根据所述第一测量配置信息,在gap周期内确定所述M i个gap的位置,并在每个gap内进行小区测量。
  27. 如权利要求26所述的终端设备,其特征在于,所述第一测量配置信息中包含所述M i个gap中每个gap的偏移量;或者所述第一测量配置信息中包含所述M i个gap中首个gap的偏移量。
  28. 如权利要求26或27所述的终端设备,其特征在于,所述M i符合公式:
    Figure PCTCN2020125997-appb-100007
    T1为待测量邻小区的参考信号发送周期,其中,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
  29. 如权利要求26或27所述的终端设备,其特征在于,所述M i符合公式:
    Figure PCTCN2020125997-appb-100008
    Figure PCTCN2020125997-appb-100009
    且所述M i个gap中首个gap的偏移量f i,a符合公式:f i,a=f i-1,b+r;
    其中,T1为待测量邻小区的参考信号发送周期,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量,f i-1,b为所述基站上一次为所述终端设备配置的gap周期内的最后一个gap的偏移量,r为小于或等于L的正数,L为所述基站为所述终端设备配置的gap长度。
  30. 如权利要求26或27所述的终端设备,其特征在于,所述M i符合公式:M i=k*M i-1,其中,k为大于2的整数,M i-1为所述基站上一次为所述终端设备配置的gap周期包含的gap数量。
PCT/CN2020/125997 2020-02-25 2020-11-02 一种测量配置方法及设备 WO2021169380A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010117181.1A CN113382434B (zh) 2020-02-25 2020-02-25 一种测量配置方法及设备
CN202010117181.1 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021169380A1 true WO2021169380A1 (zh) 2021-09-02

Family

ID=77490652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125997 WO2021169380A1 (zh) 2020-02-25 2020-11-02 一种测量配置方法及设备

Country Status (2)

Country Link
CN (1) CN113382434B (zh)
WO (1) WO2021169380A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060523A1 (zh) * 2021-10-15 2023-04-20 Oppo广东移动通信有限公司 切换方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103563431A (zh) * 2011-03-15 2014-02-05 爱立信(中国)通信有限公司 分配测量间隙的方法和基站
CN103686802A (zh) * 2012-09-19 2014-03-26 联芯科技有限公司 Lte/td-scdma业务态下测量gsm邻区的方法和装置
CN107960148A (zh) * 2015-05-14 2018-04-24 英特尔Ip公司 载波聚合和异步双连通性的测量方法
WO2018126851A1 (en) * 2017-01-05 2018-07-12 Huawei Technologies Co., Ltd. Measurement gap schedule supporting multiple beams

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651877A (zh) * 2008-08-11 2010-02-17 华为技术有限公司 一种配置测量间隙的方法、系统和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103563431A (zh) * 2011-03-15 2014-02-05 爱立信(中国)通信有限公司 分配测量间隙的方法和基站
CN103686802A (zh) * 2012-09-19 2014-03-26 联芯科技有限公司 Lte/td-scdma业务态下测量gsm邻区的方法和装置
CN107960148A (zh) * 2015-05-14 2018-04-24 英特尔Ip公司 载波聚合和异步双连通性的测量方法
WO2018126851A1 (en) * 2017-01-05 2018-07-12 Huawei Technologies Co., Ltd. Measurement gap schedule supporting multiple beams

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON, DEUTSCHE TELEKOM, VODAFONE, AT&T, APPLE, QUALCOMM INCORPORATED, OPPO, KT, TURKCELL, VERIZON: "Introduction of DL RRC segmentation", 3GPP DRAFT; R2-2000933, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Athens, Greece ;20200224 - 20200228, 13 February 2020 (2020-02-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051848675 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023060523A1 (zh) * 2021-10-15 2023-04-20 Oppo广东移动通信有限公司 切换方法及装置

Also Published As

Publication number Publication date
CN113382434B (zh) 2023-11-17
CN113382434A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
US11129191B2 (en) Signal transmission method and device
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
WO2021082009A1 (zh) 小区测量的方法、终端设备和网络设备
US10165455B2 (en) Coordination for PBCH
WO2020164018A1 (zh) 用于小区切换的方法及设备
CN112312487B (zh) 通信方法和通信装置
JP6998893B2 (ja) マルチリンク構成方法
US11076422B2 (en) Random access responding method and device, and random access method and device
JP2024502369A (ja) Ue能力情報処理方法、装置、機器、及び記憶媒体
WO2021104039A1 (zh) 一种测量配置方法及装置
CN111465098B (zh) 一种信息传输方法及装置
US20220386185A1 (en) Gateway handover method and apparatus
WO2022027811A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021104038A1 (zh) 一种测量配置方法及装置
WO2021159862A1 (zh) 一种添加辅小区组的方法、接入网设备和终端设备
WO2021169380A1 (zh) 一种测量配置方法及设备
WO2021088770A1 (zh) 一种测量配置方法及设备
WO2021169378A1 (zh) 一种测量配置方法及设备
US20240064718A1 (en) Communication method, base station, terminal, and storage medium
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备
US20220007449A1 (en) Wireless communication method, terminal device and network device
TW202025692A (zh) 一種數據傳輸方法、設備及儲存媒介
WO2019174586A1 (zh) 随机接入方法及装置
WO2020029275A1 (zh) 一种无线通信方法、终端设备和网络设备
KR20210148251A (ko) 신호 전송 방법 및 장치, 네트워크 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922438

Country of ref document: EP

Kind code of ref document: A1