WO2022151494A1 - 一种传输参数确定方法及装置 - Google Patents

一种传输参数确定方法及装置 Download PDF

Info

Publication number
WO2022151494A1
WO2022151494A1 PCT/CN2021/072557 CN2021072557W WO2022151494A1 WO 2022151494 A1 WO2022151494 A1 WO 2022151494A1 CN 2021072557 W CN2021072557 W CN 2021072557W WO 2022151494 A1 WO2022151494 A1 WO 2022151494A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
antenna panel
transmission
information
parameters
Prior art date
Application number
PCT/CN2021/072557
Other languages
English (en)
French (fr)
Inventor
袁世通
陈雷
刘凤威
樊波
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2021/072557 priority Critical patent/WO2022151494A1/zh
Priority to CN202180089978.8A priority patent/CN116711228A/zh
Publication of WO2022151494A1 publication Critical patent/WO2022151494A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method and apparatus for determining transmission parameters.
  • the terminal device when the terminal device supports the ability to communicate in multiple frequency bands, before the terminal device communicates with the network device, beam scanning can be performed on each frequency band to determine the receive beam and transmit beam used by the terminal device in each frequency band . In this way, the communication overhead will be increased and the communication efficiency will be reduced.
  • the present application provides a method and device for determining transmission parameters, which solves the problems of high communication overhead and low communication efficiency caused by beam scanning in each frequency band.
  • the present application provides a transmission parameter determination method.
  • a transmission parameter determination device obtains configuration information for indicating a transmission parameter of a first frequency band, and the transmission parameter for indicating the first frequency band is used for the first frequency band and the second frequency band.
  • the indication information of the first frequency band of the frequency band, and the transmission parameters of the second frequency band are determined according to the configuration information and the indication information.
  • the first antenna panel corresponding to the first frequency band and the second antenna panel corresponding to the second frequency band have a correlation, and the correlation is used to indicate that the first antenna panel and the second antenna panel satisfy a preset condition.
  • the terminal device can directly determine the transmission parameters of the second frequency band according to the transmission parameters of the first frequency band, without having to Scanning is performed on the second frequency band to obtain transmission parameters of the second frequency band, which reduces communication overhead and improves communication efficiency.
  • the transmission parameters of the first frequency band include at least one of the following: receiving beam parameters of the first frequency band, sending beam parameters of the first frequency band, offset relationship, first Uplink transmit power of the frequency band.
  • the offset relationship is used to represent the relationship between the uplink transmit power of the second frequency band and the uplink transmit power of the first frequency band.
  • the receiving beam parameters of the first frequency band include at least one of the following: receiving beams, receiving spatial filter parameters, and quasi-co-location (quasi-co-location) of the received signals. , QCL) relationship, time offset compensation of the received signal, time domain expansion of the received signal, frequency offset compensation of the received signal, and Doppler shift of the received signal.
  • the transmit beam parameters of the first frequency band include at least one of the following: transmit beam, transmit spatial filter parameters, spatial relationship of transmit signals, and power control of transmit signals parameters, timing of the transmitted signal, path loss reference signal of the transmitted signal.
  • the transmission parameter determining device determines that the receiving beam parameters of the second frequency band include the receiving beam parameters of the first frequency band.
  • the above-mentioned method of "determining the transmission parameters of the second frequency band according to the configuration information and the indication information" may include: the transmission parameter determination device determines the transmission parameters of the second frequency band.
  • the transmit beam parameters include transmit beam parameters of the first frequency band.
  • the above “According to the configuration information and the instruction information, determine the The method for "transmission parameters of the second frequency band” may include: the transmission parameter determination device determines the uplink transmission power of the second frequency band according to the offset relationship and the uplink transmission power of the first frequency band.
  • the uplink transmit power of the first frequency band and the second frequency band in the embodiment of the present application can be controlled by the same set of signaling, which is different from the uplink transmit power of each frequency band in the prior art.
  • the embodiment of the present application can reduce signaling overhead, thereby improving communication efficiency.
  • the above-mentioned indication information is used to indicate the transmission parameters of the first antenna panel
  • the above-mentioned configuration information is used to indicate that the transmission parameters of the first antenna panel are used for the first antenna panel. and the second antenna panel.
  • the above method of "determining the transmission parameters of the second frequency band according to the configuration information and the indication information" may include: the transmission parameter determination device determines the transmission parameters of the second antenna panel according to the configuration information and the indication information.
  • the above-mentioned method of "obtaining configuration information and indication information of the first frequency band” may include: the transmission parameter determining apparatus obtains the first information, and sends the first information to the network device. A message, receiving configuration information and indication information from the network device.
  • the first information is used to represent that there are a first antenna panel and a second antenna panel with a correlation in the terminal device, and the configuration information and the indication information are obtained based on the first information.
  • the second antenna panel since the second antenna panel has an associated relationship with the first antenna panel, it is possible to directly switch from the third antenna panel to the second antenna panel.
  • the switching of the antenna panel is actively triggered by the terminal device without re-scanning, which can reduce communication overhead and improve communication efficiency.
  • the first information includes location information of the first antenna panel and location information of the second antenna panel.
  • the first information includes an identifier of the first antenna panel and an identifier of the second antenna panel, and correlation information, where the correlation information is used to characterize the degree of correlation between the first antenna panel and the second antenna panel.
  • the first information includes an identifier of the first antenna panel and an identifier of the second antenna panel, and the identifier of the first antenna panel and the identifier of the second antenna panel belong to one antenna panel set.
  • the transmission parameter determination method provided by the present application further includes: when the transmission parameter determination device determines that the third antenna panel corresponding to the second frequency band is disconnected from the network device; In the case of switching from the third antenna panel to the second antenna panel; determine the transmission parameters of the second antenna panel according to the configuration information and the instruction information; send the switching instruction information to the network device, and the switching instruction information is used to indicate the switch from the third antenna.
  • the panel switches to the second antenna panel.
  • the second antenna panel since the second antenna panel has an associated relationship with the first antenna panel, it is possible to directly switch from the third antenna panel to the second antenna panel.
  • the switching of the antenna panel is actively triggered by the terminal device without re-scanning, which can reduce communication overhead and improve communication efficiency.
  • the preset condition is: antenna panels of multiple frequency bands are integrated together.
  • the preset condition is: the distance between the antenna panels of the multiple frequency bands is less than the preset value.
  • the preset condition is that the antenna panels of multiple frequency bands are packaged in one chip.
  • the preset condition is: the antenna panels of multiple frequency bands are located on the same side of the terminal.
  • the preset condition is: the antenna panels of multiple frequency bands are closely spliced.
  • the present application provides an apparatus for determining a communication parameter.
  • the apparatus for determining a communication parameter includes various modules for executing the method for determining a transmission parameter of the first aspect or any possible implementation manner of the first aspect.
  • the present application provides a terminal device, where the terminal device includes a memory and a processor.
  • the memory and the processor are coupled.
  • the memory is used to store computer program code including computer instructions.
  • the terminal device executes the transmission parameter determination method according to the first aspect and any possible implementations thereof.
  • the present application provides a chip system, which is applied to a communication parameter determination apparatus.
  • a chip system includes one or more interface circuits, and one or more processors.
  • the interface circuit and the processor are interconnected by lines; the interface circuit is used for receiving signals from the memory of the communication parameter determination device and sending signals to the processor, the signals including computer instructions stored in the memory.
  • the communication parameter determination apparatus performs the transmission parameter determination method as in the first aspect and any possible implementations thereof.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium comprising computer instructions, when the computer instructions are executed on the communication parameter determination device, the communication parameter determination device is made to perform the first aspect and any of the above.
  • the present application provides a computer program product, the computer program product comprising computer instructions, when the computer instructions are executed on the communication parameter determination device, the communication parameter determination device is made to perform the first aspect and any one of possible possibilities thereof. Implementation of the transmission parameter determination method.
  • the present application provides a transmission parameter determination device, where the transmission parameter determination device includes a memory and a processor.
  • the memory and the processor are coupled.
  • the memory is used to store computer program code including computer instructions.
  • the transmission parameter determination device performs the transmission parameter determination method as in the first aspect and any of its possible implementations.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 2a is one of the schematic layout diagrams of the antenna panel of the terminal device provided by the embodiment of the present application.
  • FIG. 2b is a schematic layout diagram of an antenna panel of a network device according to an embodiment of the present application.
  • FIG. 3 is one of the schematic flowcharts of a method for determining a transmission parameter provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of a scenario in which a terminal device determines a transmission parameter of a second frequency band according to an embodiment of the present application
  • FIG. 5 is a second schematic flowchart of a method for determining a transmission parameter provided by an embodiment of the present application
  • FIG. 6 is the second schematic diagram of the layout of the antenna panel of the terminal device provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a scenario of switching antenna panels according to an embodiment of the present application.
  • FIG. 8 is one of the schematic structural diagrams of the apparatus for determining a communication parameter provided by an embodiment of the present application.
  • FIG. 9 is a second schematic structural diagram of an apparatus for determining a communication parameter provided by an embodiment of the present application.
  • words such as “exemplary” or “for example” are used to represent examples, illustrations or illustrations. Any embodiments or designs described in the embodiments of the present application as “exemplary” or “such as” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “exemplary” or “such as” is intended to present the related concepts in a specific manner.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • a beam is a communication resource.
  • the beams can be wide beams, or narrow beams, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources. The same information or different information can be sent through different beams.
  • One or more antenna ports may be included within a beam for transmitting data channels, control channels, sounding signals, and the like.
  • the transmitting beam refers to the signal strength distribution of the wireless signal in different directions in space after the wireless signal is transmitted through the antenna
  • the receiving beam refers to the signal strength distribution of the wireless signal received from the antenna in different spatial directions. It can be understood that one or more antenna ports included in a beam can be regarded as an antenna port set.
  • the signal can be sent omnidirectionally or through a wider angle.
  • the antenna size is small due to the short wavelength of the high-frequency band, so many antenna elements can be arranged at the transmitting end and the receiving end to form an antenna array.
  • the transmitting end transmits signals with a certain beamforming weight, so that the transmitted signal forms a beam with spatial directivity, and the receiving end uses the antenna array to receive the signal with a certain beamforming weight, which can improve the received power of the signal at the receiving end , against path loss.
  • the beam can be embodied as a spatial domain filter, a spatial filter, a spatial domain parameter, a spatial parameter, Spatial domain setting, spatial setting, QCL information, QCL assumption, QCL indication, etc.
  • a beam can be indicated by a transmission configuration indicator (TCI) state.
  • TCI transmission configuration indicator
  • Beams can also be indicated by a spatial relation parameter. Therefore, in this embodiment of the present application, the beam can be replaced by a spatial filter, a spatial filter, a spatial parameter, a spatial parameter, a spatial setting, a spatial setting, QCL information, QCL assumption, QCL indication, TCI state (including DL TCI state and/or or UL TCI state), spatial relationship, etc.
  • TCI state including DL TCI state and/or or UL TCI state
  • the beam may also be replaced by other terms representing the beam, which are not limited in this embodiment of the present application.
  • QCL is used to indicate that multiple resources have one or more same or similar communication characteristics, and for multiple resources with QCL relationship, the same or similar communication configuration may be adopted. For example, if two antenna ports have a QCL relationship, then the large-scale characteristics of the channel transmitting one symbol at one port can be inferred from the large-scale characteristics of the channel transmitting one symbol at the other port.
  • Large-scale channel characteristics can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receive parameters, terminal device receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver antenna The spatial correlation of , the main angle of arrival (angel-of-arrival, AoA), the average angle of arrival, the extension of AoA, etc.
  • QCL is used to indicate whether at least two groups of antenna ports have a co-location relationship as follows: QCL is used to indicate whether the channel state information reference signals sent by at least two groups of antenna ports are from the same transmission point, or QCL is used to indicate at least two groups of antenna ports. Whether the channel state information reference signal sent by the antenna port comes from the same beam group.
  • the quasi-co-located assumption refers to the assumption that there is a QCL relationship between two antenna ports.
  • the configuration and indication of the quasi-co-location assumption can be used to assist the receiving end in signal reception and demodulation. For example, if the receiving end confirms that the A port and the B port have a QCL relationship, the receiving end can use the channel large-scale characteristic parameters measured on the A port to measure and demodulate the signal on the B port.
  • Airspace can be understood from two perspectives: from the sender or from the receiver. From the perspective of the transmitting end, if the two antenna ports are quasi-co-located in the spatial domain, the corresponding beam directions of the two antenna ports are spatially consistent. From the perspective of the receiving end, if the two antenna ports are quasi-co-located in the spatial domain, the receiving end can receive the signals sent by the two antenna ports in the same beam direction.
  • uplink communication includes transmission of uplink physical channels and uplink signals.
  • the uplink physical channels include: random access channel (PRACH), uplink control channel (physical uplink control channel, PUCCH), uplink data channel (physical uplink shared channel, PUSCH), etc.
  • Uplink signals include: channel sounding signal (sounding reference signal, SRS), uplink control channel demodulation reference signal (PUCCH de-modulation reference signal, PUCCH-DMRS), uplink data channel demodulation reference signal (PUSCH-DMRS), uplink phase Noise tracking signal (phase noise tracking reference signal, PTRS), uplink positioning signal (uplink positioning RS), etc.
  • Downlink communication includes the transmission of downlink physical channels and downlink signals.
  • the downlink physical channels include: a broadcast channel (physical broadcast channel, PBCH), a downlink control channel (physical downlink control channel, PDCCH), a downlink data channel (physical downlink shared channel, PDSCH) and the like.
  • Downlink signals include: primary synchronization signal (PSS)/secondary synchronization signal (SSS), downlink control channel demodulation reference signal (PDCCH-DMRS), downlink data channel demodulation reference signal (PDSCH-DMRS) ), phase noise tracking signal (PTRS), channel status information reference signal (CSI-RS), cell signal (cell reference signal, CRS) (there is no such signal in NR), fine synchronization signal (time/ frequency tracking referenee signal, TRS) (there is no such signal in LTE), LTE/NR positioning signal (positioning referenee signal), etc.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PDCH-DMRS downlink control channel demodulation reference signal
  • PDSCH-DMRS downlink data channel demodulation reference signal
  • CSI-RS channel status information reference signal
  • cell signal cell reference signal
  • CRS cell reference signal
  • TRS fine synchronization signal
  • LTE/NR positioning signal positioning referenee signal
  • CA Carrier aggregation
  • CA is a key technology in LTE-Advanced. In order to meet the requirements of single-user peak rate and system capacity improvement, one of the most direct methods is to increase the system transmission bandwidth.
  • the CA technology can configure multiple continuous or non-consecutive carriers in the frequency domain to a terminal device at the same time to increase the total bandwidth of the terminal device, thereby achieving the effect of increasing user capacity.
  • CA technology is also used in NR.
  • TCI is a field in downlink control information (downlink control information, DCI) used to indicate quasi-co-location of PDSCH antenna ports.
  • DCI downlink control information
  • TCI is configured by radio resource control (RRC), and is called transmission configuration indication state (TCI-state) in configuration signaling.
  • RRC radio resource control
  • TCI-state transmission configuration indication state
  • the TCI-state includes one or two QCL relationships, and the QCL is used to indicate a certain consistency relationship between a signal to be received currently and a previously known reference signal. If there is a QCL relationship, the terminal device can use the reception parameters when receiving a certain reference signal before to receive the upcoming signal.
  • QCL types include type A (type A), type B (type B), type C (type C), and type D (type D). Different QCL types have different information obtained from reference signals.
  • Common QCL reference signals include: before RRC configuration, the synchronization signal block (SSB) is used as a reference for DMRS in PDSCH and PDCCH; after RRC configuration, under sub6G, SSB is used as a reference for TRS, and TRS is used as a reference for DMRS , the CSI-RS is used as a reference for the DMRS.
  • SSB synchronization signal block
  • type A/B/C+type D that is, two types of configurations, including D and another type, D is used to represent beam information
  • the current protocol stipulates that only one of the three types of type A/B/C can exist at the same time.
  • type A contains the information of type B and type C, so it is meaningless to configure type A and type B/C at the same time.
  • type B and type C are configured at the same time, it is equivalent to type A, and type A can be configured directly.
  • the antenna panel may be composed of one or more groups of antenna arrays, and one group of antenna arrays includes one or more antenna elements.
  • antenna panels involved in the embodiments of the present application may be replaced with antenna arrays, antenna units, antenna ports, antenna groups, antennas, etc., which are not limited in the embodiments of the present application.
  • the terminal device when the terminal device supports the ability to communicate in multiple frequency bands, before the terminal device communicates with the network device, beam scanning can be performed on each frequency band to determine the receive beam and transmit beam used by the terminal device in each frequency band .
  • the beams and transmission parameters determined by the terminal equipment in one frequency band indicated by the network device cannot be directly applied to the communication transmission of the terminal equipment in other frequency bands. Since the terminal device interacts with the network device multiple times during beam scanning on a certain frequency band, the terminal performs beam scanning on each frequency band, which increases communication overhead and reduces communication efficiency.
  • the embodiments of the present application provide a method and apparatus for determining transmission parameters.
  • the transmission parameters used to indicate the first frequency band are used for the first frequency band and the second frequency band.
  • the terminal device determines the transmission parameters of the second frequency band according to the configuration information and the indication information.
  • the terminal device can directly determine the transmission parameters of the second frequency band according to the transmission parameters of the first frequency band, without having to Scanning is performed on the second frequency band to obtain transmission parameters of the second frequency band, which reduces communication overhead and improves communication efficiency.
  • FIG. 1 shows a structure of the communication system.
  • the communication system may include: a network device 11 and a terminal device 12 .
  • the network device 11 and the terminal device 12 communicate using communication resources of multiple frequency bands, which are illustrated by taking the first frequency band and the second frequency band as an example in FIG. 1 .
  • the network device 11 is configured to receive the first information sent by the terminal device 12, where the first information is used to characterize the existence of the first antenna panel corresponding to the first frequency band and the second antenna corresponding to the second frequency band in the terminal device 12 panel.
  • the network device 11 is further configured to obtain configuration information and indication information of the first frequency band based on the first information, and send the configuration information and the indication information to the terminal device 12 .
  • the indication information is used to indicate the transmission parameters of the first frequency band
  • the configuration information is used to indicate that the transmission parameters of the first frequency band are used for the first frequency band and the second frequency band.
  • the network device 11 is a device deployed in the wireless access network to provide the terminal device 12 with a wireless communication function.
  • the network device 11 may include various forms of macro base stations, micro base stations (also referred to as small cells), relay stations, access points, and the like. In systems with different wireless access technologies, the names of the network devices 11 may be different.
  • the network device 11 is called a base transceiver station (BTS); the wideband code In wideband code division multiple access (WCDMA), the network device 11 is called a node B (NB); in a long term evolution (long term evolution, LTE) system, the network device 11 is called an evolved node B ( evolved node B, eNB).
  • the network device 11 may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device 11 may also be a base station device in an NR network.
  • the network device 11 may also be a wearable device or a vehicle-mounted device.
  • the network device 11 may also be a transmission and reception point (transmission and reception point, TRP).
  • the terminal device 12 is configured to acquire the first information and send the first information to the network device 11 .
  • the terminal device 12 is further configured to receive configuration information and indication information of the first frequency band from the network device 11, and determine transmission parameters of the second frequency band according to the configuration information and the indication information.
  • the terminal device 12 may be a mobile terminal device, such as a mobile telephone (or "cellular" telephone) and a computer with a mobile terminal device, or may be portable, pocket-sized, hand-held, computer built-in or Onboard mobile devices that exchange language and/or data with the RAN.
  • a mobile terminal device such as a mobile telephone (or "cellular" telephone) and a computer with a mobile terminal device, or may be portable, pocket-sized, hand-held, computer built-in or Onboard mobile devices that exchange language and/or data with the RAN.
  • the terminal device 12 may be: a mobile phone (mobile phone), a tablet computer, a notebook computer, a PDA, a mobile internet device (MID), a wearable device, a virtual reality (VR) device, an augmented reality device (augmented reality, AR) equipment, wireless terminal equipment in industrial control (wireless terminal equipment in industrial control), wireless terminal equipment in self-driving (self driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid (smart grid) ), wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the terminal equipment 12 is a mobile phone as an example.
  • the basic hardware structures of the above-mentioned network device 11 and terminal device 12 are similar, and both include the elements included in the communication apparatus shown in FIG. 2 .
  • the hardware structures of the network device 11 and the terminal device 12 are described below by taking the communication device shown in FIG. 2 as an example.
  • the communication apparatus may include a processor 21 (or, a processing circuit) and a communication interface 22 (or, an interface circuit), and the communication interface 22 may be used to communicate with other apparatuses or devices.
  • a processor 21 or, a processing circuit
  • a communication interface 22 or, an interface circuit
  • the communication device may further include a memory 23 for storing computer instructions.
  • the processor 21 and the memory 23 are coupled to each other, and are used to implement the transmission parameter determination method provided by the following embodiments of the present application.
  • the communication device may not include the memory 23, and the memory 23 may be located outside the communication device.
  • the processor 21, the memory 23 and the communication interface 22 are coupled to each other, and are used to implement the transmission parameter determination method provided by the following embodiments of the present application.
  • the processor 21 executes the computer instructions stored in the memory 23, the communication device is made to execute the transmission parameter determination method provided by the following embodiments of the present application.
  • the communication device may be a communication device (terminal device or network device), or a chip or other components provided in the communication device.
  • the communication apparatus is a communication device
  • the communication interface 22 may be implemented by a transceiver (or a transmitter and a receiver) in the communication device, and the transceiver may be implemented by an antenna, a feeder, a codec and the like in the communication device.
  • the communication device is a chip set in the communication device, the communication interface 22 is an input/output interface of the chip, such as input/output pins, etc., and the communication interface 22 is connected with the radio frequency transceiver component in the communication device to transmit and receive through radio frequency. The component realizes the sending and receiving of information.
  • the processor 21 is the control center of the communication device, and may be a processor or a general term for multiple processing elements.
  • the processor 21 may be a general-purpose central processing unit (central processing unit, CPU), or may be other general-purpose processors or the like.
  • the general-purpose processor may be a microprocessor or any conventional processor, for example, the general-purpose processor may be a graphics processor (graphics processing unit, GPU), a digital signal processor (digital signal processing, DSP), and the like.
  • Memory 23 may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types of information and instructions
  • ROM read-only memory
  • RAM random access memory
  • a dynamic storage device that can also be an electrically erasable programmable read-only memory (EEPROM), a magnetic disk storage medium, or other magnetic storage device, or can be used to carry or store instructions or data structures in the form of desired program code and any other medium that can be accessed by a computer, but is not limited thereto.
  • EEPROM electrically erasable programmable read-only memory
  • magnetic disk storage medium or other magnetic storage device, or can be used to carry or store instructions or data structures in the form of desired program code and any other medium that can be accessed by a computer, but is not limited thereto.
  • the software programs stored in the memory 22 are different, so the functions implemented by the network device 11 and the terminal device 12 are different.
  • the functions performed by each device will be described in conjunction with the following flowcharts.
  • the communication interface 22 is used for connecting the communication device and other devices through a communication network, and the communication network can be Ethernet, RAN, wireless local area networks (wireless local area networks, WLAN) and the like.
  • the communication interface 22 may include a receiving unit for receiving data, and a transmitting unit for transmitting data.
  • the structure shown in FIG. 2 does not constitute a limitation on the communication device.
  • the communication device may include more or less components than those shown in the figure, or combine some components, or different component layout.
  • the capability of the terminal device to support communication in multiple frequency bands is achieved by using multiple antenna panels set in the terminal device, and generally, one frequency band corresponds to one or more antenna panels.
  • FIG. 2a is a schematic diagram of the layout of four antenna panels in a terminal device. As shown in Figure 2a, rectangles with different fillings are used to represent antenna panels corresponding to different frequency bands, and water drop shapes with different fillings are used to represent beams of different frequency bands. It is assumed that the terminal device supports the communication capability of the first frequency band and the second frequency band, the first frequency band corresponds to the antenna panels 1 and 2, and the second frequency band corresponds to the antenna panels 3 and 4.
  • antenna panel 1 and the antenna panel 4 different antenna panels are used for the first frequency band and the second frequency band, so the corresponding two beams have no spatial correlation.
  • antenna panel 2 and antenna panel 3 integrated antenna panels are used for the first frequency band and the second frequency band, so the corresponding two beams have spatial correlation.
  • FIG. 2b is a schematic diagram of the layout of the antenna panel of the first frequency band and the antenna panel of the second frequency band in the network device. If the antenna panel of the first frequency band and the antenna panel of the second frequency band have a certain consistency assumption, as shown in Figure 2b, the antenna panel of the first frequency band and the antenna panel of the second frequency band can be coplanar, or can be spliced up and down.
  • an embodiment of the present application provides a method for determining a transmission parameter.
  • the following describes the method for determining a transmission parameter provided by the embodiment of the present application with reference to the accompanying drawings.
  • the transmission parameter determination method may include the following steps 301 to 302 .
  • the terminal device acquires configuration information and indication information of the first frequency band.
  • the indication information is used to indicate the transmission parameters of the first frequency band
  • the configuration information is used to indicate that the transmission parameters of the first frequency band are used for the first frequency band and the second frequency band.
  • the first antenna panel corresponding to the first frequency band and the second antenna panel corresponding to the second frequency band have a correlation
  • the correlation is used to indicate that the first antenna panel and the second antenna panel satisfy a preset condition.
  • the correlation is used to characterize that the position of the first antenna panel and the position of the second antenna panel satisfy a preset condition.
  • the preset condition may be: antenna panels of multiple frequency bands are integrated together, or the distance between antenna panels of multiple frequency bands is less than a preset value, or antenna panels of multiple frequency bands are packaged in one chip, or multiple The antenna panels of the frequency bands are located on the same side/surface of the terminal, or the antenna panels of multiple frequency bands are closely spliced, and so on.
  • the configuration information is used to indicate that the transmission parameters of the first frequency band are used in multiple frequency bands including the first frequency band, each frequency band in the multiple frequency bands corresponds to an antenna panel, and multiple antennas corresponding to the multiple frequency bands There is a correlation between the panels, and the embodiments of the present application are described by taking the first frequency band and the second frequency band as an example.
  • the indication information may be TCI indication information, or spatial relation indication information.
  • the transmission parameters of the first frequency band include at least one of the following: receiving beam parameters of the first frequency band, transmission beam parameters of the first frequency band, offset relationship, and uplink transmit power of the first frequency band .
  • the offset relationship is used to represent the relationship between the uplink transmit power of the second frequency band and the uplink transmit power of the first frequency band.
  • the receive beam parameters of the first frequency band include at least one of the following: receive beam, receive spatial filter parameters, QCL relationship of the received signal, time offset compensation of the received signal, time domain extension of the received signal, received signal frequency offset compensation and Doppler offset of the received signal.
  • the transmit beam parameters of the first frequency band include at least one of the following: transmit beam, transmit spatial filter parameters, spatial relationship of transmit signals, power control parameters of transmit signals, timing of transmit signals, and paths of transmit signals Loss reference signal.
  • the configuration information is sent by the network device to the terminal device, and the transmission parameters of the first frequency band indicated by the configuration information are obtained by the network device by establishing a connection with the terminal device on the first frequency band.
  • the transmission parameters of the first frequency band are receive beam parameters and transmit beam parameters of the first frequency band
  • the receive beam parameters and transmit beam parameters of the first frequency band can be obtained by performing beam scanning on the first frequency band.
  • the beam scanning process may be: the network device sends a downlink reference signal (such as SSB, CSI-RS) to the terminal device, and the terminal device reports the measurement result of the downlink reference signal, such as the reference signal received power of the optimal beam. power, RSRP).
  • the network device determines the communication beam based on the measurement result reported by the terminal device.
  • other methods may also be used, and the specific implementation process of beam scanning is not limited in this embodiment of the present application.
  • the above-mentioned indication information is specifically used to indicate the transmission parameters of the first antenna panel
  • the configuration information is specifically used to indicate that the transmission parameters of the first antenna panel are used for the first antenna panel and the second antenna panel.
  • the terminal device determines the transmission parameters of the second frequency band according to the configuration information and the indication information.
  • the terminal device After acquiring the configuration information and the indication information of the first frequency band, the terminal device can obtain the transmission parameters of the first frequency band according to the configuration information, and learn that the transmission parameters of the first frequency band can be used for the first frequency band and the second frequency band according to the indication information, Therefore, the transmission parameters of the second frequency band can be determined according to the transmission parameters of the first frequency band.
  • the terminal device determines the transmission parameters of the second frequency band according to the configuration information and the instruction information, specifically: The device determines that the receive beam parameters of the second frequency band include receive beam parameters of the first frequency band.
  • the indication information is used to indicate the receive beam parameters of the first frequency band
  • the receive beam parameters of the first frequency band include: receive beam 2
  • the configuration information is used to indicate that receive beam 2 is used in the first frequency band and the second frequency band
  • the terminal device can determine that the receiving beam of the second frequency band is the receiving beam 2, that is, the terminal device will use the receiving beam 2 to receive the signal sent by the network device on the second frequency band.
  • the terminal device determines the transmission parameters of the second frequency band according to the configuration information and the instruction information. Specifically, the terminal device may determine that the transmission beam parameters of the second frequency band include the first frequency band. Transmit beam parameters for a frequency band.
  • the terminal device determines the specific transmission parameters of the second frequency band according to the configuration information and the instruction information. It may be: the terminal device determines the uplink transmit power of the second frequency band according to the offset relationship and the uplink transmit power of the first frequency band.
  • the uplink transmit power of the first frequency band and the second frequency band in the embodiment of the present application can be controlled by the same set of signaling, which is different from the uplink transmit power of each frequency band in the prior art.
  • the embodiment of the present application can reduce signaling overhead, thereby improving communication efficiency.
  • the embodiments of the present application are described by taking the transmission parameters of the first frequency band including the offset relationship and the uplink transmit power of the first frequency band as an example.
  • the offset relationship is carried in the configuration information and sent by the network device to the terminal device, and the offset relationship is pre-configured in the network device.
  • the transmission parameters of the first frequency band may also only include an offset relationship.
  • the offset relationship is pre-configured in the network device, and the terminal device can obtain the uplink transmit power of the first frequency band by itself.
  • the transmission parameter of the first frequency band may only include the uplink transmit power of the first frequency band.
  • the offset relationship may be pre-specified by the protocol or pre-configured in the terminal device. The source of the offset relationship is not limited in this embodiment of the present application.
  • the instruction information is specifically used to indicate the transmission parameters of the first antenna panel
  • the configuration information is specifically used to indicate that the transmission parameters of the first antenna panel are used for the first antenna panel and the transmission parameters.
  • the terminal device determining the transmission parameters of the second frequency band according to the configuration information and the instruction information may specifically be: the terminal device determines the transmission parameters of the second antenna panel according to the configuration information and the instruction information.
  • the terminal device acquires configuration information used to indicate the transmission parameter of the first frequency band, and indication information used to indicate that the transmission parameter of the first frequency band is used in the first frequency band and the second frequency band,
  • the transmission parameters of the second frequency band are determined according to the configuration information and the indication information, that is, the transmission parameters of the second frequency band are determined according to the transmission parameters of the first frequency band.
  • the terminal device can directly determine the transmission parameters of the second frequency band according to the transmission parameters of the first frequency band, without having to Scanning is performed on the second frequency band to obtain transmission parameters of the second frequency band, which reduces communication overhead and improves communication efficiency.
  • the foregoing step 301 may specifically include the following steps 301A-301F.
  • the terminal device acquires first information.
  • the first information is used to characterize the existence of the first antenna panel and the second antenna panel having a correlation relationship in the terminal device.
  • the first information may be used to indicate that there are multiple antenna panels with a correlation relationship and different frequency bands in the terminal device.
  • two antenna panels with a correlation relationship and different frequency bands are used as an example for description. .
  • the first information may be pre-stored in the terminal device, or may be obtained by the terminal device by analyzing the layout of the antenna panel in the terminal device. This embodiment of the present application does not limit the manner of acquiring the first information.
  • the first information may be implemented in the following multiple ways.
  • the specific implementation manner of the first information is not limited in this embodiment of the present application, and it can be used to characterize the existence of a first antenna panel and a second antenna panel having a related relationship in the terminal device.
  • the first information may include location information of the first antenna panel and location information of the second antenna panel.
  • the first information may include an identifier of the first antenna panel, an identifier of the second antenna panel, and related relationship information.
  • the representation of the identifier of the antenna panel may be: frequency band information corresponding to the antenna panel+antenna panel number.
  • the frequency band information may be a frequency band number or a frequency band range to which the frequency band belongs.
  • the antenna panel number may represent the number of the antenna panel in all antenna panels corresponding to the frequency band corresponding to the antenna panel, or may represent the number of the antenna panel in all antenna panels of the terminal device. This embodiment of the present application does not limit the representation of the identifier of the antenna panel.
  • the frequency band range includes FR1 and FR2. As shown in Table 1, it is the frequency band in FR1. As shown in Table 2, it is the frequency band in FR2.
  • the identification of the antenna panel can be: n78panel#1, n78 represents the frequency band number, and panel#1 represents the No. 1 antenna panel in all antenna panels corresponding to the n78 frequency band.
  • the identification of the antenna panel may be: FR1panel#1, FR1 indicates the frequency band range, and panel#1 indicates the No. 1 antenna panel among all the antenna panels included in the terminal device.
  • the correlation information is used to characterize the degree of correlation between the first antenna panel and the second antenna panel.
  • the degree of correlation may include high correlation, low correlation, and the like.
  • the two antenna panels if two antenna panels are integrated together, the two antenna panels have a high correlation.
  • Two antenna panels have a low correlation if they are located adjacent to each other. If two antenna panels are far apart, the two antenna panels are not related.
  • the first frequency band n78 corresponds to the antenna panels 1, 3, and 6, and the second frequency band n257 corresponds to the antenna panels 2, 4, and 5.
  • the identifier of the antenna panel 1 is n78panel#1
  • the identifier of the antenna panel 3 is n78panel#3
  • the identifier of the antenna panel 6 is n78panel#6.
  • the identification of the antenna panel 2 is n257panel#2
  • the identification of the antenna panel 4 is n257panel#4
  • the identification of the antenna panel 5 is n257panel#5.
  • the correlation information of antenna panel 1 and antenna panel 2 is used to characterize the degree of correlation between antenna panel 1 and antenna panel 2 is high correlation
  • the correlation information of antenna panel 3 and antenna panel 4 is used to characterize antenna panel 3 and antenna panel 4
  • the degree of correlation is low.
  • the first information may include: high correlation: ⁇ n78panel#1, n257panel#2 ⁇ ; low correlation: ⁇ n78panel#3, n257panel#4 ⁇ .
  • the terminal device in step 302 above determines the first information.
  • the receiving beam parameters of the second frequency band include the receiving beam parameters of the first frequency band, which may specifically include: if the correlation degree is high correlation, the terminal device may determine that all the receiving beam parameters of the first frequency band can be used in the second frequency band. If the correlation degree is low correlation, the terminal device may determine that part of the receive beam parameters of the first frequency band can be used for the second frequency band.
  • the partial parameters may include: receive beams.
  • the terminal device determines that the transmit beam parameters of the second frequency band include the transmit beam parameters of the first frequency band, which may specifically include: if the correlation degree is high correlation, the terminal device can determine all transmit beam parameters of the first frequency band. Can be used for the second frequency band. If the correlation degree is low correlation, the terminal device may determine that part of the transmit beam parameters of the first frequency band can be used for the second frequency band.
  • the partial parameters may include: transmit beams.
  • the first information may include an identifier of the first antenna panel and an identifier of the second antenna panel, and the identifier of the first antenna panel and the identifier of the second antenna panel belong to one antenna panel set. Multiple antenna panels belonging to the same antenna panel set have an associated relationship.
  • the first information may include: ⁇ n78 panel#1, n257 panel#2 ⁇ , ⁇ n78 panel#3, n257 panel#4 ⁇ .
  • the first information in the case where there is an antenna panel that has no correlation with other antenna panels in the terminal device, can also be used to indicate that there is an antenna panel in the terminal device that is not related to other antenna panels. Antenna panels with no correlation, such as the fourth antenna panel.
  • the first information may further include: position information of the fourth antenna panel.
  • the first information may further include an identification of the fourth antenna panel and irrelevant information, where the irrelevant information is used to indicate that the fourth antenna panel is not related to other antenna panels.
  • the first information may further include: an identifier of the fourth antenna panel, where the identifier of the fourth antenna panel belongs to an antenna panel set, and there is only one identifier in the set.
  • the first information may not be used to characterize antenna panels that are not related to other antenna panels.
  • the terminal device sends the first information to the network device.
  • the network device receives the first information from the terminal device.
  • the network device obtains configuration information and indication information of the first frequency band based on the first information.
  • the network device After receiving the first information from the terminal device, the network device can obtain, based on the first information, the first antenna panel and the second antenna panel with a correlation in the terminal device, and configure resources for the terminal device, so as to obtain information for indicating Configuration information of the transmission parameter of the first frequency band, and indication information used to indicate that the transmission parameter of the first frequency band is used for the first frequency band of the first frequency band and the second frequency band.
  • the configuration information may specifically include reference signal resources.
  • Reference signal resources may include: SRS, CSI-RS, SSB, and the like.
  • the types of reference signal resources are different, and the determined transmission parameters of the first frequency band may be different, that is, the transmission parameters of the first frequency band indicated by the configuration information may be different.
  • the SRS is used by the terminal device to determine at least one parameter: transmission spatial filter parameters and power control parameters of the transmission signal.
  • CSI-RS is used by terminal equipment to determine at least one parameter: receiving beam, receiving spatial filter parameters, QCL relationship of received signal, time offset compensation of received signal, time domain extension of received signal, frequency offset compensation of received signal, receiving Doppler shift of the signal.
  • SSB is used by the terminal device to determine at least one parameter: transmit beam, transmit spatial filter parameter, spatial relationship of transmit signal, power control parameter of transmit signal, timing of transmit signal, path loss reference signal of transmit signal, receive beam, receive Spatial filter parameters, QCL relationship of the received signal, time offset compensation of the received signal, time domain extension of the received signal, frequency offset compensation of the received signal, Doppler shift of the received signal.
  • the network device has multiple implementations when determining the indication information of the first frequency band.
  • unified indication information may be determined for multiple frequency bands corresponding to multiple antenna panels with correlation at the same time.
  • the indication information may be determined for each frequency band of the plurality of frequency bands corresponding to the plurality of antenna panels having the correlation.
  • the network device sends configuration information and indication information to the terminal device.
  • the terminal device receives configuration information and indication information from the network device.
  • the first information is reported to the network device by the terminal device, so that the network device realizes cross-carrier beam management, so that transmission parameters between different frequency bands can be coupled and interoperable, and communication overhead is greatly reduced.
  • the transmission parameter determination method provided in the embodiment of the present application may also be applied to a scenario of antenna panel switching.
  • the transmission parameter determination method may further include: in the case that the terminal device determines that the connection between the third antenna panel corresponding to the second frequency band and the network device is disconnected, switching from the third antenna panel to the second antenna panel, according to the configuration information and the indication information to determine the transmission parameters of the second antenna panel.
  • the terminal device may send switching instruction information to the network device, where the switching instruction information is used to instruct the terminal device to switch from the third antenna panel to the second antenna panel.
  • the switching indication information may include an identifier of the third antenna panel to be switched, and an identifier of the second antenna panel after switching.
  • the network device After receiving the switching instruction information from the terminal device, the network device can learn the switching situation of the antenna panel of the terminal device, and reconfigure resources according to the switching situation.
  • the terminal device may determine that the connection between the third antenna panel and the network device is disconnected when it is determined that the third antenna panel is blocked, the third antenna panel is damaged, or the like.
  • the second antenna panel since the second antenna panel has an associated relationship with the first antenna panel, it is possible to directly switch from the third antenna panel to the second antenna panel.
  • the switching of the antenna panel is actively triggered by the terminal device without re-scanning, which can reduce communication overhead and improve communication efficiency.
  • the antenna panel 1 is the third antenna panel
  • the antenna panel 3 is the second antenna panel
  • the antenna panel 1 and the antenna panel 3 correspond to the first frequency band.
  • the terminal device determines that the connection between the antenna panel 1 and the network device is disconnected, it can determine that the antenna panel 3 corresponds to the same frequency band as the antenna panel 1, and the antenna panel 3 and the antenna panel 4 have a correlation relationship. Switch to Antenna Panel 3.
  • the method for determining transmission parameters provided by the embodiments of the present application may further include: the terminal device acquires indication information of the first frequency band, where the indication information is used to indicate the transmission parameters of the first frequency band; determining the first antenna panel and the second frequency band corresponding to the first frequency band The second antenna panel corresponding to the frequency band has a correlation; according to the indication information and the correlation, the transmission parameters of the second frequency band are determined.
  • the terminal device after acquiring the indication information of the first frequency band, the terminal device can obtain the transmission parameters of the first frequency band, and the terminal device can determine the first antenna panel corresponding to the first frequency band and the second antenna corresponding to the second frequency band.
  • the panels have a correlation so that the terminal device can determine that the transmission parameters of the first frequency band can be used for the second frequency band. After that, the terminal device can determine the transmission parameters of the second frequency band according to the transmission parameters of the first frequency band.
  • the indication information is specifically used to indicate a transmission parameter of the first antenna panel.
  • the terminal device determines the transmission parameters of the second frequency band according to the indication information and the correlation relationship, which may specifically include: the terminal device determines the transmission parameters of the second antenna panel according to the indication information and the correlation relationship.
  • the above-mentioned terminal device acquiring the indication information of the first frequency band may specifically include: the terminal device acquiring the first information, sending the first information to the network device, and receiving the indication information from the network device.
  • the communication parameter determination apparatus 80 may be a terminal device, a CPU in the terminal device, or a terminal device
  • the control module can also be a client in the terminal device.
  • the communication parameter determination device 80 is configured to execute the transmission parameter determination method shown in any one of FIG. 3 and FIG. 5 .
  • the communication parameter determination apparatus 80 may include an acquisition unit 81 and a determination unit 82 .
  • the obtaining unit 81 is configured to obtain configuration information and indication information of the first frequency band, the indication information is used to indicate the transmission parameters of the first frequency band, and the configuration information is used to indicate that the transmission parameters of the first frequency band are used for the first frequency band and the second frequency band,
  • the first antenna panel corresponding to the first frequency band and the second antenna panel corresponding to the second frequency band have a correlation, and the correlation is used to indicate that the first antenna panel and the second antenna panel satisfy the preset condition.
  • the obtaining unit 81 may be used to perform step 301 .
  • the determining unit 82 is configured to determine the transmission parameters of the second frequency band according to the configuration information and the indication information acquired by the acquiring unit 81 .
  • determination unit 82 may be used to perform step 302.
  • the transmission parameters of the first frequency band include at least one of the following: receive beam parameters of the first frequency band, transmit beam parameters of the first frequency band, offset relationship, and uplink transmit power of the first frequency band.
  • the offset relationship is used to represent the relationship between the uplink transmit power of the second frequency band and the uplink transmit power of the first frequency band.
  • the receiving beam parameters of the first frequency band include at least one of the following: receiving beam, receiving spatial filter parameters, QCL relationship of the received signal, time offset compensation of the received signal, time domain extension of the received signal, frequency of the received signal. Bias compensation, Doppler shift of the received signal.
  • the transmit beam parameters of the first frequency band include at least one of the following: transmit beam, transmit spatial filter parameters, spatial relationship of transmit signals, power control parameters of transmit signals, timing of transmit signals, and path loss reference of transmit signals Signal.
  • the determining unit 82 when the transmission parameters of the first frequency band include receive beam parameters of the first frequency band, the determining unit 82 is specifically configured to: determine that the receive beam parameters of the second frequency band include receive beam parameters of the first frequency band.
  • the determining unit 82 is specifically configured to: determine that the transmission beam parameters of the second frequency band include transmission beam parameters of the first frequency band.
  • the determining unit 82 is specifically configured to: determine the second frequency band according to the offset relationship and the uplink transmit power of the first frequency band. Uplink transmit power of the frequency band.
  • the indication information is used to indicate transmission parameters of the first antenna panel
  • the configuration information is used to indicate that the transmission parameters of the first antenna panel are used for the first antenna panel and the second antenna panel.
  • the determining unit 82 is specifically configured to: determine the transmission parameters of the second antenna panel according to the configuration information and the indication information.
  • the obtaining unit 81 is specifically configured to: obtain first information, where the first information is used to represent the existence of a first antenna panel and a second antenna panel with a related relationship in the terminal device; send the first information to the network device; receive Configuration information and indication information from the network device, where the configuration information and indication information are obtained based on the first information.
  • the first information includes location information of the first antenna panel and location information of the second antenna panel.
  • the first information includes an identifier of the first antenna panel and an identifier of the second antenna panel, and correlation information, where the correlation information is used to characterize the degree of correlation between the first antenna panel and the second antenna panel.
  • the first information includes an identifier of the first antenna panel and an identifier of the second antenna panel, and the identifier of the first antenna panel and the identifier of the second antenna panel belong to one antenna panel set.
  • the transmission parameter determination apparatus 80 further includes: a switching unit 83 and a sending unit 84 .
  • the switching unit 83 is configured to switch from the third antenna panel to the second antenna panel when it is determined that the connection between the third antenna panel corresponding to the second frequency band and the network device is disconnected.
  • the determining unit 82 is further configured to determine the transmission parameters of the second antenna panel according to the configuration information and the indication information.
  • the sending unit 84 is configured to send switching instruction information to the network device, where the switching instruction information is used to instruct switching from the third antenna panel to the second antenna panel.
  • the preset condition is: antenna panels of multiple frequency bands are integrated together.
  • the preset condition is: the distance between the antenna panels of the multiple frequency bands is less than the preset value.
  • the preset condition is that the antenna panels of multiple frequency bands are packaged in one chip.
  • the preset condition is: the antenna panels of multiple frequency bands are located on the same side of the terminal.
  • the preset condition is: the antenna panels of multiple frequency bands are closely spliced.
  • the communication parameter determination apparatus 80 provided in this embodiment of the present application includes but is not limited to the above-mentioned modules.
  • the acquiring unit 81, the determining unit 82, and the switching unit 83 may be implemented by the processor of the communication parameter determining apparatus shown in Fig. 2 .
  • the sending unit 84 may be implemented by the communication interface of the apparatus for determining communication parameters shown in FIG. 2 .
  • Another embodiment of the present application further provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on a terminal device, the terminal device is made to execute the method shown in the above method embodiments Each step performed by the terminal device in the process.
  • a chip system includes one or more interface circuits, and one or more processors.
  • the interface circuit and the processor are interconnected by wires.
  • the interface circuit is used to receive signals from the memory of the terminal device and send signals to the processor, the signals including computer instructions stored in the memory.
  • the terminal device executes each step performed by the terminal device in the method flow shown in the above method embodiment.
  • a computer program product is also provided.
  • the computer program product includes computer instructions.
  • the terminal device is made to execute the terminal in the method flow shown in the above method embodiments. The various steps performed by the device.
  • the computer may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer-executed instructions are loaded and executed on the computer, the flow or function according to the embodiments of the present application is generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to transmit to another website site, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or data storage devices including one or more servers, data centers, etc., that can be integrated with the media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种传输参数确定方法及装置,涉及通信技术领域,解决了在每个频段上进行波束扫描,导致通信开销较大,通信效率较低的问题。具体方案包括:传输参数确定装置获取用于指示第一频段的传输参数的配置信息,以及用于指示第一频段的传输参数用于第一频段和第二频段的第一频段的指示信息,并根据配置信息和指示信息,确定第二频段的传输参数。其中,第一频段对应的第一天线面板和第二频段对应的第二天线面板具有相关关系,相关关系用于表征第一天线面板和第二天线面板满足预设条件。

Description

一种传输参数确定方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种传输参数确定方法及装置。
背景技术
目前,当终端设备支持多个频段通信的能力时,在终端设备与网络设备通信之前,可以在每个频段上进行波束扫描,以确定终端设备在每个频段上所使用的接收波束和发送波束。这样,会导致增加通信开销,降低通信效率。
发明内容
本申请提供一种传输参数确定方法及装置,解决了在每个频段上进行波束扫描,导致通信开销较大,通信效率较低的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种传输参数确定方法,传输参数确定装置获取用于指示第一频段的传输参数的配置信息,以及用于指示第一频段的传输参数用于第一频段和第二频段的第一频段的指示信息,并根据配置信息和指示信息,确定第二频段的传输参数。其中,第一频段对应的第一天线面板和第二频段对应的第二天线面板具有相关关系,相关关系用于表征第一天线面板和第二天线面板满足预设条件。
这样,在第一频段对应的第一天线面板和第二频段对应的第二天线面板具有相关关系时,终端设备能够直接根据第一频段的传输参数确定出第二频段的传输参数,无需在第二频段上进行扫描来获得第二频段的传输参数,降低了通信开销,提高了通信效率。
可选的,在本申请的一种可能的实现方式中,第一频段的传输参数包括以下至少一种:第一频段的接收波束参数、第一频段的发送波束参数、偏移关系、第一频段的上行发送功率。其中,偏移关系用于表征第二频段的上行发送功率和第一频段的上行发送功率之间的关系。
可选的,在本申请的另一种可能的实现方式中,第一频段的接收波束参数包括以下至少一种:接收波束、接收空域滤波器参数、接收信号的准同位(quasi-co-location,QCL)关系、接收信号的时偏补偿、接收信号的时域扩展、接收信号的频偏补偿、接收信号的多普勒偏移。
可选的,在本申请的另一种可能的实现方式中,第一频段的发送波束参数包括以下至少一种:发送波束、发送空域滤波器参数、发送信号的空间关系、发送信号的功率控制参数、发送信号的定时、发送信号的路径损耗参考信号。
可选的,在本申请的另一种可能的实现方式中,在第一频段的传输参数包括第一频段的接收波束参数的情况下,上述“根据配置信息和指示信息,确定第二频段的传输参数”的方法可以包括:传输参数确定装置确定第二频段的接收波束参数包括第一频段的接收波束参数。在第一频段的传输参数包括第一频段的发送波束参数的情况下,上述“根据配置信息和指示信息,确定第二频段的传输参数”的方法可以包括:传输 参数确定装置确定第二频段的发送波束参数包括第一频段的发送波束参数。
可选的,在本申请的另一种可能的实现方式中,在第一频段的传输参数包括偏移关系和第一频段的上行发送功率的情况下,上述“根据配置信息和指示信息,确定第二频段的传输参数”的方法可以包括:传输参数确定装置根据偏移关系和第一频段的上行发送功率,确定第二频段的上行发送功率。
这样,由于上行发送功率是由信令控制的,本申请实施例中第一频段和第二频段的上行发送功率能够由同一套信令控制,与现有技术中的每个频段的上行发送功率由一套信令控制相比,本申请实施例能够减少信令开销,从而提高通信效率。
可选的,在本申请的另一种可能的实现方式中,上述指示信息用于指示第一天线面板的传输参数,上述配置信息用于指示第一天线面板的传输参数用于第一天线面板和第二天线面板。上述“根据配置信息和指示信息,确定第二频段的传输参数”的方法可以包括:传输参数确定装置根据配置信息和指示信息,确定第二天线面板的传输参数。
可选的,在本申请的另一种可能的实现方式中,上述“获取配置信息和第一频段的指示信息”的方法可以包括:传输参数确定装置获取第一信息,并向网络设备发送第一信息,接收来自网络设备的配置信息和指示信息。其中,第一信息用于表征终端设备中存在具有相关关系的第一天线面板和第二天线面板,配置信息和指示信息是基于第一信息得到的。
这样,由于第二天线面板与第一天线面板具有相关关系,因此可以直接从第三天线面板切换到第二天线面板。通过终端设备主动触发天线面板的切换,无需重新进行扫描,能够降低通信开销,提高通信效率。
可选的,在本申请的另一种可能的实现方式中,第一信息包括第一天线面板的位置信息和第二天线面板的位置信息。或者,第一信息包括第一天线面板的标识和第二天线面板的标识,以及相关关系信息,相关关系信息用于表征第一天线面板和第二天线面板的相关程度。或者,第一信息包括第一天线面板的标识和第二天线面板的标识,第一天线面板的标识和第二天线面板的标识属于一个天线面板集合。
可选的,在本申请的另一种可能的实现方式中,本申请提供的传输参数确定方法还包括:传输参数确定装置在确定第二频段对应的第三天线面板与网络设备的连接断开的情况下,从第三天线面板切换到第二天线面板;根据配置信息和指示信息,确定第二天线面板的传输参数;向网络设备发送切换指示信息,切换指示信息用于指示从第三天线面板切换到第二天线面板。
这样,由于第二天线面板与第一天线面板具有相关关系,因此可以直接从第三天线面板切换到第二天线面板。通过终端设备主动触发天线面板的切换,无需重新进行扫描,能够降低通信开销,提高通信效率。
可选的,在本申请的另一种可能的实现方式中,预设条件为:多个频段的天线面板集成在一起。或者,预设条件为:多个频段的天线面板之间的距离小于预设值。或者,预设条件为:多个频段的天线面板封装在一个芯片中。或者,预设条件为:多个频段的天线面板位于终端的同一侧。或者,预设条件为:多个频段的天线面板紧密拼接。
第二方面,本申请提供一种通信参数确定装置,该通信参数确定装置包括用于执行上述第一方面或上述第一方面的任一种可能的实现方式的传输参数确定方法的各个模块。
第三方面,本申请提供一种终端设备,该终端设备包括存储器和处理器。存储器和处理器耦合。存储器用于存储计算机程序代码,计算机程序代码包括计算机指令。当处理器执行计算机指令时,终端设备执行如第一方面及其任一种可能的实现方式的传输参数确定方法。
第四方面,本申请提供一种芯片系统,该芯片系统应用于通信参数确定装置。芯片系统包括一个或多个接口电路,以及一个或多个处理器。接口电路和处理器通过线路互联;接口电路用于从通信参数确定装置的存储器接收信号,并向处理器发送信号,信号包括存储器中存储的计算机指令。当处理器执行计算机指令时,通信参数确定装置执行如第一方面及其任一种可能的实现方式的传输参数确定方法。
第五方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当计算机指令在通信参数确定装置上运行时,使得通信参数确定装置执行如第一方面及其任一种可能的实现方式的传输参数确定方法。
第六方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机指令,当计算机指令在通信参数确定装置上运行时,使得通信参数确定装置执行如第一方面及其任一种可能的实现方式的传输参数确定方法。
第七方面,本申请提供一种传输参数确定设备,该传输参数确定设备包括存储器和处理器。存储器和处理器耦合。存储器用于存储计算机程序代码,计算机程序代码包括计算机指令。当处理器执行计算机指令时,传输参数确定设备执行如第一方面及其任一种可能的实现方式的传输参数确定方法。
本申请中第二方面到第七方面及其各种实现方式的具体描述,可以参考第一方面及其各种实现方式中的详细描述;并且,第二方面到第七方面及其各种实现方式的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。
附图说明
图1为本申请实施例提供的通信系统的一种结构示意图;
图2为本申请实施例提供的通信装置的一种结构示意图;
图2a为本申请实施例提供的终端设备的天线面板的布局示意图之一;
图2b为本申请实施例提供的网络设备的天线面板的布局示意图;
图3为本申请实施例提供的传输参数确定方法的流程示意图之一;
图4为本申请实施例提供的终端设备确定第二频段的传输参数的场景示意图;
图5为本申请实施例提供的传输参数确定方法的流程示意图之二;
图6为本申请实施例提供的终端设备的天线面板的布局示意图之二;
图7为本申请实施例提供的切换天线面板的场景示意图;
图8为本申请实施例提供的通信参数确定装置的结构示意图之一;
图9为本申请实施例提供的通信参数确定装置的结构示意图之二。
具体实施方式
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说 明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
为了便于本领域技术人员理解,在此先对本申请实施例中涉及到的术语进行简要说明。
1、波束(beam)
波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型的波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术具体可以为数字波束成形技术、模拟波束成形技术、混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。
可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道、探测信号等。例如,发射波束是指无线信号经天线发射出去后在空间不同方向上的信号强度分布,接收波束是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,一个波束包括的一个或多个天线端口可以看作是一个天线端口集。
在使用低频或中频频段时,可以全向发送信号或者通过一个较宽的角度发送信号。在使用高频频段时,由于高频频段的波长较短,使得天线尺寸较小,因此可以在发送端和接收端布置很多天线阵子以构成天线阵列。这样,发送端以一定波束赋形权值发送信号,使发送信号形成具有空间指向性的波束,接收端用天线阵列以一定波束赋形权值进行信号的接收,能够提高信号在接收端的接收功率,对抗路径损耗。
在新空口(new radio,NR)的协议中,波束的体现可以是空域滤波器(spatial domain filter),空间滤波器(spatial filter),空域参数(spatial domain parameter),空间参数(spatial parameter),空域设置(spatial domain setting),空间设置(spatial setting),QCL信息,QCL假设,QCL指示等。波束可以通过传输配置指示(transmission configuration indicator,TCI)状态(state)来指示。波束也可以通过空间关系(spatial relation)参数来指示。因此,本申请实施例中,波束可以替换为空域滤波器,空间滤波器,空域参数,空间参数,空域设置,空间设置,QCL信息,QCL假设,QCL指示,TCI state(包括DL TCI state和/或UL TCI state),空间关系等。上述术语之间也可以相互等效。当然,波束也可以替换为其他表示波束的术语,本申请实施例不作限定。
2、QCL
QCL用于表示多个资源之间具有一个或多个相同或者类似的通信特征,对于具有QCL关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有QCL关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。信道大尺度特性可以包括:延迟扩展、平均延 迟、多普勒扩展、多普勒频移、平均增益、接收参数、终端设备接收波束编号、发射/接收信道相关性、接收到达角、接收机天线的空间相关性,主到达角(angel-of-arrival,AoA)、平均到达角、AoA的扩展等。
具体实现中,QCL用于指示至少两组天线端口是否具有同位关系为:QCL用于指示至少两组天线端口发送的信道状态信息参考信号是否来自相同的传输点,或QCL用于指示至少两组天线端口发送的信道状态信息参考信号是否来自相同的波束组。
3、准同位假设(QCL assumption)
准同位假设是指假设两个天线端口之间是否具有QCL关系。准同位假设的配置和指示可以用来帮助接收端进行信号的接收和解调。例如,如果接收端确认A端口和B端口具有QCL关系,则接收端可以将A端口上测得的信道大尺度特性参数用于B端口上的信号的测量和解调。
4、空域准同位(spatial QCL)
空域准同位是QCL的一种类型。空域的理解可以从两个角度:从发送端或者从接收端。从发送端来看,如果两个天线端口是空域准同位的,那么这两个天线端口的对应的波束方向在空间上是一致的。从接收端来看,如果两个天线端口是空域准同位的,那么接收端能够在相同的波束方向上接收到这两个天线端口发送的信号。
5、参考信号(reference signal,RS)
根据长期演进(long term evolution,LTE)/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中,上行物理信道包括:随机接入信道(randomaccess channel,PRACH),上行控制信道(physical uplink control channel,PUCCH),上行数据信道(physical uplink shared channel,PUSCH)等。上行信号包括:信道探测信号(sounding reference signal,SRS),上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS),上行数据信道解调参考信号(PUSCH-DMRS),上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS),上行定位信号(uplink positioning RS)等。
下行通信包括下行物理信道和下行信号的传输。其中,下行物理信道包括:广播信道(physical broadcast channel,PBCH),下行控制信道(physical downlink control channel,PDCCH),下行数据信道(physical downlink shared channel,PDSCH)等。下行信号包括:主同步信号(primary synchronization signal,PSS)/辅同步信号(secondary synchronization signal,SSS),下行控制信道解调参考信号(PDCCH-DMRS),下行数据信道解调参考信号(PDSCH-DMRS),相位噪声跟踪信号(PTRS),信道状态信息参考信号(channel status information reference signal,CSI-RS),小区信号(cell reference signal,CRS)(NR中没有该信号),精同步信号(time/frequency tracking referenee signal,TRS)(LTE中没有该信号),LTE/NR定位信号(positioning referenee signal)等。
6、载波聚合(carrier aggregation,CA)
CA是LTE-Advanced中的关键技术。为了满足单用户峰值速率和系统容量提升的要求,一种最直接的办法就是增加系统传输带宽。CA技术可以将频域连续或者非连续的多个载波同时配置给一个终端设备使用,以增加终端设备的总带宽,从而实现增 加用户容量的效果。NR中也使用了CA技术。
7、TCI
TCI是下行控制信息(downlink control information,DCI)中用于指示PDSCH天线端口准共址的字段。TCI由无线资源控制(radio resource control,RRC)配置,在配置信令中称为传输配置指示状态(TCI-state)。TCI-state包括一个或两个QCL关系,QCL用于指示当前将要接收的信号,与之前已知的某参考信号之间的某种一致性关系。若存在QCL关系,则终端设备可以使用之前接收某参考信号时的接收参数,来接收将要到来的信号。
QCL类型包括A类型(type A)、B类型(type B)、C类型(type C)、D类型(type D)。QCL类型不同,根据参考信号获取的信息不同。常见的QCL的参考信号包括:RRC配置前,同步信号块(synchronization signal block,SSB)给PDSCH和PDCCH中的DMRS做参考;RRC配置后,sub6G下,SSB给TRS作参考,TRS给DMRS作参考,CSI-RS给DMRS作参考。
6GHz以上频段,会有type D的QCL类型。这时type A/B/C+type D(即配置两种,包含D和另外一种,D用于表示波束信息),当前协议规定type A/B/C三种只能同时存在其中一种,其中type A包含了type B和type C的信息,所以同时配置type A和type B/C是没有意义的。同理,若同时配置type B和type C,则就等效于type A,直接配置type A即可。
8、天线面板
天线面板可以由一组或多组天线阵列组成,一组天线阵列包括一个或多个天线阵元。
需要说明的是,本申请实施例中涉及到的天线面板可以替换为天线阵列、天线单元、天线端口、天线组、天线等,本申请实施例不做限定。
目前,当终端设备支持多个频段通信的能力时,在终端设备与网络设备通信之前,可以在每个频段上进行波束扫描,以确定终端设备在每个频段上所使用的接收波束和发送波束。在没有任何先验信息(例如终端的架构假设)的情况下,网络设备指示的终端设备在一个频段上确定的波束以及传输参数,不能直接应用于终端设备其他频段的通信传输。由于在某频段上进行波束扫描的过程中终端设备与网络设备多次进行交互,因此终端在每个频段上均执行波束扫描,会导致增加通信开销,降低通信效率。
为了解决上述问题,本申请实施例提供一种传输参数确定方法及装置,终端设备获取配置信息和第一频段的指示信息,第一频段的指示信息用于指示第一频段的传输参数,配置信息用于指示第一频段的传输参数用于第一频段和第二频段。之后,终端设备根据配置信息和指示信息确定第二频段的传输参数。这样,在第一频段对应的第一天线面板和第二频段对应的第二天线面板具有相关关系时,终端设备能够直接根据第一频段的传输参数确定出第二频段的传输参数,无需在第二频段上进行扫描来获得第二频段的传输参数,降低了通信开销,提高了通信效率。
本申请实施例提供的传输参数确定方法适用于通信系统。图1示出了该通信系统的一种结构。如图1所示,该通信系统可以包括:网络设备11和终端设备12。网络设备11和终端设备12使用多个频段的通信资源进行通信,图1中以第一频段和第二 频段为例示出。
网络设备11,用于接收终端设备12发送的第一信息,该第一信息用于表征终端设备12中存在具有相关关系的第一频段对应的第一天线面板和第二频段对应的第二天线面板。网络设备11,还用于基于第一信息得到配置信息和第一频段的指示信息,并向终端设备12发送配置信息和指示信息。指示信息用于指示第一频段的传输参数,配置信息用于指示第一频段的传输参数用于第一频段和第二频段。
在一些实施例中,网络设备11,是部署在无线接入网中为终端设备12提供无线通信功能的设备。网络设备11可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在不同的无线接入技术的系统中,网络设备11的名称可能会有所不同。例如,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中,网络设备11称为基站收发信台(base transceiver station,BTS);宽带码分多址(wideband code division multiple access,WCDMA)中,网络设备11称为节点B(node B,NB);长期演进(long term evolution,LTE)系统中,网络设备11称为演进型节点B(evolved node B,eNB)。网络设备11还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。网络设备11还可以是NR网络中的基站设备。网络设备11还可以是可穿戴设备或车载设备。网络设备11还可以是传输接收节点(transmission and reception point,TRP)。
终端设备12,用于获取第一信息,并向网络设备11发送第一信息。终端设备12,还用于接收来自网络设备11的配置信息和第一频段的指示信息,根据配置信息和指示信息确定第二频段的传输参数。
在一些实施例中,终端设备12可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与RAN交换语言和/或数据。例如,终端设备12可以为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等。图1中以终端设备12为手机为例示出。
上述网络设备11和终端设备12的基本硬件结构类似,都包括图2所示通信装置所包括的元件。下面以图2所示的通信装置为例,介绍网络设备11和终端设备12的硬件结构。
如图2所示,通信装置可以包括处理器21(或者,处理电路)和通信接口22(或者,接口电路),通信接口22可用于与其他装置或设备进行通信。
可选的,通信装置还可以包括存储器23,用于存储计算机指令。处理器21和存储器23相互耦合,用于实现本申请下述实施例提供的传输参数确定方法。或者,通信装置也可以不包括存储器23,存储器23可以位于通信装置外部。
处理器21、存储器23和通信接口22相互耦合,用于实现本申请下述实施例提供的传输参数确定方法。例如,当处理器21执行存储器23存储的计算机指令时,使通信装置执行本申请下述实施例提供的传输参数确定方法。
例如,通信装置可以为通信设备(终端设备或网络设备),或者为设置在通信设备中的芯片或其他部件。如果通信装置为通信设备,则通信接口22可以通过通信设备中的收发器(或者,发送器和接收器)实现,收发器可以通过通信设备中的天线、馈线和编解码器等实现。如果通信装置为设置在通信设备中的芯片,则通信接口22为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口22与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
处理器21是通信装置的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器21可以是一个通用中央处理单元(central processing unit,CPU),也可以是其他通用处理器等。其中,通用处理器可以是微处理器或者是任何常规的处理器等,例如,通用处理器可以是图形处理器(graphics processing unit,GPU)、数字信号处理器(digital signal processing,DSP)等。
存储器23可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
在本申请实施例中,对于网络设备11和终端设备12而言,存储器22中存储的软件程序不同,所以网络设备11和终端设备12实现的功能不同。关于各设备所执行的功能将结合下面的流程图进行描述。
通信接口22,用于通信装置与其他设备通过通信网络连接,通信网络可以是以太网,RAN,无线局域网(wireless local area networks,WLAN)等。通信接口22可以包括用于接收数据的接收单元,以及用于发送数据的发送单元。
图2中示出的结构并不构成对该通信装置的限定,除图2所示部件之外,该通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
需要说明的是,本申请实施例中,终端设备支持多个频段通信的能力是通过终端设备中设置的多个天线面板来实现的,通常一个频段对应一个或多个天线面板。
示例性的,图2a为终端设备中的四个天线面板的布局示意图。如图2a所示,用不同填充物的矩形来表示不同频段对应的天线面板,用不同填充物的水滴形表示不同频段的波束。假设终端设备支持第一频段和第二频段通信的能力,第一频段对应天线面板1和2,第二频段对应天线面板3和4。
由图2a可知,对于天线面板1和天线面板4,第一频段和第二频段使用不同的天线面板,所以相应的两个波束没有空间的相关性。对于天线面板2和天线面板3,第一频段和第二频段使用的是集成在一起的天线面板,所以相应的两个波束具有空间的相关性。
再例如,图2b为网络设备中的第一频段的天线面板和第二频段的天线面板的布 局示意图。如果第一频段的天线面板和第二频段的天线面板具有一定的一致性假设,那么如图2b所示,第一频段的天线面板和第二频段的天线面板可以共面,也可以上下拼接。
基于上述通信系统和通信装置的硬件结构的介绍,本申请实施例提供一种传输参数确定方法,下面结合附图对本申请实施例提供的传输参数确定方法进行描述。
如图3所示,传输参数确定方法可以包括以下步骤301-步骤302。
301、终端设备获取配置信息和第一频段的指示信息。
指示信息用于指示第一频段的传输参数,配置信息用于指示第一频段的传输参数用于第一频段和第二频段。第一频段对应的第一天线面板和第二频段对应的第二天线面板具有相关关系,该相关关系用于表征第一天线面板和第二天线面板满足预设条件。具体的,相关关系用于表征第一天线面板的位置和第二天线面板的位置满足预设条件。例如,预设条件可以为:多个频段的天线面板集成在一起,或者多个频段的天线面板之间的距离小于预设值,或者多个频段的天线面板封装在一个芯片中,或者多个频段的天线面板位于终端的同一侧/面,或者多个频段的天线面板紧密拼接等等。
在具体实现中,配置信息用于指示第一频段的传输参数用于包括第一频段在内的多个频段,多个频段中的每个频段对应一个天线面板,多个频段对应的多个天线面板之间具有相关关系,本申请实施例是以第一频段和第二频段为例进行说明的。
在一些实施例中,指示信息可以为TCI指示信息,或者为空域关系(spatial relation)指示信息。
可选的,在本申请实施例中,第一频段的传输参数包括以下至少一种:第一频段的接收波束参数、第一频段的发送波束参数、偏移关系和第一频段的上行发送功率。其中,偏移关系用于表征第二频段的上行发送功率和第一频段的上行发送功率之间的关系。
在一些实施例中,第一频段的接收波束参数包括以下至少一种:接收波束、接收空域滤波器参数、接收信号的QCL关系、接收信号的时偏补偿、接收信号的时域扩展、接收信号的频偏补偿、接收信号的多普勒偏移。
在一些实施例中,第一频段的发送波束参数包括以下至少一种:发送波束、发送空域滤波器参数、发送信号的空间关系、发送信号的功率控制参数、发送信号的定时、发送信号的路径损耗参考信号。
可选的,在本申请实施例中,配置信息是网络设备发送给终端设备的,配置信息指示的第一频段的传输参数是网络设备通过在第一频段上与终端设备建立连接来获得的。示例性的,假设第一频段的传输参数为第一频段的接收波束参数和发送波束参数,那么第一频段的接收波束参数和发送波束参数可以通过在第一频段上进行波束扫描来得到。例如,波束扫描的过程可以为:网络设备向终端设备发送下行参考信号(如SSB、CSI-RS),终端设备上报下行参考信号的测量结果,如最优波束的参考信号接收功率(reference signal received power,RSRP)。网络设备基于终端设备上报的测量结果,确定通信的波束。对于波束扫描,还可以采用其他的方法进行,本申请实施例在此对波束扫描的具体实现过程不做限定。
可选的,本申请实施例中,上述指示信息具体用于指示第一天线面板的传输参数, 配置信息具体用于指示第一天线面板的传输参数用于第一天线面板和第二天线面板。
302、终端设备根据配置信息和指示信息,确定第二频段的传输参数。
终端设备在获取到配置信息和第一频段的指示信息之后,可以根据配置信息得到第一频段的传输参数,并根据指示信息获知第一频段的传输参数能够用于第一频段和第二频段,从而便可以根据第一频段的传输参数确定第二频段的传输参数。
可选的,在本申请实施例中,第一频段的传输参数包括第一频段的接收波束参数的情况下,终端设备根据配置信息和指示信息,确定第二频段的传输参数具体可以为:终端设备确定第二频段的接收波束参数包括第一频段的接收波束参数。
示例性的,如图4所示,假设指示信息用于指示第一频段的接收波束参数,第一频段的接收波束参数包括:接收波束2,配置信息用于指示接收波束2用于第一频段和第二频段,那么终端设备可以确定第二频段的接收波束为接收波束2,即终端设备将使用接收波束2接收网络设备在第二频段上发送的信号。
第一频段的传输参数包括第一频段的发送波束参数的情况下,终端设备根据配置信息和指示信息,确定第二频段的传输参数具体可以为:终端设备确定第二频段的发送波束参数包括第一频段的发送波束参数。
可选的,在本申请实施例中,第一频段的传输参数包括偏移关系和第一频段的上行发送功率的情况下,终端设备根据配置信息和指示信息,确定第二频段的传输参数具体可以为:终端设备根据偏移关系和第一频段的上行发送功率,确定第二频段的上行发送功率。这样,由于上行发送功率是由信令控制的,本申请实施例中第一频段和第二频段的上行发送功率能够由同一套信令控制,与现有技术中的每个频段的上行发送功率由一套信令控制相比,本申请实施例能够减少信令开销,从而提高通信效率。
需要说明的是,本申请实施例是以第一频段的传输参数包括偏移关系和第一频段的上行发送功率为例说明的。可以理解,该情况下,偏移关系携带在配置信息中,由网络设备发送给终端设备,偏移关系是预先配置在网络设备中的。当然,第一频段的传输参数也可以仅包括偏移关系。该情况下,偏移关系是预先配置在网络设备中的,终端设备可以自己获取第一频段的上行发送功率。或者,第一频段的传输参数也可以仅包括第一频段的上行发送功率。该情况下,偏移关系可以是协议预先规定的,或者是预先配置在终端设备中的。本申请实施例在此对偏移关系的来源不做限定。
可选的,在本申请实施例中,在上述步骤301中指示信息具体用于指示第一天线面板的传输参数,配置信息具体用于指示第一天线面板的传输参数用于第一天线面板和第二天线面板的情况下,终端设备根据配置信息和指示信息,确定第二频段的传输参数具体可以为:终端设备根据配置信息和指示信息,确定第二天线面板的传输参数。
本申请实施例提供的传输参数确定方法,终端设备获取用于指示第一频段的传输参数的配置信息,以及用于指示第一频段的传输参数用于第一频段和第二频段的指示信息,并根据配置信息和指示信息确定第二频段的传输参数,即根据第一频段的传输参数确定第二频段的传输参数。这样,在第一频段对应的第一天线面板和第二频段对应的第二天线面板具有相关关系时,终端设备能够直接根据第一频段的传输参数确定出第二频段的传输参数,无需在第二频段上进行扫描来获得第二频段的传输参数,降低了通信开销,提高了通信效率。
可选的,本申请实施例中,基于图3,如图5所示,上述步骤301具体可以包括以下步骤301A-301F。
301A、终端设备获取第一信息。
其中,第一信息用于表征终端设备中存在具有相关关系的第一天线面板和第二天线面板。在具体实现中,第一信息可以用于表征终端设备中存在具有相关关系、且频段不同的多个天线面板,本申请实施例中以具有相关关系、频段不同的两个天线面板为例进行说明。
在一些实施例中,第一信息可以是预先存储在终端设备中的,也可以是终端设备通过分析该终端设备中的天线面板的布局情况得到的。本申请实施例在此对第一信息的获取方式不做限定。
在一些实施例中,第一信息可以有以下多种实现方式。本申请实施例在此对第一信息的具体实现方式不做限定,能够用于表征终端设备中存在具有相关关系的第一天线面板和第二天线面板即可。
1、第一种实现中,第一信息可以包括第一天线面板的位置信息和第二天线面板的位置信息。通过分析第一天线面板的位置信息和第二天线面板的位置信息,能够获知第一天线面板和第二天线面板具有相关关系。
2、第二种实现中,第一信息可以包括第一天线面板的标识和第二天线面板的标识,以及相关关系信息。
在一些实施例中,天线面板(panel)的标识的表示方式可以为:天线面板对应的频段信息+天线面板编号。其中,频段信息可以为频段编号或者频段所属的频段范围。天线面板编号可以表示该天线面板在该天线面板对应的频段对应的所有天线面板中的编号,也可以表示该天线面板在终端设备的所有天线面板中的编号。本申请实施例在此对天线面板的标识的表示方式不做限定。
示例性的,假设频段范围包括FR1和FR2。如表1所示,为FR1中的频段。如表2所示,为FR2中的频段。
表1
Figure PCTCN2021072557-appb-000001
表2
Figure PCTCN2021072557-appb-000002
由表1和表2可知,天线面板的标识可以为:n78panel#1,n78表示频段编号,panel#1表示n78频段对应的所有天线面板中的1号天线面板。
天线面板的标识可以为:FR1panel#1,FR1表示频段范围,panel#1表示终端设备包括的所有天线面板中的1号天线面板。
在一些实施例中,相关关系信息用于表征第一天线面板和第二天线面板的相关程度。相关程度可以包括高相关(high correlation)、低相关(low correlation)等。在具体实现中,如果两个天线面板集成在一起,则这两个天线面板具有高相关关系。如果两个天线面板的位置相邻,则这两个天线面板具有低相关关系。如果两个天线面板的距离较远,则这两个天线面板不相关。
示例性的,如图6所示,终端设备中,假设第一频段n78对应天线面板1、3、6,第二频段n257对应天线面板2、4、5。且假设天线面板1的标识为n78panel#1,天线面板3的标识为n78panel#3,天线面板6的标识为n78panel#6。天线面板2的标识为n257panel#2,天线面板4的标识为n257panel#4,天线面板5的标识为n257panel#5。假设天线面板1和天线面板2的相关关系信息用于表征天线面板1和天线面板2的相关程度为高相关,天线面板3和天线面板4的相关关系信息用于表征天线面板3和天线面板4的相关程度为低相关。那么第一信息可以包括:high correlation:{n78panel#1,n257panel#2};low correlation:{n78panel#3,n257panel#4}。
可选的,在本申请实施例中,在第一信息中包括相关关系信息,且相关关系信息用于表征的相关程度包括高相关、低相关的场景下,上述步骤302中的终端设备确定第二频段的接收波束参数包括第一频段的接收波束参数具体可以包括:若相关程度为高相关,则终端设备可以确定第一频段的所有接收波束参数能够用于第二频段。若相关程度为低相关,则终端设备可以确定第一频段的部分接收波束参数能够用于第二频段。例如,该部分参数可以包括:接收波束。同理,上述步骤302中的终端设备确定第二频段的发送波束参数包括第一频段的发送波束参数具体可以包括:若相关程度为高相关,则终端设备可以确定第一频段的所有发送波束参数能够用于第二频段。若相关程度为低相关,则终端设备可以确定第一频段的部分发送波束参数能够用于第二频段。例如,该部分参数可以包括:发送波束。
3、第三种实现中,第一信息可以包括第一天线面板的标识和第二天线面板的标识,第一天线面板的标识和第二天线面板的标识属于一个天线面板集合。属于同一个天线面板集合的多个天线面板具有相关关系。
示例性的,结合上述第二种实现中的例子,第一信息可以包括:{n78 panel#1,n257 panel#2}、{n78 panel#3,n257 panel#4}。
需要说明的是,在本申请实施例中,在终端设备中存在与其他天线面板都不具有相关关系的天线面板的情况下,第一信息还可以用于表征终端设备中存在与其他天线面板均不具有相关关系的天线面板,如第四天线面板。具体的实现中,第一信息还可以包括:第四天线面板的位置信息。或者,第一信息还可以包括第四天线面板的标识和不相关信息,该不相关信息用于指示第四天线面板与其他天线面板均不相关。或者,第一信息还可以包括:第四天线面板的标识,该第四天线面板的标识属于一个天线面板集合,该集合中仅有一个标识。当然,第一信息也可以不用于表征与其他天线面板 不相关的天线面板。
301B、终端设备向网络设备发送第一信息。
301C、网络设备接收来自终端设备的第一信息。
301D、网络设备基于第一信息得到配置信息和第一频段的指示信息。
网络设备在接收到来自终端设备的第一信息之后,可以基于该第一信息获得终端设备中的具有相关关系的第一天线面板和第二天线面板,为终端设备配置资源,从而得到用于指示第一频段的传输参数的配置信息,以及用于指示第一频段的传输参数用于第一频段和第二频段的第一频段的指示信息。
在一些实施例中,配置信息具体可以包括参考信号资源。参考信号资源可以包括:SRS、CSI-RS、SSB等。参考信号资源的类型不同,确定出的第一频段的传输参数可能不同,也就是说,配置信息用于指示的第一频段的传输参数可能不同。例如,SRS用于终端设备确定至少一种参数:发送空域滤波器参数、发送信号的功率控制参数。CSI-RS用于终端设备确定至少一种参数:接收波束、接收空域滤波器参数、接收信号的QCL关系、接收信号的时偏补偿、接收信号的时域扩展、接收信号的频偏补偿、接收信号的多普勒偏移。SSB用于终端设备确定至少一种参数:发送波束、发送空域滤波器参数、发送信号的空间关系、发送信号的功率控制参数、发送信号的定时、发送信号的路径损耗参考信号、接收波束、接收空域滤波器参数、接收信号的QCL关系、接收信号的时偏补偿、接收信号的时域扩展、接收信号的频偏补偿、接收信号的多普勒偏移。
在一些实施例中,网络设备在确定第一频段的指示信息时有多种实现。一种实现中,可以同时给具有相关关系的多个天线面板对应的多个频段确定统一的指示信息。另一种实现中,可以分别给具有相关关系的多个天线面板对应的多个频段中的每个频段确定指示信息。
301E、网络设备向终端设备发送配置信息和指示信息。
301F、终端设备接收来自网络设备的配置信息和指示信息。
这样,通过终端设备向网络设备上报第一信息,使得网络设备实现了跨载波波束管理,从而使得不同频段之间的传输参数能够耦合和互用,大大降低了通信开销。
可选的,本申请实施例提供的传输参数确定方法还可以应用于天线面板切换场景。具体的,传输参数确定方法还可以包括:终端设备在确定第二频段对应的第三天线面板与网络设备的连接断开的情况下,从第三天线面板切换到第二天线面板,根据配置信息和指示信息,确定第二天线面板的传输参数。且,终端设备可以向网络设备发送切换指示信息,该切换指示信息用于指示终端设备从第三天线面板切换到第二天线面板。在具体的实现中,切换指示信息可以包括待切换的第三天线面板的标识,以及切换后的第二天线面板的标识。网络设备在接收到来自终端设备的切换指示信息之后,可以获知终端设备的天线面板的切换情况,并根据切换情况,进行资源的重配置。
在一些实施例中,终端设备可以在确定第三天线面板被遮挡、第三天线面板被损坏等的情况下,确定第三天线面板与网络设备的连接断开。
这样,由于第二天线面板与第一天线面板具有相关关系,因此可以直接从第三天线面板切换到第二天线面板。通过终端设备主动触发天线面板的切换,无需重新进行 扫描,能够降低通信开销,提高通信效率。
示例性的,结合图6,如图7所示,假设天线面板1为第三天线面板,天线面板3为第二天线面板,天线面板1和天线面板3对应第一频段。终端设备确定天线面板1与网络设备的连接断开时,可以在确定天线面板3与天线面板1对应同一个频段,且天面面板3与天线面板4具有相关关系的情况下,从天线面板1切换到天线面板3。
本申请实施例提供的传输参数确定方法还可以包括:终端设备获取第一频段的指示信息,该指示信息用于指示第一频段的传输参数;确定第一频段对应的第一天线面板和第二频段对应的第二天线面板具有相关关系;根据指示信息和相关关系,确定第二频段的传输参数。
这样,终端设备在获取到第一频段的指示信息后,可以获知第一频段的传输参数,且终端设备可以确定其包括的第一频段对应的第一天线面板和第二频段对应的第二天线面板具有相关关系,从而终端设备可以确定第一频段的传输参数能够用于第二频段。之后,终端设备便可以根据第一频段的传输参数确定出第二频段的传输参数。
可选的,在本申请实施例中,指示信息具体用于指示第一天线面板的传输参数。该情况下,终端设备根据指示信息和相关关系,确定第二频段的传输参数,具体可以包括:终端设备根据指示信息和相关关系,确定第二天线面板的传输参数。
可选的,在本申请实施例中,上述终端设备获取第一频段的指示信息,具体可以包括:终端设备获取第一信息,向网络设备发送第一信息,接收来自网络设备的指示信息。
需要说明的是,在本申请实施例中,对于指示信息的具体描述、相关关系的具体描述、第一信息的具体描述等,可以参考上述实施例中的相关描述,在此不再赘述。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
如图8所示,为本申请实施例提供的一种通信参数确定装置80的结构示意图,该通信参数确定装置80可以是终端设备,也可以是终端设备中的CPU,还可以是终端设备中的控制模块,还可以是终端设备中的客户端。通信参数确定装置80用于执行图3、图5中任一附图所示的传输参数确定方法。通信参数确定装置80可以包括获取单元81和确定单元82。
获取单元81,用于获取配置信息和第一频段的指示信息,指示信息用于指示第一频段的传输参数,配置信息用于指示第一频段的传输参数用于第一频段和第二频段,第一频段对应的第一天线面板和第二频段对应的第二天线面板具有相关关系,相关关系用于表征第一天线面板和第二天线面板满足预设条件。例如,结合图3,获取单元81可以用于执行步骤301。确定单元82,用于根据获取单元81获取的配置信息和指示信息,确定第二频段的传输参数。例如,结合图3,确定单元82可以用于执行步骤 302。
可选的,第一频段的传输参数包括以下至少一种:第一频段的接收波束参数、第一频段的发送波束参数、偏移关系、第一频段的上行发送功率。其中,偏移关系用于表征第二频段的上行发送功率和第一频段的上行发送功率之间的关系。
可选的,第一频段的接收波束参数包括以下至少一种:接收波束、接收空域滤波器参数、接收信号的QCL关系、接收信号的时偏补偿、接收信号的时域扩展、接收信号的频偏补偿、接收信号的多普勒偏移。
可选的,第一频段的发送波束参数包括以下至少一种:发送波束、发送空域滤波器参数、发送信号的空间关系、发送信号的功率控制参数、发送信号的定时、发送信号的路径损耗参考信号。
可选的,在第一频段的传输参数包括第一频段的接收波束参数的情况下,确定单元82,具体用于:确定第二频段的接收波束参数包括第一频段的接收波束参数。第一频段的传输参数包括第一频段的发送波束参数的情况下,确定单元82,具体用于:确定第二频段的发送波束参数包括第一频段的发送波束参数。
可选的,第一频段的传输参数包括偏移关系和第一频段的上行发送功率的情况下,确定单元82,具体用于:根据偏移关系和第一频段的上行发送功率,确定第二频段的上行发送功率。
可选的,指示信息用于指示第一天线面板的传输参数,配置信息用于指示第一天线面板的传输参数用于第一天线面板和第二天线面板。确定单元82,具体用于:根据配置信息和指示信息,确定第二天线面板的传输参数。
可选的,获取单元81,具体用于:获取第一信息,第一信息用于表征终端设备中存在具有相关关系的第一天线面板和第二天线面板;向网络设备发送第一信息;接收来自网络设备的配置信息和指示信息,配置信息和指示信息是基于第一信息得到的。
可选的,第一信息包括第一天线面板的位置信息和第二天线面板的位置信息。或者,第一信息包括第一天线面板的标识和第二天线面板的标识,以及相关关系信息,相关关系信息用于表征第一天线面板和第二天线面板的相关程度。或者,第一信息包括第一天线面板的标识和第二天线面板的标识,第一天线面板的标识和第二天线面板的标识属于一个天线面板集合。
可选的,如图9所示,传输参数确定装置80还包括:切换单元83和发送单元84。切换单元83,用于在确定第二频段对应的第三天线面板与网络设备的连接断开的情况下,从第三天线面板切换到第二天线面板。确定单元82,还用于根据配置信息和指示信息,确定第二天线面板的传输参数。发送单元84,用于向网络设备发送切换指示信息,切换指示信息用于指示从第三天线面板切换到第二天线面板。
可选的,预设条件为:多个频段的天线面板集成在一起。或者,预设条件为:多个频段的天线面板之间的距离小于预设值。或者,预设条件为:多个频段的天线面板封装在一个芯片中。或者,预设条件为:多个频段的天线面板位于终端的同一侧。或者,预设条件为:多个频段的天线面板紧密拼接。
当然,本申请实施例提供的通信参数确定装置80包括但不限于上述模块。
在实际实现时,获取单元81、确定单元82、切换单元83可以由图2所示的通信 参数确定装置的处理器来实现。发送单元84可以由图2所示的通信参数确定装置的通信接口来实现。其具体的执行过程可参考图3、图5所示的传输参数确定方法部分的描述,这里不再赘述。
本申请另一实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当计算机指令在终端设备上运行时,使得终端设备执行上述方法实施例所示的方法流程中终端设备执行的各个步骤。
本申请另一实施例还提供一种芯片系统,该芯片系统应用于终端设备。芯片系统包括一个或多个接口电路,以及一个或多个处理器。接口电路和处理器通过线路互联。接口电路用于从终端设备的存储器接收信号,并向处理器发送信号,信号包括存储器中存储的计算机指令。当处理器执行计算机指令时,终端设备执行上述方法实施例所示的方法流程中终端设备执行的各个步骤。
在本申请另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机指令,当计算机指令在终端设备上运行时,使得终端设备执行上述方法实施例所示的方法流程中终端设备执行的各个步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机执行指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式。熟悉本技术领域的技术人员根据本申请提供的具体实施方式,可想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (23)

  1. 一种传输参数确定方法,应用于终端设备,其特征在于,包括:
    获取配置信息和第一频段的指示信息,所述指示信息用于指示所述第一频段的传输参数,所述配置信息用于指示所述第一频段的传输参数用于所述第一频段和第二频段,所述第一频段对应的第一天线面板和所述第二频段对应的第二天线面板具有相关关系,所述相关关系用于表征所述第一天线面板和所述第二天线面板满足预设条件;
    根据所述配置信息和所述指示信息,确定所述第二频段的传输参数。
  2. 根据权利要求1所述的传输参数确定方法,其特征在于,所述第一频段的传输参数包括以下至少一种:所述第一频段的接收波束参数、所述第一频段的发送波束参数、偏移关系、所述第一频段的上行发送功率;
    其中,所述偏移关系用于表征所述第二频段的上行发送功率和所述第一频段的上行发送功率之间的关系。
  3. 根据权利要求2所述的传输参数确定方法,其特征在于,所述第一频段的接收波束参数包括以下至少一种:接收波束、接收空域滤波器参数、接收信号的准同位QCL关系、接收信号的时偏补偿、接收信号的时域扩展、接收信号的频偏补偿、接收信号的多普勒偏移。
  4. 根据权利要求2所述的传输参数确定方法,其特征在于,所述第一频段的发送波束参数包括以下至少一种:发送波束、发送空域滤波器参数、发送信号的空间关系、发送信号的功率控制参数、发送信号的定时、发送信号的路径损耗参考信号。
  5. 根据权利要求2-4中任一项所述的传输参数确定方法,其特征在于,
    所述第一频段的传输参数包括所述第一频段的接收波束参数的情况下,所述根据所述配置信息和所述指示信息,确定所述第二频段的传输参数,包括:
    确定所述第二频段的接收波束参数包括所述第一频段的接收波束参数;
    所述第一频段的传输参数包括所述第一频段的发送波束参数的情况下,所述根据所述配置信息和所述指示信息,确定所述第二频段的传输参数,包括:
    确定所述第二频段的发送波束参数包括所述第一频段的发送波束参数。
  6. 根据权利要求2所述的传输参数确定方法,其特征在于,所述第一频段的传输参数包括所述偏移关系和所述第一频段的上行发送功率的情况下;
    所述根据所述配置信息和所述指示信息,确定所述第二频段的传输参数,包括:
    根据所述偏移关系和所述第一频段的上行发送功率,确定所述第二频段的上行发送功率。
  7. 根据权利要求1-6中任一项所述的传输参数确定方法,其特征在于,所述指示信息用于指示所述第一天线面板的传输参数,所述配置信息用于指示所述第一天线面板的传输参数用于所述第一天线面板和所述第二天线面板;
    所述根据所述配置信息和所述指示信息,确定所述第二频段的传输参数,包括:
    根据所述配置信息和所述指示信息,确定所述第二天线面板的传输参数。
  8. 根据权利要求1-7中任一项所述的传输参数确定方法,其特征在于,所述获取配置信息和第一频段的指示信息,包括:
    获取第一信息,所述第一信息用于表征所述终端设备中存在具有相关关系的所述 第一天线面板和所述第二天线面板;
    向网络设备发送所述第一信息;
    接收来自所述网络设备的所述配置信息和所述指示信息,所述配置信息和所述指示信息是基于所述第一信息得到的。
  9. 根据权利要求8所述的传输参数确定方法,其特征在于,
    所述第一信息包括所述第一天线面板的位置信息和所述第二天线面板的位置信息;
    或者,
    所述第一信息包括所述第一天线面板的标识和所述第二天线面板的标识,以及相关关系信息,所述相关关系信息用于表征所述第一天线面板和所述第二天线面板的相关程度;
    或者,
    所述第一信息包括所述第一天线面板的标识和所述第二天线面板的标识,所述第一天线面板的标识和所述第二天线面板的标识属于一个天线面板集合。
  10. 根据权利要求1-9中任一项所述的传输参数确定方法,其特征在于,所述传输参数确定方法还包括:
    在确定所述第二频段对应的第三天线面板与网络设备的连接断开的情况下,从所述第三天线面板切换到所述第二天线面板;
    根据所述配置信息和所述指示信息,确定所述第二天线面板的传输参数;
    向所述网络设备发送切换指示信息,所述切换指示信息用于指示从所述第三天线面板切换到所述第二天线面板。
  11. 一种传输参数确定装置,应用于终端设备,其特征在于,包括:
    获取单元,用于获取配置信息和第一频段的指示信息,所述指示信息用于指示所述第一频段的传输参数,所述配置信息用于指示所述第一频段的传输参数用于所述第一频段和第二频段,所述第一频段对应的第一天线面板和所述第二频段对应的第二天线面板具有相关关系,所述相关关系用于表征所述第一天线面板和所述第二天线面板满足预设条件;
    确定单元,用于根据所述获取单元获取的所述配置信息和所述指示信息,确定所述第二频段的传输参数。
  12. 根据权利要求11所述的传输参数确定装置,其特征在于,所述第一频段的传输参数包括以下至少一种:所述第一频段的接收波束参数、所述第一频段的发送波束参数、偏移关系、所述第一频段的上行发送功率;
    其中,所述偏移关系用于表征所述第二频段的上行发送功率和所述第一频段的上行发送功率之间的关系。
  13. 根据权利要求12所述的传输参数确定装置,其特征在于,所述第一频段的接收波束参数包括以下至少一种:接收波束、接收空域滤波器参数、接收信号的准同位QCL关系、接收信号的时偏补偿、接收信号的时域扩展、接收信号的频偏补偿、接收信号的多普勒偏移。
  14. 根据权利要求12所述的传输参数确定装置,其特征在于,所述第一频段的发送波束参数包括以下至少一种:发送波束、发送空域滤波器参数、发送信号的空间关 系、发送信号的功率控制参数、发送信号的定时、发送信号的路径损耗参考信号。
  15. 根据权利要求12-14中任一项所述的传输参数确定装置,其特征在于,
    所述第一频段的传输参数包括所述第一频段的接收波束参数的情况下,所述确定单元,具体用于:确定所述第二频段的接收波束参数包括所述第一频段的接收波束参数;
    所述第一频段的传输参数包括所述第一频段的发送波束参数的情况下,所述确定单元,具体用于:确定所述第二频段的发送波束参数包括所述第一频段的发送波束参数。
  16. 根据权利要求12所述的传输参数确定装置,其特征在于,所述第一频段的传输参数包括所述偏移关系和所述第一频段的上行发送功率的情况下;
    所述确定单元,具体用于:根据所述偏移关系和所述第一频段的上行发送功率,确定所述第二频段的上行发送功率。
  17. 根据权利要求11-16中任一项所述的传输参数确定装置,其特征在于,所述指示信息用于指示所述第一天线面板的传输参数,所述配置信息用于指示所述第一天线面板的传输参数用于所述第一天线面板和所述第二天线面板;
    所述确定单元,具体用于:根据所述配置信息和所述指示信息,确定所述第二天线面板的传输参数。
  18. 根据权利要求11-17中任一项所述的传输参数确定装置,其特征在于,所述获取单元,具体用于:
    获取第一信息,所述第一信息用于表征所述终端设备中存在具有相关关系的所述第一天线面板和所述第二天线面板;
    向网络设备发送所述第一信息;
    接收来自所述网络设备的所述配置信息和所述指示信息,所述配置信息和所述指示信息是基于所述第一信息得到的。
  19. 根据权利要求18所述的传输参数确定装置,其特征在于,
    所述第一信息包括所述第一天线面板的位置信息和所述第二天线面板的位置信息;
    或者,
    所述第一信息包括所述第一天线面板的标识和所述第二天线面板的标识,以及相关关系信息,所述相关关系信息用于表征所述第一天线面板和所述第二天线面板的相关程度;
    或者,
    所述第一信息包括所述第一天线面板的标识和所述第二天线面板的标识,所述第一天线面板的标识和所述第二天线面板的标识属于一个天线面板集合。
  20. 根据权利要求11-19中任一项所述的传输参数确定装置,其特征在于,所述传输参数确定装置还包括:切换单元和发送单元;
    所述切换单元,用于在确定所述第二频段对应的第三天线面板与网络设备的连接断开的情况下,从所述第三天线面板切换到所述第二天线面板;
    所述确定单元,还用于根据所述配置信息和所述指示信息,确定所述第二天线面板的传输参数;
    所述发送单元,用于向所述网络设备发送切换指示信息,所述切换指示信息用于指示从所述第三天线面板切换到所述第二天线面板。
  21. 一种终端设备,其特征在于,所述终端设备包括存储器和处理器;所述存储器和所述处理器耦合;所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令;当所述处理器执行所述计算机指令时,所述终端设备执行如权利要求1-10中任意一项所述的传输参数确定方法。
  22. 一种传输参数确定设备,其特征在于,所述传输参数确定设备包括存储器和处理器;所述存储器和所述处理器耦合;所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令;当所述处理器执行所述计算机指令时,所述传输参数确定设备执行如权利要求1-10中任意一项所述的传输参数确定方法。
  23. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在传输参数确定装置上运行时,使得所述传输参数确定装置执行如权利要求1-10中任意一项所述的传输参数确定方法。
PCT/CN2021/072557 2021-01-18 2021-01-18 一种传输参数确定方法及装置 WO2022151494A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/072557 WO2022151494A1 (zh) 2021-01-18 2021-01-18 一种传输参数确定方法及装置
CN202180089978.8A CN116711228A (zh) 2021-01-18 2021-01-18 一种传输参数确定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072557 WO2022151494A1 (zh) 2021-01-18 2021-01-18 一种传输参数确定方法及装置

Publications (1)

Publication Number Publication Date
WO2022151494A1 true WO2022151494A1 (zh) 2022-07-21

Family

ID=82446835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072557 WO2022151494A1 (zh) 2021-01-18 2021-01-18 一种传输参数确定方法及装置

Country Status (2)

Country Link
CN (1) CN116711228A (zh)
WO (1) WO2022151494A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116468256A (zh) * 2023-06-19 2023-07-21 青岛创新奇智科技集团股份有限公司 多生产线的管理方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888266A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种准共址指示信息指示方法及设备
CN108289334A (zh) * 2017-01-10 2018-07-17 华为技术有限公司 一种信息接收、发送方法及设备
CN108966243A (zh) * 2017-05-19 2018-12-07 中国移动通信有限公司研究院 下行业务信息处理方法及装置、通信设备及存储介质
CN109150467A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、相关设备及计算机存储介质
CN109451861A (zh) * 2017-11-29 2019-03-08 小米通讯技术有限公司 资源配置方法、装置、用户设备及基站
US20190182898A1 (en) * 2018-02-16 2019-06-13 Zhibin Yu Methods to signal antenna panel capability of user equipment (ue) for carrier aggregation (ca) in millimeter-wave (mmwave) frequency bands
CN110972288A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 传输信号的方法和通信装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888266A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 一种准共址指示信息指示方法及设备
CN108289334A (zh) * 2017-01-10 2018-07-17 华为技术有限公司 一种信息接收、发送方法及设备
CN108966243A (zh) * 2017-05-19 2018-12-07 中国移动通信有限公司研究院 下行业务信息处理方法及装置、通信设备及存储介质
CN109150467A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 通信方法、相关设备及计算机存储介质
CN109451861A (zh) * 2017-11-29 2019-03-08 小米通讯技术有限公司 资源配置方法、装置、用户设备及基站
US20190182898A1 (en) * 2018-02-16 2019-06-13 Zhibin Yu Methods to signal antenna panel capability of user equipment (ue) for carrier aggregation (ca) in millimeter-wave (mmwave) frequency bands
CN110972288A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 传输信号的方法和通信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116468256A (zh) * 2023-06-19 2023-07-21 青岛创新奇智科技集团股份有限公司 多生产线的管理方法及装置
CN116468256B (zh) * 2023-06-19 2023-09-29 青岛创新奇智科技集团股份有限公司 多生产线的管理方法及装置

Also Published As

Publication number Publication date
CN116711228A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US11737082B2 (en) Signal transmission method and communications apparatus
WO2020164339A1 (zh) 定向发送定位参考信号的方法及装置
US11451433B2 (en) Signal transmission method, related device, and system
EP3817479B1 (en) Communication method and communication apparatus
WO2019137509A1 (zh) 信号传输方法、相关设备及系统
WO2020088571A1 (zh) 一种信息传输方法、装置和设备
CN110035441B (zh) 确定波束的方法及通信装置
CN111867094B (zh) 数据接收和发送方法及装置
US11240794B2 (en) Method for indicating PDSCH receiving information, data receiving method, and apparatus
WO2020199902A1 (zh) 一种选择接收波束的方法及装置
US20220286867A1 (en) Network node, user equipment and methods performed therein
WO2023050472A1 (zh) 用于寻呼的方法和装置
US11963205B2 (en) Resource management method and apparatus
WO2019214333A1 (zh) 通信方法及装置
WO2019192410A1 (zh) 一种信号传输方法及通信设备
WO2022151494A1 (zh) 一种传输参数确定方法及装置
WO2020192719A1 (zh) 更新波束的方法与通信装置
US20230140502A1 (en) Beam indication method and communications apparatus
WO2022267818A1 (zh) 一种移动性管理方法及通信装置
WO2020238922A1 (zh) 通信方法及装置
WO2023088114A1 (zh) 波束恢复方法、波束失败检测方法以及相关装置
WO2024031693A1 (zh) 无线通信方法及装置、终端设备、网络设备
WO2022100579A1 (zh) 初始接入的方法和装置
WO2023159505A1 (zh) 波束管理方法和装置
WO2023201622A1 (en) Update of transmission configuration indicator and bandwidth part switching for multiple component carriers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918694

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180089978.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918694

Country of ref document: EP

Kind code of ref document: A1