WO2022100579A1 - 初始接入的方法和装置 - Google Patents

初始接入的方法和装置 Download PDF

Info

Publication number
WO2022100579A1
WO2022100579A1 PCT/CN2021/129596 CN2021129596W WO2022100579A1 WO 2022100579 A1 WO2022100579 A1 WO 2022100579A1 CN 2021129596 W CN2021129596 W CN 2021129596W WO 2022100579 A1 WO2022100579 A1 WO 2022100579A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssbs
ssb
index
frequency domain
frequency
Prior art date
Application number
PCT/CN2021/129596
Other languages
English (en)
French (fr)
Inventor
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022100579A1 publication Critical patent/WO2022100579A1/zh
Priority to US18/316,362 priority Critical patent/US20230284161A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communications, and more particularly, to a method and apparatus for initial access.
  • the beamforming technology can effectively expand the transmission range of wireless signals and reduce signal interference, so as to achieve higher communication efficiency and obtain higher network capacity.
  • the transmitting beam and the receiving beam are matched to maximize the gain from the transmitting end to the receiving end.
  • the network device uses beam scanning to send the initial access synchronization signal block (synchronization signal/PBCH block, SSB) in time division. random access.
  • the present application provides an initial access method and apparatus, which can solve the problem of resource overhead in the initial access process.
  • a first aspect provides an initial access method, including: detecting M synchronization signal blocks SSB sent by a network device, the M SSBs are sent at the same time, and any two SSBs of the M SSBs have the same sending time.
  • the transmission frequencies are different, the M SSBs include N first SSBs, the first SSBs are SSBs located in the synchronization grid, and N is a positive integer; according to the detected first SSBs, the M SSBs Send a random access signal to the network device at a frequency domain position in the N first SSBs.
  • the terminal device detects M synchronization signal blocks SSBs with the same time and different frequencies sent by the network device.
  • the M SSBs include N first SSBs located on the synchronization grid.
  • the first SSB of the first SSB sends a random signal to the network device at the frequency domain position of the M SSBs or the N first SSBs.
  • the network device sends M SSBs with the same time and different frequencies, so that the frequency-divided frequency-domain resources are effectively utilized, and the waste of time-frequency-domain resources for sending SSBs in a time-division manner is reduced.
  • the terminal device sends random access signals at the frequency domain positions of the M SSBs or the N first SSBs according to the detected first SSBs, thereby improving resource utilization efficiency and reducing resource overhead.
  • the M SSBs have the same transmission time and different frequencies
  • the M SSBs are sent in a frequency division manner.
  • the method further includes: acquiring a first index of the first SSB, where the first index is the first SSB in the M SSBs The index in , or the first index is the index of the first SSB in the N first SSBs; the time domain and/or frequency domain for sending the random access signal is determined according to the first index Location.
  • the first index may include a time domain index and a frequency domain index.
  • the obtaining the first index of the first SSB includes: obtaining the first index according to first indication information sent by the network device, and the first index
  • An indication information is carried by at least one of synchronization signal SS, physical broadcast channel PBCH demodulation reference signal DMRS, PBCH, reference signal RS, system message, data channel and control channel.
  • the network device may indicate the frequency domain index and/or the frequency domain index through the first indication information.
  • the network device may carry the indication information indicating the frequency domain index through the PBCH DMRS, and the data transmitted through the PBCH may carry the indication information indicating the time domain index.
  • the SSB located on the non-synchronized grid among the M SSBs may be indicated by system information or signaling, and the signaling may be signaling carried by a data channel, such as radio resource control signaling, medium access control signaling, etc., or the signaling may be signaling carried by a control channel, such as downlink control information.
  • a data channel such as radio resource control signaling, medium access control signaling, etc.
  • a control channel such as downlink control information
  • the frequency domain indices of the M SSBs may be indicated by using system information or signaling.
  • N is 1, wherein the detecting the M SSBs sent by the network device includes: detecting the SSB sent by the network device at a first frequency domain position The first SSB, the first SSB is the one with the highest frequency among the M SSBs, or the first SSB is the one with the lowest frequency among the M SSBs, or the first SSB is the M SSBs One of the SSBs with the highest frequency index, or the first SSB is the one with the lowest frequency index among the M SSBs.
  • the first SSB may also be the SSB whose index is floor(M/2) or floor(M/2)+1 among the M SSBs.
  • the detecting M SSBs sent by the network device further includes: detecting M ⁇ at a position separated from the first frequency domain position by m ⁇ f 1 +n ⁇ f 2 1 second SSB, the second SSB is the SSB located in the non-synchronized grid among the M SSBs, wherein ⁇ f 1 represents the first frequency interval, ⁇ f 2 represents the second frequency interval, and m and n are non-negative Integer.
  • the values of m and n may both be 0.
  • the M SSBs are continuous in the frequency domain.
  • the value of m may be 0, and the value of n may not be 0.
  • the M SSBs are spaced at a fixed frequency interval in the frequency domain.
  • the values of m and n may not be 0.
  • the frequency interval in the frequency domain of two adjacent SSBs among the M SSBs is ⁇ f 1 , or ⁇ f 1 + ⁇ f 2 . It can be understood that, in the case that neither m nor n is 0, the frequency interval of the M SSBs may be configured so that one SSB of the M SSBs is located on the synchronization grid.
  • the interval between the frequency domain positions of two adjacent SSBs in the M SSBs is ⁇ f 3
  • ⁇ f 3 represents a third frequency interval
  • the unit of the frequency domain interval may be absolute frequency, resource unit, and resource block.
  • the frequency interval may be configured by the network device, or specified by the communication protocol.
  • the method further includes: acquiring the quasi-co-located QCL relationship and/or antenna port information of the M SSBs, the QCL relationship and/or the M SSBs Or antenna port information for joint measurement of large-scale parameters and/or joint demodulation of data.
  • the acquiring quasi-co-located QCL relationships and/or antenna port information of M SSBs includes: determining the A plurality of SSBs among the M SSBs have QCL relationships and/or the antenna port information.
  • the second indication information may be indicated by synchronization information SS, a system message, or the like.
  • the N first SSBs do not have a QCL relationship
  • the acquiring quasi-co-located QCL relationships and/or antenna port information of the M SSBs includes: according to the The third indication information sent by the network device determines that the second SSB and the third SSB have a QCL relationship, the second SSB is one of the SSBs located on the asynchronous grid among the M SSBs, and the third SSB is is one of the N first SSBs that has a first relationship with the second SSB, where the first relationship is an adjacent relationship of a frequency domain position, a frequency domain index, or a frequency size.
  • the N first SSBs do not have a QCL relationship
  • the acquiring quasi-co-located QCL relationships and/or antenna port information of the M SSBs includes: according to communication
  • the provisions of the protocol determine that the second SSB and the third SSB have a QCL relationship
  • the second SSB is one of the SSBs located on the asynchronous grid among the M SSBs
  • the third SSB is the Nth SSB.
  • the mapping relationship with one RO among the P ROs in the order of frequency domain priority; or the mapping relationship between the M SSBs and each RO among the at least one RO, and the at least one RO is one of the P ROs. at least one of.
  • the order of priority in the frequency domain may be an order according to the frequency of the M SSBs.
  • the P ROs have a priority order in the time domain and/or the frequency domain
  • the M SSBs may be mapped with the P ROs in a frequency domain priority order.
  • a method for initial access comprising: sending M synchronization signal blocks SSBs, the sending times of the M SSBs are the same, and the sending frequencies of any two SSBs in the M SSBs are different, so
  • the M SSBs include N first SSBs, where the first SSBs are SSBs located on a synchronization grid, and N is a positive integer; receiving a random access signal sent by a terminal device, the random access signal is the terminal The device sends the detected first SSB at the M SSBs or at the frequency domain position where the N first SSBs are located.
  • the network device can reduce the waste of resources when the network device sends SSBs and improve the resources by sending M SSBs with the same time and different frequencies, and the M SSBs include N first SSBs located in the synchronization grid. usage efficiency.
  • the method further includes: the time domain and/or frequency domain location of the random access signal is determined by the terminal device according to the first index, and the The first index is an index of the first SSB in the M SSBs, or the first index is an index of the first SSB in the N first SSBs.
  • the method further includes: sending first indication information, where the first indication information is used by the terminal device to obtain the first index, the first indication information
  • An indication information is carried by at least one of synchronization signal SS, physical broadcast channel PBCH demodulation reference signal DMRS, PBCH, reference signal RS, system message, data channel and control channel.
  • N is 1, and the sending of M SSBs includes:
  • the first SSB is sent at the first frequency domain location, where the first SSB is the one with the highest frequency among the M SSBs, or the first SSB is the one with the lowest frequency among the M SSBs, or the The first SSB is the one with the highest frequency index among the M SSBs, or the first SSB is the one with the lowest frequency index among the M SSBs.
  • the sending M SSBs further includes: sending M-1 SSBs at a frequency domain position separated from the first frequency domain position by m ⁇ f 1 +n ⁇ f 2
  • the second SSB, the second SSB is an SSB located in an asynchronous grid among the M SSBs, wherein ⁇ f 1 represents the first frequency interval, ⁇ f 2 represents the second frequency interval, and m and n are non-negative integers.
  • the frequency domain position interval of two adjacent SSBs in the M SSBs is ⁇ f 3
  • ⁇ f 3 represents a third frequency interval
  • the method further includes: sending second indication information, where the second indication information is used to indicate that multiple SSBs in the M SSBs have a QCL relationship and/or the antenna port information.
  • the N first SSBs do not have a QCL relationship
  • the method further includes: sending third indication information, where the third indication information is used to indicate the first SSB
  • the second SSB and the third SSB have a QCL relationship
  • the second SSB is one of the SSBs located on the non-synchronized grid among the M SSBs
  • the third SSB is the N first SSB and the The second SSB has one of the first relationships
  • the first relationship is an adjacent relationship of a frequency domain position, a frequency domain index, or a frequency size.
  • the method further includes: determining the first SSB that can be detected by the terminal device according to the first random access opportunity RO and the first correspondence, wherein, The first RO is an RO used for receiving the random access signal, and the first correspondence includes a correspondence between the M SSBs and the P ROs, where P is a positive integer.
  • the mapping relationship with one RO among the P ROs in the order of frequency domain priority; or the mapping relationship between the M SSBs and each RO among the at least one RO, and the at least one RO is one of the P ROs. at least one of.
  • an apparatus for initial access comprising: a processing unit configured to detect M synchronization signal blocks SSB sent by a network device, the sending times of the M SSBs are the same, and any one of the M SSBs The transmission frequencies of the two SSBs are different, the M SSBs include N first SSBs, the first SSBs are SSBs located in the synchronization grid, and N is a positive integer; The first SSB sends a random access signal to the network device at a frequency domain location in the M SSBs or in the N first SSBs.
  • the processing unit is further configured to obtain a first index of the first SSB, where the first index is the number of the first SSB in the M The index in the SSB, or the first index is the index of the first SSB in the N first SSBs; the processing unit is further configured to determine to send the random access signal according to the first index time domain and/or frequency domain location.
  • the processing unit is further configured to acquire the first index according to first indication information sent by the network device, where the first indication information is determined by a synchronization signal At least one of SS, physical broadcast channel PBCH demodulation reference signal DMRS, PBCH, reference signal RS, system message, data channel and control channel is carried.
  • N is 1, and the processing unit is further configured to detect the first SSB sent by the network device at a first frequency domain position, and the first SSB
  • the SSB is the one with the highest frequency among the M SSBs, or the first SSB is the one with the lowest frequency among the M SSBs, or the first SSB is the one with the highest frequency index among the M SSBs, Or the first SSB is the one with the lowest frequency index among the M SSBs.
  • the processing unit is further configured to detect M-1 second SSBs at positions separated from the first frequency domain position by m ⁇ f 1 +n ⁇ f 2 , so
  • the second SSB is an SSB located in an asynchronous grid among the M SSBs, wherein ⁇ f 1 represents the first frequency interval, ⁇ f 2 represents the second frequency interval, and m and n are non-negative integers.
  • the interval between the frequency domain positions of two adjacent SSBs in the M SSBs is ⁇ f 3
  • ⁇ f 3 represents a third frequency interval
  • the processing unit is further configured to acquire the quasi-co-located QCL relationship and/or antenna port information of the M SSBs, the QCL relationship of the M SSBs and /or antenna port information for joint measurement of large-scale parameters and/or joint demodulation of data.
  • the processing unit is further configured to determine, according to the second indication information sent by the network device, that multiple SSBs in the M SSBs have a QCL relationship and/or or the antenna port information.
  • the N first SSBs do not have a QCL relationship
  • the processing unit is further configured to determine the second SSB according to the third indication information sent by the network device It has a QCL relationship with a third SSB
  • the second SSB is one of the SSBs located on the asynchronous grid among the M SSBs
  • the third SSB is one of the N first SSBs related to the first SSB.
  • the two SSBs have one of the first relationships, and the first relationship is an adjacent relationship of a frequency domain position, a frequency domain index, or a frequency magnitude.
  • the processing unit is further configured to determine a first random access opportunity RO according to the detected first SSB and the first correspondence, and the first random access opportunity RO is The corresponding relationship includes the corresponding relationship between the M SSBs and the P ROs, where P is a positive integer; the transceiver unit is further configured to send the random access signal on the first RO.
  • the mapping relationship with one RO among the P ROs in the order of frequency domain priority; or the mapping relationship between the M SSBs and each RO among the at least one RO, and the at least one RO is one of the P ROs. at least one of.
  • an apparatus for initial access comprising: a transceiver unit and a processing unit, the transceiver unit is configured to transmit M synchronization signal blocks SSBs, the M SSBs have the same transmission time, and the M SSBs The transmission frequencies of any two SSBs are different, the M SSBs include N first SSBs, the first SSBs are SSBs located in the synchronization grid, and N is a positive integer; the transceiver unit is also used for receiving terminals The random access signal sent by the device, the random access signal is sent by the terminal device in the M SSBs or in the frequency domain position where the N first SSBs are located according to the detected first SSB .
  • the processing unit is configured to determine a first index according to the time domain and/or frequency domain position of the random access signal, where the first index is the the index of the first SSB in the M SSBs, or the first index is the index of the first SSB in the N first SSBs.
  • the transceiver unit is further configured to send first indication information, where the first indication information is used to instruct the terminal device to acquire the first index, so
  • the first indication information is carried by at least one of a synchronization signal SS, a physical broadcast channel PBCH demodulation reference signal DMRS, a PBCH, a reference signal RS, a system message, a data channel, and a control channel.
  • N is 1, and the transceiver unit is further configured to send the first SSB at the first frequency domain position, where the first SSB is the M The one with the highest frequency among the SSBs, or the first SSB is the one with the lowest frequency among the M SSBs, or the first SSB is the one with the highest frequency index among the M SSBs, or the first SSB is the one with the lowest frequency index among the M SSBs.
  • the transceiver unit is further configured to send M-1 second SSBs in a frequency domain position separated from the first frequency domain position by m ⁇ f 1 +n ⁇ f 2 ,
  • the second SSB is an SSB located in an asynchronous grid among the M SSBs, wherein ⁇ f 1 represents the first frequency interval, ⁇ f 2 represents the second frequency interval, and m and n are non-negative integers.
  • the frequency domain position interval of two adjacent SSBs in the M SSBs is ⁇ f 3
  • ⁇ f 3 represents a third frequency interval
  • the transceiver unit is further configured to send second indication information, where the second indication information is used to indicate that multiple SSBs in the M SSBs have QCL relationship and/or the antenna port information.
  • the N first SSBs do not have a QCL relationship
  • the transceiver unit is further configured to send third indication information, where the third indication information is used to indicate
  • the second SSB and the third SSB have a QCL relationship
  • the second SSB is one of the SSBs located on the non-synchronized grid among the M SSBs
  • the third SSB is the same as the N first SSBs.
  • the second SSB has one of the first relationships, and the first relationship is an adjacent relationship of a frequency domain position, a frequency domain index, or a frequency size.
  • the processing unit is further configured to determine the first SSB that can be detected by the terminal device according to the first random access opportunity RO and the first correspondence, wherein , the first RO is the RO used for receiving the random access signal, the first correspondence includes the correspondence between the M SSBs and the P ROs, and P is a positive integer.
  • the first corresponding relationship is one of the following relationships: the M SSBs are mapped one-to-one with the P ROs in a frequency domain priority order or the relationship between each of the M SSBs and multiple ROs of the P ROs in the order of frequency domain priority; or at least two SSBs of the M SSBs The mapping relationship with one RO among the P ROs in the order of frequency domain priority; or the mapping relationship between the M SSBs and each RO among the at least one RO, and the at least one RO is one of the P ROs. at least one of.
  • a communication device comprising a module or unit for performing the method in the first aspect or any possible implementation manner of the first aspect, or for performing the second aspect or the second aspect.
  • the module or unit may be a hardware circuit, or software, or a hardware circuit combined with software implementation.
  • a communication device comprising a processor and a memory, the memory stores a program or an instruction, the processor is configured to call and execute the program or the instruction from the memory, so that the device executes
  • the first aspect or the method in any possible implementation manner of the first aspect, or the method in the second aspect or any possible implementation manner of the second aspect.
  • the apparatus further includes a transceiver.
  • the processor is coupled to the memory.
  • a communication device in a seventh aspect, includes: at least one processor and a communication interface, the communication interface is used for the device to perform information interaction with other devices, when a program instruction is executed in the at least one processor
  • the apparatus is caused to perform the above-mentioned second aspect or the method in any possible implementation manner of the second aspect.
  • the communication interface may be a transceiver, circuit, bus, module, pin or other type of communication interface.
  • the apparatus further includes a memory, and the memory is used for storing instructions and data, and when the processor executes the instructions stored in the memory, it can implement the first aspect or any of the possible possibilities of the first aspect. Implement the method described in the implementation manner, or execute the method in the second aspect or any of the possible implementation manners of the second aspect.
  • a computer-readable storage medium where a computer program is stored in the computer-readable storage medium, and when the computer program runs on a computer, the computer is made to execute the above-mentioned first aspect or the first aspect
  • the method described in any possible implementation manner of the above-mentioned second aspect or the method in any of the possible implementation manners of the second aspect is performed.
  • a computer program product comprising instructions that, when the computer program product is run on a computer, cause the computer to execute the method described in the first aspect or any possible implementation manner of the first aspect, or The method in the above second aspect or any one of possible implementations of the second aspect is performed.
  • a communication system including the communication apparatus described in the third aspect and the fourth aspect, or the communication apparatus described in the fifth aspect, the sixth aspect, and the seventh aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of still another wireless communication system according to an embodiment of the present application.
  • FIG. 3 is a schematic interaction diagram of a wireless communication method.
  • FIG. 4 is another schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the location of a synchronization signal block according to an embodiment of the present application.
  • FIG. 6 is another schematic diagram of the location of a synchronization signal block according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a mapping relationship between synchronization signal blocks and random access resources according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another mapping relationship between synchronization signal blocks and random access resources according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of yet another mapping relationship between synchronization signal blocks and random access resources according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 11 is still another schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • the embodiments of the present application may be applied to various communication systems, for example: long term evolution (long term evolution, LTE) system, advanced long term evolution (advanced long term evolution, LTE-A) system, LTE frequency division duplex (frequency division duplex) , FDD) system, LTE time division duplex (time division duplex, TDD), universal mobile telecommunication system (universal mobile telecommunication system, UMTS), global interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, wireless local area network ( wireless local area networks, WLAN), wireless fidelity (wireless fidelity, WiFi), future fifth generation (5th generation, 5G) systems or new radio (new radio, NR) or next-generation communication systems, etc., the embodiments of the present application Not limited.
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • FDD frequency division duplex
  • FDD frequency division duplex
  • FDD frequency division duplex
  • D2D device to device
  • M2M machine to machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • Terminal equipment may also be referred to as user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • the terminal device may be a station (staion, ST) in the WLAN, and may be a mobile phone (mobile phone), a satellite phone, a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a tablet computer (pad), a Computers with wireless transceiver functions, wireless local loop (WLL) stations, personal digital assistant (PDA) devices, virtual reality (VR) terminal devices, augmented reality (AR) Terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, terminal equipment in 5G networks, or public land mobile communication networks that evolve in the future network, PLMN), handheld devices with wireless communication capabilities,
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones.
  • the network device can be any device with wireless transceiver function.
  • the network equipment includes but is not limited to: evolved node B (evolved nodeB, eNB or eNodeB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (BTS), home base station (for example, home evolved node B, or home node B, HNB), base band unit (BBU), access point in WLAN, wireless Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP) in a fidelity (wireless fidelity, WIFI) system ), etc., can also be 5G, such as, NR, gNB in the system, or, transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of the base station in the 5G system, or, also It can be a network node that constitutes a gNB or
  • the wireless communication methods in the embodiments of the present application may be applied to a system including single or multiple network devices and single or multiple terminal devices.
  • FIG. 1 shows a schematic diagram of a possible wireless communication system according to an embodiment of the present application.
  • the communication system 100 includes network equipment and terminal equipment, for example, network equipment 110, terminal equipment 120, and terminal equipment 121 shown in FIG. 1; terminal device to communicate.
  • network equipment 110 for example, network equipment 110, terminal equipment 120, and terminal equipment 121 shown in FIG. 1
  • terminal device to communicate for example, terminal equipment 110, terminal equipment 120, and terminal equipment 121 shown in FIG. 1; terminal device to communicate.
  • a single network device can transmit data or control signaling with single or multiple terminal devices.
  • FIG. 2 shows a schematic diagram of another possible wireless communication system according to an embodiment of the present application.
  • multiple network devices eg, network devices 111 , 112 , 113
  • a single terminal device eg, terminal device 122 .
  • Synchronization signal (synchronization signal, SS):
  • the synchronization signal is used for the terminal and the network side to realize time-frequency synchronization, and to detect the physical identifier (ID) of the cell. It includes a primary synchronization signal (primary synchronization signal, PSS) and/or a secondary synchronization signal (secondary synchronization signal, SSS), where the PSS is used for the terminal device to perform time-frequency synchronization and cell detection.
  • SSS is used to transmit the cell physical identity ID. PSS and SSS can also be combined to achieve the above functions.
  • PBCH Physical Broadcasting Channel
  • Synchronization signal-physical broadcast channel (synchronization signal/PBCH block, SSB): called synchronization signal block, including synchronization signal SS and/or PBCH, used to realize time synchronization, detection of cell physical identifier (ID), and acquisition of main system information, etc.
  • uplink communication includes the transmission of uplink physical channels and uplink signals.
  • the uplink physical channel includes random access channel (random access channel, PRACH), uplink control channel (physical uplink control channel, PUCCH), uplink data channel (physical uplink shared channel, PUSCH), etc.
  • uplink signal includes channel sounding reference signal (Sounding reference signal), uplink control channel demodulation reference signal (PUCCH de-modulation reference signal, PUCCH-DMRS), uplink data channel demodulation reference signal PUSCH-DMRS, uplink phase noise tracking signal (phase noise tracking reference signal, PTRS) ), uplink positioning signal (uplink positioning RS), etc.
  • Downlink communication includes the transmission of downlink physical channels and downlink signals.
  • downlink physical channels include broadcast channel PBCH, downlink control channel (physical downlink control channel, PDCCH), downlink data channel (physical downlink shared channel, PDSCH), etc.
  • downlink signals include primary synchronization signal PSS/secondary synchronization signal SSS, downlink control signal Channel demodulation reference signal PDCCH-DMRS, downlink data channel demodulation reference signal PDSCH-DMRS, phase noise tracking signal PTRS, channel status information reference signal (CSI-RS), cell signal (Cell reference signal, CRS), precise synchronization signal (time/frequency tracking reference signal, TRS), LTE/NR positioning signal (positioning RS), etc.
  • Antenna port In the case of low frequency, one antenna port can correspond to one or more antenna elements, the antenna elements are used to jointly send reference signals, and the terminal device can receive without distinguishing the elements. In the case of high frequencies, the antenna port can correspond to a beam.
  • the beam can be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means. Beamforming technology includes digital beamforming technology, analog beamforming technology, and hybrid digital/analog beamforming technology. The same information or different information can be sent through different beams. Optionally, multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • a beam may include one or more antenna ports for transmitting data channels, control channels and sounding signals, etc.
  • a transmit beam may refer to the distribution of signal strengths formed in different directions in space after a signal is transmitted through an antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space. It can be understood that one or more antenna ports forming a beam can also be regarded as an antenna port set. Beams can also be represented by spatial filters.
  • digital weights for generating digital beams
  • analog weights for generating analog beams
  • the digital weights are weighted in the digital domain, and the weights can be any value (theoretically); the analog weights refer to the weighting in the analog domain, and the most common is to weight the signal by a phase shifter ( Delay lines are also used to weight the signal).
  • Hybrid digital/analog beams are combined with digital weights and analog weights to be weighted in the digital domain and the analog domain, respectively.
  • Quasi-co-location It can also be called quasi-co-location.
  • the co-location relationship is used to indicate that multiple resources have one or more identical or similar communication features, and the same or similar communication configuration may be adopted for the multiple resources with the co-location relationship. For example, if two antenna ports have a co-location relationship, then the large-scale characteristics of the channel transmitting one symbol at one port can be inferred from the large-scale characteristics of the channel transmitting one symbol at the other port.
  • Large-scale properties can include: delay spread, average delay, Doppler spread, Doppler shift, average gain, receive parameters, terminal device receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver antenna Spatial correlation (QCL in airspace), main angle of arrival (Angel-of-Arrival, AoA), average angle of arrival, extension of AoA, etc.
  • spatial QCL can be considered as a type of QCL. From the perspective of the receiving end, if two antenna ports, or two signals, or two channels are quasi-co-located in the spatial domain, it means that the receiving end can receive the signals sent by the two antenna ports in the same beam direction. , or the two signals are received, or the signals sent on the two channels are received.
  • Quasi-colocation assumption It is assumed that there is a QCL relationship between two ports.
  • the configuration and indication of the quasi-co-location assumption can be used to assist the receiving end in signal reception and demodulation.
  • the receiving end can confirm that the A port and the B port have a large-scale QCL relationship, that is, the large-scale parameters of the signal measured on the A port can be used for signal measurement and demodulation on the B port, or the two ports can be used to receive The signals jointly measure the same large-scale parameters, etc.
  • Radio resource control To manage, control and schedule radio resources through certain strategies and means, and make full use of limited wireless network resources as much as possible while meeting the requirements of service quality to ensure that the planned coverage is reached. regions to maximize business capacity and resource utilization
  • Media access control (media access control, MAC) layer It is located between the RRC layer and the physical layer, and is mainly responsible for controlling the transmission and other functions of the physical layer.
  • Synchronization raster used to send synchronization signals, and the terminal searches on the synchronization raster in the frequency domain dimension when accessing the cell.
  • FIG. 3 shows a schematic interaction diagram of a possible wireless communication method.
  • the wireless communication method is an interaction process of a method in which a network device and a terminal device perform an initial access process. To establish a wireless link and perform data exchange between a terminal device and a network device, it is necessary to complete uplink access through random access.
  • the wireless communication method 200 can be applied to the communication systems shown in FIG. 1 and FIG. 2 , and the method 200 includes:
  • the network device sends synchronization/broadcast information to the terminal device.
  • the network device periodically sends a broadcast/synchronization message at a specific location.
  • the broadcast/synchronization message may include a synchronization signal block SSB, a system message, etc., wherein the system message may be a broadcast message, and the system message may be the same as sending the SSB. beam to transmit.
  • the terminal device sends a first message (message1, Msg1) to the network.
  • the terminal device After the terminal device is powered on, it scans the broadcast/synchronization messages sent by the network device for downlink time and frequency synchronization, and simultaneously receives configuration information about random access resources in the broadcast message.
  • the terminal device receives the synchronization/broadcast information sent by the network device, and sends the first message to the network device according to the synchronization/broadcast information.
  • the terminal device receives the random resource configuration information, and determines random access resources according to the detected SSB, the random access resources include time domain resources, frequency domain resources and sequence resources, and then the terminal device can use the random access resources to send random access resources.
  • signal ie the first message.
  • the time and frequency resources of random access constitute a random access opportunity (RO);
  • the terminal device selects the time-frequency resource (PRACH occasion, PO) of the physical random access channel (PRACH) to transmit the first message (ie Msg1),
  • the 5G NR system supports beamforming by default, and the random access process in this mode is a beam-based access process.
  • the terminal equipment needs to receive and detect the synchronization signal block index with the strongest or stronger signal and determine the downlink beam, and according to the corresponding relationship between the SSB index indicated by the system message (synchronization signal block, SIB) and the PRACH time-frequency resource, Obtain available PRACH time-frequency resources and preamble sequence sets.
  • SIB system message
  • the network device replies the second message Msg2 to the terminal device.
  • the network device receives the first message sent by the terminal device, and sends a random access response (random access response, RAR) (ie, the second message) to the terminal device.
  • the random access response signal includes a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH), and the PDCCH is used to schedule the PDSCH.
  • the PDSCH includes configuration information such as a time-frequency resource location, a modulation and coding method used by the terminal device for sending the third message for conflict resolution, and the like.
  • the terminal device sends a third message Msg3 to the network device.
  • the terminal device obtains the configuration information in the second message according to the reception of the second message, and selects time-frequency resources to send the third message.
  • the network device sends a fourth message Msg4 to the terminal device.
  • the fourth message is used to indicate that the terminal device has successfully accessed.
  • FIG. 4 shows a schematic interaction diagram of a wireless communication method according to an embodiment of the present application.
  • the method 300 shown in FIG. 4 can be applied to the wireless communication system shown in FIG. 1 or FIG. 2 , and the method 300 includes:
  • the network device sends M synchronization signal blocks SSB to terminal device #A (an example of terminal device).
  • the sending times of the M SSBs are the same, and the sending frequencies of any two SSBs in the M SSBs are different.
  • the M SSBs include N first SSBs, where the N first SSBs are SSBs located on the synchronization grid, and N is a positive integer.
  • the network device may send M SSBs at the same time and different frequencies (which may be referred to as sending M SSBs in a frequency division manner).
  • M SSBs may be sent at the same time and different frequencies (which may be referred to as sending M SSBs in a frequency division manner).
  • the network device forms different digital beams or digital-analog beams at different frequencies, and uses the different digital beams or analog beams to transmit the multiple SSBs respectively.
  • the network device may transmit SSB at different frequencies through different analog beams.
  • the simulated beams can be generated by different combinations of term shifters using different simulated weights.
  • the M SSBs sent by the network device include the number of SSBs required for the terminal device #A to complete the initial access.
  • the network device can choose to send 4 frequency-divided SSBs on the synchronization grid, and the corresponding Yes, 4 SSBs are sent in time-division in the time domain.
  • the network device only transmits the number of SSBs required by the terminal device to achieve initial synchronization and other functions on the synchronization grid, and the terminal device can synchronize to any SSB, thereby reducing resource overhead.
  • the network device may also choose to send M SSBs on the synchronized grid and the non-synchronized grid.
  • the network device may choose to transmit 4 SSBs in a frequency division manner (that is, at the same time 4 SSBs are sent at different frequencies), of which 2 SSBs are sent on the synchronization grid, and correspondingly, 8 SSBs are sent in a time-division manner in the time domain.
  • FIG. 5 shows a schematic diagram of the location of the synchronization signal block in the embodiment of the present application.
  • part of the SSB sent by the network device is located on the synchronization grid, and a part is located on the non-synchronized grid, where the dotted line represents the frequency
  • the position of the synchronization grid in the domain, that is, the SSB with the index number of the SSB in the frequency domain is located on the synchronization grid.
  • the network device chooses to send the frequency-divided SSB on the synchronous grid and the non-synchronized grid, so that the frequency domain position of the SSB is not constrained by the synchronous grid, so that the frequency-divided SSB has a flexible position.
  • one of the frequency-divided SSBs (ie, SSBs sent at the same time) is located on the synchronization grid (ie, N is 1).
  • SSB#0 is located on the synchronization grid.
  • the SSB #0 is the SSB transmitted at the frequency domain position #0.
  • the SSB located on the synchronization grid sent by the network device may be the SSB with the largest frequency index or the highest frequency, or the SSB with the smallest frequency index or the lowest frequency, or an intermediate SSB.
  • SSB (for example, the floor(M/2)th, or the floor(M/2)+1th, where M is the number of SSBs frequency-divided at the same time).
  • the network device sends SSB # 0 at frequency domain position #0, and sends M- 1 SSBs located on the Two SSBs, such as SSB#1, SSB#2...SSB#(M-1)), wherein ⁇ f 1 represents the first frequency interval, ⁇ f 2 represents the second frequency interval, and m and n are non-negative integers.
  • M- 1 SSBs located on the Two SSBs, such as SSB#1, SSB#2...SSB#(M-1)
  • ⁇ f 1 represents the first frequency interval
  • ⁇ f 2 represents the second frequency interval
  • m and n are non-negative integers.
  • a possible implementation solution is that only one SSB of the M frequency-divided SSBs is located on the synchronization grid. In m ⁇ f 1 +n ⁇ f 2 , m and n are 0. That is, the frequency-divided M SSBs are placed continuously on the frequency domain resources.
  • a possible implementation solution is that only one SSB of the frequency-divided M SSBs is located on the synchronization grid. In m ⁇ f 1 +n ⁇ f 2 , n is 0, and m is not 0. That is, the frequency-divided M SSBs are placed at a fixed frequency range ⁇ f 1 on the frequency domain resources.
  • SSB#0 is the SSB located on the synchronization grid
  • SSB#0 is located at the frequency domain location #0
  • SSB#0 corresponds to If the frequency is the highest or lowest, place SSB#1 at an interval of ⁇ f 1 from frequency domain position #0, place SSB#2 at an interval of 2 ⁇ f 1 ..., and place SSB#(M-1) at an interval of (M-1) ⁇ f 1 .
  • SSB#0 is located at position #0 in the frequency domain, and the SSBs located in the asynchronous grid are located on both sides of the position where SSB#0 is located.
  • SSB#1 and SSB#2 are placed at an interval of ⁇ f 1 from frequency domain position #0
  • SSB#3 and SSB# 4 are placed 2 ⁇ f1 apart from frequency domain location #0.
  • a possible implementation solution is that only one SSB of the M frequency-divided SSBs is located on the synchronization grid (SSB#0).
  • the values of m and n are not 0. That is to say, the multiple SSBs of frequency division are placed continuously or at intervals of ⁇ f1. If there are other SSBs other than SSB#0 located on the synchronization grid, the SSBs are placed at an additional interval of a certain frequency range ⁇ f2 to ensure that only SSB#0 is located on the synchronous grid. on the synchronized grid.
  • the frequency range ⁇ f1 and ⁇ f2 of the interval can be absolute frequency Hz, resource element (resource element, RE) or resource block (resource block, RB) granularity, etc.
  • the subcarrier width referenced by RE and RB is the subcarrier of the SSB. Or fix a certain subcarrier width.
  • the frequency-divided SSBs are continuously placed in the frequency domain or at a fixed interval of frequency range ⁇ f3, and it is guaranteed that at least one SSB in the frequency domain will be on the synchronization grid.
  • the frequency range ⁇ f1 of the interval can be absolute frequency Hz, RE, RB granularity, etc.
  • the subcarrier widths referenced by REs and RBs are the subcarriers of SSB or a certain subcarrier width is fixed.
  • the frequency ranges ⁇ f1, ⁇ f2, and ⁇ f3 can be configured by the network side, or agreed in the communication protocol.
  • the network device needs to store the frequency composition method again. For example, the network device stores the frequency composition in memory.
  • the network device may send the synchronization signal block to the terminal device in a broadcast manner.
  • the terminal device #A detects M synchronization signal blocks SSB sent by the network device, where the M SSBs include N first SSBs located at the previous synchronization.
  • the terminal device #A detects M SSBs sent by the network device, the M SSBs are sent at the same time and at different frequencies, and the M SSBs include N first SSBs, and the first SSBs are located at the synchronization gate Lattice SSB, N is a positive integer.
  • the terminal device #A receives the synchronization signal block SSB sent by the network device, and detects the frequency domain synchronization signal block SSB and the time-frequency domain index of the SSB.
  • the network device sends M SSBs through different beams, and the terminal device #A detects the M SSBs sent by the network device. It should be noted that the terminal device #A can detect the SSB sent by the beam covering the terminal device #A.
  • the network device may choose to send the synchronization signal block only on the synchronized grid, or to send the synchronization signal block on the synchronized grid and the non-synchronized last.
  • the terminal device #A searches for the synchronization signal on the synchronization grid for initial access.
  • the method 300 further includes:
  • the terminal device #A acquires the detected first index of the first SSB.
  • Terminal device #A can obtain the first index of the first SSB according to the detected first SSB, where the first index is the index of the first SSB in the M SSBs, or the first index is the The index of the first SSB among the N first SSBs.
  • the obtained first index is the index of the first SSB in the M SSBs or the index in the N first SSBs, which can be confirmed according to the corresponding relationship between the indication information stored by the terminal device and the SSB index, That is, the terminal device pre-stores the correspondence between the indication information and the SSB index.
  • the terminal device #A may determine the time domain and/or frequency domain position for sending the random access signal to the network device according to the first index.
  • the first index is a time domain index and/or a frequency domain index of the first SSB.
  • each SSB corresponds to a time domain index and a frequency domain index.
  • the terminal device #A can know the position of the detected SSB in the time domain and the frequency domain according to the index, and then the device can implement initial synchronization with the network device according to the first index.
  • an indexing manner for the frequency-divided SSBs may be indexing only the SSBs on the synchronized grid, or indexing the SSBs on the synchronized grids and the non-synchronized grids.
  • FIG. 5 shows a situation in which an embodiment of the present application performs indexing on an SSB on a synchronization grid.
  • FIG. 6 shows a schematic diagram of the location of the synchronization signal block in the embodiment of the present application. In FIG. 6 , all SSBs are indexed in the frequency domain. As shown in FIG. 6 , the vertical axis represents the frequency division index of the SSB and the corresponding frequency domain position of the SSB, and the horizontal axis corresponds to the time domain index of the SSB and the corresponding time domain position.
  • the terminal device #A acquires the first index according to the indication information #A, and the indication information #A is composed of the synchronization signal SS, the physical broadcast channel PBCH demodulation reference signal DMRS, PBCH, reference signal RS, system message, data At least one of a channel and a control channel is carried.
  • the indication information #A is composed of the synchronization signal SS, the physical broadcast channel PBCH demodulation reference signal DMRS, PBCH, reference signal RS, system message, data At least one of a channel and a control channel is carried.
  • the terminal device #A may carry the indication information #A through the information in the first SSB.
  • the index information may be carried by at least one of the synchronization signal SS in the first SSB, the demodulation reference signal PBCH DMRS of the physical broadcast channel, and the primary system information of the physical broadcast channel PBCH.
  • the first index is acquired according to the indication information #A.
  • the SSB frequency domain index may be carried by different SS sequences.
  • the SSB frequency domain index is carried by the positions of different signals in the SS.
  • the terminal device #A can learn the SSB index or part of the SSB index during synchronization.
  • the SSB frequency domain index is carried by different PBCH DMRS sequences.
  • the terminal device #A can know the SSB index or part of the SSB index when demodulating the corresponding signal.
  • the primary system information transmitted through the PBCH carries the SSB frequency domain index.
  • the terminal device #A can know the SSB index or part of the SSB index when demodulating the corresponding signal.
  • the terminal device #A may also acquire the first index according to the indication information sent by the network device.
  • the corresponding indication information of the first SSB may be carried by at least one of the reference signal RS, system information, and signaling indication sent by the network device, and the index information may be acquired according to the indication information.
  • the network device can indicate the SSB frequency domain index by sending a reference signal RS carrying the SSB frequency domain index to the terminal device #A, for example, the SSB frequency domain index can be carried through different RS sequences.
  • the network device may also indicate the frequency domain index to the terminal device #A by means of primary system information or signaling indication transmitted in a non-PBCH.
  • the frequency domain index of the SSB may be indicated through signaling carried in a data channel (such as RRC signaling or MAC signaling, etc.) or signaling carried in a control channel (such as DCI signaling, etc.).
  • a data channel such as RRC signaling or MAC signaling, etc.
  • a control channel such as DCI signaling, etc.
  • a wider index range can be indicated by a reference signal RS or system information or signaling transmitted in a data channel, and can be independently indicated by a new RS.
  • the network device may jointly carry the SSB index through a combination of the above different manners.
  • a combination of different modes in the first information, different modes in the second information, and different modes in the first information and the second information carries the SSB index.
  • the SSB frequency domain index indication requires 2 bits (bit)
  • the PBCH DMRS and PBCH transmission data carry 1 bit indication information respectively.
  • the network device may jointly carry the SSB frequency domain and time domain indices through the foregoing different manners or a combination of different manners.
  • use PBCH DMRS to carry the frequency domain index, and use the PBCH transmission data to carry the time domain index; or use the PBCH DMRS to carry the time domain index, and use the PBCH transmission data to carry the frequency domain index.
  • the PBCH DMRS carries a time domain index and a partial frequency domain index
  • the data transmitted by the PBCH carries a partial frequency domain index
  • the PBCH DMRS carries a partial time domain index and a frequency domain index
  • the PBCH transmitted data carries a partial time domain index.
  • the network device sends the reference signal RS to the terminal device #A, and the time domain and frequency domain indexes are simultaneously carried through different RS sequences. It should be noted that, by adopting the jointly designed indication method, the advantages and disadvantages of various indication methods can be taken into account, and the demodulation performance of the terminal can be improved.
  • the frequency domain index of the SSB on the asynchronous grid may adopt system information or other signaling indication methods.
  • the frequency domain index of the SSB can be indicated to the terminal device by means of system information or other signaling instructions.
  • the network device can synchronize the SSB on the synchronization grid, so the SSB frequency domain index can be obtained in the above-mentioned other forms.
  • the SSB frequency domain index on the synchronization grid may be indicated in the SSB, eg, using the SS in the synchronization signal block.
  • the network device may indicate all SSB frequency domain indices through system information or a signaling indication method. In this way, after the terminal device #A detects the SSB, it can know that the detected SSB is an index in the frequency domain. In addition, all SSB frequency domain indices are indicated in the data channel, and the index range that can be indicated is wide.
  • the terminal device and the network device may pre-store the correspondence between the index indication information of the SSB and the SSB index.
  • the terminal device #A obtains the indication information, and can learn the index of the synchronization signal block according to the index relationship between the indication information and the SSB.
  • the terminal device #A can determine the index of the SSB detected by the terminal device according to the indication information sent by the network device.
  • the network device when the network device sends the SSB, it will carry the index information of the SSB in the SSB, for example, the frequency domain index is carried by the synchronization signal of the SSB, or the network device can send the indication information (ie the second information) to the terminal device.
  • the indication information carries the SSB index.
  • the network device and the terminal device #A may store the corresponding relationship between the indication information and the SSB index.
  • the terminal device #A may determine the SSB index according to the stored correspondence.
  • the method 300 further includes:
  • terminal device #A acquires the quasi-co-located QCL relationship and/or antenna port information among the M SSBs, where the QCL relationship and/or antenna port information of the M SSBs are used for joint measurement of large-scale parameters and/or joint solution adjust data.
  • the terminal device #A may determine the QCL relationship among the multiple SSBs and the antenna port information according to the QCL relationship indicated by the network device or specified by the communication protocol.
  • a network device may indicate large-scale characteristics of a specific QCL.
  • a specific one or more large-scale characteristics such as airspace QCL and or average gain QCL, can be specified through the protocol.
  • the terminal device #A obtains the QCL relationship between the SSBs or whether they are the same port, and jointly measures the large-scale parameters of the QCL and or jointly demodulates the data, so as to obtain a more accurate measurement value.
  • the network device may indicate through synchronization information SS, system messages or other signaling.
  • the QCL relationship includes one or more of large-scale characteristics, and specifically, the large-scale characteristics include: delay spread, average delay, Doppler spread, Doppler frequency shift, average gain, and reception parameters , terminal device receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver antenna spatial correlation (spatial QCL), main angle of arrival (angel-of-arrival, AoA), average angle of arrival, AoA extension Wait.
  • the large-scale characteristics include: delay spread, average delay, Doppler spread, Doppler frequency shift, average gain, and reception parameters , terminal device receive beam number, transmit/receive channel correlation, receive angle of arrival, receiver antenna spatial correlation (spatial QCL), main angle of arrival (angel-of-arrival, AoA), average angle of arrival, AoA extension Wait.
  • the terminal device #A may determine, according to the second indication information sent by the network device, that multiple SSBs in the M SSBs have a QCL relationship and/or the antenna port information.
  • the frequency-divided SSBs do not have a QCL relationship by default, and the network side indicates that the frequency-divided SSBs have a QCL relationship, or the same port.
  • the frequency division SSB on the synchronization grid does not have a QCL relationship by default, or it is indicated by a network device that it does not have a QCL relationship.
  • An SSB on an unsynchronized grid has a QCL relationship or is the same port as a specific SSB on a synchronized grid.
  • the terminal device cannot detect the SSB on the asynchronous grid, and configures the SSB on the asynchronous grid to have a QCL relationship with a specific SSB on the synchronous grid or the same port.
  • the SSB on the unsynchronized grid can be sent using the same beam or a similar beam as the specific SSB on the synchronized grid, so that large-scale parameters and/or demodulation data can be jointly measured to obtain better detection and demodulation performance .
  • the second indication information may be synchronization information SS, system message, etc., which is not limited in this embodiment of the present application.
  • the N first SSBs do not have a QCL relationship
  • the terminal device #A acquires the QCL relationship and/or antenna port information among the M SSBs, including: determining the second SSB and the second SSB according to the third indication information sent by the network device.
  • the third SSB has a QCL relationship
  • the second SSB is one of the SSBs located on the asynchronous grid among the M SSBs
  • the third SSB has a first relationship with the second SSB among the N first SSBs
  • One of the first relationship is the adjacent relationship of frequency domain position, frequency domain index or frequency size.
  • the terminal device #A may also determine that the second SSB and the third SSB have a QCL relationship according to the stipulation of the communication protocol, and the second SSB is one of the SSBs located on the asynchronous grid among the M SSBs.
  • the third SSB is one of the N first SSBs that has a first relationship with the second SSB, and the first relationship is an adjacent relationship of a frequency domain position, a frequency domain index or a frequency magnitude.
  • N SSBs located on the synchronous grid do not have a QCL relationship, and there is a QCL relationship between the SSBs located on the asynchronous grid and the SSB located on the synchronous grid.
  • the N SSBs located on the synchronous grid are SSB#1, SSB#2..., SSB#N
  • the M-N SSBs located on the non-synchronized grid are SSB#(N+1), SSB#( N+2)..., SSB#M.
  • the above-mentioned second SSB and the third SSB have a QCL relationship
  • SSB#1 and SSB#M have a QCL relationship
  • SSB#1 and SSB#M are located adjacent to the frequency domain location, or SSB#1 and SSB#M
  • the frequency domain indices are adjacent, or the frequency magnitudes of SSB#1 and SSB#M are adjacent.
  • the SSB on the asynchronous grid and the SSB on the adjacent synchronized grid have a QCL relationship or have the same port.
  • the SSB with a low or high frequency is configured to have a QCL relationship or the same antenna port as the SSB on the synchronized grid, or the SSB index in the configured frequency domain is larger or Small SSB.
  • the SSB on the asynchronous grid has a QCL relationship or the same port as the SSB on the nearest synchronous grid with a lower frequency; or the SSB on the asynchronous grid has a higher frequency than it.
  • the SSBs on the nearest sync grid have a QCL relationship or are the same port.
  • the SSB on the asynchronous grid has a QCL relationship or the same port as the SSB on the nearest synchronous grid whose frequency domain SSB index is smaller than it;
  • the SSB on the nearest sync grid with a larger domain SSB index has a QCL relationship or is the same port.
  • the frequency-divided SSBs have a QCL relationship or the same port by default.
  • the network device indicates through the fourth indication information that the frequency-divided SSBs do not have a QCL relationship or are not the same port.
  • the terminal device #A and the network device may store information indicating that the frequency domain SSB has a QCL relationship and/or an antenna port relationship.
  • the terminal device may determine the QCL and/or antenna port relationship between the SSBs according to the indication information sent by the network device.
  • terminal device #A can jointly measure large-scale parameters of QCL and or jointly demodulate data according to the acquired QCL relationship and/or antenna port information among multiple SSBs.
  • the two SSBs received by the terminal device #A have a QCL relationship, it can assume that the two SSBs are transmitted by the same beam, and both estimate the beam quality of the transmit beams corresponding to the two SSBs, and/or jointly demodulate The two SSBs correspond to the transmitted system information.
  • Terminal equipment #A can detect the SSB sent by the beam covering the terminal equipment #A, and can know the beam quality of the beam sending different SSBs according to the QCL relationship between different SSBs, and terminal equipment #A can select the corresponding beam with the best quality
  • the SSB performs the subsequent initial access process.
  • Terminal device #A sends a random access signal to the network device according to the detected frequency domain position of the first SSB in the M SSBs or in the N first SSBs.
  • the random access signal is used for the terminal device #A to perform a random access process with the network device.
  • the terminal device may initiate random access to the network device according to the frequency position of the first SSB in the frequency-divided SSB.
  • the random access signal may be sent to the network device according to the frequency domain position of the first SSB in the M SSBs; or the random access signal may be sent to the network device according to the frequency domain position of the first SSB in the N first SSBs Send a random access signal.
  • the terminal device #A determines the time domain and/or frequency domain resource location used for sending the random access signal according to the detected first SSB in the frequency domain location where the M SSBs or the N first SSBs are located.
  • the network device receives the random access signal sent by the terminal device #A, and performs initial access with the terminal device according to the random access signal. For example, according to the received random access signal, a random access response message, that is, a second message (message 2, Msg2), is sent to the terminal device #A.
  • a random access response message that is, a second message (message 2, Msg2)
  • Msg2 messages, messages 2, Msg2
  • the network device can learn about the SSB detected by terminal device #A, and then send Msg2 to terminal device #A using the beam that transmits the SSB.
  • the synchronization signal block SSB is associated with the random access resource RO.
  • the terminal device #A detects the SSB sent by the network device, and initiates random access according to the RO associated with the detected SSB.
  • the network device receives the random access signal sent by the terminal device #A on the RO, learns the SSB that the terminal device #A can detect, and then uses the beam of the SSB to send the random access response.
  • terminal device #A determines a first random access opportunity (RACH occasion, RO) according to the detected first SSB and the first mapping relationship, and sends a random access signal according to the first RO.
  • the first correspondence includes the correspondence between M SSBs and P ROs.
  • the M SSBs are frequency-divided SSBs, and the M SSBs may include those located on a synchronous grid, or include those located on a synchronous grid and an asynchronous grid. SSB on raster.
  • the first corresponding relationship may be a relationship obtained by mapping in an order of priority in the frequency domain of the SSB.
  • the order of frequency domain priority multiple frequency-divided SSBs can be mapped to the same RO, which can more effectively support multiple frequency-divided SSBs to be sent using different digital beams.
  • the mapping is performed according to the order of the frequency of the SSB, and it can also be understood that the mapping is performed according to the order of the frequency domain of the SSB and the order of the time domain.
  • the mapping relationship obtained in the order of frequency domain priority is as follows:
  • FIG. 7 shows a schematic diagram of a mapping relationship between synchronization signal blocks and random access resources according to an embodiment of the present application. As shown in FIG. 7 , the frequency-divided SSB is mapped one-to-one with the RO according to the priority in the frequency domain.
  • the first corresponding relationship may also be a relationship in which each SSB in the M SSBs is mapped with a plurality of ROs in the P ROs in a frequency domain priority order.
  • each SSB may be mapped to multiple ROs with the same time domain resource and different frequency domain resources.
  • FIG. 8 is a schematic diagram showing yet another mapping relationship between synchronization signal blocks and random access resources according to an embodiment of the present application. As shown in Figure 8, one of the SSBs corresponds to two ROs.
  • the first corresponding relationship may also be a relationship in which at least two SSBs among the M SSBs are mapped to one RO among the P ROs in a frequency domain priority order.
  • frequency-divided multiple SSBs are mapped to one RO.
  • FIG. 9 is a schematic diagram showing yet another mapping relationship between synchronization signal blocks and random access resources according to an embodiment of the present application. As shown in Figure 9, two frequency-divided SSBs correspond to one RO.
  • multiple frequency-divided SSBs may correspond to different ROs, such as four frequency-divided SSBs (SSB#11, SSB#21, SSB#31, and SSB#41, where SSB#31 and SSB#41 are shown in Fig. 9), wherein SSB#11 and SSB#21 are mapped with the same RO, and SSB#31 and SSB#41 are mapped with one RO.
  • the frequency-divided multiple SSBs may be in a priority order of high and low frequencies.
  • the network device may configure random access sequence resources corresponding to multiple SSBs mapped to the same RO. For example, the network device configures that a terminal corresponding to each SSB can initiate random access using the same random access sequence resource. At this time, the network device can distinguish the SSB corresponding to the terminal through the digital beam. For another example, the network device may configure the terminals corresponding to each SSB to initiate random access using different random access sequence resources, and at this time, the network device may distinguish the SSBs corresponding to the terminals by using the random access sequence resources. Or the protocol defaults to one of these configurations.
  • the first corresponding relationship may also be a relationship obtained by mapping the frequency-divided M SSBs to each of the at least one RO, where the at least one RO is at least one of the P ROs.
  • the M frequency-divided SSBs are mapped to one RO, or the frequency-divided M SSBs are mapped to multiple ROs, and each RO corresponds to the frequency-divided M SSB directions. It should be noted that the overhead of indicating the mapping relationship between the SSB and the RO can be reduced by mapping multiple SSBs with frequency division to one RO.
  • the network device may configure the terminal equipment corresponding to each frequency-divided SSB to initiate random access using the same random access sequence resource, or configure the terminal corresponding to each SSB to initiate random access using different random access sequence resources. access, or one of the configurations in the communication protocol by default.
  • the SSBs with the QCL relationship or the same antenna port may be mapped to the RO according to the same SSB.
  • the SSB with the QCL relationship is mapped to the RO according to one SSB, or the SSB of the same antenna port is mapped to the RO according to one SSB.
  • the network side configures the terminals corresponding to the SSBs with the QCL relationship or the same antenna port to initiate random access using the same random access sequence resource, or the network device configures the terminals corresponding to each SSB to use different random access sequences.
  • the resource initiates random access, or one of the configurations is defaulted in the communication protocol.
  • FIG. 10 shows a schematic block diagram of a communication apparatus 400 according to an embodiment of the present application.
  • the apparatus 400 includes a transceiver unit 410 and a processing unit 420 .
  • the transceiver unit 410 can communicate with the outside, and the processing unit 420 is used for data processing.
  • the processing unit 420 may be used for detection, and for example, the processing unit 420 may also be used for acquisition.
  • Transceiver unit 410 may also be referred to as a communication interface or a communication unit.
  • the apparatus 400 may further include a storage unit, where the storage unit may be used to store instructions or/or data, and the processing unit 420 may read the instructions or/or data in the storage unit.
  • the storage unit may be used to store instructions or/or data
  • the processing unit 420 may read the instructions or/or data in the storage unit.
  • the apparatus 400 may be used to perform the actions performed by the terminal device #A in the above method embodiments.
  • the apparatus 400 may be a terminal device or a component or chip configured in the terminal device, and the transceiver unit 410 is used to perform the above
  • the processing unit 420 is configured to perform the processing-related operations on the first communication device side in the above method embodiments.
  • the processing-related operations may include detection operations, acquisition operations Wait.
  • the processing unit 420 is configured to detect M synchronization signal blocks SSB sent by the network device.
  • the M SSBs are sent at the same time and at different frequencies.
  • the M SSBs include N first SSBs, and the first SSBs are The SSB located in the synchronization grid, N is a positive integer;
  • the transceiver unit 410 is configured to send to the network device according to the detected frequency domain position of the first SSB in the M SSBs or in the N first SSBs random access signal.
  • the processing unit 420 is further configured to obtain the first index of the first SSB, where the first index is the index of the first SSB in the M SSBs, or the first index is the first SSB in the N first index The index in the SSB; the processing unit is further configured to determine the time domain and/or frequency domain position for sending the random access signal according to the first index.
  • the apparatus 400 may be configured to perform the actions performed by the network device in the above method embodiments
  • the transceiver unit 410 is configured to perform the operations related to the transmission and reception of the network device in the above method embodiments
  • the processing unit 420 is configured to perform the above method embodiments. The processing-related operations of the network device in the method embodiment.
  • the transceiver unit 410 is configured to transmit M synchronization signal blocks SSBs, the M SSBs are transmitted at the same time and at different frequencies, and the M SSBs include N first SSBs, and the first SSBs are located in the synchronization grid SSB, N is a positive integer; the transceiver unit 410 is further configured to receive a random access signal sent by the terminal device, the random access signal is the terminal device according to the detected first SSB in the M SSBs or in the Sent at the frequency domain location where the N first SSBs are located.
  • the processing unit 420 is configured to determine a first index according to the time domain and/or frequency domain position of the random access signal, where the first index is the index of the first SSB in the M SSBs, or the first index is the The index of the first SSB in the N first SSBs.
  • the transceiver unit 410 is also used for the root transceiver unit to send first indication information, the first indication information is used to instruct the terminal device to obtain the first index, and the first indication information is decoded by the synchronization signal SS and the physical broadcast channel PBCH. At least one of the tune reference signal DMRS, PBCH, reference signal RS, system message, data channel and control channel is carried.
  • an embodiment of the present application further provides a communication apparatus 500 .
  • the communication device 500 includes a processor 510 coupled with a memory 520 for storing computer programs or instructions or and/or data, and the processor 510 for executing the computer programs or instructions and/or data stored in the memory 520 , so that the methods in the above method embodiments are executed.
  • the communication apparatus 500 includes one or more processors 510 .
  • the communication apparatus 500 may further include a memory 520 .
  • the communication device 500 may include one or more memories 520 .
  • the memory 520 may be integrated with the processor 510, or provided separately.
  • the wireless communication apparatus 500 may further include a transceiver 530, and the transceiver 530 is used for signal reception and/or transmission.
  • the processor 510 is used to control the transceiver 530 to receive and/or transmit signals.
  • the communication apparatus 500 is configured to implement the operations performed by the network device in the above method embodiments.
  • the processor 510 is configured to implement the processing-related operations performed by the network device in the above method embodiments
  • the transceiver 530 is configured to implement the transceiving-related operations performed by the network device in the above method embodiments.
  • the transceiver 530 may be configured to transmit M synchronization signal block SSBs, the M SSBs are transmitted at the same time and at different frequencies, and the M SSBs include N first SSBs, and the first SSBs are The SSB located in the synchronization grid, N is a positive integer; the transceiver 530 is further configured to receive a random access signal sent by the terminal device, where the random access signal is the location of the terminal device according to the detected first SSB.
  • the M SSBs are sent at the frequency domain position where the N first SSBs are located.
  • the processor 510 is configured to determine a first index according to the time domain and/or frequency domain position of the random access signal, where the first index is an index of the first SSB in the M SSBs, or the The first index is the index of the first SSB in the N first SSBs; the processor 510 is further configured to determine, according to the first random access opportunity RO and the first correspondence, the first SSB that can be detected by the terminal device.
  • An SSB wherein the first RO is the RO used for receiving the random access signal, and the first correspondence includes the correspondence between the M SSBs and the P ROs, where P is a positive integer.
  • the communication apparatus 500 is configured to implement the operations performed by the terminal device in the above method embodiments.
  • the processor 510 is configured to implement the processing-related operations performed by the terminal device in the above method embodiments, and the processing-related actions may include detection operations, acquisition actions, etc., and the transceiver 530 is configured to implement the above method embodiments. Transceiver-related operations performed by a terminal device.
  • the processor 510 is configured to detect M synchronization signal blocks SSB sent by the network device, the M SSBs are sent at the same time and at different frequencies, and the M SSBs include N first SSBs, and the M SSBs are sent at different frequencies.
  • An SSB is an SSB located on the synchronization grid, and N is a positive integer; the processor 510 is further configured to generate N preamble sequences according to the first number N and the first cyclic shift value; the transceiver 530 is configured to generate N preamble sequences according to the detected The first SSB of the first SSB sends a random access signal to the network device at a frequency domain position in the M SSBs or in the N first SSBs.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种初始接入的方法和装置,该方法包括:检测网络设备发送的M个同步信号块SSB,该M个SSB的发送时间相同,且该M个SSB中任意两个SSB的发送频率不同,该M个SSB中包括N个第一SSB,该第一SSB为位于同步栅格的SSB,N为正整数;根据检测到的该第一SSB在该M个SSB中或者在该N个第一SSB中的频域位置向该网络设备发送随机接入信号。网络设备发送时间相同、频率不同的多个SSB,终端设备根据检测到的第一SSB在M个SSB中或者在N个第一SSB中的频域位置向网络设备发送随机接入信号,可以降低初始接入过程中的资源开销。

Description

初始接入的方法和装置
本申请要求于2020年11月13日提交中国专利局、申请号为202011271035.0、发明名称为“初始接入的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种初始接入的方法和装置。
背景技术
移动业务的发展对无线通信的数据速率和效率要求越来越高。通过波束成形技术可以有效扩大无线信号的传输范围,降低信号干扰,从而达到更高的通信效率和获取更高的网络容量。在波束成形技术的通信网络中,为获取高通信效率,将发送波束和接收波束匹配,使得发送端到接收端的增益最大。为了满足整个区域内的终端能够接入通信网络,网络设备采用波束扫描的方式发送时分的初始接入同步信号块(synchronization signal/PBCH block,SSB),终端设备可以根据检测到的同步信号块进行随机接入。
然而,通过波束扫描方式发送时分的同步信号块,系统资源开销会随着网络设备发送的SSB的数量的增多而增大。因此,如何解决初始接入过程的资源开销问题是一个亟需解决的问题。
发明内容
本申请提供一种初始接入的方法和装置,能够解决关于初始接入过程中资源开销问题。
第一方面,提供了一种初始接入的方法,包括:检测网络设备发送的M个同步信号块SSB,所述M个SSB的发送时间相同,且所述M个SSB中任意两个SSB的发送频率不同,所述M个SSB中包括N个第一SSB,所述第一SSB为位于同步栅格的SSB,N为正整数;根据检测到的所述第一SSB在所述M个SSB中或者在所述N个第一SSB中的频域位置向所述网络设备发送随机接入信号。
根据本申请提供的方法,终端设备通过检测网络设备发送的M个时间相同、频率不同的同步信号块SSB,该M个SSB包括N个位于同步栅格上的第一SSB,终端设备根据检测到的第一SSB在该M个SSB或者在该N个第一SSB中的频域位置向网络设备发送随机信号。网络设备发送时间相同、频率不同的M个SSB,使得频分的频域资源得到有效的利用,降低以时分方式发送SSB时频域资源的浪费。终端设备根据检测到的第一SSB在M个SSB或者N个第一SSB的频域位置发送随机接入信号,提高资源利用效率,降低资源开销。
需要说明的是,“所述M个SSB的发送时间相同、频率不同”可以理解为该M个SSB是以频分方式发送的。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:获取所述第一SSB的第一索引,所述第一索引为所述第一SSB在所述M个SSB中的索引,或所述第一索引为所述第一SSB在所述N个第一SSB中的索引;根据所述第一索引确定发送所述随机接入信号的时域和/或频域位置。
可选地,该第一索引可以包括时域索引和频域索引。
结合第一方面,在第一方面的某些实现方式中,所述获取第一SSB的第一索引,包括:根据所述网络设备发送的第一指示信息获取所述第一索引,所述第一指示信息由同步信号SS、物理广播信道PBCH解调参考信号DMRS、PBCH、参考信号RS、系统消息、数据信道和控制信道中的至少一种携带。
可选地,网络设备可以通过第一指示信息指示频域索引和/或频域索引。例如,网络设备可以通过PBCH DMRS携带指示频域索引的指示信息,通过PBCH传输的数据携带指示时域索引的指示信息。
可选地,该M个SSB中位于非同步栅格上的SSB可以采用系统信息或者信令进行指示,该信令可以为数据信道携带的信令,例如无线资源控制信令、媒体接入控制信令等,或者该信令可以为控制信道携带的信令,例如下行控制信息等。
可选地,该M个SSB的频域索引可以使用系统信息或者信令进行指示。
结合第一方面,在第一方面的某些实现方式中,N为1,其中,所述检测网络设备发送的M个SSB,包括:在第一频域位置检测所述网络设备发送的所述第一SSB,所述第一SSB为所述M个SSB中频率最高的一个,或所述第一SSB为所述M个SSB中频率最低的一个,或所述第一SSB为所述M个SSB中频率索引最高的一个,或所述第一SSB为所述M个SSB中频率索引最低的一个。
可选地,该第一SSB还可以为该M个SSB中索引为第floor(M/2)或floor(M/2)+1个SSB。
结合第一方面,在第一方面的某些实现方式中,所述检测网络设备发送的M个SSB,还包括:在与所述第一频域位置相隔mΔf 1+nΔf 2的位置检测M-1个第二SSB,所述第二SSB为所述M个SSB中位于非同步栅格的SSB,其中,Δf 1表示第一频率间隔、Δf 2表示第二频率间隔,m和n为非负整数。
可选地,m和n的取值可以都为0。此时,该M个SSB在频域上连续。
可选地,m的取值可以为0、n的取值不为0。此时,该M个SSB在频域上间隔固定的频率间隔。
可选地,m和n的取值可以都不为0。此时,该M个SSB中相邻两个SSB在频域上的频率间隔为Δf 1,或者Δf 1+Δf 2。可以理解的是,在m和n都不为0的情况下,可以通过配置该M个SSB的频率间隔,使得该M个SSB中有一个SSB位于同步栅格上。
结合第一方面,在第一方面的某些实现方式中,所述M个SSB中相邻两个SSB的频域位置的间隔为Δf 3,Δf 3表示第三频率间隔。
可选地,频域间隔的单位可以为绝对频率、资源单元、资源块。
可选地,该频率间隔可以由网络设备进行配置,或者由通信协议规定。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:获取所述M个SSB的准同位QCL关系和/或天线端口信息,所述M个SSB的QCL关系和/或天线端口信息用 于联合测量大尺度参数和/或联合解调数据。
结合第一方面,在第一方面的某些实现方式中,所述获取M个SSB的准同位QCL关系和/或天线端口信息,包括:根据所述网络设备发送的第二指示信息确定所述M个SSB中的多个SSB具备QCL关系和/或所述天线端口信息。
可选地,该第二指示信息可以通过同步信息SS、系统消息等指示。
结合第一方面,在第一方面的某些实现方式中,所述N个第一SSB不具备QCL关系,所述获取M个SSB的准同位QCL关系和/或天线端口信息,包括:根据所述网络设备发送的第三指示信息确定第二SSB与第三SSB具备QCL关系,所述第二SSB为所述M个SSB中位于非同步栅格上的SSB中的一个,所述第三SSB为所述N个第一SSB中与所述第二SSB具有第一关系的一个,所述第一关系为频域位置、频域索引或频率大小的相邻的关系。
结合第一方面,在第一方面的某些实现方式中,所述N个第一SSB不具备QCL关系,所述获取M个SSB的准同位QCL关系和/或天线端口信息,包括:根据通信协议的规定确定第二SSB与第三SSB具备QCL关系,所述第二SSB为所述M个SSB中位于非同步栅格上的SSB中的一个,所述第三SSB为所述N个第一SSB中与所述第二SSB具有第一关系的一个,所述第一关系为频域位置、频域索引或频率大小的相邻的关系。
结合第一方面,在第一方面的某些实现方式中,所述根据检测到的所述第一SSB在所述M个SSB或者在所述N个第一SSB所在的频域位置向所述网络设备发送用于进行初始接入的随机接入信号,包括:根据所述检测到的第一SSB和第一对应关系确定第一随机接入机会RO,所述第一对应关系包括所述M个SSB与P个RO的对应关系,P为正整数;以及在所述第一RO上发送所述随机接入信号。
结合第一方面,在第一方面的某些实现方式中,所述第一对应关系为如下关系中的一种:所述M个SSB以频域优先的顺序与所述P个RO一一映射的关系,M=P;或所述M个SSB中的每个SSB以频域优先的顺序与所述P个RO中的多个RO映射的关系;或所述M个SSB中至少两个SSB以频域优先的顺序与所述P个RO中一个RO映射的关系;或所述M个SSB与至少一个RO中的每一个RO的映射关系,所述至少一个RO为所述P个RO中的至少一个。
需要说明的是,以频域优先的顺序可以为按照M个SSB的频率的高低的顺序。
可选地,该P个RO在时域和/或频域上具备优先顺序,该M个SSB可以以频域优先的顺序与该P个RO进行映射。
第二方面,提供一种初始接入的方法,包括:发送M个同步信号块SSB,所述M个SSB的发送时间相同,且所述M个SSB中任意两个SSB的发送频率不同,所述M个SSB中包括N个第一SSB,所述第一SSB为位于同步栅格的SSB,N为正整数;接收终端设备发送的随机接入信号,所述随机接入信号为所述终端设备根据检测到的所述第一SSB在所述M个SSB或者在所述N个第一SSB所在的频域位置发送的。
根据本申请提供的方法,网络设备通过发送时间相同、频率不同的M个SSB,该M个SSB包括N个位于同步栅格的第一SSB,能够降低网络设备发送SSB时的资源浪费,提高资源利用效率。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述随机接入信号 的时域和/或频域位置为所述终端设备根据第一索引确定的,所述第一索引为所述第一SSB在所述M个SSB中的索引,或所述第一索引为所述第一SSB在所述N个第一SSB中的索引。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:发送第一指示信息,所述第一指示信息用于所述终端设备获取所述第一索引,所述第一指示信息由同步信号SS、物理广播信道PBCH解调参考信号DMRS、PBCH、参考信号RS、系统消息、数据信道和控制信道中的至少一种携带。
结合第二方面,在第二方面的某些实现方式中,N为1,所述发送M个SSB,包括:
在第一频域位置发送所述第一SSB,所述第一SSB为所述M个SSB中频率最高的一个,或所述第一SSB为所述M个SSB中频率最低的一个,或所述第一SSB为所述M个SSB中频率索引最高的一个,或所述第一SSB为所述M个SSB中频率索引最低的一个。
结合第二方面,在第二方面的某些实现方式中,所述发送M个SSB,还包括:在与所述第一频域位置间隔mΔf 1+nΔf 2的频域位置发送M-1个第二SSB,所述第二SSB为所述M个SSB中位于非同步栅格的SSB,其中,Δf 1表示第一频率间隔、Δf 2表示第二频率间隔,m和n为非负整数。
结合第二方面,在第二方面的某些实现方式中,所述M个SSB中相邻两个SSB的频域位置间隔Δf 3,Δf 3表示第三频率间隔。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:发送第二指示信息,所述第二指示信息用于指示所述M个SSB中的多个SSB具备QCL关系和/或所述天线端口信息。
结合第二方面,在第二方面的某些实现方式中,所述N个第一SSB不具备QCL关系,所述方法还包括:发送第三指示信息,所述第三指示信息用于指示第二SSB与第三SSB具备QCL关系,所述第二SSB为所述M个SSB中位于非同步栅格上的SSB中的一个,所述第三SSB为所述N个第一SSB中与所述第二SSB具有第一关系的一个,所述第一关系为频域位置、频域索引或频率大小的相邻的关系。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:根据第一随机接入机会RO和第一对应关系确定所述终端设备能够检测到的第一SSB,其中,所述第一RO为接收所述随机接入信号所使用的RO,所述第一对应关系包括所述M个SSB与P个RO的对应关系,P为正整数。
结合第二方面,在第二方面的某些实现方式中,所述第一对应关系为如下关系中的一种:所述M个SSB以频域优先的顺序与所述P个RO一一映射的关系,M=P;或所述M个SSB中的每个SSB以频域优先的顺序与所述P个RO中的多个RO映射的关系;或所述M个SSB中至少两个SSB以频域优先的顺序与所述P个RO中一个RO映射的关系;或所述M个SSB与至少一个RO中的每一个RO的映射关系,所述至少一个RO为所述P个RO中的至少一个。
第三方面,提供一种初始接入的装置,包括:处理单元,用于检测网络设备发送的M个同步信号块SSB,所述M个SSB的发送时间相同,且所述M个SSB中任意两个SSB的发送频率不同,所述M个SSB中包括N个第一SSB,所述第一SSB为位于同步栅格的SSB,N为正整数;收发单元,用于根据检测到的所述第一SSB在所述M个SSB中或者 在所述N个第一SSB中的频域位置向所述网络设备发送随机接入信号。
结合第三方面,在第三方面的某些实现方式中,所述处理单元还用于获取所述第一SSB的第一索引,所述第一索引为所述第一SSB在所述M个SSB中的索引,或所述第一索引为所述第一SSB在所述N个第一SSB中的索引;所述处理单元还用于根据所述第一索引确定发送所述随机接入信号的时域和/或频域位置。
结合第三方面,在第三方面的某些实现方式中,所述处理单元还用于根据所述网络设备发送的第一指示信息获取所述第一索引,所述第一指示信息由同步信号SS、物理广播信道PBCH解调参考信号DMRS、PBCH、参考信号RS、系统消息、数据信道和控制信道中的至少一种携带。
结合第三方面,在第三方面的某些实现方式中,N为1,所述处理单元还用于在第一频域位置检测所述网络设备发送的所述第一SSB,所述第一SSB为所述M个SSB中频率最高的一个,或所述第一SSB为所述M个SSB中频率最低的一个,或所述第一SSB为所述M个SSB中频率索引最高的一个,或所述第一SSB为所述M个SSB中频率索引最低的一个。
结合第三方面,在第三方面的某些实现方式中,所述处理单元还用于在与所述第一频域位置相隔mΔf 1+nΔf 2的位置检测M-1个第二SSB,所述第二SSB为所述M个SSB中位于非同步栅格的SSB,其中,Δf 1表示第一频率间隔、Δf 2表示第二频率间隔,m和n为非负整数。
结合第三方面,在第三方面的某些实现方式中,所述M个SSB中相邻两个SSB的频域位置的间隔为Δf 3,Δf 3表示第三频率间隔。
结合第三方面,在第三方面的某些实现方式中,所述处理单元还用于获取所述M个SSB的准同位QCL关系和/或天线端口信息,所述M个SSB的QCL关系和/或天线端口信息用于联合测量大尺度参数和/或联合解调数据。
结合第三方面,在第三方面的某些实现方式中,所述处理单元还用于根据所述网络设备发送的第二指示信息确定所述M个SSB中的多个SSB具备QCL关系和/或所述天线端口信息。
结合第三方面,在第三方面的某些实现方式中,所述N个第一SSB不具备QCL关系,所述处理单元还用于根据所述网络设备发送的第三指示信息确定第二SSB与第三SSB具备QCL关系,所述第二SSB为所述M个SSB中位于非同步栅格上的SSB中的一个,所述第三SSB为所述N个第一SSB中与所述第二SSB具有第一关系的一个,所述第一关系为频域位置、频域索引或频率大小的相邻的关系。
结合第三方面,在第三方面的某些实现方式中,所述处理单元还用于根据所述检测到的第一SSB和第一对应关系确定第一随机接入机会RO,所述第一对应关系包括所述M个SSB与P个RO的对应关系,P为正整数;所述收发单元还用于在所述第一RO上发送所述随机接入信号。
结合第三方面,在第三方面的某些实现方式中,所述第一对应关系为如下关系中的一种:所述M个SSB以频域优先的顺序与所述P个RO一一映射的关系,M=P;或所述M个SSB中的每个SSB以频域优先的顺序与所述P个RO中的多个RO映射的关系;或所述M个SSB中至少两个SSB以频域优先的顺序与所述P个RO中一个RO映射的关系; 或所述M个SSB与至少一个RO中的每一个RO的映射关系,所述至少一个RO为所述P个RO中的至少一个。
第四方面,提供一种初始接入的装置,包括:收发单元和处理单元,该收发单元用于发送M个同步信号块SSB,所述M个SSB的发送时间相同,且所述M个SSB中任意两个SSB的发送频率不同,所述M个SSB中包括N个第一SSB,所述第一SSB为位于同步栅格的SSB,N为正整数;所述收发单元还用于接收终端设备发送的随机接入信号,所述随机接入信号为所述终端设备根据检测到的所述第一SSB在所述M个SSB或者在所述N个第一SSB所在的频域位置发送的。
结合第四方面,在第四方面的某些实现方式中,所述处理单元用于根据所述随机接入信号的时域和/或频域位置确定第一索引,所述第一索引为所述第一SSB在所述M个SSB中的索引,或所述第一索引为所述第一SSB在所述N个第一SSB中的索引。
结合第四方面,在第四方面的某些实现方式中,所述收发单元还用于发送第一指示信息,所述第一指示信息用于指示所述终端设备获取所述第一索引,所述第一指示信息由同步信号SS、物理广播信道PBCH解调参考信号DMRS、PBCH、参考信号RS、系统消息、数据信道和控制信道中的至少一种携带。
结合第四方面,在第四方面的某些实现方式中,N为1,所述收发单元还用于在第一频域位置发送所述第一SSB,所述第一SSB为所述M个SSB中频率最高的一个,或所述第一SSB为所述M个SSB中频率最低的一个,或所述第一SSB为所述M个SSB中频率索引最高的一个,或所述第一SSB为所述M个SSB中频率索引最低的一个。
结合第四方面,在第四方面的某些实现方式中,所述收发单元还用于与所述第一频域位置间隔mΔf 1+nΔf 2的频域位置发送M-1个第二SSB,所述第二SSB为所述M个SSB中位于非同步栅格的SSB,其中,Δf 1表示第一频率间隔、Δf 2表示第二频率间隔,m和n为非负整数。
结合第四方面,在第四方面的某些实现方式中,所述M个SSB中相邻两个SSB的频域位置间隔Δf 3,Δf 3表示第三频率间隔。
结合第四方面,在第四方面的某些实现方式中,所述收发单元还用于发送第二指示信息,所述第二指示信息用于指示所述M个SSB中的多个SSB具备QCL关系和/或所述天线端口信息。
结合第四方面,在第四方面的某些实现方式中,所述N个第一SSB不具备QCL关系,所述收发单元还用于发送第三指示信息,所述第三指示信息用于指示第二SSB与第三SSB具备QCL关系,所述第二SSB为所述M个SSB中位于非同步栅格上的SSB中的一个,所述第三SSB为所述N个第一SSB中与所述第二SSB具有第一关系的一个,所述第一关系为频域位置、频域索引或频率大小的相邻的关系。
结合第四方面,在第四方面的某些实现方式中,所述处理单元还用于根据第一随机接入机会RO和第一对应关系确定所述终端设备能够检测到的第一SSB,其中,所述第一RO为接收所述随机接入信号所使用的RO,所述第一对应关系包括所述M个SSB与P个RO的对应关系,P为正整数。
结合第四方面,在第四方面的某些实现方式中,所述第一对应关系为如下关系中的一种:所述M个SSB以频域优先的顺序与所述P个RO一一映射的关系,M=P;或所述M 个SSB中的每个SSB以频域优先的顺序与所述P个RO中的多个RO映射的关系;或所述M个SSB中至少两个SSB以频域优先的顺序与所述P个RO中一个RO映射的关系;或所述M个SSB与至少一个RO中的每一个RO的映射关系,所述至少一个RO为所述P个RO中的至少一个。
第五方面,提供了一种通信装置,包括用于执行上述第一方面或第一方面中任一种可能实现方式中的方法的模块或单元,或者用于执行上述第二方面或第二方面中任一种可能实现方式中的方法的模块或单元。该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
第六方面,提供了一种通信装置,包括处理器和存储器,所述存储器存储有程序或指令,所述处理器用于从所述存储器中调用并执行所述程序或指令,使得所述装置执行上述第一方面或第一方面中任一种可能实现方式中的方法,或者执行上述第二方面或第二方面中任一种可能实现方式中的方法。
可选地,所述装置还包括收发器。
可选地,所述处理器与所述存储器耦合。
第七方面,提供了一种通信装置,所述装置包括:至少一个处理器和通信接口,所述通信接口用于所述装置与其他装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述装置执行上述第一方面或第一方面中任一种可能实现方式中的方法,或者执行上述第二方面或第二方面中任一种可能实现方式中的方法。
可选地,所述通信接口可以为收发器、电路、总线、模块、管脚或其它类型通信接口。
可选地,该装置还包括存储器,所述存储器用于存储指令和数据,所述处理器执行所述存储器中存储的指令时,可以实现上述第一方面或第一方面的任一种可能的实现方式中描述的方法,或者执行上述第二方面或第二方面中任一种可能实现方式中的方法。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或第一方面的任一种可能的实现方式所述的方法,或者执行上述第二方面或第二方面中任一种可能实现方式中的方法。
第九方面,提供一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一种可能的实现方式所述的方法,或者执行上述第二方面或第二方面中任一种可能实现方式中的方法。
第十方面,提供了一种通信系统,包括上述第三方面和第四方面中所述的通信装置,或上述第五方面、第六方面、第七方面中所述的通信装置。
附图说明
图1是本申请实施例的无线通信系统的示意图。
图2是本申请实施例的又一无线通信系统的示意图。
图3是一种无线通信方法的示意性交互图。
图4是本申请实施例的无线通信方法的又一示意性流程图。
图5是本申请实施例的同步信号块位置的示意图。
图6是本申请实施例的同步信号块位置的又一示意图。
图7是本申请实施例同步信号块与随机接入资源的映射关系的示意图。
图8是本申请实施例同步信号块与随机接入资源的又一映射关系的示意图。
图9是本申请实施例同步信号块与随机接入资源的再一映射关系的示意图。
图10是本申请实施例的通信装置的示意性框图。
图11是本申请实施例的通信装置的再一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)或下一代通信系统等,本申请实施例并不限定。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及车辆间(vehicle to vehicle,V2V)通信。
本申请实施例结合网络设备和终端设备描述了各个实施例,其中:
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(staion,ST),可以是手机(mobile phone)、卫星电话、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、平板电脑(pad)、带无线收发功能的电脑、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。本申请的实施例对应用场景不做限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上, 或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:演进型节点B(evolved nodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved node B,或home node B,HNB)、基带单元(base band unit,BBU),WLAN中的接入点,无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),分布式单元(distributed unit,DU),或者,设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
本申请实施例的无线通信方法可以应用于包括单个或多个网络设备,和单个或多个终端设备的系统。
例如,图1示出了本申请实施例的一种可能的无线通信系统的示意图。如图1所示,该通信系统100包括网络设备和终端设备,例如,图1中示出的网络设备110和终端设备120和终端设备121;该通信系统中,网络设备通过波束扫描的方式与终端设备进行通信。图1所示的通信系统,单个网络设备可以与单个或多个终端设备传输数据或控制信令。
再例如,图2示出了本申请实施例的又一种可能的无线通信系统的示意图。图2所示的通信系统中,多个网络设备(如网络设备111,112,113)可以同时与单个终端设备(如终端设备122)传输数据或控制信令。
为便于描述,下面对本申请实施例的相关概念进行介绍:
同步信号(synchronization signal,SS):同步信号用于终端和网络侧实现时频同步,以及小区物理标识符(ID)的检测。包括主同步信号(primary synchronization signal,PSS)和/或辅同步信号(secondary synchronization signal,SSS),其中PSS用于终端设备进行时频同步以及检测小区。SSS用于传输小区物理标识ID。也可以将PSS和SSS和在一起,实现上述功能。
物理广播信道(physical broadcasting channel,PBCH):用于传输主系统信息,例如少量的重要的信息,其他系统信息的获取方法等。
同步信号-物理广播信道(synchronization signal/PBCH block,SSB):称为同步信号块,包括同步信号SS和/或PBCH,用于实现时间同步,小区物理标识符(ID)的检测、获取主系统信息等。
参考信号、物理信道:在物理层,上行通信包括上行物理信道和上行信号的传输。其中,上行物理信道包括随机接入信道(random access channel,PRACH),上行控制信道(physical uplink control channel,PUCCH),上行数据信道(physical uplink shared channel,PUSCH)等,上行信号包括信道探测参考信号(Sounding reference signal),上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS),上行定位信号(uplink positioning RS)等。下行通信包括下行物理信道和下行信号的传输。其中,下行物理信道包括广播信道PBCH,下行控制信道(physical downlink control channel,PDCCH),下行数据信道(physical downlink shared channel,PDSCH)等,下行信号包括主同步信号PSS/辅同步信号SSS,下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(channel status information reference signal,CSI-RS),小区信号(Cell reference signal,CRS),精同步信号(time/frequency tracking reference signal,TRS),LTE/NR定位信号(positioning RS)等
天线端口:在低频的情况下,一个天线端口可以对应一个或多个天线阵元,该天线阵元用于联合发送参考信号,终端设备可以不区分阵元进行接收。在高频的情况下,天线端口可以对应一个波束。
波束(beam):波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术包括数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等,例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束还可以由空域滤波器(spatial filter)进行体现。
特别的,数字权值(用于生成数字波束)与模拟权值(用于生成模拟波束)两种不同的概念。数字权值是在数字域上进行的权值加权,权值可以是任意的数值(理论上);模拟权值指在模拟域上进行加权,最常见的是通过移相器对信号进行加权(也有时延线对信号进行加权)。混合数字/模拟波束(数模波束)联合数字权值与模拟权值分别在数字域和模拟域加权。
准同位(quasi-co-location,QCL):也可以称为准共址。同位关系用于表示多个资源之间具有一个或多个相同或者相类似的通信特征,对于具有同位关系的多个资源,可以采用相同或者类似的通信配置。例如,如果两个天线端口具有同位关系,那么一个端口传送一个符号的信道大尺度特性可以从另一个端口传送一个符号的信道大尺度特性推断出来。大尺度特性可以包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性(空域QCL),主到达角(Angel-of-Arrival,AoA),平均到达角,AoA的扩展等。
空域准同位(spatial QCL):spatial QCL可以认为是QCL的一种类型。从接收端来看, 如果说两个天线端口、或者两个信号、或者两个信道是空域准同位的,那么是指接收端能够在相同的波束方向上接收到这两个天线端口发送的信号,或者接收到这两个信号、或者接收到这两个信道上发送的信号。
准同位假设(QCL assumption):是指假设两个端口之间是否具有QCL关系。准同位假设的配置和指示可以用来帮助接收端进行信号的接收和解调。例如接收端能确认A端口和B端口具有大尺度的QCL关系,即可以将A端口上测得的信号的大尺度参数用于B端口上的信号测量和解调,也可以利用两个端口接收信号联合测量相同的大尺度参数等。
需要说明的是,SSB之间不具备大尺度QCL关系,则发送SSB的端口不属于相同端口。两个端口是相同端口则一定这两个端口同时具有所有的大尺度QCL关系。
无线资源控制(radio resource control,RRC):通过一定的策略和手段进行无线资源管理、控制和调度,在满足服务质量的要求下,尽可能地充分利用有限的无线网络资源,确保到达规划的覆盖区域,尽可能地提高业务容量和资源利用率
媒体接入控制(media access control,MAC)层:处于RRC层和物理层之间,主要负责控制物理层的传输等功能。
同步栅格(synchronization raster):用于发送同步信号,终端接入小区的时在频率域维度的同步栅格上进行搜索。
图3示出了一种可能的无线通信方法的示意性交互图。例如,该无线通信方法为网络设备与终端设备进行初始接入过程的方法的交互过程。终端设备与网络设备建立无线链路并进行数据交互需要通过随机接入完成上行接入。如图3所示,该无线通信方法200可以应用于图1和图2所示的通信系统,该方法200包括:
S210,网络设备向终端设备发送同步/广播信息。
网络设备在特定的位置周期性的发送广播/同步消息,该广播/同步消息可以包括同步信号块SSB,系统消息等,其中,该系统消息可以为广播消息,该系统消息可以采用与发送SSB相同的波束进行发送。
S220,终端设备向网络发送第一消息(message1,Msg1)。
终端设备开机之后,扫描网络设备发送的广播/同步消息,以进行下行时间和频率同步,并同时接收广播消息中有关随机接入资源的配置信息。
需要说明的是,终端设备接收网络设备发送的同步/广播信息,并根据该同步/广播信息向网络设备发送该第一消息。
终端设备接收随机资源配置信息,根据检测到的SSB确定随机接入资源,该随机接入资源包括时域资源、频域资源以及序列资源,进而终端设备可以使用该随机接入资源发送随机接入信号(即第一消息)。其中,随机接入的时间、频率资源构成一个随机接入机会(random access channel occasion,RO);
终端设备选择物理随机接入信道(physical random access channel,PRACH)的时频资源(PRACH occasion,PO)传输第一消息(即Msg1),
需要说明的是,5G NR系统默认支持波束赋形,该模式下的随机接入过程是基于波束的接入过程。下行同步时,终端设备需要接收、检测信号最强或较强的同步信号块索引并确定下行波束,并根据系统消息(synchronization signal block,SIB)指示的SSB索引与PRACH时频资源的对应关系,获取可用的PRACH时频资源和前导序列集合。
S230,网络设备向终端设备回复第二消息Msg2。
网络设备接收到终端设备发送的第一消息,并向终端设备发送随机接入响应(random access response,RAR)(即第二消息)。其中,随机接入响应信号包括物理下行共享信道(physical downlink shared channel,PDSCH)和物理下行控制信道(physical downlink control channel,PDCCH),PDCCH用于调度PDSCH。PDSCH中包括了终端设备用于发送第三消息进行冲突解决的时频资源位置,调制编码方式等配置信息。
S240,终端设备向网络设备发送第三消息Msg3。
终端设备根据接收到第二消息,获取第二额消息中的配置信息,并选择时频资源发送第三消息。
S250,网络设备向终端设备发送第四消息Msg4。
该第四消息用于指示终端设备接入成功。
图4示出了本申请实施例的无线通信方法的示意性交互图。如图4所示的方法300可以应用于图1或图2所示的无线通信系统中,该方法300包括:
S310,网络设备向终端设备#A(即终端设备的一例)发送M个同步信号块SSB,该M个SSB的发送时间相同,且所述M个SSB中任意两个SSB的发送频率不同,该M个SSB中包括N个第一SSB,该N个第一SSB为位于同步栅格上的SSB,N为正整数。
可选地,网络设备可以在相同时间不同的频率发送M个SSB(可以称为以频分方式发送M个SSB)。相对于只在时域上发送多个SSB的方式,通过发送频分的SSB,可以节约更多的时域资源,从而大大降低资源开销。
例如,网络设备在不同的频率形成不同的数字波束或者数模波束,使用该不同的数字波束或者模拟波束分别发送该多个SSB。
再例如,网络设备可以通过不同的模拟波束在不同的频率发送SSB。该模拟波束可以通过不同的移项器组合使用不同的模拟权值生成。
可选地,网络设备发送的该M个SSB包括满足终端设备#A完成初始接入所需个数的SSB。例如,在网络设备通过16个不同的波束一一对应地发射16个不同的SSB以实现终端初始同步等功能的情况下,网络设备可以选择在同步栅格上发送4个频分的SSB,相应的,时域上时分发送4个SSB。
网络设备只在同步栅格上发送满足终端设备实现初始同步等功能所需个数的SSB,终端设备可以同步上任何一个SSB,从而减小资源开销。
可选地,网络设备还可以选择在同步栅格和非同步栅格上发送M个SSB。例如,在网络设备通过16个不同的波束一一对应地发射16个不同的SSB以实现终端初始同步等功能的情况下,网络设备可以选择以频分的方式发送4个SSB(即在相同时间不同频率发送4个SSB),其中2个SSB在同步栅格上发送,相应地,时域上以时分的方式发送8个SSB。
如图5示出了本申请实施例的同步信号块的位置的示意图,如图5所示,网络设备发送的SSB一部分位于同步栅格上,一部分位于非同步栅格上,其中,虚线表示频域上同步栅格的位置,即频域上的SSB存在索引号的SSB位于同步栅格上。
网络设备选择在同步栅格和非同步栅格上发送频分的SSB,可以使SSB的频域位置不受同步栅格的约束,从而使得频分的SSB具有灵活的位置。
可选地,网络设备发送的M个SSB,频分的SSB(即相同时间发送的SSB)有一个位于同步栅格上(即N为1)。例如,网络设备发送的M个SSB中SSB#0位于同步栅格上。该SSB#0为在频域位置#0发送的SSB。
在只有一个频分的SSB位于同步栅格的情况下,网络设备发送的位于同步栅格上的SSB可以为频率索引最大或频率最高的SSB、或者频率索引最小或频率最低的SSB、或者中间的SSB(例如第floor(M/2)个,或者第floor(M/2)+1个,M为相同时刻频分的SSB的个数)。通过约束位于同步栅格上的SSB的位置的方法,可以使得终端在检测到SSB时,直接获知该SSB的频域索引。特别的,在约束最大索引的SSB位于同步栅格的情况下,终端设备可直接获知网络设备发送的SSB的个数。
可选地,网络设备在频域位置#0发送SSB#0,在与频域位置#0间隔mΔf 1+nΔf 2的频域位置发送M-1个位于非同步栅格上的SSB(即第二SSB,如SSB#1、SSB#2……SSB#(M-1)),其中,Δf 1表示第一频率间隔、Δf 2表示第二频率间隔,m和n为非负整数。一种可能的实现方案,频分的M个SSB只有一个SSB位于同步栅格上,mΔf 1+nΔf 2中,m和n取值为0。即频分的M个SSB在频域资源上连续放置。
一种可能的实现方案,频分的M个SSB只有一个SSB位于同步栅格上,mΔf 1+nΔf 2中,n取值为0,m取值不为0。即频分的M个SSB在频域资源上间隔固定的频率范围Δf 1放置,例如,SSB#0为位于同步栅格上的SSB,SSB#0在频域位置#0处,SSB#0对应的频率最高或最低,则与频域位置#0间隔Δf 1放置SSB#1,间隔2Δf 1放置SSB#2……,间隔(M-1)Δf 1放置SSB#(M-1)。
再例如,SSB#0在频域位置#0处,位于非同步栅格的SSB位于SSB#0所在位置的两侧,如与频域位置#0间隔Δf 1放置SSB#1和SSB#2,与频域位置#0间隔2Δf 1放置SSB#3和SSB#4。
一种可能的实现方案,频分的M个SSB只有一个SSB位于同步栅格上(SSB#0),mΔf 1+nΔf 2中,m和n取值不为0。即频分的多个SSB连续放置或间隔Δf1放置的方式,若存在除SSB#0外的其他SSB位于同步栅格上,则额外间隔一定频率范围Δf2放置此SSB,以保证只有SSB#0位于同步栅格上。
可选地,间隔的频率范围Δf1,Δf2可以为绝对频率Hz、资源单元(resource element,RE)或资源块(resource block,RB)粒度等,RE、RB参考的子载波宽度为SSB的子载波或者固定某个子载波宽度。
可选地,频分的SSB在频域上连续放置或者间隔固定的频率范围Δf3,并保证至少有一个频域的SSB会处于同步栅格上。间隔的频率范围Δf1可以为绝对频率Hz、RE、RB粒度等,RE,RB参考的子载波宽度为SSB的子载波或者固定某个子载波宽度。
可选地,频率范围Δf1,Δf2,Δf3可由网络侧进行配置,或者在通信协议中约定。
需要说明的是,以频分方式发送初始接入SSB,网络设备需要再存储频率组成方式。例如,网络设备在存储器中存储该频率组成方式。
可选地,网络设备可以通过广播的方式向终端设备发送同步信号块。
S320,终端设备#A检测网络设备发送的M个同步信号块SSB,该M个SSB中包括N个位于同步上个的第一SSB。
需要说明的是,终端设备#A检测网络设备发送的M个SSB,该M个SSB的发送时 间相同、频率不同,该M个SSB中包括N个第一SSB,该第一SSB为位于同步栅格的SSB,N为正整数。
应理解,终端设备#A接收网络设备发送的同步信号块SSB,并检测频域同步信号块SSB以及SSB的时频域索引。
网络设备通过不同的波束发送M个SSB,终端设备#A检测网络设备发送的M个SSB。需要说明的是,终端设备#A可以检测到覆盖该终端设备#A的波束所发送的SSB。
应理解,网络设备可以选择只在同步栅格上发送同步信号块,或者在同步栅格和非同步上个上发送同步信号块。终端设备#A在初始接入过程中,搜索同步栅格上的同步信号以进行初始接入。
可选地,终端设备#A检测到网络设备在同步栅格上发送的M个同步信号块后,所述方法300还包括:
S321,终端设备#A获取检测到的该第一SSB的第一索引。
终端设备#A可以根据检测到的第一SSB获取该第一SSB的第一索引,该第一索引为该第一SSB在所述M个SSB中的索引,或所述第一索引为所述第一SSB在所述N个第一SSB中的索引。
需要说明的是,获取的第一索引为该第一SSB在M个SSB中的索引或在N个第一SSB中的索引,可以根据终端设备存储的指示信息与SSB索引的对应的关系确认,即终端设备预先存储指示信息与SSB索引的对应关系。
可选地,终端设备#A获取该第一索引后,可以根据该第一索引确定向网络设备发送随机接入信号的时域和/或频域位置。
可选地,该第一索引为该第一SSB的时域索引和/或频域索引。例如图5中,每个SSB都对应一个时域索引和一个频域索引。终端设备#A可以根据该索引获知检测到的SSB位于时域和频域上的位置,进而设备可以根据该第一索引实现与网络设备的初始同步。
可选地,对于频分的SSB的索引方式可以为只针对同步栅格上的SSB进行索引,或者针对同步栅格和非同步栅格上的SSB进行索引。如图5示出了本申请实施例针对同步栅格上的SSB进行索引的情况。图6示出了本申请实施例的同步信号块的位置的示意图,图6中频域上针对所有SSB进行索引。如图6所示,纵轴表示SSB的频分索引以及对应的SSB的频域位置,横轴对应SSB的时域索引以及对应的时域位置。
可选地,终端设备#A根据指示信息#A来获取该第一索引,该指示信息#A由同步信号SS、物理广播信道PBCH解调参考信号DMRS、PBCH、参考信号RS、系统消息、数据信道和控制信道中的至少一种携带。
可选地,终端设备#A可以通过第一SSB中的信息携带该指示信息#A。具体地,可以通过该第一SSB中的同步信号SS、物理广播信道的解调参考信号PBCH DMRS、物理广播信道PBCH的主系统信息中的至少一种携带该索引信息。
根据指示信息#A获取第一索引。例如,可以通过不同的SS序列携带SSB频域索引。又例如,通过SS内不同信号的位置来携带SSB频域索引。终端设备#A在同步时可以获知SSB索引或者部分SSB索引。
再例如,通过不同的PBCH的DMRS序列携带SSB频域索引。终端设备#A在进行解调相应信号时即可获知SSB索引或部分SSB索引。
再例如,通过PBCH传输的主系统信息中携带SSB频域索引。终端设备#A在进行解调相应信号时即可获知SSB索引或部分SSB索引。
可选地,终端设备#A还可以根据网络设备发送的指示信息获取该第一索引。具体地,可以通过网络设备发送的参考信号RS、系统信息、信令指示中的至少一种携带该第一SSB的对应的指示信息,并根据该指示信息获取索引信息。
例如,网络设备可以通过向终端设备#A发送携带SSB频域索引的参考信号RS以指示SSB频域索引,如可以通过不同的RS序列携带SSB频域索引。
又例如,网络设备还可以通过非PBCH里面传输的主系统信息或者信令指示的方式向终端设备#A指示该频域索引。
再例如,可以通过数据信道携带的信令(如RRC信令或者MAC信令等)或控制信道携带的信令(如DCI信令等)指示SSB的频域索引。
通过参考信号RS或者在数据信道中传输的系统信息或信令可以指示更广的索引范围,此外,通过新的RS可以进行独立地指示。
可选地,网络设备可以通过上述不同方式的组合来联合携带SSB索引。例如,第一信息中不同方式、第二信息中的不同方式、第一信息和第二信息中的不同方式的组合携带SSB索引。例如,SSB频域索引指示需要2比特(bit),配置PBCH DMRS和PBCH传输的数据中分别携带1bit指示信息。
可选的,网络设备可以通过上述不同方式、或不同方式的组合来联合携带SSB频域和时域索引。例如,使用PBCH DMRS携带频域索引,并使用PBCH传输的数据中携带时域索引;或者使用PBCH DMRS携带时域索引,PBCH传输的数据中携带频域索引。又例如,PBCH DMRS携带时域索引和部分频域索引,PBCH传输的数据中携带部分频域索引,或者,PBCH DMRS携带部分时域索引和频域索引,PBCH传输的数据中携带部分时域索引。又例如,网络设备向终端设备#A发送参考信号RS,通过不同的RS序列同时携带时域和频域索引。需要说明的是,采用联合设计的指示方式,可以兼顾各种指示方式优劣,提升终端解调性能。
可选的,非同步栅格上的SSB的频域索引可采用系统信息或者其他信令指示方法。
需要说明的是,由于终端设备在初始接入过程中不会同步上非同步栅格上的SSB,因此,可以采用系统信息或者其他信令指示的方法向终端设备指示该SSB的频域索引,而网络设备可以同步上同步栅格上的SSB,因此可以采用上述其他形式获取SSB频域索引。例如,同步栅格上的SSB频域索引可以在SSB中进行指示,如使用同步信号块中SS进行指示。
可选地,在只有一个频域SSB处于同步栅格上的情况下,网络设备可以通过系统信息或者信令指示方法指示所有的SSB频域索引。该方式下,终端设备#A检测到SSB后,可以获知检测到的SSB是在频域的索引,此外,所有的SSB频域索引采用在数据信道中进行指示方法,可指示的索引范围广。
可选地,终端设备和网络设备可以预先存储SSB的索引指示信息与SSB索引的对应关系。终端设备#A获取到该指示信息,可以根据该指示信息与SSB的索引关系,获知同步信号块的索引。
应理解,终端设备#A可以根据网络设备发送的指示信息确定终端设备检测到的SSB 的索引。相应地,网络设备在发送SSB时,会在SSB中携带该SSB的索引信息,例如通过该SSB的同步信号携带频域索引,或者,网络设备可以向终端设备发送指示信息(即第二信息),该指示信息携带SSB索引。再例如,网络设备和终端设备#A可以存储指示信息与SSB索引的对应关系,当网络设备向终端设备#A发送该指示信息时,终端设备#A可以根据存储的对应关系确定SSB的索引。
可选地,所述方法300还包括:
S330,终端设备#A获取该M个SSB间的准同位QCL关系和/或天线端口信息,所述M个SSB的QCL关系和/或天线端口信息用于联合测量大尺度参数和/或联合解调数据。
终端设备#A可以根据网络设备指示的或者通信协议规定的QCL关系确定多个SSB间的QCL关系以及天线端口信息。例如,网络设备可以指示具体的QCL的大尺度特性。再例如,可以通过协议规定特定的某个或者多个大尺度特性,例如空域QCL和或average gain QCL等。
终端设备#A获取SSB之间的QCL关系或者是否是相同端口,并联合测量QCL的大尺度参数和或联合解调数据,可以获取更精确的测量值。
可选地,网络设备可以通过同步信息SS,系统消息或者其他信令进行指示。
应理解,此处,QCL关系包括大尺度特性中的一种或多种,具体地,大尺度特性包括:延迟扩展,平均延迟,多普勒扩展,多普勒频移,平均增益,接收参数,终端设备接收波束编号,发射/接收信道相关性,接收到达角,接收机天线的空间相关性(空域QCL),主到达角(angel-of-arrival,AoA),平均到达角,AoA的扩展等。
可选地,终端设备#A可以根据网络设备发送的第二指示信息确定M个SSB中的多个SSB具备QCL关系和/或所述天线端口信息。
例如,频分的SSB默认不具有QCL关系,网络侧指示频分的SSB具有QCL关系,或者指示是相同端口。同步栅格上的频分SSB默认不具有QCL关系,或者通过网络设备指示其不具备QCL关系。非同步栅格上的SSB与同步栅格上的特定SSB具有QCL关系或者是相同端口。应理解,初始接入过程中,终端设备无法检测到非同步栅格上的SSB,将非同步栅格上的SSB配置为与同步栅格上特定的SSB具有QCL关系或者是相同端口的方式,可以使非同步栅格上的SSB采用与同步栅格上特定SSB相同的波束或者近似的波束进行发送,从而可以联合测量大尺度参数和/或解调数据,获得更好的检测、解调性能。
可选地,该第二指示信息可以为同步信息SS、系统消息等,本申请实施例并不限定于此。
可选地,该N个第一SSB不具备QCL关系,终端设备#A获取M个SSB间的QCL关系和/或天线端口信息,包括:根据网络设备发送的第三指示信息确定第二SSB与第三SSB具备QCL关系,该第二SSB为该M个SSB中位于非同步栅格上的SSB中的一个,该第三SSB为该N个第一SSB中与该第二SSB具有第一关系的一个,该第一关系为频域位置、频域索引或频率大小的相邻的关系。
可选地,终端设备#A还可以根据通信协议的规定确定第二SSB与第三SSB具备QCL关系,该第二SSB为该M个SSB中位于非同步栅格上的SSB中的一个,该第三SSB为该N个第一SSB中与该第二SSB具有第一关系的一个,该第一关系为频域位置、频域索引或频率大小的相邻的关系。
例如,网络设备发送的M个频分的SSB中,N个位于同步栅格上的SSB不具备QCL关系,位于非同步栅格上的SSB与位于同步栅格上的SSB之间存在QCL关系。具体地,例如,位于同步栅格的N个SSB为SSB#1、SSB#2……、SSB#N,位于非同步栅格上的M-N个SSB为SSB#(N+1)、SSB#(N+2)……、SSB#M。上述第二SSB与第三SSB具备QCL关系可以理解为,SSB#1与SSB#M具备QCL关系,且SSB#1与SSB#M所在的频域位置相邻,或者SSB#1与SSB#M频域索引相邻,或者SSB#1与SSB#M的频率大小相邻。
一种可能的实现方式,非同步栅格上的SSB与临近的同步栅格上的SSB具有QCL关系或者是相同端口。在该非同步栅格上的SSB与2个SSB的距离相等的情况下,配置频率低或者高的SSB与同步栅格上的SSB具有QCL关系或相同天线端口,或者配置频域SSB索引大或者小的SSB。
一种可能的实现方式,非同步栅格上的SSB与频率比其低的最近的同步栅格上的SSB具有QCL关系或者是相同端口;或者非同步栅格上的SSB与频率比其高的最近的同步栅格上的SSB具有QCL关系或者是相同端口。
一种可能的实现方式,非同步栅格上的SSB与频域SSB索引比其小的最近的同步栅格上的SSB具有QCL关系或者是相同端口;或者,非同步栅格上的SSB与频域SSB索引比其大的最近的同步栅格上的SSB具有QCL关系或者是相同端口。
可选地,频分的SSB默认具有QCL关系或者是相同端口。网络设备通过第四指示信息指示频分的SSB不具有QCL关系或者不是相同端口。
可选地,终端设备#A和网络设备可以存储频域SSB具有QCL关系和/或天线端口关系的指示信息。终端设备可以根据网络设备发送的指示信息确SSB间的QCL和/或天线端口关系。
在初始接入过程中,终端设备#A可以根据获取到的多个SSB间的QCL关系和/或天线端口信息,联合测量QCL的大尺度参数和或联合解调数据。例如,终端设备#A接收到的两个SSB具有QCL关系,其可以假定两个SSB是相同的波束发送的,并两个估计两个SSB对应的发送波束的波束质量,和/或联合解调这两个SSB对应发射的系统信息。终端设备#A可以检测到覆盖该终端设备#A的波束所发送的SSB,根据不同SSB间的QCL关系,可以获知发送不同SSB的波束的波束质量,终端设备#A可以选择对应波束质量最好的SSB进行后续的初始接入过程。
S340,终端设备#A根据检测到的第一SSB在该M个SSB中或者在该N个第一SSB中的频域位置向所述网络设备发送随机接入信号。
应理解,该随机接入信号用于终端设备#A与网络设备进行随机接入过程。
需要说明的是,终端设备检测到网络设备发送的一SSB后,可以根据该第一SSB在频分的SSB中的频率位置,向网络设备发起随机接入。具体地,可以根据该第一SSB在该M个SSB中的频域位置向网络设备发送随机接入信号;或者可以根据该第一SSB在该N个第一SSB中的频域位置向网络设备发送随机接入信号。
例如,终端设备#A根据该检测到的第一SSB在M个SSB或N个第一SSB所在的频域位置确定发送随机接入信号所使用的时域和/或频域资源位置。
相应地,网络设备接收终端设备#A发送的该随机接入信号,并根据该随机接入信号 与终端设备进行初始接入。例如,根据该接收到的随机接入信号,向终端设备#A发送随机接入响应消息,即第二消息(message 2,Msg2)。需要说明的是,网络设备接收到终端设备#A发送的随机接入信号后,可以获知该终端设备#A检测到的SSB的情况,进而使用发送该SSB的波束向终端设备#A发送Msg2。
在初始接入过程中,同步信号块SSB与随机接入资源RO关联。终端设备#A检测到网络设备发送的SSB,根据与检测到的SSB关联的RO发起随机接入。网络设备接收到终端设备#A在RO上发送的随机接入信号,获知终端设备#A能够检测到的SSB,进而采用该SSB的波束发送随机接入响应。
可选地,终端设备#A根据该检测到的第一SSB和第一映射关系确定第一随机接入机会(RACH occasion,RO),根据该第一RO发送随机接入信号。该第一对应关系包括M个SSB与P个RO的对应关系,应理解,该M个SSB为频分的SSB,该M个SSB可以包括位于同步栅格,或者包括位于同步栅格和非同步栅格上的SSB。
可选地,该第一对应关系可以为按照SSB的频域优先的顺序进行映射得到的关系。按照频域优先的顺序依次可以实现将多个频分的SSB映射到同一个RO上,可以更加有效的支持多个频分的SSB采用不同的数字波束进行发送。以频域优先的顺序可以理解为按照SSB的频率高低的顺序进行映射,还可以理解为按照SSB频域高低以及时域先后的顺序进行映射。按照频域优先的顺序得到的映射关系,具体如下:
在一种可选地实现方式中,该第一对应关系为该M个SSB以频域优先的顺序与所述P个RO一一映射的关系,M=P。例如,图7示出了本申请实施例同步信号块与随机接入资源的映射关系的示意图。如图7所示,频分的SSB按照频域优先级与RO进行一对一的映射。
在一种可选地实现方式中,该第一对应关系还可以为M个SSB中的每一个SSB以频域优先的顺序与P个RO中的多个RO进行映射的关系。例如,一个SSB可以与时域资源相同,频域资源不同的多个RO进行映射。图8示出了本申请实施例同步信号块与随机接入资源的又一映射关系的示意图。如图8所示,其中一个SSB与两个RO相对应。
在一种可选地实现方式中,该第一对应关系还可以为M个SSB中至少两个SSB以频域优先的顺序与P个RO中的一个RO进行映射的关系。例如,频分的多个SSB与一个RO进行映射。图9示出了本申请实施例同步信号块与随机接入资源的再一映射关系的示意图。如图9所示,其中两个频分的SSB与一个RO相对应。再例如,频分的多个SSB中可以对应不同的RO,如频分的4个SSB(SSB#11、SSB#21、SSB#31、SSB#41,其中SSB#31与SSB#41在图9中未示出),其中,SSB#11和SSB#21与同一个RO进行映射,SSB#31和SSB#41与一个RO进行映射。
需要说明的是,以频率优先的顺序,可以为频分的多个SSB按照频率高低的优先顺序。
可选地,网络设备可以配置映射到同一个RO的多个SSB对应的随机接入序列资源。例如,网络设备配置每个SSB对应的终端可使用相同的随机接入序列资源发起随机接入。此时,网络设备可以通过数字波束将终端对应的SSB区分出来。再例如,网络设备可以配置每个SSB对应的终端使用不同的随机接入序列资源发起随机接入,此时网络设备可以通过随机接入序列资源将终端对应的SSB区分出来。或者协议默认为其中一种配置。
可选地,该第一对应关系还可以为频分的M个SSB与至少一个RO中的每一个RO进行映射得到的关系,该至少一个RO为P个RO中的至少一个。
例如,频分的M个SSB映射至一个RO上,或者频分的M个SSB映射至多个RO上,且每个RO都与频分的M个SSB向对应。需要说明的是,根据频分的多个SSB与一个RO进行映射,可以降低指示SSB和RO映射关系的开销。
可选地,网络设备可以配置每个频分的SSB对应的终端设备可使用相同的随机接入序列资源发起随机接入,或者配置每个SSB对应的终端使用不同的随机接入序列资源发起随机接入,或者通信协议中默认为其中一种配置。
可选地,具有QCL关系或者是相同天线端口的SSB可以按照同一个SSB与RO进行映射。具体地,具备QCL关系的SSB按照一个SSB与RO进行映射,或者相同天线端口的SSB按照一个SSB与RO进行映射。
可选地,网络侧配置具备QCL关系或者相同天线端口的SSB对应的终端使用相同的随机接入序列资源发起随机接入,或者,网络设备配置每个SSB对应的终端使用不同的随机接入序列资源发起随机接入,或者通信协议中默认为其中一种配置。
图10示出了本申请实施例的通信装置400的示意性框图。该装置400包括收发单元410和处理单元420。收发单元410可以与外部进行通信,处理单元420用于进行数据处理。例如,该处理单元420可以用于进行检测,再例如,该处理单元420还可以用于进行获取。收发单元410还可以称为通信接口或通信单元。
可选地,该装置400还可以包括存储单元,该存储单元可以用于存储指令或者和/或数据,处理单元420可以读取存储单元中的指令或者和/或数据。
该装置400可以用于执行上文方法实施例中终端设备#A所执行的动作,这时,该装置400可以为终端设备或者配置于终端设备的部件或者芯片等,收发单元410用于执行上文方法实施例中终端设备的收发相关的操作,处理单元420用于执行上文方法实施例中第一通信装置侧的处理相关的操作,例如,该处理相关的操作可以包括检测操作,获取操作等。
举例来说,处理单元420用于检测网络设备发送的M个同步信号块SSB,该M个SSB的发送时间相同、频率不同,该M个SSB中包括N个第一SSB,该第一SSB为位于同步栅格的SSB,N为正整数;收发单元410,用于根据检测到的该第一SSB在该M个SSB中或者在该N个第一SSB中的频域位置向该网络设备发送随机接入信号。处理单元420还用于获取该第一SSB的第一索引,该第一索引为该第一SSB在该M个SSB中的索引,或该第一索引为该第一SSB在该N个第一SSB中的索引;该处理单元还用于根据该第一索引确定发送该随机接入信号的时域和/或频域位置。
或者,该装置400可以用于执行上文方法实施例中网络设备所执行的动作,收发单元410用于执行上文方法实施例中网络设备的收发相关的操作,处理单元420用于执行上文方法实施例中网络设备的处理相关的操作。
举例来说,收发单元410用于发送M个同步信号块SSB,该M个SSB的发送时间相同、频率不同,该M个SSB中包括N个第一SSB,该第一SSB为位于同步栅格的SSB,N为正整数;该收发单元410还用于接收终端设备发送的随机接入信号,该随机接入信号为该终端设备根据检测到的该第一SSB在该M个SSB或者在该N个第一SSB所在的频 域位置发送的。处理单元420用于根据该随机接入信号的时域和/或频域位置确定第一索引,该第一索引为该第一SSB在该M个SSB中的索引,或该第一索引为该第一SSB在该N个第一SSB中的索引。收发单元410还用于根收发单元还用于发送第一指示信息,该第一指示信息用于指示该终端设备获取该第一索引,该第一指示信息由同步信号SS、物理广播信道PBCH解调参考信号DMRS、PBCH、参考信号RS、系统消息、数据信道和控制信道中的至少一种携带。
如图11所示,本申请实施例还提供一种通信装置500。该通信装置500包括处理器510,处理器510与存储器520耦合,存储器520用于存储计算机程序或指令或者和/或数据,处理器510用于执行存储器520存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置500包括的处理器510为一个或多个。
可选地,如图11所示,该通信装置500还可以包括存储器520。
可选地,该通信装置500包括的存储器520可以为一个或多个。
可选地,该存储器520可以与该处理器510集成在一起,或者分离设置。
可选地,如图11所示,该无线通信装置500还可以包括收发器530,收发器530用于信号的接收和/或发送。例如,处理器510用于控制收发器530进行信号的接收和/或发送。
作为一种方案,该通信装置500用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器510用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器530用于实现上文方法实施例中由网络设备执行的收发相关的操作。
举例来说,收发器530可以用于发送M个同步信号块SSB,所述M个SSB的发送时间相同、频率不同,所述M个SSB中包括N个第一SSB,所述第一SSB为位于同步栅格的SSB,N为正整数;收发器530还用于接收终端设备发送的随机接入信号,所述随机接入信号为所述终端设备根据检测到的所述第一SSB在所述M个SSB或者在所述N个第一SSB所在的频域位置发送的。处理器510用于根据所述随机接入信号的时域和/或频域位置确定第一索引,所述第一索引为所述第一SSB在所述M个SSB中的索引,或所述第一索引为所述第一SSB在所述N个第一SSB中的索引;处理器510还用于根据第一随机接入机会RO和第一对应关系确定所述终端设备能够检测到的第一SSB,其中,所述第一RO为接收所述随机接入信号所使用的RO,所述第一对应关系包括所述M个SSB与P个RO的对应关系,P为正整数。
作为另一种方案,该通信装置500用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器510用于实现上文方法实施例中由终端设备执行的处理相关的操作,该处理相关的动作可以包括检测操作、获取动作等,收发器530用于实现上文方法实施例中由终端设备执行的收发相关的操作。
举例来说,处理器510用于检测网络设备发送的M个同步信号块SSB,所述M个SSB的发送时间相同、频率不同,所述M个SSB中包括N个第一SSB,所述第一SSB为位于同步栅格的SSB,N为正整数;处理器510还用于根据该第一数量N和第一循环移位值,生成N个前导序列;收发器530,用于根据检测到的所述第一SSB在所述M个SSB中或者在所述N个第一SSB中的频域位置向所述网络设备发送随机接入信号。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (45)

  1. 一种初始接入的方法,其特征在于,包括:
    检测网络设备发送的M个同步信号块SSB,所述M个SSB的发送时间相同,且所述M个SSB中任意两个SSB的发送频率不同,所述M个SSB中包括N个第一SSB,所述第一SSB为位于同步栅格的SSB,N为正整数;
    根据检测到的所述第一SSB在所述M个SSB或者在所述N个第一SSB中的频域位置向所述网络设备发送随机接入信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述第一SSB的第一索引,所述第一索引为所述第一SSB在所述M个SSB中的索引,或所述第一索引为所述第一SSB在所述N个第一SSB中的索引;
    根据所述第一索引确定发送所述随机接入信号的时域和/或频域位置。
  3. 根据权利要求2所述的方法,其特征在于,所述获取第一SSB的第一索引,包括:
    根据所述网络设备发送的第一指示信息获取所述第一索引,所述第一指示信息由同步信号SS、物理广播信道PBCH解调参考信号DMRS、PBCH、参考信号RS、系统消息、数据信道和控制信道中的至少一种携带。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,N为1,
    其中,所述检测网络设备发送的M个SSB,包括:
    在第一频域位置检测所述网络设备发送的所述第一SSB,所述第一SSB为所述M个SSB中频率最高的一个,或所述第一SSB为所述M个SSB中频率最低的一个,或所述第一SSB为所述M个SSB中频率索引最高的一个,或所述第一SSB为所述M个SSB中频率索引最低的一个。
  5. 根据权利要求4所述的方法,其特征在于,所述检测网络设备发送的M个SSB,还包括:
    在与所述第一频域位置相隔mΔf 1+nΔf 2的位置检测M-1个第二SSB,所述第二SSB为所述M个SSB中位于非同步栅格的SSB,
    其中,Δf 1表示第一频率间隔、Δf 2表示第二频率间隔,m和n为非负整数。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述M个SSB中相邻两个SSB的频域位置的间隔为Δf 3,Δf 3表示第三频率间隔。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    获取所述M个SSB的准同位QCL关系和/或天线端口信息,所述M个SSB的QCL关系和/或天线端口信息用于联合测量大尺度参数和/或联合解调数据。
  8. 根据权利要求7所述的方法,其特征在于,所述获取M个SSB的准同位QCL关系和/或天线端口信息,包括:
    根据所述网络设备发送的第二指示信息确定所述M个SSB中的多个SSB具备QCL关系和/或所述天线端口信息。
  9. 根据权利要求7所述的方法,其特征在于,所述N个第一SSB不具备QCL关系,所述获取M个SSB的准同位QCL关系和/或天线端口信息,包括:
    根据所述网络设备发送的第三指示信息确定第二SSB与第三SSB具备QCL关系,所述第二SSB为所述M个SSB中位于非同步栅格上的SSB中的一个,所述第三SSB为所述N个第一SSB中与所述第二SSB具有第一关系的一个,所述第一关系为频域位置、频域索引或频率大小的相邻的关系。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述根据检测到的所述第一SSB在所述M个SSB或者在所述N个第一SSB所在的频域位置向所述网络设备发送用于进行初始接入的随机接入信号,包括:
    根据所述检测到的第一SSB和第一对应关系确定第一随机接入机会RO,所述第一对应关系包括所述M个SSB与P个RO的对应关系,P为正整数;以及
    在所述第一RO上发送所述随机接入信号。
  11. 根据权利要求10所述的方法,其特征在于,所述第一对应关系为如下关系中的一种:
    所述M个SSB以频域优先的顺序与所述P个RO一一映射的关系,M=P;或
    所述M个SSB中的每个SSB以频域优先的顺序与所述P个RO中的多个RO映射的关系;或
    所述M个SSB中至少两个SSB以频域优先的顺序与所述P个RO中一个RO映射的关系;或
    所述M个SSB与至少一个RO中的每一个RO的映射关系,所述至少一个RO为所述P个RO中的至少一个。
  12. 一种初始接入的方法,其特征在于,包括:
    发送M个同步信号块SSB,所述M个SSB的发送时间相同,且所述M个SSB中任意两个SSB发送频率不同,所述M个SSB中包括N个第一SSB,所述第一SSB为位于同步栅格的SSB,N为正整数;
    接收终端设备发送的随机接入信号,所述随机接入信号为所述终端设备根据检测到的所述第一SSB在所述M个SSB或者在所述N个第一SSB中的频域位置发送的。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    根据所述随机接入信号的时域和/或频域位置确定第一索引,所述第一索引为所述第一SSB在所述M个SSB中的索引,或所述第一索引为所述第一SSB在所述N个第一SSB中的索引。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    发送第一指示信息,所述第一指示信息用于所述终端设备获取所述第一索引,所述第一指示信息由同步信号SS、物理广播信道PBCH解调参考信号DMRS、PBCH、参考信号RS、系统消息、数据信道和控制信道中的至少一种携带。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,N为1,
    所述发送M个SSB,包括:
    在第一频域位置发送所述第一SSB,所述第一SSB为所述M个SSB中频率最高的一个,或所述第一SSB为所述M个SSB中频率最低的一个,或所述第一SSB为所述M个SSB中频率索引最高的一个,或所述第一SSB为所述M个SSB中频率索引最低的一个。
  16. 根据权利要求15所述的方法,其特征在于,所述发送M个SSB,还包括:
    在与所述第一频域位置相隔mΔf 1+nΔf 2的频域位置发送M-1个第二SSB,所述第二SSB为所述M个SSB中位于非同步栅格的SSB,
    其中,Δf 1表示第一频率间隔、Δf 2表示第二频率间隔,m和n为非负整数。
  17. 根据权利要求12至16中任一项所述的方法,其特征在于,所述M个SSB中相邻两个SSB的频域位置间隔Δf 3,Δf 3表示第三频率间隔。
  18. 根据权利要求12至17中任一项所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述M个SSB中的多个SSB具备QCL关系和/或所述天线端口信息。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述方法还包括:
    根据第一随机接入机会RO和第一对应关系确定所述终端设备能够检测到的第一SSB,
    其中,所述第一RO为接收所述随机接入信号所使用的RO,所述第一对应关系包括所述M个SSB与P个RO的对应关系,P为正整数。
  20. 根据权利要求19所述的方法,其特征在于,所述第一对应关系为如下关系中的一种:
    所述M个SSB以频域优先的顺序与所述P个RO一一映射的关系,M=P;或
    所述M个SSB中的每个SSB以频域优先的顺序与所述P个RO中的多个RO映射的关系;或
    所述M个SSB中至少两个SSB以频域优先的顺序与所述P个RO中一个RO映射的关系;或
    所述M个SSB与至少一个RO中的每一个RO的映射关系,所述至少一个RO为所述P个RO中的至少一个。
  21. 一种初始接入的装置,其特征在于,包括:
    处理单元,用于检测网络设备发送的M个同步信号块SSB,所述M个SSB的发送时间相同,且所述M个SSB中任意两个SSB发送频率不同,所述M个SSB中包括N个第一SSB,所述第一SSB为位于同步栅格的SSB,N为正整数;
    收发单元,用于根据检测到的所述第一SSB在所述M个SSB或者在所述N个第一SSB中的频域位置向所述网络设备发送随机接入信号。
  22. 根据权利要求21所述的装置,其特征在于,所述处理单元还用于获取所述第一SSB的第一索引,所述第一索引为所述第一SSB在所述M个SSB中的索引,或所述第一索引为所述第一SSB在所述N个第一SSB中的索引;所述处理单元还用于根据所述第一索引确定发送所述随机接入信号的时域和/或频域位置。
  23. 根据权利要求22所述的装置,其特征在于,所述处理单元还用于根据所述网络设备发送的第一指示信息获取所述第一索引,所述第一指示信息由同步信号SS、物理广播信道PBCH解调参考信号DMRS、PBCH、参考信号RS、系统消息、数据信道和控制信道中的至少一种携带。
  24. 根据权利要求21至23中任一项所述的装置,其特征在于,N为1,所述处理单元还用于在第一频域位置检测所述网络设备发送的所述第一SSB,所述第一SSB为所述M个SSB中频率最高的一个,或所述第一SSB为所述M个SSB中频率最低的一个,或所述第一SSB为所述M个SSB中频率索引最高的一个,或所述第一SSB为所述M个SSB 中频率索引最低的一个。
  25. 根据权利要求24所述的装置,其特征在于,所述处理单元还用于在与所述第一频域位置相隔mΔf 1+nΔf 2的位置检测M-1个第二SSB,所述第二SSB为所述M个SSB中位于非同步栅格的SSB,其中,Δf 1表示第一频率间隔、Δf 2表示第二频率间隔,m和n为非负整数。
  26. 根据权利要求21至25中任一项所述的装置,其特征在于,所述M个SSB中相邻两个SSB的频域位置的间隔为Δf 3,Δf 3表示第三频率间隔。
  27. 根据权利要求21至26中任一项所述的装置,其特征在于,所述处理单元还用于获取所述M个SSB的准同位QCL关系和/或天线端口信息,所述M个SSB的QCL关系和/或天线端口信息用于联合测量大尺度参数和/或联合解调数据。
  28. 根据权利要求27所述的装置,其特征在于,所述处理单元还用于根据所述网络设备发送的第二指示信息确定所述M个SSB中的多个SSB具备QCL关系和/或所述天线端口信息。
  29. 根据权利要求27所述的装置,其特征在于,所述N个第一SSB不具备QCL关系,所述处理单元还用于根据所述网络设备发送的第三指示信息确定第二SSB与第三SSB具备QCL关系,所述第二SSB为所述M个SSB中位于非同步栅格上的SSB中的一个,所述第三SSB为所述N个第一SSB中与所述第二SSB具有第一关系的一个,所述第一关系为频域位置、频域索引或频率大小的相邻的关系。
  30. 根据权利要求21至29中任一项所述的装置,其特征在于,所述处理单元还用于根据所述检测到的第一SSB和第一对应关系确定第一随机接入机会RO,所述第一对应关系包括所述M个SSB与P个RO的对应关系,P为正整数;所述收发单元还用于在所述第一RO上发送所述随机接入信号。
  31. 根据权利要求30所述的装置,其特征在于,所述第一对应关系为如下关系中的一种:
    所述M个SSB以频域优先的顺序与所述P个RO一一映射的关系,M=P;或
    所述M个SSB中的每个SSB以频域优先的顺序与所述P个RO中的多个RO映射的关系;或
    所述M个SSB中至少两个SSB以频域优先的顺序与所述P个RO中一个RO映射的关系;或
    所述M个SSB与至少一个RO中的每一个RO的映射关系,所述至少一个RO为所述P个RO中的至少一个。
  32. 一种初始接入的装置,其特征在于,包括:收发单元和处理单元,
    所述收发单元用于发送M个同步信号块SSB,所述M个SSB的发送时间相同,且所述M个SSB中任意两个SSB发送频率不同,所述M个SSB中包括N个第一SSB,所述第一SSB为位于同步栅格的SSB,N为正整数;所述收发单元还用于接收终端设备发送的随机接入信号,所述随机接入信号为所述终端设备根据检测到的所述第一SSB在所述M个SSB或者在所述N个第一SSB中的频域位置发送的。
  33. 根据权利要求32所述的装置,其特征在于,所述处理单元用于根据所述随机接入信号的时域和/或频域位置确定第一索引,所述第一索引为所述第一SSB在所述M个 SSB中的索引,或所述第一索引为所述第一SSB在所述N个第一SSB中的索引。
  34. 根据权利要求33所述的装置,其特征在于,所述收发单元还用于发送第一指示信息,所述第一指示信息用于指示所述终端设备获取所述第一索引,所述第一指示信息由同步信号SS、物理广播信道PBCH解调参考信号DMRS、PBCH、参考信号RS、系统消息、数据信道和控制信道中的至少一种携带。
  35. 根据权利要求32至34中任一项所述的装置,其特征在于,N为1,所述收发单元还用于在第一频域位置发送所述第一SSB,所述第一SSB为所述M个SSB中频率最高的一个,或所述第一SSB为所述M个SSB中频率最低的一个,或所述第一SSB为所述M个SSB中频率索引最高的一个,或所述第一SSB为所述M个SSB中频率索引最低的一个。
  36. 根据权利要求35所述的装置,其特征在于,所述收发单元还用于在与所述第一频域位置间隔mΔf 1+nΔf 2的频域位置发送M-1个第二SSB,所述第二SSB为所述M个SSB中位于非同步栅格的SSB,其中,Δf 1表示第一频率间隔、Δf 2表示第二频率间隔,m和n为非负整数。
  37. 根据权利要求32至36中任一项所述的装置,其特征在于,所述M个SSB中相邻两个SSB的频域位置间隔Δf 3,Δf 3表示第三频率间隔。
  38. 根据权利要求32至37中任一项所述的装置,其特征在于,所述收发单元还用于发送第二指示信息,所述第二指示信息用于指示所述M个SSB中的多个SSB具备QCL关系和/或所述天线端口信息。
  39. 根据权利要求32至38中任一项所述的装置,其特征在于,所述处理单元还用于根据第一随机接入机会RO和第一对应关系确定所述终端设备能够检测到的第一SSB,其中,所述第一RO为接收所述随机接入信号所使用的RO,所述第一对应关系包括所述M个SSB与P个RO的对应关系,P为正整数。
  40. 根据权利要求39所述的装置,其特征在于,所述第一对应关系为如下关系中的一种:
    所述M个SSB以频域优先的顺序与所述P个RO一一映射的关系,M=P;或
    所述M个SSB中的每个SSB以频域优先的顺序与所述P个RO中的多个RO映射的关系;或
    所述M个SSB中至少两个SSB以频域优先的顺序与所述P个RO中一个RO映射的关系;或
    所述M个SSB与至少一个RO中的每一个RO的映射关系,所述至少一个RO为所述P个RO中的至少一个。
  41. 一种通信装置,其特征在于,包括处理器,所述处理器与存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得
    权利要求1至11中任一项所述的方法被执行,或
    权利要求12至20中任一项所述的方法被执行。
  42. 根据权利要求41所述的通信装置,其特征在于,还包括所述存储器。
  43. 一种计算机程序产品,其特征在于,当该计算机程序产品在计算机上运行时,使得计算机执行
    权利要求1至11中任一项所述的方法,或
    权利要求12至20中任一项所述的方法。
  44. 一种计算机可读存储介质,其特征在于,用于存储程序,当所述程序被处理器运行时,如权利要求1至11中任一项所述的方法被执行或权利要求12-20中任一项所述的方法被执行。
  45. 一种通信系统,其特征在于,所述通信系统包括:
    如权利要求21至31中任一项所述的终端设备;和/或,
    如权利要求32至40中任一项所述的网络设备。
PCT/CN2021/129596 2020-11-13 2021-11-09 初始接入的方法和装置 WO2022100579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/316,362 US20230284161A1 (en) 2020-11-13 2023-05-12 Initial access method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011271035.0A CN114501671A (zh) 2020-11-13 2020-11-13 初始接入的方法和装置
CN202011271035.0 2020-11-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/316,362 Continuation US20230284161A1 (en) 2020-11-13 2023-05-12 Initial access method and apparatus

Publications (1)

Publication Number Publication Date
WO2022100579A1 true WO2022100579A1 (zh) 2022-05-19

Family

ID=81491088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129596 WO2022100579A1 (zh) 2020-11-13 2021-11-09 初始接入的方法和装置

Country Status (3)

Country Link
US (1) US20230284161A1 (zh)
CN (1) CN114501671A (zh)
WO (1) WO2022100579A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809602A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法
CN110677916A (zh) * 2018-07-03 2020-01-10 中国移动通信有限公司研究院 一种随机接入信息的配置、传输和检测方法、终端及基站
US20200154424A1 (en) * 2019-01-11 2020-05-14 Intel Corporation Discovery reference signal and control resource set multiplexing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809602A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法
CN110677916A (zh) * 2018-07-03 2020-01-10 中国移动通信有限公司研究院 一种随机接入信息的配置、传输和检测方法、终端及基站
US20200154424A1 (en) * 2019-01-11 2020-05-14 Intel Corporation Discovery reference signal and control resource set multiplexing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLE INC: "On DL Signals and Channels for NR-U", 3GPP DRAFT; R1-1808612 ON DL SIGNALS AND CHANNELS FOR NR-U, vol. RAN WG1, 11 August 2018 (2018-08-11), Gothenburg, Sweden, pages 1 - 4, XP051515989 *

Also Published As

Publication number Publication date
CN114501671A (zh) 2022-05-13
US20230284161A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
KR102533306B1 (ko) 메시지들의 제어된 송신 및 수신을 지원하는 방법들 및 장치
WO2020221318A1 (zh) 一种上行波束管理方法及装置
JP2019533368A (ja) Rtsのスロット化された送信および指向性の受信
JP2020516191A (ja) 測定実行方法及びユーザ機器、並びに測定設定方法及び基地局
CN111436147A (zh) 传输信号的方法和装置
US11653369B2 (en) Explicit configuration of paging and control channel in system information
JP7086967B2 (ja) ランダムアクセスチャネルMsg2を介したランダムアクセスチャネルMsg3リソース持続時間の指示
US20230354250A1 (en) Communication system
CN108282894B (zh) 一种小区接入的方法、基站及终端
EP4373198A1 (en) Communication method and apparatus
WO2022100579A1 (zh) 初始接入的方法和装置
CN116614212A (zh) 波束的指示方法及装置
WO2022021996A1 (zh) 一种随机接入资源选择的方法以及相关装置
US11792831B2 (en) Method and device for signal transmission
WO2022151494A1 (zh) 一种传输参数确定方法及装置
WO2022120855A1 (zh) 确定参考信号序列的方法及装置
EP4316052A1 (en) Protocol exchange parameters for sidelink-based ranging and positioning
CN116980904A (zh) 信息处理方法、网络侧设备及终端
CN117397173A (zh) 信息传输方法、设备及存储介质
CN115428483A (zh) 一种随机接入方法及终端设备
EP4247094A1 (en) Communication method and apparatus
WO2022100362A1 (zh) 信号传输的方法和通信装置
WO2022206581A1 (zh) 一种资源映射的方法和装置
WO2024061077A1 (zh) 一种通信方法及装置
WO2023024967A1 (zh) 资源配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891099

Country of ref document: EP

Kind code of ref document: A1