WO2022100362A1 - 信号传输的方法和通信装置 - Google Patents

信号传输的方法和通信装置 Download PDF

Info

Publication number
WO2022100362A1
WO2022100362A1 PCT/CN2021/124154 CN2021124154W WO2022100362A1 WO 2022100362 A1 WO2022100362 A1 WO 2022100362A1 CN 2021124154 W CN2021124154 W CN 2021124154W WO 2022100362 A1 WO2022100362 A1 WO 2022100362A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
cell
composition
composition mode
terminal device
Prior art date
Application number
PCT/CN2021/124154
Other languages
English (en)
French (fr)
Inventor
黄煌
杜颖钢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022100362A1 publication Critical patent/WO2022100362A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communication, and in particular, to a method and communication device for signal transmission.
  • Beamforming technology is used to confine the energy of the transmitted signal within a certain beam direction, thereby increasing the efficiency of the signal and reception. Beamforming technology can effectively expand the transmission range of wireless signals and reduce signal interference, thereby achieving higher communication efficiency and obtaining higher network capacity.
  • it is first necessary to match the transmitting beam and the receiving beam to maximize the gain from the transmitting end to the receiving end, otherwise a relatively high communication efficiency cannot be obtained.
  • the beam at the base station side is required to scan.
  • the base station is supported to send multiple synchronization signal blocks (synchronization signal and PBCH block, SSB), and each SSB can be sent with a different beam, thereby ensuring that the entire coverage area can receive the SSB. That is, terminals in the entire area can access the network.
  • synchronization signal blocks synchronization signal and PBCH block, SSB
  • FIG. 1 is a schematic diagram of an existing SSB composition.
  • SSB is composed of three parts: primary synchronization signals (PSS), secondary synchronization signals (SSS), and physical broadcasting channel (PBCH).
  • PSS primary synchronization signals
  • SSS secondary synchronization signals
  • PBCH physical broadcasting channel
  • the 5G communication protocol stipulates that one SSB occupies 4 orthogonal frequency division multiplexing (OFDM) symbols, of which PSS occupies one symbol, SSS occupies one symbol, and PBCH occupies 3 symbols (shares one of them with SSS) .
  • FIG. 2 is a schematic diagram of the OFDM symbol position where the SSB is located in one time slot. As shown in Figure 2, the first SSB is sent on the 5th to 8th OFDM symbols, and the second SSB is sent on the 9th to 12th OFDM symbols.
  • OFDM orthogonal frequency division multiplexing
  • the frequency domain resources that are frequency-divided with the SSB cannot be used to transmit data to the terminal equipment, the main reason is that when the terminal equipment performs cell measurement, it will receive the SSB by scanning the receiving beam, so it cannot be received with a specific receiving beam.
  • the SSB cannot use a specific receiving beam to receive data of different frequency domain resources sent at the same time as the SSB, which will result in high resource overhead.
  • the present application provides a method for signal transmission, which can ensure compatibility with different frequency bands and bandwidths allocated by different operators, and can effectively reduce the number of symbols occupied by the SSB, thereby reducing system overhead.
  • a first aspect provides a signal transmission method, comprising: a network device sending a first synchronization information block SSB, the composition mode of the first SSB is determined based on the first composition mode, and the first composition mode is a plurality of SSB composition modes One of: the network device indicates all or part of the composition mode of the first SSB to the terminal device through the first information, where the first information includes information on the composition mode of the first SSB.
  • the SSB structure sent by the network device is not fixed, that is, the relative composition of SS and PBCH in one SSB is not fixed, and the adaptive SSB structure in this method can ensure compatibility.
  • Different frequency bands and bandwidths allocated by different operators can reduce the number of symbols occupied by the SSB, thereby reducing the system overhead, and at the same time, the terminal equipment can determine the specific composition of the SSB through the instruction information, so as to demodulate the information transmitted in the SSB .
  • the method further includes: the network device determines a composition mode of the first SSB according to the actual bandwidth of the operator.
  • the first SSB includes a synchronization signal SS and a physical broadcast channel PBCH, and the SS and PBCH form the first SSB in a frequency division or time division or time-frequency division manner, wherein, The SS occupies consecutive OFDM symbols, or the SS occupies non-consecutive OFDM symbols, and part or all of the PBCH is higher or lower in frequency than the SS.
  • the first SSB includes a synchronization signal SS
  • the first information includes the SS
  • the network device indicates the first SSB through the first information
  • the whole or part of the composition mode of the first SSB includes: the network device indicates the whole or part of the composition mode of the first SSB through the sequence of the SS.
  • the first information includes a downlink reference signal RS
  • the network device indicates all or part of the composition of the first SSB through the first information, including: The network device indicates all or part of the composition mode of the first SSB through the sequence of the RS.
  • the network device sends the second SSB to the terminal device, where the second SSB is the SSB of the second cell, and the second cell is the phase of the first cell. Neighboring cell, the first cell is the cell where the terminal device camps according to the first SSB.
  • a signal transmission method including: a terminal device receives a first synchronization signal block SSB sent by a network device, the composition mode of the first SSB is determined based on the first composition mode, and the first composition mode is multiple One of the SSB composition modes, the first SSB includes a synchronization signal SS and a physical broadcast channel PBCH; the terminal device determines the composition mode of the first SSB by blindly detecting the position of the PBCH and/or by detecting the first information, wherein the first SSB is The information includes all or part of the composition information of the first SSB.
  • the SSB structure sent by the network device is not fixed, that is, the relative composition of SS and PBCH in one SSB is not fixed, and the adaptive SSB structure in this method can ensure compatibility. Different frequency bands and bandwidths allocated by different operators can reduce the number of symbols occupied by the SSB, thereby reducing the system overhead.
  • the terminal device can determine the specific SSB composition method through the indication information sent by the network device, so as to demodulate the SSB. transmitted information.
  • the SS and the PBCH form the first SSB in a frequency division or time division or time frequency division manner, wherein the SS occupies consecutive OFDM symbols, Alternatively, the SS occupies non-contiguous OFDM symbols, and part or all of the PBCH is higher or lower than the frequency of the SS.
  • the first information includes the SS; and, by detecting the first information, the terminal device determines the composition of the first SSB, including: The terminal device determines all or part of the composition mode of the first SSB by detecting the sequence of the SS.
  • the first information includes a downlink reference signal RS
  • the method further includes: the terminal device receiving the RS from the network device;
  • the terminal device determining the composition mode of the first SSB by detecting the first information includes: the terminal device determining all or part of the composition mode of the first SSB by detecting the sequence of the RS.
  • the first information includes part or all of the composition of the first SSB provided by the operator's identity identification SIM card.
  • the method further includes: the terminal device camps on the first cell according to the first SSB; the terminal device measures the second cell according to the second SSB, wherein the first SSB The second cell is an adjacent cell of the first cell, and the second SSB is the SSB of the second cell.
  • the method before the terminal device measures the second cell according to the second SSB, the method further includes: when the measurement of the second cell is an intra-frequency measurement, the terminal device determines The second SSB composition mode, wherein the second SSB is the same as the first SSB; and/or when the measurement of the second cell is inter-frequency measurement, the terminal device receives the composition mode of the second SSB sent by the network device.
  • the terminal device measures at most N different composition modes.
  • N is a positive integer, which can be reported as a capability or fixed in the communication protocol.
  • the above technical solution can reduce the complexity of the terminal to detect intra-frequency measurement and inter-frequency measurement.
  • a communication device in a third aspect, has a function of implementing the method in the first aspect or any possible implementation manner thereof.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the present application provides a communication device having a function of implementing the method in the second aspect or any possible implementation manner thereof.
  • the functions can be implemented by hardware, or by executing corresponding software by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the present application provides a communication device, comprising at least one processor, at least one processor coupled to at least one memory, at least one memory for storing computer programs or instructions, and at least one processor for calling from at least one memory And run the computer program or instructions to cause the communication device to perform the method in the first aspect or any possible implementations thereof.
  • the communication device may be a network device.
  • the present application provides a communication device, comprising at least one processor, at least one processor coupled to at least one memory, at least one memory for storing computer programs or instructions, and at least one processor for calling from at least one memory And running the computer program or instructions causes the communication device to perform the method of the second aspect or any possible implementations thereof.
  • the communication device may be a terminal device.
  • the present application provides a network device including a processor, a memory and a transceiver.
  • the memory is used to store the computer program
  • the processor is used to call and run the computer program stored in the memory, and control the transceiver to send and receive signals, so that the communication device executes the method in the first aspect or any possible implementation manner thereof.
  • the present application provides a terminal device including a processor, a memory and a transceiver.
  • the memory is used to store the computer program
  • the processor is used to call and run the computer program stored in the memory, and control the transceiver to send and receive signals, so that the communication device executes the method in the second aspect or any possible implementation manner thereof.
  • the present application provides a communication device, comprising a processor and a communication interface, wherein the communication interface is configured to receive a signal and transmit the received signal to the processor, and the processor processes the signal to
  • the communication apparatus is caused to perform a method as in the first aspect or any possible implementation thereof.
  • the present application provides a communication device, comprising a processor and a communication interface, wherein the communication interface is configured to receive a signal and transmit the received signal to the processor, and the processor processes the signal to
  • the communication device is caused to perform a method as in the second aspect or any possible implementation thereof.
  • the above-mentioned communication interface may be an interface circuit, an input/output interface, or the like
  • the processor may be a processing circuit, a logic circuit, or the like.
  • the communication device described in the ninth aspect or the tenth aspect may be a chip or an integrated circuit.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on a computer, the first aspect or any possible implementations thereof are enabled. The method in is executed.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on a computer, the second aspect or any possible implementation manner thereof is implemented. The method in is executed.
  • the present application provides a computer program product, the computer program product comprising computer program code, when the computer program code is run on a computer, the computer program code, as in the first aspect or any possible implementations thereof, is provided. method is executed.
  • the present application provides a computer program product, the computer program product comprising computer program code, when the computer program code is run on a computer, the computer program code, as in the second aspect or any possible implementations thereof, is provided. method is executed.
  • the present application provides a wireless communication system, including the network device described in the seventh aspect and/or the terminal device described in the eighth aspect.
  • FIG. 1 is a schematic diagram of a conventional SSB composition.
  • FIG. 2 is a schematic diagram of OFDM symbol positions where the SSB is located in one time slot.
  • FIG. 3 is a schematic diagram of a communication system suitable for an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for signal transmission provided by the present application.
  • FIG. 5 is a schematic diagram of the composition manners of three different broadband SSBs proposed in the present application.
  • FIG. 6 is a schematic diagram of the composition of six different narrowband SSBs proposed in the present application.
  • FIG. 7 is a schematic block diagram of a communication apparatus 1000 provided by the present application.
  • FIG. 8 is a schematic block diagram of a communication apparatus 2000 provided by the present application.
  • FIG. 9 is a schematic structural diagram of a communication device 10 provided by the present application.
  • FIG. 10 is a schematic structural diagram of a communication device 20 provided by the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G 5th generation
  • NR new radio
  • D2D device-to-device
  • the communication system may include at least one network device and at least one terminal device.
  • the network device and the terminal device can communicate via a wireless link.
  • a single network device can transmit data or control signaling to single or multiple terminal devices, and multiple network devices can also simultaneously transmit data or control signaling to a single terminal device.
  • the network device may be any device with a wireless transceiver function.
  • Network equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), home base station (for example, home evolved Node B, Or home Node B, HNB), baseband unit (baseband unit, BBU), access point (access point, AP), wireless relay node, wireless backhaul node, transmission in wireless fidelity (wireless fidelity, WIFI) system
  • the transmission point (TP) or the transmission and reception point (TRP), etc. can also be the gNB or the transmission point (TRP or TP) in the 5G (such as NR) system, or the base station in the 5G system.
  • One or a group of antenna panels may be network nodes that constitute a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (DU), etc., or, also It can be a satellite or a satellite gateway, etc.
  • BBU baseband unit
  • DU distributed unit
  • the network device in this embodiment of the present application may also refer to a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU), or the network device may also be composed of a CU and a DU.
  • CU and DU can be understood as the division of the base station from the perspective of logical functions.
  • the CU and the DU may be physically separated, or may be deployed together, which is not specifically limited in this embodiment of the present application.
  • One CU can be connected to one DU, or multiple DUs can share one CU, which can save costs and facilitate network expansion.
  • the segmentation of CU and DU can be divided according to the protocol stack, one of the possible ways is to aggregate the radio resource control (radio resource control, RRC), service data adaptation protocol (service data adaptation protocol, SDAP) and packet data.
  • the protocol packet data convergence protocol, PDCP
  • the protocol packet data convergence protocol, PDCP
  • RLC radio link control
  • media access control media access control
  • MAC media access control
  • the present invention does not completely limit the above-mentioned protocol stack segmentation mode, and there may be other segmentation modes. For details, please refer to TR38.801v14.0.0.
  • the CU and DU are connected through the F1 interface.
  • the CU represents the gNB is connected to the core network through the Ng interface.
  • the network device in this embodiment of the present application may refer to a centralized unit control plane (CU-CP) node or a centralized unit user plane (CU-UP) node, or the network device may also be a CU-CP and a CU-UP .
  • the CU-CP is responsible for the control plane function, mainly including RRC and PDCP-C.
  • PDCP-C is mainly responsible for encryption and decryption of control plane data, integrity protection, and data transmission.
  • CU-UP is responsible for user plane functions, mainly including SDAP and PDCP-U.
  • SDAP is mainly responsible for processing the data of the core network and mapping the flow to the bearer.
  • PDCP-U is mainly responsible for data plane encryption and decryption, integrity protection, header compression, serial number maintenance, data transmission, etc.
  • the CU-CP and CU-UP are connected through the E1 interface.
  • CU-CP represents that the gNB is connected to the core network through the Ng interface.
  • CU-UP is connected through F1-U (user plane) and DU.
  • F1-C control plane
  • CU-UP is connected through F1-U (user plane) and DU.
  • F1-C user plane
  • PDCP-C is also in CU-UP.
  • the CU may be classified as an access network device or as a core network (core network, CN) device, which is not limited in this application.
  • core network core network
  • a terminal device may also be referred to as user equipment (user equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment.
  • user equipment user equipment
  • UE user equipment
  • an access terminal a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, Terminal, wireless communication device, user agent or user equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation security ( wireless terminals in transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local Wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, 5G Terminal equipment in the network, terminal equipment in a non-public network, etc.
  • a virtual reality (virtual reality, VR) terminal device an augmented reality (augmented reality, AR) terminal equipment
  • wireless terminals in industrial control wireless terminals in self driving, wireless
  • wearable devices can also be called wearable smart devices, which is a general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to cooperate with other devices such as smart phones. Use, such as all kinds of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in an internet of things (Internet of things, IoT) system.
  • IoT Internet of things
  • IoT is an important part of the development of information technology in the future. Its main technical feature is to connect items to the network through communication technology, so as to realize the intelligent network of human-machine interconnection and interconnection of things.
  • the SS may include PSS and SSS, and the synchronization signal is used for the terminal device and the network side to realize time-frequency synchronization, and to detect the physical identifier (ID) of the cell.
  • the PSS is used for terminal time-frequency synchronization and cell detection, and the SSS is used to transmit the physical ID ID of the cell.
  • the PSS and the SSS can also be combined to realize the above functions.
  • PBCH used to transmit system information.
  • SSB including SS and PBCH, used for time synchronization between terminal equipment and network side, detection of cell physical identifier (ID), and acquisition of system information.
  • ID cell physical identifier
  • FIG. 1 The composition mode of the SSB in the prior art is shown in FIG. 1 .
  • the SSB In the time domain, the SSB is composed of 4 OFDM symbols, which are numbered in an increasing order from 0 to 3 in the SSB.
  • the SSB In the frequency domain, the SSB consists of 240 consecutive sub-carriers, and the sub-carrier numbers increase sequentially from 0 to 239.
  • the PSS is located at the position of the 0th OFDM symbol in the SSB block in the time domain, and occupies 126 subcarriers between the 56th and 182nd in the frequency domain.
  • the SSS is located at the position of the second OFDM symbol in the SSB block in the time domain, and occupies 126 subcarriers between the 56th and 182nd in the frequency domain.
  • the frequency domain occupies 240 subcarriers between the 0th and 239th; when the PBCH occupies the second symbol position in the SSB block, the frequency domain occupies the 0th to 47th subcarriers. and 96 subcarriers between the 192nd and 239th.
  • a frequency multiplexing method is adopted between the PBCH signal and its corresponding DMRS signal, in which there is one DMRS signal every four subcarriers.
  • uplink communication includes transmission of uplink physical channels and uplink signals.
  • the uplink physical channel includes random access channel (PRACH), uplink control channel (physical uplink control channel, PUCCH), uplink data channel (physical uplink shared channel, PUSCH), etc.
  • the uplink signal includes channel sounding reference signal (sounding reference signal, SRS), uplink control channel demodulation reference signal (PUCCH de-modulation reference signal, PUCCH-DMRS), uplink data channel demodulation reference signal PUSCH-DMRS, uplink phase noise tracking signal (phase noise tracking reference signal) , PTRS), uplink positioning signal (uplink positioning RS) and so on.
  • Downlink communication includes the transmission of downlink physical channels and downlink signals.
  • downlink physical channels include broadcast channel (physical broadcast channel, PBCH), downlink control channel (physical downlink control channel, PDCCH), downlink data channel (physical downlink shared channel, PDSCH), etc.
  • downlink signals include PSS, SSS, downlink control channel Channel demodulation reference signal PDCCH-DMRS, downlink data channel demodulation reference signal PDSCH-DMRS, phase noise tracking signal PTRS, channel status information reference signal (CSI-RS), cell signal (Cell reference signal, CRS) (NR does not have), fine synchronization signal (time/frequency tracking reference signal, TRS) (LTE does not), LTE/NR positioning signal (positioning RS), etc.
  • PBCH physical broadcast channel
  • PDCCH physical downlink control channel
  • PDSCH downlink shared channel
  • downlink signals include PSS, SSS, downlink control channel Channel demodulation reference signal PDCCH-DMRS, downlink data channel demodulation reference signal PDSCH-DMRS,
  • the beam can be a wide beam, a narrow beam, or other types of beams.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may be specifically a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources.
  • the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One or more antenna ports can be included in a beam for transmitting data channels, control channels and sounding signals, etc.
  • the transmit beam may refer to the distribution of signal strength in different directions in space after the signal is transmitted through the antenna
  • the receive beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the embodiment of the beam in the communication protocol can also be a spatial filter.
  • FIG. 4 is a schematic flowchart of a signal transmission method provided by the present application.
  • the network device determines the composition mode of the first SSB.
  • composition modes of the SS and the PBCH in the SSB there may be multiple composition modes of the SS and the PBCH in the SSB, and the network device may use one of the composition modes of the SSB as the composition mode of the first SSB according to the actual situation. For example, the network device may determine the composition mode of the first SSB according to the actual bandwidth of the operator.
  • the SS and the PBCH form the SSB in the manner of frequency division, time division or time frequency division.
  • the time-frequency division means that there are both time division and frequency division in the composition manner of the SS and the PBCH, which will be illustrated in the following embodiments.
  • the broadband SSB is used as an example to illustrate, that is, the PBCH and SS in the SSB adopt the combination of frequency division or frequency division.
  • This SSB combination can increase the bandwidth of the SSB and reduce the number of symbols occupied by the SSB, thereby Reduce system resource overhead.
  • FIG. 5 is a schematic diagram of the composition manners of three different broadband SSBs proposed in the present application.
  • FIG. 5 is a schematic diagram of a possible implementation manner in which the SS occupies consecutive symbols, and the SSB of FIG. a may occupy 1, 2, or 3 symbols.
  • FIG. 5 is a schematic diagram of a possible implementation manner in which the SS does not occupy consecutive symbols and part of the PBCH is above or below the frequency of the SS. It can be seen that the SSB in FIG. b needs to occupy 3 symbols.
  • FIG. 3(c) of Figure 5 is a schematic diagram of a possible implementation in which the SS occupies consecutive symbols and some PBCHs are above or below the frequency of the SS. It can be seen that the SSB in Figure c can occupy 1 or 2 symbols.
  • composition manner of the broadband SSB is not limited to the three types exemplified above, and there may also be other types of composition manners, which will not be exemplified one by one in this application.
  • the SS may occupy continuous symbols (eg, (a) in FIG. 5 , (c) in FIG. 5 ), or may occupy non-continuous symbols (eg ( (b) in FIG. 5 ).
  • the frequency position of the PBCH relative to the SS can be up or down.
  • the frequencies of all PBCHs are above the frequencies of the SS (for example, the bandwidth of operator 1 in FIG. 5(a)) or the frequencies of all PBCHs are below the frequency of the SS (for example, the bandwidth of operator 2 in (a) of FIG. 5 ). ), and the frequency of part of the PBCH may be above or below the frequency of the SS (for example, (b) and (c) of FIG. 5 ).
  • composition of the broadband SSB reduces the number of symbols occupied by the existing SSB, reduces the system overhead, and can also ensure compatibility with different frequency bands allocated by different operators.
  • the position of the PBCH relative to the SS is mainly different in the position of the frequency division.
  • the bandwidth provided by the operator will not be able to send a complete SSB, thus causing the terminal device to be unable to access.
  • this application provides another SSB composition method, that is, PBCH and SS may have time division, that is, multiple OFDM symbols are occupied, but the bandwidth occupied by SSB is narrowband (compared to Corresponding bandwidth SSB in Figure 5).
  • the narrowband SSB as an example for illustration, the PBCH and the SS adopt a time-division or time-division main combination.
  • FIG. 6 is a schematic diagram of the composition of six different narrowband SSBs proposed in the present application.
  • composition of the time division of the narrowband SSB is not limited to the six types shown in FIG. 6 , and there may also be other types of composition, which will not be exemplified in this application.
  • the SS may occupy consecutive symbols (eg, (a)-(c) of FIG. 6 ).
  • the SS may occupy non-consecutive symbols (eg (d)-(f) of FIG. 6 ).
  • the entire SS and PBCH are time- and frequency-divided (as shown in (b) and (e) of FIG. 6 ), or part of the SS and PBCH may be time- and frequency-divided (as shown in (c) and (f) of FIG. 6 ).
  • the narrowband SSB occupies more symbols than the wideband SSB occupies. For example: wideband SSB occupying 1 symbol and narrowband SSB occupying 2 symbols, wideband SSB occupying 2 symbols and narrowband SSB occupying 3 symbols, wideband SSB occupying 3 symbols and narrowband SSB occupying 4 symbols.
  • composition of the SSB sent by the network device may not only have one or more of the composition of the broadband SSB shown in Figure 5, but also have the composition shown in Figure 6.
  • One or more of the narrowband SSB composition methods may be used.
  • the network device sends the first SSB, and indicates to the terminal device some or all of the composition modes of the first SSB through the first information.
  • the terminal device receives the first SSB sent by the network device.
  • the first information includes information about part or all of the composition modes of the first SSB, and several possible specific implementation modes of the first information will be specifically introduced in S403, which will not be described here for the time being.
  • the terminal device After receiving the SSB, the terminal device realizes functions such as time-frequency synchronization and acquisition of the cell ID by detecting the SS in the SSB, and further demodulates the system information transmitted by the PBCH. Since the composition of the SSB is fixed, the terminal device can directly demodulate the system message transmitted in the PBCH according to the known composition of the SSB. In this application, since the composition of the SSB is variable, that is, not unique, therefore , the terminal device needs to first determine the composition of the SSB after receiving the SSB.
  • the terminal device determines the composition mode of the first SSB by blindly detecting the position of the PBCH in the first SSB and/or by detecting the first information.
  • the present application provides the following methods for determining the composition manner of the first SSB.
  • the PBCH blind detection method when the terminal device accesses the cell, it first detects the SS, and then, according to the possible location of the PBCH, detects the demodulation reference signal (DMRS) of the PBCH or detects the PBCH. to determine the specific position of the PBCH relative to the SS, and to demodulate the system information of the PBCH transmission.
  • DMRS demodulation reference signal
  • the network device carries the indication information through the SS (that is, an example of the first information).
  • the network device is indicated by different SS sequences, and the terminal device determines all or part of the composition mode of the first SSB by the detected sequence of the SS.
  • the network device carries the indication information implicitly through the relative positions of the PSS and the SSS (ie, another example of the first information).
  • the indication information is delivered by the PSS before the SSS, or the PSS after the SSS.
  • the network device carries the indication information through a new reference signal (reference signal, RS) (ie, another example of the first information). For example, it is indicated by a different sequence carried by the RS.
  • RS reference signal
  • the terminal device learns all or part of the composition of the first SSB.
  • the new RS can simultaneously transmit other information, such as the sequence number of the first SSB, and the like.
  • the network device provides the composition mode of the first SSB through a subscriber identity module (subscriber identity module, SIM) card (that is, another example of the first information) provided by the operator.
  • SIM subscriber identity module
  • the terminal device obtains the composition mode of the first SSB by reading the information of the SIM card.
  • the terminal device obtains the composition mode of the first SSB in this way.
  • the terminal device can obtain the composition method of the first SSB through the other methods described above.
  • the composition mode of the SSB is obtained through blind detection of the PBCH.
  • the above-mentioned methods for carrying the indication information reduce the complexity of UE detection while increasing the overhead of system information transmission.
  • the terminal device can also jointly determine the composition mode of the first SSB through multiple methods in the above-mentioned manners, that is to say, each of the multiple methods can indicate part of the information about the composition mode of the first SSB.
  • the first SSB composition mode is jointly determined through partial information provided by multiple methods.
  • the network device indicates whether the composition of the first SSB is a wideband SSB or a narrowband SSB through the carrying indication information displayed by the SS, and the terminal device further detects the clear composition mode of the wideband SSB or narrowband SSB through blind detection of the PBCH.
  • the network device can notify the terminal device of the SSB composition mode of the adjacent cells.
  • the network device may notify the terminal device through system messages, RRC signaling, MAC signaling, and a physical downlink control channel (PDCCH).
  • the composition method of the neighboring cell SSB is the same as the composition method of the SSB of the terminal equipment's camping cell (or serving cell), so the intra-frequency measurement network equipment does not.
  • the composition of the SSB needs to be informed.
  • the terminal device measures at most N different composition modes, where N is a positive integer.
  • N can be reported as a capability, or a default value can be fixed.
  • FIG. 7 is a schematic block diagram of a communication apparatus 1000 provided in the present application.
  • the communication apparatus 1000 includes a sending unit 1100 and a processing unit 1200 .
  • a sending unit 1100 configured to send a first synchronization information block SSB, where the composition mode of the first SSB is determined based on the first composition mode, and the first composition mode is one of multiple SSB composition modes; a processing unit 1200.
  • Use first information to indicate to a terminal device all or part of the composition mode of the first SSB, where the first information includes information on the composition mode of the first SSB.
  • the processing unit 1200 determines the composition mode of the first SSB according to the actual bandwidth of the operator.
  • the first SSB includes a synchronization signal SS and a physical broadcast channel PBCH, and the SS and the PBCH form the first SSB in a frequency division or time division or time frequency division manner , wherein the SS occupies consecutive OFDM symbols, or the SS occupies non-consecutive OFDM symbols, and part or all of the PBCH is higher or lower than the frequency of the SS.
  • the first information includes the SS
  • the processing unit 1200 is specifically configured to carry first indication information through the SS, where the first indication information is the SS , where the sequence of the SS corresponds to the composition of the first SSB.
  • the first information includes the RS
  • the sending unit 1100 is further configured to send a downlink reference signal RS to the terminal device
  • the processing unit 1200 is specifically configured to:
  • the RS carries second indication information, where the second indication information is the sequence of the downlink RS, where the sequence of the downlink RS corresponds to the composition mode of the first SSB.
  • the sending unit 1100 is further configured to send, to the terminal device, a composition mode of a second SSB, where the second SSB is the SSB of the second cell, and the The second cell is a neighboring cell of the first cell, and the first cell is a cell where the terminal device camps on according to the first SSB.
  • the communication apparatus 1000 may further include a receiving unit 1300, configured to perform the receiving action performed by the network device.
  • the sending unit 1100 and the receiving unit 1300 may also be integrated into a transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the communication apparatus 1000 may be the network device in the method embodiment.
  • the receiving unit 1300 may be a receiver, and the sending unit 1100 may be a transmitter.
  • the receiver and transmitter can also be integrated into a transceiver.
  • the processing unit 1200 may be a processing device.
  • the communication apparatus 1000 may be a chip or an integrated circuit installed in a network device.
  • the sending unit 1100 and the receiving unit 1300 may be a communication interface or an interface circuit.
  • the receiving unit 1300 is an input interface or an input circuit
  • the transmitting unit 1100 is an output interface or an output circuit.
  • the processing unit 1200 may be a processing device.
  • the functions of the processing device may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the processing device may comprise at least one processor and at least one memory, wherein the at least one memory is used to store a computer program, the at least one processor reads and executes the computer program stored in the at least one memory such that The communication apparatus 1000 performs the operations and/or processes that need to be performed by the network device in each method embodiment.
  • the processing means may comprise only a processor, the memory for storing the computer program being located outside the processing means.
  • the processor is connected to the memory through circuits/wires to read and execute the computer program stored in the memory.
  • the processing device may be a chip or an integrated circuit.
  • FIG. 8 is a schematic block diagram of a communication apparatus 2000 provided in the present application. As shown in FIG. 8 , the communication apparatus 2000 includes a receiving unit 2100 and a processing unit 2200 .
  • the receiving unit 2100 is configured to receive the first synchronization signal block SSB sent by the network device.
  • the composition mode of the first SSB is determined based on the first composition mode, and the first composition mode is one of multiple SSB composition modes.
  • the first SSB includes a synchronization signal SS and a physical broadcast channel PBCH; the processing unit 2200 is configured to determine the composition mode of the first SSB by blindly detecting the position of the PBCH and/or by detecting the first information, Wherein, the first information includes all or part of the composition information of the first SSB.
  • the SS and the PBCH form the first SSB in a frequency division or time division or time frequency division manner, wherein the SS occupies a continuous orthogonal frequency division multiplexing OFDM. symbol, or the SS occupies non-consecutive OFDM symbols, and some or all of the PBCH is above or below the frequency of the SS.
  • the first information includes the SS; and the processing unit 2200 is specifically configured to detect first indication information carried by the SS, where the first indication information is The sequence of the SS, wherein the sequence of the SS corresponds to the composition mode of the first SSB; the composition mode of the first SSB is determined according to the first indication information.
  • the first information includes the RS
  • the receiving unit 2100 is further configured to receive a downlink reference signal RS sent by the network device; and the processing unit 2200 specifically for detecting the second indication information carried by the downlink reference signal RS, where the second indication information is the sequence of the downlink RS, where the sequence of the downlink RS corresponds to the composition mode of the first SSB;
  • the composition mode of the first SSB is determined according to the first indication information.
  • the first information includes part or all of the composition of the first SSB provided by the operator's identity identification SIM card.
  • the processing unit 2200 is further configured to: camp on the first cell according to the first SSB; measure the second cell according to the second SSB, wherein the second SSB The cell is a neighboring cell of the first cell, and the second SSB is the SSB of the second cell.
  • the processing unit 2200 before the processing unit 2200 measures the second cell according to the second SSB, when the measurement of the second cell is intra-frequency measurement, the processing The unit 2200 is further configured to determine the composition mode of a second SSB, wherein the second SSB is the same as the first SSB; and/or when the measurement of the second cell is an inter-frequency measurement, the receiving unit 2100 , and is further configured to receive the composition mode of the second SSB sent by the network device.
  • the communication apparatus 2000 may further include a sending unit 2300, configured to perform the sending action performed by the terminal device.
  • the receiving unit 2100 and the sending unit 2300 may also be integrated into one transceiver unit, which has the functions of receiving and sending at the same time, which is not limited here.
  • the communication apparatus 2000 may be the terminal device in the method embodiment.
  • the receiving unit 2100 may be a receiver
  • the transmitting unit 2300 may be a transmitter.
  • the receiver and transmitter can also be integrated into a transceiver.
  • the communication apparatus 2000 may be a chip or an integrated circuit in a terminal device.
  • the receiving unit 2100 and the transmitting unit 2300 may be a communication interface or an interface circuit.
  • the receiving unit 2100 is an input interface or an input circuit
  • the sending unit 2300 is an output interface or an output circuit
  • the processing unit 2200 may be a processing device.
  • the functions of the processing device may be implemented by hardware, or may be implemented by hardware executing corresponding software.
  • the processing device may comprise at least one processor and at least one memory, wherein the at least one memory is used to store a computer program, the at least one processor reads and executes the computer program stored in the at least one memory such that The communication apparatus 2000 performs the operations and/or processes that need to be performed by the terminal device in each method embodiment.
  • the processing means may comprise only a processor, the memory for storing the computer program being located outside the processing means.
  • the processor is connected to the memory through circuits/wires to read and execute the computer program stored in the memory.
  • the processing device may also be a chip or an integrated circuit.
  • FIG. 9 is a schematic structural diagram of a communication device 10 provided by the present application.
  • the communication device 10 includes: one or more processors 11 , one or more memories 12 and one or more communication interfaces 13 .
  • the processor 11 is used to control the communication interface 13 to send and receive signals
  • the memory 12 is used to store a computer program
  • the processor 11 is used to call and run the computer program from the memory 12, so that the network device in each method embodiment of the present application executes the computer program. Processes and/or operations are performed.
  • the processor 11 may have the function of the processing unit 1200 shown in FIG. 7
  • the communication interface 13 may have the function of the receiving unit 1300 and/or the transmitting unit 1100 shown in FIG. 7 .
  • the processor 11 may be configured to perform processing or operations performed internally by the network device in the above method embodiments
  • the communication interface 13 may be configured to perform the sending and/or receiving actions performed by the network device in the above method embodiments.
  • the communication apparatus 10 may be the network device in the method embodiment.
  • the communication interface 13 in the communication device 10 may be a transceiver.
  • a transceiver may include a receiver and a transmitter.
  • the processor 11 may be a baseband device, and the communication interface 13 may be a radio frequency device.
  • the communication apparatus 10 may be a chip or an integrated circuit installed in a network device.
  • the communication interface 13 may be an interface circuit or an input/output interface.
  • FIG. 10 is a schematic structural diagram of a communication device 20 provided by the present application.
  • the communication device 20 includes: one or more processors 21 , one or more memories 22 and one or more communication interfaces 23 .
  • the processor 21 is used to control the communication interface 23 to send and receive signals
  • the memory 22 is used to store a computer program
  • the processor 21 is used to call and run the computer program from the memory 22, so that the processes executed by the terminal device in each method embodiment of the present application are executed. Processes and/or operations are performed.
  • the processor 21 may have the function of the processing unit 2200 shown in FIG. 8
  • the communication interface 23 may have the function of the receiving unit 2100 and/or the transmitting unit 2300 shown in FIG. 8 .
  • the processor 21 may be configured to perform processing or operations performed by the terminal device in the above method embodiments
  • the communication interface 23 may be configured to perform the sending and/or receiving actions performed by the terminal device in the above method embodiments.
  • the communication apparatus 20 may be the terminal device in the method embodiment.
  • the communication interface 23 may be a transceiver.
  • a transceiver may include a receiver and a transmitter.
  • the processor 21 may be a baseband device, and the communication interface 23 may be a radio frequency device.
  • the communication device 20 may be a chip or an integrated circuit installed in the terminal device.
  • the communication interface 23 may be an interface circuit or an input/output interface.
  • the memory and the processor in the foregoing apparatus embodiments may be physically independent units, or the memory may also be integrated with the processor, which is not limited herein.
  • the present application further provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are executed on a computer, the operations performed by the terminal device in each method embodiment of the present application are made possible. and/or processes are executed.
  • the present application further provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are run on a computer, the operations performed by the network device in the method embodiments of the present application and/or or the process is executed.
  • the present application also provides a computer program product.
  • the computer program product includes computer program codes or instructions.
  • the operations and/or processes performed by the terminal device in each method embodiment of the present application are made possible. be executed.
  • the present application also provides a computer program product.
  • the computer program product includes computer program codes or instructions.
  • the operations and/or processes performed by the network device in each method embodiment of the present application are made possible. be executed.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is used for executing the computer program stored in the memory, so that the operations and/or processing performed by the terminal device in any one of the method embodiments are performed.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface or an interface circuit or the like.
  • the chip may further include the memory.
  • the present application also provides a chip including a processor.
  • the memory for storing the computer program is provided independently of the chip, and the processor is configured to execute the computer program stored in the memory, so that the operations and/or processing performed by the network device in any one of the method embodiments are performed.
  • the chip may further include a communication interface.
  • the communication interface may be an input/output interface or an interface circuit or the like.
  • the chip may further include the memory.
  • the present application also provides a communication system, including the terminal device and the network device in the embodiments of the present application.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has the capability of processing signals.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in the embodiments of the present application may be directly embodied as executed by a hardware coding processor, or executed by a combination of hardware and software modules in the coding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: a U disk, a removable hard disk, a ROM, a RAM, a magnetic disk, or an optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信号传输的方法,网络设备发送的SSB结构是不固定的,也就是一个SSB内,SS和PBCH的相对组成方式不是固定的,网络设备可以根据分配的通信带宽进行自适应的调整,并且提出多种可行的方式,能够使终端设备确定具体的SSB组成方式,从而解调出SSB中传输的信息。该方法中的自适应的SSB结构能够保证兼容不同运营商分配的不同的频段和带宽,可以有降低的SSB占用的符号个数,从而降低系统开销。

Description

信号传输的方法和通信装置
本申请要求于2020年11月13日提交中国国家知识产权局、申请号为202011270400.6、申请名称为“信号传输的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且具体地,涉及一种信号传输的方法和通信装置。
背景技术
移动业务的发展对无线通信的数据速率和效率要求越来越高。波束成形技术用来将传输信号的能量限制在某个波束方向内,从而增加信号和接收的效率。波束成形技术能够有效扩大无线信号的传输范围,降低信号干扰,从而达到更高的通信效率和获取更高的网络容量。然而,在采用波束成形技术的通信网络中,首先需要将发送波束和接收波束匹配,使得发送端到接收端的增益最大,否则无法获取比较高的通信效率。而且为了达到全覆盖,要求基站端波束进行扫描。因此现有5G协议中,支持基站发送多个同步信号块(synchronization signal and PBCH block,SSB),每个SSB可以用不同的波束进行发送,从而保证整个覆盖区域都能接收到SSB。也就是整个区域的终端都能够接入网络。
参见图1,图1是现有SSB组成方式的示意图。SSB由主同步信号(primary synchronization signals,PSS)、辅同步信号(secondary synchronization signals,SSS)、物理广播信道(physical broadcasting channel,PBCH)三部分共同组成。5G通信协议中规定一个SSB占用4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,其中PSS占用一个符号,SSS占用一个符号,PBCH占用3个符号(和SSS共用其中一个符号)。参见图2,图2是SSB在一个时隙中所在的OFDM符号位置的示意图。如图2所示,第一个SSB在第5~8个OFDM符号上发送,第二个SSB在第9~12个OFDM符号上发送。
由于和SSB频分的频域资源,不能够用来给终端设备传输数据,主要原因是终端设备做小区测量的时候,会通过扫描接收波束的方式接收SSB,因此不能用特定的接收波束来接收SSB,进而也无法用特定的接收波束来接收和SSB同一时刻发送的不同频域资源的数据,这样就会造成资源开销大。
发明内容
本申请提供一种信号传输的方法,能够保证兼容不同运营商分配的不同的频段和带宽,可以有效降低的SSB占用的符号个数,从而降低系统开销。
第一方面,提供了一种信号传输的方法,包括:网络设备发送第一同步信息块SSB,第一SSB的组成方式是基于第一组成方式确定的,第一组成方式是多种SSB组成方式中 的一种;网络设备通过第一信息向终端设备指示第一SSB的全部或者部分组成方式,其中,第一信息中包含第一SSB的组成方式的信息。
上述技术方案中,相比现有技术,网络设备发送的SSB结构是不固定的,也就是一个SSB内,SS,PBCH的相对组成方式不是固定的,该方法中自适应的SSB结构能够保证兼容不同运营商分配的不同的频段和带宽,可以降低的SSB占用的符号个数,从而降低系统开销,同时能够通过指示信息使终端设备确定具体的SSB组成方式,从而解调出SSB中传输的信息。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:网络设备根据运营商的实际带宽确定第一SSB的组成方式。
结合第一方面,在第一方面的某些实现方式中,第一SSB包括同步信号SS和物理广播信道PBCH,SS和PBCH以频分或者时分或者时频分的方式组成第一SSB,其中,SS占据连续的正交频分复用OFDM符号,或者,SS占据非连续的OFDM符号,以及,PBCH的部分或者全部高于或者低于SS的频率。
结合第一方面,在第一方面的某些实现方式中,所述第一SSB包括同步信号SS,所述第一信息包括所述SS,所述网络设备通过第一信息指示所述第一SSB的全部或者部分组成方式,包括:所述网络设备通过所述SS的序列指示所述第一SSB的全部或者部分组成方式。
结合第一方面,在第一方面的某些实现方式中,所述第一信息包括下行参考信号RS,所述网络设备通过第一信息指示所述第一SSB的全部或者部分组成方式,包括:所述网络设备通过所述RS的序列指示所述第一SSB的全部或者部分组成方式。
结合第一方面,在第一方面的某些实现方式中,网络设备向终端设备发送第二SSB的组成方式,其中,第二SSB为第二小区的SSB,第二小区为第一小区的相邻小区,第一小区为终端设备根据第一SSB驻留的小区。
第二方面,提供了一种信号传输的方法,包括:终端设备接收网络设备发送的第一同步信号块SSB,第一SSB的组成方式是基于第一组成方式确定的,第一组成方式是多种SSB组成方式中的一种,第一SSB包括同步信号SS和物理广播信道PBCH;终端设备通过盲检PBCH的位置和/或通过检测第一信息,确定第一SSB的组成方式,其中,第一信息中包含第一SSB的全部或者部分组成方式的信息。
上述技术方案中,相比现有技术,网络设备发送的SSB结构是不固定的,也就是一个SSB内,SS,PBCH的相对组成方式不是固定的,该方法中自适应的SSB结构能够保证兼容不同运营商分配的不同的频段和带宽,可以降低的SSB占用的符号个数,从而降低系统开销,同时终端设备能够通过网络设备发送的指示信息确定具体的SSB组成方式,从而解调出SSB中传输的信息。
结合第二方面,在第二方面的某些实现方式中,SS和PBCH以频分或者时分或者时频分的方式组成第一SSB,其中,SS占据连续的正交频分复用OFDM符号,或者,SS占据非连续的OFDM符号,以及,PBCH的部分或者全部高于或者低于SS的频率。
结合第二方面,在第二方面的某些实现方式中,所述第一信息包括所述SS;以及,所述终端设备通过检测第一信息,确定所述第一SSB的组成方式,包括:所述终端设备通过检测所述SS的序列确定所述第一SSB的全部或者部分组成方式。
结合第二方面,在第二方面的某些实现方式中,所述第一信息包括下行参考信号RS,所述方法还包括:所述终端设备从所述网络设备接收所述RS;以及,所述终端设备通过检测第一信息,确定所述第一SSB的组成方式,包括:所述终端设备通过检测所述RS的序列确定所述第一SSB的全部或者部分组成方式。
结合第二方面,在第二方面的某些实现方式中,第一信息包括运营商的身份识别SIM卡提供的第一SSB的部分或全部组成方式。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:终端设备根据第一SSB驻留至第一小区;终端设备根据第二SSB对第二小区进行测量,其中,第二小区为第一小区的相邻小区,第二SSB为第二小区的SSB。
结合第二方面,在第二方面的某些实现方式中,在终端设备根据第二SSB对第二小区进行测量之前,方法还包括:当第二小区的测量为同频测量时,终端设备确定第二SSB组成方式,其中,第二SSB与第一SSB相同;和/或当第二小区的测量为异频测量时,终端设备接收网络设备发送的第二SSB的组成方式。
可选的,在异频测量下,终端设备最多测量N种不同的组成方式。其中,N为正整数,可以作为能力上报,或者在通信协议里固定。
上述技术方案,能够降低终端检测同频测量和异频测量的复杂度。
第三方面,提供一种通信装置,通信装置具有实现第一方面或其任意可能的实现方式中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,本申请提供一种通信装置,通信装置具有实现第二方面或其任意可能的实现方式中的方法的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,本申请提供一种通信设备,包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信设备执行第一方面或其任意可能的实现方式中的方法。
在一个示例中,该通信设备可以为网络设备。
第六方面,本申请提供一种通信设备,包括至少一个处理器,至少一个处理器与至少一个存储器耦合,至少一个存储器用于存储计算机程序或指令,至少一个处理器用于从至少一个存储器中调用并运行该计算机程序或指令,使得通信设备执行第二方面或其任意可能的实现方式中的方法。
在一个示例中,该通信设备可以为终端设备。
第七方面,本申请提供一种网络设备,包括处理器、存储器和收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信设备执行如第一方面或其任意可能的实现方式中的方法。
第八方面,本申请提供一种终端设备,包括处理器、存储器和收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信设备执行如第二方面或其任意可能的实现方式中的方法。
第九方面,本申请提供一种通信装置,包括处理器和通信接口,所述通信接口用于接 收信号并将接收到的信号传输至所述处理器,所述处理器处理所述信号,以使所述通信装置执行如第一方面或其任意可能的实现方式中的方法。
第十方面,本申请提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收信号并将接收到的信号传输至所述处理器,所述处理器处理所述信号,以使所述通信装置执行如第二方面或其任意可能的实现方式中的方法。
可选地,上述通信接口可以为接口电路、输入/输出接口等,处理器可以为处理电路、逻辑电路等。
可选地,第九方面或第十方面所述的通信装置可以为芯片或集成电路。
第十一方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面或其任意可能的实现方式中的方法被执行。
第十二方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第二方面或其任意可能的实现方式中的方法被执行。
第十三方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面或其任意可能的实现方式中的方法被执行。
第十四方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第二方面或其任意可能的实现方式中的方法被执行。
第十五方面,本申请提供一种无线通信系统,包括如第七方面所述的网络设备和/或第八方面所述的终端设备。
附图说明
图1是现有SSB组成方式的示意图。
图2是SSB在一个时隙中所在的OFDM符号位置的示意图。
图3是适用于本申请实施例的通信系统的示意图。
图4是本申请提供的一种信号传输的方法的示意性流程图。
图5是本申请提出的三种不同的宽带SSB的组成方式的示意图。
图6是本申请提出的六种不同的窄带SSB的组成方式的示意图。
图7为本申请提供的通信装置1000的示意性框图。
图8为本申请提供的通信装置2000的示意性框图。
图9为本申请提供的通信装置10的示意性结构图。
图10为本申请提供的通信装置20的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access, CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、设备对设备(device-to-device,D2D)通信系统、机器通信系统、车联网通信系统、卫星通信系统或者未来的通信系统等。
为便于理解本申请实施例,首先结合图3详细说明适用于本申请实施例的通信系统。该通信系统可以包括至少一个网络设备和至少一个终端设备。网络设备与终端设备可通过无线链路通信。单个网络设备可以向单个或多个终端设备传输数据或控制信令,多个网络设备也可以同时为单个终端设备传输数据或控制信令。
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G(如NR)系统中的gNB或传输点(TRP或TP),或者,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等,或者,还可以为卫星或者卫星信关站等。
本申请实施例中的网络设备也可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU),或者,网络设备也可以是CU和DU组成的。CU和DU可以理解为是对基站从逻辑功能角度的划分。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。一个CU可以连接一个DU,或者也可以多个DU共用一个CU,可以节省成本,以及易于网络扩展。CU和DU的切分可以按照协议栈切分,其中一种可能的方式是将无线资源控制(radio resource control,RRC)、业务数据适配协议栈(service data adaptation protocol,SDAP)以及分组数据汇聚协议(packet data convergence protocol,PDCP)层部署在CU,其余的无线链路控制(radio link control,RLC)层、介质访问控制(media access control,MAC)层以及物理层部署在DU。本发明中并不完全限定上述协议栈切分方式,还可以有其它的切分方式,具体可以参考TR38.801v14.0.0。CU和DU之间通过F1接口连接。CU代表gNB通过Ng接口和核心网连接。
本申请实施例中的网络设备又可以是指集中式单元控制面(CU-CP)节点或者集中式单元用户面(CU-UP)节点,或者,网络设备也可以是CU-CP和CU-UP。其中CU-CP负责控制面功能,主要包含RRC和PDCP-C。PDCP-C主要负责控制面数据的加解密,完整性保护,数据传输等。CU-UP负责用户面功能,主要包含SDAP和PDCP-U。其中SDAP主要负责将核心网的数据进行处理并将flow映射到承载。PDCP-U主要负责数据面的加解密,完整性保护,头压缩,序列号维护,数据传输等。其中CU-CP和CU-UP通过E1接 口连接。CU-CP代表gNB通过Ng接口和核心网连接。通过F1-C(控制面)和DU连接。CU-UP通过F1-U(用户面)和DU连接。当然还有一种可能的实现是PDCP-C也在CU-UP。需要说明的是,CU可以被划分为接入网设备,也可以被划分为核心网(core network,CN)设备,本申请对此不做限定。
在本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备、非公共网络中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
为便于理解本申请实施例,首先对本申请中涉及到的术语作简单说明。
1、同步信号(Synchronization Signal,SS):SS可以包括PSS和SSS,同步信号用于终端设备和网络侧实现时频同步,以及小区物理标识符(ID)的检测。其中,PSS用于终端时频同步以及检测小区,SSS用于传输小区物理标识ID,也可以将PSS和SSS和在一起,实现上述功能。
2、PBCH:用于传输系统信息。
3、SSB:包括SS和PBCH,用于终端设备和网络侧实现时间同步,小区物理标识符(ID)的检测以及获取系统信息。现有技术的SSB组成方式如图1所示,在时域中,SSB由4个OFDM符号组成,在SSB内从0到3递增的顺序进行编号。在频域上,SSB由240个连续的子载波组成,子载波编号从0到239顺序递增。PSS时域上位于SSB块中第0个OFDM符号的位置,频域占据第56到182之间的126个子载波。SSS时域上位于SSB块中第2个OFDM符号的位置,频域占据第56到182之间的126个子载波。PBCH占用SSB块中第1个和第3个OFDM符号位置时,频域占据第0到239之间的240个子载波; PBCH占用SSB块中第2个符号位置时,频域占据第0到47以及第192到239之间的96个子载波。PBCH信号与其所对应的DMRS信号之间采用频率复用方式,其中每隔4个子载波存在1个DMRS信号。
4、参考信号(reference signal,RS):根据长期演进LTE/NR的协议,在物理层,上行通信包括上行物理信道和上行信号的传输。其中,上行物理信道包括随机接入信道(random access channel,PRACH),上行控制信道(physical uplink control channel,PUCCH),上行数据信道(physical uplink shared channel,PUSCH)等,上行信号包括信道探测参考信号(sounding reference signal,SRS),上行控制信道解调参考信号(PUCCH de-modulation reference signal,PUCCH-DMRS),上行数据信道解调参考信号PUSCH-DMRS,上行相位噪声跟踪信号(phase noise tracking reference signal,PTRS),上行定位信号(uplink positioning RS)等等。
下行通信包括下行物理信道和下行信号的传输。其中,下行物理信道包括广播信道(physical broadcast channel,PBCH),下行控制信道(physical downlink control channel,PDCCH),下行数据信道(physical downlink shared channel,PDSCH)等,下行信号包括PSS,SSS,下行控制信道解调参考信号PDCCH-DMRS,下行数据信道解调参考信号PDSCH-DMRS,相位噪声跟踪信号PTRS,信道状态信息参考信号(channel status information reference signal,CSI-RS),小区信号(Cell reference signal,CRS)(NR没有),精同步信号(time/frequency tracking reference signal,TRS)(LTE没有),LTE/NR定位信号(positioning RS)等
5、波束:波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。不同的波束可以认为是不同的资源。通过不同的波束可以发送相同的信息或者不同的信息。可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等。例如,发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在通信协议中的体现还可以是空域滤波器(spatial filter)。
下面详细介绍本申请的技术方案。
参见图4,图4是本申请提供的一种信号传输的方法的示意性流程图。
S401、网络设备确定第一SSB的组成方式。
应理解,SSB中SS和PBCH的组成方式可以有多种,网络设备可以根据实际情况以其中一种SSB组成方式作为第一SSB的组成方式。例如:网络设备可以根据运营商的实际带宽确定所述第一SSB的组成方式。
可选的,SS和PBCH以频分或者时分或者时频分的方式组成SSB。其中,时频分是指SS和PBCH的组成方式中既有时分又有频分,下面的实施例中会进行举例说明。
作为示例,首先以宽带SSB为例进行说明,即SSB中的PBCH和SS采用频分或频分为主的组合方式,该SSB组合方式可以提升SSB的带宽,降低SSB占用的符号个数,从而降低系统的资源开销。
下面,给出一些宽带SSB的组成方式。参见图5,图5是本申请提出的三种不同的宽带SSB的组成方式的示意图。
①图5的(a)是SS占据连续符号的可能实现方式的示意图,图a的SSB可以占据1个或者2个或者3个符号。
②图5的(b)是SS不占据连续符号且部分PBCH在SS的频率上面或者下面的可能实现方式示意图,可以看出,图b的SSB需要占据3个符号。
③图5的(c)是SS占据连续符号且部分PBCH在SS的频率上面或者下面的可能实现方式示意图,可以看出,图c的SSB可以占据1个或者2个符号。
应理解,宽带SSB的组成方式不限于以上举例的三种类型,还可以有其他类型的组成方式,本申请不再一一举例。
可选的,SS可以占据连续的符号(例如图5的(a)、图5的(c)),也可以占据非连续的符号(例如图5的(b))。
需要说明的是,由于运营商的带宽分配相对于SS的频点位置可上可下,因此,PBCH相对于SS的频率位置可上可下。
可选的,全部PBCH的频率在SS的频率上面(例如图5的(a)中运营商1带宽)或者全部PBCH的频率在SS的频率下面(例如图5的(a)中运营商2带宽),也可以部分PBCH的频率在SS的频率上面或者下面(例如图5的(b)、(c))。
由上可以看出,该宽带SSB的组成方式降低了现有SSB占用的符号个数,降低了系统开销,还可以保证兼容不同运营商分配的不同的频段。
上述宽带SSB组成方式中,PBCH相对于SS的位置主要是频分的位置不同。在实际中,如果运营商的最小带宽小于上述实施例中SS和PBCH的带宽之和,那么运营商提供的带宽将无法发送一个完整的SSB,从而导致终端设备无法接入。
因此,如果考虑运营商最小带宽的要求,本申请给出另一种SSB组成方式,即PBCH和SS存在时分的可能,也就是占用多个OFDM符号,但是SSB所占用的带宽为窄带(相比于图5对应的带宽SSB)。以窄带SSB为例进行说明,PBCH和SS采用时分或时分为主的组合方式。
下面,给出一些窄带SSB的组成方式。参见图6,图6是本申请提出的六种不同的窄带SSB的组成方式的示意图。
应理解,窄带SSB存在时分的组成方式不限于图6中的六种类型,还可以有其他类型的组成方式,本申请不再一一举例。
可选的,SS可以占据连续的符号(例如图6的(a)-(c))。
可选的,SS可以占据非连续的符号(例如图6的(d)-(f))。
可选的,全部SS和PBCH时分&频分(如图6的(b)和(e)),也可以部分SS与PBCH时分&频分(如图6的(c)和(f))。
可以看出,为了保证足够小的SSB带宽,窄带SSB占据的符号相对于宽带SSB占据的符号更多。例如:占据1个符号的宽带SSB和占据2个符号的窄带SSB,占据2个符号的宽带SSB和占据3个符号的窄带SSB,占据3个符号的宽带SSB和占据4个符号的窄带SSB。
应理解,为了兼容运营商最小带宽的要求,在实际应用中,网络设备发送的SSB的 组成方式不仅可以有如图5所示的宽带SSB组成方式一种或者多种,也可以有如图6所示的窄带SSB组成方式的一种或者多种。
S402、网络设备发送第一SSB,并通过第一信息向终端设备指示第一SSB的部分或全部组成方式。
对应的,终端设备接收网络设备发送的第一SSB。
其中,第一信息中包含第一SSB的部分或全部组成方式的信息,S403中会对第一信息可能的几种具体实现方式进行具体的介绍,这里暂不展开叙述。
现有技术中,终端设备在接收到SSB后通过检测SSB中的SS实现时频同步、获取小区ID等功能,进一步解调出PBCH传输的系统信息。由于SSB的组成方式是固定的,终端设备可以直接根据已知的SSB组成方式解调出PBCH中传输的系统消息,而本申请中由于SSB的组合方式是可变的,即不是唯一的,因此,终端设备在接收到SSB之后需要首先要确定SSB的组成方式。
S403、终端设备通过盲检第一SSB中PBCH的位置和/或通过检测第一信息,确定所述第一SSB的组成方式。
作为示例而非限定,本申请给出以下几种确定第一SSB组成方式的方法。
可选的,PBCH盲检的方式:终端设备在接入小区的时候,先检测出SS,然后根据PBCH可能的位置,通过检测PBCH的解调参考信号(demodulation reference signal,DMRS)或者通过检测PBCH的传输内容来确定PBCH相对于SS的具体位置,以及解调出PBCH传输的系统信息。这种方法虽然增加了UE检测的复杂度,但是无需任何额外信息传输。
可选的,网络设备通过SS(即第一信息的一例)携带指示信息。例如,网络设备通过不同的SS序列进行指示,终端设备通过检测出的SS的序列,从而确定第一SSB的全部或者部分组成方式。
可选的,网络设备通过PSS和SSS的相对位置(即第一信息的另一例)来隐式携带指示信息。例如通过PSS在SSS之前,或者PSS在SSS之后来传递指示信息。终端设备通过检测出PSS和SSS的具体位置,从而得知第一SSB的全部或者部分组成方式。
可选的,网络设备通过新的参考信号(reference signal,RS)(即第一信息的又一例)携带指示信息。例如,通过RS携带的不同序列进行指示。终端设备通过检测出RS的序列,从而得知第一SSB的全部或者部分组成方式。进一步的,新的RS可以同时传输其他信息,例如第一SSB的序号等。
可选的,网络设备通过运营商提供的客户识别模块(subscriber identity module,SIM)卡(即第一信息的又一例)提供第一SSB的组成方式。终端设备通过读取SIM卡的信息获取第一SSB的组成方式。可选的,当终端设备的漫游开关关闭的时候,终端设备通过此方式获取第一SSB的组成方式。当漫游开关打开的时候,终端设备可通过上述其他方式进行获取第一SSB的组成方式。在没有其他指示信息通知的情况下,通过PBCH的盲检获取SSB的组成方式。上述几种携带指示信息的方法相比于盲检的方式,在提升系统信息传输开销的情况下,却降低UE检测的复杂度。
可选的,终端设备也可以通过上述方式中的多个方式共同确定第一SSB的组成方式,也就是说多个方式中的每一种方式可以指示第一SSB组成方式的部分信息,终端设备通过多种方式各自提供的部分信息共同确定第一SSB组成方式。例如,网络设备通过SS显 示的携带指示信息指示第一SSB的组成是宽带SSB还是窄带SSB,终端设备通过PBCH的盲检进一步检测该宽带SSB或者窄带SSB的明确组成方式。
可选的,对于已接入小区的终端设备,也可以对相邻小区进行测量,因此网络设备可以通知终端设备相邻小区的SSB组成方式。例如:网络设备可以通过系统消息、RRC信令、MAC信令,物理下行控制信道(physical downlink control channel,PDCCH)等向终端设备进行通知。
可选的,为了降低终端设备检测的复杂度,同频测量下,邻区SSB的组成方式和终端设备的驻留小区(或者服务小区)的SSB的组成方式相同,因此同频测量网络设备不需要通知SSB的组成方式。在异频测量下,终端设备最多测量N种不同的组成方式,其中,N为正整数,可选的,N可以作为能力上报,或者固定一个默认值。
以上对本申请提供的信号传输的方法进行了详细说明,下面介绍本申请提供的通信装置。
参见图7,图7为本申请提供的通信装置1000的示意性框图。如图7,通信装置1000包括发送单元1100和处理单元1200。
发送单元1100,用于发送第一同步信息块SSB,所述第一SSB的组成方式是基于第一组成方式确定的,所述第一组成方式是多种SSB组成方式中的一种;处理单元1200,用于通过第一信息向终端设备指示所述第一SSB的全部或者部分组成方式,其中,所述第一信息中包含所述第一SSB的组成方式的信息。
可选地,在一个实施例中,所述处理单元1200,根据运营商的实际带宽确定所述第一SSB的组成方式。
可选地,在另一个实施例中,所述第一SSB包括同步信号SS和物理广播信道PBCH,所述SS和所述PBCH以频分或者时分或者时频分的方式组成所述第一SSB,其中,所述SS占据连续的正交频分复用OFDM符号,或者,所述SS占据非连续的OFDM符号,以及,所述PBCH的部分或者全部高于或者低于所述SS的频率。
可选地,在另一个实施例中,所述第一信息包括所述SS,所述处理单元1200具体用于,通过所述SS携带第一指示信息,所述第一指示信息为所述SS的序列,其中,所述SS的序列与所述第一SSB的组成方式对应。
可选地,在另一个实施例中,所述第一信息包括所述RS,所述发送单元1100,还用于向所述终端设备发送下行参考信号RS,所述处理单元1200具体用于,通过所述RS携带第二指示信息,所述第二指示信息为所述下行RS的序列,其中,所述下行RS的序列与所述第一SSB的组成方式对应。
可选地,在另一个实施例中,所述发送单元1100,还用于向所述终端设备发送第二SSB的组成方式,其中,所述第二SSB为所述第二小区的SSB,所述第二小区为第一小区的相邻小区,所述第一小区为所述终端设备根据所述第一SSB驻留的小区。
可选地,通信装置1000还可以包括接收单元1300,用于执行由网络设备执行的接收的动作。
可选地,在以上各实现方式中,发送单元1100和接收单元1300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
在一种实现方式中,通信装置1000可以为方法实施例中的网络设备,在这种实现方 式中,接收单元1300可以为接收器,发送单元1100可以为发射器。接收器和发射器也可以集成为一个收发器。处理单元1200可以为处理装置。
在另一种实现方式中,通信装置1000可以为安装在网络设备中的芯片或集成电路。在这种实现方式中,发送单元1100和接收单元1300可以为通信接口或者接口电路。例如,接收单元1300为输入接口或输入电路,发送单元1100为输出接口或输出电路。处理单元1200可以为处理装置。
其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括至少一个处理器和至少一个存储器,其中,所述至少一个存储器用于存储计算机程序,所述至少一个处理器读取并执行所述至少一个存储器中存储的计算机程序,使得通信装置1000执行各方法实施例中由网络设备需要执行的操作和/或处理。
可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。又例如,处理装置可以芯片或集成电路。
参见图8,图8为本申请提供的通信装置2000的示意性框图。如图8,通信装置2000包括接收单元2100和处理单元2200。
接收单元2100,用于接收网络设备发送的第一同步信号块SSB,所述第一SSB的组成方式是基于第一组成方式确定的,所述第一组成方式是多种SSB组成方式中的一种,所述第一SSB包括同步信号SS和物理广播信道PBCH;处理单元2200,用于通过盲检所述PBCH的位置和/或通过检测第一信息,确定所述第一SSB的组成方式,其中,所述第一信息中包含所述第一SSB的全部或者部分组成方式的信息。
可选地,在一个实施例中,所述SS和所述PBCH以频分或者时分或者时频分的方式组成所述第一SSB,其中,所述SS占据连续的正交频分复用OFDM符号,或者,所述SS占据非连续的OFDM符号,以及,所述PBCH的部分或者全部高于或者低于所述SS的频率。
可选地,在另一个实施例中,所述第一信息包括所述SS;以及,所述处理单元2200具体用于,检测所述SS携带的第一指示信息,所述第一指示信息为所述SS的序列,其中,所述SS的序列与所述第一SSB的组成方式对应;根据所述第一指示信息确定所述第一SSB的组成方式。
可选地,在另一个实施例中,所述第一信息包括所述RS,所述接收单元2100,还用于接收所述网络设备发送的下行参考信号RS;以及,所述处理单元2200具体用于,检测所述下行参考信号RS携带的第二指示信息,所述第二指示信息为所述下行RS的序列,其中,所述下行RS的序列与所述第一SSB的组成方式对应;根据所述第一指示信息确定所述第一SSB的组成方式。
可选地,在另一个实施例中,所述第一信息包括所述运营商的身份识别SIM卡提供的所述第一SSB的部分或全部组成方式。
可选地,在另一个实施例中,所述处理单元2200还用于:根据所述第一SSB驻留至第一小区;根据第二SSB对第二小区进行测量,其中,所述第二小区为所述第一小区的相邻小区,所述第二SSB为所述第二小区的SSB。
可选地,在另一个实施例中,在所述处理单元2200根据所述第二SSB对所述第二小 区进行测量之前,当所述第二小区的测量为同频测量时,所述处理单元2200,还用于确定第二SSB组成方式,其中,所述第二SSB与所述第一SSB相同;和/或当所述第二小区的测量为异频测量时,所述接收单元2100,还用于接收所述网络设备发送的所述第二SSB的组成方式。
可选地,通信装置2000还可以包括发送单元2300,用于执行由终端设备执行的发送的动作。
可选地,在以上各实现方式中,接收单元2100和发送单元2300也可以集成为一个收发单元,同时具备接收和发送的功能,这里不作限定。
在一种实现方式中,通信装置2000可以为方法实施例中的终端设备。在这种情况下,接收单元2100可以为接收器,发送单元2300可以为发射器。接收器和发射器也可以集成为一个收发器。
在另一种实现方式中,通信装置2000可以为终端设备中的芯片或集成电路。在这种情况下,接收单元2100和发送单元2300可以为通信接口或者接口电路。例如,接收单元2100为输入接口或输入电路,发送单元2300为输出接口或输出电路,处理单元2200可以为处理装置。
其中,处理装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。例如,处理装置可以包括至少一个处理器和至少一个存储器,其中,所述至少一个存储器用于存储计算机程序,所述至少一个处理器读取并执行所述至少一个存储器中存储的计算机程序,使得通信装置2000执行各方法实施例中由终端设备需要执行的操作和/或处理。
可选地,处理装置可以仅包括处理器,用于存储计算机程序的存储器位于处理装置之外。处理器通过电路/电线与存储器连接,以读取并执行存储器中存储的计算机程序。又例如:处理装置还可以为芯片或集成电路。
参见图9,图9为本申请提供的通信装置10的示意性结构图。如图9,通信装置10包括:一个或多个处理器11,一个或多个存储器12以及一个或多个通信接口13。处理器11用于控制通信接口13收发信号,存储器12用于存储计算机程序,处理器11用于从存储器12中调用并运行该计算机程序,以使得本申请各方法实施例中由网络设备执行的流程和/或操作被执行。
例如,处理器11可以具有图7中所示的处理单元1200的功能,通信接口13可以具有图7中所示的接收单元1300和/或发送单元1100的功能。具体地,处理器11可以用于执行上述方法实施例中由网络设备内部执行的处理或操作,通信接口13用于执行上述方法实施例中由网络设备执行的发送和/或接收的动作。
在一种实现方式中,通信装置10可以为方法实施例中的网络设备。通信装置10中的通信接口13可以为收发器。收发器可以包括接收器和发射器。可选地,处理器11可以为基带装置,通信接口13可以为射频装置。
在另一种实现中,通信装置10可以为安装在网络设备中的芯片或者集成电路。在这种实现方式中,通信接口13可以为接口电路或者输入/输出接口。
参见图10,图10为本申请提供的通信装置20的示意性结构图。如图10,通信装置20包括:一个或多个处理器21,一个或多个存储器22以及一个或多个通信接口23。处理器21用于控制通信接口23收发信号,存储器22用于存储计算机程序,处理器21用于 从存储器22中调用并运行该计算机程序,以使得本申请各方法实施例中由终端设备执行的流程和/或操作被执行。
例如,处理器21可以具有图8中所示的处理单元2200的功能,通信接口23可以具有图8中所示的接收单元2100和/或发送单元2300的功能。具体地,处理器21可以用于执行上述方法实施例中由终端设备内部执行的处理或操作,通信接口23用于执行上述方法实施例中由终端设备执行的发送和/或接收的动作。
在一种实现方式中,通信装置20可以为方法实施例中的终端设备。在这种实现方式中,通信接口23可以为收发器。收发器可以包括接收器和发射器。可选地,处理器21可以为基带装置,通信接口23可以为射频装置。
在另一种实现中,通信装置20可以为安装在终端设备中的芯片或者集成电路。在这种实现方式中,通信接口23可以为接口电路或者输入/输出接口。
可选的,上述各装置实施例中的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起,本文不做限定。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由终端设备执行的操作和/或流程被执行。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得本申请各方法实施例中由网络设备执行的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由终端设备执行的操作和/或流程被执行。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码或指令,当计算机程序代码或指令在计算机上运行时,使得本申请各方法实施例中由网络设备执行的操作和/或流程被执行。
此外,本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由终端设备执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
本申请还提供一种芯片,所述芯片包括处理器。用于存储计算机程序的存储器独立于芯片而设置,处理器用于执行存储器中存储的计算机程序,以使得任意一个方法实施例中由网络设备器执行的操作和/或处理被执行。
进一步地,所述芯片还可以包括通信接口。所述通信接口可以是输入/输出接口,也可以为接口电路等。进一步地,所述芯片还可以包括所述存储器。
此外,本申请还提供一种通信系统,包括本申请实施例中的终端设备和网络设备。
本申请实施例中的处理器可以是集成电路芯片,具有处理信号的能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用 集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件编码处理器执行完成,或者用编码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DRRAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种 情况。其中,A、B以及C均可以为单数或者复数,不作限定。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种信号传输的方法,其特征在于,包括:
    网络设备发送第一同步信息块SSB,所述第一SSB的组成方式是基于第一组成方式确定的,所述第一组成方式是多种SSB组成方式中的一种;
    所述网络设备向终端设备发送第一信息,所述第一信息包括所述第一SSB的全部或者部分组成方式的信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述网络设备根据运营商的实际带宽确定所述第一SSB的组成方式。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一SSB包括同步信号SS和物理广播信道PBCH,所述SS和所述PBCH以频分复用或者时分复用或者时频分复用的方式组成所述第一SSB,其中,所述SS占据连续的正交频分复用OFDM符号,或者,所述SS占据非连续的OFDM符号,以及,所述PBCH的部分或者全部频率高于或者低于所述SS的频率。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一SSB包括同步信号SS,所述第一信息包括所述SS,所述网络设备通过第一信息指示所述第一SSB的全部或者部分组成方式,包括:
    所述网络设备通过所述SS的序列指示所述第一SSB的全部或者部分组成方式。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述第一信息包括下行参考信号RS,所述网络设备通过第一信息指示所述第一SSB的全部或者部分组成方式,包括:
    所述网络设备通过所述RS的序列指示所述第一SSB的全部或者部分组成方式。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二SSB的组成方式,其中,所述第二SSB为所述第二小区的SSB,所述第二小区为第一小区的相邻小区,所述第一小区为所述终端设备根据所述第一SSB驻留的小区。
  7. 一种信号传输的方法,其特征在于,包括:
    终端设备接收网络设备发送的第一同步信号块SSB,所述第一SSB的组成方式是基于第一组成方式确定的,所述第一组成方式是多种SSB组成方式中的一种,所述第一SSB包括同步信号SS和物理广播信道PBCH;
    所述终端设备通过盲检所述PBCH的位置和/或通过检测第一信息,确定所述第一SSB的组成方式,其中,所述第一信息包含所述第一SSB的全部或者部分组成方式的信息。
  8. 根据权利要求7所述的方法,其特征在于,所述SS和所述PBCH以频分复用或者时分复用或者时频分复用的方式组成所述第一SSB,其中,所述SS占据连续的正交频分复用OFDM符号,或者,所述SS占据非连续的OFDM符号,以及,所述PBCH的部分或者全部频率高于或者低于所述SS的频率。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一信息包括所述SS;
    以及,所述终端设备通过检测第一信息,确定所述第一SSB的组成方式,包括:
    所述终端设备通过检测所述SS的序列确定所述第一SSB的全部或者部分组成方式。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,所述第一信息包括下行参考信号RS,所述方法还包括:
    所述终端设备从所述网络设备接收所述RS;
    以及,所述终端设备通过检测第一信息,确定所述第一SSB的组成方式,包括:
    所述终端设备通过检测所述RS的序列确定所述第一SSB的全部或者部分组成方式。
  11. 根据权利要求7-10中任一项所述的方法,其特征在于,所述第一信息包括所述运营商的身份识别SIM卡提供的所述第一SSB的部分或全部组成方式。
  12. 根据权利要求7-11中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一SSB驻留至第一小区;
    所述终端设备根据第二SSB对第二小区进行测量,其中,所述第二小区为所述第一小区的相邻小区,所述第二SSB为所述第二小区的SSB。
  13. 根据权利要求12所述的方法,其特征在于,在所述终端设备根据所述第二SSB对所述第二小区进行测量之前,所述方法还包括:
    当所述第二小区的测量为同频测量时,所述终端设备确定第二SSB组成方式,其中,所述第二SSB与所述第一SSB相同;和/或
    当所述第二小区的测量为异频测量时,所述终端设备接收所述网络设备发送的所述第二SSB的组成方式。
  14. 一种通信装置,其特征在于,包括:
    发送单元,用于发送第一同步信息块SSB,所述第一SSB的组成方式是基于第一组成方式确定的,所述第一组成方式是多种SSB组成方式中的一种;
    所述发送单元,用于向终端设备发送第一信息,所述第一信息包括所述第一SSB的全部或者部分组成方式的信息。
  15. 根据权利要求14所述的装置,其特征在于,所述装置还包括:处理单元,用于根据运营商的实际带宽确定所述第一SSB的组成方式。
  16. 根据权利要求14或15所述的装置,其特征在于,所述第一SSB包括同步信号SS和物理广播信道PBCH,所述SS和所述PBCH以频分复用或者时分复用或者时频分复用的方式组成所述第一SSB,其中,所述SS占据连续的正交频分复用OFDM符号,或者,所述SS占据非连续的OFDM符号,以及,所述PBCH的频率部分或者全部高于或者低于所述SS的频率。
  17. 根据权利要求14-16中任一项所述的装置,其特征在于,所述第一信息包括所述SS,所述SS的序列用于指示所述第一SSB的全部或者部分组成方式。
  18. 根据权利要求14-17中任一项所述的装置,其特征在于,所述第一信息包括下行参考信号RS,所述RS的序列用于指示所述第一SSB的全部或者部分组成方式。
  19. 根据权利要求14-18中任一项所述的装置,其特征在于,所述发送单元,还用于向所述终端设备发送第二SSB的组成方式,其中,所述第二SSB为所述第二小区的SSB,所述第二小区为第一小区的相邻小区,所述第一小区为所述终端设备根据所述第一SSB驻留的小区。
  20. 一种通信装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一同步信号块SSB,所述第一SSB的组成方式是基于第一组成方式确定的,所述第一组成方式是多种SSB组成方式中的一种,所述第一SSB包括同步信号SS和物理广播信道PBCH;
    处理单元,用于通过盲检所述PBCH的位置和/或通过检测第一信息,确定所述第一SSB的组成方式,其中,所述第一信息中包含所述第一SSB的全部或者部分组成方式的信息。
  21. 根据权利要求20所述的装置,其特征在于,所述SS和所述PBCH以频分复用或者时分复用或者时频分复用的方式组成所述第一SSB,其中,
    所述SS占据连续的正交频分复用OFDM符号,或者,所述SS占据非连续的OFDM符号,以及,所述PBCH的部分或者全部频率高于或者低于所述SS的频率。
  22. 根据权利要求20或21所述的装置,其特征在于,所述第一信息包括所述SS;
    以及,所述处理单元具体用于,通过检测所述SS的序列确定所述第一SSB的全部或者部分组成方式。
  23. 根据权利要求20-22中任一项所述的装置,其特征在于,所述第一信息包括所述RS,所述接收单元,还用于接收所述网络设备发送的下行参考信号RS;
    以及,所述处理单元具体用于,通过检测所述RS的序列确定所述第一SSB的部分或全部组成方式。
  24. 根据权利要求20-23中任一项所述的装置,其特征在于,所述第一信息包括所述运营商的身份识别SIM卡提供的所述第一SSB的部分或全部组成方式。
  25. 根据权利要求20-24中任一项所述的装置,其特征在于,所述处理单元还用于:
    根据所述第一SSB驻留至第一小区;
    根据第二SSB对第二小区进行测量,其中,所述第二小区为所述第一小区的相邻小区,所述第二SSB为所述第二小区的SSB。
  26. 根据权利要求25所述的装置,其特征在于,在所述处理单元根据所述第二SSB对所述第二小区进行测量之前,
    当所述第二小区的测量为同频测量时,所述处理单元,还用于确定第二SSB组成方式,其中,所述第二SSB与所述第一SSB相同;和/或
    当所述第二小区的测量为异频测量时,所述接收单元,还用于接收所述网络设备发送的所述第二SSB的组成方式。
  27. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使得所述通信装置执行如权利要求1至6中任一项所述的方法,或者,使得所述通信装置执行如权利要求7至13中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1至6中任一项所述的方法被执行,或者,如权利要求7至13中任一项所述的方法被执行。
  29. 一种计算机程序产品,其特征在于,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,如权利要求1至6中任一项所述的方法被执行,或者,如权利要求7至13中任一项所述的方法被执行。
PCT/CN2021/124154 2020-11-13 2021-10-15 信号传输的方法和通信装置 WO2022100362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011270400.6 2020-11-13
CN202011270400.6A CN114499800A (zh) 2020-11-13 2020-11-13 信号传输的方法和通信装置

Publications (1)

Publication Number Publication Date
WO2022100362A1 true WO2022100362A1 (zh) 2022-05-19

Family

ID=81490548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124154 WO2022100362A1 (zh) 2020-11-13 2021-10-15 信号传输的方法和通信装置

Country Status (2)

Country Link
CN (1) CN114499800A (zh)
WO (1) WO2022100362A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586873A (zh) * 2017-09-29 2019-04-05 中兴通讯股份有限公司 确定同步信号块的时域位置的方法及装置
CN110166393A (zh) * 2018-02-13 2019-08-23 展讯通信(上海)有限公司 同步信号块的发送、接收方法及装置
CN110601809A (zh) * 2019-09-30 2019-12-20 北京展讯高科通信技术有限公司 信息发送方法及装置、信息接收方法及装置
WO2020083240A1 (zh) * 2018-10-24 2020-04-30 华为技术有限公司 同步信号块的传输方法及通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586873A (zh) * 2017-09-29 2019-04-05 中兴通讯股份有限公司 确定同步信号块的时域位置的方法及装置
CN110166393A (zh) * 2018-02-13 2019-08-23 展讯通信(上海)有限公司 同步信号块的发送、接收方法及装置
WO2020083240A1 (zh) * 2018-10-24 2020-04-30 华为技术有限公司 同步信号块的传输方法及通信装置
CN110601809A (zh) * 2019-09-30 2019-12-20 北京展讯高科通信技术有限公司 信息发送方法及装置、信息接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Remaining details on sync signals", 3GPP DRAFT; R1-1721434, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 28 November 2017 (2017-11-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051363884 *

Also Published As

Publication number Publication date
CN114499800A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
KR102381712B1 (ko) 통신 방법 및 통신 장치
JP7061995B2 (ja) 車両対車両通信のための復調基準信号設計
EP3685540B1 (en) Methods and apparatus related to enhanced machine type communication
CN108347778B (zh) 通信方法及装置
US10477371B2 (en) DSRC-LTE V2V co-channel long term coexistence
US10313890B2 (en) Method and device for receiving service through different wireless communication systems
JP2022539715A (ja) Rrc状態の間でのue支援型高速遷移
JPWO2015064679A1 (ja) 移動通信システム及びユーザ端末
WO2021163938A1 (zh) 天线切换方法、终端设备和通信设备
US20230179374A1 (en) Channel transmission method, terminal device, and network device
JP7247166B2 (ja) 短い持続時間内のアップリンクack/nackおよびsr
WO2020087524A1 (zh) 非授权频段上ssb的传输方法和设备
US20190110293A1 (en) Licensed band fallback for wireless devices that operate in unlicensed bands
WO2019183972A1 (zh) 一种信息的指示方法及装置、计算机存储介质
CN110741596A (zh) 物理广播信道(pbch)解调参考信号(dmrs)中的信令信息
CN108282894B (zh) 一种小区接入的方法、基站及终端
US20230138567A1 (en) Coverage Enhancement Method and Apparatus
WO2022262620A1 (zh) 一种指示解调参考信号的方法和装置
WO2022100362A1 (zh) 信号传输的方法和通信装置
US20210360579A1 (en) Paging procedures with increased granularities
CN116326169B (zh) 用于rsu辅助uu连接的协议栈和承载建模
WO2022077207A1 (en) Assisted connectivity
WO2021047479A1 (zh) 一种通信方法及装置
WO2021155552A1 (en) High level operating system (hlos) interface for local area data network (ladn) service
EP4154464A1 (en) Srs signaling in 5g new radio wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890889

Country of ref document: EP

Kind code of ref document: A1