WO2020083240A1 - 同步信号块的传输方法及通信装置 - Google Patents

同步信号块的传输方法及通信装置 Download PDF

Info

Publication number
WO2020083240A1
WO2020083240A1 PCT/CN2019/112321 CN2019112321W WO2020083240A1 WO 2020083240 A1 WO2020083240 A1 WO 2020083240A1 CN 2019112321 W CN2019112321 W CN 2019112321W WO 2020083240 A1 WO2020083240 A1 WO 2020083240A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
symbol
resource
mapped
pss
Prior art date
Application number
PCT/CN2019/112321
Other languages
English (en)
French (fr)
Inventor
刘哲
唐浩
彭金磷
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19876024.1A priority Critical patent/EP3863346B1/en
Publication of WO2020083240A1 publication Critical patent/WO2020083240A1/zh
Priority to US17/236,622 priority patent/US11864133B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0008Wavelet-division

Definitions

  • the embodiments of the present application relate to the technical field of communications, and in particular, to a transmission method and a communication device of a synchronization signal block.
  • a network device sends a synchronization signal block (SSB) to a terminal device, and the terminal device synchronizes with the network device according to the SSB.
  • the SSB may include a primary synchronization signal (primary synchronization signal (PSS), a secondary synchronization signal (secondary synchronization signal, SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the SSB When the network device sends the SSB to the terminal device, the SSB is mapped to a time-frequency resource of a specific size for transmission.
  • the time-frequency resource of a specific size occupies 20 resource blocks (RB) in the frequency domain and 4 orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) in the time domain. )symbol.
  • each RB includes 12 consecutive subcarriers in the frequency domain.
  • the subcarrier spacing is a basic unit in the frequency domain, and the subcarrier spacing can be 15 kHz, 30 kHz, 60 kHz, or 120 kHz.
  • a design in which multiple sub-carrier intervals coexist on a carrier is now proposed.
  • different subcarrier intervals can be configured in the frequency domain in the same transmission time.
  • in order to reduce the interference between uplink and downlink in the same time domain, if a part of the upper RB in the frequency domain is used for downlink transmission and another part of the RB is used for uplink transmission, it will result in crossover between uplink and downlink Interference), it can be required that during the same transmission time, between different subcarrier intervals on the carrier, simultaneous uplink transmission or downlink transmission is required.
  • SSB is downlink transmission. On the 4 OFDM symbols transmitting SSB, other RBs on the carrier can only transmit downlink signals or downlink channels, or do not transmit any signals, but cannot be used to transmit uplink signals or uplink channels.
  • the present application provides a transmission method and a communication device for a synchronous signal block, to ensure the reliability of data transmission, and to ensure that other terminal devices can obtain SSB and then access the system.
  • an embodiment of the present application provides a method for transmitting a synchronization signal block, including:
  • the SSB Receiving the SSB sent by the network device at the resource location of the synchronization signal block SSB, where the resource location of the SSB is included in the set of candidate resource locations of the SSB, where the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical Broadcast channel PBCH;
  • the one resource location maps one symbol in the time domain, the PSS, SSS, and PBCH are frequency-division multiplexed on the one resource location, and the one resource
  • the subcarrier spacing corresponding to the position is 15kHz, 30kHz or 60kHz.
  • the set of candidate resource locations includes one or more (candidate) resource locations, and the resource at each resource location is a candidate resource used by the network device to send the SSB to the terminal device.
  • One resource location maps 1 symbol in the time domain. Therefore, when designing the SSB candidate resource location, by reducing the time domain length of the SSB resource location, as far as possible, the symbols mapped by the SSB resource location and the multiple uplink transmission symbols in the self-contained slot structure do not overlap to avoid Generate cross-talk. Therefore, the design can support more reliable transmission of self-contained time slot structure. Further, by supporting reliable transmission, the probability of retransmission can be avoided, and thus the delay of data transmission in the self-contained time slot structure can be reduced.
  • the subcarrier interval is a subcarrier interval of 15 kHz
  • the candidate resource position set is the first set or a subset of the first set
  • the index of the symbol in the first set is ⁇ 0,7,14,21 ⁇ + 28 ⁇ a, a ⁇ 0 and an integer.
  • the subcarrier interval is a subcarrier interval of 30 kHz
  • the set of candidate resource positions is a second set or a subset of the second set
  • the index of symbols in the second set is ⁇ 0,1,7,8,14,15,21,22 ⁇ + 28 ⁇ b;
  • the subcarrier interval is a subcarrier interval of 60 kHz
  • the candidate resource position set is a third set or a subset of the third set
  • the index of symbols in the third set is ⁇ 0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24 ⁇ + 28 ⁇ c, c ⁇ 0 and an integer.
  • the downlink symbols in a time slot can be enabled to be located in the first few symbols in the time slot, thereby ensuring that the network side dynamically changes the number of uplink symbols and the number of downlink symbols according to actual needs.
  • at least three self-contained time slots of 60 kHz subcarrier spacing can be enabled within 0.5 ms, thereby ensuring low latency and high reliability transmission of services corresponding to the 60 kHz subcarrier spacing, while enabling Other terminal devices can acquire SSB and then access the system.
  • the number of resource blocks RBs mapped by the SSB in the frequency domain is less than or equal to 72, wherein the PSS and the SSS are mapped to 12 RBs in the frequency domain, respectively, and the PBCH is The number of RBs mapped in the frequency domain is less than or equal to 48.
  • the downlink symbols in a time slot can be enabled to be located in the first few symbols in the time slot, thereby ensuring that the network side dynamically changes the number of uplink symbols and the number of downlink symbols according to actual needs.
  • at least three self-contained time slots of 60 kHz subcarrier spacing can be enabled within 0.5 ms, thereby ensuring low latency and high reliability transmission of services corresponding to the 60 kHz subcarrier spacing, while enabling Other terminal devices can acquire SSB and then access the system.
  • an embodiment of the present application provides a method for transmitting a synchronization signal block, including:
  • the SSB Receiving the SSB sent by the network device at the resource location of the synchronization signal block SSB, where the resource location of the SSB is included in the set of candidate resource locations of the SSB, where the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical Broadcast channel PBCH;
  • the one resource location is mapped to two consecutive symbols in the time domain, and the PSS, SSS, and PBCH are frequency-division multiplexed and time-divisioned at the one resource location Multiplexing, the subcarrier interval corresponding to the one resource position is 30 kHz or 60 kHz.
  • the SSB is transmitted at 30 kHz or 60 kHz, and the set of candidate resource locations of the SSB contains one or more (candidate) resource locations.
  • the resource at each resource location is a candidate resource used by the network device to send the SSB to the terminal device.
  • One resource location maps 2 symbols in the time domain. Therefore, when designing the SSB candidate resource location, by reducing the time domain length of the SSB resource location, as far as possible, the symbols mapped by the SSB resource location and the multiple uplink transmission symbols in the self-contained slot structure do not overlap to avoid Generate cross-talk. Therefore, the design can support more reliable transmission of self-contained time slot structure. Further, by supporting reliable transmission, the probability of retransmission can be avoided, and thus the delay of data transmission in the self-contained time slot structure can be reduced.
  • the subcarrier interval is 30 kHz
  • the set of indexes of the first symbol of the resource position is a fourth set or a subset of the fourth set, and the symbols included in the fourth set
  • the index of is ⁇ 0,7,14,21 ⁇ + 28 ⁇ b, b ⁇ 0 and an integer.
  • the subcarrier spacing is 60 kHz
  • the set of indexes of the first symbol of the resource position is a fifth set or a subset of the fifth set, and the symbols included in the fifth set
  • the index of is ⁇ 0,2,7,9,14,16,21,23 ⁇ + 28 ⁇ c, c ⁇ 0 and is an integer.
  • the downlink symbols in a time slot can be enabled to be located in the first few symbols in the time slot, thereby ensuring that the network side dynamically changes the number of uplink symbols and the number of downlink symbols according to actual needs.
  • at least three self-contained time slots of 60 kHz subcarrier spacing can be enabled within 0.5 ms, thereby ensuring low latency and high reliability transmission of services corresponding to the 60 kHz subcarrier spacing, while enabling Other terminal devices can acquire SSB and then access the system.
  • the number of resource blocks RB mapped by the SSB in the frequency domain is less than or equal to 36;
  • the frequency division multiplexing and time division multiplexing of the PSS, SSS and PBCH at the one resource location include:
  • the PSS and the SSS are time division multiplexed, the PSS and the SSS are mapped to the same 12 RBs in the frequency domain, the PBCH and the PSS are frequency division multiplexed, and the PBCH is in the frequency domain
  • the number of mapped RBs is less than or equal to 24;
  • the PSS and the SSS are frequency-division multiplexed, the PSS and the SSS are respectively mapped to 12 RBs in the frequency domain, the PBCH and the PSS are time-division multiplexed, the PBCH is mapped in the frequency domain
  • the number of RB is less than or equal to 36; or,
  • the PBCH includes a first part and a second part.
  • the second part includes a first block and a second block.
  • the first block, the second block, the PSS, and the SSS are frequency division multiplexed.
  • Time division multiplexing of the first part and the PSS, the PSS and the SSS are mapped to 12 RBs in the frequency domain, and the first block and the second block are mapped to 6 RBs in the frequency domain,
  • the number of RBs mapped in the frequency domain by the second part is less than or equal to 36.
  • the transmission method of the synchronization signal block realizes the purpose of flexibly setting the format of the SSB by adjusting the positions of the PBCH, SSS, and PSS in the SSB occupying 2 symbols in the frequency domain and the time domain.
  • the downlink symbols in a time slot can be enabled to be located in the first few symbols in the time slot, thereby ensuring that the network side dynamically changes the number of uplink symbols and the number of downlink symbols according to actual needs.
  • At least three self-contained time slots of 60 kHz subcarrier spacing can be enabled within 0.5 ms, thereby ensuring low latency and high reliability transmission of services corresponding to the 60 kHz subcarrier spacing, while enabling Other terminal devices can acquire SSB and then access the system.
  • an embodiment of the present application provides a method for transmitting a synchronization signal block, including:
  • the SSB Receiving the SSB sent by the network device at the resource location of the synchronization signal block SSB, where the resource location of the SSB is included in the set of candidate resource locations of the SSB, where the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical Broadcast channel PBCH;
  • the one resource location maps 4 symbols in the time domain, and the PSS, SSS, and PBCH are frequency-division multiplexed and time-division multiplexed on the one resource location,
  • the subcarrier interval corresponding to the one resource position is 30 kHz or 60 kHz.
  • the SSB is transmitted at 30 kHz or 60 kHz, and the set of candidate resource locations of the SSB contains one or more (candidate) resource locations.
  • the resource at each resource location is a candidate resource used by the network device to send the SSB to the terminal device.
  • One resource location maps 4 symbols in the time domain. Therefore, when designing the SSB candidate resource location, by reducing the time domain length of the SSB resource location, as far as possible, the symbols mapped by the SSB resource location and the multiple uplink transmission symbols in the self-contained slot structure do not overlap to avoid Generate cross-talk. Therefore, the design can support more reliable transmission of self-contained time slot structure. Further, by supporting reliable transmission, the probability of retransmission can be avoided, and thus the delay of data transmission in the self-contained time slot structure can be reduced.
  • the one resource location maps four consecutive symbols in the time domain
  • the subcarrier interval is a subcarrier interval of 60 kHz
  • the set of indexes of the first symbol of the resource position is a sixth set or a subset of the sixth set
  • the sixth set includes symbols ⁇ 0 , 7,14,21 ⁇ + 28 ⁇ c, c ⁇ 0 and an integer.
  • the downlink symbols in a time slot can be enabled to be located in the first few symbols in the time slot, thereby ensuring that the network side dynamically changes the number of uplink symbols and the number of downlink symbols according to actual needs.
  • at least three self-contained time slots of 60 kHz subcarrier spacing can be enabled within 0.5 ms, thereby ensuring low latency and high reliability transmission of services corresponding to the 60 kHz subcarrier spacing, while enabling Other terminal devices can acquire SSB and then access the system.
  • the PSS is mapped to the first one of the four consecutive symbols in the time domain
  • the SSS is mapped to the third one of the four consecutive symbols in the time domain
  • the PBCH is mapped to the second symbol, the third symbol, and the fourth symbol of the four consecutive symbols in the time domain, and the number of resource blocks RB mapped by the SSB in the frequency domain Less than or equal to 20
  • the frequency division multiplexing and time division multiplexing of the PSS, SSS and PBCH at the one resource location include:
  • the PSS and the SSS are time division multiplexed, and the PSS and the SSS are frequency-mapped to the subcarriers included in the RBs numbered 5 to 16 out of the 20 RBs numbered 1 to 20, and the PBCH is at the time When mapping the second symbol or the fourth symbol of the four consecutive symbols on the domain, the number of RBs mapped by the PBCH in the frequency domain is less than or equal to 20; the PBCH maps the RBCH in the time domain When the third symbol out of 4 consecutive symbols, the PBCH is mapped in the frequency domain to the subcarriers included in the RBs 1 to 4 and the numbers 17 to 20 in the 20 RBs numbered 1 to 20 The RB contains subcarriers.
  • the transmission method of the synchronization signal block realizes the purpose of flexibly setting the format of the SSB by adjusting the positions of PBCH, SSS and PSS in the SSB occupying 4 consecutive symbols in the frequency domain and the time domain .
  • the downlink symbols in a time slot can be enabled to be located in the first few symbols in the time slot, thereby ensuring that the network side dynamically changes the number of uplink symbols and the number of downlink symbols according to actual needs.
  • At least three self-contained time slots of 60 kHz subcarrier spacing can be enabled within 0.5 ms, thereby ensuring low latency and high reliability transmission of services corresponding to the 60 kHz subcarrier spacing, while enabling Other terminal devices can acquire SSB and then access the system.
  • the one resource location occupies a total of 4 symbols in the first group of consecutive symbols and the second group of consecutive symbols in the time domain, wherein the interval between the first group of consecutive symbols and the second group of consecutive symbols is x Symbols, x ⁇ 1, and x is an integer.
  • the subcarrier interval is 30 kHz
  • the set of indexes of the first symbol of the resource position is a seventh set or a subset of the seventh set, and the symbols included in the seventh set ⁇ 0,14 ⁇ + 28 ⁇ b, b ⁇ 0 and an integer.
  • the subcarrier interval is a subcarrier interval of 60 kHz
  • the set of indexes of the first symbol of the resource position is the eighth set or a subset of the eighth set, the eighth
  • the symbols included in the set are ⁇ 0,2,14,16 ⁇ + 28 ⁇ c, c ⁇ 0 and an integer.
  • the downlink symbols in a time slot can be enabled to be located in the first few symbols in the time slot, thereby ensuring that the network side dynamically changes the number of uplink symbols and the number of downlink symbols according to actual needs.
  • at least three self-contained time slots of 60 kHz subcarrier spacing can be enabled within 0.5 ms, thereby ensuring low latency and high reliability transmission of services corresponding to the 60 kHz subcarrier spacing, while enabling Other terminal devices can acquire SSB and then access the system.
  • the PSS is mapped to the first symbol in the first group of consecutive symbols in the time domain
  • the SSS is mapped to the first symbol in the second group of consecutive symbols in the time domain
  • the PBCH is mapped in the time domain to the second symbol in the first group of consecutive symbols, and the first symbol and the second symbol in the second group of consecutive symbols;
  • the SSS is mapped to the first symbol in the first group of consecutive symbols in the time domain
  • the PSS is mapped to the first symbol in the second group of consecutive symbols in the time domain
  • the PBCH is at the time Mapped on the field to the second symbol in the first group of consecutive symbols, and the first symbol and the second symbol in the second group of consecutive symbols;
  • the PSS is mapped to the first symbol in the first group of consecutive symbols in the time domain
  • the SSS is mapped to the first symbol in the second group of consecutive symbols in the time domain
  • the PBCH is at the time Mapped to the second symbol in the first group of consecutive symbols and the second symbol in the second group of consecutive symbols on the domain;
  • the SSS is mapped to the first symbol in the first group of consecutive symbols in the time domain
  • the PSS is mapped to the first symbol in the second group of consecutive symbols in the time domain
  • the PBCH is at the time
  • the domain is mapped to the second symbol in the first group of consecutive symbols and the second symbol in the second group of consecutive symbols.
  • the transmission method of the synchronization signal block realizes the flexible setting of the format of the SSB by adjusting the positions of the PBCH, SSS and PSS in the SSB occupying 4 discontinuous symbols in the frequency domain and the time domain purpose.
  • the network device After the SSB sent on the resource location of the synchronization signal block SSB, the network device also receives first indication information sent by the network device, where the first indication information is used to indicate to the terminal device the set of candidate resource locations for transmission Describe the resource location of the SSB.
  • the terminal device is instructed to indicate the resource location of the SSB transmission through the first indication information, so that the terminal device avoids detecting the PDCCH candidate time-frequency resource at the resource location of the transmission SSB according to the first indication information, or causes the terminal device to An instruction message performs rate matching on the PDSCH on the resources transmitting the SSB to ensure that the resources transmitting the SSB are not shared with other channels, enabling all terminals to access the system.
  • the first indication information is also used to indicate a first set of candidate resource locations, the first set of candidate resource locations is a subset of the set of candidate resource locations, and the set of candidate resource locations includes L resource locations, the numbers of the L resource locations are sequentially from 1 to L, and the first set of candidate resource locations includes resource locations with odd numbers among the L resource locations, or the first resource location
  • the set of candidate resource locations includes even-numbered resource locations among the L resource locations.
  • the network device when multiple subcarrier intervals sensitive to delay reliability coexist, the SSB occupies 4 consecutive symbols, and the subcarrier interval of 30 kHz is used to transmit the carrier interval of SSB and 60 kHZ
  • the network device When transmitting data, for any two adjacent resource locations in the set of candidate resource locations, the network device only sends the SSB at one of the resource locations, so that within 0.5 ms, the terminal device only needs to blind on a continuous 4 symbols Detection to receive SSB, reduces the number of blind detections of terminal equipment, saves power consumption of terminal equipment, and meets 3 self-contained time slots with a subcarrier interval of 60kHz within 0.5ms to ensure the reliability of data transmission and ensure Other terminal devices can acquire SSB and then access the system.
  • the first indication information is further used to indicate a first set of candidate resource locations, the first set of candidate resource locations is a subset of a second set of candidate resource locations, and the second candidate resource location
  • the set is a set of candidate resource locations of the SSB, for example, a set of candidate resource locations predefined by the protocol.
  • the candidate resource position set is a candidate resource position set irrelevant to the candidate resource position set in the above-mentioned first, second or third aspects.
  • the first candidate resource position set is obtained according to the second candidate resource position set, and the resource positions in the first candidate resource position set are formed by the resource positions numbered odd in the second candidate resource position set
  • the set of, or, is a set formed by resource positions with even numbers in the second set of candidate resource positions. That is to say, for any two adjacent resource locations in the second set of candidate resource locations, the network device only sends the SSB at one of the candidate resource locations, so that the terminal device is only in any two adjacent candidate resource locations.
  • Blind detection at a candidate resource location to receive SSB reduces the number of blind detections of the terminal device, saves the power consumption of the terminal device, and at the same time makes the symbol of the resource location mapping of the SSB and the uplink in multiple self-contained time slot structures as possible
  • the transmitted symbols do not overlap to avoid cross-interference, ensure the reliability of data transmission, and ensure that other terminal devices can obtain the SSB and then access the system.
  • an embodiment of the present application provides a synchronization signal block transmission method, including:
  • the terminal device Sending the SSB to the terminal device at the resource position of the synchronization signal block SSB, where the resource position of the SSB is included in the set of candidate resource positions of the SSB, wherein the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH;
  • the one resource location is mapped to one symbol in the time domain, the PSS, SSS, and PBCH are frequency-division multiplexed on the one resource location, the one
  • the subcarrier spacing corresponding to the resource location is 15kHz, 30kHz or 60kHz.
  • an embodiment of the present application provides a method for transmitting a synchronization signal block, including:
  • the terminal device Sending the SSB to the terminal device at the resource position of the synchronization signal block SSB, where the resource position of the SSB is included in the set of candidate resource positions of the SSB, wherein the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH;
  • the one resource location is mapped to two consecutive symbols in the time domain, and the PSS, SSS, and PBCH are frequency-division multiplexed and time-divisioned at the one resource location Multiplexing, the subcarrier interval corresponding to the one resource position is 30 kHz or 60 kHz.
  • an embodiment of the present application provides a synchronization signal block transmission method, including:
  • the terminal device Sending the SSB to the terminal device at the resource position of the synchronization signal block SSB, where the resource position of the SSB is included in the set of candidate resource positions of the SSB, wherein the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH;
  • the one resource location is mapped to 4 symbols in the time domain, and the PSS, SSS, and PBCH are frequency-division multiplexed and time-division multiplexed on the one resource location ,
  • the subcarrier interval corresponding to the one resource position is 30 kHz or 60 kHz.
  • a seventh aspect of the embodiments of the present application provides a communication device.
  • the communication device may be a terminal device, or may be a terminal device that can support the terminal device to perform any of the above-mentioned first to third design examples.
  • the functional device for example, the device may be a device in a terminal device or a chip system, and the device may include a receiving module that can perform the corresponding operations performed by the terminal device in any of the design examples of the first aspect to the third aspect above Function, exemplary:
  • the receiving module is configured to receive the SSB sent by the network device at the resource position of the synchronization signal block SSB, where the resource position of the SSB is included in the set of candidate resource positions of the SSB, where the SSB includes the primary synchronization signal PSS, auxiliary Synchronization signal SSS and physical broadcast channel PBCH.
  • the content of the candidate resource location set and the SSB can be referred to the descriptions of the candidate resource location and the SSB in the first aspect to the third aspect, which are not limited here.
  • the receiving module is further used to receive first indication information sent by the network device, where the first indication information is used to send the terminal The device indicates a resource location in the set of candidate resource locations for transmitting the SSB, or the first indication information is used to indicate to the terminal device a possible resource in the set of candidate resource locations for transmitting the SSB Resource location.
  • the first indication information is also used to indicate a first set of candidate resource locations, the first set of candidate resource locations is a subset of the set of candidate resource locations, and the set of candidate resource locations includes L resource locations, the numbers of the L resource locations are sequentially from 1 to L, and the first set of candidate resource locations includes resource locations with odd numbers among the L resource locations, or the first resource location
  • the set of candidate resource locations includes even numbered resource locations among the L resource locations
  • the communication apparatus may be a network device, or may be a network device that can support the network device to perform any of the above-described design examples in the fourth aspect to the sixth aspect.
  • the functional device for example, the device may be a device in a network device or a chip system, and the device may include a sending module that can perform the corresponding execution performed by the network device in any of the design examples in the fourth aspect to the sixth aspect.
  • Function exemplary:
  • the sending module is configured to send the SSB to the terminal device at the resource position of the synchronization signal block SSB, where the resource position of the SSB is included in the set of candidate resource positions of the SSB, where the SSB includes the primary synchronization signal PSS and the secondary synchronization signal SSS and physical broadcast channel PBCH.
  • the content of the candidate resource location set and the SSB can be referred to the descriptions of the candidate resource location and the SSB in the fourth aspect to the sixth aspect, which are not limited here.
  • the sending module after sending the SSB to the terminal device in the resource position of the synchronization signal block SSB, the sending module also sends first indication information to the terminal device, where the first indication information is used to indicate to the terminal device The resource location in the set of candidate resource locations for transmitting the SSB.
  • the first indication information is also used to indicate a first set of candidate resource locations, the first set of candidate resource locations is a subset of the set of candidate resource locations, and the set of candidate resource locations includes L resource locations, the numbers of the L resource locations are sequentially from 1 to L, and the first set of candidate resource locations includes resource locations with odd numbers among the L resource locations, or the first resource location
  • the set of candidate resource locations includes even numbered resource locations among the L resource locations
  • an embodiment of the present application provides a communication device, including: a processor, configured to implement the functions of the terminal device in the methods described in the first aspect to the third aspect.
  • the communication device may further include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory to implement the functions of the terminal device in the methods described in the first aspect to the third aspect.
  • the communication apparatus may further include a communication interface, and the communication interface is used for the terminal device to communicate with other devices.
  • the other device is a network device.
  • the terminal device includes:
  • Memory used to store program instructions
  • the processor is used to call the program instructions stored in the memory, and use the communication interface to receive the SSB sent by the network device at the resource location of the synchronization signal block SSB.
  • the processor is also used to call the program instructions stored in the memory and use the communication interface to receive the first instruction information sent by the network device.
  • the set of candidate resource locations, the content of the SSB, and the introduction of the first indication information may refer to the corresponding descriptions in the first aspect to the third aspect, which are not limited here.
  • an embodiment of the present application provides a communication apparatus, including a processor, configured to implement the functions of the network device in the methods described in the fourth aspect to the sixth aspect.
  • the communication device may further include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor can call and execute program instructions stored in the memory to implement the functions of the network device in the methods described in the fourth aspect to the sixth aspect.
  • the communication device may further include a communication interface, and the communication interface is used for the network device to communicate with other devices.
  • the other device is a terminal device.
  • the network device includes:
  • Memory used to store program instructions
  • the processor is used to call the program instructions stored in the memory, and use the communication interface to send the SSB to the terminal device at the resource position of the synchronization signal block SSB.
  • the processor is also used to call the program instructions stored in the memory and use the communication interface to send the first instruction information to the terminal device.
  • the set of candidate resource locations, the content of the SSB, and the introduction of the first indication information may refer to the corresponding descriptions in the fourth aspect to the sixth aspect, which are not limited here.
  • the chip system includes a processor, a memory, and a communication interface, which are used to implement the functions of the terminal device in the foregoing method.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a twelfth aspect of an embodiment of the present application provides a chip system.
  • the chip system includes a processor, a memory, and a communication interface, which are used to implement the functions of the network device in the foregoing method.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a thirteenth aspect of an embodiment of the present application provides a computer program product, where the computer program product includes computer program code, and when the computer program code is executed by a computer, causes the computer to perform any of the first to third aspects above A method as described above, or causing the computer to perform the method of any one of the fourth aspect to the sixth aspect.
  • a fourteenth aspect of an embodiment of the present application provides a computer-readable storage medium that stores computer instructions, and when the computer instructions are executed by a computer, causes the computer to perform the first to third aspects Or the method according to the fourth aspect to the sixth aspect.
  • a fifteenth aspect of an embodiment of the present application provides a system including the communication device according to the seventh aspect and the communication device according to the eighth aspect; or the system includes the communication device according to the ninth aspect and the first The communication device described in the tenth aspect.
  • 1 is a schematic diagram of symbol collision when multiple subcarrier intervals coexist
  • FIG. 2 is a schematic diagram of a scenario applicable to a transmission method of a synchronization signal block provided by an embodiment of the present application;
  • FIG. 3 is a flowchart of a method for transmitting a synchronization signal block provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of an SSB provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an example of a method for transmitting a synchronization signal block provided by an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of an SSB provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an example of a method for transmitting a synchronization signal block provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an SSB provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an example of a method for transmitting a synchronization signal block provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an SSB provided by an embodiment of the present application.
  • 11 and 12 are schematic diagrams of examples of transmission methods of synchronization signal blocks provided by embodiments of the present application.
  • 13 to 16 are block diagrams of modules of a communication device provided by an embodiment of the present application.
  • a self-contained structure is introduced in the time domain, such as a self-contained slot (self-contained slot).
  • a self-contained time slot may include both downlink (DL) symbols and uplink (UL) symbols. Among them, DL symbols are used for DL transmission, and UL symbols are used for UL transmission. Further, a self-contained time slot may also include a conversion symbol, for example, a conversion symbol may be included between the DL symbol and the UL symbol. The conversion symbol may also be called a blank symbol or other names, and it is neither used for DL transmission nor UL transmission.
  • a self-contained time slot includes 7 symbols or 14 symbols, or a self-contained time slot includes other numbers of symbols, which is not limited in this application.
  • the 7 symbols include DL symbol, conversion symbol and UL symbol.
  • the first 4 symbols are DL symbols
  • the 5th symbol is a conversion symbol
  • the 6th and 7th symbols are UL symbols
  • the first 5 symbols are DL symbols
  • the sixth symbol is the conversion symbol
  • the seventh symbol is the UL symbol.
  • the symbol may be an OFDM symbol, a single carrier frequency division multiple access (single carrier frequency division multiple access, SC-FDMA) symbol, or other time domain symbols, which is not limited in this application.
  • OFDM symbols can be used as an example for description.
  • the self-contained structure can also be extended to other time-domain units, such as a self-contained subframe structure, which is not limited in this application.
  • a self-contained subframe may include both DL symbols and UL symbols.
  • a self-contained subframe may further include conversion symbols, for example, conversion symbols may be included between DL symbols and UL symbols.
  • the time slot corresponding to the subcarrier interval of 60 kHz is a self-contained time slot, and each self-contained time slot includes 7 symbols in the time domain (it can also be called that 7 symbols are occupied in the time domain, and It can be called mapping 7 symbols in the time domain).
  • the first 4 symbols are used for DL transmission
  • the 5th symbol is a conversion symbol
  • the 6th and 7th symbols are UL symbols.
  • a total of 8 self-contained time slot structures including the first to the eighth are included.
  • the resource location of the SSB may be symbols 2 to 5 or symbols 8 to 11.
  • symbols 2 to 5 of 15kHz subcarrier spacing are used for SSB transmission, other frequency domain resources use the 60kHz self-contained structure shown in Figure 1 for data transmission, then the 15kHz SSB and the second and third The UL transmission part of the 60kHz self-contained time slot structure overlaps or collides in the time domain, thereby generating uplink and downlink cross interference and affecting uplink reception.
  • the SSB When the SSB is transmitted using a subcarrier interval of 30 kHz, with the first configuration method, within 1 ms, there are 4 candidate resource positions for the SSB, which are symbols 2 to 5, symbols 8 to 11, symbols 16 to 19, and symbols 22 ⁇ 25.
  • the 30kHZ symbols 2 ⁇ 5 used to transmit SSB and the fifth 60kHz self-contained time slot structure The UL transmission part overlaps or collides in the time domain, thereby causing uplink and downlink crossovers to affect uplink reception.
  • some of the symbols used to transmit the SSB collide with the UL symbols in the self-contained time slots used to transmit data at the 60 kHz subcarrier interval.
  • the embodiments of the present application provide a synchronization signal block transmission method and a communication device, to ensure the reliability of data transmission, and to ensure that other terminal devices can obtain the SSB and then access the system.
  • the transmission method of the synchronization signal block provided by the embodiment of the present application can be used in a fourth generation (4th generation, 4G) mobile communication system (for example, a long term evolution (LTE) system, an advanced long term evolution system (advanced long term evolution) , LTE-A)), 3rd Generation Partnership Project (3GPP) related cellular systems, 5th generation (5G) mobile communication systems and subsequent evolution of communication systems.
  • 4G fourth generation
  • 4G fourth generation
  • 4G fourth generation
  • LTE long term evolution
  • LTE-A advanced long term evolution system
  • 3GPP 3rd Generation Partnership Project
  • 5G 5th generation
  • 5G can also be called new radio (new radio (NR)).
  • the network equipment involved in the embodiments of the present application may be a base station, such as a macro base station, a micro base station, etc., which is a device deployed in a wireless access network and capable of wireless communication with a terminal device.
  • the base station can be used to convert received air frames and internet protocol (IP) packets to each other as a router between the terminal equipment and the rest of the access network, where the rest of the access network can include an IP network;
  • IP internet protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be an evolutionary base station (evolutional Node B, eNB or e-NodeB) in LTE, or may be a gNB in NR or the like.
  • the base station can also be a wireless controller in a cloud radio access network (CRAN) scenario, or it can be a relay station, an access point, an in-vehicle device, a wearable device, or a future public land mobile network (public land mobile network) Mobile network (PLMN) network equipment, etc., the embodiments of the present application are not limited.
  • CRAN cloud radio access network
  • PLMN Public Land mobile network Mobile network
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and / or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the terminal device can communicate with one or more core networks via a radio access network (RAN).
  • RAN radio access network
  • the terminal device can be a mobile terminal device, such as a mobile phone (or "cellular" phone) and a mobile terminal device
  • the computer for example, may be a portable, pocket-sized, hand-held, computer built-in or vehicle-mounted mobile device that exchanges language and / or data with the wireless access network.
  • the terminal device may be a personal communication service (PCS) phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local loop (WLL) station, a personal digital assistant ( Personal digital assistant (PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in future 5G networks or public land mobile communication networks that evolve in the future (
  • the terminal equipment in the public mobile network (PLMN) is not limited in this embodiment of the present application.
  • the terminal equipment can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user equipment (user equipment), or user equipment (user equipment).
  • Remote terminal equipment remote terminal equipment
  • access terminal equipment access terminal
  • user terminal equipment user terminal
  • user agent user agent
  • user equipment user equipment
  • user equipment user equipment
  • FIG. 2 is a schematic diagram of a scenario applicable to a transmission method of a synchronization signal block provided by an embodiment of the present application.
  • the network device and terminal device 1 to terminal device 6 form a communication system.
  • the network device sends an SSB to any terminal device of terminal device 1 to terminal device 6.
  • the terminal devices 4 to 6 may also constitute a communication system in which the terminal device 5 sends the SSB to the terminal device 4 or the terminal device 6.
  • FIG. 3 is a flowchart of a synchronization signal block transmission method provided by an embodiment of the present application.
  • This embodiment describes the transmission method of the synchronization signal block described in this application from the perspective of interaction between the network device and the terminal.
  • the resource location for sending the SSB maps one symbol in the time domain.
  • the resource location maps 1 symbol in the time domain, it can also be understood that the resource location occupies 1 symbol in the time domain, that is, the SSB occupies 1 symbol in the time domain ; It can also be understood that the resource location includes 1 symbol in the time domain.
  • This embodiment includes:
  • the network device sends the SSB to the terminal device at the resource position of the synchronization signal block SSB.
  • the resource location of the SSB is included in the set of candidate resource locations of the SSB, and the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH; for one resource location in the candidate resource location set, the one One symbol is mapped on the resource location in the time domain, the PSS, SSS, and PBCH are frequency-division multiplexed on the one resource location or on the one symbol, and the subcarrier spacing corresponding to the one resource location is 15 kHz, 30kHz or 60kHz.
  • the set of candidate resource locations includes one or more (candidate) resource locations.
  • the resources of each resource location are used by the network device to The terminal device sends SSB candidate resources.
  • One resource location maps 1 symbol, 2 symbols, or 4 symbols in the time domain. Therefore, when designing the SSB candidate resource location, by reducing the time domain length of the SSB resource location, as far as possible, the symbols mapped by the SSB resource location and the multiple uplink transmission symbols in the self-contained slot structure do not overlap to avoid Generate cross-talk. Therefore, the design can support more reliable transmission of self-contained time slot structure. Further, by supporting reliable transmission, the probability of retransmission can be avoided, and thus the delay of data transmission in the self-contained time slot structure can be reduced.
  • the symbol length of 1 symbol at 15 kHz subcarrier spacing is equal to the sum of the symbol lengths of 4 symbols at 60 kHz subcarrier spacing.
  • one symbol length of 30 kHz subcarrier spacing is equal to the sum of the symbol lengths of two symbols of 60 kHz subcarrier spacing.
  • one symbol occupied by the SSB at 30 kHz subcarrier spacing should be avoided from overlapping with the symbol used for uplink transmission in the self-contained time slot at 60 kHz subcarrier spacing.
  • a self-contained time slot of the subcarrier interval of 60 kHz contains 7 symbols.
  • one symbol occupied by the SSB at 60 kHz subcarrier spacing should be avoided from overlapping with the symbol used for uplink transmission in the self-contained time slot at 60 kHz subcarrier spacing, that is, to avoid SSB resource location and
  • the symbols used for uplink transmission in the self-contained time slots have overlapping positions in the time domain.
  • step 101 when the network device sends the SSB to the terminal device, the SSB is mapped to a resource location for transmission, and the resource location maps one symbol in the time domain. It can also be understood as: SSB occupies 1 symbol.
  • the terminal device blindly detects the SSB at the candidate resource position of the SSB. In the blind detection process, the terminal device searches the SSB in the frequency domain according to the grid, and obtains the SSB in the time domain according to the SSB's demodulation reference signal (DMRS) or according to the physical broadcast channel (PBCH) Index, to obtain the time domain information of the blindly detected SSB according to the SSB index.
  • DMRS demodulation reference signal
  • PBCH physical broadcast channel
  • the network device sends the SSB to the terminal device at the resource location of the SSB, and accordingly, the terminal device receives the SSB.
  • the resource location resource used to transmit the SSB maps one symbol, two symbols, or four symbols in the time domain.
  • This design can avoid the symbols occupied by the SSB and the uplink symbols in a variety of self-contained time slot structures overlapping in the time domain as much as possible. Therefore, this method can ensure the reliability of data transmission in as many self-contained time slot structures as possible, and at the same time, it can ensure that other terminal devices can obtain the SSB and then access the system. Further, by supporting reliable transmission, the probability of retransmission can be avoided, and thus the delay of data transmission in the self-contained time slot structure can be reduced.
  • the SSB maps 1 symbol in the time domain, that is, 1 symbol is occupied in the time domain, and the number of resource blocks RB mapped in the frequency domain is less than or equal to 72, where the PSS Twelve RBs are mapped in the frequency domain with the SSS, and the number of RBs mapped in the frequency domain by the PBCH is less than or equal to 48.
  • the structure of the SSB in the above embodiment will be described. Exemplary, please refer to FIG. 4.
  • FIG. 4 is a schematic diagram of an SSB structure suitable for a transmission method of a synchronization signal block provided by an embodiment of the present application. Please refer to FIG. 4, an SSB occupying 1 symbol in the time domain can be configured in the following formats:
  • PSS, SSS, and PBCH frequency division multiplexing (FDM) in SSB In the frequency domain, the unit is RB, then from bottom to top are PBCH, SSS, PSS, and PBCH.
  • SSS and PSS respectively map 12 RBs in the frequency domain
  • the PBCH includes a first part and a second part, and the number of RBs respectively mapped in the first and second parts in the frequency domain is less than or equal to 24.
  • the RB numbers of the PBCH of the first part are RB0 to RB23
  • the RB numbers of the SSS are RB24 to RB35
  • the RB numbers of the PSS are RB36 to RB47
  • the PBCH of the second part The RB numbers are RB48 to RB71.
  • this design differs from (a) in FIG. 4 above in the exchange position of SSS and PSS.
  • the PSS, SSS, and PBCH in the SSB are FDM, and the unit of RB in the frequency domain is PBCH, SSS, and PSS in order from bottom to top. .
  • SSS and PSS respectively map 12 RBs in the frequency domain, and the number of RBCHs in the frequency domain for each RB is less than or equal to 48.
  • the starting number of the RB of the SSB is RB0
  • the RB numbers of the PBCH are RB0 to RB47
  • the RB numbers of the SSS are RB48 to RB59
  • the RB numbers of the PSS are RB60 to RB71.
  • the PSS, SSS, and PBCH in the SSB are FDM, and the unit of RB in the frequency domain is SSS, PSS, and PBCH in order from bottom to top .
  • SSS and PSS respectively map 12 RBs in the frequency domain, and the number of RBCHs in the frequency domain for each RB is less than or equal to 48.
  • the starting number of the RB of the SSB is RB0
  • the RB numbers of the SSS are RB0 to RB11
  • the RB numbers of the PSS are RB12 to RB23
  • the RB numbers of the PBCH are RB24 to RB71.
  • SSS and PSS map all subcarriers in 12 RBs respectively, however, the embodiment of the present application is not limited, In other feasible implementation manners, SSS and PSS may also map part of subcarriers in 12 RBs, respectively.
  • SSS maps some subcarriers of 12 RBs, for example, maps 127 subcarriers among 144 subcarriers of 12 RBs.
  • the number of RBs or subcarriers included in the PBCH, each component of the PBCH, PSS, or SSS may be a positive integer.
  • the number of positive integers can be 1, 2, 3 or more, and this application does not limit it.
  • “from bottom to top” may refer to RB as a unit in the frequency domain from the beginning RB (such as RB with number 0) starts, in the direction of frequency domain extension, or in the direction of increasing frequency.
  • the candidate resource position set is the first set or a subset of the first set, and the index of the symbol in the first set ⁇ 0,7,14,21 ⁇ + 28 ⁇ a, a ⁇ 0 and an integer.
  • the value of a is related to the length of the SSB window.
  • a is equal to 0 or 1; when the length of the SSB window is 10 ms, a is equal to 0, 1, 2, 3, or 4.
  • 2 ms contains 28 symbols, and the indexes of the 28 symbols are 0 to 27 in sequence. Taking a cycle of 2 ms as an example, the indexes of the symbols in the first set are ⁇ 0,7,14 , 21 ⁇ + 28 ⁇ a. Among them, a represents the period.
  • the candidate resource positions of the SSB may be determined with a period granularity; the SSB window may include one or more periods, and the candidate resource positions of the SSB may be determined with the period granularity in the SSB window.
  • the first set is described.
  • one cycle may also be 1 ms.
  • the index of the symbol in the first set is ⁇ 0,7 ⁇ + 14 ⁇ a, a ⁇ 0 and an integer.
  • a is equal to 0, 1, 2, 3, or 4; if the window length of the SSB is 10 ms, a is an integer value less than or equal to 9.
  • the candidate resource position set is a second set or a subset of the second set, and the index of the symbol in the second set It is ⁇ 0,1,7,8,14,15,21,22 ⁇ + 28 ⁇ b.
  • the value of b is related to the length of the SSB window.
  • b is equal to 0, 1, 2, 3, or 4; when the length of the SSB window is 10 ms, b is equal to Any one of 0-9.
  • 1ms contains 28 symbols.
  • the indexes of the 28 symbols are 0-27 in sequence. Taking 1ms as a period, for example, the symbols in the second set The index is ⁇ 0,1,7,8,14,15,21,22 ⁇ + 28 ⁇ b.
  • the index of the symbols contained in the position set is ⁇ 0,1,7,8,14,15,21,22 ⁇ , or a subset of the second set, such as ⁇ 14,15,21 ⁇ , ⁇ 0,1,7, 8,14, ⁇ etc.
  • the candidate resource position set is a third set or a subset of the third set, and the index of the symbol in the third set ⁇ 0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24 ⁇ + 28 ⁇ c, c ⁇ 0 and an integer.
  • the value of c is related to the length of the SSB window.
  • b is equal to any one of 0 to 9; when the length of the SSB window is 10 ms, b is equal to 0 to Any one of 19.
  • 0.5 ms contains 28 symbols, and the indexes of the 28 symbols are 0 to 27 in order, taking a cycle of 0.5 ms as an example, the index of the symbols in the third set is ⁇ 0,1 , 2,3,7,8,9,10,14,15,16,17,21,22,23,24 ⁇ + 28 ⁇ c.
  • c represents the period.
  • the index of the symbols in the third set is ⁇ 0,1,2,3,7,8,9,10,14,15,16, 17,21,22,23,24 ⁇
  • the index of the symbols contained in the set of candidate resource positions is ⁇ 0,1,2,3,7,8,9,10,14,15,16,17,21 , 22,23,24 ⁇
  • a subset of the third set such as ⁇ 0,1,2,3,7,8,9,10 ⁇ , ⁇ 14,15,16 ⁇ , etc.
  • the self-contained time slot with a subcarrier interval of 60 kHz is used to transmit data
  • the self-contained time slot structure is the first 4 symbols used for DL transmission
  • the 5th symbol is a conversion symbol
  • the 6th and 7th symbols Taking the UL symbol as an example, the above-mentioned transmission method of the synchronization signal block will be described in detail. Exemplary, see Figure 5.
  • FIG. 5 is an exemplary schematic diagram of a method for transmitting a synchronization signal block provided by an embodiment of the present application. As shown in Figure 5:
  • the index of the symbols in the second set is ⁇ 0,1,7,8,14,15,21,22 ⁇ + 28 ⁇ b, within 1 ms, the second set contains The index of the symbol is ⁇ 0,1,7,8,14,15,21,22 ⁇ , then the possible resource location of the SSB is ⁇ 0,1,7,8,14,15,21,22 ⁇ or the second set Subset.
  • the indexes of the symbols in the third set are ⁇ 0,1,2,3,7,8,9,10,14,15,16,17,21,22,23 , 24 ⁇ + 28 ⁇ c, within 0.5ms, the index of the symbols contained in the third set is ⁇ 0,1,2,3,7,8,9,10,14,15,16,17,21,22, 23,24 ⁇ , the possible resource location of SSB is ⁇ 0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24 ⁇ or the third set Subset.
  • the SSB occupies 1 symbol.
  • the SSB resource position is mapped to one symbol and multiple self-contained slot structures as much as possible.
  • the symbols of the uplink transmissions in the network do not overlap.
  • a self-contained time slot with at least three 60-kHz subcarrier intervals within 0.5 ms is enabled. Ensure the reliable transmission of services corresponding to the 60kHz sub-carrier interval, and at the same time enable other terminal devices to obtain SSB and then access the system.
  • the self-contained time slot with a subcarrier interval of 60 kHz contains 7 symbols
  • the first 4 symbols of the 7 symbols are used for DL transmission
  • the 5th symbol is a conversion symbol
  • the 6th and 7th symbols are UL symbols
  • the embodiments of the present application are not limited.
  • the self-contained slot structure may also be other structures, for example, the first 3 symbols are DL symbols, the 4th to 6th symbols are conversion symbols, and the 7th symbol is a UL symbol.
  • a self-contained time slot with a subcarrier interval of 60 kHz contains 14 symbols and so on.
  • the terminal device after receiving the SSB sent by the network device at the resource position of the synchronization signal block SSB, the terminal device also receives first indication information sent by the network device, where the first indication information is used to The terminal device indicates the resource location in the set of candidate resource locations for transmitting the SSB, or the first indication information is used to indicate to the terminal device the resource location in the set of candidate resource locations that may be used for transmitting the SSB Resource location.
  • the network device after the network device sends the SSB to the terminal device at the resource location of the SSB, it also sends the first indication information to the terminal device; correspondingly, after the terminal device receives the SSB at the resource location of the SSB, it also receives
  • the terminal device determines that the SSB occupies the symbol 7. If the first indication information is used to indicate that the set of resource locations available for transmission of the SSB is symbol 7 and symbol 14; after receiving the first indication information, the terminal device determines that the SSB may occupy symbol 7 and symbol 14.
  • the terminal device determines the resource location for transmitting the SSB according to the first indication information.
  • the terminal device subsequently receives the downlink channel, if the time-frequency resource of the downlink channel overlaps with the resource for transmitting the SSB, the terminal device Do not receive downlink channels.
  • the terminal determines that the SSB occupies the symbol 7 according to the first indication information, and the downlink downlink channel subsequently received by the terminal is a physical downlink shared channel (physical downlink shared channel, PDSCH), if the time-frequency resource occupied by the PDSCH is the same as the symbol 7
  • the terminal device performs rate matching around the overlapping time-frequency resources.
  • 40-bit PDSCH needs to be mapped on the 40 RBs of symbol 7. If there are 20 RBs and resources that transmit SSB overlap, at this time, the terminal device does the remaining 20 RBs Rate matching to receive a 40-bit PDSCH; for another example, if the resources of 40 RBs and the transmission SSB overlap, the terminal device stops receiving the PDSCH.
  • the downlink channel is a physical downlink control channel (physical downlink control channel, PDCCH)
  • PDCCH physical downlink control channel
  • the terminal device is instructed to indicate the resource location of the SSB transmission through the first indication information, so that the terminal device avoids detecting the PDCCH on the resource location of the SSB transmission according to the first indication information, or enables the terminal device to perform the first indication information Perform rate matching on the PDSCH on the resources to transmit SSB, ensure that the resources to transmit SSB do not conflict with other channels, and enable all terminals to access the system.
  • the SSB maps one symbol in the time domain.
  • the resource location used to send the SSB maps two symbols in the time domain.
  • the resource location maps 2 symbols in the time domain, and it can also be understood that the resource location occupies 2 symbols in the time domain, that is, the SSB occupies 2 symbols in the time domain ; Or the resource location includes 2 symbols in the time domain.
  • the network device sends the SSB to the terminal device, the SSB is mapped to a resource location in the set of candidate resource locations of the SSB for transmission, and the resource location maps 2 symbols in the time domain.
  • SSB occupies 2 symbols.
  • the terminal device blindly detects the SSB at the candidate resource position of the SSB.
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH; for one resource location in the set of candidate resource locations, the one resource location maps two consecutive symbols in the time domain ,
  • the PSS, SSS, and PBCH are frequency-division multiplexed and time-division multiplexed on the one resource location, and the subcarrier interval corresponding to the one resource location is 30 kHz or 60 kHz.
  • one symbol length of a subcarrier interval of 30 kHz is equal to the sum of the lengths of two symbols of a subcarrier interval of 60 kHz.
  • the SSB maps 2 symbols in the time domain, that is, occupies 2 symbols in the time domain.
  • the PSS, SSS, and PBCH in the SSB are frequency-division multiplexed and time-division multiplexed at a resource location in the frequency domain.
  • the number of resource blocks RB mapped above is less than or equal to 36.
  • FIG. 6 is a schematic structural diagram of an SSB of a transmission method of a synchronization signal block provided by another embodiment of the present application. Please refer to FIG. 6, the SSB occupying 2 symbols in the time domain can be configured in the following formats:
  • the PSS and the SSS are time-division multiplexed, the PSS and the SSS are mapped to the same 12 RBs in the frequency domain, the PBCH and the PSS are frequency-division multiplexed, the The number of RBs to which the PBCH is mapped in the frequency domain is less than or equal to 24.
  • SSS and PSS time division multiplexing map the same 12 RBs in the frequency domain
  • the PBCH includes 4 parts: the first part, the second part, The third part and the fourth part, the first part and the second part are time division multiplexed, the third part and the fourth part are time division multiplexed, the first part and the second part form the first whole, the PSS and SSS form the second whole, the third Part and Part 4 constitute the third whole.
  • the first whole, the second whole and the third whole are frequency division multiplexed. Taking the RB as the unit in the frequency domain, the first whole, the second whole, and the third whole are in turn from bottom to top.
  • the number of RBs mapped in the frequency domain by the first whole is less than or equal to 12, the number of RBs mapped in the frequency domain is 12 for the second whole, and the number of RBs mapped in the frequency domain for the third whole is less than or equal to 12.
  • the first whole can be mapped to a total of 12 RBs from RB 0 to RB 11
  • the second whole can be mapped to a total of 12 RBs from RB 12 to RB 23
  • the third whole can be mapped to a total of 12 from RB 24 to RB 35 RB.
  • this design differs from (a) in FIG. 6 described above in the following: the exchange position of SSS and PSS.
  • SSS and PSS TDM map the same 12 RBs in the frequency domain
  • the PBCH includes two parts: a first part and a second part, and the first part and the second part are time-division complex Yes, PSS and SSS form the first whole, and the first part and the second part form the second whole.
  • the first whole and the second whole are frequency division multiplexed. Taking the RB as the unit in the frequency domain, the first whole and the second whole are in turn from bottom to top. Among them, the first whole maps 12 RBs in the frequency domain, and the second whole maps the number of RBs in the frequency domain less than or equal to 24.
  • the first whole may be mapped to a total of 12 RBs from RB 0 to RB 11
  • the second whole may be mapped to a total of 24 RBs from RB 12 to RB 35.
  • this design differs from (c) in FIG. 6 described above in the following: the exchange position of SSS and PSS.
  • the PBCH includes two parts: a first part and a second part, and a first part and a second part Time division multiplexing.
  • the first part and the second part form the first whole
  • the PSS and SSS form the second whole.
  • the first whole and the second whole are frequency division multiplexed. Taking the RB as the unit in the frequency domain, the first whole and the second whole are in turn from bottom to top.
  • the number of RBs mapped in the frequency domain by the first whole is less than or equal to 24, and the 12 RBs mapped in the frequency domain by the second whole.
  • the first whole may be mapped to a total of 24 RBs from RB 0 to RB 23, and the second whole may be mapped to a total of 12 RBs from RB 24 to RB 35.
  • this design differs from (e) in FIG. 6 described above in the following: the exchange position of SSS and PSS.
  • SSS and PSS map all subcarriers in 12 RBs
  • the embodiment of the present application is not limited to In other feasible implementation manners, SSS and PSS may also map some subcarriers in 12 RBs.
  • SSS and PSS map partial subcarriers of 12 RBs, for example, map 127 subcarriers among 144 subcarriers of 12 RBs.
  • the PSS and the SSS are frequency-division multiplexed, the PSS and the SSS are respectively mapped to 12 RBs in the frequency domain, the PBCH and the PSS are time-division multiplexed, the The number of RBs mapped by the PBCH in the frequency domain is less than or equal to 36.
  • PSS and SSS frequency division multiplexing respectively mapping 12 RBs in the frequency domain
  • PSS and SSS constitute the first whole, the first whole in the frequency domain in units of RB , Then PSS and SSS in order from bottom to top, the first whole is time division multiplexed with the PBCH, and the number of RBs mapped on the frequency domain by the PBCH is less than or equal to 36.
  • the PSS is mapped to a total of 12 RBs from RB6 to RB17
  • the PSS is mapped to a total of 12 RBs from RB18 to RB29
  • the PBCH is mapped to a total of 36 RBs from RB0 to RB35.
  • this design differs from (g) in FIG. 6 described above in the following: the exchange position of SSS and PSS.
  • the PBCH includes a first part and a second part
  • the second part includes a first block and a second block
  • the PSS and the SSS are mapped to 12 RBs in the frequency domain
  • the first block and the second block are in the frequency domain 6 RBs are mapped on the upper part respectively
  • the number of RBs mapped on the frequency domain in the second part is less than or equal to 36.
  • PSS and SSS are frequency-division multiplexed, and 12 RBs are mapped in the frequency domain, respectively.
  • PSS and SSS constitute the first whole, and the first whole is in the unit of RB in the frequency domain , Then PSS and SSS from bottom to top, frequency division multiplexing of the first whole, the first block and the second block. Further, the first whole, the first block, and the second block form a second whole, and the second whole and the first part are time-division multiplexed.
  • the first block may be mapped to a total of 6 RBs from RB 0 to RB5, the PSS to a total of 12 RBs to RB6 to RB17, the SSS to a total of 12 RBs to RB18 to RB29, and the second block to a total of RB30 to RB35 6 RBs.
  • this design differs from (i) in FIG. 6 described above in the following: the exchange position of SSS and PSS.
  • SSS and PSS map all subcarriers in 12 RBs respectively, however, the embodiment of the present application is not limited, In other feasible implementation manners, SSS and PSS may also map part of subcarriers in 12 RBs, respectively. Taking (h) in FIG. 6 as an example, the SSS maps the 7th to 18th RBs out of 36 RBs, and some subcarriers in 12 RBs in total.
  • the set of indexes of the first symbol of the resource position is a fourth set or a subset of the fourth set, and the fourth set includes The index of the symbol is ⁇ 0, 7, 14, 21 ⁇ + 28 ⁇ b, b ⁇ 0 and an integer.
  • 1 ms includes 28 symbols, and the indexes of the 28 symbols are 0 to 27 in sequence. Taking 1ms as an example, the index of the symbols in the fourth set is ⁇ 0,7,14,21 ⁇ + 28 ⁇ b. Among them, b represents the period.
  • the index of the symbol in the fourth set is ⁇ 0,7,14,21 ⁇
  • the first symbol included in the set of candidate resource positions is a subset of the fourth set, such as ⁇ 0,7 ⁇ , ⁇ 0,21 ⁇ , etc.
  • the index of the symbol in the fourth set is the index of the first symbol of the SSB. Because SSB occupies 2 consecutive symbols. Therefore, after the index of the first symbol is determined, the indexes of the two symbols occupied by the SSB can be determined. For example, assuming that the index of the first symbol is 14 in the fourth set, it can be considered that the SSB occupies symbol 14 and symbol 15 in the time domain.
  • the set of indexes of the first symbol of the resource position is a fifth set or a subset of the fifth set, and the fifth set includes The symbol is ⁇ 0,2,7,9,14,16,21,23 ⁇ + 28 ⁇ c, c ⁇ 0 and an integer.
  • the value of c is related to the length of the SSB window.
  • b is equal to any one of 0 to 9; when the length of the SSB window is 10 ms, b is equal to 0 to Any one of 19.
  • 0.5 ms contains 28 symbols, and the indexes of the 28 symbols are 0 to 27 in sequence. Taking 0.5ms as an example, the index of the symbols in the fifth set is ⁇ 0, 2, 7, 9, 14, 16, 21, 23 ⁇ + 28 ⁇ c.
  • the index of the symbols in the fifth set is ⁇ 0,2,7,9,14,16,21,23 ⁇
  • the index of the first symbol included in the set of candidate resource positions is ⁇ 0,2,7,9,14,16,21,23 ⁇ , or a subset of the fifth set, such as ⁇ 0,2,7,9,14 ⁇ , ⁇ 16,21,23 ⁇ , etc.
  • the self-contained time slot with a subcarrier interval of 60 kHz is used to transmit data
  • the self-contained time slot structure is the first 4 symbols used for DL transmission
  • the 5th symbol is a conversion symbol
  • the 6th and 7th symbols Taking the UL symbol as an example, the above-mentioned transmission method of the synchronization signal block will be described in detail. Exemplary, see Figure 7.
  • FIG. 7 is a schematic diagram of an example of a method for transmitting a synchronization signal block provided by another embodiment of the present application. As shown in Figure 7:
  • the index of the symbols in the fourth set is ⁇ 0, 7, 14, 21 ⁇ + 28 ⁇ b.
  • the indexes of the symbols in the fifth set are ⁇ 0, 2, 7, 9, 14, 16, 21, 23 ⁇ .
  • the first symbol of the (candidate) resource position (can also be understood as the first of the SSB Symbols) may be symbol 0, symbol 2, symbol 7 and symbol 9; or, symbol 0; or, symbol 7 and so on. Assuming that the first symbol of the resource location used to transmit the SSB is symbol 9, the SSB occupies symbol 9 and symbol 10.
  • the self-contained time slot with a subcarrier interval of 60 kHz contains 7 symbols
  • the first 4 symbols of the 7 symbols are used for DL transmission
  • the 5th symbol is a conversion symbol
  • the 6th and 7th symbols are UL symbols
  • the embodiments of the present application are not limited.
  • the self-contained slot structure may also be other structures, for example, the first 3 symbols are DL symbols, the 4th to 6th symbols are conversion symbols, and the 7th symbol is a UL symbol.
  • a self-contained time slot with a subcarrier interval of 60 kHz contains 14 symbols and so on.
  • the terminal device after receiving the SSB sent by the network device at the resource position of the synchronization signal block SSB, the terminal device also receives first indication information sent by the network device, where the first indication information is used to The terminal device indicates the resource location in the set of candidate resource locations for transmitting the SSB, or the first indication information is used to indicate to the terminal device the resource location in the set of candidate resource locations that may be used for transmitting the SSB Resource location.
  • the network device after the network device sends the SSB to the terminal device at the resource location of the SSB, it also sends the first indication information to the terminal device; correspondingly, after the terminal device receives the SSB at the resource location of the SSB, it also receives
  • the first indication information of the first indication information is used to indicate a resource location in the set of candidate resource locations for transmitting the SSB.
  • the fourth set contains The index of the symbol is ⁇ 0,7,14,21 ⁇ , then the possible resource positions of SSB include symbol 0, symbol 7, symbol 14 and symbol 21; or symbol 0 and symbol 7; or, symbol 0; or, symbol 7 . Assuming that the first symbol occupied by the resource location used to send the SSB is symbol 7, the SSB occupies symbol 7 and symbol 8.
  • the terminal device determines that the SSB occupies the symbol 7 and the symbol 8. According to the first indication information, when the terminal device subsequently receives the downlink channel, it does not receive the downlink channel on the time-frequency resource where the symbols 7 and 8 are located. If the first indication information indicates that the set of the first symbol that can be used to transmit the resource position of the SSB is symbol 0 and symbol 7; after receiving the first indication information, the terminal device determines that the SSB may occupy symbol 0 and symbol 1, and Symbol 7 and symbol 8 may be occupied.
  • the terminal device when the terminal device subsequently receives the downlink channel, it does not receive the downlink channel on the time-frequency resource where symbol 0, symbol 1, symbol 7, and symbol 8 are located.
  • symbol 0, symbol 1, symbol 7, and symbol 8 For an example, reference may be made to the description of Embodiment 1 above, and details are not described herein again.
  • the terminal device is indicated the resource location of the SSB transmission through the first indication information, so that the terminal device avoids detecting the PDCCH candidate time-frequency resource at the resource location of the transmission SSB according to the first indication information, or the terminal device According to the first indication information, the PDSCH is rate-matched on the resources transmitting the SSB to ensure that the resources transmitting the SSB are not shared with other channels, so that all terminals can access the system.
  • the resource location used to transmit the SSB is mapped with 4 symbols in the time domain. If there is no special explanation below, the resource location maps 4 symbols in the time domain, it can also be understood that the resource location occupies 4 symbols in the time domain, that is, the SSB occupies 4 symbols in the time domain; or the resource location occupies 4 symbols in the time domain There are 2 symbols on it.
  • the network device sends the SSB to the terminal device
  • the SSB is mapped to a resource location in the set of candidate resource locations of the SSB for transmission, and the resource location maps 4 symbols in the time domain. It can also be understood as: SSB occupies 4 symbols.
  • the terminal device receives the SSB at the resource location of the SSB.
  • the SSB includes a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH; for a resource location in the set of candidate resource locations, the resource location maps 4 symbols in the time domain.
  • the PSS, SSS, and PBCH are frequency-division multiplexed and time-division multiplexed on the one resource location, and the subcarrier interval corresponding to the one resource location is 30 kHz or 60 kHz.
  • the resource location resource set includes at least one resource location resource, each resource location resource is a candidate resource used by the network device to send the SSB to the terminal device, and each resource location resource is in the time domain Map 4 symbols.
  • the SSB can occupy 4 consecutive symbols, or the 4 symbols occupied by the SSB are not continuous in the time domain. In the following, these two cases will be described separately.
  • the PSS is mapped to the first symbol of the 4 consecutive symbols in the time domain, and the SSS is mapped to the 4 consecutive symbols in the time domain.
  • the third symbol, the PBCH is mapped to the second symbol, the third symbol, and the fourth symbol of the four consecutive symbols in the time domain, and the resource block to which the SSB is mapped in the frequency domain.
  • the number of RBs is less than or equal to 20, and 20 RBs include RBs numbered 0 to 19.
  • the PSS and the SSS are time-division multiplexed, and the PSS and the SSS are frequency-mapped to 127 subcarriers among 144 subcarriers included in 12 RBs numbered 5 to 16, and the PBCH
  • the number of RBs mapped by the PBCH in the frequency domain is less than or equal to 20;
  • the PBCH is in the time domain
  • the PBCH is mapped in the frequency domain to the subcarriers included in the RBs numbered 1 to 4 and to the subcarriers included in the RB numbers 17 to 20 Subcarrier.
  • FIG. 8 is a schematic structural diagram of an SSB of a transmission method of a synchronization signal block according to another embodiment of the present application. Please refer to FIG. 8, an SSB occupying 4 consecutive symbols in the time domain can be configured in the following formats:
  • the PBCH includes a first part, a second part, and a third part, and the second part includes a first block and a second block.
  • the time domain from left to right are PSS, the first part of PBCH, SSS, and the third part of PBCH.
  • the first block and the second block of the PBCH are frequency-division multiplexed with the SSS.
  • the unit is RB, and then the first block of the PBCH, the second block of the SSS and PBCH are in turn from bottom to top.
  • the number of RBs mapped to the first part and the third part of the PBCH in the frequency domain is less than or equal to 20, and the number of subcarriers included in the 20 RBs is 0-239.
  • the PSS and SSS are mapped in the frequency domain to the subcarriers contained in the RBs 5 to 16, that is, the PSS and SSS are mapped in the frequency domain to the 56th to 182nd subcarriers of the 20 RBs of the SSB, that is, And SSS are frequency-mapped to 127 subcarriers among 144 subcarriers included in 12 RBs numbered 5 to 16.
  • the first block of the second part of the PBCH is mapped in the frequency domain to the subcarriers included in the RBs numbered 1 to 4, that is, the first block is mapped in the frequency domain to the numbered 0 to 47 of the 20 RBs of the SSB
  • the second block is mapped to subcarriers numbered 192-239 in the 20 RBs of the SSB in the frequency domain.
  • this design differs from (a) in FIG. 8 described above in the following: the exchange position of SSS and PSS.
  • the PBCH includes a first part and a third part.
  • PSS the first part of PBCH, SSS, and the third part of PBCH.
  • the number of RBs mapped to the first part and the third part of the PBCH in the frequency domain is less than or equal to 20, and the number of subcarriers included in the 20 RBs is 0-239.
  • PSS and SSS are mapped in the frequency domain to the subcarriers contained in the 12 RBs numbered 5 to 16, that is, PSS and SSS are mapped in the frequency domain to 127 subcarriers among the 144 subcarriers contained in the RBs numbered 5 to 16. That is, the PSS and SSS are mapped in the frequency domain to the 56th to 182nd subcarriers among the 240 subcarriers included in the 20 RBs of the SSB.
  • this design differs from (c) in FIG. 8 described above in terms of: the exchange position of SSS and PSS.
  • the resource position of one SSB maps four consecutive symbols in the time domain, which is suitable for the scenario where the SSB is transmitted using subcarrier intervals of 60 kHz.
  • the set of candidate resource locations in this scenario will be described in detail.
  • the subcarrier interval used to transmit the SSB is a subcarrier interval of 60 kHz
  • the set of indexes of the first symbol of the resource location Is a sixth set or a subset of the sixth set
  • the sixth set contains symbols of ⁇ 0, 7, 14, 21 ⁇ + 28 ⁇ c, c ⁇ 0 and an integer.
  • the value of c is related to the length of the SSB window.
  • b is equal to any one of 0 to 9; when the length of the SSB window is 10 ms, b is equal to 0 to Any one of 19.
  • 1 ms contains 56 symbols, taking 0.5 ms as an example, the index of the symbols in the sixth set is ⁇ 0, 7, 14, 21 ⁇ + 28 ⁇ c.
  • the index set of the symbols is ⁇ 0,7,14,21 ⁇ , or a subset of the sixth set, such as ⁇ 0 ⁇ , ⁇ 7 ⁇ , etc.
  • the index of the symbol in the sixth set is the index of the first symbol of the SSB. Since SSB occupies 4 consecutive symbols. Therefore, after the index of the first symbol is determined, the indexes of the 4 symbols occupied by the SSB can be determined. For example, assuming that the index of the first symbol is symbol 7 in the sixth set, it can be considered that the SSB occupies symbol 7, symbol 8, symbol 9, and symbol 10 in the time domain.
  • the self-contained time slot with a subcarrier interval of 60 kHz is used to transmit data
  • the self-contained time slot structure is the first 4 symbols used for DL transmission
  • the 5th symbol is a conversion symbol
  • the 6th and 7th symbols Taking the UL symbol as an example, the above-mentioned transmission method of the synchronization signal block will be described in detail. Exemplary, see Figure 9.
  • FIG. 9 is a schematic diagram of an example of a method for transmitting a synchronization signal block according to another embodiment of the present application. As shown in Figure 9:
  • the index of the symbols in the sixth set is ⁇ 0,7,14,21 ⁇ + 28 ⁇ c.
  • all symbols included in the sixth set are ⁇ 0, 7, 14, 21 ⁇ .
  • the first symbol of the candidate resource position of the SSB (can also be understood as the first symbol of the SSB Symbols) may be symbol 0, symbol 7, symbol 14 or symbol 21; or, symbol 0; or, symbol 7 and so on. Assuming that the first symbol of the resource location is symbol 7, SSB occupies symbol 7, symbol 8, symbol 9, and symbol 10.
  • the terminal device after receiving the SSB sent by the network device at the resource position of the synchronization signal block SSB, the terminal device also receives first indication information sent by the network device, where the first indication information is used to The terminal device indicates the resource location in the set of candidate resource locations for transmitting the SSB, or the first indication information is used to indicate to the terminal device the resource location in the set of candidate resource locations that may be used for transmitting the SSB Resource location.
  • the network device after the network device sends the SSB to the terminal device at the resource location of the SSB, it also sends the first indication information to the terminal device; correspondingly, after the terminal device receives the SSB at the resource location of the SSB, it also receives
  • the terminal device determines that the SSB occupies the symbol 0 , Symbol 1, symbol 2 and symbol 3. According to the first indication information, when the terminal device subsequently receives the downlink channel, it does not receive the downlink channel on the time-frequency resources where symbols 0, 1, 2, and 3 are located.
  • the terminal device determines that the SSB may occupy the symbol 0, symbol 1, symbol 2 and symbol 3, or SSB may occupy symbol 7, symbol 8, symbol 9 and symbol 10. According to the first indication information, when the terminal device subsequently receives the downlink channel, it does not receive the downlink channel on the time-frequency resources where symbol 0, symbol 1, symbol 2, symbol 3, symbol 7, symbol 8, symbol 9, and symbol 10 are located. For details, refer to the description of Embodiment 1 above, and details are not described herein again.
  • one resource location in the set of candidate resource locations of the SSB occupies a total of 4 symbols in the time domain in the first group of consecutive symbols and the second group of consecutive symbols, wherein the first group The consecutive symbols and the second group of consecutive symbols are separated by x symbols, x ⁇ 1, and x is an integer.
  • FIG. 10 is a schematic structural diagram of an SSB of a transmission method of a synchronization signal block according to another embodiment of the present application.
  • the SSB occupying 4 discontinuous symbols in the time domain can be configured in the following formats:
  • the PSS is mapped to the first symbol in the first group of consecutive symbols in the time domain
  • the SSS is mapped to the second group of consecutive symbols in the time domain
  • the first symbol in, the PBCH is mapped in the time domain to the second symbol in the first group of consecutive symbols, and the first symbol and the second symbol in the second group of consecutive symbols.
  • the PBCH includes a first part, a second part, and a third part
  • the second part includes a first block and a second block.
  • the SSB in the time domain, from left to right are the first part of the PSS, PBCH, SSS, and the third part of the PBCH.
  • the first block and the second block of the PBCH are frequency-division multiplexed with the SSS.
  • the unit is RB, and the first block of the PBCH, the second block of the SSS and PBCH are in turn from bottom to top.
  • the number of RBs mapped to the frequency domain in the first part and the third part of the PBCH is less than or equal to 20, and the number of subcarriers included in the 20 RBs is 0-239.
  • PSS and SSS are mapped in the frequency domain to the subcarriers included in the RBs 5-16, that is, PSS and SSS are mapped in the frequency domain to 127 subcarriers among the 144 subcarriers included in the RBs 5-16 That is, PSS and SSS are mapped in the frequency domain to subcarriers numbered 56 to 182 out of 240 subcarriers included in 20 RBs.
  • the first block of the second part of the PBCH is mapped in the frequency domain to the subcarriers included in the RBs numbered 1 to 4. That is, the first block is mapped in the frequency domain to the subcarriers numbered 0 to 47, and the second block is The frequency domain is mapped to subcarriers numbered 192-239.
  • the SSS is mapped to the first symbol in the first set of consecutive symbols in the time domain
  • the PSS is mapped to the second symbol in the time domain
  • the PBCH is mapped in the time domain to the second symbol in the first group of consecutive symbols
  • This design is different from (a) in FIG. 10 described above in terms of: the exchange position of SSS and PSS.
  • the PSS is mapped to the first symbol in the first set of consecutive symbols in the time domain
  • the SSS is mapped to the second symbol in the time domain
  • the first symbol in the group of consecutive symbols is mapped to the second symbol in the first group of consecutive symbols and the second symbol in the second group of consecutive symbols in the time domain.
  • the PBCH includes a first part and a third part.
  • PSS PSS
  • the first part of PBCH SSS
  • the third part of PBCH There are x symbols between the first part of the PBCH and the SSS.
  • the number of RBs mapped to the first part and the third part of the PBCH in the frequency domain is less than or equal to 20, and the number of subcarriers included in the 20 RBs is 0-239.
  • the PSS and SSS are mapped in the frequency domain to the subcarriers included in the RBs 5 to 16 in the frequency domain, that is, the PSS and SSS are mapped in the frequency domain to 127 subcarriers among the 144 subcarriers included in the 12 RBs 5 to 16 In other words, PSS and SSS are mapped to subcarriers numbered 56 to 182 out of 240 subcarriers included in 20 RBs in the frequency domain.
  • the SSS is mapped to the first symbol in the first set of consecutive symbols in the time domain
  • the PSS is mapped to the second symbol in the time domain
  • the first symbol in the group of consecutive symbols is mapped to the second symbol in the first group of consecutive symbols and the second symbol in the second group of consecutive symbols in the time domain.
  • This design is different from (c) in FIG. 10 described above in terms of: the exchange position of SSS and PSS.
  • one resource location maps four consecutive symbols in the time domain, which is applicable to the scenario where SSB is transmitted using subcarrier intervals of 30 kHz or 60 kHz.
  • SSB is transmitted using subcarrier intervals of 30 kHz or 60 kHz.
  • the set of indexes of the first symbol of the candidate resource position of the SSB is the seventh set or a subset of the seventh set, the The symbols included in the seventh set are ⁇ 0,14 ⁇ + 28 ⁇ b, b ⁇ 0 and are integers.
  • the set of indexes of the first symbol of the candidate resource position of the SSB is the eighth set or the sub-sets of the eighth set Set
  • the symbol included in the eighth set is ⁇ 0,2,14,16 ⁇ + 28 ⁇ c, c ⁇ 0 and an integer.
  • 1 ms contains 56 symbols, taking 0.5 ms as an example, the index of the symbols in the eighth set is ⁇ 0,2,14,16 ⁇ + 28 ⁇ c.
  • c represents the period.
  • the index of the symbol in the eighth set is ⁇ 0,2,14,16 ⁇ .
  • the index of the first symbol included in the set of candidate resource positions is ⁇ 0,2,14,16 ⁇ , Or a subset of the fourth set, such as ⁇ 0 ⁇ , ⁇ 2 ⁇ , ⁇ 2,14 ⁇ , etc.
  • the self-contained time slot structure is the first 4 symbols are used for DL transmission
  • the fifth symbol is a conversion symbol
  • the seventh symbol is an UL symbol as an example, and the above-mentioned synchronization signal block transmission method will be described in detail. Exemplary, see Figure 11.
  • FIG. 11 is a schematic diagram of an example of a method for transmitting a synchronization signal block according to another embodiment of the present application. As shown in Figure 11:
  • the index of the symbols in the seventh set is ⁇ 0,14 ⁇ + 28 ⁇ b.
  • the index of the symbols included in the seventh set is ⁇ 0 ⁇ . Since the set of indexes of the first symbol of the resource position is the seventh set or a subset of the seventh set, the index of the first symbol of the resource position (which can also be understood as the first symbol of the SSB) is Symbol 0, SSB occupies symbol 0, symbol 1, symbol 7 and symbol 8.
  • the PBCH in the SSB is used to transmit the master information block (MIB) of the NR carrier.
  • MIB master information block
  • the DMRS in the PBCH is sent by the network equipment to the terminal equipment for demodulation of the PBCH.
  • a redundancy version (RV) of the MIB is mapped to symbol 1, another redundancy version is mapped to symbol 7 and symbol 8; or, one RB of the MIB is mapped to symbol 1, and another RV is mapped to the symbol 8 on.
  • the MIB information in the PBCH on symbol 1 and the PBCH on symbols 7 and 8 are repetition (repetition).
  • the index of the symbols in the eighth set is ⁇ 0, 2, 14, 16 ⁇ + 28 ⁇ a.
  • the index of the symbols contained in the eighth set is ⁇ 0, 2, 14, 16 ⁇ within 0.5 ms. Since the set of indexes of the first symbol of the candidate resource position of the SSB is the eighth set or a subset of the eighth set, the first symbol of the resource position (can also be understood as the first symbol of the SSB)
  • the indexes of may be symbol 0, symbol 2, symbol 14 and symbol 16; or, symbol 0; or, symbol 2 and so on. Assuming that the first symbol of the resource location is symbol 2, SSB occupies symbol 2, symbol 3, symbol 9, and symbol 10.
  • the self-contained time slot with a subcarrier interval of 60 kHz contains 7 symbols
  • the first 4 symbols of the 7 symbols are used for DL transmission
  • the 5th symbol is a conversion symbol
  • the 6th and 7th symbols are UL symbols
  • the embodiments of the present application are not limited.
  • the self-contained slot structure may also be other structures, for example, the first 3 symbols are DL symbols, the 4th to 6th symbols are conversion symbols, and the 7th symbol is a UL symbol.
  • a self-contained time slot with a subcarrier interval of 60 kHz contains 14 symbols and so on.
  • the terminal device after receiving the SSB sent by the network device at the resource position of the synchronization signal block SSB, the terminal device also receives first indication information sent by the network device, where the first indication information is used to The terminal device indicates the resource location in the set of candidate resource locations for transmitting the SSB, or the first indication information is used to indicate to the terminal device the resource location in the set of candidate resource locations that may be used for transmitting the SSB Resource location.
  • the network device after the network device sends the SSB to the terminal device at the resource location of the SSB, it also sends the first indication information to the terminal device; correspondingly, after the terminal device receives the SSB at the resource location of the SSB, it also receives
  • the first indication information of the first indication information is used to indicate a resource location in the set of candidate resource locations for transmitting the SSB. For example, when the SSB is transmitted using a subcarrier interval of 60 kHz, the index of the symbols in the eighth set is ⁇ 0, 2, 14, 16 ⁇ + 28 ⁇ a.
  • the terminal device determines that the SSB occupies the symbol 2 , Symbol 3, symbol 9 and symbol 10. According to the first indication information, when the terminal device subsequently receives the downlink channel, it does not receive the downlink channel on the time-frequency resource where symbol 2, symbol 3, symbol 9 and symbol 10 are located. If the first indication information is used to indicate that the set of the first symbol in the resource location available for transmission of the SSB is the symbol 2 and the symbol 14 in the eighth set; after receiving the first indication information, the terminal device determines that the SSB may occupy the symbol 2.
  • the terminal device when the terminal device subsequently receives the downlink channel, it does not receive the downlink channel on the time-frequency resources where symbol 2, symbol 3, symbol 9, symbol 10, symbol 14, symbol 15, symbol 21, and symbol 22 are located.
  • symbol 2, symbol 3, symbol 9, symbol 10, symbol 14, symbol 15, symbol 21, and symbol 22 are located.
  • the network device also sends the first indication information to the terminal device; correspondingly, The terminal device also receives the first indication information sent by the network device.
  • the first indication information is used to indicate to the terminal device the resource location in the candidate resource location set for transmitting the SSB, or to indicate to the terminal device in the candidate resource location set for transmitting the SSB Describe the possible resource locations of SSB.
  • the network device after sending the SSB to the terminal device at the resource location of the SSB, the network device also sends first indication information to the terminal device through a system message block according to the SSB; correspondingly, the terminal device receives the first indication information.
  • the network device sends a system message block 1 (system information block, SIB1) to the terminal device, and the SIB1 carries the first indication information; the terminal device can receive the SSB and determine the physical downlink control channel (PDCCH) based on the SSB The time-frequency position of the candidate set is blindly detected at the time-frequency position to receive the PDCCH.
  • the terminal device receives a physical downlink shared channel (physical downlink shared channel, PDSCH) according to downlink control information (downlink control information, DCI) in the PDCCH, parses the system information SIB1 from the PDSCH, and determines the first indication information according to the SIB1.
  • SIB1 system message block 1
  • SIB1 system message block 1
  • the terminal device can receive the SSB and determine the physical downlink control channel (PDCCH) based on the SSB
  • the time-frequency position of the candidate set is blindly detected at the time-frequency position to receive the PDCCH.
  • the terminal device receives a physical downlink shared
  • the first indication information is also used to implicitly indicate a first set of candidate resource locations
  • the first set of candidate resource locations is a subset of the set of candidate resource locations of the SSB, and is used for transmission in the set of candidate resource locations of the SSB A collection of SSB resource locations.
  • the set of candidate resource locations of the SSB includes L resource locations, and the number of the L resource locations is in order from 1 to L.
  • the first set of candidate resource locations is a subset of the set of candidate resource locations.
  • L is an even number
  • the first set of candidate resource positions contains L / 2 resource positions
  • the first set of candidate resource positions contains (L + 1) / 2 or Resource locations.
  • the resource location included in the first candidate resource position set is the resource position with the even number among the candidate resource positions of the SSB, when the first indication information indicates When the number of the resource location used to transmit the SSB is odd, the resource location included in the first candidate resource location set is the resource location with the odd number among the candidate resource locations of the SSB. For example, assume that the set of candidate resource locations contains 5 resource locations, numbered 1, 2, 3, 4, and 5, respectively.
  • the first candidate resource location set is implicitly indicated as ⁇ 2,4 ⁇ ; when the first indication information indicates that the resource location of the SSB is number 1, When 3, 5, 1 and 3, 1 and 5, or 1 and 3 and 5, the first candidate resource location set is implicitly indicated as ⁇ 1, 3, 5 ⁇ .
  • the network device sends the first indication information to the terminal device through the system message block according to the SSB.
  • the system message block is, for example, SIB1, and when the network device sends SIB1, the first indication information is carried in SIB1 and sent to the terminal device.
  • the first indication information is used to indicate to the terminal device the resource location in the candidate resource location set for transmitting the SSB, or to indicate to the terminal device in the candidate resource location set for transmission The possible resource location of the SSB.
  • the network device controls the resource location of the SSB, and the network device indicates the resource location of the SSB to the terminal device.
  • the structure of the first indication information may be:
  • the network device may also send the first indication information to the terminal device through high-level signaling, such as radio resource control (RRC) signaling or other signaling, which is not limited in this application .
  • RRC radio resource control
  • SSB occupies 4 consecutive symbols, using 30kHz subcarrier intervals to transmit SSB and 60kHZ carrier interval to transmit data as an example.
  • the transmission method is described in detail. Exemplary, please refer to Figure 12.
  • FIG. 12 is an exemplary schematic diagram of a method for transmitting a synchronization signal block according to another embodiment of the present application. As shown in Figure 12, there are four examples as follows:
  • 1 ms contains 28 symbols, and the indexes of the 28 symbols are 0 to 27 in order.
  • the index of the symbols in the ninth set is ⁇ 2,8,16,22 ⁇ + 28 ⁇ b.
  • b represents the period.
  • the index of the symbol in the ninth set is ⁇ 2,8,16,22 ⁇ .
  • the index of the symbol included in the candidate resource location set is ⁇ 2,8,16,22 ⁇ .
  • the index of the symbol used to transmit the SSB indicated by the first indication information is ⁇ 8,22 ⁇ , or is a subset of the set ⁇ 8,22 ⁇ , such as ⁇ 8 ⁇ , ⁇ 22 ⁇ .
  • the symbol in the set of candidate resource positions is the first symbol among the 4 consecutive symbols occupied by the SSB. Assuming that the first symbol of the resource location used to transmit the SSB is symbol 22, the SSB occupies symbol 22, symbol 23, symbol 24, and symbol 25.
  • 1 ms contains 28 symbols, and the indexes of the 28 symbols are 0 to 27 in order.
  • the index of the symbols in the ninth set is ⁇ 2,8,16,22 ⁇ + 28 ⁇ b.
  • b represents the period.
  • the index of the symbol in the ninth set is ⁇ 2,8,16,22 ⁇ .
  • the index of the symbol included in the candidate resource location set is ⁇ 2,8,16,22 ⁇ .
  • the index of the symbol used to transmit the SSB indicated by the first indication information is ⁇ 2,16 ⁇ , or is a subset of the set ⁇ 2,16 ⁇ , such as ⁇ 2 ⁇ , ⁇ 16 ⁇ .
  • the symbol in the set of candidate resource positions is the first symbol among the 4 consecutive symbols occupied by the SSB. Assuming that the first symbol of the resource location used to transmit the SSB is symbol 2, the SSB occupies symbol 2, symbol 3, symbol 4, and symbol 5.
  • Example 2 can also be understood as a modification of Example 1.
  • the structure of self-contained time slot 1, self-contained time slot 2, and self-contained time slot 4 are the first 3 symbols are DL symbols, the 4th to 6th symbols are conversion symbols, the 7th The symbol is a UL symbol; the 7 symbols that self-contain slot 3 are all DL symbols.
  • the index of the symbol included in the first resource location set is ⁇ 8,22 ⁇ .
  • the index of the first symbol included in the set of candidate resource positions is ⁇ 2,8,16, twenty two ⁇ .
  • the index of the symbols contained in the first resource location set is ⁇ 2,16 ⁇ , or is a subset of the set ⁇ 2,16 ⁇ , such as ⁇ 2 ⁇ , ⁇ 16 ⁇ . Example 2 is obtained.
  • 1 ms contains 28 symbols, and the indexes of the 28 symbols are 0 to 27 in order.
  • the index of the symbols in the tenth set is ⁇ 4,8,16,20 ⁇ + 28 ⁇ b.
  • b represents the period.
  • the index of the symbol in the tenth set is ⁇ 4,8,16,20 ⁇ .
  • the index of the symbol included in the set of candidate resource positions is ⁇ 4,8,16,20 ⁇ .
  • the index of the symbols contained in the first resource location set is ⁇ 4,16 ⁇ , or is a subset of the set ⁇ 4,16 ⁇ , such as ⁇ 4 ⁇ , ⁇ 16 ⁇ .
  • the symbol in the set of candidate resource positions is the first symbol among the 4 consecutive symbols occupied by the SSB. Assuming that the first symbol of the resource location used to transmit the SSB is symbol 16, the SSB occupies symbol 16, symbol 17, symbol 18, and symbol 19.
  • 1 ms contains 28 symbols, and the indexes of the 28 symbols are 0 to 27 in order.
  • the index of the symbols in the tenth set is ⁇ 4,8,16,20 ⁇ + 28 ⁇ b.
  • b represents the period.
  • the index of the symbol in the tenth set is ⁇ 4,8,16,20 ⁇ .
  • the index of the symbol included in the set of candidate resource positions is ⁇ 4,8,16,20 ⁇ .
  • the index of the symbols contained in the first resource location set is ⁇ 8,20 ⁇ , or is a subset of the set ⁇ 8,20 ⁇ , such as ⁇ 8 ⁇ , ⁇ 20 ⁇ .
  • the symbol in the set of candidate resource positions is the first symbol among the 4 consecutive symbols occupied by the SSB. Assuming that the first symbol of the resource location used to transmit the SSB is symbol 8, the SSB occupies symbol 8, symbol 9, symbol 10, and symbol 11.
  • the terminal device when using 30kHz subcarrier spacing to transmit SSB, within 0.5ms, the terminal device only blindly detects the SSB at the position of one consecutive 4 symbols (such as symbols 8 to 11), without the need for two consecutive 4 symbols (such as symbols 2 to 5 and symbols 8 to 11) blindly detect the SSB position, reducing the number of blind detections of the terminal device and saving the power consumption of the terminal device, while meeting the subcarrier spacing of 60kHz within 0.5ms. Self-contained time slots.
  • the first example above can also be understood as: when there are two resource locations in the candidate resource location set within 0.5 ms, the terminal device does not expect to receive two of the network device in the candidate resource location set within 0.5 ms.
  • the network device sends first indication information to the terminal device to indicate the resource location for transmitting the SSB to the terminal device and implicitly indicate the first set of candidate resource locations.
  • the set of candidate resource positions and the first set of candidate resource positions it can be known that only two resource positions adjacent to the candidate resource positions transmit the SSB. That is to say, in the above code, the resource positions indicated by any two 1s in inOneGroup in ssb-PositionsInBurst are not adjacent.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of the network device, the terminal device, and the interaction between the network device and the terminal device, respectively.
  • the network device and the terminal device may include a hardware structure and / or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module .
  • the execution of one of the above functions in a hardware structure, a software module, or a hardware structure plus a software module may depend on the specific application and design constraints of the technical solution.
  • FIG. 13 is a block diagram of a communication device provided by an embodiment of the present application.
  • the device may be a terminal device or an apparatus that can support the terminal device to implement the functions of the terminal device in the method provided by the embodiment of the present application.
  • the device may be a device or a chip system in a terminal device.
  • the communication device 10 includes: a receiving module 101.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the receiving module 101 is configured to receive the SSB sent by the network device at the resource location of the synchronization signal block SSB, and the resource location of the SSB is included in the set of candidate resource locations of the SSB, wherein, the The SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH.
  • the resource locations in the set of candidate resource locations please refer to the descriptions in the method embodiments, which will not be repeated here.
  • the receiving module 101 may be further configured to receive first indication information sent by a network device, where the first indication information is used to indicate to the terminal device the resource location in the set of candidate resource locations for transmitting the SSB, or the first An indication information is used to indicate to the terminal device a possible resource location in the set of candidate resource locations for transmitting the SSB.
  • the communication device 10 may further include: a processing module 102, configured to process the SSB and / or the first indication information received by the receiving module 101.
  • FIG. 14 is a block diagram of a communication apparatus provided by another embodiment of the present application.
  • the apparatus may be a network device or an apparatus capable of supporting the network device to implement the functions of the network device in the method provided in the embodiment of the present application, for example
  • the apparatus may be an apparatus in a network device or a chip system.
  • the communication apparatus 20 includes: a sending module 201.
  • the sending module 201 is configured to send the SSB to the terminal device at the resource position of the synchronization signal block SSB, and the resource position of the SSB is included in the set of candidate resource positions of the SSB, where
  • the SSB includes the primary synchronization signal PSS, the secondary synchronization signal SSS, and the physical broadcast channel PBCH.
  • the sending module 201 is further configured to send first indication information to the terminal device, where the first indication information is used to indicate to the terminal device the resource for transmitting the SSB in the set of candidate resource locations Location, or the first indication information is used to indicate to the terminal device a possible resource location in the set of candidate resource locations for transmitting the SSB.
  • the communication device 20 may further include: a processing module 202, configured to generate SSB and / or first indication information sent by the sending module 201.
  • the division of the modules in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another way of dividing.
  • the functional modules in the embodiments of the present application may be integrated in one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules.
  • the communication device 30 may include: a processor 301, configured to implement the functions of the terminal device in the method provided by the embodiments of the present application.
  • the device 30 may further include a memory 302 and / or a communication interface 303. Information can be sent and / or received through the communication interface 303.
  • the memory 302 may store program instructions. When the processor 301 calls and executes the program instructions stored in the memory 302, the functions of the terminal device in the method provided by the embodiments of the present application may be implemented.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may be implemented or Perform the disclosed methods, steps, and logical block diagrams in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function, which is used to store program instructions and / or data.
  • the communication interface may be a circuit, a bus, an interface, a transceiver, or other devices that can be used to receive or send information, and this application is not limited.
  • the communication device 30 may further include: a power supply 304 and / or a communication bus 305.
  • the communication bus 305 is used to realize the communication connection between the elements.
  • the communication bus may be indicated by a thick line, and the connection mode between other components is only for illustrative description, and is not to be construed as a limitation.
  • the communication bus can be divided into an address bus, a data bus, and a control bus. For ease of representation, the figure is only represented by a thick line, but it does not mean that there is only one bus or one type of bus.
  • the communication device 40 may include: a processor 401 (for example, a CPU), configured to implement the functions of the network device in the method provided by the embodiments of the present application.
  • the device 40 may further include a memory 402 and / or a communication interface 403. Information can be sent and / or received through the communication interface 403.
  • the memory 402 may store program instructions. When the processor 401 calls and executes the program instructions stored in the memory 402, the functions of the network device in the method provided by the embodiments of the present application may be implemented.
  • the communication device 40 may further include: a power supply 404 and / or a communication bus 405.
  • the communication bus 405 is used to implement communication connections between components.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present invention are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, digital video disc (DVD)), or a semiconductor medium (for example, SSD).

Abstract

本申请实施例提供了同步信号块的传输方法及通信装置,该方法包括:网络设备在SSB的资源位置上向终端设备发送SSB,相应的,终端设备接收该SSB。该过程中,尽可能使得SSB的资源位置包括的符号和多种自包含时隙结构中的上行符号无重叠部分,该方法可以降低SSB的资源位置包括的符号和尽可能多种自包含时隙结构中的上行符号碰撞的概率以避免产生交叉干扰,因此可以支持尽可能多的自包含时隙结构中的可靠传输。

Description

同步信号块的传输方法及通信装置
本申请要求于2018年10月24日提交国家知识产权局、申请号为2018112415812、申请名称为《同步信号块的传输方法及通信装置》的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种同步信号块的传输方法及通信装置。
背景技术
无线通信系统中,网络设备向终端设备发送同步信号块(synchronization signal block,SSB),终端设备根据SSB实现与网络设备的同步。SSB中可以包括主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)。
网络设备向终端设备发送SSB时,将SSB映射到一个特定大小的时频资源上进行发送。一种可行的设计中,该特定大小的时频资源在频域上占用20个资源块(resource block,RB),在时域上占用4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。其中,在频域上每个RB中包括连续的12个子载波。子载波间隔是频域上的基本单位,子载波间隔可以为15kHz、30kHz、60kHz或120kHz等。为了支持多种业务类型或者支持多种业务场景,现提出在一个载波上多种子载波间隔共存的设计。该种设计中,时域上相同的传输时间内,频域上可以配置不同的子载波间隔。当多种子载波间隔共存时,为了降低上下行之间的干扰(时域相同情况下,若频域上一部分RB用于下行传输,同时另一部分RB用于上行传输,则会导致上下行的交叉干扰),可以要求在相同的传输时间内,载波上不同的子载波间隔之间需要同时进行上行传输或同时进行下行传输。例如,SSB为下行传输,在传输SSB的4个OFDM符号上,载波上的其他RB也只能传输下行信号或下行信道,或者不传输任何信号,但是不能用于传输上行信号或上行信道。
发明内容
本申请提供一种同步信号块的传输方法及通信装置,以保证数据传输的可靠性的同时,保证其他终端设备能够获取SSB,进而接入系统。
第一方面,本申请实施例提供一种同步信号块的传输方法,包括:
接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射1个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用,所述一个资源位置对应的子载波间隔为15kHz、30kHz或者60kHz。
该方法中,候选资源位置集合中包含一个或多个(候选)资源位置,每个资源位置的资源是网络设备用来向终端设备发送SSB的候选资源。一个资源位置在时域上映射1个符号。因此,在设计SSB候选资源位置时,通过减小SSB的资源位置的时域长度,尽可能使得SSB的资源位置映射的符号和多种自包含时隙结构中的上行传输的符号不重叠,避免产生交叉干扰。因此,该设计可以支持更多种自包含时隙结构的可靠传输。进一步地,通过支持可靠传输,可以避免重传概率,因此可以降低自包含时隙结构中的数据传输的时延。
一种可行的设计中,所述子载波间隔为15kHz的子载波间隔,所述候选资源位置集合是第一集合或所述第一集合的子集,所述第一集合中的符号的索引为{0,7,14,21}+28×a,a≥0且为整数。
一种可行的设计中,所述子载波间隔为30kHz的子载波间隔,所述候选资源位置集合是第二集合或所述第二集合的子集,所述第二集合中的符号的索引为{0,1,7,8,14,15,21,22}+28×b;
一种可行的设计中,所述子载波间隔为60kHz的子载波间隔,所述候选资源位置集合是第三集合或所述第三集合的子集,所述第三集合中的符号的索引为{0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24}+28×c,c≥0且为整数。
通过上述方法,可以使能一个时隙中的下行符号位于时隙中的前几个符号,从而可以保证网络侧根据实际需求动态的改变上行的符号数、下行的符号数。在一种可能的场景中,可以使能在0.5ms内,至少有3个60kHz子载波间隔的自包含时隙,从而保证60kHz子载波间隔对应的业务的低时延高可靠性传输,同时使得其他终端设备能够获取SSB,进而接入系统。
一种可行的设计中,所述SSB在频域上映射的资源块RB个数小于或等于72,其中,所述PSS和所述SSS在频域上分别映射至12个RB,所述PBCH在频域上映射的RB个数小于或等于48。
该方法中,通过在频域上对占用1个符号的SSB中的PBCH、SSS和PSS的位置进行设计,实现灵活设置SSB的格式的目的。通过该方法,可以使能一个时隙中的下行符号位于时隙中的前几个符号,从而可以保证网络侧根据实际需求动态的改变上行的符号数、下行的符号数。在一种可能的场景中,可以使能在0.5ms内,至少有3个60kHz子载波间隔的自包含时隙,从而保证60kHz子载波间隔对应的业务的低时延高可靠性传输,同时使得其他终端设备能够获取SSB,进而接入系统。
第二方面,本申请实施例提供一种同步信号块的传输方法,包括:
接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至连续的2个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分 复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
该方法中,使用30kHz或60kHz发送SSB,SSB的候选资源位置集合中包含一个或多个(候选)资源位置,每个资源位置的资源是网络设备用来向终端设备发送SSB的候选资源。一个资源位置在时域上映射2个符号。因此,在设计SSB候选资源位置时,通过减小SSB的资源位置的时域长度,尽可能使得SSB的资源位置映射的符号和多种自包含时隙结构中的上行传输的符号不重叠,避免产生交叉干扰。因此,该设计可以支持更多种自包含时隙结构的可靠传输。进一步地,通过支持可靠传输,可以避免重传概率,因此可以降低自包含时隙结构中的数据传输的时延。
一种可行的设计中,所述子载波间隔为30kHz,所述资源位置的第一个符号的索引的集合是第四集合或所述第四集合的子集,所述第四集合包含的符号的索引为{0,7,14,21}+28×b,b≥0且为整数。
一种可行的设计中,所述子载波间隔为60kHz,所述资源位置的第一个符号的索引的集合是第五集合或所述第五集合的子集,所述第五集合包含的符号的索引为{0,2,7,9,14,16,21,23}+28×c,c≥0且为整数。
通过该方法,可以使能一个时隙中的下行符号位于时隙中的前几个符号,从而可以保证网络侧根据实际需求动态的改变上行的符号数、下行的符号数。在一种可能的场景中,可以使能在0.5ms内,至少有3个60kHz子载波间隔的自包含时隙,从而保证60kHz子载波间隔对应的业务的低时延高可靠性传输,同时使得其他终端设备能够获取SSB,进而接入系统。
一种可行的设计中,所述SSB在频域上映射的资源块RB的个数小于或等于36;
所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,包括:
所述PSS和所述SSS时分复用,所述PSS和和所述SSS在频域上映射至相同的12个RB,所述PBCH和所述PSS频分复用,所述PBCH在频域上映射的RB个数小于或等于24;
或者,
所述PSS和所述SSS频分复用,所述PSS和所述SSS在频域上分别映射至12个RB,所述PBCH和所述PSS时分复用,所述PBCH在频域上映射的RB个数小于或等于36;或者,
所述PBCH包括第一部分和第二部分,所述第二部分包括第一块和第二块,所述第一块、所述第二块、所述PSS和所述SSS频分复用,所述第一部分和所述PSS时分复用,所述PSS和所述SSS在频域上分别映射至12个RB,所述第一块和所述第二块在频域上分别映射6个RB,所述第二部分在频域上映射的RB个数小于或等于36。
该可行的实现方式提供的同步信号块的传输方法,通过在频域和时域上对占用2个符号的SSB中的PBCH、SSS和PSS的位置进行调整,实现灵活设置SSB的格式的目的。通过该方法,可以使能一个时隙中的下行符号位于时隙中的前几个符号,从而可以保证网络侧根据实际需求动态的改变上行的符号数、下行的符号数。在一种可能的场景中,可以使能在0.5ms内,至少有3个60kHz子载波间隔的自包含时隙,从而 保证60kHz子载波间隔对应的业务的低时延高可靠性传输,同时使得其他终端设备能够获取SSB,进而接入系统。
第三方面,本申请实施例提供一种同步信号块的传输方法,包括:
接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射4个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
该方法中,使用30kHz或60kHz发送SSB,SSB的候选资源位置集合中包含一个或多个(候选)资源位置,每个资源位置的资源是网络设备用来向终端设备发送SSB的候选资源。一个资源位置在时域上映射4个符号。因此,在设计SSB候选资源位置时,通过减小SSB的资源位置的时域长度,尽可能使得SSB的资源位置映射的符号和多种自包含时隙结构中的上行传输的符号不重叠,避免产生交叉干扰。因此,该设计可以支持更多种自包含时隙结构的可靠传输。进一步地,通过支持可靠传输,可以避免重传概率,因此可以降低自包含时隙结构中的数据传输的时延。
一种可行的设计中,所述一个资源位置在时域上映射连续的4个符号;
所述子载波间隔为60kHz的子载波间隔,所述资源位置的第一个符号的索引的集合是第六集合或所述第六集合的子集,所述第六集合包含的符号为{0,7,14,21}+28×c,c≥0且为整数。
通过该方法,可以使能一个时隙中的下行符号位于时隙中的前几个符号,从而可以保证网络侧根据实际需求动态的改变上行的符号数、下行的符号数。在一种可能的场景中,可以使能在0.5ms内,至少有3个60kHz子载波间隔的自包含时隙,从而保证60kHz子载波间隔对应的业务的低时延高可靠性传输,同时使得其他终端设备能够获取SSB,进而接入系统。
一种可行的设计中,所述PSS在时域映射到所述4个连续的符号中的第1个符号,所述SSS在时域上映射到所述4个连续的符号中的第3个符号,所述PBCH在时域上映射到所述4个连续的符号中的第2个符号、第3个符号和第4个符号,所述SSB在频域上映射的资源块RB的个数小于或等于20;所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,包括:
所述PSS和所述SSS时分复用,所述PSS和所述SSS在频率上映射到编号为1~20的20个RB中编号为5~16的RB包含的子载波,所述PBCH在时域上映射所述4个连续的符号中的第2个符号或第4个符号时,所述PBCH在频域上映射的RB个数小于或等于20;所述PBCH在时域上映射所述4个连续的符号中的第3个符号时,所述PBCH在频域上映射到编号为1~20的20个RB中的编号为1~4的RB包含的子载波以及编号为17~20的RB包含的子载波。
该可行的实现方式提供的同步信号块的传输方法,通过在频域和时域上对占用4个连续符号的SSB中的PBCH、SSS和PSS的位置进行调整,实现灵活设置SSB的格 式的目的。通过该方法,可以使能一个时隙中的下行符号位于时隙中的前几个符号,从而可以保证网络侧根据实际需求动态的改变上行的符号数、下行的符号数。在一种可能的场景中,可以使能在0.5ms内,至少有3个60kHz子载波间隔的自包含时隙,从而保证60kHz子载波间隔对应的业务的低时延高可靠性传输,同时使得其他终端设备能够获取SSB,进而接入系统。
一种可行的设计中,所述一个资源位置在时域上占用第一组连续符号和第二组连续符号共4个符号,其中,所述第一组连续符号和第二组连续符号间隔x个符号,x≥1,且x为整数。
一种可行的设计中,所述子载波间隔为30kHz,所述资源位置的第一个符号的索引的集合是第七集合或所述第七集合的子集,所述第七集合包含的符号为{0,14}+28×b,b≥0且为整数。
一种可行的设计中,所述子载波间隔为60kHz的子载波间隔,所述资源位置的第一个符号的索引的集合是第八集合或所述第八集合的子集,所述第八集合包含的符号为{0,2,14,16}+28×c,c≥0且为整数。
通过该方法,可以使能一个时隙中的下行符号位于时隙中的前几个符号,从而可以保证网络侧根据实际需求动态的改变上行的符号数、下行的符号数。在一种可能的场景中,可以使能在0.5ms内,至少有3个60kHz子载波间隔的自包含时隙,从而保证60kHz子载波间隔对应的业务的低时延高可靠性传输,同时使得其他终端设备能够获取SSB,进而接入系统。
一种可行的设计中,所述PSS在时域上映射到所述第一组连续符号中的第1个符号,所述SSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第1个符号和第2个符号;或者,
所述SSS在时域上映射到所述第一组连续符号中的第1个符号,所述PSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第1个符号和第2个符号;或者,
所述PSS在时域上映射到所述第一组连续符号中的第1个符号,所述SSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第2个符号;或者,
所述SSS在时域上映射到所述第一组连续符号中的第1个符号,所述PSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第2个符号。
该可行的实现方式提供的同步信号块的传输方法,通过在频域和时域上对占用4个非连续符号的SSB中的PBCH、SSS和PSS的位置进行调整,实现灵活设置SSB的格式的目的。
上述的第一方面、第二方面、第三方面、第一方面的任一种可行的设计、第二方面任一种可行的设计或第三方面任一种可行的实现方式中,所述接收网络设备在同步信号块SSB的资源位置上发送的SSB之后,还接收网络设备发送的第一指示信息, 所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置。
该方法中,通过第一指示信息向终端设备指示传输SSB的资源位置,使得终端设备根据第一指示信息,避免在传输SSB的资源位置上检测PDCCH候选时频资源,或者,使得终端设备根据第一指示信息在传输SSB的资源上对PDSCH做速率匹配,保证传输SSB的资源不和其他信道共享,使能所有的终端都能接入到系统。
一种可行的设计中,所述第一指示信息还用于指示第一候选资源位置集合,所述第一候选资源位置集合是所述候选资源位置集合的子集,所述候选资源位置集合包含L个资源位置,所述L个资源位置的编号依次为1~L,所述第一候选资源位置集合中包括所述L个资源位置中编号为奇数的资源位置,或者所述所述第一候选资源位置集合中包括所述L个资源位置中编号为偶数的资源位置。
该可行的实现方式提供的同步信号块的传输方法,多种对时延可靠性敏感的子载波间隔共存时,SSB占用4个连续的符号,使用30kHz的子载波间隔传输SSB、60kHZ的载波间隔传输数据时,对于候选资源位置集合中的任意两个相邻的资源位置,网络设备仅在其中一个资源位置上发送SSB,使得0.5ms内,终端设备只需要在一个连续的4个符号上盲检测以接收SSB,降低了终端设备的盲检测次数,节省了终端设备的功耗,同时满足0.5ms内60kHz的子载波间隔有3个自包含时隙,保证数据传输的可靠性的同时,保证其他终端设备能够获取SSB,进而接入系统。
一种可行的实现方式中,所述第一指示信息还用于指示第一候选资源位置集合,所述第一候选资源位置集合是第二候选资源位置集合的子集,该第二候选资源位置集合为SSB的候选资源位置集合,例如是协议预定义的候选资源位置集合。
该可行的实现方式提供的同步信号块的传输方法,候选资源位置集合是与上述第一方面、第二方面或第三方面中的候选资源位置集合无关的候选资源位置集合,多种对时延可靠性敏感的子载波间隔共存时,根据第二候选资源位置集合得到第一候选资源位置集合,第一候选资源位置集合中的资源位置是第二候选资源位置集合中编号为奇数的资源位置形成的集合,或者,是第二候选资源位置集合中编号为偶数的资源位置形成的集合。也就是说,对于第二候选资源位置集合中任意两个相邻的资源位置,网络设备仅在其中一个候选资源位置上发送SSB,使得终端设备仅在任意两个相邻的候选资源位置中的一个候选资源位置上盲检测以接收SSB,降低了终端设备的盲检测次数,节省了终端设备的功耗,同时尽可能使得SSB的资源位置映射的符号和多种自包含时隙结构中的上行传输的符号不重叠,避免产生交叉干扰,保证数据传输的可靠性的同时,保证其他终端设备能够获取SSB,进而接入系统。
第四方面,本申请实施例提供一种同步信号块的传输方法,包括:
在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至1个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用,所述一个资源位置对应的子载波间隔为15kHz、30kHz或者60kHz。
关于候选资源位置集合的描述,可参见上述第一方面或第一方面任一种可行的实现方式,此处不再赘述。
第五方面,本申请实施例提供一种同步信号块的传输方法,包括:
在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至连续的2个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
关于候选资源位置集合的描述,可参见上述第二方面或第二方面任一种可行的实现方式,此处不再赘述。
第六方面,本申请实施例提供一种同步信号块的传输方法,包括:
在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至4个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
关于候选资源位置集合的描述,可参见上述第三方面或第三方面任一种可行的实现方式,此处不再赘述。
本申请实施例第七方面提供一通信种装置,该通信装置可以是终端设备,也可以是能够支持终端设备执行上述第一方面至第三方面任一种设计示例中的终端设备所执行的相应功能的装置,例如该装置可以是终端设备中的装置或者芯片系统,该装置可以包括接收模块,该模块可以执行上述第一方面至第三方面任一种设计示例中的终端设备所执行的相应功能,示例性的:
接收模块,用于接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH。
在一种可能的设计中,候选资源位置集合以及SSB的内容可以参见第一方面至第三方面中针对候选资源位置以及SSB的描述,此处不再限定。
在一种可能的设计中,接收模块接收网络设备在同步信号块SSB的资源位置上发送的SSB之后,还用于接收网络设备发送的第一指示信息,所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置,或者所述第一指示信息用于向所述终端设备指示所述候选资源位置集合中用于传输所述SSB的可能的资源位置。
一种可行的设计中,所述第一指示信息还用于指示第一候选资源位置集合,所述 第一候选资源位置集合是所述候选资源位置集合的子集,所述候选资源位置集合包含L个资源位置,所述L个资源位置的编号依次为1~L,所述第一候选资源位置集合中包括所述L个资源位置中编号为奇数的资源位置,或者所述所述第一候选资源位置集合中包括所述L个资源位置中编号为偶数的资源位置
本申请实施例第八方面提供一种通信装置,该通信装置可以是网络设备,也可以是能够支持网络设备执行上述第四方面至第六方面任一种设计示例中的网络设备所执行的相应功能的装置,例如该装置可以是网络设备中的装置或者芯片系统,该装置可以包括发送模块,该模块可以执行上述第四方面至第六方面任一种设计示例中的网络设备所执行的相应功能,示例性的:
发送模块,用于在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH。
在一种可能的设计中,候选资源位置集合以及SSB的内容可以参见第四方面至第六方面中针对候选资源位置以及SSB的描述,此处不再限定。
在一种可能的设计中,发送模块在同步信号块SSB的资源位置向终端设备发送SSB之后,还向所述终端设备发送第一指示信息,所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置。
一种可行的设计中,所述第一指示信息还用于指示第一候选资源位置集合,所述第一候选资源位置集合是所述候选资源位置集合的子集,所述候选资源位置集合包含L个资源位置,所述L个资源位置的编号依次为1~L,所述第一候选资源位置集合中包括所述L个资源位置中编号为奇数的资源位置,或者所述所述第一候选资源位置集合中包括所述L个资源位置中编号为偶数的资源位置
第九方面,本申请实施例提供一种通信装置,包括:处理器,用于实现上述第一方面至第三方面描述的方法中终端设备的功能。所述通信装置还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第一方面至第三方面描述的方法中终端设备的功能。所述通信装置还可以包括通信接口,所述通信接口用于该终端设备与其它设备进行通信。示例性地,该其它设备为网络设备。
在一种可能的设备中,该终端设备包括:
通信接口;
存储器,用于存储程序指令;
处理器,用于调用存储器存储的程序指令,利用通信接口接收网络设备在同步信号块SSB的资源位置上发送的SSB。
在一种可能的设计中,处理器,还用于调用存储器存储的程序指令,利用通信接口接收网络设备发送的第一指示信息。
在一种可能的设计中,候选资源位置集合、SSB的内容以及对第一指示信息的介绍可以参见第一方面至第三方面中相应的描述,此处不再限定。
第十方面,本申请实施例提供一种通信装置,包括处理器,用于实现上述第四方面至第六方面描述的方法中网络设备的功能。所述通信装置还可以包括存储器,用于 存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第四方面至第六方面描述的方法中网络设备的功能。所述通信装置还可以包括通信接口,所述通信接口用于该网络设备与其它设备进行通信。示例性地,该其它设备为终端设备。
在一种可能的设备中,该网络设备包括:
通信接口;
存储器,用于存储程序指令;
处理器,用于调用存储器存储的程序指令,利用通信接口在同步信号块SSB的资源位置上向终端设备发送SSB。
在一种可能的设计中,处理器,还用于调用存储器存储的程序指令,利用通信接口向终端设备发送的第一指示信息。
在一种可能的设计中,候选资源位置集合、SSB的内容以及对第一指示信息的介绍可以参见第四方面至第六方面中相应的描述,此处不再限定。
本申请实施例第十一方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,还可以包括通信接口,用于实现上述方法中终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第十二方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,还可以包括通信接口,用于实现上述方法中网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第十三方面提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被计算机执行时,使得所述计算机执行上述第一方面至第三方面任一个所述的方法,或者使得所述计算机执行第四方面至第六方面任一个所述的方法。
本申请实施例第十四方面提供一种计算机可读存储介质,所述计算机存储介质存储有计算机指令,当所述计算机指令被计算机执行时,使得所述计算机执行上述第一方面至第三方面或者第四方面至第六方面所述的方法。
本申请实施例第十五方面提供一种系统,所述系统包括第七方面所述的通信装置和第八方面所述的通信装置;或者所述系统包括第九方面所述的通信装置和第十方面所述的通信装置。
附图说明
图1是多种子载波间隔共存时符号冲突的示意图;
图2是本申请实施例提供的适用于同步信号块的传输方法的场景示意图;
图3是本申请实施例提供的同步信号块的传输方法的流程图;
图4是本申请实施例提供的SSB的结构示意图;
图5是本申请实施例提供的同步信号块的传输方法的举例示意图;
图6是本申请实施例提供的SSB的结构示意图;
图7是本申请实施例提供的同步信号块的传输方法的举例示意图;
图8是本申请实施例提供的SSB的结构示意图;
图9是本申请实施例提供的同步信号块的传输方法的举例示意图;
图10是本申请实施例提供的SSB的结构示意图;
图11和图12是本申请实施例提供的同步信号块的传输方法的举例示意图;
图13至图16为本申请实施例提供的通信装置的模块结构图。
具体实施方式
在通信系统中,为了保证数据传输的灵活性,在时域引入自包含结构,例如引入自包含时隙(self-contained slot)。一个自包含时隙中可以同时包括下行(downlink,DL)符号和上行(uplink,UL)符号。其中,DL符号用于DL传输,UL符号用于UL传输。进一步地,一个自包含时隙中还可以包括转换符号,例如DL符号和UL符号之间可以包括转换符号。转换符号也可以被称为空白符号或者其它名称,其既不用于DL传输,也不用于UL传输。以60kHz的子载波间隔为例,一个自包含时隙中包括7个符号或14个符号,或一个自包含时隙中包含其他数目的符号,本申请不做限定。以7个符号的自包含时隙为例:该7个符号包括DL符号、转换符号和UL符号。例如,7个符号中,前4个符号为DL符号,第5个符号为转换符号,第6个和第7个符号为UL符号;再如,7个符号中,前5个符号为DL符号,第6个符号为转换符号,第7个符号为UL符号。
在本申请实施例中,符号可以是OFDM符号,也可以是单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号,或者其它时域符号,本申请不做限制。本申请实施例中,可以以OFDM符号为例进行描述。
在本申请实施例中,自包含结构还可以扩展到其它时域单位,例如自包含子帧结构,本申请不做限制。示例性地,自包含子帧中可以同时包括DL符号和UL符号。进一步地,一个自包含子帧中还可以包括转换符号,例如DL符号和UL符号之间可以包括转换符号。
当多种子载波间隔共存时,为了避免上下行交叉干扰,需要避免一个子载波间隔的下行传输部分和另一个子载波间隔的上行传输部分在时域上有重叠部分。因此,多种子载波共存时:当使用较小子载波间隔传输SSB,使用较大子载波间隔的自包含时隙结构传输数据时,需要避免较大子载波间隔的自包含时隙结构中的上行部分和较小子载波间隔的SSB在时域上重叠,从而避免上下行交叉干扰。示例性的,可参见图1,图1是多种子载波间隔共存时符号冲突的示意图。
请参照图1,60kHz的子载波间隔对应的时隙为自包含时隙,每个自包含时隙在时域上包括7个符号(也可以称之为在时域上占用7个符号,还可以称为在时域上映射7个符号)。每个自包含时隙内,前4个符号用于DL传输,第5个符号为转换符号,第6个和第7个符号为UL符号。1ms中,针对60kHz的子载波间隔,共包括第一个至第八个共8个自包含时隙结构。
当使用15kHz的子载波间隔传输SSB时,1ms内,即15kHz的第0个符号~第13个符号在时域上的时长内,SSB的资源位置可以是符号2~5或符号8~11。例如,15kHz子载波间隔的符号2~5用于SSB传输时,其他的频域资源上使用如图1所示的60kHz自包含结构进行数据传输,那么15kHz的SSB与第二个、第三个60kHz的自包含时隙结构中的UL传输部分在时域上重叠或冲突,从而产生上下行交叉干扰,影响上行接收。
当使用30kHz的子载波间隔传输SSB时,采用第一种配置方式时,1ms内,SSB的候 选资源位置有4个,分别是符号2~5、符号8~11、符号16~19、和符号22~25。以30kHz的子载波间隔的符号2~5上有SSB传输、60kHz子载波的自包含时隙用于数据传输为例,则30kHZ的用于传输SSB的符号2~5与第一个60kHz的自包含时隙结构中的UL传输部分在时域上重叠或冲突,从而产生上下行交叉影响上行接收;当采用第二种配置方式时,1ms内,SSB的候选资源位置有4个,分别是包括4~7、符号8~11、符号16~19、和符号20~23。以符号16~19上有SSB传输、60kHz子载波的自包含时隙用于数据传输为例,则30kHZ的用于传输SSB的符号2~5与第五个60kHz的自包含时隙结构中的UL传输部分在时域上重叠或冲突,从而产生上下行交叉影响上行接收。综上,30kHz子载波间隔的两种配置SSB资源位置的方式中,部分用于传输SSB的符号与60kHz子载波间隔用于传输数据的自包含时隙中的UL符号发生冲突。
因此,当多种子载波共存时,如何保证数据传输的可靠性的同时,保证其他终端设备能够获取SSB,进而接入系统,实为业界急待解决的问题。
有鉴于此,本申请实施例提供了同步信号块的传输方法及通信装置,以保证数据传输的可靠性的同时,保证其他终端设备能够获取SSB,进而接入系统。
本申请实施例提供的同步信号块的传输方法可用于第四代(4th generation,4G)移动通信系统(例如,长期演进(long term evolution,LTE)系统、先进的长期演进系统(advanced long term evolution,LTE-A))、第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统、第五代(5th generation,5G)移动通信系统以及后续演进的通信系统。其中,5G还可以被称为新无线(new radio,NR)。
本申请实施例中涉及的网络设备,可以是基站,如宏基站、微基站等,是一种部署在无线接入网中能够和终端设备进行无线通信的设备。基站可用于将收到的空中帧与互联网协议(internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络;基站还可协调对空中接口的属性管理。例如,基站可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB,),也可以是NR中的gNB等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者可以为中继站、接入点、车载设备、可穿戴设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备等,本申请实施例并不限定。
本申请实施例中涉及的终端设备,可以是向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,终端设备可以是个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或 者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户设备(user device)、或用户装备(user equipment)。
示例性地,图2是本申请实施例提供的适用于同步信号块的传输方法的场景示意图。请参照图2,网络设备和终端设备1~终端设备6组成一个通信系统,该通信系统中,网络设备向终端设备1~终端设备6中的任意终端设备发送SSB。此外,终端设备4~终端设备6也可以组成一个通信系统,该通信系统中,终端设备5向终端设备4或终端设备6发送SSB。
下面,对本申请所述同步信号块的传输方法进行详细说明。
实施例一
图3是本申请实施例提供的同步信号块的传输方法的流程图。本实施例是从网络设备和终端交互的角度,对本申请所述同步信号块的传输方法进行说明的。本实施例中,用于发送SSB的资源位置在时域上映射1个符号。在本申请实施例中,若以下未做特殊说明,资源位置在时域上映射1个符号,也可以理解为资源位置在时域上占用1个符号,即SSB在时域上占用1个符号;还可以理解为资源位置在时域上包括1个符号。本实施例包括:
101、网络设备在同步信号块SSB的资源位置向终端设备发送SSB。
SSB的资源位置包括于SSB的候选资源位置集合中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射1个符号,所述PSS、SSS和PBCH在所述一个资源位置上或所述1个符号上频分复用,所述一个资源位置对应的子载波间隔为15kHz、30kHz或者60kHz。
在本申请的实施例中,例如实施例一、实施例二、实施例三等,候选资源位置集合中包含一个或多个(候选)资源位置,每个资源位置的资源是网络设备用来向终端设备发送SSB的候选资源。一个资源位置在时域上映射1个符号、2个符号或4个符号等。因此,在设计SSB候选资源位置时,通过减小SSB的资源位置的时域长度,尽可能使得SSB的资源位置映射的符号和多种自包含时隙结构中的上行传输的符号不重叠,避免产生交叉干扰。因此,该设计可以支持更多种自包含时隙结构的可靠传输。进一步地,通过支持可靠传输,可以避免重传概率,因此可以降低自包含时隙结构中的数据传输的时延。
例如,在时域上,15kHz子载波间隔的1个符号的符号长度等于60kHz子载波间隔的4个符号的符号长度之和。为了避免产生交叉干扰,要避免15kHz子载波间隔的SSB和60kHz子载波间隔的自包含时隙中的上行传输部分在时域上重叠。
再如,在时域上,30kHz子载波间隔的1个符号长度等于60kHz子载波间隔的2个符号的符号长度之和。为了避免产生交叉干扰,在时域上,要避免30kHz子载波间隔的SSB占用的1个符号与60kHz子载波间隔的自包含时隙中用于上行传输的符号重叠。
又如,在时域上,同时采用60kHz的子载波间隔传输SSB和数据时,60kHz的子载波 间隔的一个自包含时隙包含7个符号。为了避免产生交叉干扰,在时域上,要避免60kHz子载波间隔的SSB占用的1个符号与60kHz子载波间隔的自包含时隙中用于上行传输的符号重叠,即避免SSB的资源位置与自包含时隙中用于上行传输的符号在时域上的位置有重叠部分。
步骤101中,网络设备向终端设备发送SSB时,将SSB映射到一个资源位置上进行发送,该资源位置在时域上映射1个符号。也可以理解为:SSB占用1个符号。相应的,终端设备在SSB的候选资源位置上盲检测SSB。盲检测过程中,终端设备在频域上按栅格搜索SSB,在时域上根据SSB的解调参考信号(demodulation reference signal,DMRS)或根据物理广播信道(physical broadcast channel,PBCH)获取SSB的索引,根据SSB的索引获取盲检到的SSB的时域信息。
本申请实施例提供的同步信号块的传输方法,网络设备在SSB的资源位置上向终端设备发送SSB,相应的,终端设备接收该SSB。该过程中,由于用于发送SSB的资源位置资源在时域上映射1个符号、2个符号或4个符号。该设计可以尽可能避免SSB的占用的符号和多种自包含时隙结构中的上行传输的符号在时域上重叠。因此,通过该方法可以保证尽可能多的自包含时隙结构中的数据传输的可靠性,同时又可以保证其他终端设备能够获取SSB,进而接入系统。进一步地,通过支持可靠传输,可以避免重传概率,因此可以降低自包含时隙结构中的数据传输的时延。
可选地,上述实施例中,SSB在时域上映射1个符号,即在时域上占用1个符号,在频域上映射的资源块RB个数小于或等于72,其中,所述PSS和所述SSS在频域上分别映射12个RB,所述PBCH在频域上映射的RB个数小于或等于48。下面,对上述实施例中SSB的结构进行说明。示例性的,可参考图4。
图4是本申请实施例提供的适用于同步信号块的传输方法的SSB的结构的示意图。请参照图4,在时域上占用1个符号的SSB可以被配置为如下几种格式:
一种可行的设计中,如图4中的(a)所示,SSB中的PSS、SSS和PBCH频分复用(frequency division multiplexing,FDM)。频域上以RB为单位,则从下到上依次为PBCH、SSS、PSS和PBCH。其中,SSS和PSS在频域上分别映射12个RB,PBCH包括第一部分和第二部分,该第一部分和第二部分在频域上分别映射的RB个数小于或等于24。例如,假设SSB的RB的起始编号为RB0,则第一部分的PBCH的RB编号为RB0~RB23,SSS的RB编号为RB24~RB35,PSS的RB编号为RB36~RB47,第二部分的PBCH的RB编号为RB48~RB71。
一种可行的设计中,如图4中的(b)所示,该种设计与上述图4中的(a)的不同之处在于:SSS和PSS的交换位置。
一种可行的设计中,如图4中的(c)所示,SSB中的PSS、SSS和PBCH是FDM的,频域上以RB为单位,则从下到上依次为PBCH、SSS和PSS。其中,SSS和PSS在频域上分别映射12个RB,PBCH在频域上分别的RB个数小于或等于48。例如,假设SSB的RB的起始编号为RB0,则PBCH的RB编号为RB0~RB47,SSS的RB编号为RB48~RB59,PSS的RB编号为RB60~RB71。
一种可行的设计中,如图4中的(d)所示,该种设计与上述图4中的(c)的不同之处在于:SSS和PSS的交换位置。
一种可行的设计中,如图4中的(e)所示,SSB中的PSS、SSS和PBCH是FDM的,频域上以RB为单位,则从下到上依次为SSS、PSS和PBCH。其中,SSS和PSS在频域上分别映射12个RB,PBCH在频域上分别的RB个数小于或等于48。例如,假设SSB的RB的起始编号为RB0,则SSS的RB编号为RB0~RB11,PSS的RB编号为RB12~RB23,PBCH的RB编号为RB24~RB71。
一种可行的设计中,如图4中的(f)所示,该种设计与上述图4中的(e)的不同之处在于:SSS和PSS的交换位置。
需要说明的是,虽然上述图4中的(a)~(f)所示的SSB的格式中,SSS和PSS分别映射12个RB中的所有子载波,然而,本申请实施例并不限制,在其他可行的实现方式中,SSS和PSS也可以分别映射12个RB中的部分子载波。以上述图4中的(e)以及SSS为例,SSS映射12个RB的部分子载波,如映射12个RB的144个子载波中间的127个子载波。
本申请实施例中,例如实施例一、实施例二或实施例三等,PBCH、PBCH的各组成部分、PSS、或SSS中包括的RB数或子载波数可以是正整数个。正整数个可以是1、2、3或更多个,本申请不做限制。
另外,还需要说明的是,上述图4中的(a)~(f)中或者本申请实施例的其它附图中,“从下至上”可以指频域上以RB为单位,自起始RB(如编号为0的RB)开始,在频域延伸的方向,或者在频率增加的方向。
本实施例中,通过在频域上对占用1个符号的SSB中的PBCH、SSS和PSS的位置进行调整,实现灵活设置SSB的格式的目的。
下面,针对各子载波间隔,对上述实施例中的候选资源位置集合进行详细说明。
一种可行设计中,当所述子载波间隔为15kHz的子载波间隔时,所述候选资源位置集合是第一集合或所述第一集合的子集,所述第一集合中的符号的索引为{0,7,14,21}+28×a,a≥0且为整数。
示例性的,a的取值和SSB的窗口(windows)的长度有关。示例性地,当SSB的窗口的长度为5ms时,a等于0或1;当SSB的窗口的长度为10ms时,a等于0、1、2、3或4。对于15kHz的子载波间隔来说,2ms包含28个符号,该28个符号的索引依次为0至27,以2ms为一个周期为例,第一集合中的符号的索引为{0,7,14,21}+28×a。其中,a表示周期。在本申请实施例中,SSB的候选资源位置可以以周期为粒度进行确定;SSB窗口中可以包括一个或多个周期,在SSB窗口中可以以周期为粒度确定SSB的候选资源位置。以第一集合中包含1个周期举例,即当a=0时,第一集合中的符号的索引为{0,7,14,21},此时,候选资源位置集合包含的符号的索引为{0,7,14,21},或者第一集合的子集,如{0,7}、{0,21}等。
需要说明的是,虽然上述是以2ms为一个周期为例,对第一集合进行描述。然而,本申请实施例并不限制,例如,1个周期也可以是1ms,此时,第一集合中的符号的索引为{0,7}+14×a,a≥0且为整数。此时,若SSB的窗口长度为5ms,a等于0、1、2、3、或4;若SSB的窗口长度为10ms,a为小于等于9整数值。
一种可行设计中,当所述子载波间隔为30kHz的子载波间隔时,所述候选资源位置集合是第二集合或所述第二集合的子集,所述第二集合中的符号的索引为 {0,1,7,8,14,15,21,22}+28×b。
示例性的,b的取值和SSB的窗口的长度有关,当SSB的窗口的长度为5ms时,b等于0、1、2、3或4;当SSB的窗口的长度为10ms时,b等于0~9中的任意一个,对于30kHz子载波间隔来说,1ms包含28个符号,该28个符号的索引依次为为0~27,以1ms为一个周期为例,第二集合中的符号的索引为{0,1,7,8,14,15,21,22}+28×b。以第二集合中包含1个周期举例,即当b=0时,第二集合中的符号的索引为{0,1,7,8,14,15,21,22},此时,候选资源位置集合包含的符号的索引为{0,1,7,8,14,15,21,22},或者第二集合的子集,如{14,15,21}、{0,1,7,8,14,}等。
一种可行设计中,当所述子载波间隔为60kHz的子载波间隔时,所述候选资源位置集合是第三集合或所述第三集合的子集,所述第三集合中的符号的索引为{0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24}+28×c,c≥0且为整数。
示例性的,c的取值和SSB的窗口的长度有关,当SSB的窗口的长度为5ms时,b等于0~9中的任意一个;当SSB的窗口的长度为10ms时,b等于0~19中的任意一个。对于60kHz子载波间隔来说,0.5ms包含28个符号,该28个符号的索引依次为为0~27,以0.5ms为一个周期为例,第三集合中的符号的索引为{0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24}+28×c。其中,c表示周期。以第三集合中包含1个周期举例,即当c=0时,第三集合中的符号的索引为{0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24},此时,候选资源位置集合包含的符号的索引为{0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24},或者第三集合的子集,如{0,1,2,3,7,8,9,10}、{14,15,16}等。
下面,以60kHz的子载波间隔的自包含时隙用于传输数据,且自包含时隙结构是前4个符号用于DL传输、第5个符号为转换符号、第6个和第7个符号为UL符号为例,对上述的同步信号块的传输方法进行详细说明。示例性的,可参见图5。
图5是本申请一实施例提供的同步信号块的传输方法的举例示意图。如图5所示:
当使用15kHz的子载波间隔传输SSB时,第一集合中的符号的索引为{0,7,14,21}+28×a,a=0时,2ms内,第一集合包含的符号的索引为{0,7,14,21},则SSB可能的资源位置包括符号0和符号7;或者,符号0;或者,符号7;或者是{0,7,14,21}其他的子集。
当使用30kHz的子载波间隔传输SSB时,第二集合中的符号的索引为{0,1,7,8,14,15,21,22}+28×b,1ms内,第二集合包含的符号的索引为{0,1,7,8,14,15,21,22},则SSB可能的资源位置为{0,1,7,8,14,15,21,22}或第二集合的子集。
当使用60kHz的子载波间隔传输SSB时,第三集合中的符号的索引为{0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24}+28×c,0.5ms内,第三集合包含的符号的索引为{0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24},则SSB可能的资源位置为{0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24}或第三集合的子集。
本实施例中,SSB占用1个符号,通过设置15kHz、30kHz和60kHz的子载波间隔的SSB的候选资源位置集合,尽可能使得SSB的资源位置映射的1个符号和多种自包含时隙结构中的上行传输的符号不重叠,通过降低SSB的资源位置映射的符号和上行符号碰撞的概率以避免产生交叉干扰,使能0.5ms内有至少3种60kHz子载波间 隔的自包含时隙,从而保证60kHz子载波间隔对应的业务的可靠性传输,同时使得其他终端设备能够获取SSB,进而接入系统。
需要说明的是,虽然上述实施例中,是以60kHz的子载波间隔的自包含时隙包含7个符号,该7个符号中前4个符号用于DL传输、第5个符号为转换符号、第6个和第7个符号为UL符号,然而,本申请实施例并不限制。其他可行的实现方式中,自包含时隙结构也可以是其他结构,例如,前3个符号是DL符号,第4~6个符号是转换符号,第7个符号是UL符号。再如,60kHz的子载波间隔的自包含时隙包含14个符号等。
可选地,上述实施例中,所述终端设备接收网络设备在同步信号块SSB的资源位置上发送的SSB之后,还接收网络设备发送的第一指示信息,所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置,或者所述第一指示信息用于向所述终端设备指示所述候选资源位置集合中可能用于传输所述SSB的资源位置。
示例性的,网络设备在SSB的资源位置上向终端设备发送SSB后,还向终端设备发送第一指示信息;相应的,终端设备在SSB的资源位置上接收到SSB后,还接收网络设备发送的第一指示信息,该第一指示信息用于指示候选资源位置集合中用于传输该SSB的资源位置。举例来说,当使用15kHz的子载波间隔传输SSB时,第一集合中的符号的索引为{0,7,14,21}+28×a。a=0时,2ms内第一集合包含的符号的索引为{0,7,14,21}。此时,如果第一指示信息用于指示可用于传输SSB的资源位置的集合为符号7;终端设备接收到第一指示信息后,确定出SSB占用符号7。如果第一指示信息用于指示可用于传输SSB的资源位置的集合为符号7和符号14;终端设备接收到第一指示信息后,确定出SSB可能占用符号7和符号14。
可选地,终端设备根据第一指示信息确定传输SSB的资源位置,终端设备后续接收下行信道时,若下行信道的时频资源和传输SSB的资源重叠,则终端设备在重合的时频资源上不接收下行信道。例如:当终端根据第一指示信息确定SSB占用符号7,终端后续接收的下行下行信道为物理下行共享信道(physical downlink shared channel,PDSCH)时,若PDSCH占用的时频资源与符号7所在的时频资源部分重叠时,终端设备围绕重叠的时频资源做速率匹配。例如,使用30kHz的子载波间隔传输PDSCH,在符号7的40个RB上需要映射40比特的PDSCH,若有20个RB和传输SSB的资源重叠,此时,终端设备对剩余的20个RB做速率匹配以接收40比特的PDSCH;再如,若40个RB和传输SSB的资源重叠,则终端设备停止接收该PDSCH。当下行信道为物理下行控制信道(physical downlink control channel,PDCCH)时,若PDCCH的候选时频资源与符号7所在的时频资源部分重叠时,即PDCCH的候选时频资源中的一个或多个资源元素(resource element,RE)与SSB占用的时频资源重叠时,则终端设备不在PDCCH的该候选时频资源上检测PDCCH。
本实施例中,通过第一指示信息向终端设备指示传输SSB的资源位置,使得终端设备根据第一指示信息,避免在传输SSB的资源位置上检测PDCCH,或者,使得终端设备根据第一指示信息在传输SSB的资源上对PDSCH做速率匹配,保证传输SSB的资源不和其他信道冲突,使能所有的终端都能接入到系统。
实施例二
相较于上述实施例一中,SSB在时域上映射1个符号,本实施例中,用于发送SSB的资源位置在时域上映射2个符号。在本申请实施例中,若以下未做特殊说明,资源位置在时域上映射2个符号,也可以理解为资源位置在时域上占用2个符号,即SSB在时域上占用2个符号;或者资源位置在时域上包括2个符号。本实施例中,网络设备向终端设备发送SSB时,将SSB映射到SSB的候选资源位置集合中的一个资源位置上进行发送,该资源位置在时域上映射2个符号。也可以理解为:SSB占用2个符号。相应的,终端设备在SSB的候选资源位置上盲检测SSB。其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射连续的2个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
例如,在时域上,30kHz的子载波间隔的1个符号长度等于60kHz的子载波间隔的2个符号的长度之和。为了避免产生交叉干扰,在时域上,要避免30kHz子载波间隔的SSB占用的2个符号与60kHz子载波间隔的自包含时隙中用于上行传输的符号重叠。
再如,在时域上,同时采用60kHz的子载波间隔传输SSB和数据时。为了避免产生交叉干扰,在时域上,要避免60kHz子载波间隔的SSB占用的2个符号与60kHz子载波间隔的自包含时隙中用于上行传输的符号重叠,即避免SSB的资源位置与自包含时隙中用于上行传输的符号在时域上的位置有重叠部分。
上述实施例中,SSB在时域上映射2个符号,即在时域上占用2个符号,SSB中的PSS、SSS和PBCH在一个资源位置上频分复用和时分复用,在频域上映射的资源块RB个数小于或等于36。下面,对上述实施例中SSB的结构进行说明。示例性的,可参见图6。
图6是本申请另一实施例提供的同步信号块的传输方法的SSB的结构示意图。请参照图6,在时域上占用2个符号的SSB可以被配置为如下几种格式:
一种可行的设计中,PSS和所述SSS时分复用,所述PSS和和所述SSS在频域上映射至相同的12个RB,所述PBCH和所述PSS频分复用,所述PBCH在频域上映射至的RB个数小于或等于24。
例如,如图6中的(a)所示,SSS和PSS时分复用(time division multiplexing,TDM),在频域上映射相同的12个RB,PBCH包括4部分:第一部分、第二部分、第三部分和第四部分,第一部分和第二部分时分复用,第三部分和第四部分时分复用,第一部分、第二部分构成第一整体,PSS和SSS构成第二整体,第三部分、第四部分构成第三整体。第一整体、第二整体和第三整体频分复用。频域上以RB为单位,则从下往上依次为第一整体、第二整体和第三整体。其中,第一整体在频域上映射的RB个数小于或等于12,第二整体在频域上映射12个RB,第三整体在频域上映射的RB个数小于或等于12。示例性地,第一整体可以映射到RB 0至RB 11共12个RB,第二整体可以映射到RB 12至RB 23共12个RB,第三整体可以映射到RB 24至RB 35 共12个RB。
再如,如图6中的(b)所示,该种设计与上述图6中的(a)的不同之处在于:SSS和PSS的交换位置。
又如,如图6中的(c)所示,SSS和PSS TDM,在频域上映射相同的12个RB,PBCH包括两部分:第一部分和第二部分,第一部分和第二部分时分复用,PSS和SSS构成第一整体,第一部分、第二部分构成第二整体。第一整体和第二整体频分复用。频域上以RB为单位,则从下往上依次为第一整体和第二整体。其中,第一整体在频域上映射12个RB,第二整体在频域上映射的RB个数小于或等于24。示例性地,第一整体可以映射到RB 0至RB 11共12个RB,第二整体可以映射到RB 12至RB 35共24个RB。
又如,如图6中的(d)所示,该种设计与上述图6中的(c)的不同之处在于:SSS和PSS的交换位置。
又如,如图6中的(e)所示,SSS和PSS时分复用,在频域上映射相同的12个RB,PBCH包括两部分:第一部分和第二部分,第一部分和第二部分时分复用。第一部分、第二部分构成第一整体,PSS和SSS构成第二整体。第一整体和第二整体频分复用。频域上以RB为单位,则从下往上依次为第一整体和第二整体。其中,第一整体在频域上映射的RB的个数小于或等于24,第二整体在频域上映射的12个RB。示例性地,第一整体可以映射到RB 0至RB 23共24个RB,第二整体可以映射到RB24至RB 35共12个RB。
又如,如图6中的(f)所示,该种设计与上述图6中的(e)的不同之处在于:SSS和PSS的交换位置。
需要说明的是,虽然上述图6中的(a)~(f)所示的SSB的格式中,SSS和PSS映射12个RB中的所有子载波,然而,本申请实施例并不限制,在其他可行的实现方式中,SSS和PSS也可以映射12个RB中的部分子载波。以上述图6中的(c)为例,SSS和PSS映射12个RB的部分子载波,如映射12个RB的144个子载波中间的127个子载波。
一种可行的设计中,所述PSS和所述SSS频分复用,所述PSS和所述SSS在频域上分别映射至12个RB,所述PBCH和所述PSS时分复用,所述PBCH在频域上映射的RB个数小于或等于36。
例如,如图6中的(g)所示,PSS和SSS频分复用,在频域上分别映射12个RB,PSS和SSS构成第一整体,第一整体在频域上以RB为单位,则从下往上依次为PSS和SSS,第一整体和PBCH时分复用,PBCH在频域上映射的RB的个数小于或等于36。示例性地,PSS映射到RB6至RB17共12个RB,PSS映射到RB18至RB29共12个RB,PBCH映射到RB0至RB35共36个RB。
再如,如图6中的(h)所示,该种设计与上述图6中的(g)的不同之处在于:SSS和PSS的交换位置。
一种可行的设计中,所述PBCH包括第一部分和第二部分,所述第二部分包括第一块和第二块,所述第一块、所述第二块、所述PSS和所述SSS频分复用,所述第一部分和所述PSS时分复用,所述PSS和所述SSS在频域上分别映射至12个RB,所述第一块和所述第二块在频域上分别映射6个RB,所述第二部分在频域上映射的 RB个数小于或等于36。
例如,如图6中的(i)所示,PSS和SSS频分复用,在频域上分别映射12个RB,PSS和SSS构成第一整体,第一整体在频域上以RB为单位,则从下往上依次为PSS和SSS,第一整体、第一块和第二块频分复用。进一步的,第一整体、第一块和第二块构成第二整体,第二整体和第一部分时分复用。示例性地,第一块可以映射到RB 0至RB5共6个RB,PSS映射到RB6至RB17共12个RB,SSS映射到RB18至RB29共12个RB,第二块映射到RB30至RB35共6个RB。
再如,如图6中的(j)所示,该种设计与上述图6中的(i)的不同之处在于:SSS和PSS的交换位置。
需要说明的是,虽然上述图6中的(g)~(j)所示的SSB的格式中,SSS和PSS映射分别12个RB中的所有子载波,然而,本申请实施例并不限制,在其他可行的实现方式中,SSS和PSS也可以分别映射12个RB中的部分子载波。以上述图6中的(h)为例,SSS映射36个RB中的第7~18个RB,共12个RB中的部分子载波。
另外,还需要说明的是,上述图6中的(a)~(h),“从下至上”指频域上以RB为单位,自起始RB(如编号为0的RB)开始,在频域延伸的方向。
本实施例中,通过在频域和时域上对占用2个符号的SSB中的PBCH、SSS和PSS的位置进行调整,实现灵活设置SSB的格式的目的。
下面,针对各子载波间隔,对上述实施例中的候选资源位置集合进行详细说明。
一种可行设计中,当所述子载波间隔为30kHz时,所述资源位置的第一个符号的索引的集合是第四集合或所述第四集合的子集,所述第四集合包含的符号的索引为{0,7,14,21}+28×b,b≥0且为整数。
示例性的,对于30kHz的子载波间隔来说,1ms包含28个符号,该28个符号的索引依次为0~27。以1ms为一个周期为例,第四集合中的符号的索引为{0,7,14,21}+28×b。其中,b表示周期。以第四集合中包含1个周期举例,即当b=0时,第四集合中的符号的索引为{0,7,14,21},此时,候选资源位置集合包含的第一个符号的索引为{0,7,14,21},或者候选资源位置集合包含的第一个符号的索引为第四集合的子集,如{0,7}、{0,21}等。
需要说明的是,上述第四集合中的符号的索引为SSB的第一个符号的索引。由于SSB占用2个连续的符号。因此,确定出第一个符号的索引后,即可确定出SSB占用的2个符号的索引。例如,假设第一个符号的索引是第四集合中的14,则可以认为SSB在时域上占用符号14和符号15。
一种可行设计中,当所述子载波间隔为60kHz时,所述资源位置的第一个符号的索引的集合是第五集合或所述第五集合的子集,所述第五集合包含的符号为{0,2,7,9,14,16,21,23}+28×c,c≥0且为整数。
示例性的,c的取值和SSB的窗口的长度有关,当SSB的窗口的长度为5ms时,b等于0~9中的任意一个;当SSB的窗口的长度为10ms时,b等于0~19中的任意一个。对于60kHz的子载波间隔来说,0.5ms包含28个符号,该28个符号的索引依次为0~27。以0.5ms为一个周期为例,第五集合中的符号的索引为{0,2,7,9,14,16,21,23}+28×c。当c=0时,第五集合中的符号的索引为 {0,2,7,9,14,16,21,23},此时,候选资源位置集合包含的第一个符号的索引为{0,2,7,9,14,16,21,23},或者为第五集合的子集,如{0,2,7,9,14}、{16,21,23}等。
下面,以60kHz的子载波间隔的自包含时隙用于传输数据,且自包含时隙结构是前4个符号用于DL传输、第5个符号为转换符号、第6个和第7个符号为UL符号为例,对上述的同步信号块的传输方法进行详细说明。示例性的,可参见图7。
图7是本申请另一实施例提供的同步信号块的传输方法的举例示意图。如图7所示:
当使用30kHz的子载波间隔传输SSB时,第四集合中的符号的索引为{0,7,14,21}+28×b。以第四集合中包含1个周期举例,即b=0时,1ms内,第四集合包含的符号的索引为{0,7,14,21}。由于(候选)资源位置的第一个符号的索引的集合是第四集合或所述第四集合的子集,因此,(候选)资源位置的第一个符号(也可以理解为SSB的第一个符号)的索引可能是符号0和符号7;或者,符号0;或者,符号7。假设用于发送SSB的资源位置的第一个符号是符号7,则SSB占用符号7和符号8。
当使用60kHz的子载波间隔传输SSB时,第五集合中的符号的索引为{0,2,7,9,14,16,21,23}。以第五集合中包含1个周期举例,即c=0时,0.5ms内,第五集合包含的符号的索引为{0,2,7,9,14,16,21,23}。由于(候选)资源位置的第一个符号的索引的集合是第五集合或所述第五集合的子集,因此,(候选)资源位置的第一个符号(也可以理解为SSB的第一个符号)的索引可能是符号0、符号2、符号7和符号9;或者,符号0;或者,符号7等。假设用于发送SSB的资源位置的第一个符号是符号9,则SSB占用符号9和符号10。
需要说明的是,虽然上述实施例中,是以60kHz的子载波间隔的自包含时隙包含7个符号,该7个符号中前4个符号用于DL传输、第5个符号为转换符号、第6个和第7个符号为UL符号,然而,本申请实施例并不限制。其他可行的实现方式中,自包含时隙结构也可以是其他结构,例如,前3个符号是DL符号,第4~6个符号是转换符号,第7个符号是UL符号。再如,60kHz的子载波间隔的自包含时隙包含14个符号等。
可选地,上述实施例中,所述终端设备接收网络设备在同步信号块SSB的资源位置上发送的SSB之后,还接收网络设备发送的第一指示信息,所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置,或者所述第一指示信息用于向所述终端设备指示所述候选资源位置集合中可能用于传输所述SSB的资源位置。
示例性的,网络设备在SSB的资源位置上向终端设备发送SSB后,还向终端设备发送第一指示信息;相应的,终端设备在SSB的资源位置上接收到SSB后,还接收网络设备发送的第一指示信息,该第一指示信息用于指示候选资源位置集合中用于传输该SSB的资源位置。举例来说,当使用30kHz的子载波间隔传输SSB时,第四集合中的符号的索引为{0,7,14,21}+28×a,a=0时,1ms内,第四集合包含的符号的索引为{0,7,14,21},则SSB可能的资源位置包括符号0、符号7、符号14和符号21;或者符号0和符号7;或者,符号0;或者,符号7。假设用于发送SSB的资源位置占用的第1个符号为符号7,则SSB占用符号7和符号8。此时,如果第一指示 信息指示可用于传输SSB的资源位置中第一个符号的集合为的符号7;终端设备接收到第一指示信息后,确定出SSB占用符号7和符号8。根据第一指示信息,终端设备后续接收下行信道时,在符号7和符号8所在的时频资源上不接收下行信道。如果第一指示信息指示可用于传输SSB的资源位置的第一个符号的集合为的符号0和符号7;终端设备接收到第一指示信息后,确定出SSB可能占用符号0和符号1,以及可能占用符号7和符号8。根据第一指示信息,终端设备后续接收下行信道时,在符号0、符号1、符号7和符号8所在的时频资源上不接收下行信道。示例性的,可参见上述实施例一的描述,此处不再赘述。
本申请实施例中,通过第一指示信息向终端设备指示传输SSB的资源位置,使得终端设备根据第一指示信息,避免在传输SSB的资源位置上检测PDCCH候选时频资源,或者,使得终端设备根据第一指示信息在传输SSB的资源上对PDSCH做速率匹配,保证传输SSB的资源不和其他信道共享,使能所有的终端都能接入到系统。
实施例三
相较于上述实施例一和实施例二,在本实施例中,用于发送SSB的资源位置在时域上映射4个符号。若以下未做特殊说明,资源位置在时域上映射4个符号,也可以理解为资源位置在时域上占用4个符号,即SSB在时域上占用4个符号;或者资源位置在时域上包括2个符号。本实施例中,网络设备向终端设备发送SSB时,将SSB映射到SSB的候选资源位置集合中的一个资源位置上进行发送,该资源位置在时域上映射4个符号。也可以理解为:SSB占用4个符号。相应的,终端设备在SSB的资源位置上接收该SSB。其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射4个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
示例性的,本申请实施例中,资源位置资源集合中包含至少一个资源位置资源,每个资源位置资源是网络设备用来向终端设备发送SSB的候选资源,每个资源位置资源在时域上映射4个符号。
上述实施例中,SSB可以占用4个连续的符号,或者,SSB占用的4个符号在时域不连续。下面,对该两种情况分别进行说明。
首先,介绍SSB占用4个连续的符号的设计。
当SSB占用4个连续的符号时,所述PSS在时域映射到所述4个连续的符号中的第1个符号,所述SSS在时域上映射到所述4个连续的符号中的第3个符号,所述PBCH在时域上映射到所述4个连续的符号中的第2个符号、第3个符号和第4个符号,所述SSB在频域上映射到的资源块RB的个数小于或等于20,20个RB包含编号为0~19的RB。其中,所述PSS和所述SSS时分复用,所述PSS和所述SSS在频率上映射到编号为5~16的12个RB所包含的144个子载波中间的127子载波上,所述PBCH在时域上映射到所述4个连续的符号中的第2个符号或第4个符号时,所述 PBCH在频域上映射到的RB个数小于或等于20;所述PBCH在时域上映射到所述4个连续的符号中的第3个符号时,所述PBCH在频域上映射到编号为1~4的RB包含的子载波以及映射到编号为17~20的RB包含的子载波。下面,对上述实施例中SSB的结构进行说明。示例性的,可参见图8。
图8是本申请又一实施例提供的同步信号块的传输方法的SSB的结构示意图。请参照图8,在时域上占用4个连续符号的SSB可以被配置为如下几种格式:
例如,如图8中的(a)所示,PBCH包括第一部分、第二部分和第三部分,第二部分包括第一块和第二块。时域上,从左到右依次为PSS、PBCH的第一部分、SSS、和PBCH的第三部分。PBCH的第一块、第二块与SSS频分复用,频域上以RB为单位,则从下到上依次为PBCH的第一块、SSS和PBCH的第二块。其中,PBCH的第一部分和第三部分在频域上映射到的RB个数小于或等于20,该20个RB包含的子载波的编号为0~239。PSS和SSS在频域上映射到编号为5~16的RB包含的子载波,即PSS和SSS在频域上映射到SSB的20个RB中的第56~182个子载波,也就是说,PSS和SSS在频率上映射到编号为5~16的12个RB所包含的144个子载波中间的127子载波上。PBCH的第二部分的第一块在频域上映射到编号为1~4的RB包含的子载波,即第一块在频域上映射到SSB的20个RB中的编号为0~47的子载波,第二块在频域上映射到SSB的20个RB中的编号为192~239的子载波。
再如,如图8中的(b)所示,该种设计与上述图8中的(a)的不同之处在于:SSS和PSS的交换位置。
又如,如图8中的(c)所示,PBCH包括第一部分和第三部分。时域上,从左到右依次为PSS、PBCH的第一部分、SSS、和PBCH的第三部分。其中,PBCH的第一部分和第三部分在频域上映射到的RB个数小于或等于20,该20个RB包含的子载波的编号为0~239。PSS和SSS在频域上映射到编号为5~16的12个RB包含的子载波,即PSS和SSS在频域上映射到编号为5~16的RB包含的144个子载波中间的127个子载波,即PSS和SSS在频域上映射到SSB的20个RB包含的240个子载波中的第56~182个子载波。
又如,如图8中的(d)所示,该种设计与上述图8中的(c)的不同之处在于:SSS和PSS的交换位置。
本实施例中,通过在频域和时域上对占用4个连续符号的SSB中的PBCH、SSS和PSS的位置进行调整,实现灵活设置SSB的格式的目的。
上述实施例,一个SSB的资源位置在时域上映射连续的4个符号,适用于使用60kHz的子载波间隔发送SSB的场景。下面,对该场景下候选资源位置集合进行详细说明。
一种可行的设计中,当用于发送SSB的子载波间隔为60kHz的子载波间隔时,对于SSB的候选资源位置集合中的一个资源位置,所述资源位置的第一个符号的索引的集合是第六集合或所述第六集合的子集,所述第六集合包含的符号为{0,7,14,21}+28×c,c≥0且为整数。
示例性的,c的取值和SSB的窗口的长度有关,当SSB的窗口的长度为5ms时,b等于0~9中的任意一个;当SSB的窗口的长度为10ms时,b等于0~19中的任 意一个。对于60kHz的子载波间隔来说,1ms包含56个符号,以0.5ms为一个周期为例,第六集合中的符号的索引为{0,7,14,21}+28×c。以第六集合中包含1个周期举例,即当c=0时,第六集合中的符号的索引为{0,7,14,21},此时,SSB的候选资源位置集合包含的第一个符号的索引集合为{0,7,14,21},或者第六集合的子集,如{0}、{7}等。
需要说明的是,上述第六集合中的符号的索引为SSB的第一个符号的索引。由于SSB占用4个连续的符号。因此,确定出第一个符号的索引后,即可确定出SSB占用的4个符号的索引。例如,假设第一个符号的索引是第六集合中的符号7,则可以认为SSB在时域上占用符号7、符号8、符号9、符号10。
下面,以60kHz的子载波间隔的自包含时隙用于传输数据,且自包含时隙结构是前4个符号用于DL传输、第5个符号为转换符号、第6个和第7个符号为UL符号为例,对上述的同步信号块的传输方法进行详细说明。示例性的,可参见图9。
图9是本申请又一实施例提供的同步信号块的传输方法的举例示意图。如图9所示:
当使用60kHz的子载波间隔传输SSB时,第六集合中的符号的索引为{0,7,14,21}+28×c。c=0时,0.5ms内,第六集合包含的符号的所有为{0,7,14,21}。由于SSB的候选资源位置的第一个符号的索引的集合是第六集合或所述第六集合的子集,因此,SSB的候选资源位置的第一个符号(也可以理解为SSB的第一个符号)的索引可能是符号0、符号7、符号14或符号21;或者,符号0;或者,符号7等。假设资源位置的第一个符号是符号7,则SSB占用符号7、符号8、符号9和符号10。
可选地,上述实施例中,所述终端设备接收网络设备在同步信号块SSB的资源位置上发送的SSB之后,还接收网络设备发送的第一指示信息,所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置,或者所述第一指示信息用于向所述终端设备指示所述候选资源位置集合中可能用于传输所述SSB的资源位置。
示例性的,网络设备在SSB的资源位置上向终端设备发送SSB后,还向终端设备发送第一指示信息;相应的,终端设备在SSB的资源位置上接收到SSB后,还接收网络设备发送的第一指示信息,该第一指示信息用于指示候选资源位置集合中用于传输该SSB的资源位置。举例来说,当使用60kHz的子载波间隔传输SSB时,第六集合中的符号的索引为{0,7,14,21}+28×c。c=0时,0.5ms内,第六集合包含的符号的索引为{0,7,14,21}。此时,如果第一指示信息用于指示可用于传输SSB的资源位置中第一个符号的集合为第六集合中的符号0;终端设备接收到第一指示信息后,确定出SSB占用符号0、符号1、符号2和符号3。根据第一指示信息,终端设备后续接收下行信道时,在符号0、符号1、符号2和符号3所在的时频资源上不接收下行信道。如果第一指示信息用于指示可用于传输SSB的资源位置中第一个符号的集合为第六集合中的符号0和符号7;终端设备接收到第一指示信息后,确定出SSB可能占用符号0、符号1、符号2和符号3,或者SSB可能占用符号7、符号8、符号9和符号10。根据第一指示信息,终端设备后续接收下行信道时,在符号0、符号1、符号 2、符号3、符号7、符号8、符号9和符号10所在的时频资源上不接收下行信道。具体参见上述实施例一的描述,此处不再赘述。
其次,介绍SSB占用的4个符号不连续的设计。
当SSB占用的4个符号不连续时,SSB的候选资源位置集合中的一个资源位置在时域上占用第一组连续符号和第二组连续符号共4个符号,其中,所述第一组连续符号和第二组连续符号间隔x个符号,x≥1,且x为整数。下面,对上述实施例中SSB的结构进行说明。示例性的,可参见图10。
图10是本申请又一实施例提供的同步信号块的传输方法的SSB的结构示意图。请参照图10,在时域上占用4个不连续符号的SSB可以被配置为如下几种格式:
例如,如图10中的(a)所示,PSS在时域上映射到所述第一组连续符号中的第1个符号,所述SSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第1个符号和第2个符号。
示例性的,PBCH包括第一部分、第二部分和第三部分,第二部分包括第一块和第二块。SSB中,时域上,从左到右依次为PSS、PBCH的第一部分、SSS、和PBCH的第三部分。PBCH的第一部分和SSS之间间隔x个符号。PBCH的第一块、第二块与SSS频分复用,频域上以RB为单位,从下到上依次为PBCH的第一块、SSS和PBCH的第二块。其中,SSB中,PBCH的第一部分和第三部分在频域上映射到的RB个数小于或等于20,该20个RB包含的子载波的编号为0~239。PSS和SSS在频域上映射到编号为5~16的RB包含的子载波,即PSS和SSS在频域上映射到编号为5~16的RB包含的144个子载波中间的127个子载波,也就是说,PSS和SSS在频域上映射到20个RB所包含的240个子载波中编号为56~182的子载波。PBCH的第二部分的第一块在频域上映射到编号为1~4的RB包含的子载波,即第一块在频域上映射到编号为0~47的子载波,第二块在频域上映射到编号为192~239的子载波。
再如,如图10中的(b)所示,所述SSS在时域上映射到所述第一组连续符号中的第1个符号,所述PSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第1个符号和第2个符号。
该种设计与上述图10中的(a)的不同之处在于:SSS和PSS的交换位置。
又如,如图10中的(c)所示,所述PSS在时域上映射到所述第一组连续符号中的第1个符号,所述SSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第2个符号。
示例性的,PBCH包括第一部分和第三部分。时域上,从左到右依次为PSS、PBCH的第一部分、SSS、和PBCH的第三部分。PBCH的第一部分和SSS之间间隔x个符号。其中,PBCH的第一部分和第三部分在频域上映射到的RB个数小于或等于20,该20个RB包含的子载波的编号为0~239。PSS和SSS在频域上映射到编号为5~16的RB包含的子载波,即PSS和SSS在频域上映射到编号为5~16的12个RB包含的 144个子载波中间的127个子载波,也就是说,PSS和SSS在频域上映射到20个RB所包含的240个子载波中编号为56~182的子载波。
又如,如图10中的(d)所示,所述SSS在时域上映射到所述第一组连续符号中的第1个符号,所述PSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第2个符号。
该种设计与上述图10中的(c)的不同之处在于:SSS和PSS的交换位置。
上述实施例,一个资源位置在时域上映射连续的4个符号,可以适用于使用30kHz或60kHz的子载波间隔发送SSB的场景。下面,对该场景下候选资源位置集合进行详细说明。
一种可行的设计中,当用于发送SSB的子载波间隔为30kHz时,SSB的候选资源位置的第一个符号的索引的集合是第七集合或所述第七集合的子集,所述第七集合包含的符号为{0,14}+28×b,b≥0且为整数。
示例性的,对于30kHz的子载波间隔来说,1ms包含28个符号,以1ms为一个周期为例,第七集合中的符号的索引为{0,14}+28×b。其中,b表示周期。当b=0时,1ms内,第七集合中的符号的索引为{0,14},此时,候选资源位置集合包含的第一个符号的索引为{0,14},或者第七集合的子集,如{0}、{14}等。
需要说明的是,上述第七集合中的符号的索引为SSB的第一个符号的索引。由于SSB占用4个不连续的符号,4个不连续的符号包括第一组连续符号和第二组连续符号,第一组连续符号和第二组连续符号间隔x个符号。因此,确定出第一个符号的索引后,即可确定出SSB占用的4个符号的索引。例如,假设x=7,第一个符号的索引是第七集合中的0,则可以认为SSB在时域上占用0、符号1、符号7和符号8。
一种可行的设计中,当用于发送SSB的子载波间隔为60kHz的子载波间隔时,SSB的候选资源位置的第一个符号的索引的集合是第八集合或所述第八集合的子集,所述第八集合包含的符号为{0,2,14,16}+28×c,c≥0且为整数。
示例性的,对于60kHz的子载波间隔来说,1ms包含56个符号,以0.5ms为一个周期为例,第八个集合中的符号的索引为{0,2,14,16}+28×c。其中,c表示周期。当c=0时,第八集合中的符号的索引为{0,2,14,16},此时,候选资源位置集合包含的第一个符号的索引为{0,2,14,16},或者第四集合的子集,如{0}、{2}、{2,14}等。
需要说明的是,上述第八集合中的符号的索引为SSB的第一个符号的索引。由于SSB占用4个不连续的符号,4个不连续的符号包括第一组连续符号和第二组连续符号,第一组连续符号和第二组连续符号间隔x个符号。因此,确定出第一个符号的索引后,即可确定出SSB占用的4个符号的索引。例如,假设x=7,第一个符号的索引是第八集合中的2,则可以认为SSB在时域上占用符号2、符号3、符号9和符号10。
下面,以x=7、60kHz的子载波间隔的自包含时隙用于传输数据,且自包含时隙结构是前4个符号用于DL传输、第5个符号为转换符号、第6个和第7个符号为UL符号为例,对上述的同步信号块的传输方法进行详细说明。示例性的,可参见图11。
图11是本申请又一实施例提供的同步信号块的传输方法的举例示意图。如图11所示:
当使用30kHz的子载波间隔传输SSB时,第七集合中的符号的索引为{0,14}+28×b。b=0时,0.5ms内,第七集合包含的符号的索引为{0}。由于资源位置的第一个符号的索引的集合是第七集合或所述第七集合的子集,因此,资源位置的第一个符号(也可以理解为SSB的第一个符号)的索引是符号0,则SSB占用符号0、符号1、符号7和符号8。
另外,上述同步信号块的传输方法用于新无线(new radio,NR)通信系统时,SSB中的PBCH用于传输NR载波的主信息块(master information block,MIB)。PBCH中的DMRS由网络设备发送给终端设备,用于解调PBCH。
MIB的一个冗余版本(redundancy version,RV)映射到符号1上,另一个冗余版本映射到符号7和符号8上;或者,MIB的一个RB映射到符号1上,另一个RV映射到符号8上。PBCH中DMRS映射的频域偏移v为物理小区ID(physcal cell identity,PCID)模3,即v=PCID mod 3,DMRS序列的初始化也是PCID模3。符号1上的PBCH和符号7、8上的PBCH中的MIB信息是重复(repetition)的。
当使用60kHz的子载波间隔传输SSB时,第八集合中的符号的索引为{0,2,14,16}+28×a。a=0时,0.5ms内,第八集合包含的符号的索引为{0,2,14,16}。由于SSB的候选资源位置的第一个符号的索引的集合是第八集合或所述第八集合的子集,因此,资源位置的第一个符号(也可以理解为SSB的第一个符号)的索引可能是符号0、符号2、符号14和符号16;或者,符号0;或者,符号2等。假设资源位置的第一个符号是符号2,则SSB占用符号2、符号3、符号9和符号10。
需要说明的是,虽然上述实施例中,是以60kHz的子载波间隔的自包含时隙包含7个符号,该7个符号中前4个符号用于DL传输、第5个符号为转换符号、第6个和第7个符号为UL符号,然而,本申请实施例并不限制。其他可行的实现方式中,自包含时隙结构也可以是其他结构,例如,前3个符号是DL符号,第4~6个符号是转换符号,第7个符号是UL符号。再如,60kHz的子载波间隔的自包含时隙包含14个符号等。
可选地,上述实施例中,所述终端设备接收网络设备在同步信号块SSB的资源位置上发送的SSB之后,还接收网络设备发送的第一指示信息,所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置,或者所述第一指示信息用于向所述终端设备指示所述候选资源位置集合中可能用于传输所述SSB的资源位置。
示例性的,网络设备在SSB的资源位置上向终端设备发送SSB后,还向终端设备发送第一指示信息;相应的,终端设备在SSB的资源位置上接收到SSB后,还接收网络设备发送的第一指示信息,该第一指示信息用于指示候选资源位置集合中用于传输该SSB的资源位置。举例来说,当使用60kHz的子载波间隔传输SSB时,第八集合中的符号的索引为{0,2,14,16}+28×a。此时,如果第一指示信息用于指示可用于传输SSB的资源位置中第一个符号的集合为第八集合中的符号2;终端设备接收到第一指示信息后,确定出SSB占用符号2、符号3、符号9和符号10。根据第一指示信 息,终端设备后续接收下行信道时,在符号2、符号3、符号9和符号10所在的时频资源上不接收下行信道。如果第一指示信息用于指示可用于传输SSB的资源位置中第一个符号的集合为第八集合中的符号2和符号14;终端设备接收到第一指示信息后,确定出SSB可能占用符号2、符号3、符号9和符号10,或者可能占用符号14、符号15、符号21和符号22。根据第一指示信息,终端设备后续接收下行信道时,在符号2、符号3、符号9、符号10、符号14、符号15、符号21和符号22所在的时频资源上不接收下行信道。示例性的,可参见上述实施例一的描述,此处不再赘述。
需要说明的是,上述有关MIB、DMRS和PBCH等的描述,也适用于与上述的实施例一、实施例二和实施例三SSB占用4个连续符号的场景。
实施例四
在上述实施例一~实施例三中,或者在其它可能的SSB的候选资源位置的设计中(本申请不做限制),网络设备,还向所述终端设备发送第一指示信息;相应的,终端设备还接收网络设备发送的第一指示信息。该第一指示信息用于向所述终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置,或者用于向所述终端设备指示所述候选资源位置集合中用于传输所述SSB的可能的资源位置。例如,网络设备在SSB的资源位置上向终端设备发送SSB之后,还根据该SSB,通过系统消息块向所述终端设备发送第一指示信息;相应的,终端设备接收该第一指示信息。例如,网络设备向终端设备发送系统消息块1(system information block,SIB1),该SIB1携带第一指示信息;终端设备可以接收SSB,根据SSB确定物理下行控制信道(physical downlink control channel,PDCCH)的候选集合的时频位置,在该时频位置行盲检测以接收PDCCH。终端设备根据PDCCH中的下行控制信息(downlink control information,DCI)接收物理下行共享信道(physical downlink shared channel,PDSCH),从PDSCH中解析出系统信息SIB1,根据SIB1确定出第一指示信息。
可选地,第一指示信息还用于隐式指示第一候选资源位置集合,该第一候选资源位置集合是SSB的候选资源位置集合的子集,是SSB的候选资源位置集合中用于传输SSB的资源位置的集合。例如,SSB的候选资源位置集合中包含L个资源位置,所述L个资源位置的编号依次为1~L,第一候选资源位置集合是所述候选资源位置集合的子集,当L是偶数时,第一候选资源位置集合包含L/2个资源位置,当L是奇数时,第一候选资源位置集合包含(L+1)/2个或
Figure PCTCN2019112321-appb-000001
个资源位置。当第一指示信息指示的用于传输SSB的资源位置的编号为偶数时,第一候选资源位置集合包含的资源位置为SSB的候选资源位置中编号为偶数的资源位置,当第一指示信息指示的用于传输SSB的资源位置的编号为奇时,第一候选资源位置集合包含的资源位置的为SSB的候选资源位置中编号为奇数的资源位置。例如,假设候选资源位置集合包含5个资源位置,编号分别为1、2、3、4、5。当第一指示信息指示SSB的资源位置 是编号2和/或4时,则隐式指示第一候选资源位置集为{2,4};当第一指示信息指示SSB的资源位置是编号1、3、5、1和3、1和5、或者1和3和5时,则隐式指示第一候选资源位置集为{1,3,5}。网络设备根据所述SSB,通过系统消息块向所述终端设备发送第一指示信息。
上述实施中,系统消息块例如为SIB1,网络设备在发送SIB1时,将第一指示信息携带在SIB1中发送给终端设备。其中,第一指示信息用于向所述终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置,或者用于向所述终端设备指示所述候选资源位置集合中用于传输所述SSB的可能的资源位置。该过程中,由网络设备控制SSB的资源位置,网络设备向终端设备指示SSB的资源位置。
示例性地,第一指示信息的结构可以是:
Figure PCTCN2019112321-appb-000002
在另一种可能的实现中,网络设备还可以通过高层信令,如无线资源控制(radio resource control,RRC)信令或者其它信令将第一指示信息发送给终端设备,本申请不做限定。
下面,以多种对时延可靠性敏感的子载波间隔共存时,SSB占用4个连续的符号,使用30kHz的子载波间隔传输SSB、60kHZ的载波间隔传输数据为例,对上述的同步信号块的传输方法进行详细说明。示例性的,请参照图12。
图12是本申请又一实施例提供的同步信号块的传输方法的举例示意图。如图12所示,有如下4种示例:
示例一
本示例中,对于30kHz的子载波间隔来说,1ms包含28个符号,该28个符号的索引依次为0~27。以1ms为一个周期为例,第九集合中的符号的索引为{2,8,16,22}+28×b。其中,b表示周期。当b=0时,第九集合中的符号的索引为{2,8,16,22},此时,候选资源位置集合包含的符号的索引为{2,8,16,22}。第一指示信息指示的用于传输SSB的符号的索引为{8,22},或者,是集合{8,22}的子集,如{8}、{22}。候选资源位置集合中的符号是SSB占用的4个连续的符号中的第一个符号。假设用于传输SSB的资源位置的第一个符号是符号22,则SSB占用符号22、符号23、符号24和符号25。
示例二
本示例中,对于30kHz的子载波间隔来说,1ms包含28个符号,该28个符号的索引依次为0~27。以1ms为一个周期为例,第九集合中的符号的索引为{2,8,16,22}+28×b。其中,b表示周期。当b=0时,第九集合中的符号的索引为{2,8,16,22},此时,候选资源位置集合包含的符号的索引为{2,8,16,22}。第一指示信息指示的用于传输SSB的符号的索引为{2,16},或者,是集合{2,16}的子集,如{2}、{16}。候选资源位置集合中的符号是SSB占用的4个连续的符号中的第一个符号。假设用于传输SSB的资源位置的第一个符号是符号2,则SSB占用符号2、符号 3、符号4和符号5。
另外,也可以将示例二理解为对示例一变形得到。示例一中,0.5ms内,自包含时隙1、自包含时隙2、自包含时隙4的结构均为前3个符号是DL符号,第4~6个符号是转换符号,第7个符号是UL符号;自包含时隙3的7个符号全部是DL符号。此时,为了避免用于传输SSB的符号和60kHz用于传输下行数据的符号发生冲突,第一资源位置集合包含的符号的索引为{8,22}。若自包含时隙1和自包含时隙3交换位置,自包含时隙2和自包含时隙4交换位置,则候选资源位置集合包含的第一个符号的索引为{2,8,16,22}。第一资源位置集合包含的符号的索引为{2,16},或者,是集合{2,16}的子集,如{2}、{16}。即得到示例二。
示例三
本示例中,对于30kHz的子载波间隔来说,1ms包含28个符号,该28个符号的索引依次为0~27。以1ms为一个周期为例,第十集合中的符号的索引为{4,8,16,20}+28×b。其中,b表示周期。当b=0时,第十集合中的符号的索引为{4,8,16,20},此时,候选资源位置集合包含的符号的索引为{4,8,16,20}。第一资源位置集合包含的符号的索引为{4,16},或者,是集合{4,16}的子集,如{4}、{16}。候选资源位置集合中的符号是SSB占用的4个连续的符号中的第一个符号。假设用于传输SSB的资源位置的第一个符号是符号16,则SSB占用符号16、符号17、符号18和符号19。
示例四
本示例中,对于30kHz的子载波间隔来说,1ms包含28个符号,该28个符号的索引依次为0~27。以1ms为一个周期为例,第十集合中的符号的索引为{4,8,16,20}+28×b。其中,b表示周期。当b=0时,第十集合中的符号的索引为{4,8,16,20},此时,候选资源位置集合包含的符号的索引为{4,8,16,20}。第一资源位置集合包含的符号的索引为{8,20},或者,是集合{8,20}的子集,如{8}、{20}。候选资源位置集合中的符号是SSB占用的4个连续的符号中的第一个符号。假设用于传输SSB的资源位置的第一个符号是符号8,则SSB占用符号8、符号9、符号10和符号11。
根据上述示例一~示例四可知:使用30kHz的子载波间隔传输SSB时,0.5ms内,终端设备仅在一个连续的4个符号(如符号8~11)位置盲检测SSB,无需在两个连续的4个符号(如符号2~5、符号8~11)位置盲检测SSB,降低了终端设备的盲检测次数,节省了终端设备的功耗,同时满足0.5ms内60kHz的子载波间隔有3个自包含时隙。
另外,上述示例一也可以理解为:当候选资源位置集合中,0.5ms内,存在两个资源位置时,终端设备不期望在0.5ms内,接收到网络设备在候选资源位置集合中的两个相邻的资源位置上传输的SSB,此时,网络设备向终端设备发送第一指示信息,以向终端设备指示用于传输SSB的资源位置并隐含式指示第一候选资源位置集合。根据候选资源位置集合和第一候选资源位置集合可知:候选资源位置中相邻的两个资源位置上,仅有一个资源位置传输SSB。也就是说,上述代码中,ssb-PositionsInBurst中的inOneGroup中的任意两个1指示的资源位置不相邻。
上述本申请提供的实施例中,分别从网络设备、终端设备、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,可以取决于技术方案的特定应用和设计约束条件。
图13为本申请一实施例提供的通信装置的模块结构图,该装置可以为终端设备,也可以为能够支持终端设备实现本申请实施例提供的方法中的终端设备的功能的装置,例如该装置可以是终端设备中的装置或芯片系统,如图13所示,该通信装置10包括:接收模块101。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
一种可行的实现方式中,接收模块101,用于接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH。对于所述候选资源位置集合中的资源位置,其具体设计请参考方法实施例中的描述,这里不再赘述。
接收模块101还可以用于接收网络设备发送的第一指示信息,所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置,或者所述第一指示信息用于向所述终端设备指示所述候选资源位置集合中用于传输所述SSB的可能的资源位置。
通信装置10还可以包括:处理模块102,用于处理接收模块101接收到的SSB和/或第一指示信息。
图14为本申请另一实施例提供的通信装置的模块结构图,该装置可以为网络设备,也可以为能够支持网络设备实现本申请实施例提供的方法中的网络设备的功能的装置,例如该装置可以是网络设备中的装置或芯片系统,如图14所示,该通信装置20包括:发送模块201。
一种可行的实现方式中,所述发送模块201,用于在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH。对于所述候选资源位置集合中的资源位置,其具体设计请参考方法实施例中的描述,这里不再赘述。
可选地,所述发送模块201还用于向所述终端设备发送第一指示信息,所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置,或者所述第一指示信息用于向所述终端设备指示所述候选资源位置集合中用于传输所述SSB的可能的资源位置。
通信装置20还可以包括:处理模块202,用于生成发送模块201所发送的SSB和/或第一指示信息。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一 个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图15为本申请又一实施例提供的通信装置的结构示意图。如图15所示,该通信装置30可以包括:处理器301,用于实现本申请实施例提供的方法中的终端设备的功能。装置30中还可以包括存储器302和/或通信接口303。通过通信接口303可以发送和/或接收信息。存储器302中可以存储程序指令,当处理器301调用并执行存储器302中存储的程序指令时,可以实现本申请实施例提供的方法中的终端设备的功能。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在本申请实施例中,通信接口可以是电路、总线、接口、收发器或者其它可以用于接收或发送信息的装置,本申请不做限制。
可选的,通信装置30中还可以包括:电源304和/或通信总线305。通信总线305用于实现元件之间的通信连接。在本申请实施例中,通信总线可以以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图16为本申请又一实施例提供的通信装置的结构示意图。如图16所示,该通信装置40可以包括:处理器401(例如CPU),用于实现本申请实施例提供的方法中的网络设备的功能。装置40中还可以包括存储器402和/或通信接口403。通过通信接口403可以发送和/或接收信息。存储器402中可以存储程序指令,当处理器401调用并执行存储器402中存储的程序指令时,可以实现本申请实施例提供的方法中的网络设备的功能。
可选的,通信装置40中还可以包括:电源404和/或通信总线405。通信总线405用于实现元件之间的通信连接。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。 所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (46)

  1. 一种同步信号块的传输方法,其特征在于,包括:
    接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至1个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用,所述一个资源位置对应的子载波间隔为15kHz、30kHz或者60kHz。
  2. 根据权利要求1所述的方法,其特征在于,
    当所述子载波间隔为15kHz的子载波间隔时,所述候选资源位置集合是第一集合或所述第一集合的子集,所述第一集合中的符号的索引为{0,7,14,21}+28×a,a≥0且为整数;
    当所述子载波间隔为30kHz的子载波间隔时,所述候选资源位置集合是第二集合或所述第二集合的子集,所述第二集合中的符号的索引为{0,1,7,8,14,15,21,22}+28×b;
    当所述子载波间隔为60kHz的子载波间隔时,所述候选资源位置集合是第三集合或所述第三集合的子集,所述第三集合中的符号的索引为{0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24}+28×c,c≥0且为整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述SSB在频域上映射的资源块RB个数小于或等于72,其中,所述PSS和所述SSS在频域上分别映射至12个RB,所述PBCH在频域上映射的RB个数小于或等于48。
  4. 一种同步信号块的传输方法,其特征在于,包括:
    接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至连续的2个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
  5. 根据权利要求4所述的方法,其特征在于,
    当所述子载波间隔为30kHz时,所述资源位置的第一个符号的索引的集合是第四集合或所述第四集合的子集,所述第四集合包含的符号的索引为{0,7,14,21}+28×b,b≥0且为整数;
    当所述子载波间隔为60kHz时,所述资源位置的第一个符号的索引的集合是第五集合或所述第五集合的子集,所述第五集合包含的符号的索引为{0,2,7,9,14,16,21,23}+28×c,c≥0且为整数。
  6. 根据权利要求5所述的方法,其特征在于,所述SSB在频域上映射的资源块RB的个数小于或等于36;
    所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,包括:
    所述PSS和所述SSS时分复用,所述PSS和和所述SSS在频域上映射至相同的12个RB,所述PBCH和所述PSS频分复用,所述PBCH在频域上映射的RB个数小于或等于24;
    或者,
    所述PSS和所述SSS频分复用,所述PSS和所述SSS在频域上分别映射至12个RB,所述PBCH和所述PSS时分复用,所述PBCH在频域上映射的RB个数小于或等于36;或者,
    所述PBCH包括第一部分和第二部分,所述第二部分包括第一块和第二块,所述第一块、所述第二块、所述PSS和所述SSS频分复用,所述第一部分和所述PSS时分复用,所述PSS和所述SSS在频域上分别映射至12个RB,所述第一块和所述第二块在频域上分别映射至6个RB,所述第二部分在频域上映射的RB个数小于或等于36。
  7. 一种同步信号块的传输方法,其特征在于,包括:
    接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至4个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
  8. 根据权利要求7所述的方法,其特征在于,所述一个资源位置在时域上映射至连续的4个符号;
    当所述子载波间隔为60kHz的子载波间隔时,所述资源位置的第一个符号的索引的集合是第六集合或所述第六集合的子集,所述第六集合包含的符号的索引为{0,7,14,21}+28×c,c≥0且为整数。
  9. 根据权利要求8所述的方法,其特征在于,所述PSS在时域映射到所述4个连续的符号中的第1个符号,所述SSS在时域上映射到所述4个连续的符号中的第3个符号,所述PBCH在时域上映射到所述4个连续的符号中的第2个符号、第3个符号和第4个符号,所述SSB在频域上映射的资源块RB的个数小于或等于20;所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,包括:
    所述PSS和所述SSS时分复用,所述PSS和所述SSS在频率上映射到编号为1~20的20个RB中编号为5~16的RB包含的子载波,所述PBCH在时域上映射所述4个连续的符号中的第2个符号或第4个符号时,所述PBCH在频域上映射的RB个数小于或等于20;所述PBCH在时域上映射所述4个连续的符号中的第3个符号时,所述PBCH在频域上映射到编号为1~20的20个RB中的编号为1~4的RB包含的子载波以及编号为17~20的RB包含的子载波。
  10. 根据权利要求7所述的方法,其特征在于,所述一个资源位置在时域上占用第一组连续符号和第二组连续符号共4个符号,其中,所述第一组连续符号和第二组连续符号间隔x个符号,x≥1,且x为整数;
    当所述子载波间隔为30kHz时,所述资源位置的第一个符号的索引的集合是第 七集合或所述第七集合的子集,所述第七集合包含的符号的索引为{0,14}+28×b,b≥0且为整数;
    当所述子载波间隔为60kHz的子载波间隔时,所述资源位置的第一个符号的索引的集合是第八集合或所述第八集合的子集,所述第八集合包含的符号的索引为{0,2,14,16}+28×c,c≥0且为整数。
  11. 根据权利要求10所述的方法,其特征在于,
    所述PSS在时域上映射到所述第一组连续符号中的第1个符号,所述SSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第1个符号和第2个符号;或者,
    所述SSS在时域上映射到所述第一组连续符号中的第1个符号,所述PSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第1个符号和第2个符号;或者,
    所述PSS在时域上映射到所述第一组连续符号中的第1个符号,所述SSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第2个符号;或者,
    所述SSS在时域上映射到所述第一组连续符号中的第1个符号,所述PSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第2个符号。
  12. 根据权利要求1~11任一项所述的方法,其特征在于,所述接收网络设备在同步信号块SSB的资源位置上发送的SSB之后,还包括:
    接收网络设备发送的第一指示信息,所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息还用于指示第一候选资源位置集合,所述第一候选资源位置集合是所述候选资源位置集合的子集,所述候选资源位置集合包含L个资源位置,所述L个资源位置的编号依次为1~L,所述第一候选资源位置集合中包括所述L个资源位置中编号为奇数的资源位置,或者所述所述第一候选资源位置集合中包括所述L个资源位置中编号为偶数的资源位置。
  14. 一种同步信号块的传输方法,其特征在于,包括:
    在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至1个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用,所述一个资源位置对应的子载波间隔为15kHz、30kHz或者60kHz。
  15. 根据权利要求14所述的方法,其特征在于
    当所述子载波间隔为15kHz的子载波间隔时,所述候选资源位置集合是第一集 合或所述第一集合的子集,所述第一集合中的符号的索引为{0,7,14,21}+28×a,a≥0且为整数;
    当所述子载波间隔为30kHz的子载波间隔时,所述候选资源位置集合是第二集合或所述第二集合的子集,所述第二集合中的符号的索引为{0,1,7,8,14,15,21,22}+28×b;
    当所述子载波间隔为60kHz的子载波间隔时,所述候选资源位置集合是第三集合或所述第三集合的子集,所述第三集合中的符号的索引为{0,1,2,3,7,8,9,10,14,15,16,17,21,22,23,24}+28×c,c≥0且为整数。
  16. 根据权利要求14或15所述的方法,其特征在于,所述SSB在频域上映射的资源块RB个数小于或等于72,其中,所述PSS和所述SSS在频域上分别映射至12个RB,所述PBCH在频域上映射的RB个数小于或等于48。
  17. 一种同步信号块的传输方法,其特征在于,包括:
    在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至连续的2个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
  18. 根据权利要求17所述的方法,其特征在于,
    当所述子载波间隔为30kHz时,所述资源位置的第一个符号的索引的集合是第四集合或所述第四集合的子集,所述第四集合包含的符号的索引为{0,7,14,21}+28×b,b≥0且为整数;
    当所述子载波间隔为60kHz时,所述资源位置的第一个符号的索引的集合是第五集合或所述第五集合的子集,所述第五集合包含的符号的索引为{0,2,7,9,14,16,21,23}+28×c,c≥0且为整数。
  19. 根据权利要求17或18所述的方法,其特征在于,所述SSB在频域上映射的资源块RB的个数小于或等于36;
    所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,包括:
    所述PSS和所述SSS时分复用,所述PSS和和所述SSS在频域上映射至相同的12个RB,所述PBCH和所述PSS频分复用,所述PBCH在频域上映射的RB个数小于或等于24;或者,
    所述PSS和所述SSS频分复用,所述PSS和所述SSS在频域上分别映射至12个RB,所述PBCH和所述PSS时分复用,所述PBCH在频域上映射的RB个数小于或等于36;或者,
    所述PBCH包括第一部分和第二部分,所述第二部分包括第一块和第二块,所述第一块、所述第二块、所述PSS和所述SSS频分复用,所述第一部分和所述PSS时分复用,所述PSS和所述SSS在频域上分别映射至12个RB,所述第一块和所述第二块在频域上分别映射至6个RB,所述第二部分在频域上映射的RB个数小于或等于36。
  20. 一种同步信号块的传输方法,其特征在于,包括:
    在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至4个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
  21. 根据权利要求20所述的方法,其特征在于,所述一个资源位置在时域上映射至连续的4个符号;
    当所述子载波间隔为60kHz的子载波间隔时,所述资源位置的第一个符号的索引的集合是第六集合或所述第六集合的子集,所述第六集合包含的符号的索引为{0,7,14,21}+28×c,c≥0且为整数。
  22. 根据权利要求21所述的方法,其特征在于,
    所述PSS在时域映射到所述4个连续的符号中的第1个符号,所述SSS在时域上映射到所述4个连续的符号中的第3个符号,所述PBCH在时域上映射到所述4个连续的符号中的第2个符号、第3个符号和第4个符号,所述SSB在频域上映射的资源块RB的个数小于或等于20,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,包括:
    所述PSS和所述SSS时分复用,所述PSS和所述SSS在频率上映射到编号为1~20的20个RB中编号为5~16的RB包含的子载波,所述PBCH在时域上映射所述4个连续的符号中的第2个符号或第4个符号时,所述PBCH在频域上映射的RB个数小于或等于20;所述PBCH在时域上映射所述4个连续的符号中的第3个符号时,所述PBCH在频域上映射到编号为1~20的20个RB中的编号为1~4的RB包含的子载波以及编号为17~20的RB包含的子载波。
  23. 根据权利要求20所述的方法,其特征在于,所述一个资源位置在时域上占用第一组连续符号和第二组连续符号共4个符号,其中,所述第一组连续符号和第二组连续符号间隔x个符号,x≥1,且x为整数;
    当所述子载波间隔为30kHZ时,所述资源位置的第一个符号的索引的集合是第七集合或所述第七集合的子集,所述第七集合包含的符号的索引为{0,14}+28×b,b≥0且为整数;
    当所述子载波间隔为60kHZ的子载波间隔时,所述资源位置的第一个符号的索引的集合是第八集合或所述第八集合的子集,所述第八集合包含的符号的索引为{0,2,14,16}+28×c,c≥0且为整数。
  24. 根据权利要求23所述的方法,其特征在于,
    所述PSS在时域上映射到所述第一组连续符号中的第1个符号,所述SSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第1个符号和第2个符号;或者,
    所述SSS在时域上映射到所述第一组连续符号中的第1个符号,所述PSS在时 域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第1个符号和第2个符号;或者,
    所述PSS在时域上映射到所述第一组连续符号中的第1个符号,所述SSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第2个符号;或者,
    所述SSS在时域上映射到所述第一组连续符号中的第1个符号,所述PSS在时域上映射到所述第二组连续符号中的第1个符号,所PBCH在时域上映射到所述第一组连续符号中的第2个符号、以及所述第二组连续符号中的第2个符号。
  25. 根据权利要求14~24任一项所述的方法,其特征在于,所述在同步信号块SSB的资源位置向终端设备发送SSB之后,还包括:
    向所述终端设备发送第一指示信息,所述第一指示信息用于向终端设备指示所述候选资源位置集合中用于传输所述SSB的资源位置。
  26. 根据权利要求25所述的方法,其特征在于,所述第一指示信息还用于指示第一候选资源位置集合,所述第一候选资源位置集合是所述候选资源位置集合的子集,所述候选资源位置集合包含L个资源位置,所述L个资源位置的编号依次为1~L,所述第一候选资源位置集合中包括所述L个资源位置中编号为奇数的资源位置,或者所述所述第一候选资源位置集合中包括所述L个资源位置中编号为偶数的资源位置。
  27. 一种通信装置,其特征在于,用于实现如权利要求1~3任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述处理器用于与所述存储器耦合,读取并执行所述存储器中存储的指令,以实现权利要求1~3任一项所述的方法。
  29. 一种通信装置,其特征在于,包括:
    接收模块,用于接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至1个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用,所述一个资源位置对应的子载波间隔为15kHz、30kHz或者60kHz。
  30. 一种通信装置,其特征在于,用于实现如权利要求4~6任一项所述的方法。
  31. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述处理器用于与所述存储器耦合,读取并执行所述存储器中存储的指令,以实现权利要求4~6任一项所述的方法。
  32. 一种通信装置,其特征在于,包括:
    接收模块,用于接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射 至连续的2个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
  33. 一种通信装置,其特征在于,用于实现如权利要求7~13任一项所述的方法。
  34. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述处理器用于与所述存储器耦合,读取并执行所述存储器中存储的指令,以实现权利要求7~13任一项所述的方法。
  35. 一种通信装置,其特征在于,包括:
    接收模块,用于接收网络设备在同步信号块SSB的资源位置上发送的SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至4个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
  36. 一种通信装置,其特征在于,用于实现如权利要求14~16任一项所述的方法。
  37. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述处理器用于与所述存储器耦合,读取并执行所述存储器中存储的指令,以实现权利要求14~16任一项所述的方法。
  38. 一种同步信号块的传输方法,其特征在于,包括:
    发送模块,用于在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至1个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用,所述一个资源位置对应的子载波间隔为15kHz、30kHz或者60kHz。
  39. 一种通信装置,其特征在于,用于实现如权利要求17~19任一项所述的方法。
  40. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述处理器用于与所述存储器耦合,读取并执行所述存储器中存储的指令,以实现权利要求17~19任一项所述的方法。
  41. 一种通信装置,其特征在于,包括:
    发送模块,用于在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至连续的2个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
  42. 一种通信装置,其特征在于,用于实现如权利要求20~26任一项所述的方 法。
  43. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述处理器用于与所述存储器耦合,读取并执行所述存储器中存储的指令,以实现权利要求20~26任一项所述的方法。
  44. 一种通信装置,其特征在于,包括:
    发送模块,用于在同步信号块SSB的资源位置向终端设备发送SSB,所述SSB的资源位置包括于SSB的候选资源位置集合中,其中,所述SSB中包括主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    对于所述候选资源位置集合中的一个资源位置,所述一个资源位置在时域上映射至4个符号,所述PSS、SSS和PBCH在所述一个资源位置上频分复用和时分复用,所述一个资源位置对应的子载波间隔为30kHz或者60kHz。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令被计算机执行时,使得所述计算机执行权利要求1~26任一项所述的方法。
  46. 一种通信装置,其特征在于,包括权利要求27~29任一项所述的通信装置和权利要求36~38任一项所述的通信装置,或者包括权利要求30~32任一项所述的通信装置和权利要求39~41任一项所述的通信装置,或者包括包括权利要求33~35任一项所述的通信装置和权利要求42~44任一项所述的通信装置。
PCT/CN2019/112321 2018-10-24 2019-10-21 同步信号块的传输方法及通信装置 WO2020083240A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19876024.1A EP3863346B1 (en) 2018-10-24 2019-10-21 Synchronization signal block transmission method and communication apparatus
US17/236,622 US11864133B2 (en) 2018-10-24 2021-04-21 Synchronization signal block transmission method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811241581.2A CN111092701B (zh) 2018-10-24 2018-10-24 同步信号块的传输方法及通信装置
CN201811241581.2 2018-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/236,622 Continuation US11864133B2 (en) 2018-10-24 2021-04-21 Synchronization signal block transmission method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020083240A1 true WO2020083240A1 (zh) 2020-04-30

Family

ID=70332143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112321 WO2020083240A1 (zh) 2018-10-24 2019-10-21 同步信号块的传输方法及通信装置

Country Status (4)

Country Link
US (1) US11864133B2 (zh)
EP (1) EP3863346B1 (zh)
CN (1) CN111092701B (zh)
WO (1) WO2020083240A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100362A1 (zh) * 2020-11-13 2022-05-19 华为技术有限公司 信号传输的方法和通信装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111669238B (zh) * 2020-05-15 2022-03-29 中国信息通信研究院 一种高频发现信号传输方法、设备和系统
CN113939035A (zh) * 2020-06-29 2022-01-14 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
US20220078838A1 (en) * 2020-09-09 2022-03-10 Qualcomm Incorporated Remaining minimum system information transmission, synchronization signal block forwarding, and demodulation reference signal management by wireless forwarding node
TWI827939B (zh) * 2021-06-09 2024-01-01 光寶科技股份有限公司 網路實體及資源配置方法
WO2023035170A1 (en) * 2021-09-09 2023-03-16 Zte Corporation Methods, devices, and systems for determining synchronization signal raster
CN116366217A (zh) * 2021-12-27 2023-06-30 中国移动通信有限公司研究院 一种传输处理方法、装置及设备
CN115696552B (zh) * 2022-10-25 2023-04-14 上海山源电子科技股份有限公司 5g同步信号处理方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702707A (zh) * 2018-05-21 2018-10-23 北京小米移动软件有限公司 唤醒信号的发送方法及装置、寻呼解调方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547463A (zh) * 2016-06-29 2018-01-05 夏普株式会社 同步信令的映射方法、基站和用户设备
US10362610B2 (en) * 2016-09-19 2019-07-23 Samsung Electronics Co., Ltd. Method and apparatus for mapping initial access signals in wireless systems
CN108023695A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 一种同步信号的传输方法、发送装置、终端及系统
US10389567B2 (en) * 2016-11-03 2019-08-20 Samsung Electronics Co., Ltd. Method and apparatus for synchronization signal design
US10278184B2 (en) * 2017-08-10 2019-04-30 At&T Intellectual Property I, L.P. Radio resource management framework for 5G or other next generation network
US11546896B2 (en) * 2017-09-11 2023-01-03 Ntt Docomo, Inc. User terminal and radio communication method
KR20200052898A (ko) * 2017-09-20 2020-05-15 가부시키가이샤 엔티티 도코모 유저단말 및 무선 통신 방법
CN108496397B (zh) * 2018-04-02 2021-08-03 北京小米移动软件有限公司 同步广播传输信号块的方法及装置
CN110662266B (zh) * 2018-06-29 2021-02-09 华为技术有限公司 Iab节点的切换方法、iab节点和宿主基站
CA3111645C (en) * 2018-09-18 2023-04-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Synchronization signal transmission method, transmitting end device and receiving end device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702707A (zh) * 2018-05-21 2018-10-23 北京小米移动软件有限公司 唤醒信号的发送方法及装置、寻呼解调方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining details on TRS", 3GPP TSG-RAN WG1 MEETING 90BIS, R1-1718451, 13 October 2017 (2017-10-13), XP051341633 *
SAMSUNG: "Frame structure for NR-U", 3GPP TSG RAN WG1 MEETING #92, R1-1804403, 20 April 2018 (2018-04-20), XP051413273 *
See also references of EP3863346A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100362A1 (zh) * 2020-11-13 2022-05-19 华为技术有限公司 信号传输的方法和通信装置

Also Published As

Publication number Publication date
EP3863346A4 (en) 2021-12-08
EP3863346A1 (en) 2021-08-11
CN111092701A (zh) 2020-05-01
CN111092701B (zh) 2021-05-18
EP3863346B1 (en) 2023-12-06
US20210243706A1 (en) 2021-08-05
US11864133B2 (en) 2024-01-02

Similar Documents

Publication Publication Date Title
WO2020083240A1 (zh) 同步信号块的传输方法及通信装置
WO2019096291A1 (zh) 信息发送、接收方法及装置
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
US20210250159A1 (en) Resource configuration method and apparatus
WO2018210243A1 (zh) 一种通信方法和装置
US20140226607A1 (en) Apparatus and Method for Communication
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
WO2020147731A1 (zh) 一种通信方法及装置
WO2021032017A1 (zh) 通信方法和装置
WO2019192345A1 (zh) 一种时域资源分配方法及装置
WO2018137700A1 (zh) 一种通信方法,装置及系统
CN111770577A (zh) 确定传输资源的方法及装置
WO2019010808A1 (zh) 传输控制方法及装置
CN106664691A (zh) 一种公共信息的传输方法及装置
WO2020220934A1 (zh) 一种同步信号块的传输方法和装置
WO2020200176A1 (zh) 确定传输资源的方法及装置
WO2020187132A1 (zh) 数据信道的传输方法及装置
EP3846369A1 (en) Communication method and apparatus
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
WO2017167252A1 (zh) 一种信息传输方法、终端及基站
WO2018233566A1 (zh) 确定下行控制信道资源的方法、装置、用户设备及基站
TWI826057B (zh) 一種實體上行控制通道的發送方法、接收方法及通信裝置
WO2019157903A1 (zh) 一种资源配置方法及装置
CN113473641A (zh) 一种通信方法和通信装置
US9313006B2 (en) Methods and apparatus for resource element mapping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876024

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019876024

Country of ref document: EP

Effective date: 20210505