WO2020220934A1 - 一种同步信号块的传输方法和装置 - Google Patents

一种同步信号块的传输方法和装置 Download PDF

Info

Publication number
WO2020220934A1
WO2020220934A1 PCT/CN2020/083261 CN2020083261W WO2020220934A1 WO 2020220934 A1 WO2020220934 A1 WO 2020220934A1 CN 2020083261 W CN2020083261 W CN 2020083261W WO 2020220934 A1 WO2020220934 A1 WO 2020220934A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm symbols
dmrs
psbch
time domain
frequency domain
Prior art date
Application number
PCT/CN2020/083261
Other languages
English (en)
French (fr)
Inventor
袁璞
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910361704.4A external-priority patent/CN111865857B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20798217.4A priority Critical patent/EP3965385A4/en
Priority to JP2021564605A priority patent/JP7334265B2/ja
Publication of WO2020220934A1 publication Critical patent/WO2020220934A1/zh
Priority to US17/452,879 priority patent/US20220046562A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of communications, and in particular to a method and device for transmitting synchronization signal blocks.
  • the Uu interface uses the communication protocol between the UE and the base station; the second is the near field communication (proximity communication, PC) 5 interface, the PC5 interface uses the communication protocol between the UE and the UE, and the direct communication link of the PC5 interface is defined It is a side link or side link (sidelink, SL).
  • the Uu interface basically uses the new radio (NR) uplink and downlink transmission protocol.
  • the PC5 interface has different designs in terms of frequency band allocation, bandwidth, frame structure, transmission mode, and signaling definition. For example, in terms of frequency bands, the PC5 interface may consider multiplexing NR uplink frequency bands, or may use unlicensed frequency bands, etc.
  • the basic synchronization process is as follows: (1) UE1 sends a synchronization signal to UE2.
  • the synchronization signal includes the sidelink primary synchronization signal (SPSS). ) And sidelink secondary synchronization signal (SSSS).
  • SPSS sidelink primary synchronization signal
  • SSSS sidelink secondary synchronization signal
  • (1) UE2 blindly detects the SPSS, obtains timing information, and then demodulates the SSSS to obtain the sidelink synchronization identity (SSID).
  • SSID sidelink synchronization identity
  • UE2 descrambles the sidelink physical broadcast channel (PSBCH) according to the SSID and reads the main system message.
  • PSBCH sidelink physical broadcast channel
  • PSBCH includes demodulation reference signals (DMRS) of three orthogonal frequency division multiplexing (OFDM) symbols. And the payload of 5 OFDM symbols, the payload is the data carried on the PSBCH.
  • DMRS demodulation reference signals
  • the payload is the data carried on the PSBCH.
  • the DMRS is used for channel estimation during data decoding, and its mapping density in the frequency domain is 1, that is, mapping is performed on each subcarrier.
  • the payload is the data part carried by the PSBCH, that is, the master information block (master information block, MIB).
  • the bandwidths of the synchronization signal and the physical broadcast channel are both 6 resource blocks (resource clock, RB).
  • the bandwidth of the synchronization signal and the physical broadcast channel are both 6RB. Due to the small bandwidth and the inability to achieve a very low bit rate, the decoding performance of PSBCH payload is limited, and the DMRS is relatively sparse, which affects the accuracy of channel estimation, and cannot meet the low latency and high reliability requirements of NR V2X high-speed scenarios.
  • the embodiments of the present application provide a method and device for transmitting synchronization signal blocks, which can improve the decoding performance and channel estimation accuracy of the PSBCH payload.
  • an embodiment of the present application provides a synchronization signal block transmission method.
  • the method includes: a first terminal device generates a sidelink synchronization signal block (SSSB);
  • the terminal device sends the side link synchronization signal block, which includes PSBCH, SPSS and SSSS; among them, PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, and DMRS includes M in the time domain K OFDM symbols in the OFDM symbol, DMRS is mapped every n-1 subcarriers in the frequency domain, n is an integer greater than or equal to 1, M is an integer greater than or equal to 6, K is a positive integer less than or equal to M, PSBCH It includes N RBs in the frequency domain, where N is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, and SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and SSSS is The frequency domain includes N RBs.
  • SSSB sidelink synchron
  • the PSBCH payload can be estimated through at least one of SPSS, SSSS, or DMRS, where the bandwidths of SPSS, SSSS, and PSBCH are all greater than 6 RB, which can improve the decoding performance of PSBCH payload.
  • the DMRS is evenly distributed in the frequency domain (mapping every n-1 subcarriers), the accuracy of channel estimation can be improved.
  • the PSBCH includes 11 RBs in the frequency domain, the PSBCH includes 6 OFDM symbols in the time domain, and 6 OFDM symbols are arranged consecutively; the DMRS includes 6 OFDM symbols in the time domain, and the DMRS is The mapping is performed every 3 or 4 subcarriers in the frequency domain.
  • PSBCH payload and DMRS exist on each OFDM symbol occupied by PSBCH.
  • the DMRS on the OFDM symbol can provide a channel estimation result for the PSBCH payload on the OFDM symbol, which can improve the accuracy of channel estimation.
  • the DMRS is evenly distributed in the frequency domain (mapping every 3 or 4 subcarriers), the accuracy of channel estimation can be further improved.
  • the PSBCH includes 11 RBs in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain.
  • the 6 OFDM symbols include the first group of OFDM symbols and the second group of OFDM symbols.
  • the OFDM symbols and the second group of OFDM symbols respectively include 3 OFDM symbols.
  • the first group of OFDM symbols are arranged continuously, and the second group of OFDM symbols are arranged continuously.
  • the interval between the first group of OFDM symbols and the second group of OFDM symbols is SPSS or SSSS;
  • a group of OFDM symbols and a middle OFDM symbol of the second group of OFDM symbols are mapped with DMRS, and the DMRS is mapped every n-1 subcarriers in the frequency domain, and n is an integer greater than 1.
  • the PSBCH payload on each OFDM symbol has the DMRS and/or adjacent SPSS/SSSS/DMRS on the same symbol for channel estimation.
  • channel estimation can be performed on the PSBCH payload based on the DMRS on the same symbol and/or adjacent SPSS/SSSS/DMRS, which can improve the accuracy of channel estimation.
  • the DMRS is evenly distributed in the frequency domain (mapping every n-1 subcarrier), the accuracy of channel estimation can be further improved.
  • PSBCH includes 11 RBs in the frequency domain
  • PSBCH includes 8 OFDM symbols in the time domain
  • PSBCH includes DMRS and data
  • data includes 6 OFDM symbols in the time domain
  • DMRS is in the time domain.
  • the domain includes 2 OFDM symbols; in the time domain, if the i-th OFDM symbol of the side link synchronization signal block corresponds to data, then the i-1th OFDM symbol and/or the first OFDM symbol of the side link synchronization signal block i+1 OFDM symbols correspond to SPSS or SSSS or DMRS, i is an integer greater than or equal to 1; DMRS is mapped on each subcarrier in the frequency domain.
  • the PSBCH payload on each OFDM symbol has adjacent SPSS/SSSS/DMRS for channel estimation.
  • channel estimation of PSBCH payload can be performed based on adjacent SPSS/SSSS/DMRS, which can improve the accuracy of channel estimation.
  • the PSBCH includes 11 RBs in the frequency domain; the PSBCH includes M OFDM symbols in the time domain, the PSBCH includes DMRS, and the DMRS includes K OFDM symbols among the M OFDM symbols in the time domain. , M and K are equal; DMRS is mapped every 3 subcarriers in the frequency domain.
  • M and K are equal; DMRS is mapped every 3 subcarriers in the frequency domain.
  • an embodiment of the present application provides a synchronization signal block transmission method.
  • the method includes: a second terminal device receives a side link synchronization signal block from a first terminal device, and the side link synchronization signal block includes PSBCH, SPSS and SSSS; the second terminal device parses the side link synchronization signal block; among them, PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, and DMRS includes K OFDM symbols in the M OFDM symbols in the time domain DMRS is mapped every n-1 subcarriers in the frequency domain, n is an integer greater than or equal to 1, M is an integer greater than or equal to 6, K is a positive integer less than or equal to M, PSBCH includes N RBs in the frequency domain , N is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs in the frequency domain.
  • the PSBCH includes 11 RBs in the frequency domain, the PSBCH includes 6 OFDM symbols in the time domain, and 6 OFDM symbols are arranged consecutively; the DMRS includes 6 OFDM symbols in the time domain, and the DMRS is The mapping is performed every 3 or 4 subcarriers in the frequency domain.
  • the PSBCH includes 11 RBs in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain.
  • the 6 OFDM symbols include the first group of OFDM symbols and the second group of OFDM symbols.
  • the OFDM symbols and the second group of OFDM symbols respectively include 3 OFDM symbols.
  • the first group of OFDM symbols are arranged continuously, and the second group of OFDM symbols are arranged continuously.
  • the interval between the first group of OFDM symbols and the second group of OFDM symbols is SPSS or SSSS;
  • a group of OFDM symbols and a middle OFDM symbol of the second group of OFDM symbols are mapped with DMRS, and the DMRS is mapped every n-1 subcarriers in the frequency domain, and n is an integer greater than 1.
  • PSBCH includes 11 RBs in the frequency domain
  • PSBCH includes 8 OFDM symbols in the time domain
  • PSBCH includes DMRS and data
  • data includes 6 OFDM symbols in the time domain
  • DMRS is in the time domain.
  • the domain includes 2 OFDM symbols; in the time domain, if the i-th OFDM symbol of the side link synchronization signal block corresponds to data, then the i-1th OFDM symbol and/or the first OFDM symbol of the side link synchronization signal block i+1 OFDM symbols correspond to SPSS or SSSS or DMRS, i is an integer greater than or equal to 1; DMRS is mapped on each subcarrier in the frequency domain.
  • the PSBCH includes 11 RBs in the frequency domain; the PSBCH includes M OFDM symbols in the time domain, the PSBCH includes DMRS, and the DMRS includes K OFDM symbols out of the M OFDM symbols in the time domain. , M and K are equal; DMRS is mapped every 3 subcarriers in the frequency domain.
  • an embodiment of the present application provides a synchronization signal block transmission method.
  • the method includes: a first terminal device generates a side link synchronization signal block; the first terminal device sends a side link synchronization to a second terminal device Signal block, the side link synchronization signal block includes PSBCH, SPSS, and SSSS; among them, PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, and DMRS includes K OFDM symbols of the M OFDM symbols in the time domain , DMRS is not mapped to SPSS and SSSS in the frequency domain for part or all of the Y subcarriers; M is an integer greater than or equal to 6, K is a positive integer less than or equal to M, Y is an integer greater than or equal to 1; PSBCH in the frequency domain The domain includes N RBs, where N is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in
  • the PSBCH payload can be estimated through at least one of SPSS, SSSS, or DMRS, which can improve the accuracy of channel estimation.
  • the bandwidth of SPSS, SSSS and PSBCH is greater than 6 RB, which can improve the decoding performance of PSBCH payload.
  • PSBCH includes 144 subcarriers in the frequency domain, and PSBCH includes 6 OFDM symbols in the time domain; DMRS is not mapped in the frequency domain on the 17 subcarriers of SPSS and SSSS. ; 17 sub-carriers include the first part and the second part, the number of sub-carriers included in the first part is U, the number of sub-carriers included in the second part is 17-U, U is an integer greater than or equal to 0; DMRS in the first part every other n-1 subcarriers are mapped, and the DMRS is mapped every m-1 subcarriers on the second part.
  • n is an integer greater than or equal to 1 and less than or equal to 16
  • m is an integer greater than or equal to 1 and less than or equal to 16.
  • the PSBCH includes 132 subcarriers in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain; the DMRS is not mapped in the frequency domain on the 5 subcarriers of SPSS and SSSS, partially or completely mapped ; 5 subcarriers include the first part and the second part, the number of subcarriers included in the first part is U, the number of subcarriers included in the second part is 5-U, and U is an integer greater than or equal to 0; DMRS is in the first part every other n-1 subcarriers are mapped, DMRS is mapped every m-1 subcarriers on the second part, n is an integer greater than or equal to 1 and less than or equal to 4, and m is an integer greater than or equal to 1 and less than or equal to 4.
  • PSBCH payload on each OFDM symbol has the DMRS and/or adjacent SPSS/SSSS/DMRS on the same symbol for channel estimation.
  • PSBCH DMRS is only placed on sub-carriers without PSS/SSS.
  • channel estimation can be performed on the PSBCH payload based on the DMRS on the same symbol and/or adjacent SPSS/SSSS/DMRS, which can improve the accuracy of channel estimation.
  • an embodiment of the present application provides a synchronization signal block transmission method.
  • the method includes: a second terminal device receives a side link synchronization signal block from a first terminal device, and the side link synchronization signal block includes PSBCH, SPSS and SSSS; the second terminal device parses the side link synchronization signal block; among them, PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, and DMRS includes K OFDM symbols in the M OFDM symbols in the time domain , DMRS is not mapped to SPSS and SSSS in the frequency domain for part or all of the Y subcarriers; M is an integer greater than or equal to 6, K is a positive integer less than or equal to M, Y is an integer greater than or equal to 1; PSBCH in the frequency domain The domain includes N RBs, where N is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the
  • PSBCH includes 144 subcarriers in the frequency domain, and PSBCH includes 6 OFDM symbols in the time domain; DMRS is not mapped in the frequency domain on the 17 subcarriers of SPSS and SSSS. ; 17 sub-carriers include the first part and the second part, the number of sub-carriers included in the first part is U, the number of sub-carriers included in the second part is 17-U, U is an integer greater than or equal to 0; DMRS in the first part every other n-1 subcarriers are mapped, DMRS is mapped every m-1 subcarriers on the second part, n is an integer greater than or equal to 1 and less than or equal to 16, and m is an integer greater than or equal to 1 and less than or equal to 16.
  • the PSBCH includes 132 subcarriers in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain; the DMRS is not mapped in the frequency domain on the 5 subcarriers of SPSS and SSSS, partially or completely mapped ; 5 subcarriers include the first part and the second part, the number of subcarriers included in the first part is U, the number of subcarriers included in the second part is 5-U, and U is an integer greater than or equal to 0; DMRS is in the first part every other n-1 subcarriers are mapped, DMRS is mapped every m-1 subcarriers on the second part, n is an integer greater than or equal to 1 and less than or equal to 4, and m is an integer greater than or equal to 1 and less than or equal to 4.
  • an embodiment of the present application provides a synchronization signal block transmission method.
  • the method includes: a first terminal device generates a side link synchronization signal block; the first terminal device sends a side link synchronization to a second terminal device Signal block, the side link synchronization signal block includes PSBCH, SPSS and SSSS; among them, PSBCH includes M OFDM symbols in the time domain, M is an integer greater than or equal to 6, PSBCH does not include DMRS; PSBCH includes N in the frequency domain RBs, N is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N in the frequency domain RB.
  • the channel estimation of the PSBCH payload can be performed through at least one of SPSS or SSSS, which can improve the accuracy of channel estimation, wherein the bandwidth of SPSS and SSSS are both larger than 6 RB, which can improve the decoding performance of PSBCH payload.
  • the PSBCH includes 11 RBs in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain; in the time domain, if the jth OFDM symbol of the side link synchronization signal block corresponds to PSBCH, then the j-1th OFDM symbol and/or the j+1th OFDM symbol of the side link synchronization signal block corresponds to SPSS or SSSS, and j is an integer greater than or equal to 1.
  • j is an integer greater than or equal to 1.
  • an embodiment of the present application provides a synchronization signal block transmission method.
  • the method includes: a second terminal device receives a side link synchronization signal block from a first terminal device, and the side link synchronization signal block includes PSBCH, SPSS and SSSS; the second terminal equipment parses the side link synchronization signal block; wherein, the PSBCH includes M OFDM symbols in the time domain, M is an integer greater than or equal to 6, PSBCH does not include DMRS; PSBCH includes N in the frequency domain RBs, N is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N in the frequency domain RB.
  • the PSBCH includes 11 RBs in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain; in the time domain, if the jth OFDM symbol of the side link synchronization signal block corresponds to PSBCH, then the j-1th OFDM symbol and/or the j+1th OFDM symbol of the side link synchronization signal block corresponds to SPSS or SSSS, and j is an integer greater than or equal to 1.
  • an embodiment of the present application provides a first terminal device, including: a processing unit, configured to generate a side link synchronization signal block; a sending unit, configured to send a side link synchronization signal block to a second terminal device ,
  • the side link synchronization signal block includes PSBCH, SPSS, and SSSS; among them, PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, and DMRS includes K OFDM symbols among M OFDM symbols in the time domain.
  • DMRS Mapping is performed every n-1 subcarriers in the frequency domain, n is an integer greater than or equal to 1, M is an integer greater than or equal to 6, K is a positive integer less than or equal to M, PSBCH includes N RBs in the frequency domain, N It is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs in the frequency domain.
  • the PSBCH includes 11 RBs in the frequency domain, the PSBCH includes 6 OFDM symbols in the time domain, and 6 OFDM symbols are arranged consecutively; the DMRS includes 6 OFDM symbols in the time domain, and the DMRS is The mapping is performed every 3 or 4 subcarriers in the frequency domain.
  • the PSBCH includes 11 RBs in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain.
  • the 6 OFDM symbols include the first group of OFDM symbols and the second group of OFDM symbols.
  • the OFDM symbols and the second group of OFDM symbols respectively include 3 OFDM symbols.
  • the first group of OFDM symbols are arranged continuously, and the second group of OFDM symbols are arranged continuously.
  • the interval between the first group of OFDM symbols and the second group of OFDM symbols is SPSS or SSSS;
  • a group of OFDM symbols and a middle OFDM symbol of the second group of OFDM symbols are mapped with DMRS, and the DMRS is mapped every n-1 subcarriers in the frequency domain, and n is an integer greater than 1.
  • PSBCH includes 11 RBs in the frequency domain
  • PSBCH includes 8 OFDM symbols in the time domain
  • PSBCH includes DMRS and data
  • data includes 6 OFDM symbols in the time domain
  • DMRS is in the time domain.
  • the domain includes 2 OFDM symbols; in the time domain, if the i-th OFDM symbol of the side link synchronization signal block corresponds to data, then the i-1th OFDM symbol and/or the first OFDM symbol of the side link synchronization signal block i+1 OFDM symbols correspond to SPSS or SSSS or DMRS, i is an integer greater than or equal to 1; DMRS is mapped on each subcarrier in the frequency domain.
  • an embodiment of the present application provides a second terminal device, including a receiving unit, configured to receive a side link synchronization signal block from the first terminal device, the side link synchronization signal block including PSBCH, SPSS, and SSSS Processing unit, used to analyze the side link synchronization signal block; wherein, PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, and DMRS includes K OFDM symbols of M OFDM symbols in the time domain, DMRS Mapping is performed every n-1 subcarriers in the frequency domain, n is an integer greater than or equal to 1, M is an integer greater than or equal to 6, K is a positive integer less than or equal to M, PSBCH includes N RBs in the frequency domain, N It is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs in the frequency domain.
  • the PSBCH includes 11 RBs in the frequency domain, the PSBCH includes 6 OFDM symbols in the time domain, and 6 OFDM symbols are arranged consecutively; the DMRS includes 6 OFDM symbols in the time domain, and the DMRS is The mapping is performed every 3 or 4 subcarriers in the frequency domain.
  • the PSBCH includes 11 RBs in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain.
  • the 6 OFDM symbols include the first group of OFDM symbols and the second group of OFDM symbols.
  • the OFDM symbols and the second group of OFDM symbols respectively include 3 OFDM symbols.
  • the first group of OFDM symbols are arranged continuously, and the second group of OFDM symbols are arranged continuously.
  • the interval between the first group of OFDM symbols and the second group of OFDM symbols is SPSS or SSSS;
  • a group of OFDM symbols and a middle OFDM symbol of the second group of OFDM symbols are mapped with DMRS, and the DMRS is mapped every n-1 subcarriers in the frequency domain, and n is an integer greater than 1.
  • PSBCH includes 11 RBs in the frequency domain
  • PSBCH includes 8 OFDM symbols in the time domain
  • PSBCH includes DMRS and data
  • data includes 6 OFDM symbols in the time domain.
  • the domain includes 2 OFDM symbols; in the time domain, if the i-th OFDM symbol of the side link synchronization signal block corresponds to data, then the i-1th OFDM symbol and/or the first OFDM symbol of the side link synchronization signal block i+1 OFDM symbols correspond to SPSS or SSSS or DMRS, i is an integer greater than or equal to 1; DMRS is mapped on each subcarrier in the frequency domain.
  • an embodiment of the present application provides a first terminal device, including: a processing unit, configured to generate a side link synchronization signal block; a sending unit, configured to send a side link synchronization signal block to a second terminal device ,
  • the side link synchronization signal block includes PSBCH, SPSS, and SSSS; among them, PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, and DMRS includes K OFDM symbols among M OFDM symbols in the time domain.
  • DMRS Part or all of the Y subcarriers where SPSS and SSSS are not mapped in the frequency domain are mapped;
  • M is an integer greater than or equal to 6
  • K is a positive integer less than or equal to M
  • Y is an integer greater than or equal to 1;
  • PSBCH is in the frequency domain Includes N RBs, where N is an integer greater than 6;
  • SPSS includes 2 OFDM symbols in the time domain, SPSS includes N RBs in the frequency domain;
  • SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs.
  • PSBCH includes 144 subcarriers in the frequency domain, and PSBCH includes 6 OFDM symbols in the time domain; DMRS is not mapped in the frequency domain on the 17 subcarriers of SPSS and SSSS. ; 17 sub-carriers include the first part and the second part, the number of sub-carriers included in the first part is U, the number of sub-carriers included in the second part is 17-U, U is an integer greater than or equal to 0; DMRS in the first part every other n-1 subcarriers are mapped, and the DMRS is mapped every m-1 subcarriers on the second part. n is an integer greater than or equal to 1 and less than or equal to 16, and m is an integer greater than or equal to 1 and less than or equal to 16.
  • the PSBCH includes 132 subcarriers in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain; the DMRS is not mapped in the frequency domain on the 5 subcarriers of SPSS and SSSS, partially or completely mapped ; 5 subcarriers include the first part and the second part, the number of subcarriers included in the first part is U, the number of subcarriers included in the second part is 5-U, and U is an integer greater than or equal to 0; DMRS is in the first part every other n-1 subcarriers are mapped, DMRS is mapped every m-1 subcarriers on the second part, n is an integer greater than or equal to 1 and less than or equal to 4, and m is an integer greater than or equal to 1 and less than or equal to 4.
  • an embodiment of the present application provides a second terminal device, including: a receiving unit, configured to receive a side link synchronization signal block from the first terminal device, the side link synchronization signal block including PSBCH, SPSS, and SSSS Processing unit, used to analyze the side link synchronization signal block; wherein, PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, and DMRS includes K OFDM symbols of M OFDM symbols in the time domain, DMRS Part or all of the Y subcarriers where SPSS and SSSS are not mapped in the frequency domain are mapped; M is an integer greater than or equal to 6, K is a positive integer less than or equal to M, and Y is an integer greater than or equal to 1; PSBCH is in the frequency domain Includes N RBs, where N is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and
  • PSBCH includes 144 subcarriers in the frequency domain, and PSBCH includes 6 OFDM symbols in the time domain; DMRS is not mapped in the frequency domain on the 17 subcarriers of SPSS and SSSS. ; 17 sub-carriers include the first part and the second part, the number of sub-carriers included in the first part is U, the number of sub-carriers included in the second part is 17-U, U is an integer greater than or equal to 0; DMRS in the first part every other n-1 subcarriers are mapped, and the DMRS is mapped every m-1 subcarriers on the second part. n is an integer greater than or equal to 1 and less than or equal to 16, and m is an integer greater than or equal to 1 and less than or equal to 16.
  • the PSBCH includes 132 subcarriers in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain; the DMRS is not mapped in the frequency domain on the 5 subcarriers of SPSS and SSSS, partially or completely mapped ; 5 subcarriers include the first part and the second part, the number of subcarriers included in the first part is U, the number of subcarriers included in the second part is 5-U, and U is an integer greater than or equal to 0; DMRS is in the first part every other n-1 subcarriers are mapped, DMRS is mapped every m-1 subcarriers on the second part, n is an integer greater than or equal to 1 and less than or equal to 4, and m is an integer greater than or equal to 1 and less than or equal to 4.
  • an embodiment of the present application provides a first terminal device, including: a processing unit, configured to generate a side link synchronization signal block; and a sending unit, configured to send a side link synchronization signal to a second terminal device Block
  • the side link synchronization signal block includes the side link physical broadcast channel PSBCH, the side link primary synchronization signal SPSS, and the side link secondary synchronization signal SSSS; among them, the PSBCH includes M OFDM symbols in the time domain, M is an integer greater than or equal to 6, PSBCH does not include DMRS; PSBCH includes N RBs in the frequency domain, and N is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, and SPSS includes N RBs in the frequency domain ; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs in the frequency domain.
  • the PSBCH includes 11 RBs in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain; in the time domain, if the jth OFDM symbol of the side link synchronization signal block corresponds to PSBCH, then the j-1th OFDM symbol and/or the j+1th OFDM symbol of the side link synchronization signal block corresponds to SPSS or SSSS, and j is an integer greater than or equal to 1.
  • an embodiment of the present application provides a second terminal device, including: a receiving unit, configured to receive a side-link synchronization signal block from the first terminal device, the side-link synchronization signal block includes Physical broadcast channel PSBCH, side link primary synchronization signal SPSS and side link secondary synchronization signal SSSS; processing unit for parsing the side link synchronization signal block; where PSBCH includes M OFDM symbols in the time domain, M is an integer greater than or equal to 6, PSBCH does not include DMRS; PSBCH includes N RBs in the frequency domain, and N is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, and SPSS includes N RBs in the frequency domain ; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs in the frequency domain.
  • PSBCH includes M OFDM symbols in the time domain, M is an integer greater than or equal to 6, PS
  • the PSBCH includes 11 RBs in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain; in the time domain, if the jth OFDM symbol of the side link synchronization signal block corresponds to PSBCH, then the j-1th OFDM symbol and/or the j+1th OFDM symbol of the side link synchronization signal block corresponds to SPSS or SSSS, and j is an integer greater than or equal to 1.
  • an embodiment of the present application also provides a device, which may be a first terminal device or a chip.
  • the device includes a processor, configured to implement any one of the synchronization signal block transmission methods provided in the first, third, or fifth aspects.
  • the device may also include a memory for storing program instructions and data.
  • the memory may be a memory integrated in the device or an off-chip memory provided outside the device.
  • the memory is coupled with the processor, and the processor can call and execute program instructions stored in the memory to implement any one of the synchronization signal block transmission methods provided in the first, third, or fifth aspects.
  • the device may also include a communication interface, which is used for the device to communicate with other devices (for example, a second terminal device).
  • an embodiment of the present application also provides a device, which may be a second terminal device or a chip.
  • the device includes a processor, configured to implement any one of the synchronization signal block transmission methods provided in the second aspect, the fourth aspect, or the sixth aspect.
  • the device may also include a memory for storing program instructions and data.
  • the memory may be a memory integrated in the device or an off-chip memory provided outside the device.
  • the memory is coupled with the processor, and the processor can call and execute the program instructions stored in the memory to implement any one of the synchronization signal block transmission methods provided in the second, fourth, or sixth aspects.
  • the device may also include a communication interface for the device to communicate with other devices (for example, the first terminal device).
  • embodiments of the present application provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to perform any of the synchronization signal block transmissions provided in the first to sixth aspects above method.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute any one of the synchronization signal block transmission methods provided in the first to sixth aspects. .
  • an embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for implementing any of the synchronization signal block transmission methods provided in the first to sixth aspects.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • an embodiment of the present application provides a synchronization signal block transmission system.
  • the system includes the first terminal device in the seventh aspect and the second terminal device in the eighth aspect, or the system includes the first terminal device.
  • Figure 1 is a schematic structural diagram of a synchronization signal in LTE V2X;
  • FIG. 2 is a schematic structural diagram of a transmission method suitable for synchronization signal blocks according to an embodiment of the application
  • FIG. 3 is a schematic structural diagram of a first terminal device or a second terminal device according to an embodiment of the application
  • Fig. 4 is a schematic structural diagram of a synchronization signal block provided in NR;
  • FIG. 5 is a schematic diagram of signal interaction of a transmission method suitable for synchronization signal blocks according to an embodiment of the application
  • FIG. 6 is a schematic structural diagram of an SSSB provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of another SSSB provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a PSBCH provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 15 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of another PSBCH provided by an embodiment of this application.
  • FIG. 20 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 21 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 22 is a schematic structural diagram of another PSBCH provided by an embodiment of this application.
  • FIG. 23 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 24 is a schematic structural diagram of another SSSB provided by an embodiment of this application.
  • FIG. 25 is a schematic structural diagram of still another first terminal device according to an embodiment of this application.
  • FIG. 26 is a schematic structural diagram of yet another second terminal device according to an embodiment of this application.
  • the embodiments of the present application provide a method and device for transmitting a synchronization signal block, which are applied in an NR V2X scenario. Specifically, it can be applied to a scenario in which the first terminal device and the second terminal device are synchronized through a side link in NR V2X.
  • FIG 2 shows a schematic diagram of a communication system to which the technical solution provided by an embodiment of the present invention is applicable.
  • the communication system may include one or more network devices (for example, base stations) (only one is shown in Figure 1) and one or Multiple terminal devices, for example, include a first terminal device and a second terminal device.
  • the base station communicates with the first terminal device or the second terminal device through the Uu interface, and the first terminal device and the second terminal device communicate through the PC5 interface.
  • the direct communication link of the PC5 interface is defined as SL.
  • the base station may be an evolved base station (evolved node base station, eNB) or a next generation evolved node base station (ng-eNB) in LTE.
  • the base station may be the next generation node base station (gNB), new radio eNB (new radio eNB), Acer in the fifth generation mobile communication technology (5-Generation, 5G) network (ie NR network) Stations, micro base stations, high-frequency base stations, or transmission and reception points (TRP)), etc., may also be other forms of equipment, such as street lamps and road side units (RSU).
  • 5G fifth generation mobile communication technology
  • TRP transmission and reception points
  • RSU road side units
  • the first terminal device or the second terminal device may include various devices with wireless communication functions, or units, components, devices, chips, or system-on-chips (SOC) in this device, which have wireless communication functions
  • the device of may be, for example, a vehicle-mounted device, a wearable device, a computing device, or other devices connected to a wireless modem, such as a mobile station (MS), terminal, or UE.
  • the first terminal device or the second terminal device may also be various types of vehicle user equipment (VUE) or a traffic device with a built-in computer, such as, but not limited to, traffic signal lights, street lights, electronic eyes, etc.
  • VUE vehicle user equipment
  • traffic device with a built-in computer such as, but not limited to, traffic signal lights, street lights, electronic eyes, etc.
  • the first terminal device or the second terminal device in FIG. 2 of the embodiment of the present application may be implemented by one device, or may be a functional module in one device, which is not specifically limited in the embodiment of the present application. It is understandable that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on platforms (for example, cloud platforms), or chip systems . In the embodiments of the present application, the chip system may be composed of chips, or may include chips and other discrete devices.
  • FIG. 3 is a schematic diagram of the hardware structure of an apparatus 300 provided by an embodiment of the application.
  • the apparatus 300 includes at least one processor 301 configured to implement the functions of the first terminal device or the second terminal device provided in the embodiment of the present application.
  • the device 300 may also include a communication bus 302 and at least one communication interface 304.
  • the device 300 may also include a memory 303.
  • the processor may be a central processing unit (CPU), a general-purpose processor, a network processor (NP), a digital signal processing (DSP), or a micro-processing unit.
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing
  • PLD programmable logic devices
  • the processor can also be any other device with processing functions, such as application-specific integrated circuit (ASIC), field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices , Hardware components, software modules or any combination thereof.
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • FPGA Field Programmable Gate Array
  • the communication bus 302 can be used to transfer information between the aforementioned components.
  • the communication interface 304 is used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc.
  • the communication interface 304 may be an interface, a circuit, a transceiver or other devices capable of realizing communication, which is not limited in this application.
  • the communication interface 304 may be coupled with the processor 301.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or storage
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices or can be used to carry or store desired commands or data structures Program code and any other medium that can be accessed by the computer, but not limited to this.
  • the memory may exist independently, or may be coupled with the processor, for example, through the communication bus 302.
  • the memory can also be integrated with the processor.
  • the memory 303 is used to store program instructions, and the processor 301 can control the execution, so as to implement the synchronization signal block transmission method provided in the following embodiments of the present application.
  • the processor 301 is configured to call and execute instructions stored in the memory 303, so as to implement the synchronization signal block transmission method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program code, which is not specifically limited in the embodiments of the present application.
  • the memory 303 may be included in the processor 301.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3.
  • the apparatus 300 may include multiple processors, such as the processor 301 and the processor 307 in FIG. 3. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the apparatus 300 may further include an output device 305 and an input device 306.
  • the output device 305 is coupled with the processor 301, and can display information in a variety of ways.
  • the output device 305 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 306 is coupled to the processor 301 and can receive user input in a variety of ways.
  • the input device 306 may be a touch screen device or a sensor device or the like.
  • NR newly defines a synchronization signal block (synchronization signal block, SSB), an SSB can be composed of primary synchronization signal (primary synchronization signal, PSS), secondary synchronization signal (secondary synchronization signal, SSS) and physical broadcast channel ( physical broadcast channel, PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the main function of PSS and SSS is to help the UE to identify and synchronize with the cell, while the PBCH contains the most basic system information such as system frame number and intra-frame timing information.
  • the successful reception of the synchronization signal block by the UE is a prerequisite for its access to the cell.
  • the synchronization signal block includes 4 OFDM symbols in the time domain and 20 RBs in the frequency domain.
  • the PSS includes the first OFDM symbol of the synchronization signal block in the time domain and 127 subcarriers in the frequency domain.
  • the SSS includes the third OFDM symbol of the synchronization signal block in the time domain and includes the third OFDM symbol of the synchronization signal block in the frequency domain.
  • 127 subcarriers (SC) PBCH includes the second, third, and fourth OFDM symbols of the synchronization signal block in the time domain, PBCH occupies 240 subcarriers on the second and fourth OFDM symbols, and in the third OFDM symbol The symbol occupies 48 subcarriers. Since the bandwidth of the PSS or SSS is smaller than the bandwidth of the PBCH, there is no PSS/SSS on part of the bandwidth that can provide channel estimation for the PBCH, thereby affecting the decoding performance of the PBCH.
  • the embodiments of the present application provide a method and device for transmitting synchronization signal blocks, and design multiple possible side link synchronization signal block structures.
  • the structure of the side link synchronization signal block includes the number of OFDM symbols occupied by the PSBCH, SPSS and SSSS of the side link synchronization signal block in the time domain, the number of RBs or the number of subcarriers occupied respectively in the frequency domain, and the PSBCH , SPSS and SSSS arrangement order, etc.
  • the PSBCH payload can be estimated through at least one of SPSS, SSSS, or DMRS, where the bandwidth of SPSS, SSSS, and PSBCH are all greater than 6 RB, which can improve the accuracy of channel estimation and the decoding performance of PSBCH payload.
  • a specific DMRS mapping method is also designed, which can minimize the resources occupied by DMRS and save transmission resources for more transmission while ensuring the accuracy of channel estimation. Much data.
  • symbols and subcarriers respectively represent the granular units of the time-frequency resources of the transmission signal in the time domain and the frequency domain. They may have meanings in the current communication system or in the future communication system. meaning. In addition, if their names are changed in the future communication system, they can also be converted to the names in the future communication system.
  • SSSB may be S-SSB
  • SPSS may be S-PSS
  • SSSS may be S-SSS.
  • an embodiment of the present application provides a method for transmitting a synchronization signal block.
  • the synchronization signal block is SSSB as an example for description, including:
  • the first terminal device generates a side link synchronization signal block.
  • the side link synchronization signal block includes PSBCH, SPSS and SSSS.
  • SPSS can be generated by ZC (Zadoff-Chu) sequence
  • SSSS can be generated by interleaving two M sequences.
  • the first terminal device sends the side link synchronization signal block to the second terminal device.
  • PSBCH includes M OFDM symbols in the time domain
  • PSBCH includes DMRS
  • DMRS in the time domain includes K OFDM symbols among M OFDM symbols.
  • the DMRS is mapped every n-1 subcarriers. Is an integer greater than or equal to 1, M is an integer greater than or equal to 6, K is a positive integer less than or equal to M, PSBCH includes N RBs in the frequency domain, and N is an integer greater than 6.
  • SPSS includes 2 OFDM symbols in the time domain
  • SPSS includes N RBs in the frequency domain
  • SSSS includes 2 OFDM symbols in the time domain
  • SSSS includes N RBs in the frequency domain.
  • the PSBCH includes 11 RBs in the frequency domain and 6 OFDM symbols in the time domain, and the 6 OFDM symbols are arranged consecutively.
  • the DMRS includes 6 OFDM symbols in the time domain, and the DMRS is mapped every 3 or 4 subcarriers in the frequency domain.
  • data ie PSBCH payload
  • DMRS is mapped every 3 or 4 subcarriers in the frequency domain.
  • the DMRS on the OFDM symbol can provide a channel estimation result for the PSBCH payload on the OFDM symbol, which can improve the accuracy of channel estimation.
  • the DMRS is evenly distributed in the frequency domain (mapping every 3 or 4 subcarriers), the accuracy of channel estimation can be further improved.
  • SSSB may include 10 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first and second OFDM symbols may be SPSS, and the third to eighth OFDM symbols For PSBCH, the ninth and tenth OFDM symbols can be SSSS.
  • the DMRS includes 6 OFDM symbols in the time domain, and the DMRS is mapped every 3 or 4 subcarriers in the frequency domain.
  • SSSB may include 10 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first and second OFDM symbols may be SPSS, and the third and fourth OFDM symbols are SSSS, the fifth to tenth OFDM symbols can be PSBCH.
  • the DMRS includes 6 OFDM symbols in the time domain, and the DMRS is mapped every 3 or 4 subcarriers in the frequency domain.
  • the DMRS includes 6 OFDM symbols in the time domain, and the DMRS can be mapped every 3 subcarriers in the frequency domain. That is, the DMRS can be mapped every 3 subcarriers on the 132 subcarriers occupied by the PSBCH. The carrier is mapped.
  • Each (shaded or blank) small cell in FIG. 8 represents a resource element (RE).
  • One RE occupies one subcarrier in the frequency domain and one OFDM symbol in the time domain.
  • PSBCH includes 11 RBs in the frequency domain and 6 OFDM symbols in the time domain, of which 5 OFDM symbols are arranged consecutively; DMRS includes 6 OFDM symbols in the time domain, and DMRS is in the frequency domain.
  • the mapping is performed every 3 or 4 subcarriers on the domain.
  • PSBCH payload and DMRS exist on each OFDM symbol occupied by PSBCH.
  • the DMRS on the OFDM symbol can provide a channel estimation result for the PSBCH payload on the OFDM symbol, which can improve the accuracy of channel estimation.
  • the DMRS is evenly distributed in the frequency domain (mapping every 3 or 4 subcarriers), the accuracy of channel estimation can be further improved.
  • the SSSB may include 10 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH, and the second and third OFDM symbols may be SPSS.
  • the fourth and fifth OFDM symbols may be SSSS, and the sixth to tenth OFDM symbols may be PSBCH.
  • the DMRS includes 6 OFDM symbols in the time domain, and the DMRS is mapped every 3 or 4 subcarriers in the frequency domain.
  • the SSSB may include 10 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH, and the second and third OFDM symbols may be SPSS.
  • the fourth to eighth OFDM symbols may be PSBCH, and the ninth and tenth OFDM symbols may be SSSS.
  • the DMRS includes 6 OFDM symbols in the time domain, and the DMRS is mapped every 3 or 4 subcarriers in the frequency domain.
  • the PSBCH includes 11 RBs in the frequency domain, and the PSBCH includes 6 OFDM symbols in the time domain.
  • the 6 OFDM symbols include the first group of OFDM symbols and the second group of OFDM symbols.
  • the first group of OFDM symbols and the second group of OFDM symbols respectively include 3 OFDM symbols, the first group of OFDM symbols are arranged continuously, and the second group of OFDM symbols are arranged continuously.
  • the interval between the first group of OFDM symbols and the second group of OFDM symbols is SPSS or SSSS.
  • the first group of OFDM symbols and the second group of OFDM symbols are separated by one or two OFDM symbols, and SPSS and/or SSSS are placed on the one or two OFDM symbols.
  • DMRS is mapped on the middle OFDM symbol of the first group of OFDM symbols and the second group of OFDM symbols, and the DMRS is mapped every n-1 subcarriers in the frequency domain, and n is an integer greater than 1.
  • n can be 4 or 5.
  • channel estimation can be performed on the PSBCH payload based on the DMRS on the same symbol and/or adjacent SPSS/SSSS/DMRS, which can improve the accuracy of channel estimation.
  • the DMRS is evenly distributed in the frequency domain (mapped every 3 or 4 subcarriers), the accuracy of channel estimation can be further improved.
  • the SSSB may include 10 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first and second OFDM symbols may be SPSS, and the third to fifth OFDM symbols For PSBCH, the sixth OFDM symbol may be SSSS, the seventh to ninth OFDM symbols may be PSBCH, and the tenth OFDM symbol may be SSSS.
  • the fourth and eighth OFDM symbols are mapped with DMRS, and the DMRS is mapped every n-1 subcarriers in the frequency domain, and n is an integer greater than 1.
  • n can be 4 or 5, that is, the DMRS is mapped every 3 or 4 subcarriers in the frequency domain.
  • psbch(k) represents the kth of all OFDM symbols occupied by the PSBCH payload, and k is an integer greater than or equal to 1, and k is less than or equal to 6 in FIG. 11.
  • the channel estimation of psbch(1) can be done jointly by SPSS and DMRS
  • the channel estimation of psbch(2) is done by DMRS
  • the channel estimation of psbch(3) is done by SSSS and DMRS
  • the channel estimation of psbch(4) is done by SSSS and DMRS is jointly completed
  • the channel estimation of psbch(5) is completed by DMRS
  • the channel estimation of psbch(6) is jointly completed by SPSS and DMRS, which can improve the accuracy of channel estimation.
  • SSSB may include 10 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH, and the second and third OFDM symbols
  • the symbol is SPSS
  • the fourth to sixth OFDM symbols may be PSBCH
  • the seventh OFDM symbol may be SSSS
  • the eighth and ninth OFDM symbols may be PSBCH
  • the tenth OFDM symbol may be SSSS.
  • the DMRS is mapped on the fifth OFDM symbol
  • the DMRS is mapped every n-1 subcarriers in the frequency domain, and n is an integer greater than 1.
  • n can be 4 or 5.
  • psbch(k) represents the kth of all OFDM symbols occupied by the PSBCH payload
  • k is an integer greater than or equal to 1
  • k is less than or equal to 6 in FIG. 12.
  • the channel estimation of psbch(1) can be done by SPSS
  • the channel estimation of psbch(2) is done jointly by SPSS and DMRS
  • the channel estimation of psbch(3) is done by DMRS
  • the channel estimation of psbch(4) is done by SSSS and DMRS.
  • the channel estimation of psbch(5) is completed by SSSS
  • the channel estimation of psbch(6) is completed by SSSS, which can improve the accuracy of channel estimation.
  • SSSB may include 10 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH, and the second and third OFDM symbols
  • the symbol is SPSS
  • the fourth and fifth OFDM symbols may be PSBCH
  • the sixth OFDM symbol may be SSSS
  • the seventh to ninth OFDM symbols may be PSBCH
  • the tenth OFDM symbol may be SSSS.
  • the DMRS is mapped on the eighth OFDM symbol
  • the DMRS is mapped every n-1 subcarriers in the frequency domain, and n is an integer greater than 1.
  • n can be 4 or 5.
  • psbch(k) represents the kth of all OFDM symbols occupied by the PSBCH payload, and k is an integer greater than or equal to 1, and k is less than or equal to 6 in FIG. 13.
  • the channel estimation of psbch(1) can be done by SPSS
  • the channel estimation of psbch(2) can be done by SPSS
  • the channel estimation of psbch(3) can be done by SSSS
  • the channel estimation of psbch(4) can be done by SSSS and DMRS jointly
  • psbch( The channel estimation of 5) is completed by DMRS
  • the channel estimation of psbch(6) is completed by DMRS and SSSS jointly, which can improve the accuracy of channel estimation.
  • PSBCH includes 11 RBs in the frequency domain
  • PSBCH includes 8 OFDM symbols in the time domain
  • PSBCH includes DMRS and data (ie PSBCH payload), and data includes 6 OFDM symbols in the time domain.
  • DMRS includes 2 OFDM symbols in the time domain; in the time domain, if the i-th OFDM symbol of SSSB corresponds to data, then the i-1th OFDM symbol and/or i+1th OFDM symbol of SSSB correspond to SPSS Or SSSS or DMRS, i is an integer greater than or equal to 1; DMRS is mapped on each subcarrier in the frequency domain.
  • the PSBCH payload on each OFDM symbol has adjacent SPSS/SSSS/DMRS for channel estimation.
  • channel estimation of PSBCH payload can be performed based on adjacent SPSS/SSSS/DMRS, which can improve the accuracy of channel estimation.
  • SSSB may include 12 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH
  • the second and third OFDM symbols may be SPSS.
  • the fourth to sixth OFDM symbols can be PSBCH
  • the seventh OFDM symbol can be SSSS
  • the eighth to tenth OFDM symbol can be PSBCH
  • the eleventh OFDM symbol can be SSSS
  • the twelfth OFDM symbol can be PSBCH
  • the fifth and ninth OFDM symbols are mapped with DMRS, and the DMRS is mapped on each subcarrier in the frequency domain.
  • psbch(k) represents the kth of all OFDM symbols occupied by the PSBCH payload, and k is an integer greater than or equal to 1, and k is less than or equal to 6 in FIG. 14.
  • the channel estimation of psbch(1) can be done by SPSS
  • the channel estimation of psbch(2) is done jointly by SPSS and DMRS
  • the channel estimation of psbch(3) is done jointly by DMRS and SSSS
  • the channel estimation of psbch(4) is done by SSSS and DMRS is jointly completed
  • the channel estimation of psbch(5) is jointly completed by DMRS and SSSS
  • the channel estimation of psbch(6) is completed by SSSS, which can improve the accuracy of channel estimation.
  • SSSB may include 12 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH, and the second and third OFDM symbols may be SPSS.
  • the fourth to tenth OFDM symbols may be PSBCH, and the eleventh and twelfth OFDM symbols may be SSSS.
  • the sixth and ninth OFDM symbols are mapped with DMRS, and the DMRS is mapped on each subcarrier in the frequency domain.
  • psbch(k) represents the kth of all OFDM symbols occupied by the PSBCH payload, and k is an integer greater than or equal to 1, and k is less than or equal to 6 in FIG. 15.
  • the channel estimation of psbch(1) can be done by SPSS
  • the channel estimation of psbch(2) is done by SPSS
  • the channel estimation of psbch(3) is done by DMRS
  • the channel estimation of psbch(4) is done by DMRS
  • the channel estimation of psbch(5) is completed by DMRS
  • the channel estimation of psbch(6) is jointly completed by DMRS and SSSS, which can improve the accuracy of channel estimation.
  • PSBCH includes 11 RBs in the frequency domain
  • PSBCH includes 7 OFDM symbols in the time domain
  • PSBCH includes DMRS and PSBCH payload
  • PSBCH payload includes 6 OFDM symbols in the time domain
  • DMRS Including 1 OFDM symbol in the time domain.
  • the i-th OFDM symbol of SSSB corresponds to PSBCH payload
  • the i-1th OFDM symbol and/or i+1th OFDM symbol of SSSB corresponds to SPSS or SSSS or DMRS, and i is greater than or equal to 1.
  • Integer DMRS maps each subcarrier in the frequency domain.
  • the PSBCH payload on each OFDM symbol has adjacent SPSS/SSSS/DMRS for channel estimation.
  • channel estimation of PSBCH payload can be performed based on adjacent SPSS/SSSS/DMRS, which can improve the accuracy of channel estimation.
  • SSSB may include 11 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH, and the second and third OFDM symbols may be SPSS.
  • the fourth to eight OFDM symbols may be PSBCH, the ninth OFDM symbol may be SSSS, the tenth OFDM symbol may be PSBCH, and the eleventh OFDM symbol may be SSSS.
  • the DMRS is mapped on the sixth OFDM symbol, and the DMRS is mapped on each subcarrier in the frequency domain.
  • psbch(k) represents the kth of all OFDM symbols occupied by the PSBCH payload
  • k is an integer greater than or equal to 1
  • k is less than or equal to 6 in FIG. 16.
  • the channel estimation of psbch(1) can be done by SPSS
  • the channel estimation of psbch(2) is done by SPSS
  • the channel estimation of psbch(3) is done by DMRS
  • the channel estimation of psbch(4) is done by DMRS
  • Channel estimation is done by SSSS
  • the channel estimation of psbch(6) is done by SSSS, which can improve the accuracy of channel estimation.
  • the SSSB may include 11 OFDM symbols and 11 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH
  • the second and third OFDM symbols may be SPSS
  • the fourth and fifth OFDM symbols may be SPSS.
  • One OFDM symbol may be PSBCH
  • the sixth OFDM symbol may be SSSS
  • the seventh to tenth OFDM symbols may be PSBCH
  • the eleventh OFDM symbol may be SSSS.
  • a DMRS is mapped on the ninth OFDM symbol, and the DMRS is mapped on each subcarrier in the frequency domain.
  • psbch(k) represents the kth of all OFDM symbols occupied by the PSBCH payload, and k is an integer greater than or equal to 1, and k is less than or equal to 6 in FIG. 17.
  • the channel estimation of psbch(1) can be done by SPSS
  • the channel estimation of psbch(2) is done by SPSS
  • the channel estimation of psbch(3) is done by SSSS
  • the channel estimation of psbch(4) is done by SSSS
  • the channel estimation of psbch(5) is done by SSSS.
  • the channel estimation is completed by DMRS
  • the channel estimation of psbch(6) is jointly completed by DMRS and SSSS, which can improve the accuracy of channel estimation.
  • the PSBCH includes 12 RBs in the frequency domain, that is, 144 subcarriers, and the PSBCH includes 6 OFDM symbols in the time domain; the DMRS does not map the upper part of the Y subcarriers of SPSS and SSSS in the frequency domain. Or map all.
  • DMRS is partially or completely mapped on 17 subcarriers where SPSS and SSSS are not mapped in the frequency domain; the 17 subcarriers include the first part and the second part. Specifically, the 17 subcarriers are mapped with 127 subcarriers of SPSS or SSSS.
  • the carrier is separated into a first part and a second part, and the first part of the subcarriers and the second part of the subcarriers are respectively located at both ends of the frequency domain occupied by the PSBCH.
  • the number of subcarriers included in the first part is U
  • the number of subcarriers included in the second part is 17-U
  • U is an integer greater than or equal to 0
  • the DMRS is mapped every n-1 subcarriers on the first part
  • the DMRS is In the second part, mapping is performed every m-1 subcarriers, n is an integer greater than or equal to 1 and less than or equal to 16, and m is an integer greater than or equal to 1 and less than or equal to 16.
  • PSBCH payload on each OFDM symbol has the DMRS and/or adjacent SPSS/SSSS/DMRS on the same symbol for channel estimation.
  • PSBCH DMRS is only placed on sub-carriers without PSS/SSS.
  • channel estimation can be performed on the PSBCH payload based on the DMRS on the same symbol and/or adjacent SPSS/SSSS/DMRS, which can improve the accuracy of channel estimation.
  • the SSSB may include 10 OFDM symbols in the time domain and 12 RBs in the frequency domain.
  • the first and second OFDM symbols may be SPSS
  • the third and fourth OFDM symbols are SSSS
  • the fifth to tenth OFDM symbols can be PSBCH.
  • the fifth to tenth OFDM symbols are mapped with DMRS, and the DMRS are located at both ends of the frequency domain occupied by the PSBCH.
  • the DMRS may be partially or completely mapped on 17 subcarriers where SPSS and SSSS are not mapped in the frequency domain.
  • the 17 subcarriers include the first part and the second part.
  • the first part may include 8 subcarriers
  • the second part may include 9 subcarriers.
  • the DMRS can be mapped every 2 subcarriers on the first part, and the DMRS can be mapped every 3 subcarriers on the second part.
  • psbch(k) represents the kth of all OFDM symbols occupied by the PSBCH payload
  • k is an integer greater than or equal to 1
  • k is less than or equal to 6.
  • the channel estimation of psbch(1)-psbch(6) can be completed by DMRS on respective symbols, which can improve the accuracy of channel estimation.
  • the SSSB may include 10 OFDM symbols in the time domain and 12 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH
  • the second and third OFDM symbols may be SPSS.
  • the fourth and fifth OFDM symbols may be PSBCH
  • the sixth OFDM symbol may be SSSS
  • the seventh and eighth OFDM symbols may be PSBCH
  • the ninth OFDM symbol may be SSSS
  • the tenth OFDM symbol may be PSBCH.
  • the first, fourth, fifth, seventh, eighth and tenth OFDM symbols are mapped with DMRS, and the DMRS are located at both ends of the frequency domain occupied by the PSBCH.
  • the specific mapping method refer to the related description in FIG. 19.
  • psbch(k) represents the kth of all OFDM symbols occupied by the PSBCH payload
  • k is an integer greater than or equal to 1
  • k is less than or equal to 6 in FIG. 20.
  • the channel estimation of psbch(1) can be done jointly by DMRS and SPSS
  • the channel estimation of psbch(2) is done jointly by DMRS and SPSS
  • the channel estimation of psbch(3) is done jointly by DMRS and SSSS
  • the channel estimation of psbch(4) It is jointly completed by DMRS and SSSS
  • the channel estimation of psbch(5) is jointly completed by DMRS and SSSS
  • the channel estimation of psbch(6) is jointly completed by DMRS and SSSS, which can improve the accuracy of channel estimation.
  • the SSSB may include 10 OFDM symbols in the time domain and 12 RBs in the frequency domain.
  • the first and second OFDM symbols may be SPSS
  • the third and fourth OFDM symbols are SSSS
  • the fifth to tenth OFDM symbols can be PSBCH.
  • the fifth to tenth OFDM symbols are mapped with DMRS.
  • the DMRS is located at one end of the frequency domain occupied by the PSBCH, that is, the 17 subcarriers that are not mapped to SPSS and SSSS in the frequency domain only include the first part or the second part, and The number of subcarriers included in the first part or the second part is 17.
  • the DMRS may be partially or completely mapped on 17 subcarriers where SPSS and SSSS are not mapped in the frequency domain; the 17 subcarriers include the first part or the second part, and the first part or the second part It can include 17 subcarriers. DMRS can be mapped every 4 subcarriers on the 17 subcarriers.
  • the SSSB may include 10 OFDM symbols in the time domain and 12 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH, and the first OFDM symbol may be PSBCH.
  • the second and third OFDM symbols are SPSS, the fourth and fifth OFDM symbols can be PSBCH, the sixth OFDM symbol can be SSSS, the seventh and eighth OFDM symbols can be PSBCH, the ninth OFDM symbol is SSSS, and the tenth The OFDM symbol may be PSBCH.
  • the first, fourth, fifth, seventh, eighth, and tenth OFDM symbols are mapped with DMRS, and the DMRS is located at one end of the frequency domain occupied by PSBCH, that is, 17 of the SPSS and SSSS are not mapped in the frequency domain.
  • Each subcarrier includes only the first part or the second part, and the number of subcarriers included in the first part or the second part is 17.
  • mapping method refer to the related description in FIG. 22.
  • the PSBCH includes 11 RBs in the frequency domain, that is, 132 subcarriers, and the PSBCH includes 6 OFDM symbols in the time domain; the DMRS does not map the upper part of the Y subcarriers of SPSS and SSSS in the frequency domain. Or map all. For example, the DMRS is partially or completely mapped on the 5 subcarriers where SPSS and SSSS are not mapped in the frequency domain. In this way, it is ensured that the PSBCH payload on each OFDM symbol has the DMRS and/or adjacent SPSS/SSSS/DMRS on the same symbol for channel estimation. Among them, PSBCH DMRS is only placed on sub-carriers without PSS/SSS. In this way, channel estimation can be performed on the PSBCH payload based on the DMRS on the same symbol and/or adjacent SPSS/SSSS/DMRS, which can improve the accuracy of channel estimation.
  • the above five subcarriers that are not mapped to SPSS and SSSS may include the first part and the second part. Specifically, the five subcarriers are separated into the first part and the second part by the 127 subcarriers mapped to SPSS or SSSS. A part of the subcarriers and the second part of the subcarriers are respectively located at both ends of the frequency domain occupied by the PSBCH.
  • the number of subcarriers included in the first part is U
  • the number of subcarriers included in the second part is 5-U
  • U is an integer greater than or equal to zero.
  • the first part may include 2 subcarriers
  • the second part may include 3 subcarriers.
  • the DMRS may be located at one end of the frequency domain occupied by the PSBCH, that is, the 5 subcarriers of the unmapped SPSS and SSSS only include the first part or the second part, and the number of subcarriers included in the first part or the second part is 5. .
  • the DMRS is mapped every n-1 subcarriers on the first part, and the DMRS is mapped every m-1 subcarriers on the second part.
  • n is an integer greater than or equal to 1 and less than or equal to 16
  • m is greater than or equal to 1.
  • PSBCH does not include DMRS.
  • the PSBCH may include 11 RBs in the frequency domain, and the PSBCH may include 6 OFDM symbols in the time domain.
  • the jth OFDM symbol of the SSSB corresponds to the PSBCH
  • the j-1th OFDM symbol and/or the j+1th OFDM symbol of the SSSB corresponds to SPSS or SSSS
  • j is an integer greater than or equal to 1.
  • the PSBCH payload on each OFDM symbol has adjacent SPSS/SSSS for channel estimation.
  • channel estimation of PSBCH payload can be performed based on adjacent SPSS/SSSS, which can improve the accuracy of channel estimation.
  • the SSSB may include 10 OFDM symbols in the time domain and 11 RBs in the frequency domain.
  • the first OFDM symbol may be PSBCH, and the second and third OFDM symbols may be SPSS.
  • the fourth and fifth OFDM symbols may be PSBCH
  • the sixth OFDM symbol may be SSSS
  • the seventh and eighth OFDM symbols may be PSBCH
  • the ninth OFDM symbol may be SSSS
  • the tenth OFDM symbol may be PSBCH.
  • psbch(k) represents the kth of all OFDM symbols occupied by the PSBCH payload, and k is an integer greater than or equal to 1, and k is less than or equal to 6 in FIG. 24.
  • the channel estimation of psbch(1) can be done by SPSS
  • the channel estimation of psbch(2) is done by SPSS
  • the channel estimation of psbch(3) is done by SSSS
  • the channel estimation of psbch(4) is done by SSSS
  • the channel estimation of psbch(5) is done by SSSS.
  • Channel estimation is done by SSSS
  • the channel estimation of psbch(6) is done by SSSS, which can improve the accuracy of channel estimation.
  • PSBCH includes 11 RBs in the frequency domain; PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, and DMRS includes K OFDM symbols out of M OFDM symbols in the time domain. M is equal to K; DMRS is mapped every 3 subcarriers in the frequency domain.
  • SSSB can be adjacent to other channels or gaps (GAP) in the time domain.
  • GAP channels or gaps
  • the first terminal device may periodically send the side link synchronization signal block to the second terminal device.
  • the first terminal device may send the sidelink synchronization signal block to the second terminal device within the burst set period (burst set period) of each sidelink synchronization signal (SLSS), SLSS burst set period
  • the duration can be 1ms, 5ms, 10ms and so on.
  • the second terminal device receives the side uplink synchronization signal block from the first terminal device.
  • step 502 For the structure of the side link synchronization signal block, reference may be made to the related description in step 502, which is not repeated here.
  • the second terminal device parses the side link synchronization signal block.
  • the second terminal device blindly checks the SPSS to obtain timing information, and blindly checks the SSSS according to the timing information to obtain the SSID. Furthermore, the DMRS mapped in the PSBCH is determined according to the timing information and the SSID, and then channel estimation is performed on the PSBCH on each OFDM symbol according to at least one of the DMRS, SPSS, and SSSS. Finally, the second terminal device can decode the PSBCH payload according to the channel estimation result to obtain the main system information.
  • the embodiments of the present application provide a method and device for transmitting synchronization signal blocks, and design multiple possible side link synchronization signal block structures.
  • the structure of the side link synchronization signal block includes the number of OFDM symbols occupied by the PSBCH, SPSS and SSSS of the side link synchronization signal block in the time domain, the number of RBs or the number of subcarriers occupied respectively in the frequency domain, and the PSBCH , SPSS and SSSS arrangement order, etc.
  • the PSBCH payload can be estimated through at least one of SPSS, SSSS, or DMRS, where the bandwidths of SPSS, SSSS, and PSBCH are all greater than 6 RB, which can improve the decoding performance of PSBCH payload.
  • a specific DMRS mapping method is also designed, which can minimize the resources occupied by DMRS and save transmission resources for more transmission while ensuring the accuracy of channel estimation. Much data.
  • the methods provided by the embodiments of the present application are introduced from the perspective of the first terminal device, the second terminal device, and the interaction between the first terminal device and the second terminal device.
  • the first terminal device and the second terminal device may include a hardware structure and/or a software module, in the form of a hardware structure, a software module, or a hardware structure plus a software module To achieve the above functions. Whether one of the above-mentioned functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 25 shows a possible structural diagram of the apparatus 25 involved in the above-mentioned embodiment.
  • the apparatus may be a first terminal device, and the first terminal device includes : Processing unit 2501 and sending unit 2502.
  • the processing unit 2501 is configured to generate a side uplink synchronization signal block; the sending unit 2502 is configured to send a side uplink synchronization signal block to the second terminal device, and the side uplink synchronization signal block includes PSBCH, SPSS and SSSS; among them, PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, DMRS includes K OFDM symbols out of M OFDM symbols in the time domain, and DMRS every n-1 in the frequency domain Subcarriers are mapped, n is an integer greater than or equal to 1, M is an integer greater than or equal to 6, K is a positive integer less than or equal to M, PSBCH includes N RBs in the frequency domain, and N is an integer greater than 6; SPSS The domain includes 2 OFDM symbols, SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs in the frequency domain; or PSBCH includes M OFDM in the time domain
  • the processing unit 2501 is configured to support the first terminal device to execute the process 501 in FIG. 5.
  • the sending unit 2502 is configured to support the first terminal device to execute the process 502 in FIG. 5.
  • all relevant content of each step involved in the above method embodiment can be cited in the function description of the corresponding function module, and will not be repeated here.
  • FIG. 26 shows a possible structural schematic diagram of the apparatus 26 involved in the foregoing embodiment.
  • the apparatus may be a second terminal device, and the second terminal device includes :Receiving unit 2601 and processing unit 2602.
  • the receiving unit 2601 is configured to receive the side link synchronization signal block from the first terminal device, and the side link synchronization signal block includes PSBCH, SPSS, and SSSS.
  • the processing unit 2602 is configured to parse the side link synchronization signal block; where the PSBCH includes M OFDM symbols in the time domain, the PSBCH includes DMRS, and the DMRS includes K OFDM symbols among the M OFDM symbols in the time domain, and DMRS Mapping is performed every n-1 subcarriers in the frequency domain, n is an integer greater than or equal to 1, M is an integer greater than or equal to 6, K is a positive integer less than or equal to M, PSBCH includes N RBs in the frequency domain, N Is an integer greater than 6; SPSS includes 2 OFDM symbols in the time domain, SPSS includes N RBs in the frequency domain; SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs in the frequency domain; or, PSBCH includes M OFDM symbols in the time domain, PSBCH includes DMRS, DMRS includes K OFDM symbols among M OFDM symbols in the time domain, and DMRS does not map part or all of the Y subcarriers of SP
  • M is an integer greater than or equal to 6
  • K is a positive integer less than or equal to M
  • Y is an integer greater than or equal to 1
  • PSBCH includes N RBs in the frequency domain, and N is an integer greater than 6
  • SPSS is in the time domain Including 2 OFDM symbols, SPSS includes N RBs in the frequency domain
  • SSSS includes 2 OFDM symbols in the time domain, and SSSS includes N RBs in the frequency domain
  • PSBCH includes M OFDM symbols in the time domain, M is an integer greater than or equal to 6
  • PSBCH does not include DMRS
  • PSBCH includes N RBs in the frequency domain, and N is an integer greater than 6
  • SPSS includes 2 OFDM symbols in the time domain, and SPSS includes N RBs in the frequency domain
  • SSSS includes 2 OFDM symbols in the time domain
  • SSSS includes N RBs in the frequency domain.
  • the receiving unit 2601 is used to support the second terminal device to perform the process 503 in FIG. 5; the processing unit 2602 is used to support the second terminal device to perform the process 504 in FIG.
  • the receiving unit 2601 is used to support the second terminal device to perform the process 503 in FIG. 5; the processing unit 2602 is used to support the second terminal device to perform the process 504 in FIG.
  • all relevant content of each step involved in the above method embodiment can be cited in the function description of the corresponding function module, and will not be repeated here.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the receiving unit and the sending unit may be integrated into the transceiver unit.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state drive (SSD)) )Wait.

Abstract

本申请实施例提供了一种同步信号块的传输方法和装置,涉及通信领域,能够提高PSBCH payload的解码性能和信道估计准确度。其方法为:第一终端设备生成侧行链路同步信号块;第一终端设备向第二终端设备发送侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上每隔n-1个子载波进行映射,n为大于等于1的整数,M为大于等于6的整数,K为小于等于M的正整数,PSBCH在频域上包括N个RB,N为大于6的整数;SPSS或SSSS分别在时域上包括2个OFDM符号,在频域上包括N个RB。本申请实施例应用于NR V2X场景中。

Description

一种同步信号块的传输方法和装置
本申请要求于2019年04月30日提交国家知识产权局、申请号为201910361704.4、申请名称为“一种同步信号块的传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种同步信号块的传输方法和装置。
背景技术
在车与任何事物通信(vehicle to X,V2X)中,定义了两种空口。第一种是陆地无线接入网络(universal terrestrial radio access network,UTRAN)和用户设备之间(user equipment,UE)接口,简称为Uu接口。Uu接口采用UE和基站之间的通信协议;第二种是近场通信(proximity communication,PC)5接口,PC5接口采用UE和UE之间的通信协议,PC5接口的直连通信链路被定义为侧行链路或侧链(sidelink,SL)。Uu接口基本沿用新无线(new radio,NR)的上下行传输协议。而PC5接口在频段分配,带宽,帧结构,传输模式以及信令定义等方面会有不同的设计。比如在频段方面,PC5接口可能考虑复用NR的上行频段,也可能采用非授权频段等等。
在PC5接口下,终端设备之间基于同步信号的通信完成同步,同步的基本流程如下:(1)UE1向UE2发送同步信号,同步信号包含侧行链路主同步信号(sidelink primary synchronization signal,SPSS)和侧行链路辅同步信号(sidelink secondary synchronization signal,SSSS)。(1)UE2盲检SPSS,获得定时信息,再解调出SSSS,获得侧行链路同步标识(sidelink synchronization identity,SSID)。(3)UE2根据SSID解扰侧行链路物理广播信道(physical sidelink broadcast channel,PSBCH),读取主系统消息。如图1所示,在长期演进(long term evolution,LTE)V2X中,PSBCH包括3个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的解调参考信号(demodulation reference signals,DMRS)和5个OFDM符号的负荷(payload),payload即PSBCH上承载的数据。其中,DMRS用于数据解码时的信道估计,其在频域上的映射密度为1,即在每个子载波上都进行映射。payload为PSBCH承载的数据部分,即主信息块(master information block,MIB)。图1中,同步信号和物理广播信道的带宽均为6个资源块(resource clock,RB)。
在新无线(new radio,NR)V2X中,如果沿用LTE V2X的设计,即同步信号和物理广播信道的带宽均为6RB。由于该带宽较小,无法达到很低的码率,会导致PSBCH payload的解码性能受限,并且DMRS比较稀疏,影响信道估计准确度,无法满足NR V2X高速场景下的低时延高可靠需求。
发明内容
本申请实施例提供一种同步信号块的传输方法和装置,能够提高PSBCH payload的解码性能和信道估计准确度。
第一方面,本申请实施例提供一种同步信号块的传输方法,该方法包括:第一终端设 备生成侧行链路同步信号块(sidelink synchronization signal block,SSSB);第一终端设备向第二终端设备发送侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上每隔n-1个子载波进行映射,n为大于等于1的整数,M为大于等于6的整数,K为小于等于M的正整数,PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在本申请中,可以通过SPSS、SSSS或DMRS中的至少一个对PSBCH payload进行信道估计,其中SPSS、SSSS和PSBCH的带宽均大于6RB,能够提高PSBCH payload的解码性能。并且,由于DMRS在频域上均匀分布(每隔n-1个子载波进行映射),能够提高信道估计的准确度。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号,6个OFDM符号连续排列;DMRS在时域上包括6个OFDM符号,DMRS在频域上每隔3个或4个子载波进行映射。在此方式下,PSBCH所占的每个OFDM符号上同时存在PSBCH payload和DMRS。对于PSBCH所占的每个OFDM符号,该OFDM符号上的DMRS可以为该OFDM符号上的PSBCH payload提供信道估计结果,能够提高信道估计的准确度。并且,由于DMRS在频域上均匀分布(每隔3个或4个子载波进行映射),能够进一步提高信道估计的准确度。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号,6个OFDM符号包括第一组OFDM符号和第二组OFDM符号,第一组OFDM符号和第二组OFDM符号分别包括3个OFDM符号,第一组OFDM符号连续排列,第二组OFDM符号连续排列,第一组OFDM符号和第二组OFDM符号的间隔为SPSS或SSSS;第一组OFDM符号和第二组OFDM符号的中间OFDM符号上映射有DMRS,DMRS在频域上每隔n-1个子载波进行映射,n为大于1的整数。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS用来进行信道估计。这样,可以基于同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS对PSBCH payload进行信道估计,能够提高信道估计的准确度。并且,由于DMRS在频域上均匀分布(每隔n-1子载波进行映射),能够进一步提高信道估计的准确度。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括8个OFDM符号,PSBCH包括DMRS和数据,数据在时域上包括6个OFDM符号,DMRS在时域上包括2个OFDM符号;在时域上,若侧行链路同步信号块的第i个OFDM符号对应数据,那么侧行链路同步信号块的第i-1个OFDM符号和/或第i+1个OFDM符号对应SPSS或SSSS或DMRS,i为大于等于1的整数;DMRS在频域上的每个子载波进行映射。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有相邻的SPSS/SSSS/DMRS用来进行信道估计。这样,可以基于相邻的SPSS/SSSS/DMRS对PSBCH payload进行信道估计,能够提高信道估计的准确度。
在一种可能的实现方式中,PSBCH在频域上包括11个RB;PSBCH在时域上包括M 个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,M与K相等;DMRS在频域上每隔3个子载波进行映射。这样,由于PSBCH的带宽大于6RB,能够提高PSBCH payload的解码性能。并且,由于DMRS在频域上均匀分布(每隔3个子载波进行映射),能够提高信道估计的准确度。
第二方面,本申请实施例提供一种同步信号块的传输方法,该方法包括:第二终端设备从第一终端设备接收侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;第二终端设备解析侧行链路同步信号块;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上每隔n-1个子载波进行映射,n为大于等于1的整数,M为大于等于6的整数,K为小于等于M的正整数,PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号,6个OFDM符号连续排列;DMRS在时域上包括6个OFDM符号,DMRS在频域上每隔3个或4个子载波进行映射。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号,6个OFDM符号包括第一组OFDM符号和第二组OFDM符号,第一组OFDM符号和第二组OFDM符号分别包括3个OFDM符号,第一组OFDM符号连续排列,第二组OFDM符号连续排列,第一组OFDM符号和第二组OFDM符号的间隔为SPSS或SSSS;第一组OFDM符号和第二组OFDM符号的中间OFDM符号上映射有DMRS,DMRS在频域上每隔n-1个子载波进行映射,n为大于1的整数。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括8个OFDM符号,PSBCH包括DMRS和数据,数据在时域上包括6个OFDM符号,DMRS在时域上包括2个OFDM符号;在时域上,若侧行链路同步信号块的第i个OFDM符号对应数据,那么侧行链路同步信号块的第i-1个OFDM符号和/或第i+1个OFDM符号对应SPSS或SSSS或DMRS,i为大于等于1的整数;DMRS在频域上的每个子载波进行映射。
在一种可能的实现方式中,PSBCH在频域上包括11个RB;PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,M与K相等;DMRS在频域上每隔3个子载波进行映射。
第二方面及其各种可能的实现方式的技术效果可以参见第一方面及其各种可能的实现方式的技术效果,此处不再赘述。
第三方面,本申请实施例提供一种同步信号块的传输方法,该方法包括:第一终端设备生成侧行链路同步信号块;第一终端设备向第二终端设备发送侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上未映射SPSS和SSSS的Y个子载波上部分或全部进行映射;M为大于等于6的整数,K为小于等于M的正整数,Y为大于等于1的整数;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个 OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在本申请中,可以通过SPSS、SSSS或DMRS中的至少一个对PSBCH payload进行信道估计,能够提高信道估计的准确度,其中SPSS、SSSS和PSBCH的带宽均大于6RB,能够提高PSBCH payload的解码性能。
在一种可能的实现方式中,PSBCH在频域上包括144个子载波,PSBCH在时域上包括6个OFDM符号;DMRS在频域上未映射SPSS和SSSS的17个子载波上部分或全部进行映射;17个子载波包括第一部分和第二部分,第一部分包括的子载波数目为U,第二部分包括的子载波数目为17-U,U为大于等于0的整数;DMRS在第一部分上每隔n-1个子载波进行映射,DMRS在第二部分上每隔m-1个子载波进行映射,n为大于等于1且小于等于16的整数,m为大于等于1且小于等于16的整数。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS用来进行信道估计。其中,PSBCH DMRS只放置于没有PSS/SSS的子载波上。这样,可以基于同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS对PSBCH payload进行信道估计,能够提高信道估计的准确度。
在一种可能的实现方式中,PSBCH在频域上包括132个子载波,PSBCH在时域上包括6个OFDM符号;DMRS在频域上未映射SPSS和SSSS的5个子载波上部分或全部进行映射;5个子载波包括第一部分和第二部分,第一部分包括的子载波数目为U,第二部分包括的子载波数目为5-U,U为大于等于0的整数;DMRS在第一部分上每隔n-1个子载波进行映射,DMRS在第二部分上每隔m-1子载波进行映射,n为大于等于1且小于等于4的整数,m为大于等于1且小于等于4的整数。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS用来进行信道估计。其中,PSBCH DMRS只放置于没有PSS/SSS的子载波上。这样,可以基于同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS对PSBCH payload进行信道估计,能够提高信道估计的准确度。
第四方面,本申请实施例提供一种同步信号块的传输方法,该方法包括:第二终端设备从第一终端设备接收侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;第二终端设备解析侧行链路同步信号块;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上未映射SPSS和SSSS的Y个子载波上部分或全部进行映射;M为大于等于6的整数,K为小于等于M的正整数,Y为大于等于1的整数;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在一种可能的实现方式中,PSBCH在频域上包括144个子载波,PSBCH在时域上包括6个OFDM符号;DMRS在频域上未映射SPSS和SSSS的17个子载波上部分或全部进行映射;17个子载波包括第一部分和第二部分,第一部分包括的子载波数目为U,第二部分包括的子载波数目为17-U,U为大于等于0的整数;DMRS在第一部分上每隔n-1个子载波进行映射,DMRS在第二部分上每隔m-1个子载波进行映射,n 为大于等于1且小于等于16的整数,m为大于等于1且小于等于16的整数。
在一种可能的实现方式中,PSBCH在频域上包括132个子载波,PSBCH在时域上包括6个OFDM符号;DMRS在频域上未映射SPSS和SSSS的5个子载波上部分或全部进行映射;5个子载波包括第一部分和第二部分,第一部分包括的子载波数目为U,第二部分包括的子载波数目为5-U,U为大于等于0的整数;DMRS在第一部分上每隔n-1个子载波进行映射,DMRS在第二部分上每隔m-1子载波进行映射,n为大于等于1且小于等于4的整数,m为大于等于1且小于等于4的整数。
第四方面及其各种可能的实现方式的技术效果可以参见第三方面及其各种可能的实现方式的技术效果,此处不再赘述。
第五方面,本申请实施例提供一种同步信号块的传输方法,该方法包括:第一终端设备生成侧行链路同步信号块;第一终端设备向第二终端设备发送侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;其中,PSBCH在时域上包括M个OFDM符号,M为大于等于6的整数,PSBCH不包括DMRS;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在本申请中,可以通过SPSS或SSSS中的至少一个对PSBCH payload进行信道估计,能够提高信道估计的准确度,其中SPSS和SSSS的带宽均大于6RB,能够提高PSBCH payload的解码性能。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号;在时域上,若侧行链路同步信号块的第j个OFDM符号对应PSBCH,那么侧行链路同步信号块的第j-1个OFDM符号和/或第j+1个OFDM符号对应SPSS或SSSS,j为大于等于1的整数。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有相邻的SPSS/SSSS用来进行信道估计。这样,可以基于相邻的SPSS/SSSS对PSBCH payload进行信道估计,能够提高信道估计的准确度。
第六方面,本申请实施例提供一种同步信号块的传输方法,该方法包括:第二终端设备从第一终端设备接收侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;第二终端设备解析侧行链路同步信号块;其中,PSBCH在时域上包括M个OFDM符号,M为大于等于6的整数,PSBCH不包括DMRS;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号;在时域上,若侧行链路同步信号块的第j个OFDM符号对应PSBCH,那么侧行链路同步信号块的第j-1个OFDM符号和/或第j+1个OFDM符号对应SPSS或SSSS,j为大于等于1的整数。
第六方面及其各种可能的实现方式的技术效果可以参见第五方面及其各种可能的实现方式的技术效果,此处不再赘述。
第七方面,本申请实施例提供一种第一终端设备,包括:处理单元,用于生成侧行链路同步信号块;发送单元,用于向第二终端设备发送侧行链路同步信号块,侧行链路同步 信号块包括PSBCH、SPSS和SSSS;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上每隔n-1个子载波进行映射,n为大于等于1的整数,M为大于等于6的整数,K为小于等于M的正整数,PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号,6个OFDM符号连续排列;DMRS在时域上包括6个OFDM符号,DMRS在频域上每隔3个或4个子载波进行映射。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号,6个OFDM符号包括第一组OFDM符号和第二组OFDM符号,第一组OFDM符号和第二组OFDM符号分别包括3个OFDM符号,第一组OFDM符号连续排列,第二组OFDM符号连续排列,第一组OFDM符号和第二组OFDM符号的间隔为SPSS或SSSS;第一组OFDM符号和第二组OFDM符号的中间OFDM符号上映射有DMRS,DMRS在频域上每隔n-1个子载波进行映射,n为大于1的整数。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括8个OFDM符号,PSBCH包括DMRS和数据,数据在时域上包括6个OFDM符号,DMRS在时域上包括2个OFDM符号;在时域上,若侧行链路同步信号块的第i个OFDM符号对应数据,那么侧行链路同步信号块的第i-1个OFDM符号和/或第i+1个OFDM符号对应SPSS或SSSS或DMRS,i为大于等于1的整数;DMRS在频域上的每个子载波进行映射。
第八方面,本申请实施例提供一种第二终端设备,包括:接收单元,用于从第一终端设备接收侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;处理单元,用于解析侧行链路同步信号块;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上每隔n-1个子载波进行映射,n为大于等于1的整数,M为大于等于6的整数,K为小于等于M的正整数,PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号,6个OFDM符号连续排列;DMRS在时域上包括6个OFDM符号,DMRS在频域上每隔3个或4个子载波进行映射。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号,6个OFDM符号包括第一组OFDM符号和第二组OFDM符号,第一组OFDM符号和第二组OFDM符号分别包括3个OFDM符号,第一组OFDM符号连续排列,第二组OFDM符号连续排列,第一组OFDM符号和第二组OFDM符号的间隔为SPSS或SSSS;第一组OFDM符号和第二组OFDM符号的中间OFDM符号上映射有DMRS,DMRS在频域上每隔n-1个子载波进行映射,n为大于1的整数。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括8 个OFDM符号,PSBCH包括DMRS和数据,数据在时域上包括6个OFDM符号,DMRS在时域上包括2个OFDM符号;在时域上,若侧行链路同步信号块的第i个OFDM符号对应数据,那么侧行链路同步信号块的第i-1个OFDM符号和/或第i+1个OFDM符号对应SPSS或SSSS或DMRS,i为大于等于1的整数;DMRS在频域上的每个子载波进行映射。
第九方面,本申请实施例提供一种第一终端设备,包括:处理单元,用于生成侧行链路同步信号块;发送单元,用于向第二终端设备发送侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上未映射SPSS和SSSS的Y个子载波上部分或全部进行映射;M为大于等于6的整数,K为小于等于M的正整数,Y为大于等于1的整数;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在一种可能的实现方式中,PSBCH在频域上包括144个子载波,PSBCH在时域上包括6个OFDM符号;DMRS在频域上未映射SPSS和SSSS的17个子载波上部分或全部进行映射;17个子载波包括第一部分和第二部分,第一部分包括的子载波数目为U,第二部分包括的子载波数目为17-U,U为大于等于0的整数;DMRS在第一部分上每隔n-1个子载波进行映射,DMRS在第二部分上每隔m-1个子载波进行映射,n为大于等于1且小于等于16的整数,m为大于等于1且小于等于16的整数。
在一种可能的实现方式中,PSBCH在频域上包括132个子载波,PSBCH在时域上包括6个OFDM符号;DMRS在频域上未映射SPSS和SSSS的5个子载波上部分或全部进行映射;5个子载波包括第一部分和第二部分,第一部分包括的子载波数目为U,第二部分包括的子载波数目为5-U,U为大于等于0的整数;DMRS在第一部分上每隔n-1个子载波进行映射,DMRS在第二部分上每隔m-1子载波进行映射,n为大于等于1且小于等于4的整数,m为大于等于1且小于等于4的整数。
第十方面,本申请实施例提供一种第二终端设备,包括:接收单元,用于从第一终端设备接收侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;处理单元,用于解析侧行链路同步信号块;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上未映射SPSS和SSSS的Y个子载波上部分或全部进行映射;M为大于等于6的整数,K为小于等于M的正整数,Y为大于等于1的整数;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在一种可能的实现方式中,PSBCH在频域上包括144个子载波,PSBCH在时域上包括6个OFDM符号;DMRS在频域上未映射SPSS和SSSS的17个子载波上部分或全部进行映射;17个子载波包括第一部分和第二部分,第一部分包括的子载波数目为U,第二部分包括的子载波数目为17-U,U为大于等于0的整数;DMRS在第一部分上每隔n-1个子载波进行映射,DMRS在第二部分上每隔m-1个子载波进行映射,n为大于等于1且小于等于16的整数,m为大于等于1且小于等于16的整数。
在一种可能的实现方式中,PSBCH在频域上包括132个子载波,PSBCH在时域上包括6个OFDM符号;DMRS在频域上未映射SPSS和SSSS的5个子载波上部分或全部进行映射;5个子载波包括第一部分和第二部分,第一部分包括的子载波数目为U,第二部分包括的子载波数目为5-U,U为大于等于0的整数;DMRS在第一部分上每隔n-1个子载波进行映射,DMRS在第二部分上每隔m-1子载波进行映射,n为大于等于1且小于等于4的整数,m为大于等于1且小于等于4的整数。
第十一方面,本申请实施例提供一种第一终端设备,包括:处理单元,用于生成侧行链路同步信号块;发送单元,用于向第二终端设备发送侧行链路同步信号块,侧行链路同步信号块包括侧行链路物理广播信道PSBCH、侧行链路主同步信号SPSS和侧行链路辅同步信号SSSS;其中,PSBCH在时域上包括M个OFDM符号,M为大于等于6的整数,PSBCH不包括DMRS;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号;在时域上,若侧行链路同步信号块的第j个OFDM符号对应PSBCH,那么侧行链路同步信号块的第j-1个OFDM符号和/或第j+1个OFDM符号对应SPSS或SSSS,j为大于等于1的整数。
第十二方面,本申请实施例提供一种第二终端设备,包括:接收单元,用于从第一终端设备接收侧行链路同步信号块,侧行链路同步信号块包括侧行链路物理广播信道PSBCH、侧行链路主同步信号SPSS和侧行链路辅同步信号SSSS;处理单元,用于解析侧行链路同步信号块;其中,PSBCH在时域上包括M个OFDM符号,M为大于等于6的整数,PSBCH不包括DMRS;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在一种可能的实现方式中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号;在时域上,若侧行链路同步信号块的第j个OFDM符号对应PSBCH,那么侧行链路同步信号块的第j-1个OFDM符号和/或第j+1个OFDM符号对应SPSS或SSSS,j为大于等于1的整数。
第十三方面,本申请实施例还提供了一种装置,该装置可以是第一终端设备或芯片。该装置包括处理器,用于实现上述第一方面、第三方面或第五方面提供的任意一种同步信号块的传输方法。该装置还可以包括存储器,用于存储程序指令和数据,存储器可以是集成在该装置内的存储器,或设置在该装置外的片外存储器。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面、第三方面或第五方面提供的任意一种同步信号块的传输方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备(例如,第二终端设备)进行通信。
第十四方面,本申请实施例还提供了一种装置,该装置可以是第二终端设备或芯片。该装置包括处理器,用于实现上述第二方面、第四方面或第六方面提供的任意一种同步信号块的传输方法。该装置还可以包括存储器,用于存储程序指令和数据,存储器可以是集成在该装置内的存储器,或设置在该装置外的片外存储器。该存储器与该处理器耦合,该 处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第二方面、第四方面或第六方面提供的任意一种同步信号块的传输方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备(例如,第一终端设备)进行通信。
第十五方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面至第六方面提供的任意一种同步信号块的传输方法。
第十六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第六方面提供的任意一种同步信号块的传输方法。
第十七方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面至第六方面提供的任意一种同步信号块的传输方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十八方面,本申请实施例提供了一种同步信号块传输系统,所述系统包括第七方面中的第一终端设备和第八方面中的第二终端设备,或者,所述系统包括第九方面中的第一终端设备和第十方面中的第二终端设备,或者,所述系统包括第十一方面中的第一终端设备和第十二方面中的第二终端设备。
附图说明
图1为LTE V2X中的一种同步信号的结构示意图;
图2为本申请实施例提供的一种适用于同步信号块的传输方法的架构示意图;
图3为本申请实施例提供的一种第一终端设备或第二终端设备的结构示意图;
图4为NR中提供的一种同步信号块的结构示意图;
图5为本申请实施例提供的一种适用于同步信号块的传输方法的信号交互示意图;
图6为本申请实施例提供的一种SSSB的结构示意图;
图7为本申请实施例提供的又一种SSSB的结构示意图;
图8为本申请实施例提供的一种PSBCH的结构示意图;
图9为本申请实施例提供的又一种SSSB的结构示意图;
图10为本申请实施例提供的又一种SSSB的结构示意图;
图11为本申请实施例提供的又一种SSSB的结构示意图;
图12为本申请实施例提供的又一种SSSB的结构示意图;
图13为本申请实施例提供的又一种SSSB的结构示意图;
图14为本申请实施例提供的又一种SSSB的结构示意图;
图15为本申请实施例提供的又一种SSSB的结构示意图;
图16为本申请实施例提供的又一种SSSB的结构示意图;
图17为本申请实施例提供的又一种SSSB的结构示意图;
图18为本申请实施例提供的又一种SSSB的结构示意图;
图19为本申请实施例提供的又一种PSBCH的结构示意图;
图20为本申请实施例提供的又一种SSSB的结构示意图;
图21为本申请实施例提供的又一种SSSB的结构示意图;
图22为本申请实施例提供的又一种PSBCH的结构示意图;
图23为本申请实施例提供的又一种SSSB的结构示意图;
图24为本申请实施例提供的又一种SSSB的结构示意图;
图25为本申请实施例提供的又一种第一终端设备的结构示意图;
图26为本申请实施例提供的又一种第二终端设备的结构示意图。
具体实施方式
本申请实施例提供一种同步信号块的传输方法和装置,应用于NR V2X场景中。具体的,可以应用于NR V2X中,第一终端设备和第二终端设备之间通过侧行链路进行同步的场景中。
图2给出了本发明实施例提供的技术方案所适用的一种通信系统示意图,该通信系统可以包括一个或多个网络设备(例如,基站)(图1仅示出1个)以及一个或多个终端设备,例如包括第一终端设备和第二终端设备。基站与第一终端设备或第二终端设备之间通过Uu接口通信,第一终端设备和第二终端设备之间通过PC5接口通信,PC5接口的直连通信链路被定义为SL。
基站可以为在LTE中的演进型基站(evolved node base station,eNB)或下一代演进型基站(next generation evolved node base station,ng-eNB)。或者,基站可以为在第五代移动通信技术(5-Generation,5G)网络(即NR网络)中的下一代基站(next generation node base station,gNB)、新型无线电基站(new radio eNB)、宏基站、微基站、高频基站或发送和接收点(transmission and reception point,TRP))等,还可以是其它形式的设备,例如路灯、路边单元(Road Side Unit,RSU)。
第一终端设备或第二终端设备可以是包括各种具有无线通信功能的设备或者此设备中的单元、部件、装置、芯片或者系统级芯片(system on chip,SOC),所述具有无线通信功能的设备例如可以是,车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它设备,例如,移动台(mobile station,MS),终端(terminal)或UE等。第一终端设备或第二终端设备还可以是各种类型的车辆用户设备(vehicle user equipment,VUE)或内置计算机的交通装置,交通装置例如但不限于,交通信号灯、路灯、电子眼等。
本申请实施例图2中的第一终端设备或第二终端设备,可以由一个设备实现,也可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,或者是芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
例如,用于实现本申请实施例提供的第一终端设备或第二终端设备的功能的装置可以通过图3中的装置300来实现。图3所示为本申请实施例提供的装置300的硬件结构示意图。该装置300中包括至少一个处理器301,用于实现本申请实施例提供的第一终端设备或第二终端设备的功能。装置300中还可以包括通信总线302以及至少一个通信接口304。装置300中还可以包括存储器303。
在本申请实施例中,处理器可以是中央处理器(central processing unit,CPU),通用处理器、网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)。处理器还可以是其它任意具有处理功能的装置,例如专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或 者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、软件模块或者其任意组合。
通信总线302可用于在上述组件之间传送信息。
通信接口304,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口304可以是接口、电路、收发器或者其它能够实现通信的装置,本申请不做限制。通信接口304可以和处理器301耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
在本申请实施例中,存储器可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,也可以与处理器耦合,例如通过通信总线302。存储器也可以和处理器集成在一起。
其中,存储器303用于存储程序指令,并可以由处理器301来控制执行,从而实现本申请下述实施例提供的同步信号块的传输方法。处理器301用于调用并执行存储器303中存储的指令,从而实现本申请下述实施例提供的同步信号块的传输方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
可选的,存储器303可以包括于处理器301中。
在具体实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置300可以包括多个处理器,例如图3中的处理器301和处理器307。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,装置300还可以包括输出设备305和输入设备306。输出设备305和处理器301耦合,可以以多种方式来显示信息。例如,输出设备305可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备306和处理器301耦合,可以以多种方式接收用户的输入。例如,输入设备306可以是触摸屏设备或传感设备等。
为了下述各实施例的描述清楚简洁,首先给出相关概念或技术的简要介绍:
目前,NR中新定义了一种同步信号块(synchronization signal block,SSB),一个SSB可以由主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)组成。PSS和SSS主要作用是帮助UE识别小区以及和小区进行同步,PBCH则包含了最基本的 系统信息例如系统帧号、帧内定时信息等。UE成功接收同步信号块是其接入该小区的前提。如图4所示,同步信号块在时域包括4个OFDM符号,在频域上包括20个RB。其中,PSS在时域上包括该同步信号块的第一个OFDM符号,在频域上包括127个子载波,SSS在时域上包括该同步信号块的第三个OFDM符号,在频域上包括127个子载波(subcarrier,SC),PBCH在时域上包括该同步信号块的第二、三、四个OFDM符号,PBCH在第二、四个OFDM符号上占用240个子载波,在第三个OFDM符号上占用48个子载波。由于PSS或SSS的带宽小于PBCH的带宽,因此在部分带宽上没有PSS/SSS可以为PBCH提供信道估计,从而影响PBCH的解码性能。
本申请实施例提供了一种同步信号块的传输方法和装置,设计了多种可能的侧行链路同步信号块的结构。侧行链路同步信号块的结构包括侧行链路同步信号块的PSBCH、SPSS和SSSS在时域上分别占用的OFDM符号数,在频域上分别占用的RB数目或子载波数目,以及PSBCH、SPSS和SSSS的排列顺序等。在本申请中,可以通过SPSS、SSSS或DMRS中的至少一个对PSBCH payload进行信道估计,其中SPSS、SSSS和PSBCH的带宽均大于6RB,能够提高信道估计的准确度和PSBCH payload的解码性能。并且,对于每种侧行链路同步信号块结构,还设计了DMRS的具体映射方式,能够在保证信道估计的准确度的前提下,尽量减少DMRS所占用的资源,节省传输资源,以传输更多的数据。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“至少一个”是指一个或多个,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
应理解,在本申请各实施例中,符号和子载波分别表示传输信号的时频资源在时域和频域的粒度单元,它们可以具有目前通信系统中的含义,也可以具有未来通信系统中的含义。另外,若在未来通信系统中它们的名称发生了改变,它们也可以变换为未来通信系统中的名称。
应理解,在本申请各实施例中,SSSB可以是S-SSB,SPSS可以是S-PSS,SSSS可以是S-SSS。
为了便于理解,以下结合附图对本申请实施例提供的同步信号块的传输方法进行具体介绍。
如图5所示,本申请实施例提供一种同步信号块的传输方法,以同步信号块为SSSB为例进行说明,包括:
501、第一终端设备生成侧行链路同步信号块。
侧行链路同步信号块包括PSBCH、SPSS和SSSS。
其中,SPSS可以由ZC(Zadoff-Chu)序列生成,SSSS可以由两个M序列交织生成。
502、第一终端设备向第二终端设备发送侧行链路同步信号块。
其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,在时域上DMRS包括M个OFDM符号中的K个OFDM符号,在频域上DMRS每隔n-1个子载波进行映射,n为大于等于1的整数,M为大于等于6的整数,K为小于等于M的正整数,PSBCH 在频域上包括N个RB,N为大于6的整数。SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在一种可能的设计中,PSBCH在频域上包括11个RB,在时域上包括6个OFDM符号,6个OFDM符号连续排列。DMRS在时域上包括6个OFDM符号,DMRS在频域上每隔3个或4个子载波进行映射。在此方式下,PSBCH所占的每个OFDM符号上同时存在数据(即PSBCH payload)和DMRS。对于PSBCH所占的每个OFDM符号,该OFDM符号上的DMRS可以为该OFDM符号上的PSBCH payload提供信道估计结果,能够提高信道估计的准确度。并且,由于DMRS在频域上均匀分布(每隔3个或4个子载波进行映射),能够进一步提高信道估计的准确度。
示例性的,如图6所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括11个RB,第一、二个OFDM符号可以为SPSS,第三到第八个OFDM符号为PSBCH,第九、十个OFDM符号可以为SSSS。DMRS在时域上包括6个OFDM符号,DMRS在频域上每隔3个或4个子载波进行映射。
示例性的,如图7所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括11个RB,第一、二个OFDM符号可以为SPSS,第三、四个OFDM符号为SSSS,第五到第十个OFDM符号可以为PSBCH。DMRS在时域上包括6个OFDM符号,DMRS在频域上每隔3个或4个子载波进行映射。
示例性的,如图8所示,DMRS在时域上包括6个OFDM符号,DMRS在频域上可以每隔3个子载波进行映射,即DMRS在PSBCH占用的132个子载波上可以每隔3个子载波进行映射。图8中每一个(阴影或空白的)小格表示一个资源单元(resource element,RE),一个RE在频域上占用一个子载波,在时域上占用一个OFDM符号。
在一种可能的设计中,PSBCH在频域上包括11个RB,在时域上包括6个OFDM符号,其中5个OFDM符号连续排列;DMRS在时域上包括6个OFDM符号,DMRS在频域上每隔3个或4个子载波进行映射。在此方式下,PSBCH所占的每个OFDM符号上同时存在PSBCH payload和DMRS。对于PSBCH所占的每个OFDM符号,该OFDM符号上的DMRS可以为该OFDM符号上的PSBCH payload提供信道估计结果,能够提高信道估计的准确度。并且,由于DMRS在频域上均匀分布(每隔3个或4个子载波进行映射),能够进一步提高信道估计的准确度。
示例性的,如图9所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括11个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四、五个OFDM符号可以为SSSS,第六到第十个OFDM符号可以为PSBCH。DMRS在时域上包括6个OFDM符号,DMRS在频域上每隔3个或4个子载波进行映射。
示例性的,如图10所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括11个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四到第八个OFDM符号可以为PSBCH,第九、十个OFDM符号可以为SSSS。DMRS在时域上包括6个OFDM符号,DMRS在频域上每隔3个或4个子载波进行映射。
在一种可能的设计中,PSBCH在频域上包括11个RB,PSBCH在时域上包括6个OFDM符号,这6个OFDM符号包括第一组OFDM符号和第二组OFDM符号。第一组 OFDM符号和第二组OFDM符号分别包括3个OFDM符号,第一组OFDM符号连续排列,第二组OFDM符号连续排列。其中,第一组OFDM符号和第二组OFDM符号的间隔为SPSS或SSSS。具体的,第一组OFDM符号和第二组OFDM符号间隔一个或两个OFDM符号,该一个或两个OFDM符号上放置SPSS和/或SSSS。并且,第一组OFDM符号和第二组OFDM符号的中间OFDM符号上映射有DMRS,DMRS在频域上每隔n-1个子载波进行映射,n为大于1的整数。例如,n可以为4或5。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS用来进行信道估计。这样,可以基于同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS对PSBCH payload进行信道估计,能够提高信道估计的准确度。并且,由于DMRS在频域上均匀分布(每隔3个或4个子载波进行映射),能够进一步提高信道估计的准确度。
示例性的,如图11所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括11个RB,第一、二个OFDM符号可以为SPSS,第三到第五个OFDM符号为PSBCH,第六个OFDM符号可以为SSSS,第七到第九个OFDM符号可以为PSBCH,第十个OFDM符号可以为SSSS。其中,第四个和第八个OFDM符号上映射有DMRS,DMRS在频域上每隔n-1个子载波进行映射,n为大于1的整数。例如,n可以为4或5,即DMRS在频域上每隔3个或4个子载波进行映射。假设psbch(k)表示PSBCH payload占用的全部OFDM符号中的第k个,k为大于等于1的整数,在图11中k小于等于6。psbch(1)的信道估计可以由SPSS和DMRS联合完成,psbch(2)的信道估计由DMRS完成,psbch(3)的信道估计由SSSS和DMRS联合完成,psbch(4)的信道估计由SSSS和DMRS联合完成,psbch(5)的信道估计由DMRS完成,psbch(6)的信道估计由SPSS和DMRS联合完成,能够提高信道估计的准确度。
在一种可能的设计中,如图12所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括11个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四到第六个OFDM符号可以为PSBCH,第七个OFDM符号可以为SSSS,第八、九个OFDM符号可以为PSBCH,第十个OFDM符号可以为SSSS。其中,第五个OFDM符号上映射有DMRS,DMRS在频域上每隔n-1个子载波进行映射,n为大于1的整数。例如,n可以为4或5。假设psbch(k)表示PSBCH payload占用的全部OFDM符号中的第k个,k为大于等于1的整数,在图12中k小于等于6。psbch(1)的信道估计可以由SPSS完成,psbch(2)的信道估计由SPSS和DMRS联合完成,psbch(3)的信道估计由DMRS完成,psbch(4)的信道估计由SSSS和DMRS联合完成,psbch(5)的信道估计由SSSS完成,psbch(6)的信道估计由SSSS完成,能够提高信道估计的准确度。
在一种可能的设计中,如图13所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括11个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四、五个OFDM符号可以为PSBCH,第六个OFDM符号可以为SSSS,第七到第九个OFDM符号可以为PSBCH,第十个OFDM符号可以为SSSS。其中,第八个OFDM符号上映射有DMRS,DMRS在频域上每隔n-1个子载波进行映射,n为大于1的整数。例如,n可以为4或5。假设psbch(k)表示PSBCH payload占用的全部OFDM符号中的第k个,k为大于等于1的整数,在图13中k小于等于6。psbch(1)的信道估计可以由SPSS完成,psbch(2)的信道估计由SPSS完成,psbch(3)的信道估计由SSSS完成,psbch(4)的信道估计 由SSSS和DMRS联合完成,psbch(5)的信道估计由DMRS完成,psbch(6)的信道估计由DMRS和SSSS联合完成,能够提高信道估计的准确度。
在一种可能的设计中,PSBCH在频域上包括11个RB,PSBCH在时域上包括8个OFDM符号,PSBCH包括DMRS和数据(即PSBCH payload),数据在时域上包括6个OFDM符号,DMRS在时域上包括2个OFDM符号;在时域上,若SSSB的第i个OFDM符号对应数据,那么SSSB的第i-1个OFDM符号和/或第i+1个OFDM符号对应SPSS或SSSS或DMRS,i为大于等于1的整数;DMRS在频域上的每个子载波进行映射。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有相邻的SPSS/SSSS/DMRS用来进行信道估计。这样,可以基于相邻的SPSS/SSSS/DMRS对PSBCH payload进行信道估计,能够提高信道估计的准确度。
示例性的,如图14所示,SSSB在时域上可以包括12个OFDM符号,在频域上包括11个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四到六个OFDM符号可以为PSBCH,第七个OFDM符号可以为SSSS,第八到十个OFDM符号可以为PSBCH,第十一个OFDM符号可以为SSSS,第十二个OFDM符号可以为PSBCH。其中,第五个和第九个OFDM符号上映射有DMRS,DMRS在频域上的每个子载波进行映射。假设psbch(k)表示PSBCH payload占用的全部OFDM符号中的第k个,k为大于等于1的整数,在图14中k小于等于6。psbch(1)的信道估计可以由SPSS完成,psbch(2)的信道估计由SPSS和DMRS联合完成,psbch(3)的信道估计由DMRS和SSSS联合完成,psbch(4)的信道估计由SSSS和DMRS联合完成,psbch(5)的信道估计由DMRS和SSSS联合完成,psbch(6)的信道估计由SSSS完成,能够提高信道估计的准确度。
示例性的,如图15所示,SSSB在时域上可以包括12个OFDM符号,在频域上包括11个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四到十个OFDM符号可以为PSBCH,第十一、十二个OFDM符号可以为SSSS。其中,第六个和第九个OFDM符号上映射有DMRS,DMRS在频域上的每个子载波进行映射。假设psbch(k)表示PSBCH payload占用的全部OFDM符号中的第k个,k为大于等于1的整数,在图15中k小于等于6。psbch(1)的信道估计可以由SPSS完成,psbch(2)的信道估计由SPSS完成,psbch(3)的信道估计由DMRS完成,psbch(4)的信道估计由DMRS完成,psbch(5)的信道估计由DMRS完成,psbch(6)的信道估计由DMRS和SSSS联合完成,能够提高信道估计的准确度。
在一种可能的设计中,PSBCH在频域上包括11个RB,PSBCH在时域上包括7个OFDM符号,PSBCH包括DMRS和PSBCH payload,PSBCH payload在时域上包括6个OFDM符号,DMRS在时域上包括1个OFDM符号。在时域上,若SSSB的第i个OFDM符号对应PSBCH payload,那么SSSB的第i-1个OFDM符号和/或第i+1个OFDM符号对应SPSS或SSSS或DMRS,i为大于等于1的整数;DMRS在频域上的每个子载波进行映射。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有相邻的SPSS/SSSS/DMRS用来进行信道估计。这样,可以基于相邻的SPSS/SSSS/DMRS对PSBCH payload进行信道估计,能够提高信道估计的准确度。
示例性的,如图16所示,SSSB在时域上可以包括11个OFDM符号,在频域上包括11个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四到八 个OFDM符号可以为PSBCH,第九个OFDM符号可以为SSSS,第十个OFDM符号可以为PSBCH,第十一个OFDM符号可以为SSSS。其中,第六个OFDM符号上映射有DMRS,DMRS在频域上的每个子载波进行映射。假设psbch(k)表示PSBCH payload占用的全部OFDM符号中的第k个,k为大于等于1的整数,在图16中k小于等于6。psbch(1)的信道估计可以由SPSS完成,psbch(2)的信道估计由SPSS完成,psbch(3)的信道估计由DMRS完成,psbch(4)的信道估计由DMRS完成,psbch(5)的信道估计由SSSS完成,psbch(6)的信道估计由SSSS完成,能够提高信道估计的准确度。
示例性的,如图17所示,SSSB可以包括11个OFDM符号,在频域上包括11个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四、五个OFDM符号可以为PSBCH,第六个OFDM符号可以为SSSS,第七到第十个OFDM符号可以为PSBCH,第十一个OFDM符号可以为SSSS。其中,第九个OFDM符号上映射有DMRS,DMRS在频域上的每个子载波进行映射。假设psbch(k)表示PSBCH payload占用的全部OFDM符号中的第k个,k为大于等于1的整数,在图17中k小于等于6。psbch(1)的信道估计可以由SPSS完成,psbch(2)的信道估计由SPSS完成,psbch(3)的信道估计由SSSS完成,psbch(4)的信道估计由SSSS完成,psbch(5)的信道估计由DMRS完成,psbch(6)的信道估计由DMRS和SSSS联合完成,能够提高信道估计的准确度。
在一种可能的设计中,PSBCH在频域上包括12个RB,即144个子载波,PSBCH在时域上包括6个OFDM符号;DMRS在频域上未映射SPSS和SSSS的Y个子载波上部分或全部进行映射。例如,DMRS在频域上未映射SPSS和SSSS的17个子载波上部分或全部进行映射;17个子载波包括第一部分和第二部分,具体的,该17个子载波被映射有SPSS或SSSS的127个子载波分隔为第一部分和第二部分,第一部分子载波和第二部分子载波分别位于PSBCH所占频域范围的两端。其中,第一部分包括的子载波数目为U,第二部分包括的子载波数目为17-U,U为大于等于0的整数;DMRS在第一部分上每隔n-1个子载波进行映射,DMRS在第二部分上每隔m-1个子载波进行映射,n为大于等于1且小于等于16的整数,m为大于等于1且小于等于16的整数。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS用来进行信道估计。其中,PSBCH DMRS只放置于没有PSS/SSS的子载波上。这样,可以基于同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS对PSBCH payload进行信道估计,能够提高信道估计的准确度。
示例性的,如图18所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括12个RB,第一、二个OFDM符号可以为SPSS,第三、四个OFDM符号为SSSS,第五到第十个OFDM符号可以为PSBCH。其中,第五到第十个OFDM符号上映射有DMRS,DMRS位于PSBCH所占频域范围的两端。示例性的,如图19所示,DMRS可以在频域上未映射SPSS和SSSS的17个子载波上部分或全部进行映射。该17个子载波包括第一部分和第二部分。例如,第一部分可以包括8个子载波,第二部分可以包括9个子载波。DMRS在第一部分上可以每隔2个子载波进行映射,DMRS在第二部分上每隔3个子载波进行映射。在图18中,假设psbch(k)表示PSBCH payload占用的全部OFDM符号中的第k个,k为大于等于1的整数,在图18中k小于等于6。psbch(1)-psbch(6)的信道估计可以由各自符号上的DMRS完成,能够提高信道估计的准确度。
示例性的,如图20所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括12个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四、五个OFDM符号可以为PSBCH,第六个OFDM符号为SSSS,第七、八个OFDM符号可以为PSBCH,第九个OFDM符号为SSSS,第十个OFDM符号可以为PSBCH。其中,第一、第四、第五、第七、第八和第十个OFDM符号上映射有DMRS,DMRS位于PSBCH所占频域范围的两端。具体映射方式可以参考图19的相关描述。假设psbch(k)表示PSBCH payload占用的全部OFDM符号中的第k个,k为大于等于1的整数,在图20中k小于等于6。psbch(1)的信道估计可以由DMRS和SPSS联合完成,psbch(2)的信道估计由DMRS和SPSS联合完成,psbch(3)的信道估计由DMRS和SSSS联合完成,psbch(4)的信道估计由DMRS和SSSS联合完成,psbch(5)的信道估计由DMRS和SSSS联合完成,psbch(6)的信道估计由DMRS和SSSS联合完成,能够提高信道估计的准确度。
示例性的,如图21中的(a)或(b)所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括12个RB,第一、二个OFDM符号可以为SPSS,第三、四个OFDM符号为SSSS,第五到第十个OFDM符号可以为PSBCH。其中,第五到第十个OFDM符号上映射有DMRS,DMRS位于PSBCH所占频域范围的一端,即在频域上未映射SPSS和SSSS的17个子载波仅包括第一部分或第二部分,且第一部分或第二部分包括的子载波数目为17。示例性的,如图22所示,DMRS可以在频域上未映射SPSS和SSSS的17个子载波上部分或全部进行映射;该17个子载波包括第一部分或第二部分,第一部分或第二部分可以包括17个子载波。DMRS可以在该17个子载波上每隔4个子载波进行映射。
示例性的,如图23中的(a)或(b)所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括12个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四、五个OFDM符号可以为PSBCH,第六个OFDM符号为SSSS,第七、八个OFDM符号可以为PSBCH,第九个OFDM符号为SSSS,第十个OFDM符号可以为PSBCH。其中,第一、第四、第五、第七、第八和第十个OFDM符号上映射有DMRS,DMRS位于PSBCH所占频域范围的一端,即在频域上未映射SPSS和SSSS的17个子载波仅包括第一部分或第二部分,且第一部分或第二部分包括的子载波数目为17。具体映射方式可以参考图22的相关描述。
在一种可能的设计中,PSBCH在频域上包括11个RB,即132个子载波,PSBCH在时域上包括6个OFDM符号;DMRS在频域上未映射SPSS和SSSS的Y个子载波上部分或全部进行映射。例如,DMRS在频域上未映射SPSS和SSSS的5个子载波上部分或全部进行映射。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS用来进行信道估计。其中,PSBCH DMRS只放置于没有PSS/SSS的子载波上。这样,可以基于同符号上的DMRS和/或相邻的SPSS/SSSS/DMRS对PSBCH payload进行信道估计,能够提高信道估计的准确度。
可选的,上述未映射SPSS和SSSS的5个子载波可以包括第一部分和第二部分,具体的,该5个子载波被映射有SPSS或SSSS的127个子载波分隔为第一部分和第二部分,第一部分子载波和第二部分子载波分别位于PSBCH所占频域范围的两端。其中,第一部分包括的子载波数目为U,第二部分包括的子载波数目为5-U,U为大于等于0的整数。例如,第一部分可以包括2个子载波,第二部分可以包括3个子载波。
可选的,DMRS可以位于PSBCH所占频域范围的一端,即上述未映射SPSS和SSSS的5个子载波仅包括第一部分或第二部分,且第一部分或第二部分包括的子载波数目为5。其中,DMRS在第一部分上每隔n-1个子载波进行映射,DMRS在第二部分上每隔m-1个子载波进行映射,n为大于等于1且小于等于16的整数,m为大于等于1且小于等于16的整数。
在一种可能的设计中,PSBCH不包括DMRS。PSBCH在频域上可以包括11个RB,PSBCH在时域上可以包括6个OFDM符号。在时域上,若SSSB的第j个OFDM符号对应PSBCH,那么SSSB的第j-1个OFDM符号和/或第j+1个OFDM符号对应SPSS或SSSS,j为大于等于1的整数。在此方式下,保证了每一个OFDM符号上的PSBCH payload都有相邻的SPSS/SSSS用来进行信道估计。这样,可以基于相邻的SPSS/SSSS对PSBCH payload进行信道估计,能够提高信道估计的准确度。
示例性的,如图24所示,SSSB在时域上可以包括10个OFDM符号,在频域上包括11个RB,第一个OFDM符号可以为PSBCH,第二、三个OFDM符号为SPSS,第四、五个OFDM符号可以为PSBCH,第六个OFDM符号为SSSS,第七、八个OFDM符号可以为PSBCH,第九个OFDM符号为SSSS,第十个OFDM符号可以为PSBCH。假设psbch(k)表示PSBCH payload占用的全部OFDM符号中的第k个,k为大于等于1的整数,在图24中k小于等于6。psbch(1)的信道估计可以由SPSS完成,psbch(2)的信道估计由SPSS完成,psbch(3)的信道估计由SSSS完成,psbch(4)的信道估计由SSSS完成,psbch(5)的信道估计由SSSS完成,psbch(6)的信道估计由SSSS完成,能够提高信道估计的准确度。
在一种可能的设计中,PSBCH在频域上包括11个RB;PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,M与K相等;DMRS在频域上每隔3个子载波进行映射。
上述图6-图24只是给出了SSSB一种可能的示例,SSSB的结构还可能会有与图6-图24相似的其他结构,本申请不做限定。另外,在图6-图24中,SSSB在时域上可以与其他信道或间隔(GAP)相邻。
应理解,第一终端设备可以周期性的向第二终端设备发送侧行链路同步信号块。例如,第一终端设备可以在每个侧行链路同步信号(sidelink synchronization signal,SLSS)突发设置周期(burst set period)内向第二终端设备发送侧行链路同步信号块,SLSS burst set period的时长可以是1ms、5ms、10ms等等。
503、第二终端设备从第一终端设备接收侧行链路同步信号块。
侧行链路同步信号块的结构可以参考步骤502中的相关描述,在此不做赘述。
504、第二终端设备解析侧行链路同步信号块。
首先,第二终端设备盲检SPSS,获取定时信息,根据定时信息盲检SSSS,以获取SSID。进而根据定时信息和SSID确定PSBCH中映射的DMRS,而后分别根据DMRS、SPSS和SSSS中的至少一种对每个OFDM符号上的PSBCH进行信道估计。最后,第二终端设备可以根据信道估计结果对PSBCH payload进行解码,以获取主系统信息。
本申请实施例提供了一种同步信号块的传输方法和装置,设计了多种可能的侧行链路同步信号块的结构。侧行链路同步信号块的结构包括侧行链路同步信号块的PSBCH、SPSS和SSSS在时域上分别占用的OFDM符号数,在频域上分别占用的RB数目或子载波数目, 以及PSBCH、SPSS和SSSS的排列顺序等。在本申请中,可以通过SPSS、SSSS或DMRS中的至少一个对PSBCH payload进行信道估计,其中SPSS、SSSS和PSBCH的带宽均大于6RB,能够提高PSBCH payload的解码性能。并且,对于每种侧行链路同步信号块结构,还设计了DMRS的具体映射方式,能够在保证信道估计的准确度的前提下,尽量减少DMRS所占用的资源,节省传输资源,以传输更多的数据。
上述本申请提供的实施例中,分别从第一终端设备、第二终端设备以及第一终端设备和第二终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一终端设备和第二终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
在采用对应各个功能划分各个功能模块的情况下,图25示出了上述实施例中所涉及的装置25的一种可能的结构示意图,该装置可以为第一终端设备,该第一终端设备包括:处理单元2501和发送单元2502。在本申请实施例中,处理单元2501,用于生成侧行链路同步信号块;发送单元2502,用于向第二终端设备发送侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上每隔n-1个子载波进行映射,n为大于等于1的整数,M为大于等于6的整数,K为小于等于M的正整数,PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB;或者,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上未映射SPSS和SSSS的Y个子载波上部分或全部进行映射;M为大于等于6的整数,K为小于等于M的正整数,Y为大于等于1的整数;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB;或者,PSBCH在时域上包括M个OFDM符号,M为大于等于6的整数,PSBCH不包括DMRS;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在图5所示的方法实施例中,处理单元2501用于支持第一终端设备执行图5中的过程501。发送单元2502用于支持第一终端设备执行图5中的过程502。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用对应各个功能划分各个功能模块的情况下,图26示出了上述实施例中所涉及的装置26的一种可能的结构示意图,该装置可以为第二终端设备,该第二终端设备包括:接收单元2601和处理单元2602。在本申请实施例中,接收单元2601,用于从第一终端设备接收侧行链路同步信号块,侧行链路同步信号块包括PSBCH、SPSS和SSSS。处理单元2602,用于解析侧行链路同步信号块;其中,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上每隔n-1个子载波进行映射,n为大于等于1的整数,M为大于等于6的整数,K为 小于等于M的正整数,PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB;或者,PSBCH在时域上包括M个OFDM符号,PSBCH包括DMRS,DMRS在时域上包括M个OFDM符号中的K个OFDM符号,DMRS在频域上未映射SPSS和SSSS的Y个子载波上部分或全部进行映射;M为大于等于6的整数,K为小于等于M的正整数,Y为大于等于1的整数;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB;或者,PSBCH在时域上包括M个OFDM符号,M为大于等于6的整数,PSBCH不包括DMRS;PSBCH在频域上包括N个RB,N为大于6的整数;SPSS在时域上包括2个OFDM符号,SPSS在频域上包括N个RB;SSSS在时域上包括2个OFDM符号,SSSS在频域上包括N个RB。
在图5所示的方法实施例中,接收单元2601用于支持第二终端设备执行图5中的过程503;处理单元2602用于支持第二终端设备执行图5中的过程504。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。示例性地,在本申请实施例中,接收单元和发送单元可以集成至收发单元中。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state drives,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (27)

  1. 一种同步信号块的传输方法,其特征在于,所述方法包括:
    第一终端设备生成侧行链路同步信号块;
    所述第一终端设备向第二终端设备发送所述侧行链路同步信号块,所述侧行链路同步信号块包括物理侧行链路广播信道PSBCH、侧行链路主同步信号SPSS和侧行链路辅同步信号SSSS;
    其中,所述PSBCH在时域上包括M个正交频分复用OFDM符号,所述PSBCH包括解调参考信号DMRS,所述DMRS在时域上包括所述M个OFDM符号中的K个OFDM符号,所述DMRS在频域上每隔n-1个子载波进行映射,所述n为大于等于1的整数,所述M为大于等于6的整数,所述K为小于等于所述M的正整数,所述PSBCH在频域上包括N个资源块RB,所述N为大于6的整数;
    所述SPSS在时域上包括2个OFDM符号,所述SPSS在频域上包括N个RB;所述SSSS在时域上包括2个OFDM符号,所述SSSS在频域上包括N个RB。
  2. 根据权利要求1所述的同步信号块的传输方法,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括6个OFDM符号,所述6个OFDM符号连续排列;
    所述DMRS在时域上包括6个OFDM符号,所述DMRS在频域上每隔3个或4个子载波进行映射。
  3. 根据权利要求1所述的同步信号块的传输方法,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括6个OFDM符号,所述6个OFDM符号包括第一组OFDM符号和第二组OFDM符号,所述第一组OFDM符号和所述第二组OFDM符号分别包括3个OFDM符号,所述第一组OFDM符号连续排列,所述第二组OFDM符号连续排列,所述第一组OFDM符号和第二组OFDM符号的间隔为SPSS或SSSS;
    所述第一组OFDM符号和第二组OFDM符号的中间OFDM符号上映射有DMRS,所述DMRS在频域上每隔n-1个子载波进行映射,所述n为大于1的整数。
  4. 根据权利要求1所述的同步信号块的传输方法,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括8个OFDM符号,所述PSBCH包括DMRS和数据,所述数据在时域上包括6个OFDM符号,所述DMRS在时域上包括2个OFDM符号;
    在时域上,若所述侧行链路同步信号块的第i个OFDM符号对应所述数据,那么所述侧行链路同步信号块的第i-1个OFDM符号和/或第i+1个OFDM符号对应所述SPSS或所述SSSS或所述DMRS,所述i为大于等于1的整数;
    所述DMRS在频域上的每个子载波进行映射。
  5. 根据权利要求1所述的同步信号块的传输方法,其特征在于,
    所述PSBCH在频域上包括11个RB;
    所述PSBCH在时域上包括M个OFDM符号,所述PSBCH包括DMRS,所述DMRS在时域上包括所述M个OFDM符号中的K个OFDM符号,所述M与所述K相等;
    所述DMRS在频域上每隔3个子载波进行映射。
  6. 一种同步信号块的传输方法,其特征在于,所述方法包括:
    第二终端设备从第一终端设备接收侧行链路同步信号块,所述侧行链路同步信号块包括物理侧行链路广播信道PSBCH、侧行链路主同步信号SPSS和侧行链路辅同步信号SSSS;
    所述第二终端设备解析所述侧行链路同步信号块;
    其中,所述PSBCH在时域上包括M个正交频分复用OFDM符号,所述PSBCH包括解调参考信号DMRS,所述DMRS在时域上包括所述M个OFDM符号中的K个OFDM符号,所述DMRS在频域上每隔n-1个子载波进行映射,所述n为大于等于1的整数,所述M为大于等于6的整数,所述K为小于等于所述M的正整数,所述PSBCH在频域上包括N个资源块RB,所述N为大于6的整数;
    所述SPSS在时域上包括2个OFDM符号,所述SPSS在频域上包括N个RB;所述SSSS在时域上包括2个OFDM符号,所述SSSS在频域上包括N个RB。
  7. 根据权利要求6所述的同步信号块的传输方法,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括6个OFDM符号,所述6个OFDM符号连续排列;
    所述DMRS在时域上包括6个OFDM符号,所述DMRS在频域上每隔3个或4个子载波进行映射。
  8. 根据权利要求6所述的同步信号块的传输方法,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括6个OFDM符号,所述6个OFDM符号包括第一组OFDM符号和第二组OFDM符号,所述第一组OFDM符号和所述第二组OFDM符号分别包括3个OFDM符号,所述第一组OFDM符号连续排列,所述第二组OFDM符号连续排列,所述第一组OFDM符号和第二组OFDM符号的间隔为SPSS或SSSS;
    所述第一组OFDM符号和第二组OFDM符号的中间OFDM符号上映射有DMRS,所述DMRS在频域上每隔n-1个子载波进行映射,所述n为大于1的整数。
  9. 根据权利要求6所述的同步信号块的传输方法,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括8个OFDM符号,所述PSBCH包括DMRS和数据,所述数据在时域上包括6个OFDM符号,所述DMRS在时域上包括2个OFDM符号;
    在时域上,若所述侧行链路同步信号块的第i个OFDM符号对应所述数据,那么所述侧行链路同步信号块的第i-1个OFDM符号和/或第i+1个OFDM符号对应所述SPSS或所述SSSS或所述DMRS,所述i为大于等于1的整数;
    所述DMRS在频域上的每个子载波进行映射。
  10. 根据权利要求6所述的同步信号块的传输方法,其特征在于,
    所述PSBCH在频域上包括11个RB;
    所述PSBCH在时域上包括M个OFDM符号,所述PSBCH包括DMRS,所述DMRS在时域上包括所述M个OFDM符号中的K个OFDM符号,所述M与所述K相等;
    所述DMRS在频域上每隔3个子载波进行映射。
  11. 一种第一终端设备,其特征在于,包括:
    处理单元,用于生成侧行链路同步信号块;
    发送单元,用于向第二终端设备发送所述侧行链路同步信号块,所述侧行链路同步信号块包括物理侧行链路广播信道PSBCH、侧行链路主同步信号SPSS和侧行链路辅同步信号SSSS;
    其中,所述PSBCH在时域上包括M个正交频分复用OFDM符号,所述PSBCH包括解调参考信号DMRS,所述DMRS在时域上包括所述M个OFDM符号中的K个OFDM符号,所述DMRS在频域上每隔n-1个子载波进行映射,所述n为大于等于1的整数,所述M为大于等于6的整数,所述K为小于等于所述M的正整数,所述PSBCH在频域上包括N个资源块RB,所述N为大于6的整数;
    所述SPSS在时域上包括2个OFDM符号,所述SPSS在频域上包括N个RB;所述SSSS在时域上包括2个OFDM符号,所述SSSS在频域上包括N个RB。
  12. 根据权利要求11所述的第一终端设备,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括6个OFDM符号,所述6个OFDM符号连续排列;
    所述DMRS在时域上包括6个OFDM符号,所述DMRS在频域上每隔3个或4个子载波进行映射。
  13. 根据权利要求11所述的第一终端设备,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括6个OFDM符号,所述6个OFDM符号包括第一组OFDM符号和第二组OFDM符号,所述第一组OFDM符号和所述第二组OFDM符号分别包括3个OFDM符号,所述第一组OFDM符号连续排列,所述第二组OFDM符号连续排列,所述第一组OFDM符号和第二组OFDM符号的间隔为SPSS或SSSS;
    所述第一组OFDM符号和第二组OFDM符号的中间OFDM符号上映射有DMRS,所述DMRS在频域上每隔n-1个子载波进行映射,所述n为大于1的整数。
  14. 根据权利要求11所述的第一终端设备,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括8个OFDM符号,所述PSBCH包括DMRS和数据,所述数据在时域上包括6个OFDM符号,所述DMRS在时域上包括2个OFDM符号;
    在时域上,若所述侧行链路同步信号块的第i个OFDM符号对应所述数据,那么所述侧行链路同步信号块的第i-1个OFDM符号和/或第i+1个OFDM符号对应所述SPSS或所述SSSS或所述DMRS,所述i为大于等于1的整数;
    所述DMRS在频域上的每个子载波进行映射。
  15. 根据权利要求11所述的第一终端设备,其特征在于,
    所述PSBCH在频域上包括11个RB;
    所述PSBCH在时域上包括M个OFDM符号,所述PSBCH包括DMRS,所述DMRS在时域上包括所述M个OFDM符号中的K个OFDM符号,所述M与所述K相等;
    所述DMRS在频域上每隔3个子载波进行映射。
  16. 一种第二终端设备,其特征在于,包括:
    接收单元,用于从第一终端设备接收侧行链路同步信号块,所述侧行链路同步信号块包括物理侧行链路广播信道PSBCH、侧行链路主同步信号SPSS和侧行链路辅同步信号 SSSS;
    处理单元,用于解析所述侧行链路同步信号块;
    其中,所述PSBCH在时域上包括M个正交频分复用OFDM符号,所述PSBCH包括解调参考信号DMRS,所述DMRS在时域上包括所述M个OFDM符号中的K个OFDM符号,所述DMRS在频域上每隔n-1个子载波进行映射,所述n为大于等于1的整数,所述M为大于等于6的整数,所述K为小于等于所述M的正整数,所述PSBCH在频域上包括N个资源块RB,所述N为大于6的整数;
    所述SPSS在时域上包括2个OFDM符号,所述SPSS在频域上包括N个RB;所述SSSS在时域上包括2个OFDM符号,所述SSSS在频域上包括N个RB。
  17. 根据权利要求16所述的第二终端设备,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括6个OFDM符号,所述6个OFDM符号连续排列;
    所述DMRS在时域上包括6个OFDM符号,所述DMRS在频域上每隔3个或4个子载波进行映射。
  18. 根据权利要求16所述的第二终端设备,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括6个OFDM符号,所述6个OFDM符号包括第一组OFDM符号和第二组OFDM符号,所述第一组OFDM符号和所述第二组OFDM符号分别包括3个OFDM符号,所述第一组OFDM符号连续排列,所述第二组OFDM符号连续排列,所述第一组OFDM符号和第二组OFDM符号的间隔为SPSS或SSSS;
    所述第一组OFDM符号和第二组OFDM符号的中间OFDM符号上映射有DMRS,所述DMRS在频域上每隔n-1个子载波进行映射,所述n为大于1的整数。
  19. 根据权利要求16所述的第二终端设备,其特征在于,
    所述PSBCH在频域上包括11个RB,所述PSBCH在时域上包括8个OFDM符号,所述PSBCH包括DMRS和数据,所述数据在时域上包括6个OFDM符号,所述DMRS在时域上包括2个OFDM符号;
    在时域上,若所述侧行链路同步信号块的第i个OFDM符号对应所述数据,那么所述侧行链路同步信号块的第i-1个OFDM符号和/或第i+1个OFDM符号对应所述SPSS或所述SSSS或所述DMRS,所述i为大于等于1的整数;
    所述DMRS在频域上的每个子载波进行映射。
  20. 根据权利要求16所述的第二终端设备,其特征在于,
    所述PSBCH在频域上包括11个RB;
    所述PSBCH在时域上包括M个OFDM符号,所述PSBCH包括DMRS,所述DMRS在时域上包括所述M个OFDM符号中的K个OFDM符号,所述M与所述K相等;
    所述DMRS在频域上每隔3个子载波进行映射。
  21. 一种第一终端设备,其特征在于,所述第一终端设备包括处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述第一终端设备运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第一终端设备执行如权利要求1-5中任一项所述的同步信号块的传输方法。
  22. 一种第二终端设备,其特征在于,所述第二终端设备包括处理器和存储器;
    所述存储器用于存储计算机执行指令,当所述第二终端设备运行时,所述处理器执行所述存储器存储的所述计算机执行指令,以使所述第二终端设备执行如权利要求6-10中任一项所述的同步信号块的传输方法。
  23. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求1-5中任一项所述的同步信号块的传输方法。
  24. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行权利要求6-10中任一项所述的同步信号块的传输方法。
  25. 一种芯片系统,其特征在于,包括处理器和存储器,所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求1-5中任一项所述的同步信号块的传输方法。
  26. 一种芯片系统,其特征在于,包括处理器和存储器,所述处理器执行所述存储器存储的计算机执行指令,以实现如权利要求6-10中任一项所述的同步信号块的传输方法。
  27. 一种同步信号块传输系统,其特征在于,所述同步信号块传输系统包括如权利要求11-15或21中任一项所述的第一终端设备,以及如权利要求16-20或22中任一项所述的第二终端设备。
PCT/CN2020/083261 2019-04-30 2020-04-03 一种同步信号块的传输方法和装置 WO2020220934A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20798217.4A EP3965385A4 (en) 2019-04-30 2020-04-03 METHOD AND DEVICE FOR TRANSMISSION OF SYNCHRONIZATION SIGNAL BLOCKS
JP2021564605A JP7334265B2 (ja) 2019-04-30 2020-04-03 同期信号ブロック送信方法および同期信号送信装置
US17/452,879 US20220046562A1 (en) 2019-04-30 2021-10-29 Synchronization Signal Block Transmission Method and Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910361704.4A CN111865857B (zh) 2019-04-30 一种同步信号块的传输方法和装置
CN201910361704.4 2019-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/452,879 Continuation US20220046562A1 (en) 2019-04-30 2021-10-29 Synchronization Signal Block Transmission Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2020220934A1 true WO2020220934A1 (zh) 2020-11-05

Family

ID=72965659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083261 WO2020220934A1 (zh) 2019-04-30 2020-04-03 一种同步信号块的传输方法和装置

Country Status (5)

Country Link
US (1) US20220046562A1 (zh)
EP (1) EP3965385A4 (zh)
JP (1) JP7334265B2 (zh)
CN (1) CN112653644B (zh)
WO (1) WO2020220934A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100605A1 (zh) * 2020-11-10 2022-05-19 华为技术有限公司 一种侧行链路的数据传输方法及相关装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033719A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc. Method and apparatus for physical sidelink control channel (pscch) design in new radio (nr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175206A2 (en) * 2017-03-24 2018-09-27 Qualcomm Incorporated Techniques for communicating synchronization signal block index in a timing synchronization signal
CN109478969A (zh) * 2016-08-10 2019-03-15 Lg 电子株式会社 用于在移动通信系统中收发广播信道信号的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102381814B1 (ko) * 2015-08-21 2022-04-04 후아웨이 테크놀러지 컴퍼니 리미티드 무선 통신 방법, 네트워크 디바이스, 사용자 장비 및 시스템
US10511422B2 (en) * 2015-10-01 2019-12-17 Lg Electronics Inc. Method and terminal for transmitting reference signal in D2D communication
KR20180072746A (ko) 2016-01-20 2018-06-29 후아웨이 테크놀러지 컴퍼니 리미티드 동기화 정보 송신 방법 및 장치
WO2018225989A1 (ko) * 2017-06-04 2018-12-13 엘지전자 주식회사 무선 통신 시스템에서, 시스템 정보를 수신하는 방법 및 이를 위한 장치
CN114070542A (zh) * 2018-08-10 2022-02-18 北京小米移动软件有限公司 发送、接收参考信号的方法、装置、车载设备及终端
US11800472B2 (en) * 2020-02-14 2023-10-24 Qualcomm Incorporated Demodulation reference signal sequence for sidelink communication
EP3965355A1 (en) * 2020-09-02 2022-03-09 Samsung Electronics Co., Ltd. Apparatus and method for effectively mapping reference signal for v2x communication in wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478969A (zh) * 2016-08-10 2019-03-15 Lg 电子株式会社 用于在移动通信系统中收发广播信道信号的方法和装置
WO2018175206A2 (en) * 2017-03-24 2018-09-27 Qualcomm Incorporated Techniques for communicating synchronization signal block index in a timing synchronization signal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Feature lead summary on AI 7.2.4.3 Sidelink synchronization mechanism", 3GPP TSG RAN WG1 MEETING #96BIS, R1-1905623, 12 April 2019 (2019-04-12), XP051707682 *
CONVIDA WIRELESS: "Design Considerations for NR SL Synchronization", 3GPP TSG-RAN WG1 MEETING #94BIS, R1-1811623, 12 October 2018 (2018-10-12), XP051519017 *
MEDIATEK INC.: "Discussion on sidelink based synchronization mechanism", 3GPP TSG RAN WG1 #96BIS, R1-1904495, 12 April 2019 (2019-04-12), XP051707235 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100605A1 (zh) * 2020-11-10 2022-05-19 华为技术有限公司 一种侧行链路的数据传输方法及相关装置

Also Published As

Publication number Publication date
CN111865857A (zh) 2020-10-30
JP2022531267A (ja) 2022-07-06
EP3965385A1 (en) 2022-03-09
US20220046562A1 (en) 2022-02-10
CN112653644A (zh) 2021-04-13
JP7334265B2 (ja) 2023-08-28
EP3965385A4 (en) 2022-07-06
CN112653644B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2019096291A1 (zh) 信息发送、接收方法及装置
EP3078225B1 (en) Method for adaptive tti coexistence with lte
WO2018210243A1 (zh) 一种通信方法和装置
US11968682B2 (en) Uplink dynamic grant-free transmission method and apparatus
CN110365461B (zh) 一种信号发送、接收方法及设备
WO2020094019A1 (zh) 信息传输方法及装置
WO2020083240A1 (zh) 同步信号块的传输方法及通信装置
WO2017031625A1 (zh) 解调参考信号的传输方法、装置以及通信系统
WO2020200029A1 (zh) 资源配置的方法、装置、用户设备、基站及存储介质
WO2020147731A1 (zh) 一种通信方法及装置
WO2018171752A1 (zh) 一种资源指示方法及网络设备、终端设备
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
WO2022022579A1 (zh) 一种通信方法及装置
US20220046562A1 (en) Synchronization Signal Block Transmission Method and Apparatus
JP2022544799A (ja) 制御情報を示す方法及び装置
WO2018137700A1 (zh) 一种通信方法,装置及系统
CN111148236A (zh) 一种数据传输方法和装置
US11202294B2 (en) Methods and devices for determining downlink resource set and sending resource position information
WO2021036375A1 (zh) 一种通信方法和装置
TWI759492B (zh) 帶寬分段的配置方法及網絡設備、終端
US20230112049A1 (en) Communication method and apparatus for open radio access network (o-ran)
WO2019157903A1 (zh) 一种资源配置方法及装置
WO2018228181A1 (zh) 一种pbch专属解调参考信号传输方法及装置
TW202318902A (zh) 一種實體上行控制通道的發送方法、接收方法及通信裝置
CN111865857B (zh) 一种同步信号块的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020798217

Country of ref document: EP

Effective date: 20211129