WO2018137700A1 - 一种通信方法,装置及系统 - Google Patents

一种通信方法,装置及系统 Download PDF

Info

Publication number
WO2018137700A1
WO2018137700A1 PCT/CN2018/074233 CN2018074233W WO2018137700A1 WO 2018137700 A1 WO2018137700 A1 WO 2018137700A1 CN 2018074233 W CN2018074233 W CN 2018074233W WO 2018137700 A1 WO2018137700 A1 WO 2018137700A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
indication information
subcarrier width
signaling
terminal
Prior art date
Application number
PCT/CN2018/074233
Other languages
English (en)
French (fr)
Inventor
张旭
孙昊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18743967.4A priority Critical patent/EP3553990B1/en
Publication of WO2018137700A1 publication Critical patent/WO2018137700A1/zh
Priority to US16/523,701 priority patent/US11038734B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a communication method, apparatus, and system.
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • uplink and downlink transmissions are organized into 10 ms system frames (English: system frame) or radio frames (English: radio frames).
  • LTE supports the system frame structure of 2: Type 1 for Frequency Division Duplex (FDD) and Type 2 for Time Division Duplex (TDD). Take FDD as an example.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Each system frame consists of 10 subframes (English: subframe).
  • Each subframe consists of 2 consecutive time slots (English: slot).
  • a slot consists of multiple symbols (English: symbol).
  • SC-FDMA Single carrier frequency division multiple access
  • OFDM Orthogonal Frequency Division Multiplexing
  • n -N, ... -2, -1, 1, 2, ..., N.
  • ultra-low latency sensitive services such as URLLC services
  • the demand for ultra-low latency the coexistence of NR and LTE
  • the increase of the time granularity for small time slots Scheduling.
  • one time slot For one small time slot, a plurality of consecutive OFDM symbols are included in the time domain, and one time slot may include a plurality of small time slots, and the number of OFDM symbols in the small time slots is smaller than the number of OFDM symbols in the one time slot.
  • the subcarrier width M used by the first control channel included in the minislot may be the same as or different from the subcarrier width W used by the second control channel included in the slot.
  • the terminal cannot be provided with a solution for detecting the time domain location of the candidate control channel in all the minislots.
  • the terminal needs to receive downlink data information, it is required to simultaneously detect the first control channel and the second control channel. After the two control channels are superimposed in the time domain, the terminal needs to detect multiple control channels in a unit time.
  • the access network device does not send the downlink data information to the terminal for a period of time, the terminal consumes more energy for detecting the control information carried on the second control channel. If the terminal does not detect the control information sent to itself during this time, the energy cost of receiving the data information is too high.
  • the present application provides a communication method for solving the technical problem of flexibly indicating the time domain location of the minislot of the second control channel according to the variation of the subcarrier width that cannot be used according to the second control channel in the prior art. Further, the problem that the terminal detects excessive power consumption caused by the control channel of each minislot can be solved.
  • the present application provides a communication method, where the method includes: obtaining, by a terminal, at least one small slot group according to a first subcarrier width used by a first control channel and a second subcarrier width used by a second control channel. format.
  • the time slot in which the first control channel is located includes the at least one small time slot group; the small time slot group includes at least one small time slot; and the small time slot includes the second control channel.
  • the first subcarrier width and the second subcarrier width are different.
  • the terminal receives the first signaling by the access network device, where the first signaling includes first indication information. Determining, by the terminal, a time domain location of each minislot group including the second control channel according to the first indication information.
  • the terminal receives the second signaling sent by the access network device, and the second signaling includes second indication information. Determining, by the terminal, a time domain location of the minislot including the second control channel in each of the minislot groups according to the format of the minislot group and the second indication information.
  • the terminal device finally determines that the bearer is carried according to the first indication information sent by the access network device and the second indication information, if the subcarrier widths used by the first control channel and the second control channel are different.
  • the time domain location of the second control channel of the control information sent by the access network device to the terminal Effectively increases the flexibility of the instructions.
  • the solution enables the terminal to detect the second control channel only in the specified time domain location, and in other time domain locations, the terminal does not perform detection, which can effectively save the energy consumption of the terminal detecting the control channel.
  • the terminal learns the format of the first signaling according to the first subcarrier width used by the first control channel and the second subcarrier width used by the second control channel, according to the In a format of signaling, the first indication information is obtained.
  • the terminal acquires the format of the second signaling according to a first subcarrier width used by the first control channel and a second subcarrier width used by the second control channel;
  • the second signaling format acquires the second indication information. Therefore, the terminal device can obtain the format of the first signaling corresponding to the different sub-carrier widths, and can flexibly indicate the second control channel time domain position when the second sub-carrier width changes.
  • the terminal acquires the format of the second signaling according to a first subcarrier width used by the first control channel and a second subcarrier width used by the second control channel;
  • the second signaling format acquires the second indication information. Therefore, the terminal device can obtain the format of the second signaling corresponding to the different sub-carrier widths, and can flexibly indicate the second control channel time domain position when the second sub-carrier width changes.
  • the terminal receives the third indication information, and acquires the first subcarrier width and the second subcarrier width according to the third indication information.
  • the third indication information may be carried by the second signaling.
  • the third indication information may be carried by the third signaling.
  • the third signaling may be high layer signaling or physical layer signaling, which is not limited in this application.
  • the method further comprises the terminal detecting the second control channel at a time domain location of each of the mini-slots including the second control channel.
  • the method further includes: the terminal transmitting uplink data at a time domain location of each of the mini-slots including the second control channel.
  • the first signaling is control information carried by the first control channel
  • the second signaling is high layer signaling
  • the time-frequency resource occupied by the first control channel may be a time-frequency resource region of a plurality of consecutive OFDM symbols including the starting OFDM symbol in the slot.
  • the first control channel includes, but is not limited to, a Physical Downlink Control Channel (PDCCH), an Enhanced Physical Downlink Control Channel (EPDCCH), and a new physical downlink control channel (English: New Radio Physical Downlink Control Channel (NR-PDCCH), Group Common Control Channel (GCCCH), Physical Control Format Indicator Channel (PCFICH), Class Physical Control Format Indicator Channel (English) : PCFICH-like Channel), a physical layer broadcast channel (English, L1 Broadcast Channel) or a control channel for performing the same or similar functions in the NR system.
  • a Physical Downlink Control Channel (PDCCH), an Enhanced Physical Downlink Control Channel (EPDCCH), and a new physical downlink control channel (English: New Radio Physical Downlink Control Channel (NR-PDCCH), Group Common Control Channel (GCCCH), Physical Control Format Indicator Channel (PCFICH),
  • the control information carried by the first control channel such as the downlink control information in the LTE
  • the first indication information and the second indication information are respectively carried in different signaling, which can effectively save the first The overhead of signaling.
  • the terminal receives the first signaling sent by the access network device in a first frequency band, and receives a second control channel sent by the access network device in a second frequency band. Control information carried, the first frequency band and the second frequency band being orthogonal in a frequency domain. Thereby, the terminal can receive the control information sent by the access network device in the small time slot in the same frequency band or different frequency bands, thereby improving the flexibility of data transmission.
  • the application provides a communication method, the method comprising: determining, by the access network device, at least one hour according to a first subcarrier width used by the first control channel and a second subcarrier width used by the second control channel.
  • the time slot in which the first control channel is located includes the at least one small time slot group, the small time slot group includes at least one small time slot, and the small time slot includes the second control channel.
  • the first subcarrier width and the second subcarrier width are different.
  • the access network device sends the first signaling to the terminal.
  • the first signaling includes first indication information, where the first indication information is used to indicate a time domain location of each minislot group including the second control channel.
  • the access network device sends the second signaling to the terminal according to the format of the small slot group.
  • the second signaling includes second indication information, where the second indication information is used to indicate a time domain location of the minislot including the second control channel in each of the minislot groups.
  • the access network device sends the first indication information and the second indication information to the terminal, so that the terminal can finally end according to the indication of the indication information. Determining a time domain location of the second control channel carrying the control information sent by the access network device to the terminal. Effectively increases the flexibility of the instructions.
  • the solution enables the terminal to detect the second control channel only in the specified time domain location, and in other time domain locations, the terminal does not perform detection, which can effectively save the energy consumption of the terminal detecting the control channel.
  • the access network device determines the format of the first signaling according to a first subcarrier width used by the first control channel and a second subcarrier width used by the second control channel; Determining, by the format of the first signaling, the first indication information. Therefore, in the case that the width of the second subcarrier is changed, the first indication information may be carried according to the format of the determined first signaling, so as to flexibly indicate the time domain location of the second control channel.
  • the access network device determines the format of the second signaling according to a first subcarrier width used by the first control channel and a second subcarrier width used by the second control channel, according to Decoding the second indication information by using the format of the second signaling. Therefore, in the case that the width of the second subcarrier is changed, the second indication information may be carried according to the determined format of the second signaling, so as to flexibly indicate the time domain location of the second control channel.
  • the access device sends third indication information to the terminal, where the third indication information is used to indicate a first subcarrier width and the second used by the first control channel.
  • the first signaling is control information carried by the first control channel
  • the second signaling is high layer signaling
  • the time-frequency resource occupied by the first control channel may be a time-frequency resource region of a plurality of consecutive OFDM symbols including the starting OFDM symbol in the slot.
  • the first control channel includes, but is not limited to, a Physical Downlink Control Channel (PDCCH), an Enhanced Physical Downlink Control Channel (EPDCCH), and a new physical downlink control channel (English: New Radio Physical Downlink Control Channel (NR-PDCCH), Group Common Control Channel (GCCCH), Physical Control Format Indicator Channel (PCFICH), Class Physical Control Format Indicator Channel (English) : PCFICH-like Channel), a physical layer broadcast channel (English, L1 Broadcast Channel) or a control channel for performing the same or similar functions in the NR system.
  • a Physical Downlink Control Channel (PDCCH), an Enhanced Physical Downlink Control Channel (EPDCCH), and a new physical downlink control channel (English: New Radio Physical Downlink Control Channel (NR-PDCCH), Group Common Control Channel (GCCCH), Physical Control Format Indicator Channel (PCFICH),
  • the control information carried by the first control channel such as the downlink control information in the LTE
  • the first indication information and the second indication information are respectively carried in different signaling, which can effectively save the first The overhead of signaling.
  • the access network device sends the first signaling to the terminal by using the first frequency band, and sends control information carried by the second control channel to the terminal by using the second frequency band, where the first The frequency band and the second frequency band are orthogonal in the frequency domain.
  • the terminal can send the control information sent by the access network device in the small time slot in the same frequency band or different frequency bands, thereby improving the flexibility of data transmission.
  • the present application provides a communication method, where the method includes: the terminal learns the control signaling according to the first subcarrier width used by the first control channel and the second subcarrier width used by the second control channel. format.
  • the first sub-carrier width and the second sub-carrier width are different, the time slot in which the first control channel is located includes at least one small time slot, and the small time slot includes the second control channel.
  • the terminal acquires the first indication information according to the format of the control signaling. Determining, by the terminal, a time domain location of each minislot including the second control channel according to the first indication information.
  • the terminal device finally determines that the bearer is carried according to the first indication information sent by the access network device and the second indication information, if the subcarrier widths used by the first control channel and the second control channel are different.
  • the time domain location of the second control channel of the control information sent by the access network device to the terminal Effectively increases the flexibility of the instructions.
  • the solution enables the terminal to detect the second control channel only in the specified time domain location, and in other time domain locations, the terminal does not perform detection, which can effectively save the energy consumption of the terminal detecting the control channel.
  • the method further includes: the terminal receiving the second indication information; the terminal acquiring the first subcarrier width and the second subcarrier width according to the second indication information .
  • the method further comprises the terminal detecting the second control channel at a time domain location of each of the mini-slots including the second control channel.
  • the method further includes: the terminal transmitting uplink data at a time domain location of each of the mini-slots including the second control channel.
  • the control signaling is control information carried by the first control channel.
  • the time-frequency resource occupied by the first control channel may be a time-frequency resource region of a plurality of consecutive OFDM symbols including the starting OFDM symbol in the slot.
  • the first control channel includes, but is not limited to, a Physical Downlink Control Channel (PDCCH), an Enhanced Physical Downlink Control Channel (EPDCCH), and a new physical downlink control channel (English: New Radio Physical Downlink Control Channel (NR-PDCCH), Group Common Control Channel (GCCCH), Physical Control Format Indicator Channel (PCFICH), Class Physical Control Format Indicator Channel (English) : PCFICH-like Channel), a physical layer broadcast channel (English, L1 Broadcast Channel) or a control channel for performing the same or similar functions in the NR system.
  • a Physical Downlink Control Channel (PDCCH), an Enhanced Physical Downlink Control Channel (EPDCCH), and a new physical downlink control channel (English: New Radio Physical Downlink Control Channel (NR-PDCCH), Group Common Control Channel (
  • the terminal receives the first signaling sent by the access network device in a first frequency band, and receives a second control channel sent by the access network device in a second frequency band. Control information carried, the first frequency band and the second frequency band being orthogonal in a frequency domain. Thereby, the terminal can receive the control information sent by the access network device in the small time slot in the same frequency band or different frequency bands, thereby improving the flexibility of data transmission.
  • the present application provides a communication method, including: determining, by an access network device, a control according to a first subcarrier width used by a first control channel and a second subcarrier width used by a second control channel.
  • the first sub-carrier width and the second sub-carrier width are different, the time slot in which the first control channel is located includes at least one small time slot, and the small time slot includes the second control channel.
  • the access network device sends control signaling to the terminal device according to the format of the control signaling, where the control signaling includes first indication information, where the indication information is used to indicate that each of the second control channels is included The time domain location of the minislot.
  • the terminal device determines, according to the first indication information sent by the access network device, that the bearer device is sent to the access network device.
  • the time domain location of the second control channel of the control information of the terminal Effectively increases the flexibility of the instructions.
  • the solution enables the terminal to detect the second control channel only in the specified time domain location, and in other time domain locations, the terminal does not perform detection, which can effectively save the energy consumption of the terminal detecting the control channel.
  • the method further includes: the access network device sending the second indication information; the terminal acquiring, according to the second indication information, the first subcarrier width and the Second subcarrier width.
  • the method further comprises the terminal detecting the second control channel at a time domain location of each of the mini-slots including the second control channel.
  • the method further includes: the terminal transmitting uplink data at a time domain location of each of the mini-slots including the second control channel.
  • the control signaling is control information carried by the first control channel.
  • the time-frequency resource occupied by the first control channel may be a time-frequency resource region of a plurality of consecutive OFDM symbols including the starting OFDM symbol in the slot.
  • the first control channel includes, but is not limited to, a Physical Downlink Control Channel (PDCCH), an Enhanced Physical Downlink Control Channel (EPDCCH), and a new physical downlink control channel (English: New Radio Physical Downlink Control Channel (NR-PDCCH), Group Common Control Channel (GCCCH), Physical Control Format Indicator Channel (PCFICH), Class Physical Control Format Indicator Channel (English) : PCFICH-like Channel), a physical layer broadcast channel (English, L1 Broadcast Channel) or a control channel for performing the same or similar functions in the NR system.
  • a Physical Downlink Control Channel (PDCCH), an Enhanced Physical Downlink Control Channel (EPDCCH), and a new physical downlink control channel (English: New Radio Physical Downlink Control Channel (NR-PDCCH), Group Common Control Channel (
  • the terminal receives the first signaling sent by the access network device in a first frequency band, and receives a second control channel sent by the access network device in a second frequency band. Control information carried, the first frequency band and the second frequency band being orthogonal in a frequency domain. Thereby, the terminal can receive the control information sent by the access network device in the small time slot in the same frequency band or different frequency bands, thereby improving the flexibility of data transmission.
  • the embodiment of the present application provides a communication apparatus for performing the method in any one of the possible aspects of the first aspect or the first aspect.
  • the communication device comprises means for performing the method of any of the possible aspects of the first aspect or the first aspect.
  • the communication device can be a device or a chip within the device.
  • the device includes: a processing unit and a transceiver unit, the processing unit may be a processor, the transceiver unit may be a transceiver, the transceiver includes a radio frequency circuit, optionally, the device further includes a storage A unit, which may be a memory.
  • the chip includes: a processing unit and a transceiver unit, and the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit on the chip.
  • the processing unit can execute computer executed instructions stored by the storage unit.
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, and the storage unit may also be a storage unit outside the chip in the device (for example, a read-only memory (read- Only memory, ROM)) or other types of static storage devices (eg, random access memory (RAM)) that can store static information and instructions.
  • the processor mentioned in any of the above may be a central processing unit (CPU), a microprocessor or an application specific integrated circuit (ASIC), or may be one or more for controlling An integrated circuit for program execution of a signalling method in any of the possible implementations.
  • the embodiment of the present application provides a communication apparatus for performing the method in any one of the possible aspects of the second aspect or the aspect.
  • the communication device comprises means for performing the method of any of the possible aspects of the second aspect or the second aspect.
  • the communication device can be a device or a chip within the device.
  • the device includes: a processing unit and a transceiver unit, the processing unit may be a processor, the transceiver unit may be a transceiver, the transceiver includes a radio frequency circuit, optionally, the device further includes a storage A unit, which may be a memory.
  • the chip includes: a processing unit and a transceiver unit, and the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit on the chip.
  • the processing unit can execute computer executed instructions stored by the storage unit.
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, and the storage unit may also be a storage unit outside the chip in the device (for example, a read-only memory (read- Only memory, ROM)) or other types of static storage devices (eg, random access memory (RAM)) that can store static information and instructions.
  • the processor mentioned in any of the above may be a central processing unit (CPU), a microprocessor or an application specific integrated circuit (ASIC), or may be one or more for controlling An integrated circuit for program execution of a signalling method in any of the possible implementations.
  • the embodiment of the present application provides a communication apparatus for performing the method in any one of the possible aspects of the third aspect or the third aspect.
  • the communication device comprises means for performing the method of any of the possible aspects of the third aspect or the third aspect.
  • the communication device can be a device or a chip within the device.
  • the device includes: a processing unit and a transceiver unit, the processing unit may be a processor, the transceiver unit may be a transceiver, the transceiver includes a radio frequency circuit, optionally, the device further includes a storage A unit, which may be a memory.
  • the chip includes: a processing unit and a transceiver unit, and the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit on the chip.
  • the processing unit can execute computer executed instructions stored by the storage unit.
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, and the storage unit may also be a storage unit outside the chip in the device (for example, a read-only memory (read- Only memory, ROM)) or other types of static storage devices (eg, random access memory (RAM)) that can store static information and instructions.
  • the processor mentioned in any of the above may be a central processing unit (CPU), a microprocessor or an application specific integrated circuit (ASIC), or may be one or more for controlling An integrated circuit for program execution of a signalling method in any of the possible implementations.
  • the embodiment of the present application provides a communication apparatus, for performing the method in any one of the possible aspects of the fourth aspect or the fourth aspect.
  • the communication device comprises means for performing the method of any of the possible aspects of the fourth aspect or the fourth aspect.
  • the communication device can be a device or a chip within the device.
  • the device includes: a processing unit and a transceiver unit, the processing unit may be a processor, the transceiver unit may be a transceiver, the transceiver includes a radio frequency circuit, optionally, the device further includes a storage A unit, which may be a memory.
  • the chip includes: a processing unit and a transceiver unit, and the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit on the chip.
  • the processing unit can execute computer executed instructions stored by the storage unit.
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, and the storage unit may also be a storage unit outside the chip in the device (for example, a read-only memory (read- Only memory, ROM)) or other types of static storage devices (eg, random access memory (RAM)) that can store static information and instructions.
  • the processor mentioned in any of the above may be a central processing unit (CPU), a microprocessor or an application specific integrated circuit (ASIC), or may be one or more for controlling An integrated circuit for program execution of a signalling method in any of the possible implementations.
  • the embodiment of the present application provides a terminal, where the terminal includes: a transceiver unit, a processor, and a memory.
  • the transceiver unit, the processor and the memory can be connected by a bus system.
  • the memory is for storing a program, instruction or code for executing a program, instruction or code in the memory to perform the method of any of the first aspect or any of the possible aspects of the first aspect.
  • an embodiment of the present application provides an access network device, where the access network device includes: a transceiver unit, a processor, and a memory.
  • the transceiver unit, the processor and the memory can be connected by a bus system.
  • the memory is for storing a program, instruction or code for executing a program, instruction or code in the memory to perform the method of any of the possible aspects of the second aspect or the second aspect.
  • an embodiment of the present application provides a terminal, where the terminal includes: a transceiver unit, a processor, and a memory.
  • the transceiver unit, the processor and the memory can be connected by a bus system.
  • the memory is for storing a program, instruction or code for executing a program, instruction or code in the memory to perform the method of any of the possible aspects of the third aspect or the third aspect.
  • an embodiment of the present application provides an access network device, where the access network device includes: a transceiver unit, a processor, and a memory.
  • the transceiver unit, the processor and the memory can be connected by a bus system.
  • the memory is for storing a program, instruction or code for executing a program, instruction or code in the memory to perform the method of any of the possible aspects of the fourth aspect or the fourth aspect.
  • the embodiment of the present application provides a computer readable storage medium or a computer program product for storing a computer program, where the computer program is used to execute the first aspect, the second aspect, the third aspect, and the fourth Aspects, any possible design of the first aspect, any possible design of the second aspect, any possible design of the third aspect, or an instruction of the method of any possible design of the fourth aspect.
  • FIG. 1 is a schematic diagram of an application network scenario of a communication method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of different subcarrier widths of a first control channel and a second control channel according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of using a different subcarrier width for a second control channel according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another first control channel and a second control channel using different sub-carrier widths according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of hardware of a communication device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of hardware of a communication apparatus according to an embodiment of the present disclosure.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, for example, New Radio (NR) system, Wireless Fidelity (WiFi), Worldwide Interoperability for Microwave Access (WiMAX), Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced Long Term Evolution (LTE-A) system, Universal Mobile Telecommunication System (UMTS), and third The cellular system related to The 3rd Generation Partnership Project (3GPP), and the fifth generation mobile communication system (The Fifth Generation, 5G).
  • NR New Radio
  • WiFi Wireless Fidelity
  • WiMAX Worldwide Interoperability for Microwave Access
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long
  • a terminal also called a User Equipment (UE) or a terminal device, is a device that provides voice and/or data connectivity to a user.
  • the terminal may be a wireless terminal or a wired terminal, and the wireless terminal may communicate with one or more core networks via a Radio Access Network (RAN), and the wireless terminal may be a mobile terminal, such as a mobile phone (or "Cellular" telephones and computers with mobile terminals, for example, may be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • RAN Radio Access Network
  • the wireless terminal may also be referred to as a system, a subscriber unit (SU), a subscriber station (Subscriber Station, SS), a mobile station (Mobile Station, MB), a mobile station (Mobile), a remote station (Remote Station, RS), Access Point (AP), Remote Terminal (RT), Access Terminal (AT), User Terminal (UT), User Agent (UA), Terminal (User) Device, UD).
  • SU subscriber unit
  • SS Subscriber Station
  • MB mobile station
  • a remote station Remote Station
  • AP Access Point
  • RT Remote Terminal
  • AT Access Terminal
  • UUT User Agent
  • User Terminal
  • the access network device which may be a gNB (gNode B)
  • gNode B may be an ordinary base station (for example, a base station (NodeB, NB) in a WCDMA system, an evolved base station (Evolutional NodeB, eNB or eNodeB) in an LTE system
  • the Base Transceiver Station (BTS) in GSM or CDMA may be a New Radio Controller (NR controller), may be a Centralized Unit, may be a new radio base station, or may be a radio frequency.
  • NR controller New Radio Controller
  • the remote module which may be a micro base station, may be a distributed network unit (Distributed Unit), may be a Transmission Reception Point (TRP) or a Transmission Point (TP), or may be a cloud wireless access network ( A wireless controller in a scenario of a Cloud Radio Access Network (CRAN), or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in a future evolved PLMN network. Or any other wireless access device, but the embodiment of the present application is not limited thereto.
  • distributed Unit may be a Transmission Reception Point (TRP) or a Transmission Point (TP), or may be a cloud wireless access network (
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network device in a future 5G network or a network device in
  • Orthogonal Frequency Division Multiplexing OFDM
  • SCMA Sparse Code Multiplexing Access
  • filtered orthogonal frequency division multiplexing Filtered
  • the Orthogonal Frequency Division Multiplexing (F-OFDM) symbol and the Non-Orthogonal Multiple Access (NOMA) symbol may be determined according to actual conditions, and details are not described herein again.
  • Subframe A time-frequency resource that occupies the entire system bandwidth in the frequency domain and occupies a fixed length of time in the time domain, for example, 1 millisecond (ms). At the same time, one subframe can also occupy consecutive K symbols, and K is a natural number greater than zero. The value of K can be determined according to actual conditions, and is not limited herein. For example, in LTE, 1 subframe occupies consecutive 14 OFDM symbols in the time domain.
  • L A basic time-frequency resource unit that occupies consecutive L OFDM symbols in the time domain, and L is a natural number greater than zero. The value of L can be determined according to actual conditions, for example, 7 or 14 OFDM symbols.
  • Small time slot also called mini-slot, occupying a plurality of consecutive OFDM symbols in the time domain, and the number of consecutive OFDM symbols occupied is smaller than the number of OFDM symbols occupied by the time slot in which the small time slot is located. .
  • a plurality of mini time slots may be included.
  • Control channel resources comprising at least one candidate control channel resource set, the candidate control channel resource set comprising one or more candidate control channel resources.
  • the first control channel also referred to as a slot control channel, or a slot control channel, located in a time-frequency resource of the slot, the information carried by the first control channel is used to indicate the data channel and the control channel in the slot. Resource location.
  • the first control channel and the slot control channel are often used interchangeably.
  • the set of the plurality of first control channels includes one or more candidate first control channels, and the one or more first candidate control channels carry control information sent by the access network to the terminal.
  • a second control channel also referred to as a mini-slot control channel, or a mini-slot control channel, located in a time-frequency resource of the mini-slot, and the information carried by the second control channel is used to indicate the data channel in the mini-slot. Resource location.
  • the time slot in which the first control channel is located includes at least one small time slot, and the small time slot includes the second control channel.
  • the second control channel and the mini-slot control channel are often used interchangeably.
  • the set of the plurality of second control channels includes one or more candidate second control channels, and the one or more second candidate control channels carry control information sent by the access network to the terminal.
  • unit time-frequency resource unit a resource unit composed of a plurality of consecutive OFDM symbols, and is not defined in the frequency domain; the number of the plurality of consecutive OFDM symbols may include, for example, 2, 7, or 14.
  • the sub-carrier width of the unit time-frequency resource unit may be configured or predefined by system efficient signaling; the high-layer signaling includes but is not limited to RRC signaling, system information or broadcast information, etc., wherein the unit time-frequency resource unit includes one A minislot group; wherein the minislot group includes at least one minislot.
  • Time domain location The location of the OFDM symbol in a time slot or minislot.
  • a time domain location of the minislot including the second control channel a time-frequency resource region occupied by the mini-slot including the second control channel, that is, a location of the OFDM symbol occupied by the mini-slot including the second control channel .
  • the number of occupied OFDM symbols may be one or more.
  • Subcarrier width The smallest granularity in the frequency domain.
  • the subcarrier width of one subcarrier is 15kHhz.
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 shows a schematic diagram of one possible network architecture of an embodiment of the present application.
  • the communication system of FIG. 1 may include a terminal 10 and an access network device 20.
  • the access network device 20 is configured to provide communication services for the terminal 10 and access the core network.
  • the terminal 10 accesses the network by searching for synchronization signals, broadcast signals, and the like sent by the access network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal 10 and the access network device 20.
  • the access information is transmitted by the control information carried on the first control channel.
  • the access network device 20 transmits the downlink data information of the small slot granularity to the terminal 10, it can be indicated by the control information carried on the second control channel.
  • the time slot in which the first control channel is located includes at least one of the small time slots, and the small time slot includes the second control channel.
  • the subcarrier width used by the first control channel is a first subcarrier width
  • the subcarrier width used by the second control channel is a second subcarrier width, a first subcarrier width and a second subcarrier. The width is different.
  • the access network device 20 transmits, by using a first frequency band, first control information carried on the first control channel to the terminal 10, where the terminal 10 is in the first
  • the first control information is received in a frequency band.
  • the access network device 20 transmits second control information carried on the second control channel to the terminal 10 through a second frequency band, and the terminal receives the second control information in the second frequency band.
  • the first frequency band and the second frequency band are orthogonal in a frequency domain; the first frequency band may be the same as or different from the second frequency band.
  • a terminal may perform data transmission only with one access network device, or may perform data transmission with multiple access network devices.
  • An access network device can perform data transmission with one terminal or data transmission with multiple terminals. This application does not specifically limit this.
  • the method includes:
  • the access network device determines a format of at least one minislot group.
  • the access network device determines the format of the at least one minislot group according to the first subcarrier width used by the first control channel and the second subcarrier width used by the second control channel.
  • the time slot in which the first control channel is located includes the at least one small time slot group, the small time slot group includes at least one small time slot, and the small time slot includes the second control channel, where the One subcarrier width is different from the second subcarrier width.
  • the first subcarrier width used by the first control channel is the subcarrier width used for transmitting the first control channel
  • the second subcarrier width used by the second control channel is The subcarrier width used by the second control channel.
  • the access network device determines the subcarrier width used by the first control channel and the subcarrier width used by the second control channel, and how to according to the first subcarrier width and the second subcarrier Width, determine the format of the mini-slot group, please refer to the detailed description below.
  • FIG. 3 is a schematic diagram showing the structure of different time slots and small time slots using different sub-carrier widths. It should be understood that the structures of the time slots, small time slots and small time slots shown in FIG. 3 are only for illustrative purposes, and do not constitute the present application. limited.
  • the first subcarrier width is 15 kHz, and one slot occupies 7 OFDM symbols in the time domain.
  • the first control channel occupies the first OFDM symbol starting in the time slot in the time domain.
  • the time slot includes a 3-hour gap group, and each small time slot group includes a 2-hour gap.
  • the second subcarrier width is 30 KHz, and each minislot occupies 2 OFDM symbols in the time domain.
  • the number of minislots included in the minislot group increases.
  • the number of the minislots corresponding to the third subcarrier width is the first value
  • the second control channel when the used subcarrier width is the fourth subcarrier width, the number of small slots corresponding to the fourth subcarrier width is a second value; the ratio of the first value to the second value is equal to the third subcarrier The ratio of the width to the fourth subcarrier width.
  • the following describes how the access network device determines the subcarrier width used by the first control channel and the subcarrier width used by the second control channel, as follows:
  • the subcarrier width used for the first control channel can be pre-defined or configured by standards.
  • the standard is pre-defined as 15 kHz, or configured by synchronization signals, broadcast information, and system information; when the carrier is less than 6 GHz, the optional subcarrier width is 15 kHz, 30 kHz, 60 kHz; when the carrier is greater than 6 GHz, the optional sub- The carrier width is 120 kHz, 240 kHz, etc., and the value of the subcarrier width is not limited to the above five types.
  • the access network device may be determined according to a type of data service transmitted or received.
  • the data service type is a low latency service (eg, a URLLC service)
  • the second control channel uses a subcarrier width greater than a subcarrier width used by the first control channel.
  • the first subcarrier width is 15 kHz and the second subcarrier width is 60 kHz.
  • the access network device determines a subcarrier width used by the second control channel according to a frequency band in which the data service is sent or received.
  • the access network device may further determine a subcarrier width used by the second control channel according to a carrier frequency of transmitting or receiving a data service.
  • the subcarrier width of the time slot is set to 15 kHz, and the subcarrier width setting of the minislot is set.
  • the user equipment determines the start time of accessing the unlicensed spectrum by detecting the candidate control channel of the minislot. Since the time granularity of the minislot is small, the start time of the user equipment to access the unlicensed spectrum is flexible enough.
  • the unlicensed spectrum includes a spectrum used by the WiFi device.
  • the manner of determining the subcarrier width used by the first control channel and the subcarrier width used by the second control channel is merely an example and should not be construed as limiting the application. Based on reading this application, those skilled in the art can use other methods to determine the subcarrier width used by the first control channel and the subcarrier width used by the second control channel, which are all applicable to the present application. The meaning of this is not repeated here.
  • the following describes how the access network device determines the format of the at least one minislot group according to the first subcarrier width and the second subcarrier width.
  • the format of the small slot group includes the number of minislots included in one minislot group, and the number of OFDM symbols occupied by each minislot.
  • the following information may be configured by standard pre-defined or high-level signaling configuration: the number of OFDM symbols occupied by one slot; the number of mini-slot groups included in one slot, and the hours included in each mini-slot group The number of slots and the number of OFDM symbols occupied by each minislot, thereby determining the format of the at least one minislot group.
  • the number of OFDM symbols occupied by one slot is 7.
  • the time-frequency resources corresponding to a small time slot group in the time domain and the frequency domain remain unchanged, that is, the product of the duration of a small time slot group in the time domain and the bandwidth width in the frequency domain remain unchanged.
  • the subcarrier width used by the first control channel is F1.
  • one slot may include a 3-hour slot group, each mini-slot group includes one mini-slot, and each mini-slot occupies 2 OFDM symbols.
  • one slot may include a 3-hour slot group, and each mini-slot group may include a 2-hour slot, and each mini-slot occupies 2 OFDM symbols.
  • each small slot group includes 4 hours of slots, and each minislot occupies 2 OFDM symbols.
  • F2 2 * F1.
  • the number of OFDM symbols occupied by one slot is seven.
  • the time-frequency resources corresponding to a small time slot group in the time domain and the frequency domain remain unchanged, that is, the product of the duration of a small time slot group in the time domain and the bandwidth width in the frequency domain remain unchanged.
  • the subcarrier width used by the first control channel is F1
  • one time slot may include a 2-hour gap group, each small time slot group may include 3 hours slots, and each small time slot occupies 2 OFDM symbols; or one The time slot may include a 2-hour gap group, and each small time slot group may include 2 hours of slots, and each small time slot occupies 3 OFDM symbols.
  • time slots are included in a time slot and a time slot in a time domain and a frequency domain when the second control channel uses different subcarrier widths.
  • the format of the mini-slot group corresponding to the width of each seed carrier when the standard pre-defined or higher layer signaling corresponds to different first sub-carrier widths and second sub-carrier widths.
  • the subcarrier width used by the first control channel is F1
  • when the subcarrier width used by the second control channel is F1 one slot includes a 2-hour slot group
  • each mini-slot group includes one. Small time slots, each small time slot occupies 3 OFDM symbols.
  • one time slot may include a 3-hour slot group, each small-slot group may include 2 hours slots, and each small time slot occupies 2 OFDM symbols; or one The time slot may include a 3-hour gap group, and each small time slot group may include 1 hour slot, and each small time slot occupies 4 OFDM symbols.
  • 14 OFDM symbols may be included in one slot, when the subcarrier width used by the first control channel is F1, and the subcarrier width used by the second control channel is F1, one
  • the time slot may include a 2-hour gap group, wherein the first hour slot group includes 2 hours slot, each small slot occupies 3 OFDM symbols, and the second hour slot group includes 2 hours slot, one of which The minislot occupies 3 OFDM symbols, and the other one slot occupies 4 OFDM symbols; or one slot may include a 4-hour slot group, wherein each of the first to third hour slots includes One hour slot, each small slot occupies 3 OFDM symbols, and the fourth hour slot group includes 1 hour slot, which occupies 4 OFDM symbols.
  • one slot may include a 2-hour slot group, and the first mini-slot group may include 4 hours.
  • a slot each of the first to third minislots occupies 3 OFDM symbols, and the 4th hour slot occupies 4 OFDM symbols; or a time slot may include a 4 hour slot group, the first hour slot group and
  • Each small slot group in the third hour slot group may include 2 hours slot, each small slot occupies 3 OFDM symbols, and each of the second and fourth hour slot groups may include 2 hours slot
  • the first hour slot occupies 3 OFDM symbols, and the second hour slot occupies 4 OFDM symbols.
  • the format of the specific mini-slot group listed in the above first to fourth specific embodiments is merely illustrative and should not be construed as limiting the application. Based on the reading of the present application, those skilled in the art can configure the format of the mini-slot group in any format by standard pre-definition or by high-layer signaling. The format of a specific minislot will not be repeated here. Specifically, the first subcarrier width, the second subcarrier width, and the format of the minislot group may be established on the basis of the format of the corresponding minislot group, and the access network device and the terminal may separately save the Mapping relations.
  • S202 The access network device sends the first signaling to the terminal.
  • the first signaling includes first indication information, where the first indication information is used to indicate a time domain location of each minislot group including the second control channel.
  • the access network device may send the first indication information to the terminal by using control information carried by the first control channel.
  • the time-frequency resource occupied by the first control channel may be a time-frequency resource region of a plurality of consecutive OFDM symbols including the starting OFDM symbol in the slot.
  • the time-frequency resources in each time slot generally include a control area and a data area, the control area is used to transmit control information, and the data area is used to transmit data.
  • the time-frequency resource where the first control channel is located may be the time-frequency resource included in the control area of the time slot in which the first control channel is located.
  • the first control channel includes, but is not limited to, a physical downlink control channel (English: Physical Downlink Control Channel, PDCCH), and an enhanced physical downlink control channel (English: Enhanced Physical Downlink Control Channel, EPDCCH) ), the new air interface physical downlink control channel (should be: New Radio Physical Downlink Control Channel, NR-PDCCH), group common control channel (English: Group Common Control Channel, GCCCH), physical control format indicator channel (Physical Control Format Indicator) Channel, PCFICH), a class of physical control format indicator channel (English: PCFICH-like Channel), a physical layer broadcast channel (English, L1 Broadcast Channel) or a control channel for performing the same or similar functions in the NR system.
  • a physical downlink control channel English: Physical Downlink Control Channel, PDCCH
  • an enhanced physical downlink control channel English: Enhanced Physical Downlink Control Channel, EPDCCH
  • the new air interface physical downlink control channel should be: New Radio Physical Downlink Control Channel, NR-PDCCH
  • group common control channel English: Group Common
  • the access network device Determining, by the access network device, the format of the first signaling, including determining a type of a related field included in the first signaling, a content that is carried, and a length of the content that is carried, where related fields include but are not limited to A field carrying the first indication information.
  • the first signaling may include, but is not limited to, indication information indicating a data channel resource allocation and/or indication information indicating a modulation and coding manner, in addition to the first indication information.
  • Determining, by the access network device, the format of the first signaling according to the first subcarrier width and the second subcarrier width including determining a length of a field that carries the first indication information.
  • the access network device may determine the format of the minislot group according to the first subcarrier width used by the first control channel and the second subcarrier width used by the second control channel, and configure according to the format of the minislot group. The length of the field carrying the first indication information.
  • f1 15 kHz
  • f2 30 kHz
  • A 3
  • the length of the field is 6 bits.
  • the first indication information may be carried by using several bits in the foregoing first signaling.
  • Each of the plurality of bits (in the form of a bitmap) is used to indicate whether the second control channel exists in each of the minislot groups.
  • the first subcarrier width is 15 kHz
  • the second subcarrier width is 30 kHz.
  • the time slot includes three small time slot groups, which are represented as small time slot group 0, small time slot group 1 and small time slot group 2, respectively. .
  • the small slot group 0 and the small slot group 2 carry the second control channel, and the small slot group 1 does not carry the second control channel.
  • the first signaling includes 3 bits to carry the first indication information.
  • the first indication information received by the user equipment is ⁇ 1, 0, 1 ⁇ , indicating that the second control channel resource is configured on the small slot group 0 and the small slot group 2, where 1 indicates presence and 0 indicates absence.
  • 1 and 0 can also indicate the opposite meaning, that is, 1 means no, 0 means existence, and the first indication information can be expressed as ⁇ 0, 1, 0 ⁇ , which is not specifically limited in the present application.
  • the binary value of the number of bits may also be used to indicate the time domain location of each of the minislot groups including the second control channel.
  • the first signaling may include, for example, 3 bits, and when the three bits are ⁇ 0, 0, 0 ⁇ , that is, a binary value of 0, corresponding to the pattern shown in FIG. 3, thereby determining that only the minislot is available.
  • a second control channel is configured on the group 0 and the mini-slot group 2.
  • the binary value when three bits are ⁇ 0, 0, 1 ⁇ , that is, the binary value is 2, it can correspond to another pattern. According to the pattern, it can be determined that only the small time slot group 0 and the small time slot group 1 are configured. Second control channel resource. Specifically, the binary value is used, or is determined according to the manner of the bit mapping, and may be pre-defined by the standard, or may be carried in the first signaling by using one bit, which is not specifically limited in this application.
  • mapping relationship table may be saved in the access network device, where the mapping relationship table is used to save a mapping relationship between the value of the binary and the pattern.
  • mapping relationship table is also saved in the terminal, and is used to save a mapping relationship between the value of the binary and the pattern.
  • the mapping relationship can be established by, for example, numbering each pattern, and a specific binary value corresponds to a pattern number (ID). Taking FIG. 3 as an example, the binary value is 0, corresponding to the pattern numbered 1, and the pattern numbered 1 indicates that only the first hour slot group 0 and the second hour slot group 2 are configured with the second control. Channel resources.
  • mapping relationship table may be implemented in a plurality of different manners, and the corresponding relationship may be expressed in the form of a table or other manners, which is not limited in this application.
  • one slot includes 7 OFDM symbols, including a 3-hour slot group, and each small slot group includes 2 hours slots, and each small slot includes 2 OFDM symbols, which is only one.
  • the description should not be construed as limiting the application.
  • one time slot can occupy other numbers of OFDM symbols, such as 14; one time slot can include multiple small time slot groups; each small time slot group can include other A number of small time slots; each small time slot may include other numbers of OFDM symbols, such as three.
  • a small slot group format may be configured according to a standard pre-defined or by higher layer signaling or other physical layer signaling, and the first indication is determined according to the format of the configured minislot group.
  • the format of the information will not be repeated here.
  • S203 The terminal receives the first signaling.
  • the manner in which the terminal determines the format of the first signaling is similar to the manner in which the access network device determines the format of the first signaling. For details, refer to how the access network device determines the foregoing. A specific description of the format of the first signaling is not described herein.
  • S204 The terminal determines a time domain location of each minislot group including the second control channel.
  • Determining, by the terminal, a time domain location of each minislot group including the second control channel according to the first indication information Determining, by the terminal, a time domain location of each of the minislot groups including the second control channel according to a binary value of a bit included in the first indication information or according to a method of bit mapping. Specifically, the binary value is used, or is determined according to the manner of the bit mapping, and may be pre-defined by the standard, or may be carried in the first signaling by using one bit, which is not specifically limited in this application.
  • the access network device sends the second signaling to the terminal according to the format of the small slot group.
  • the second signaling includes second indication information, where the second indication information is used to indicate a time domain location of the minislot including the second control channel in each of the minislot groups.
  • the access network device determines the format of the minislot group according to the first subcarrier width and the second subcarrier width, that is, determines the number of minislots included in the minislot group. And the number of OFDM symbols occupied by each minislot. Based on this, the access network device may determine a specific format of the second indication information.
  • the access network device may send the second indication information to the terminal in multiple manners.
  • the access network device sends the second indication information to the terminal by using high layer signaling.
  • the high layer signaling includes, but is not limited to, a Master Information Block (MIB), a System Information Block (SIB), or a Radio Resource Control (RRC) signaling, a high level broadcast signaling or Other high-level signaling with similar characteristics.
  • MIB Master Information Block
  • SIB System Information Block
  • RRC Radio Resource Control
  • the access network device sends the second indication information to the terminal by using initial access related information.
  • the initial access information includes a preamble signal (Message 1), a random access feedback message (Message 2), a message 3, and a message 4.
  • the message 4 may be an RRC establishment or reestablishment sent by the access network device to the terminal in the LTE. command.
  • the second indication information is sent by using the high-level signaling or the initial access information, so that the overhead caused by carrying the second indication information by the control information can be reduced, and the data transmission efficiency of the physical layer is improved.
  • the second indication information will be specifically described below with reference to FIGS. 3 and 4.
  • the terminal can determine that the second control channel resource is carried in the small slot group 0 and the small slot group 2 by using the indication of the first indication information. On this basis, the terminal further determines, according to the second indication information, a time domain location of the second control channel included in each of the mini-slot groups including the second control channel.
  • FIG. 4 schematically lists the patterns that each mini-slot group may have when the sub-carrier width of the mini-slot is 15 kHz, 30 kHz z, and 60 kHz.
  • the time domain location of the minislot included in the minislot group increases.
  • the number of minislot groups included in one slot, the number of minislots included in each minislot group, and the number of OFDM symbols occupied by each minislot also have Variety.
  • the number of minislots included in the minislot group is the first value, when the second control channel is used.
  • the second subcarrier width, the number of the minislots included in the minislot group is a second value; the ratio of the first value to the second value is equal to a ratio of the first subcarrier width to the second subcarrier width.
  • the pattern of each small slot group may be the same or different.
  • the second indication information may be specifically used to indicate a format pattern of each minislot group included in each time slot, or may be specifically indicated by bit mapping to indicate each second control channel in each minislot group. Time domain location.
  • the second indication information may be carried by using a number of bits in the second signaling.
  • each of the plurality of bits (in the form of a bitmap) is used to indicate a time domain location of the minislot including the second control channel.
  • one possible form of the second indication information is ⁇ 1, 0, 1, 0, ⁇ , that is, in the form of a bitmap, each can be determined
  • the second OFDM symbol and the third OFDM symbol carry a second control channel.
  • the time domain position of the second control channel included in the mini-slot group including the second control channel can be determined.
  • the binary value of the number of bits may also be used to indicate the time domain location of the minislot including the second control channel. For example, for a combination of the set first subcarrier width and the second subcarrier width, indicating a second control channel by using a mapping relationship between the binary value and the pattern according to a preset pattern The time domain location of each minislot group.
  • the second indication information may include, for example, 3 bits, and when the three bits are ⁇ 0, 0, 0 ⁇ , that is, a binary value of 0, corresponding to the pattern shown in FIG. 3, thereby determining that only the small time slot group A second control channel is configured on 0 and the mini-slot group 2.
  • the binary value when three bits are ⁇ 0, 0, 1 ⁇ , that is, the binary value is 2, it can correspond to another pattern. According to the pattern, it can be determined that only the small time slot group 0 and the small time slot group 1 are configured.
  • Second control channel Specifically, the binary value is used, or the bit mapping is used in advance, and may be pre-defined by a standard, or a bit may be carried in the second signaling for indication. This application does not specifically limit this.
  • mapping between the value of the binary and the pattern For a detailed description of the mapping between the value of the binary and the pattern, reference may be made to the description of the mapping relationship between the value of the binary and the pattern in the relevant part of the first indication information in the above, and details are not described herein again. .
  • the value of the first sub-carrier width, the value of the second sub-carrier width, and the configuration of the small-slot group format are used to carry the first indication information and the second indication information.
  • the signaling and the fields or formats therein are merely exemplary and are not intended to limit the application. Those skilled in the art can use other fields or formats of other signaling to carry the first indication information and the second indication information on the basis of reading the present application. It is also conceivable to change the different sub-carrier widths and/or The configuration of the format of different mini-slot groups is indicated by different indication information, which are all intended by the present application, and are not described herein.
  • S206 The terminal receives the second signaling.
  • S207 The terminal determines, according to the format of the small slot group and the second indication information, a time domain location of the minislot including the second control channel in each small slot group.
  • the terminal acquires the format of the second signaling according to the first subcarrier width and the second subcarrier width, and obtains the second indication according to the format of the second signaling. information.
  • the access network device after the access network device determines the first subcarrier width and the second subcarrier width, the access network device sends third indication information to the terminal, where a first subcarrier width and a second subcarrier width.
  • the terminal After receiving the third indication information, the terminal acquires the first subcarrier width and the second subcarrier width according to the third indication information.
  • the terminal acquires the format of the first signaling according to the first subcarrier width and the second subcarrier width, and acquires the first indication according to the format of the first signaling. information.
  • the terminal acquires the format of the second signaling according to the first subcarrier width and the second subcarrier width, and obtains the second indication according to the format of the second signaling. information.
  • the access network device may send the third indication information in a plurality of manners.
  • the access network device sends the indication information to the terminal by using high layer signaling, for example, the high layer information.
  • the command includes a Master Information Block (MIB), a System Information Block (SIB), or Radio Resource Control (RRC) signaling, or other high-level signaling with similar features.
  • MIB Master Information Block
  • SIB System Information Block
  • RRC Radio Resource Control
  • the access network device sends the indication information to the terminal by using Downlink Control Information (DCI), for example, sending the first in a common search space of the downlink control channel.
  • DCI Downlink Control Information
  • the time-frequency resource of the downlink control channel includes at least one OFDM symbol of a start OFDM symbol of a time slot or a subframe; the search space is a partial time-frequency resource within the time-frequency resource of the downlink control channel; Control information within the search space may be received by one or all of the terminals within the cell.
  • the access network device sends the third indication information to the terminal by using physical layer broadcast control signaling, for example, similar to broadcast signaling carried in a PCFICH channel in LTE; or
  • the time-frequency resource occupied by the physical layer broadcast control signaling includes at least one OFDM symbol of a start OFDM symbol of a time slot or a subframe, and the physical layer broadcast control signaling may be used by one or all terminals in the cell. Detection and reception.
  • the access network device may send the third indication information in other manners, and is not illustrated here one by one.
  • the second control channel carried by each minislot may be blindly detected at the determined time domain location. Therefore, it is determined that each time slot carries the time domain location of the second control channel of the control information sent by the access network device to the terminal.
  • the terminal may perform one or more of the following operations:
  • the terminal detects the second control channel at a time domain location of a minislot including the second control channel.
  • the set of the second control channel may include at least one candidate control channel set, and the terminal detects the target candidate control channel in the candidate control channel set in the target candidate control channel in the time domain position. And carrying control information sent by the access network device to the terminal.
  • the terminal transmits uplink data in a time domain position of the minislot including the second control channel.
  • the uplink data includes uplink control information and/or uplink data information.
  • the terminal device when the subcarrier widths used by the first control channel and the second control channel are different, the terminal device sends the first indication information and the second And indicating information, and finally determining a time domain location of the second control channel carrying the control information sent by the access network device to the terminal.
  • the above scheme effectively improves the indication flexibility.
  • the solution enables the terminal to detect the second control channel only in the specified time domain location, and in other time domain locations, the terminal does not perform detection, which can effectively save the energy consumption of the terminal detecting the control channel.
  • a communication method 300 provided by an embodiment of the present application is described in detail below with reference to FIG.
  • the method 300 includes:
  • the access network device determines a format of the control signaling.
  • the access network device determines the format of the control signaling according to the first subcarrier width used by the first control channel and the second subcarrier width used by the second control channel.
  • the first subcarrier width and the second subcarrier width are different.
  • the time slot in which the first control channel is located includes at least one small time slot, and the small time slot is used to carry the second control channel.
  • the control signaling includes first indication information, where the first indication information is used to indicate a time domain location of each minislot carrying a control channel resource.
  • the set of the second control channel may include at least one candidate control channel set, where the terminal detects a target candidate control channel in the candidate control channel set at the time domain location, where the target candidate control channel is used for a bearer
  • the control information sent by the access network device to the terminal may include at least one candidate control channel set, where the terminal detects a target candidate control channel in the candidate control channel set at the time domain location, where the target candidate control channel is used for a bearer The control information sent by the access network device to the terminal.
  • the control signaling may be control information carried by the first control channel.
  • the time-frequency resource occupied by the first control channel may be a time-frequency resource region of a plurality of consecutive OFDM symbols including the starting OFDM symbol in the slot.
  • the first control channel includes, but is not limited to, a physical downlink control channel (English: Physical Downlink Control Channel, PDCCH), and an enhanced physical downlink control channel (English: Enhanced Physical Downlink Control Channel, EPDCCH) ), New Radio Physical Downlink Control Channel (NR-PDCCH), Group Common Control Channel (GCCCH), Physical Control Format Indicator Channel (English: Physical Control Format Indicator) Channel, PCFICH), a class of physical control format indicator channel (English: PCFICH-like Channel), a physical layer broadcast channel (English, L1 Broadcast Channel) or a control channel for performing the same or similar functions in the NR system.
  • a physical downlink control channel English: Physical Downlink Control Channel, PDCCH
  • an enhanced physical downlink control channel English: Enhanced Physical Downlink Control Channel,
  • the access network device determines the subcarrier width used by the first control channel and the subcarrier width used by the second control channel, refer to the description of related parts in the foregoing method 200, and details are not described herein again.
  • the access network device After the access network device determines the first subcarrier width and the second subcarrier width, the access network device sends second indication information to the terminal, where the first control channel is used to indicate the first a subcarrier width and a second subcarrier width used by the second control channel. After receiving the second indication information, the terminal acquires the first subcarrier width and the second subcarrier width according to the second indication information; thereby, according to the first subcarrier width and the second sub The carrier width is obtained, and the format of the control signaling is obtained.
  • the access network device may send the second indication information in a plurality of manners.
  • the access network device sends the indication information to the terminal by using high layer signaling, for example, the high layer information.
  • the command includes a Master Information Block (MIB), a System Information Block (SIB), or Radio Resource Control (RRC) signaling, or other high-level signaling with similar features.
  • MIB Master Information Block
  • SIB System Information Block
  • RRC Radio Resource Control
  • the access network device sends the indication information to the terminal by using Downlink Control Information (DCI), for example, sending the first in a common search space of the downlink control channel.
  • DCI Downlink Control Information
  • the time-frequency resource of the downlink control channel includes at least one OFDM symbol of a start OFDM symbol of a time slot or a subframe; the search space is a partial time-frequency resource within the time-frequency resource of the downlink control channel; Control information within the search space may be received by one or all of the terminals within the cell.
  • the access network device sends the second indication information to the terminal by using physical layer broadcast control signaling, for example, similar to broadcast signaling carried in a PCFICH channel in LTE; or
  • the time-frequency resource occupied by the physical layer broadcast control signaling includes at least one OFDM symbol of a start OFDM symbol of a time slot or a subframe, and the physical layer broadcast control signaling may be used by one or all terminals in the cell. Detection and reception.
  • the access network device may also send the second indication information in other manners, which are not illustrated one by one.
  • the method for determining the format of the control signaling according to the first subcarrier width and the second subcarrier width is specifically described below with reference to FIG. 3 and FIG. 6 .
  • the format of the control signaling includes a type of a related field of the control signaling, a content carried by the related field, and a length of the carried content, where the related field includes but is not limited to a field that carries the first indication information.
  • the control signaling may include, but is not limited to, indication information indicating a data channel resource allocation and/or indication information indicating a modulation and coding manner, in addition to the foregoing first indication information.
  • the format of the field carrying the first indication information includes, but is not limited to, determining the type of the field carrying the first indication information, the content carried, and the length of the carried content.
  • the ratio of the field length L1 of the time domain position of each minislot including the second control channel to the f1 and f2 is included in the control signaling.
  • L1 A f2/f1 where A is a natural number, and the specific value of A can be set according to actual needs.
  • f1 15 kHz
  • f2 30 kHz
  • A 3
  • the length of the field is 6 bits.
  • the first indication information may be carried by using a number of bits in the control signaling.
  • each of the plurality of bits (in the form of a bitmap) is used to indicate a time domain location of each minislot including the second control channel.
  • the second control channel is configured to carry control information that is sent by the access network device to the terminal.
  • the first subcarrier width is 15 kHz
  • the second subcarrier width is 30 kHz
  • each minislot occupies 2 OFDM symbols
  • the time slot shown in FIG. 6 includes a 6 hour slot.
  • the first indication information includes 6 bits, ⁇ 1, 1, 0, 1, 0, 1 ⁇ , and each bit indicates whether a second control channel exists in the corresponding minislot.
  • 1 indicates presence and 0 indicates no existence.
  • 1 and 0 can also indicate the opposite meaning, that is, 1 means no, 0 means existence, and the first indication information can be expressed as ⁇ 0, 1, 0 ⁇ , which is not specifically limited in the present application.
  • the binary value of the several bits may also be used to indicate a time domain location of each minislot including the second control channel.
  • the first signaling may include, for example, 3 bits, and when 3 bits are ⁇ 0, 0, 0 ⁇ , that is, a binary value of 0, corresponding to the pattern shown in FIG. 6, thereby determining the small time slot 0,
  • the second control channel is included in the minislot 1, the minislot 4, and the minislot 6, while the minislot 3 and the minislot 5 do not include the second control channel.
  • the mapping relationship between the specific binary value and the mode may be pre-defined by a standard, and the foregoing mapping relationship is saved on the access network device and the terminal respectively.
  • the binary value is used, or is determined according to the manner of the bit mapping, and may be pre-defined by the standard, or may be carried in the first signaling by using one bit, which is not specifically limited in this application.
  • S302 The access network device sends control signaling to the terminal.
  • S303 The terminal receives the control signaling.
  • S304 The terminal acquires the first indication information according to the format of the control signaling.
  • the terminal parses the control signaling according to the format of the control signaling, and obtains a format for the first indication information. Specifically, the terminal may include acquiring a type, a content, and a length of a field that carries the first indication information. Obtaining the first indication information.
  • S305 The terminal determines, according to the first indication information, a time domain location of each minislot including the second control channel.
  • the terminal may perform one or more of the following operations:
  • the terminal detects the second control channel at a time domain location of a minislot including the second control channel.
  • the set of the second control channel may include at least one candidate control channel set, and the terminal detects the target candidate control channel in the candidate control channel set in the target candidate control channel in the time domain position. And carrying control information sent by the access network device to the terminal.
  • the terminal transmits uplink data in a time domain position of the minislot including the second control channel.
  • the uplink data includes uplink control information and/or uplink data information.
  • the terminal device when the subcarrier widths used by the first control channel and the second control channel are different, the terminal device sends the first indication information and the second And indicating information, and finally determining a time domain location of the second control channel carrying the control information sent by the access network device to the terminal.
  • the above scheme effectively improves the indication flexibility.
  • the solution enables the terminal to detect the second control channel only in the specified time domain location, and in other time domain locations, the terminal does not perform detection, which can effectively save the energy consumption of the terminal detecting the control channel.
  • FIG. 7 is a schematic diagram of a communication device 400 according to an embodiment of the present application.
  • the communication device 400 can be applied to the scenario of FIG. 1 for performing the method 200 shown in FIG. As shown in FIG. 7, the communication device 400 includes:
  • the processing unit 401 is configured to learn, according to the first subcarrier width used by the first control channel and the second subcarrier width used by the second control channel, a format of the at least one minislot group, where the first control channel is located Included in the time slot is the at least one small time slot group, the small time slot group includes at least one small time slot, and the small time slot includes the second control channel, the first subcarrier width and the second subcarrier width different.
  • the transceiver unit 402 is configured to receive, by the access network device, the first signaling, where the first signaling includes the first indication information.
  • the processing unit 401 is further configured to determine, according to the first indication information, a time domain location of each of the mini-slot groups including the second control channel.
  • step S204 For details, refer to the description in step S204, and details are not described herein again.
  • the transceiver unit 402 is further configured to receive the second signaling sent by the access network device, where the second signaling includes second indication information.
  • the processing unit 401 is further configured to determine, according to the format of the small slot group and the second indication information, a time domain location of the minislot including the second control channel in each small slot group.
  • the processing unit 401 is further configured to learn, according to the first subcarrier width used by the first control channel and the second subcarrier width used by the second control channel, Format, the first indication information is obtained according to the format of the first signaling.
  • the processing unit 401 is further configured to acquire the second signaling according to a first subcarrier width used by the first control channel and a second subcarrier width used by the second control channel. Format, the second indication information is obtained according to the format of the second signaling.
  • the receiving unit 401 is further configured to receive third indication information.
  • the processing unit 401 is further configured to acquire the first subcarrier width and the second subcarrier width according to the third indication information.
  • the processing unit 401 is further configured to detect the second control channel in a time domain location of the minislot including the second control channel.
  • the set of the second control channel may include at least one candidate control channel set, and the terminal detects the target candidate control channel in the candidate control channel set in the target candidate control channel in the time domain position. And carrying control information sent by the access network device to the terminal.
  • the processing unit 401 is further configured to send uplink data in a time domain location of the minislot including the second control channel.
  • the uplink data includes uplink control information and/or uplink data information.
  • the terminal device when the subcarrier widths used by the first control channel and the second control channel are different, the terminal device sends the first indication information and the second And indicating information, and finally determining a time domain location of the second control channel carrying the control information sent by the access network device to the terminal.
  • the above scheme effectively improves the indication flexibility.
  • the solution enables the terminal to detect the second control channel only in the specified time domain location, and in other time domain locations, the terminal does not perform detection, which can effectively save the energy consumption of the terminal detecting the control channel.
  • the transceiver unit 402 can be implemented by a transceiver
  • the processing unit 401 can be implemented by a processor.
  • terminal 800 can include a processor 801, a transceiver 802, and a memory 803.
  • the memory 803 can be used to store the program/code pre-installed when the terminal 800 is shipped from the factory, or to store the code and the like for the execution of the processor 801.
  • the terminal 800 may correspond to the terminal in the communication method 200 according to the embodiment of the present application and the terminal 800 of the embodiment of the present application, and the above and other operations and/or operations of the respective units in the terminal 800
  • the functions are respectively implemented in order to implement the corresponding processes of the method 200 shown in FIG. 2, and are not described herein for brevity.
  • the embodiment of the present application further provides a communication device, which can be used in the scenario of FIG. 1 for performing the method 200 shown in FIG. 2 .
  • the communication device 500 includes:
  • the processing unit 501 is configured to determine a format of the at least one small slot group according to the first subcarrier width used by the first control channel and the second subcarrier width used by the second control channel, where the first control channel Included in the time slot, the at least one small time slot group, the small time slot group includes at least one small time slot, the small time slot includes the second control channel, the first subcarrier width and the second sub The carrier width is different.
  • the transceiver unit 502 is configured to send first signaling to the terminal, where the first signaling includes first indication information, where the first indication information is used to indicate a time domain location of each minislot group including the second control channel. .
  • the processing unit 501 is further configured to send the second signaling to the terminal according to the format of the small slot group, where the second signaling includes second indication information, where the second indication information is used to indicate The time domain location of the minislot of the second control channel is included in each minislot group.
  • the processing unit 501 is further configured to determine, according to a first subcarrier width used by the first control channel and a second subcarrier width used by the second control channel, The format determines the first indication information according to the format of the first signaling.
  • the processing unit 501 is further configured to determine the second signaling according to a first subcarrier width used by the first control channel and a second subcarrier width used by the second control channel. And determining, according to the format of the second signaling, the second indication information.
  • the transceiver unit 502 is further configured to send third indication information to the terminal, where the third indication information is used to indicate a first subcarrier width used by the first control channel. And a second subcarrier width used by the second control channel.
  • the transceiver unit 502 can be implemented by a transceiver
  • the processing unit 501 can be implemented by a processor.
  • the access network device 1000 can include a processor 1001, a transceiver 1002, and a memory 1003.
  • the memory 1003 may be used to store a program/code pre-installed when the access network device 1000 is shipped from the factory, or may store a code or the like for execution of the processor 1001.
  • the access network device 1000 may correspond to the access network device in the communication method 200 according to the embodiment of the present application and the access network device 1000 in the embodiment of the present application, and the access network device 1000
  • the above and other operations and/or functions of the respective units in order to implement the corresponding processes of the method 200 shown in FIG. 2 are omitted for brevity.
  • the terminal device when the subcarrier widths used by the first control channel and the second control channel are different, the terminal device sends the first indication information and the second And indicating information, and finally determining a time domain location of the second control channel carrying the control information sent by the access network device to the terminal.
  • the above scheme effectively improves the indication flexibility.
  • the solution enables the terminal to detect the second control channel only in the specified time domain location, and in other time domain locations, the terminal does not perform detection, which can effectively save the energy consumption of the terminal detection control channel.
  • FIG. 11 is a schematic diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 can be applied to the scenario of FIG. 1 for performing the method 300 illustrated in FIG. As shown in FIG. 11, the communication device 600 includes:
  • the processing unit 601 is configured to learn a format of the control signaling according to the first subcarrier width used by the first control channel and the second subcarrier width used by the second control channel, where the first subcarrier The width and the second subcarrier width are different, the time slot in which the first control channel is located includes at least one small time slot, and the small time slot includes the second control channel.
  • the transceiver unit 602 is configured to receive the control signaling sent by the access network device, where the control signaling includes first indication information, where the indication information is used to indicate each hour that includes the second control channel. The time domain position of the gap.
  • the processing unit 601 is further configured to acquire the first indication information according to the format of the control signaling, and determine, according to the first indication information, a time of each minislot including the second control channel. Domain location.
  • the transceiver unit 602 is further configured to receive the second indication information.
  • the processing unit 601 is further configured to use the second indication information to obtain the first subcarrier width and the second subcarrier width.
  • the processing unit 601 is further configured to detect the second control channel in a time domain location of each of the mini-slots including the second control channel; or
  • the transceiver unit 602 can be implemented by a transceiver
  • the processing unit 601 can be implemented by a processor.
  • the terminal 1200 can include a processor 1201, a transceiver 1202, and a memory 1203.
  • the memory 1203 may be used to store a program/code pre-installed by the terminal 800 at the time of shipment, or may store a code or the like for execution of the processor 1201.
  • the terminal 1200 may correspond to the terminal in the communication method 300 according to the embodiment of the present application and the terminal 1200 of the embodiment of the present application, and the above and other operations and/or operations of the respective units in the terminal 1200
  • the functions are respectively implemented in order to implement the corresponding process of the method 300 shown in FIG. 5, and are not described herein for brevity.
  • the terminal device when the subcarrier widths used by the first control channel and the second control channel are different, the terminal device sends the first indication information and the second And indicating information, and finally determining a time domain location of the second control channel carrying the control information sent by the access network device to the terminal.
  • the above scheme effectively improves the indication flexibility.
  • the solution enables the terminal to detect the second control channel only in the specified time domain location, and in other time domain locations, the terminal does not perform detection, which can effectively save the energy consumption of the terminal detecting the control channel.
  • FIG. 13 is a schematic diagram of a communication device 1300 according to an embodiment of the present application.
  • the communication device 1300 can be applied to the scenario of FIG. 1 for performing the method 300 illustrated in FIG. As shown in FIG. 13, the communication device 1300 includes:
  • the processing unit 1301 is configured to determine a format of the control signaling according to the first subcarrier width used by the first control channel and the second subcarrier width used by the second control channel, where the first subcarrier width and The second subcarrier has a different width, and the time slot in which the first control channel is located includes at least one small time slot, and the small time slot includes the second control channel.
  • the transceiver unit 1302 is configured to send control signaling to the terminal device according to the format of the control signaling, where the control signaling includes first indication information, where the indication information is used to indicate that each of the second control channels is included The time domain location of the minislot.
  • the transceiver unit 1302 is further configured to send, to the terminal, second indication information, where the second indication information is used to indicate a first subcarrier width and used by the first control channel.
  • the transceiver unit 1302 can be implemented by a transceiver
  • the processing unit 1301 can be implemented by a processor.
  • the access network device 1400 can include a processor 1401, a transceiver 1402, and a memory 1403.
  • the memory 1403 may be used to store a program/code pre-installed when the access network device 1400 is shipped from the factory, or may store a code or the like used when the processor 1401 is executed.
  • the access network device 1400 may correspond to the access network device in the communication method 300 according to the embodiment of the present application and the access network device 1400 in the embodiment of the present application, and the access network device 1400
  • the above-mentioned and other operations and/or functions of the respective units in order to implement the corresponding processes of the method 300 shown in FIG. 5 are omitted for brevity.
  • the terminal device when the subcarrier widths used by the first control channel and the second control channel are different, the terminal device sends the first indication information and the second And indicating information, and finally determining a time domain location of the second control channel carrying the control information sent by the access network device to the terminal.
  • the above scheme effectively improves the indication flexibility.
  • the solution enables the terminal to detect the second control channel only in the specified time domain location, and in other time domain locations, the terminal does not perform detection, which can effectively save the energy consumption of the terminal detecting the control channel.
  • the present application further provides a communication system, including an access network device and a terminal, and the terminal may be the communication device provided by the embodiment corresponding to FIG. 7 or FIG. 8, and the access network device may be FIG. 9 or 10 corresponds to the communication device provided by the embodiment.
  • the communication system is for performing the method 200 of the embodiment corresponding to FIG.
  • the present application further provides a communication system, including a terminal and an access network device, and the terminal may be the communication device provided by the embodiment corresponding to FIG. 12 or FIG. 12, and the access network device may be FIG. 13 or FIG.
  • a communication system including a terminal and an access network device, and the terminal may be the communication device provided by the embodiment corresponding to FIG. 12 or FIG. 12, and the access network device may be FIG. 13 or FIG.
  • Corresponding embodiments provide communication devices.
  • the communication system is for performing the method 300 of the embodiment corresponding to FIG.
  • the transceiver may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
  • the processor may be a central processing unit (English: central processing unit, abbreviated: CPU), a network processor (English: network processor, abbreviated: NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the memory may include a volatile memory (English: volatile memory), such as random access memory (English: random-access memory, abbreviation: RAM); the memory may also include non-volatile memory (English: non-volatile memory).
  • read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state drive, Abbreviation: SSD); the memory may also include a combination of the above types of memory.
  • the 8 , 10, 12, and 14 may also include a bus interface, which may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor and memory represented by the memory. The circuits are linked together.
  • the bus interface can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver provides means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be taken by the embodiment of the present application.
  • the implementation process constitutes any qualification.
  • modules and method steps of the various examples described in connection with the embodiments disclosed herein can be implemented in electronic hardware or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Abstract

本申请提供了一种通信方法,接入网设备和终端分别根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定至少一个小时隙组的格式,接入网设备向终端分别发送第一指示信息和第二指示信息,使得终端根据第一指示信息确定包括所述第二控制信道的每个小时隙组的时域位置,根据所述小时隙组的格式以及所述第二指示信息确定所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。本申请的方法,可以根据第二控制信道使用的子载波宽度的变化,灵活指示包括第二控制信道的小时隙时域位置,终端可以只检测部分小时隙,从而减少终端检测每个小时隙的能耗。

Description

一种通信方法,装置及系统 技术领域
本申请实施例涉及通信技术领域,特别涉及一种通信方法,装置及系统。
背景技术
由第三代合作伙伴项目(the 3rd Generation Partnership Project,3GPP)制定的长期演进(Long Term Evolution,LTE)系统标准被认为是第四代无线接入系统标准。现有LTE系统中,在时域上,上下行传输都被组织成10ms的系统帧(英文:system frame)或者称之为无线帧(英文:radio frame)。LTE支持2中系统帧结构:用于频分双工(英文:Frequency Division Duplex,FDD)的类型1和用于时分双工(英文:Time Division Duplex,TDD)的类型2.以FDD为例,每个系统帧由10个子帧(英文:subframe)组成。每个子帧由2个连续的时隙(英文:slot)组成。一个slot由多个符号(英文:symbol)组成。上行使用单载波频分多址(Single Carrier Frequency Division Multiple Access,SC-FDMA)符号,下行使用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。以下行使用OFDM符合为例,对于一个slot,在时域上包括连续多个OFDM符号,每个时隙的数据信道所使用的子载波宽度是15kHz。
在下一代通信系统中,例如:在新无线(英文:New Radio,NR),或者称之为第五代(5G)无线接入系统中,NR系统支持多种子载波宽度,例如15kHz,30kHz,60kHz,120kHz,且任意两个子载波宽度的比值等于2n,其中n=-N,…-2,-1,1,2,…,N。并且,NR系统中,基于以下考虑,包括但不限于超低时延敏感业务(例如URLLC业务)对超低时延的需求,NR和LTE并存的需求,增加以小时隙为时间粒度来进行信息调度。对于一个小时隙,在时域上包括连续多个OFDM符号,一个时隙内可以包括多个小时隙,所述小时隙内的OFDM符号的数量小于所述一个时隙内的OFDM符号的数量。小时隙包括的第一控制信道所使用的子载波宽度M与时隙中包括的第二控制信道所使用的子载波宽度W可以相同或不同。
当M和W不同时,现有的LTE系统中不考虑子载波宽度的变化,因此无法为终端提供检测所有小时隙内候选的控制信道的时域位置的解决方案。终端需要接收下行数据信息时,需要同时检测第一控制信道和第二控制信道。两种控制信道在时域上叠加后,终端需要在单位时间内检测多个控制信道。当一段时间内,接入网设备未发送下行数据信息给终端时,终端消耗较多能量用于检测第二控制信道上承载的控制信息。如果这段时间内,终端没有检测到发送给自己的控制信息,导致接收数据信息的能量代价过高。
因此,终端如何确定包括第二控制信道的小时隙的时域位置成为亟待解决的问题。
发明内容
本申请提供了一种通信方法,用于解决现有技术中无法根据第二控制信道使用的子载波宽度的变化,灵活指示包括第二控制信道的小时隙的时域位置的技术问题。进一步的, 可以解决终端检测每个小时隙的控制信道所导致的能耗过大的问题。
第一方面,本申请提供了一种通信方法,该方法包括:终端根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,获知至少一个小时隙组的格式。其中,所述第一控制信道所在的时隙中包括所述至少一个小时隙组;所述小时隙组中包括至少一个小时隙;所述小时隙中包括所述第二控制信道。所述第一子载波宽度和第二子载波宽度不同。所述终端接收接入网设备发送第一信令,所述第一信令包括第一指示信息。所述终端根据所述第一指示信息确定包括所述第二控制信道的每个小时隙组的时域位置。所述终端接收所述所述接入网设备发送的第二信令,所述第二信令包括第二指示信息。所述终端根据所述小时隙组的格式以及所述第二指示信息确定所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。
通过在第一控制信道和第二控制信道使用的子载波宽度不同的情况下,终端设备根据所述接入网设备发送的上述第一指示信息和上述第二指示信息,最终确定承载有所述接入网设备发送给所述终端的控制信息的第二控制信道的时域位置。有效提高了指示的灵活性。此外,本方案使得终端可以仅在指定的时域位置检测所述第二控制信道,而在其它时域位置,终端不进行检测,可以有效节省终端检测控制信道的能耗。
在一个可选的设计中,所述终端根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,获知所述第一信令的格式,根据所述第一信令的格式,获取所述第一指示信息。
在一个可选的设计中,所述终端根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,获取所述第二信令的格式;根据所述第二信令的格式,获取所述第二指示信息。由此使得,终端设备可以根据不同的子载波宽度,获得与之对应的第一信令的格式,在第二子载波宽度变化的情况下,可以灵活的指示第二控制信道时域位置。
在一个可选的设计中,所述终端根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,获取所述第二信令的格式;根据所述第二信令的格式,获取所述第二指示信息。由此使得,终端设备可以根据不同的子载波宽度,获得与之对应的第二信令的格式,在第二子载波宽度变化的情况下,可以灵活的指示第二控制信道时域位置。
在一个可选的设计中,所述终端接收第三指示信息,并根据所述第三指示信息获取所述第一子载波宽度和所述第二子载波宽度。
在一个可选的设计中,可以通过所述第二信令承载所述第三指示信息。
在一个可选的设计中,可以通过第三信令承载所述第三指示信息。可选的,所述第三信令可以是高层信令也可以是物理层信令,本申请对此不作限定。
在一个可选的设计中,所述方法还包括:所述终端在所述包括所述第二控制信道的每个小时隙的时域位置检测所述第二控制信道。
在一个可选的设计中,所述方法还包括:所述终端在所述包括所述第二控制信道的每个小时隙的时域位置上发送上行数据。
在一个可选的设计中,所述第一信令为所述第一控制信道承载的控制信息,所述第二信令为高层信令。
该第一控制信道所占用的时频资源可以为包括时隙中起始OFDM符号在内,连续的多个OFDM符号的时频资源区域。该第一控制信道包括但不限于物理下行控制信道(英文: Physical Downlink Control Channel,PDCCH),增强物理下行控制信道(英文:Enhanced Physical Downlink Control Channel,EPDCCH),新空口物理下行控制信道(英文:New radio Physical Downlink Control Channel,NR-PDCCH),组公共控制信道(英文:Group Common Control Channel,GCCCH),物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH),类物理控制格式指示信道(英文:PCFICH-like Channel),物理层广播信道(英文,L1 Broadcast Channel)或NR系统中用于执行相同或者相似功能的控制信道。
因为通过第一控制信道承载的控制信息,比如LTE中的下行控制信息的开销不能过大,因此,将第一指示信息和第二指示信息分别携带在不同的信令中,可以有效节省第一信令的开销。
在一个可选的设计中,所述终端在第一频带内接收所述接入网设备发送的所述第一信令,在第二频带内接收所述接入网设备发送的第二控制信道承载的控制信息,所述第一频带和所述第二频带在频域上正交。由此,可以使得终端在相同频带或不同频带上均可以接收到小时隙内接入网设备发送的控制信息,提高数据传输的灵活性。
第二方面,本申请提供了一种通信方法,该方法包括:接入网设备根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定至少一个小时隙组的格式。其中,所述第一控制信道所在的时隙中包括所述至少一个小时隙组,所述小时隙组中包括至少一个小时隙,所述小时隙中包括所述第二控制信道。所述第一子载波宽度和第二子载波宽度不同。所述接入网设备向终端发送第一信令。所述第一信令包括第一指示信息,所述第一指示信息用于指示包括第二控制信道的每个小时隙组的时域位置。所述接入网设备根据所述小时隙组的格式,向所述终端发送第二信令。所述第二信令包括第二指示信息,所述第二指示信息用于指示所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。
通过在第一控制信道和第二控制信道使用的子载波宽度不同的情况下,接入网设备向终端发送上述第一指示信息和上述第二指示信息,使得终端可以根据上述指示信息的指示最终确定承载有所述接入网设备发送给所述终端的控制信息的第二控制信道的时域位置。有效提高了指示的灵活性。此外,本方案使得终端可以仅在指定的时域位置检测所述第二控制信道,而在其它时域位置,终端不进行检测,可以有效节省终端检测控制信道的能耗。
在一个可选的设计中,所述接入网设备根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定所述第一信令的格式;根据所述第一信令的格式,确定所述第一指示信息。由此使得在第二子载波宽度变化的情况下,可以根据所述确定的第一信令的格式,携带所述第一指示信息,从而灵活的指示第二控制信道时域位置。
在一个可选的设计中,所述接入网设备根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定所述第二信令的格式,根据所述第二信令的格式,确定所述第二指示信息。由此使得在第二子载波宽度变化的情况下,可以根据所述确定的第二信令的格式,携带所述第二指示信息,从而灵活的指示第二控制信道时域位置。
在一个可选的设计中,所述接入设备向所述终端发送第三指示信息,所述第三指示信息用于指示所述第一控制信道使用的第一子载波宽度和所述第二控制信道使用的第二子载波宽度。
在一个可选的设计中,所述第一信令为所述第一控制信道承载的控制信息,所述第二 信令为高层信令。
该第一控制信道所占用的时频资源可以为包括时隙中起始OFDM符号在内,连续的多个OFDM符号的时频资源区域。该第一控制信道包括但不限于物理下行控制信道(英文:Physical Downlink Control Channel,PDCCH),增强物理下行控制信道(英文:Enhanced Physical Downlink Control Channel,EPDCCH),新空口物理下行控制信道(英文:New radio Physical Downlink Control Channel,NR-PDCCH),组公共控制信道(英文:Group Common Control Channel,GCCCH),物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH),类物理控制格式指示信道(英文:PCFICH-like Channel),物理层广播信道(英文,L1 Broadcast Channel)或NR系统中用于执行相同或者相似功能的控制信道。
因为通过第一控制信道承载的控制信息,比如LTE中的下行控制信息的开销不能过大,因此,将第一指示信息和第二指示信息分别携带在不同的信令中,可以有效节省第一信令的开销。
在一个可选的设计中,所述接入网设备通过第一频带向终端发送所述第一信令,通过第二频带向终端发送所述第二控制信道承载的控制信息,所述第一频带和所述第二频带在频域上正交。由此,可以使得终端在相同频带或不同频带上均可以发送小时隙内接入网设备发送的控制信息,提高数据传输的灵活性。
第三方面,本申请提供了一种通信方法,该方法包括:终端根据第一控制信道所使用的第一子载波宽度以及第二控制信道所使用的第二子载波宽度,获知控制信令的格式。其中,所述第一子载波宽度和所述第二子载波宽度不同,所述第一控制信道所在的时隙中包括至少一个小时隙,所述小时隙中包括所述第二控制信道。所述终端接收所述接入网设备发送的所述控制信令,所述控制信令包括第一指示信息,所述指示信息用于指示包括所述第二控制信道的每个小时隙的时域位置。所述终端根据所述控制信令的格式,获取所述第一指示信息。所述终端根据所述第一指示信息,确定包括所述第二控制信道的每个小时隙的时域位置。
通过在第一控制信道和第二控制信道使用的子载波宽度不同的情况下,终端设备根据所述接入网设备发送的上述第一指示信息和上述第二指示信息,最终确定承载有所述接入网设备发送给所述终端的控制信息的第二控制信道的时域位置。有效提高了指示的灵活性。此外,本方案使得终端可以仅在指定的时域位置检测所述第二控制信道,而在其它时域位置,终端不进行检测,可以有效节省终端检测控制信道的能耗。
在一个可选的设计中,所述方法还包括:所述终端接收第二指示信息;所述终端根据所述第二指示信息,获取所述第一子载波宽度和所述第二子载波宽度。
在一个可选的设计中,所述方法还包括:所述终端在所述包括所述第二控制信道的每个小时隙的时域位置检测所述第二控制信道。
在一个可选的设计中,所述方法还包括:所述终端在所述包括所述第二控制信道的每个小时隙的时域位置上发送上行数据。
在一个可选的设计中,所述控制信令为所述第一控制信道承载的控制信息。该第一控制信道所占用的时频资源可以为包括时隙中起始OFDM符号在内,连续的多个OFDM符号的时频资源区域。该第一控制信道包括但不限于物理下行控制信道(英文:Physical Downlink Control Channel,PDCCH),增强物理下行控制信道(英文:Enhanced Physical Downlink Control  Channel,EPDCCH),新空口物理下行控制信道(英文:New radio Physical Downlink Control Channel,NR-PDCCH),组公共控制信道(英文:Group Common Control Channel,GCCCH),物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH),类物理控制格式指示信道(英文:PCFICH-like Channel),物理层广播信道(英文,L1 Broadcast Channel)或NR系统中用于执行相同或者相似功能的控制信道。
在一个可选的设计中,所述终端在第一频带内接收所述接入网设备发送的所述第一信令,在第二频带内接收所述接入网设备发送的第二控制信道承载的控制信息,所述第一频带和所述第二频带在频域上正交。由此,可以使得终端在相同频带或不同频带上均可以接收到小时隙内接入网设备发送的控制信息,提高数据传输的灵活性。
第四方面,本申请提供了一种通信方法,该方法包括:接入网设备根据第一控制信道所使用的第一子载波宽度以及第二控制信道所使用的第二子载波宽度,确定控制信令的格式。其中,所述第一子载波宽度和所述第二子载波宽度不同,所述第一控制信道所在的时隙中包括至少一个小时隙,所述小时隙中包括所述第二控制信道。所述接入网设备根据所述控制信令的格式向终端设备发送控制信令,所述控制信令包括第一指示信息,所述指示信息用于指示包括所述第二控制信道的每个小时隙的时域位置。
通过在第一控制信道和第二控制信道使用的子载波宽度不同的情况下,终端设备根据所述接入网设备发送的上述第一指示信息,最终确定承载有所述接入网设备发送给所述终端的控制信息的第二控制信道的时域位置。有效提高了指示的灵活性。此外,本方案使得终端可以仅在指定的时域位置检测所述第二控制信道,而在其它时域位置,终端不进行检测,可以有效节省终端检测控制信道的能耗。
在一个可选的设计中,所述方法还包括:所述接入网设备发送所述第二指示信息;所述终端根据所述第二指示信息,获取所述第一子载波宽度和所述第二子载波宽度。
在一个可选的设计中,所述方法还包括:所述终端在所述包括所述第二控制信道的每个小时隙的时域位置检测所述第二控制信道。
在一个可选的设计中,所述方法还包括:所述终端在所述包括所述第二控制信道的每个小时隙的时域位置上发送上行数据。
在一个可选的设计中,所述控制信令为所述第一控制信道承载的控制信息。该第一控制信道所占用的时频资源可以为包括时隙中起始OFDM符号在内,连续的多个OFDM符号的时频资源区域。该第一控制信道包括但不限于物理下行控制信道(英文:Physical Downlink Control Channel,PDCCH),增强物理下行控制信道(英文:Enhanced Physical Downlink Control Channel,EPDCCH),新空口物理下行控制信道(英文:New radio Physical Downlink Control Channel,NR-PDCCH),组公共控制信道(英文:Group Common Control Channel,GCCCH),物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH),类物理控制格式指示信道(英文:PCFICH-like Channel),物理层广播信道(英文,L1 Broadcast Channel)或NR系统中用于执行相同或者相似功能的控制信道。
在一个可选的设计中,所述终端在第一频带内接收所述接入网设备发送的所述第一信令,在第二频带内接收所述接入网设备发送的第二控制信道承载的控制信息,所述第一频带和所述第二频带在频域上正交。由此,可以使得终端在相同频带或不同频带上均可以接收到小时隙内接入网设备发送的控制信息,提高数据传输的灵活性。
第五方面,本申请实施例提供了一通信装置,用于执行第一方面或第一方面的任意一种可能的设计中的方法。具体地,该通信装置包括用于执行第一方面或第一方面的任意一种可能的设计中的方法的单元。该通信装置可以是设备,也可以是设备内的芯片。当该通信装置为设备时,该设备包括:处理单元和收发单元,该处理单元可以是处理器,该收发单元可以是收发器,该收发器包括射频电路,可选地,该设备还包括存储单元,该存储单元可以是存储器。当该通信装置为设备内的芯片时,该芯片包括:处理单元和收发单元,该处理单元可以是处理器,该收发单元可以是所述芯片上的输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令。可选地,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),该存储单元还可以是该设备内的位于该芯片外部的存储单元(例如,只读存储器(read-only memory,ROM))或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器(random access memory,RAM))等。上述任一处提到的处理器可以是一个中央处理器(central processing unit,CPU)、微处理器或专用集成电路(application specific integrated circuit,ASIC),也可以是一个或多个用于控制第一方面任意可能的实现方式中的信号发送方法的程序执行的集成电路。
第六方面,本申请实施例提供了一通信装置,用于执行第二方面或第方面的任意一种可能的设计中的方法。具体地,该通信装置包括用于执行第二方面或第二方面的任意一种可能的设计中的方法的单元。该通信装置可以是设备,也可以是设备内的芯片。当该通信装置为设备时,该设备包括:处理单元和收发单元,该处理单元可以是处理器,该收发单元可以是收发器,该收发器包括射频电路,可选地,该设备还包括存储单元,该存储单元可以是存储器。当该通信装置为设备内的芯片时,该芯片包括:处理单元和收发单元,该处理单元可以是处理器,该收发单元可以是所述芯片上的输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令。可选地,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),该存储单元还可以是该设备内的位于该芯片外部的存储单元(例如,只读存储器(read-only memory,ROM))或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器(random access memory,RAM))等。上述任一处提到的处理器可以是一个中央处理器(central processing unit,CPU)、微处理器或专用集成电路(application specific integrated circuit,ASIC),也可以是一个或多个用于控制第一方面任意可能的实现方式中的信号发送方法的程序执行的集成电路。
第七方面,本申请实施例提供了一通信装置,用于执行第三方面或第三方面的任意一种可能的设计中的方法。具体地,该通信装置包括用于执行第三方面或第三方面的任意一种可能的设计中的方法的单元。该通信装置可以是设备,也可以是设备内的芯片。当该通信装置为设备时,该设备包括:处理单元和收发单元,该处理单元可以是处理器,该收发单元可以是收发器,该收发器包括射频电路,可选地,该设备还包括存储单元,该存储单元可以是存储器。当该通信装置为设备内的芯片时,该芯片包括:处理单元和收发单元,该处理单元可以是处理器,该收发单元可以是所述芯片上的输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令。可选地,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),该存储单元还可以是该设备内的位于该芯片外部的存储单元(例如,只读存储器(read-only memory,ROM))或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器(random access memory,RAM))等。上 述任一处提到的处理器可以是一个中央处理器(central processing unit,CPU)、微处理器或专用集成电路(application specific integrated circuit,ASIC),也可以是一个或多个用于控制第一方面任意可能的实现方式中的信号发送方法的程序执行的集成电路。
第八方面,本申请实施例提供了一通信装置,用于执行第四方面或第四方面的任意一种可能的设计中的方法。具体地,该通信装置包括用于执行第四方面或第四方面的任意一种可能的设计中的方法的单元。该通信装置可以是设备,也可以是设备内的芯片。当该通信装置为设备时,该设备包括:处理单元和收发单元,该处理单元可以是处理器,该收发单元可以是收发器,该收发器包括射频电路,可选地,该设备还包括存储单元,该存储单元可以是存储器。当该通信装置为设备内的芯片时,该芯片包括:处理单元和收发单元,该处理单元可以是处理器,该收发单元可以是所述芯片上的输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令。可选地,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),该存储单元还可以是该设备内的位于该芯片外部的存储单元(例如,只读存储器(read-only memory,ROM))或可存储静态信息和指令的其他类型的静态存储设备(例如,随机存取存储器(random access memory,RAM))等。上述任一处提到的处理器可以是一个中央处理器(central processing unit,CPU)、微处理器或专用集成电路(application specific integrated circuit,ASIC),也可以是一个或多个用于控制第一方面任意可能的实现方式中的信号发送方法的程序执行的集成电路。
第九方面,本申请实施例提供了一种终端,所述终端包括:收发单元、处理器和存储器。其中,收发单元、处理器以及所述存储器之间可以通过总线系统相连。该存储器用于存储程序、指令或代码,所述处理器用于执行所述存储器中的程序、指令或代码,完成第一方面或第一方面的任意可能的设计中的方法。
第十方面,本申请实施例提供了一种接入网设备,所述接入网设备包括:收发单元、处理器和存储器。其中,收发单元、处理器以及所述存储器之间可以通过总线系统相连。该存储器用于存储程序、指令或代码,所述处理器用于执行所述存储器中的程序、指令或代码,完成第二方面或第二方面的任意可能的设计中的方法。
第十一方面,本申请实施例提供了一种终端,所述终端包括:收发单元、处理器和存储器。其中,收发单元、处理器以及所述存储器之间可以通过总线系统相连。该存储器用于存储程序、指令或代码,所述处理器用于执行所述存储器中的程序、指令或代码,完成第三方面或第三方面的任意可能的设计中的方法。
第十四方面,本申请实施例提供了一种接入网设备,所述接入网设备包括:收发单元、处理器和存储器。其中,收发单元、处理器以及所述存储器之间可以通过总线系统相连。该存储器用于存储程序、指令或代码,所述处理器用于执行所述存储器中的程序、指令或代码,完成第四方面或第四方面的任意可能的设计中的方法。
第十五方面,本申请实施例例供了一种计算机可读存储介质或者计算机程序产品,用于存储计算机程序,该计算机程序用于执行第一方面、第二方面、第三方面,第四方面,第一方面任意可能的设计,第二方面任意可能的设计,第三方面任意可能的设计或第四方面任意可能的设计中的方法的指令。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的一种通信方法的应用网络场景示意图;
图2为本申请实施例提供的一种通信方法的流程示意图;
图3为本申请实施例提供的第一控制信道和第二控制信道采用不同子载波宽度的结构示意图;
图4为本申请实施例提供的第二控制信道使用不同子载波宽度的示意图;
图5为本申请实施例提供的一种通信方法的流程示意图;
图6为本申请实施例提供的另一种第一控制信道和第二控制信道采用不同子载波宽度的结构示意图;
图7为本申请实施例提供的一种通信装置的示意图;
图8为本申请实施例提供的一种通信装置的硬件结构示意图;
图9为本申请实施例提供的一种通信装置的示意图;
图10为本申请实施例提供的一种通信装置的硬件结构示意图;
图11为本申请实施例提供的一种通信装置的示意图;
图12为本申请实施例提供的一种通信装置的硬件结构示意图;
图13为本申请实施例提供的一种通信装置的示意图;
图14为本申请实施例提供的一种通信装置的硬件结构示意图。
具体实施方式
本申请实施例的的技术方案可以应用于各种通信系统,例如:新无线(New Radio,NR)系统、无线保真(wifi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX)、全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)相关的蜂窝系统等,以及第五代移动通信系统(The Fifth Generation,5G)等。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(User Equipment,UE)或终端设备,是一种向用户提供语音和/或数据连通性的设备。终端可以指无线终端也可以是有线终端,无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数 字助理(Personal Digital Assistant,PDA),平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。无线终端也可以称为系统、订户单元(Subscriber Unit,SU)、订户站(Subscriber Station,SS),移动站(Mobile Station,MB)、移动台(Mobile)、远程站(Remote Station,RS)、接入点(Access Point,AP)、远程终端(Remote Terminal,RT)、接入终端(Access Terminal,AT)、用户终端(User Terminal,UT)、用户代理(User Agent,UA)、终端(User Device,UD)。
2)、接入网设备,可以是gNB(gNode B),可以是普通的基站(例如WCDMA系统中的基站(NodeB,NB),LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),GSM或CDMA中的基站(Base Transceiver Station,BTS)),可以是新无线控制器(New Radio controller,NR controller),可以是集中式网元(Centralized Unit),可以是新无线基站,可以是射频拉远模块,可以是微基站,可以是分布式网元(Distributed Unit),可以是接收点(Transmission Reception Point,TRP)或传输点(Transmission Point,TP),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备或者任何其它无线接入设备,但本申请实施例不限于此。
3)、符号,包含但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号、非正交多址接入(Non-Orthogonal Multiple Access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
4)子帧:一个子帧在频域上占用整个系统带宽的时频资源、在时域上占用固定的时间长度,例如1毫秒(ms)。同时一个子帧也可占用连续的K个符号,K为大于零的自然数。K的取值可以根据实际情况确定,在此并不限定。例如,LTE中,1个子帧在时域上占用连续的14个OFDM符号。
5)时隙(slot):一个基本的时频资源单元,在时域上占用连续的L个OFDM符号,L为大于零的自然数。L的取值可以根据实际情况确定,例如,7个或14个OFDM符号。
6)小时隙:也可称之为mini-slot,在时域上占用连续的多个OFDM符号,所占用的连续的OFDM符号的数量小于该小时隙所在的时隙所占用的OFDM符号的数量。在一个时隙中,可以包括多个小时隙。
7)、控制信道资源:包括至少一个候选控制信道资源集合,所述候选控制信道资源集合包括一个或多个候选控制信道资源。当接入网设备向所述终端发送下行数据信息时,终端在该候选控制信道资源集合中检测所述一个或多个候选控制信道,所述一个或多个候选控制信道承载了发送给所述终端的控制信息。
8)第一控制信道:也可称之为时隙控制信道,或者slot控制信道,位于时隙的时频资源内,第一控制信道所承载的信息用于指示时隙内数据信道以及控制信道的资源位置。在本申请中,第一控制信道和时隙控制信道经常交替使用。多个第一控制信道的集合中包括一个或多个候选第一控制信道,所述一个或多个第一候选控制信道承载了接入网设发送给所述终端的控制信息。
9)第二控制信道:也可称之为小时隙控制信道,或者mini-slot控制信道,位于小时隙 的时频资源内,第二控制信道所承载的信息用于指示小时隙内数据信道的资源位置。在本申请中,所述第一控制信道所在的时隙中包括至少一个小时隙,所述小时隙包括所述第二控制信道。在本申请中,第二控制信道和小时隙控制信道经常交替使用。多个第二控制信道的集合中包括一个或多个候选第二控制信道,所述一个或多个第二候选控制信道承载了接入网设发送给所述终端的控制信息。
10)单位时频资源单元:多个连续的OFDM符号所组成的资源单元,且在频域不定义;所述多个连续的OFDM符号的数量例如可以包括:2个,7个或14个。单位时频资源单元的子载波宽度可以通过系统高效信令配置或预定义;所述高层信令包括但不限于RRC信令,系统信息或广播信息等;其中,单位时频资源单元内包括一个小时隙组;其中小时隙组中包括至少一个小时隙。
11)时域位置:在一个时隙或小时隙内,OFDM符号所在的位置。
12)包括第二控制信道的小时隙的时域位置:包括第二控制信道的小时隙所占用的时频资源区域,即包括所述第二控制信道的小时隙所占用的OFDM符号所在的位置。所占用的OFDM符号的数量可以为1个或者多个。
13)子载波宽度:频域上最小的粒度。例如,LTE中,1个子载波的子载波宽度为15kHhz.
14)“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
同时,应当理解,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本申请实施例描述的应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本申请实施例的一个可能的网络架构的示意图。图1中的通信系统可以包括终端10和接入网设备20。接入网设备20用于为终端10提供通信服务并接入核心网,终端10通过搜索接入网设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端10与接入网设备20之间的蜂窝链路进行的上/下行传输。
接入网设备20向终端10发送时隙粒度的下行数据信息时,通过承载在第一控制信道上的控制信息进行指示。接入网设备20向终端10发送小时隙粒度的下行数据信息时,可通过承载在第二控制信道上的控制信息进行指示。所述第一控制信道所在的时隙中包括至少一个所述小时隙,所述小时隙中包括所述第二控制信道。其中,所述第一控制信道所使用的子载波宽度为第一子载波宽度,所述第二控制信道所使用的子载波宽度为第二子载波宽度,第一子载波宽度和第二子载波宽度不同。
一种可能的场景下,所述接入网设备20通过第一频带(frequency band)向所述终端10发送承载在第一控制信道上的第一控制信息,所述终端10在所述第一频带内接收所述第一控制信息。所述接入网设备20通过第二频带向所述终端10发送承载在所述第二控制信道上的第二控制信息,所述终端在所述第二频带内接收所述第二控制信息。其中,所述第一 频带和所述第二频带在频域上正交;所述第一频带可以与所述第二频带相同,也可以不同。
需要说明的是,图1所示的场景中,仅以一个接入网设备和一个终端之间的交互为例来进行介绍,不应对本申请的应用场景造成限定。在实际的网络架构中,可以包括多个接入网设备和多个终端。例如,一个终端可以只与一个接入网设备进行数据传输,也可以与多个接入网设备进行数据的传输。一个接入网设备可以与一个终端进行数据传输,也可以与多个终端进行数据传输。本申请对此不作具体限定。
基于上述描述,结合图2对本申请实施例提供的一种通信方法200作详细说明。
参见图2,该方法包括:
S201:接入网设备确定至少一个小时隙组的格式。
具体地,接入网设备根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定所述至少一个小时隙组的格式。其中,所述第一控制信道所在的时隙中包括所述至少一个小时隙组,所述小时隙组中包括至少一个小时隙,所述小时隙中包括所述第二控制信道,所述第一子载波宽度和第二子载波宽度不同。需要说明的是,在本申请中,第一控制信道使用的第一子载波宽度为发送所述第一控制信道所用的子载波宽度,第二控制信道使用的第二子载波宽度为发送所述第二控制信道所使用的子载波宽度。
对于所述接入网设备如何确定所述第一控制信道所使用的子载波宽度和第二控制信道所使用的子载波宽度,以及如何根据所述第一子载波宽度和所述第二子载波宽度,确定所述小时隙组的格式,请参考下面的详细说明。
图3给出了时隙与小时隙采用不同子载波宽度的结构示意图,应理解,图3中所示出的时隙,小时隙组以及小时隙的结构仅作为举例说明,不构成对本申请的限定。参考图3,第一子载波宽度为15KHz,一个时隙在时域上占用7个OFDM符号。其中,第一控制信道在时域上占用所述时隙中起始的第一个OFDM符号。该时隙中包括3个小时隙组,每个小时隙组中包括2个小时隙。第二子载波宽度为30KHz,每个小时隙在时域上占用2个OFDM符号。
在本申请一个具体的实施方式中,随着第二控制信道所使用的子载波宽度增加,所述小时隙组内包括的小时隙的数量增多。例如,一个小时隙组内,当第二控制信道所使用的子载波宽度是第三子载波宽度时,第三子载波宽度对应的小时隙的个数,为第一值;当第二控制信道使用的子载波宽度是第四子载波宽度时,第四子载波宽度对应的小时隙个数,为第二值;所述第一值与所述第二值的比值等于所述第三子载波宽度与所述第四子载波宽度比值。
下面对所述接入网设备如何确定所述第一控制信道所使用的子载波宽度和第二控制信道所使用的子载波宽度,进行说明如下:
对于第一控制信道所使用的子载波宽度,可以通过标准预先定义或配置。例如,标准预先定义为15kHz,或通过同步信号,广播信息,系统信息进行配置;当载波小于6GHz时,可选的子载波宽度为15kHz,30kHz,60kHz;当载波大于6GHz时,可选的子载波宽度为120kHz,240kHz等,子载波宽度的取值不限于所述5种。
对于第二控制信道所使用的子载波宽度,在一种可选的方式中,所述接入网设备可以根据发送或接收的数据业务类型确定。例如,数据业务类型为低时延业务(例如URLLC业务),所述第二控制信道使用的子载波宽度大于所述第一控制信道使用的子载波宽度。例如, 所述第一子载波宽度为15kHz,所述第二子载波宽度为60kHz。在一种可选的方式中,所述接入网设备根据发送或接收数据业务的频带确定该第二控制信道所使用的子载波宽度。例如,数据业务占用的频带为第一频带时,所述第一载波宽度为15kHz,所述第二子载波宽度为60kHz。数据业务占用的频带为第二频带时,所述第一子载波宽度为15kHz,所述第二子载波宽度为30kHz。所述第一频带和所述第二频带均位于所述终端的接收带宽内。在另一种可选的方式中,所述接入网设备还可以根据发送或接收数据业务的载频确定所述第二控制信道所使用的子载波宽度。例如,数据业务所在的载频为非授权频谱(Unlicensed Spectrum)时,为了能够更加灵活的接入非授权频谱,所述时隙的子载波宽度设置为15kHz,所述小时隙的子载波宽度设置为60kHz;用户设备通过检测小时隙的候选控制信道确定接入非授权频谱的起始时间,由于小时隙的时间粒度很小,有利于用户设备接入非授权频谱的起始时间足够灵活,其中,所述非授权频谱包括WiFi设备所使用频谱。
需要说明的是,上述列举的如何确定所述第一控制信道所使用的子载波宽度和第二控制信道所使用的子载波宽度的方式,只是一种举例说明,不应构成对本申请的限定。本领域技术人员在阅读本申请基础上,可以想到采用其它的方式来确定所述第一控制信道所使用的子载波宽度和第二控制信道所使用的子载波宽度,这些都属于本申请应有之意,在此不一一赘述。
下面对所述接入网设备如何根据所述第一子载波宽度和所述第二子载波宽度,确定所述至少一个小时隙组的格式进行具体说明。
具体地,小时隙组的格式包括一个小时隙组中包括的小时隙的数量,以及每个小时隙所占的OFDM符号的数量。可以通过标准预定义或者高层信令配置的方式,配置如下信息:一个时隙所占用的OFDM符号的数量;一个时隙内所包含的小时隙组的数量,每个小时隙组内包括的小时隙的数量以及每个小时隙占用的OFDM符号的数量,以此确定所述至少一个小时隙组的格式。
在第一个具体的实施方式中,一个时隙所占用的OFDM符号的数量为7。一个小时隙组在时域和频域上所对应的时频资源保持不变,即一个小时隙组在时域上的持续时长与频域上的带宽宽度的乘积保持不变。第一控制信道所使用的子载波宽度为F1。当第二控制信道所使用的子载波宽度为F1时,一个时隙中可以包括3个小时隙组,每个小时隙组中包括一个小时隙,每个小时隙占用2个OFDM符号。当第二控制信道使用的子载波宽度为F2时,一个时隙可以包括3个小时隙组,每个小时隙组中可以包括2个小时隙,每个小时隙占用2个OFDM符号。当第二控制信道使用的子载波宽度为60KHz时,每个小时隙组中包括4个小时隙,每个小时隙占用2个OFDM符号。在本申请中,F2=2*F1。
在第二个具体的实施方式中,一个时隙所占用的OFDM符号的数量为7。一个小时隙组在时域和频域上所对应的时频资源保持不变,即一个小时隙组在时域上的持续时长与频域上的带宽宽度的乘积保持不变。例如:第一控制信道所使用的子载波宽度为F1,当第二控制信道所使用的子载波宽度为F1时,一个时隙中包括2个小时隙组,每个小时隙组中包括1个小时隙,每个小时隙占用3个OFDM符号。当第二控制信道使用的子载波宽度为F2时,一个时隙可以包括2个小时隙组,每个小时隙组中可以包括3个小时隙,每个小时隙占用2个OFDM符号;或者一个时隙可以包括2个小时隙组,每个小时隙组中可以包括2个小时隙,每个小时隙占用3个OFDM符号。
在第三个具体的实施方式中,一个时隙中包括7个OFDM符号,当第二控制信道使用的子载波宽度不同时,一个小时隙组在时域和频域上所对应的时频资源可以是变化的。可以通过标准预定义或者高层信令对应于不同的第一子载波宽度和第二子载波宽度时,与每种子载波宽度所对应的小时隙组的格式。例如:第一控制信道所使用的子载波宽度为F1,当第二控制信道所使用的子载波宽度为F1时,一个时隙中包括2个小时隙组,每个小时隙组中包括1个小时隙,每个小时隙占用3个OFDM符号。当第二控制信道使用的子载波宽度为F2时,一个时隙可以包括3个小时隙组,每个小时隙组中可以包括2个小时隙,每个小时隙占用2个OFDM符号;或者一个时隙可以包括3个小时隙组,每个小时隙组中可以包括1个小时隙,每个小时隙占用4个OFDM符号。
在第四个具体的实施方式中,一个时隙中可以包括14个OFDM符号,当第一控制信道所使用的子载波宽度为F1,第二控制信道所使用的子载波宽度为F1时,一个时隙中可以包括2个小时隙组,其中第一个小时隙组中包括2个小时隙,每个小时隙占用3个OFDM符号,第二个小时隙组中包括2个小时隙,其中一个小时隙占用3个OFDM符号,另外一个小时隙占用4个OFDM符号;或者一个时隙中可以包括4个小时隙组,其中第一个至第三个小时隙中的每个小时隙组均包括1个小时隙,每个小时隙占用3个OFDM符号,第四个小时隙组包括1个小时隙,该小时隙占用4个OFDM符号。当第一控制信道所使用的子载波宽度为F1,第二控制信道所使用的子载波宽度为F2时,一个时隙可以包括2个小时隙组,第一小时隙组中可以包括4个小时隙,第一到第三小时隙中每个小时隙占用3个OFDM符号,第4个小时隙占用4个OFDM符号;或者一个时隙可以包括4个小时隙组,第一个小时隙组和第三个小时隙组中每个小时隙组可以包括2个小时隙,每个小时隙占用3个OFDM符号,第二个和第四个小时隙组中每个小时隙可以包括2个小时隙,第一个小时隙占用3个OFDM符号,第二个小时隙占用4个OFDM符号。
需要说明的是,上述第一个至第四个具体的实施方式中所列举的具体的小时隙组的格式,仅是举例说明,不应构成对本申请的限定。本领域技术人员在阅读本申请文件的基础上,可以通过标准预定义或者通过高层信令配置任意格式的小时隙组的格式。具体小时隙的格式,在此不再一一赘述。具体地,可以在配置了相应的小时隙组的格式的基础上,建立第一子载波宽度,第二子载波宽度与小时隙组的格式的映射关系,接入网设备和终端可以分别保存该映射关系。
S202:所述接入网设备向终端发送第一信令。
具体地,所述第一信令包括第一指示信息,所述第一指示信息用于指示包括第二控制信道的每个小时隙组的时域位置。
所述接入网设备可以通过所述第一控制信道承载的控制信息向终端发送所述第一指示信息。该第一控制信道所占用的时频资源可以为包括时隙中起始OFDM符号在内,连续的多个OFDM符号的时频资源区域。每个时隙中的时频资源一般包括控制区域和数据区域,控制区域用来发送控制信息,数据区域用来发送数据。本申请实施例中,第一控制信道所在的时频资源可以是指该第一控制信道所处的时隙的控制区域所包括的时频资源。需要说明的是,本申请实施例中,该第一控制信道包括但不限于物理下行控制信道(英文:Physical Downlink Control Channel,PDCCH),增强物理下行控制信道(英文:Enhanced Physical Downlink Control Channel,EPDCCH),,新空口物理下行控制信道(应为:New radio Physical  Downlink Control Channel,NR-PDCCH),组公共控制信道(英文:Group Common Control Channel,GCCCH),物理控制格式指示信道(Physical Control Format Indicator Channel,PCFICH),类物理控制格式指示信道(英文:PCFICH-like Channel),物理层广播信道(英文,L1Broadcast Channel)或NR系统中用于执行相同或者相似功能的控制信道。
所述接入网设备根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定所述第一信令的格式,根据所述第一信令的格式,获取所述第一指示信息。
所述接入网设备确定所述第一信令的格式,包括确定所述第一信令中包括的相关字段的类型,所承载的内容以及所承载的内容长度,相关的字段包括但不限于承载所述第一指示信息的字段。可选的,所述第一信令除了包括所述第一指示信息以外,还可以包括但不限于指示数据信道资源分配的指示信息和/或用于指示调制编码方式的指示信息。
所述接入网设备根据所述第一子载波宽度和所述第二子载波宽度,确定所述第一信令的格式,包括确定承载所述第一指示信息的字段的长度。接入网设备可以根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定所述小时隙组的格式,根据所述小时隙组的格式,来配置承载所述第一指示信息的字段的长度。
在一个具体的实施方式中,用于承载所述第一指示信息的字段长度L1与f1和f2的比值有关。例如,若第一子载波宽度为f1,第二子载波宽度为f2,第一信令则L1=A f2/f1,其中,A为自然数,A的具体取值可以根据实际需要进行设定。
例如,f1=15kHz,f2=30kHz,若A=3;则此时字段的长度为6个bit。
在一个具体的实施方式中,可以用上述第一信令中的若干个比特来承载所述第一指示信息。该若干个比特中的每一位(bitmap的形式)用于指示所述每个小时隙组中是否存在所述第二控制信道。如图3所示,第一子载波宽度为15kHz,第二子载波宽度为30kHz,该时隙中包括三个小时隙组,分别表示为小时隙组0,小时隙组1以及小时隙组2。其中,小时隙组0和小时隙组2中承载有第二控制信道,小时隙组1中没有承载第二控制信道。此时,所述第一信令中包括3个比特来承载所述第一指示信息。用户设备收到的第一指示信息为{1,0,1},表示小时隙组0和小时隙组2上配置有第二控制信道资源,其中1表示存在,0表示不存在。当然,1和0也可以表示相反的含义,即1表示不存在,0表示存在,则上述的第一指示信息可以表示为{0,1,0},本申请对此不作具体限定。
在一个具体的实施方式中,还可以采用该若干个比特的二进制值来指示包括第二控制信道的每个小时隙组的时域位置。例如,对于设定的第一子载波宽度和第二子载波宽度的组合,根据预先设定的模式(pattern),通过所述二进制值与所述模式的映射关系来指示包括有所述第二控制信道的每个小时隙组的时域位置。所述第一信令中例如可以包括3个比特,当三个比特为{0,0,0},即二进制值0时,对应于图3所示的pattern,由此可以确定仅有小时隙组0和小时隙组2上配置有第二控制信道。类似的,当三个比特为{0,0,1},即二进制的值为2时,可以对应另外一个pattern,根据该pattern,可以确定仅有小时隙组0和小时隙组1上配置有第二控制信道资源。具体是采用二进制值,还是根据比特映射的方式,可以通过标准预先定义,也可以在第一信令中携带一个比特位来进行指示,本申请对此不做具体限定。
下面对于所述二进制的取值与所述pattern的映射关系进行具体说明。所述接入网设备 中可以保存一个映射关系表,所述映射关系表用于保存所述二进制的取值与所述pattern的之间的映射关系。相应的,所述终端中也保存有所述映射关系表,用于保存所述所述二进制的取值与所述pattern的之间的映射关系。所述映射关系可以通过如下方式建立:例如,对于每种pattern可以进行编号,一个具体的二进制的取值与一个pattern的编号(ID)相对应。以图3为例,所述二进制值为0,对应于编号为1的pattern,编号为1的pattern表示仅有第一个小时隙组0和第二个小时隙组2上配置有第二控制信道资源。需要说明的是,上述映射关系的建立方式仅是例举,具体可以通过多种不同的方式实现,本领域技术人员可以想到的任何来建立这种对应关系的手段都覆盖在本申请实施例中的映射规则中。映射关系表的具体形式可以以多种不同的方式实现,可以以表格的形式,也可以是其他的方式表达该对应关系,本申请对此不做限定。
需要说明的是,在图3中一个时隙包括7个OFDM符号,包括3个小时隙组,每个小时隙组中包括2个小时隙,每个小时隙包括2个OFDM符号,仅是一种举例说明,不应构成对本申请的限定。本领域技术人员在阅读本申请本简单基础上,可以想到一个时隙可以占用其它数量的OFDM符号,比如14个;一个时隙可以包括多个小时隙组;每个小时隙组中可以包括其它数量的小时隙;每个小时隙可以包括其它数量的OFDM符号,比如3个。在NR系统或未来的通信系统中,可以根据标准预定义或者通过高层信令或者其它物理层信令配置一个小时隙组的格式,根据配置好的小时隙组的格式,确定所述第一指示信息的格式,在此不一一赘述。
S203:所述终端接收所述第一信令。
所述终端根据所述第一指示信息确定包括所述第二控制信道的每个小时隙组的时域位置。
具体地,终端确定所述第一信令的格式的具体方式与所述接入网设备确定第一信令的格式的方式类似,详细说明参见上文中关于所述接入网设备如何确定所述第一信令的格式的具体说明,此处不再赘述。
S204:所述终端确定包括所述第二控制信道的每个小时隙组的时域位置。
所述终端根据所述第一指示信息确定包括所述第二控制信道的每个小时隙组的时域位置。所述终端根据所述第一指示信息所包括的比特的二进制值或者根据比特映射的方法,确定所述包括所述第二控制信道的每个小时隙组的时域位置。具体是采用二进制值,还是根据比特映射的方式,可以通过标准预先定义,也可以在第一信令中携带一个比特位来进行指示,本申请对此不做具体限定。
S205:所述接入网设备根据所述小时隙组的格式,向所述终端发送第二信令。
所述第二信令包括第二指示信息,所述第二指示信息用于指示所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。参考上文所述,所述接入网设备根据所述第一子载波宽度和第二子载波宽度,确定小时隙组的格式,即确定了所述小时隙组中包括的小时隙的个数以及每个小时隙所占用的OFDM符号的数量。在此基础上,所述接入网设备可以确定第二指示信息的具体格式。
所述接入网设备可以通过多种方式向所述终端发送所述第二指示信息。第一种可能的实现方式中,所述接入网设备通过高层信令向终端发送所述第二指示信息。所述高层信令包括但不限于主信息块(Master Information Block,MIB),系统信息块(System Information  Block,SIB),或无线资源控制(Radio Resource Control,RRC)信令,高层广播信令或其他具有类似特征的高层信令。
在第二种可能的实现方式中,所述接入网设备通过初始接入信息(Initial Access related information)向终端发送所述第二指示信息。所述初始接入信息包括前导信号(Message 1),随机接入反馈消息(Message 2),Message 3以及Message 4等,Message4可以是指LTE中,接入网设备发给终端的RRC建立或重建命令.
通过高层信令或初始接入信息发送所述第二指示信息,可以减小通过控制信息携带所述第二指示信息所带来的开销,提高物理层的数据传输效率。
下面结合图3和图4对第二指示信息进行具体说明。
结合图3可知,通过上述第一指示信息的指示,终端可以确定在小时隙组0和小时隙组2中承载有第二控制信道资源。在此基础上,终端根据第二指示信息,进一步确定每个包括第二控制信道的小时隙组中所包括的第二控制信道的时域位置。
结合图4,图4示意性的列出了小时隙的子载波宽度为15kHz,30kHz z和60kHz时,每个小时隙组所可能具有的pattern。随着第二控制信道所使用的子载波宽度增加,小时隙组内包括的小时隙的时域位置增多。随着一个时隙内占用的OFDM符号的不同,一个时隙内包括的小时隙组的数量,每个小时隙组中包括的小时隙的数量以及每个小时隙占用的OFDM符号的数量也有所变化。例如,若每个小时隙内包括的符号数量保持不变,当第二控制信道使用第一子载波宽度,小时隙组中包括的小时隙的个数为第一值,当第二控制信道使用第二子载波宽度,小时隙组中包括的小时隙的个数为第二值;第一值与第二值的比值等于第一子载波宽度与第二子载波宽度的比值。在本申请实施例中,每个小时隙组的pattern可以相同也可以不同。例如,第二指示信息具体可以用于指示每个时隙内所包括的每个小时隙组的格式pattern,也可以具体通过比特映射的方式指示每个小时隙组内每个第二控制信道的时域位置。
在一个具体的实施方式中,可以用所述第二信令中的若干个比特来承载所述第二指示信息。可选的,该若干个比特中的每一位(bitmap的形式)用于指示包括第二控制信道的小时隙的时域位置。结合图3以及上文中对于第二指示信息的描述,确定终端设备确定在小时隙组0和小时隙组2中存在第二控制信道,但是仅根据上述信息,终端无法确定在小时隙组中,第二控制信道所存在的具体时域位置。通过第二指示信息的指示,对于图3的场景来说,第二指示信息的一种可能的形式是{1,0,1,0,},即按照bitmap的形式的方式,可以确定每个小时隙组中,第一个OFDM符号和第3个OFDM符号上承载有第二控制信道。由此可以确定包括第二控制信道的小时隙组中包括的第二控制信道的时域位置。
在一个具体的实施方式中,还可以采用该若干个比特的二进制值来指示包括第二控制信道的小时隙的时域位置。例如,对于设定的第一子载波宽度和第二子载波宽度的组合,根据预先设定的模式(pattern),通过所述二进制值与所述pattern的映射关系来指示承载有第二控制信道的每个小时隙组的时域位置。所述第二指示信息例如可以包括3个比特,当三个比特为{0,0,0},即二进制值0时,对应于图3所示的pattern,由此可以确定仅有小时隙组0和小时隙组2上配置有第二控制信道。类似的,当三个比特为{0,0,1},即二进制的值为2时,可以对应另外一个pattern,根据该pattern,可以确定仅有小时隙组0和小时隙组1上配置有第二控制信道。具体是采用二进制值,还是根据比特映射的方式,可以通过 标准预先定义,也可以在第二信令中携带一个比特位来进行指示,本申请对此不做具体限定。
关于所述二进制的取值与所述pattern的映射关系进行具体说明,可以参考上文中第一指示信息的相关部分中对于二进制的取值与所述pattern的映射关系的表述,此处不再赘述。
需要说明的是,本申请实施例中所描述的第一子载波宽度的取值,第二子载波宽度的取值,小时隙组格式的配置,用于承载第一指示信息和第二指示信息的信令以及其中的字段或格式仅是示例性说明,不构成对本申请的限定。本领域技术人员在阅读本申请文件的基础上可以想到采用其它信令的其它字段或格式来携带上述第一指示信息和第二指示信息,也可以想到对应不同的子载波宽度的变化和/或不同的小时隙组的格式的配置,采用不同的指示信息进行指示,这些都属于本申请应有之意,在此不一一赘述。
S206:所述终端接收所述第二信令。
S207:所述终端根据所述小时隙组的格式以及所述第二指示信息确定所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。
可选的,终端根据所述第一子载波宽度和所述第二子载波宽度,获取所述所述第二信令的格式,根据所述第二信令的格式,获取所述第二指示信息。
在一个具体的实施方式中,接入网设备确定了所述第一子载波宽度和所述第二子载波宽度之后,所述接入网设备向终端发送第三指示信息,用于指示所述第一子载波宽度和所述第二子载波宽度。终端接收所述第三指示信息后,根据所述第三指示信息,获取所述第一子载波宽度和所述第二子载波宽度。可选的,终端根据所述第一子载波宽度和所述第二子载波宽度,获取所述所述第一信令的格式,根据所述第一信令的格式,获取所述第一指示信息。可选的,终端根据所述第一子载波宽度和所述第二子载波宽度,获取所述所述第二信令的格式,根据所述第二信令的格式,获取所述第二指示信息。
接入网设备可以通过多种方式发送所述第三指示信息,第一种可能的实现方式中,所述接入网设备通过高层信令向终端发送所述指示信息,例如,所述高层信令,包括主信息块(Master Information Block,MIB),系统信息块(System Information Block,SIB),或无线资源控制(Radio Resource Control,RRC)信令,或其他具有类似特征的高层信令。
第二种可能的实现方式中,所述接入网设备通过下行控制信息(Downlink Control Information,DCI)向终端发送所述指示信息,例如,在下行控制信道的公共搜索空间内,发送所述第三指示信息。所述下行控制信道的时频资源,包括时隙或子帧的起始OFDM符号的至少一个OFDM符号;所述搜索空间为所述下行控制信道时频资源内的部分时频资源;所述公共搜索空间内的控制信息可以被小区内一组或全部终端接收。
第三种可能的实现方式中,所述接入网设备通过物理层广播控制信令向终端发送所述第三指示信息,例如,类似于在LTE中的PCFICH信道中承载的广播信令;或者,所述物理层广播控制信令所占用的时频资源,包括时隙或子帧的起始OFDM符号的至少一个OFDM符号,所述物理层广播控制信令可被小区内一组或全部终端检测和接收。
当然,接入网设备还可以通过其他方式发送所述第三指示信息,在此不再逐一举例说明。
在一个具体的实施方式中,终端确定了包括所述第二控制信道的小时隙的时域位置后,可以在上述确定的时域位置上盲检测每个小时隙所承载的第二控制信道,从而确定出所述 每个小时隙中承载有所述接入网设备发送给终端的控制信息第二控制信道的时域位置。
可选的,在S207之后,所述终端可以执行以下一种或多种操作:
1)所述终端在包括所述第二控制信道的小时隙的时域位置检测所述所述第二控制信道。具体地,上述第二控制信道构成的集合中可以包括至少一个候选控制信道集合,所述终端在上述时域位置,在所述候选控制信道集合检测目标候选控制信道,所述目标候选控制信道中承载了所述接入网设备发送给所述终端的控制信息。
2)所述终端在所述包括所述第二控制信道的小时隙的时域位置发送上行数据。具体地,所述上行数据包括上行控制信息和/或上行数据信息。
通过本申请上述实施例提供的方案,在第一控制信道和第二控制信道使用的子载波宽度不同的情况下,终端设备根据所述接入网设备发送的上述第一指示信息和上述第二指示信息,最终确定承载有所述接入网设备发送给所述终端的控制信息的第二控制信道的时域位置。上述方案有效提高了指示灵活性。此外,本方案使得终端可以仅在指定的时域位置检测所述第二控制信道,而在其它时域位置,终端不进行检测,可以有效节省终端检测控制信道的能耗。
下面结合图5,对本申请实施例提供的一种通信方法300作详细说明。
参考图5,该方法300包括:
S301:接入网设备确定控制信令的格式。
具体地,接入网设备根据第一控制信道所使用的第一子载波宽度以及第二控制信道所使用的第二子载波宽度,确定控制信令的格式。其中,所述第一子载波宽度和所述第二子载波宽度不同。所述第一控制信道所在的时隙中包括至少一个小时隙,所述小时隙用于承载所述第二控制信道。所述控制信令包括第一指示信息,所述第一指示信息用于指示承载有控制信道资源的每个小时隙的时域位置。上述第二控制信道构成的集合中可以包括至少一个候选控制信道集合,所述终端在上述时域位置,在所述候选控制信道集合检测目标候选控制信道,所述目标候选控制信道用于承载所述接入网设备发送给所述终端的控制信息。
在一个具体的实施方式中,所述控制信令可以为通过所述第一控制信道承载的控制信息。该第一控制信道所占用的时频资源可以为包括时隙中起始OFDM符号在内,连续的多个OFDM符号的时频资源区域。需要说明的是,本申请实施例中,该第一控制信道包括但不限于物理下行控制信道(英文:Physical Downlink Control Channel,PDCCH),增强物理下行控制信道(英文:Enhanced Physical Downlink Control Channel,EPDCCH),新空口物理下行控制信道(英文:New radio Physical Downlink Control Channel,NR-PDCCH),组公共控制信道(英文:Group Common Control Channel,GCCCH),物理控制格式指示信道(英文:Physical Control Format Indicator Channel,PCFICH),类物理控制格式指示信道(英文:PCFICH-like Channel),物理层广播信道(英文,L1 Broadcast Channel)或NR系统中用于执行相同或者相似功能的控制信道。
对于所述接入网设备如何确定所述第一控制信道所使用的子载波宽度和第二控制信道所使用的子载波宽度,可以参见上述方法200中相关部分的说明,此处不再赘述。
在接入网设备确定了所述第一子载波宽度和所述第二子载波宽度之后,所述接入网设备向终端发送第二指示信息,用于指示所述第一控制信道使用的第一子载波宽度和所述第二控制信道使用的第二子载波宽度。终端接收所述第二指示信息后,根据所述第二指示信 息,获取所述第一子载波宽度和所述第二子载波宽度;从而根据所述第一子载波宽度和所述第二子载波宽度,获取所述控制信令的格式。
接入网设备可以通过多种方式发送所述第二指示信息,第一种可能的实现方式中,所述接入网设备通过高层信令向终端发送所述指示信息,例如,所述高层信令,包括主信息块(Master Information Block,MIB),系统信息块(System Information Block,SIB),或无线资源控制(Radio Resource Control,RRC)信令,或其他具有类似特征的高层信令。
第二种可能的实现方式中,所述接入网设备通过下行控制信息(Downlink Control Information,DCI)向终端发送所述指示信息,例如,在下行控制信道的公共搜索空间内,发送所述第二指示信息。所述下行控制信道的时频资源,包括时隙或子帧的起始OFDM符号的至少一个OFDM符号;所述搜索空间为所述下行控制信道时频资源内的部分时频资源;所述公共搜索空间内的控制信息可以被小区内一组或全部终端接收。
第三种可能的实现方式中,所述接入网设备通过物理层广播控制信令向终端发送所述第二指示信息,例如,类似于在LTE中的PCFICH信道中承载的广播信令;或者,所述物理层广播控制信令所占用的时频资源,包括时隙或子帧的起始OFDM符号的至少一个OFDM符号,所述物理层广播控制信令可被小区内一组或全部终端检测和接收。
当然,接入网设备还可以通过其他方式发送所述第二指示信息,在此不再逐一举例说明。
下面结合图3和图6来对所述接入网设备如何根据所述第一子载波宽度和所述第二子载波宽度,确定所述控制信令的格式进行具体说明。
所述控制信令的格式包括所述控制信令的相关字段的类型,相关字段所承载的内容以及所承载的内容的长度,该相关字段中包括但不限于承载所述第一指示信息的字段。可选的,所述控制信令除了包括上述的第一指示信息,还可以包括但不限于指示数据信道资源分配的指示信息和/或用于指示调制编码方式的指示信息。
所述接入网设备根据所述第一子载波宽度和所述第二子载波宽度,确定所述控制信令的格式,包括确定承载所述第一指示信息的字段的格式。承载所述第一指示信息的字段的格式包括但不限于确定承载该第一指示信息的字段的类型,所承载的内容以及所承载的内容的长度。
例如,若第一子载波宽度为f1,第二子载波宽度为f2,控制信令中用于指示包括第二控制信道的每个小时隙的时域位置的字段长度L1与f1和f2的比值有关。例如,L1=A f2/f1,其中,A为自然数,A的具体取值可以根据实际需要进行设定。
例如,f1=15kHz,f2=30kHz,若A=3;则此时字段的长度为6个bit。
在一个具体的实施方式中,可以用所述控制信令中的若干个比特来承载所述第一指示信息。
可选的,该若干个比特中的每一位(bitmap的形式)用于指示包括所述第二控制信道的每个小时隙的时域位置。该第二控制信道用于承载所述接入网设备发送给所述终端的控制信息。如图6所示,第一子载波宽度为15KHz,第二子载波宽度为30KHz,每个小时隙占用2个OFDM符号,在图6所示的时隙中包括6个小时隙。第一指示信息包括6个比特,{1,1,0,1,0,1},每一个比特显示对应的小时隙中是否存在第二控制信道。其中1表示存在,0表示不存在。当然,1和0也可以表示相反的含义,即1表示不存在,0表示存在,则上述 的第一指示信息可以表示为{0,1,0},本申请对此不作具体限定。
可选的,还可以采用该若干个比特的二进制值来指示包括第二控制信道的每个小时隙的时域位置。例如,对于设定的第一子载波宽度和第二子载波宽度的组合,根据预先设定的模式(pattern),通过所述二进制值与所述模式的映射关系来指示包括第二控制信道的每个小时隙的时域位置。所述第一信令中例如可以包括3个比特,当3个比特为{0,0,0},即二进制值0时,对应于图6所示的pattern,由此可以确定小时隙0,小时隙1,小时隙4以及小时隙6中包括第二控制信道,而小时隙3和小时隙5不包括第二控制信道。类似的,当三个比特为{0,0,1},即二进制的值为2时,可以对应另外一个pattern,根据该pattern,比如,可以确定仅有小时隙3和小时隙5包括第二控制信道,而小时隙0,小时隙1,小时隙4以及小时隙6中不包括第二控制信道。可选的,具体二进制值与所述模式的映射关系,可以通过标准预先定义,在接入网设备和终端分别保存上述映射关系。具体是采用二进制值,还是根据比特映射的方式,可以通过标准预先定义,也可以在第一信令中携带一个比特位来进行指示,本申请对此不做具体限定。
S302:所述接入网设备向终端发送控制信令。
S303:所述终端接收所述控制信令。
S304:所述终端根据所述控制信令的格式,获取所述第一指示信息。
终端根据所述控制信令的格式,解析所述控制信令,获取用于所述第一指示信息的格式,具体的,可以包括获取承载所述第一指示信息的字段的类型,内容以及长度,获取所述第一指示信息。
S305:所述终端根据所述第一指示信息,确定包括所述第二控制信道的每个小时隙的时域位置。
可选的,在S305之后,所述终端可以执行以下一种或多种操作:
1)所述终端在包括所述第二控制信道的小时隙的时域位置检测所述所述第二控制信道。具体地,上述第二控制信道构成的集合中可以包括至少一个候选控制信道集合,所述终端在上述时域位置,在所述候选控制信道集合检测目标候选控制信道,所述目标候选控制信道中承载了所述接入网设备发送给所述终端的控制信息。
2)所述终端在所述包括所述第二控制信道的小时隙的时域位置发送上行数据。具体地,所述上行数据包括上行控制信息和/或上行数据信息。
通过本申请上述实施例提供的方案,在第一控制信道和第二控制信道使用的子载波宽度不同的情况下,终端设备根据所述接入网设备发送的上述第一指示信息和上述第二指示信息,最终确定承载有所述接入网设备发送给所述终端的控制信息的第二控制信道的时域位置。上述方案有效提高了指示灵活性。此外,本方案使得终端可以仅在指定的时域位置检测所述第二控制信道,而在其它时域位置,终端不进行检测,可以有效节省终端检测控制信道的能耗。
以上,结合图2至图6详细说明了根据本申请实施例提供的方法200和方法300.以下,结合图7-图14详细说明根据本申请实施例提供的通信装置和系统。
图7是本申请实施例提供了一种通信装置400的示意图。该通信装置400可以应用于图1的场景中,用于执行方法图2所示的方法200。如图7所示,该通信装置400包括:
处理单元401,用于根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第 二子载波宽度,获知至少一个小时隙组的格式,其中,所述第一控制信道所在的时隙中包括所述至少一个小时隙组,所述小时隙组中包括至少一个小时隙,所述小时隙中包括所述第二控制信道,所述第一子载波宽度和第二子载波宽度不同。
上述处理单元401的相关内容,具体可以参考步骤S201中的描述,此处不再赘述。
收发单元402,用于接收接入网设备发送第一信令,所述第一信令包括第一指示信息。
上述内容,具体可以参考步骤S202和S203中的描述,此处不再赘述。
所述处理单元401,还用于根据所述第一指示信息确定包括所述第二控制信道的每个小时隙组的时域位置。
上述内容,具体可以参考步骤S204中的描述,此处不再赘述。
所述收发单元402,还用于接收所述所述接入网设备发送的第二信令,所述第二信令包括第二指示信息。
上述内容,具体可以步骤S205和S206中的描述,此处不再赘述。
所述处理单元401,还用于根据所述小时隙组的格式以及所述第二指示信息确定所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。
上述内容,可以参考S207中的描述,此处不再赘述。
在一个具体的实施方式中,所述处理单元401,还用于根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,获知所述第一信令的格式,根据所述第一信令的格式,获取所述第一指示信息。
在一个具体的实施方式中,所述处理单元401,还用于根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,获取所述第二信令的格式,根据所述第二信令的格式,获取所述第二指示信息。
在一个具体的实施方式中,所述接收单元401,还用于接收第三指示信息。所述处理单元401,还用于根据所述第三指示信息获取所述第一子载波宽度和所述第二子载波宽度。
关于上述具体内容,可以参考方法实施例200中相关部分的描述,此处不再赘述。
可选的,所述处理单元401,还可以用于在包括所述第二控制信道的小时隙的时域位置检测所述所述第二控制信道。具体地,上述第二控制信道构成的集合中可以包括至少一个候选控制信道集合,所述终端在上述时域位置,在所述候选控制信道集合检测目标候选控制信道,所述目标候选控制信道中承载了所述接入网设备发送给所述终端的控制信息。
可选的,所述处理单元401,还可以用于在所述包括所述第二控制信道的小时隙的时域位置发送上行数据。具体地,所述上行数据包括上行控制信息和/或上行数据信息。
通过本申请上述实施例提供的方案,在第一控制信道和第二控制信道使用的子载波宽度不同的情况下,终端设备根据所述接入网设备发送的上述第一指示信息和上述第二指示信息,最终确定承载有所述接入网设备发送给所述终端的控制信息的第二控制信道的时域位置。上述方案有效提高了指示灵活性。此外,本方案使得终端可以仅在指定的时域位置检测所述第二控制信道,而在其它时域位置,终端不进行检测,可以有效节省终端检测控制信道的能耗。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元402可以由收发机实现,处理单元401可以由处理器实现。如图8所示,终端800可以包括处理器801、 收发机802和存储器803。其中,存储器803可以用于存储终端800出厂时预装的程序/代码,也可以存储用于处理器801执行时的代码等。
应理解,根据本申请实施例的终端800可对应于根据本申请实施例的通信方法200中的终端以及本申请实施例的终端800,并且终端800中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200的相应流程,为了简洁,在此不再赘述。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该装置可以用于应用于图1的场景中,用于执行方法图2所示的方法200。如图9所示,该通信装置500包括:
处理单元501,用于用于根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定至少一个小时隙组的格式,其中,所述第一控制信道所在的时隙中包括所述至少一个小时隙组,所述小时隙组中包括至少一个小时隙,所述小时隙中包括所述第二控制信道,所述第一子载波宽度和第二子载波宽度不同。
收发单元502,用于向终端发送第一信令,所述第一信令包括第一指示信息,所述第一指示信息用于指示包括第二控制信道的每个小时隙组的时域位置。
所述处理单元501,还用于根据所述小时隙组的格式,向所述终端发送第二信令,所述第二信令包括第二指示信息,所述第二指示信息用于指示所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。
在一个具体的实施方式中,所述处理单元501,还用于根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定所述第一信令的格式,根据所述第一信令的格式,确定所述第一指示信息。
在另一个具体的实施方式中,所述处理单元501,还用于根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定所述第二信令的格式,根据所述第二信令的格式,确定所述第二指示信息。
在另一个具体的实施方式中,所述收发单元502,还用于向所述终端发送第三指示信息,所述第三指示信息用于指示所述第一控制信道使用的第一子载波宽度和所述第二控制信道使用的第二子载波宽度。
关于上述具体内容,具体可以参考方法200中相关部分的描述,此处不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元502可以由收发机实现,处理单元501可以由处理器实现。如图10所示,接入网设备1000可以包括处理器1001、收发机1002和存储器1003。其中,存储器1003可以用于存储接入网设备1000出厂时预装的程序/代码,也可以存储用于处理器1001执行时的代码等。
应理解,根据本申请实施例的接入网设备1000可对应于根据本申请实施例的通信方法200中的接入网设备以及本申请实施例的接入网设备1000,并且接入网设备1000中的各个单元的上述和其它操作和/或功能分别为了实现图2所示方法200的相应流程,为了简洁,在此不再赘述。
通过本申请上述实施例提供的方案,在第一控制信道和第二控制信道使用的子载波宽度不同的情况下,终端设备根据所述接入网设备发送的上述第一指示信息和上述第二指示信息,最终确定承载有所述接入网设备发送给所述终端的控制信息的第二控制信道的时域位置。上述方案有效提高了指示灵活性。此外,本方案使得终端可以仅在指定的时域位置 检测所述第二控制信道,而在其它时域位置,终端不进行检测,可以有效节省终端检测控制信道的能耗。
图11是本申请实施例提供了一种通信装置600的示意图。该通信装置600可以应用于图1的场景中,用于执行方法图5所示的方法300。如图11所示,该通信装置600包括:
处理单元601,用于用于根据第一控制信道所使用的第一子载波宽度以及第二控制信道所使用的第二子载波宽度,获知控制信令的格式,其中,所述第一子载波宽度和所述第二子载波宽度不同,所述第一控制信道所在的时隙中包括至少一个小时隙,所述小时隙中包括所述第二控制信道。
收发单元602,用于接收所述接入网设备发送的所述控制信令,所述控制信令包括第一指示信息,所述指示信息用于指示包括所述第二控制信道的每个小时隙的时域位置。
所述处理单元601,还用于根据所述控制信令的格式,获取所述第一指示信息,并根据所述第一指示信息,确定包括所述第二控制信道的每个小时隙的时域位置。
在一个具体的实施方式中,所述收发单元602,还用于接收第二指示信息。所述处理单元601,还用于所述第二指示信息,获取所述第一子载波宽度和所述第二子载波宽度。
在一个具体的实施方式中,所述处理单元601,还用于在所述包括所述第二控制信道的每个小时隙的时域位置检测所述第二控制信道;或者
还用于在所述包括所述第二控制信道的每个小时隙的时域位置上发送上行数据。
关于上述内容,具体参考方法300中的描述,此处不再赘述。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元602可以由收发机实现,处理单元601可以由处理器实现。如图12所示,终端1200可以包括处理器1201、收发机1202和存储器1203。其中,存储器1203可以用于存储终端800出厂时预装的程序/代码,也可以存储用于处理器1201执行时的代码等。
应理解,根据本申请实施例的终端1200可对应于根据本申请实施例的通信方法300中的终端以及本申请实施例的终端1200,并且终端1200中的各个单元的上述和其它操作和/或功能分别为了实现图5所示方法300的相应流程,为了简洁,在此不再赘述。
通过本申请上述实施例提供的方案,在第一控制信道和第二控制信道使用的子载波宽度不同的情况下,终端设备根据所述接入网设备发送的上述第一指示信息和上述第二指示信息,最终确定承载有所述接入网设备发送给所述终端的控制信息的第二控制信道的时域位置。上述方案有效提高了指示灵活性。此外,本方案使得终端可以仅在指定的时域位置检测所述第二控制信道,而在其它时域位置,终端不进行检测,可以有效节省终端检测控制信道的能耗。
图13是本申请实施例提供了一种通信装置1300的示意图。该通信装置1300可以应用于图1的场景中,用于执行方法图5所示的方法300。如图13所示,该通信装置1300包括:
处理单元1301,用于根据第一控制信道所使用的第一子载波宽度以及第二控制信道所使用的第二子载波宽度,确定控制信令的格式,其中,所述第一子载波宽度和所述第二子载波宽度不同,所述第一控制信道所在的时隙中包括至少一个小时隙,所述小时隙中包括所述第二控制信道。
收发单元1302,用于根据所述控制信令的格式向终端设备发送控制信令,所述控制信 令包括第一指示信息,所述指示信息用于指示包括所述第二控制信道的每个小时隙的时域位置。
在一个具体的实施方式中,所述收发单元1302,还用于向所述终端发送第二指示信息,所述第二指示信息用于指示所述第一控制信道使用的第一子载波宽度和所述第二控制信道使用的第二子载波宽度。
应理解,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,收发单元1302可以由收发机实现,处理单元1301可以由处理器实现。如图14所示,接入网设备1400可以包括处理器1401、收发机1402和存储器1403。其中,存储器1403可以用于存储接入网设备1400出厂时预装的程序/代码,也可以存储用于处理器1401执行时的代码等。
应理解,根据本申请实施例的接入网设备1400可对应于根据本申请实施例的通信方法300中的接入网设备以及本申请实施例的接入网设备1400,并且接入网设备1400中的各个单元的上述和其它操作和/或功能分别为了实现图5所示方法300的相应流程,为了简洁,在此不再赘述。
通过本申请上述实施例提供的方案,在第一控制信道和第二控制信道使用的子载波宽度不同的情况下,终端设备根据所述接入网设备发送的上述第一指示信息和上述第二指示信息,最终确定承载有所述接入网设备发送给所述终端的控制信息的第二控制信道的时域位置。上述方案有效提高了指示灵活性。此外,本方案使得终端可以仅在指定的时域位置检测所述第二控制信道,而在其它时域位置,终端不进行检测,可以有效节省终端检测控制信道的能耗。
本申请还提供了一种通信系统,包括接入网设备和终端,所述终端可以是图7或图8对应的实施例所提供的通信装置,所述接入网设备可以是图9或图10对应的实施例提供的通信装置。所述通信系统用于执行图2对应的实施例的方法200。
本申请还提供了一种通信系统,包括终端和接入网设备,所述终端可以是11或图12对应的实施例所提供的通信装置,所述接入网设备可以是图13或图14对应的实施例提供的通信装置。所述通信系统用于执行图5对应的实施例的方法300。
本申请实施例中,收发机可以是有线收发机,无线收发机或其组合。有线收发机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发机例如可以为无线局域网收发机,蜂窝网络收发机或其组合。处理器可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。存储器可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英 文:solid-state drive,缩写:SSD);存储器还可以包括上述种类的存储器的组合。
图8,图10,图12以及图14中还可以包括总线接口,总线接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机提供用于在传输介质上与各种其他设备通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
最后,需要说明的是:以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。显然,本领域技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (29)

  1. 一种通信方法,其特征在于:
    终端根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,获知至少一个小时隙组的格式,其中,所述第一控制信道所在的时隙中包括所述至少一个小时隙组,所述小时隙组中包括至少一个小时隙,所述小时隙中包括所述第二控制信道,所述第一子载波宽度和所述第二子载波宽度不同;
    所述终端接收接入网设备发送的第一信令,所述第一信令包括第一指示信息;
    所述终端根据所述第一指示信息确定包括所述第二控制信道的每个小时隙组的时域位置;
    所述终端接收所述接入网设备发送的第二信令,所述第二信令包括第二指示信息;
    所述终端根据所述小时隙组的格式以及所述第二指示信息确定所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。
  2. 根据权利要求1所述的方法,其特征在于:所述方法还包括:
    所述终端根据所述第一子载波宽度和所述第二子载波宽度,获知所述第一信令的格式;根据所述第一信令的格式,获取所述第一指示信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端根据所述第一子载波宽度和所述第二子载波宽度,获取所述第二信令的格式;根据所述第二信令的格式,获取所述第二指示信息。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收第三指示信息;
    所述终端根据所述第三指示信息获取所述第一子载波宽度和所述第二子载波宽度。
  5. 一种通信方法,其特征在于,
    接入网设备根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定至少一个小时隙组的格式,其中,所述第一控制信道所在的时隙中包括所述至少一个小时隙组,所述小时隙组中包括至少一个小时隙,所述小时隙中包括所述第二控制信道,所述第一子载波宽度和第二子载波宽度不同;
    所述接入网设备向终端发送第一信令,所述第一信令包括第一指示信息,所述第一指示信息用于指示包括所述第二控制信道的每个小时隙组的时域位置;
    所述接入网设备根据所述小时隙组的格式,向所述终端发送第二信令,所述第二信令包括第二指示信息,所述第二指示信息用于指示所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。
  6. 根据权利要求5所述的方法,其特征在于:所述方法还包括:
    所述接入网设备根据所述第一子载波宽度和所述第二子载波宽度,确定所述第一信令的格式;根据所述第一信令的格式,确定所述第一指示信息。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据所述第一子载波宽度和所述第二子载波宽度,确定所述第二信令的格式;根据所述第二信令的格式,确定所述第二指示信息。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述方法还包括:
    所述接入设备向所述终端发送第三指示信息,所述第三指示信息用于指示所述第一子载 波宽度和所述第二子载波宽度。
  9. 一种通信方法,其特征在于,
    终端根据第一控制信道所使用的第一子载波宽度以及第二控制信道所使用的第二子载波宽度,获知控制信令的格式,其中,所述第一子载波宽度和所述第二子载波宽度不同,所述第一控制信道所在的时隙中包括至少一个小时隙,所述小时隙中包括所述第二控制信道;
    所述终端接收所述接入网设备发送的控制信令,所述控制信令包括第一指示信息,所述指示信息用于指示包括所述第二控制信道的每个小时隙的时域位置;
    所述终端根据所述控制信令的格式,获取所述第一指示信息;
    所述终端根据所述第一指示信息,确定包括所述第二控制信道的每个小时隙的时域位置。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述终端接收第二指示信息;
    所述终端根据所述第二指示信息,获取所述第一子载波宽度和所述第二子载波宽度。
  11. 根据权利要求9或10所述的方法,其特征在于:所述方法还包括:
    所述终端在所述包括所述第二控制信道的每个小时隙的时域位置检测所述第二控制信道;
    或者
    所述终端在所述包括所述第二控制信道的每个小时隙的时域位置上发送上行数据。
  12. 一种通信方法,其特征在于,
    接入网设备根据第一控制信道所使用的第一子载波宽度以及第二控制信道所使用的第二子载波宽度,确定控制信令的格式,其中,所述第一子载波宽度和所述第二子载波宽度不同,所述第一控制信道所在的时隙中包括至少一个小时隙,所述小时隙中包括所述第二控制信道;
    所述接入网设备根据所述控制信令的格式向终端设备发送控制信令,所述控制信令包括第一指示信息,所述指示信息用于指示包括所述第二控制信道的每个小时隙的时域位置。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述终端发送第二指示信息,所述第二指示信息用于指示所述第一子载波宽度和所述第二子载波宽度。
  14. 一种通信装置,其特征在于,包括:
    处理单元,用于根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,获知至少一个小时隙组的格式,其中,所述第一控制信道所在的时隙中包括所述至少一个小时隙组,所述小时隙组中包括至少一个小时隙,所述小时隙中包括所述第二控制信道,所述第一子载波宽度和第二子载波宽度不同;
    收发单元,用于接收接入网设备发送的第一信令,所述第一信令包括第一指示信息;
    所述处理单元,还用于根据所述第一指示信息确定包括所述第二控制信道的每个小时隙组的时域位置;
    所述收发单元,还用于接收所述接入网设备发送的第二信令,所述第二信令包括第二指示信息;
    所述处理单元,还用于根据所述小时隙组的格式以及所述第二指示信息确定所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。
  15. 根据权利要求14所述的通信装置,其特征在于:
    所述处理单元,还用于根据所述第一子载波宽度和所述第二子载波宽度,获知所述第一 信令的格式;根据所述第一信令的格式,获取所述第一指示信息。
  16. 根据权利要求14或15所述的通信装置,其特征在于:
    所述处理单元,还用于根据所述第一子载波宽度和所述第二子载波宽度,获取所述第二信令的格式;根据所述第二信令的格式,获取所述第二指示信息。
  17. 根据权利要求14-16任一项所述的通信装置,其特征在于:
    所述收发单元,还用于接收第三指示信息;
    所述处理单元,用于根据所述第三指示信息获取所述第一子载波宽度和所述第二子载波宽度。
  18. 一种通信装置,其特征在于,该通信装置包括:
    处理单元,用于根据第一控制信道使用的第一子载波宽度和第二控制信道使用的第二子载波宽度,确定至少一个小时隙组的格式,其中,所述第一控制信道所在的时隙中包括所述至少一个小时隙组,所述小时隙组中包括至少一个小时隙,所述小时隙中包括所述第二控制信道,所述第一子载波宽度和第二子载波宽度不同;
    收发单元,用于向终端发送第一信令,所述第一信令包括第一指示信息,所述第一指示信息用于指示包括所述第二控制信道的每个小时隙组的时域位置;
    所述处理单元,还用于根据所述小时隙组的格式,向所述终端发送第二信令,所述第二信令包括第二指示信息,所述第二指示信息用于指示所述每个小时隙组中包括所述第二控制信道的小时隙的时域位置。
  19. 根据权利要求18所述的通信装置,其特征在于:
    所述处理单元,还用于根据所述第一子载波宽度和所述第二子载波宽度,确定所述第一信令的格式;根据所述第一信令的格式,确定所述第一指示信息。
  20. 根据权利要求18或19所述的通信装置,其特征在于:
    所述处理单元,还用于根据所述第一子载波宽度和所述第二子载波宽度,确定所述第二信令的格式;根据所述第二信令的格式,确定所述第二指示信息。
  21. 根据权利要求18-20任一项所述的通信装置,其特征在于:
    所述收发单元,还用于向所述终端发送第三指示信息,所述第三指示信息用于指示所述第一子载波宽度和所述第二子载波宽度。
  22. 一种通信装置,其特征在于,该通信装置包括:
    处理单元,用于根据第一控制信道所使用的第一子载波宽度以及第二控制信道所使用的第二子载波宽度,获知控制信令的格式,其中,所述第一子载波宽度和所述第二子载波宽度不同,所述第一控制信道所在的时隙中包括至少一个小时隙,所述小时隙中包括所述第二控制信道;
    收发单元,用于接收所述接入网设备发送的控制信令,所述控制信令包括第一指示信息,所述指示信息用于指示包括所述第二控制信道的每个小时隙的时域位置;
    所述处理单元,还用于根据所述控制信令的格式,获取所述第一指示信息,并根据所述第一指示信息,确定包括所述第二控制信道的每个小时隙的时域位置。
  23. 根据权利要求22所述的通信装置,其特征在于,
    所述收发单元,还用于接收第二指示信息;
    所述处理单元,还用于根据所述第二指示信息,获取所述第一子载波宽度和所述第二子 载波宽度。
  24. 根据权利要求22或23所述的通信装置,其特征在于,
    所述处理单元,还用于在所述包括所述第二控制信道的每个小时隙的时域位置检测所述第二控制信道;或者
    还用于在所述包括所述第二控制信道的每个小时隙的时域位置上发送上行数据。
  25. 一种通信装置,其特征在于,该通信装置包括:
    处理单元,用于根据第一控制信道所使用的第一子载波宽度以及第二控制信道所使用的第二子载波宽度,确定控制信令的格式,其中,所述第一子载波宽度和所述第二子载波宽度不同,所述第一控制信道所在的时隙中包括至少一个小时隙,所述小时隙中包括所述第二控制信道;
    收发单元,用于根据所述控制信令的格式向终端设备发送控制信令,所述控制信令包括第一指示信息,所述指示信息用于指示包括所述第二控制信道的每个小时隙的时域位置。
  26. 根据权利要求25所述的通信装置,其特征在于:
    所述收发单元,还用于向所述终端发送第二指示信息,所述第二指示信息用于指示所述第一子载波宽度和所述第二子载波宽度。
  27. 一种通信系统,包括权利要求14-17任一项所述的通信装置以及18-21任一项所述的通信装置。
  28. 一种通信系统,包括权利要求23-24中任一项所述的通信装置以及权利要求25或26所述的通信装置。
  29. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至13中任一项所述的方法。
PCT/CN2018/074233 2017-01-26 2018-01-26 一种通信方法,装置及系统 WO2018137700A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18743967.4A EP3553990B1 (en) 2017-01-26 2018-01-26 Communication method, device, and system
US16/523,701 US11038734B2 (en) 2017-01-26 2019-07-26 Mini-slot configuration for data communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710061828.1A CN108365936B (zh) 2017-01-26 2017-01-26 一种通信方法,装置及系统
CN201710061828.1 2017-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/523,701 Continuation US11038734B2 (en) 2017-01-26 2019-07-26 Mini-slot configuration for data communication

Publications (1)

Publication Number Publication Date
WO2018137700A1 true WO2018137700A1 (zh) 2018-08-02

Family

ID=62979027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074233 WO2018137700A1 (zh) 2017-01-26 2018-01-26 一种通信方法,装置及系统

Country Status (4)

Country Link
US (1) US11038734B2 (zh)
EP (1) EP3553990B1 (zh)
CN (1) CN108365936B (zh)
WO (1) WO2018137700A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021023023A1 (zh) * 2019-08-07 2021-02-11 华为技术有限公司 资源配置的方法以及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112400349A (zh) * 2018-09-27 2021-02-23 松下电器(美国)知识产权公司 终端及接收方法
CN110972266B (zh) * 2018-09-28 2022-12-30 成都华为技术有限公司 配置时隙格式的方法和通信装置
US11350450B2 (en) * 2018-11-01 2022-05-31 Beijing Xiaomi Mobile Software Co., Ltd. Channel access and scheduling for unlicensed carriers in a radio system
CN113498080B (zh) * 2020-04-02 2024-04-02 大唐移动通信设备有限公司 控制信道检测方法、装置、终端、基站及存储介质

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980838B2 (en) * 2001-05-10 2005-12-27 Motorola, Inc. Control channel to enable a low power mode in a wideband wireless communication system
EP3285418B1 (en) * 2005-03-30 2021-05-05 Apple Inc. Systems and methods for ofdm channelization
US20100278123A1 (en) * 2007-12-10 2010-11-04 Nortel Networks Limited Wireless communication frame structure and apparatus
AU2009212717B2 (en) * 2008-02-01 2013-04-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. System and method for uplink timing synchronization in conjunction with discontinuous reception
EP2335365B1 (en) * 2008-10-10 2018-09-12 Intel Corporation Crest factor reduction for ofdm communications systems by transmitting phase shifted resource blocks
US8340676B2 (en) * 2009-06-25 2012-12-25 Motorola Mobility Llc Control and data signaling in heterogeneous wireless communication networks
US8958841B2 (en) * 2009-12-27 2015-02-17 Lg Electronics Inc. Method and apparatus for controlling uplink transmission power in a multi-carrier wireless communication system
WO2011122874A2 (en) * 2010-03-31 2011-10-06 Samsung Electronics Co., Ltd. Indexing resources for transmission of acknowledgement signals in multi-cell tdd communication systems
US8417283B2 (en) * 2010-12-05 2013-04-09 Motorola Solutions, Inc. Method and apparatus for conveying usage and access rights information for each sub-slot on a carrier
US8306573B2 (en) * 2010-12-05 2012-11-06 Motorola Solutions, Inc. Method and apparatus for increasing call capacity on a carrier
ES2806926T3 (es) 2011-10-03 2021-02-19 Ericsson Telefon Ab L M Multiplexación de control y de datos en un bloque de recursos
US10039088B2 (en) * 2012-01-26 2018-07-31 Samsung Electronics Co., Ltd. Method and apparatus for scheduling communication for low capability devices
EP2809104B1 (en) * 2012-01-26 2018-02-21 Sony Corporation Wireless communication device, wireless communication method, and wireless communication system
US9215058B2 (en) * 2012-03-06 2015-12-15 Blackberry Limited Enhanced PHICH transmission for LTE-advanced
US9559812B2 (en) * 2012-07-27 2017-01-31 Lg Electronics Inc. Method and terminal for performing HARQ
US9763241B2 (en) * 2013-03-03 2017-09-12 Lg Electronics Inc. Method for receiving control information on EPDCCH
US20170013618A1 (en) * 2015-07-10 2017-01-12 Electronics And Telecommunications Research Institute Low latency transmission method and apparatus
US20180198594A1 (en) * 2017-01-06 2018-07-12 Nokia Technologies Oy User device signal processing based on triggered reference signals for wireless networks

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on Slot and Mini-Slot", 3GPPTSG RAN WG1 MEETING #86BIS, R1-1608837, 14 October 2016 (2016-10-14), XP051148891 *
INTEL CORPORATION: "On URLLC Mini-Slot Structure", 3GPP TSG RAN WG1 MEETING #86BIS, R1-1609510, 14 October 2016 (2016-10-14), XP051149549 *
MOTOROLA MOBILITY: "Flexible Frame Structure and Control Signalling for NR", 3GPP TSG RAN WG1 MEETING #86BIS, R1-1609919, 14 October 2016 (2016-10-14), XP051149945 *
See also references of EP3553990A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021023023A1 (zh) * 2019-08-07 2021-02-11 华为技术有限公司 资源配置的方法以及装置

Also Published As

Publication number Publication date
CN108365936B (zh) 2020-10-27
US11038734B2 (en) 2021-06-15
US20190349242A1 (en) 2019-11-14
EP3553990A4 (en) 2020-01-08
EP3553990B1 (en) 2021-09-01
EP3553990A1 (en) 2019-10-16
CN108365936A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
JP5763782B2 (ja) チャネル品質指標のレポート
US20210250159A1 (en) Resource configuration method and apparatus
WO2018054263A1 (zh) 发送或接收物理下行控制信道的方法和设备
KR102212799B1 (ko) 제어 정보 검출 방법, 제어 정보 전송 방법 및 장치
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
WO2018137700A1 (zh) 一种通信方法,装置及系统
WO2018210243A1 (zh) 一种通信方法和装置
US11272547B2 (en) Communication method, network device, and user equipment
US20210337514A1 (en) Sidelink reference signal transmission method and communication apparatus
US10952207B2 (en) Method for transmitting data, terminal device and network device
US10270576B2 (en) Information transmission method, user equipment, and base station
CN111436085B (zh) 通信方法及装置
WO2018137570A1 (zh) 一种信息传输方法及装置
TW201902247A (zh) 行動通訊中小區專用參考訊號靜音方法及其裝置
US11202294B2 (en) Methods and devices for determining downlink resource set and sending resource position information
CN111865535B (zh) 通信方法和装置
US11197304B2 (en) Resource indication method, communications apparatus, and network device
JP2023512807A (ja) 無線通信において、低減した能力のデバイスをサポートする方法及び装置
WO2018137551A1 (zh) 一种循环前缀cp确定方法及无线网络设备
US20230344688A1 (en) Method for symbol application, communication apparatus, and storage medium
CN111756509B (zh) 一种传输公共信号块的方法和装置
EP4280759A1 (en) Terminal, base station, and wireless communication method
WO2020019322A1 (zh) 信息传输的方法和装置
WO2021062722A1 (zh) 确定不可用资源的方法、终端设备和网络设备
CN115804181A (zh) 无线通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18743967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018743967

Country of ref document: EP

Effective date: 20190710

NENP Non-entry into the national phase

Ref country code: DE