WO2022100605A1 - 一种侧行链路的数据传输方法及相关装置 - Google Patents

一种侧行链路的数据传输方法及相关装置 Download PDF

Info

Publication number
WO2022100605A1
WO2022100605A1 PCT/CN2021/129750 CN2021129750W WO2022100605A1 WO 2022100605 A1 WO2022100605 A1 WO 2022100605A1 CN 2021129750 W CN2021129750 W CN 2021129750W WO 2022100605 A1 WO2022100605 A1 WO 2022100605A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
frequency domain
terminal
domain units
sending
Prior art date
Application number
PCT/CN2021/129750
Other languages
English (en)
French (fr)
Inventor
王碧钗
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/036,070 priority Critical patent/US20230413186A1/en
Priority to EP21891125.3A priority patent/EP4224951A1/en
Publication of WO2022100605A1 publication Critical patent/WO2022100605A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of electronic technologies, and in particular, to a sidelink data transmission method and related devices.
  • SL communication supports direct communication between user equipment (UE), including device-to-device (D2D) communication, vehicle-to-Everything (V2X) communication, etc. .
  • UE user equipment
  • D2D device-to-device
  • V2X vehicle-to-Everything
  • the transmitting UE Transmitting UE, TX UE
  • RX UE Receiving UE
  • the purpose is to avoid selecting the same time-frequency resource for different TX UEs as much as possible.
  • TX UEs can measure the interference with other TX UEs, and select resources that are not occupied by other TX UEs, or occupied by other TX UEs but whose interference is less than a threshold for transmission.
  • resource selection criteria based on interference strength alone cannot guarantee successful decoding by RX UEs and achieve optimal system performance.
  • Embodiments of the present application provide a sidelink data transmission method and related apparatus, which can improve resource utilization through distributed power control and effectively improve system performance.
  • the present application provides a sidelink data transmission method, comprising: a first sending terminal sending a first channel state information-reference signal (CSI-RS) on N frequency domain units , N is a positive integer; the first sending terminal detects the channel state information reference (channel state information, CSI) sent by the K receiving terminals, the CSI sent by the K receiving terminals is determined based on the first CSI-RS, and K is greater than or equal to 2; the first transmitting terminal updates the transmit power of the first transmitting terminal in the above N frequency domain units based on all or part of the CSI sent by the above K receiving terminals; the first transmitting terminal updates the above N frequency domain units based on the updated The transmit power to transmit user data.
  • CSI-RS channel state information-reference signal
  • the first transmitting terminal updates the transmit power of each frequency domain unit through distributed power control based on the CSI measured and reported by the K receiving terminals, thereby implementing data transmission between multiple sidelink pairs
  • the resource multiplexing of the channel improves the resource utilization rate of the distributed resource allocation method and effectively improves the spectrum efficiency.
  • the above-mentioned frequency domain unit may be a subchannel or a subband.
  • the first sending terminal sends user data based on the updated transmit power of the N frequency domain units, including: F frequency domain units in the N frequency domain units When the updated power is greater than the preset threshold, the first sending terminal sends user data on at least one frequency domain unit in the above-mentioned F frequency domain units, where F is a positive integer less than or equal to N.
  • the above-mentioned first sending terminal sending the first channel state information reference signal CSI-RS in N frequency domain units includes: The first indication information and the first CSI-RS are sent on the above, wherein the first indication information indicates the time-frequency resource position of the first CSI-RS.
  • the above-mentioned first sending terminal sending the first channel state information reference signal CSI-RS on N frequency domain units includes: The first CSI-RS is sent in frequency domain units, wherein the above-mentioned predefined rule indicates the time-frequency resource position of the first CSI-RS.
  • the first indication information is a preset field in the first sidelink control information (sidelink control information, SCI).
  • the first sending terminal broadcasts and sends the first indication information on the N frequency domain units.
  • the above-mentioned first indication information is a radio resource control RRC high-layer signaling parameter.
  • the first CSI-RS is sent periodically, and the first indication information further indicates a sending cycle of the first CSI-RS.
  • the first CSI-RS is sent periodically, and the predefined rule further indicates a sending cycle of the first CSI-RS.
  • the detection of the CSI sent by the K receiving terminals by the first sending terminal includes: the first sending terminal detecting the CSI sent by the jth receiving terminal among the K receiving terminals. second indication information, the second indication information is used to indicate that the jth receiving terminal has reported CSI, and j is a positive integer less than or equal to K; The first CSI is detected in the data sent by the terminal.
  • the second indication information is a preset field in the second SCI sent by the jth receiving end; or, the second indication information is a media access control (media access control).
  • the service identifier (Identity, ID) reported by the CSI configured by the MAC) layer.
  • the second indication information is a destination Layer-2 ID.
  • the first CSI includes third indication information, and the third indication information is used to indicate a frequency domain unit corresponding to the first CSI reported by the jth receiving end.
  • the above-mentioned first sending terminal sending user data on at least one frequency-domain unit in the above-mentioned F frequency-domain units includes: the first sending terminal sending user data in the above-mentioned F frequency-domain units The first user data and the fourth indication information are sent on at least one frequency domain unit in the When the number of domain units is greater than 1, any two frequency domain units in the at least one frequency domain unit are continuous or discontinuous in the frequency domain.
  • the first receiving terminal reports the first CSI of the first frequency domain unit by at least one of unicast, multicast and broadcast.
  • the CSI sent by the K receiving terminals includes the first CSI sent by the jth receiving terminal in the K receiving terminals; the first CSI includes at least one of the following items: Item: the signal-to-interference plus noise ratio (SINR) of H1 frequency domain units in the frequency domain units occupied by the target link of the jth receiving terminal above, in the above
  • SISR interference to signal ratio
  • H1 is greater than or equal to 1
  • h is greater than or equal to 1 and less than or equal to H1.
  • the CSI sent by the K receiving terminals includes the first CSI sent by the jth receiving terminal in the K receiving terminals; the first CSI includes at least one of the following items: Item: the channel quality information (channel quality indicator, CQI) of the H1 frequency domain units in the frequency domain units occupied by the target link of the jth receiving terminal above, in the above H1 frequency domain
  • Item the channel quality information (channel quality indicator, CQI) of the H1 frequency domain units in the frequency domain units occupied by the target link of the jth receiving terminal above, in the above H1 frequency domain
  • the CSI sent by the K receiving terminals includes the first CSI sent by the jth receiving terminal in the K receiving terminals; the first CSI includes the following items: At least one item: the SINR of H1 frequency domain units in the frequency domain units occupied by the target link of the jth receiving terminal above, and the h frequency domain units in the above H1 frequency domain units
  • the received interference RP of the first transmitting terminal is the signal RP of the target transmitting terminal received in the above-mentioned H1 frequency domain units; H1 is greater than or equal to 1, and h is greater than or equal to 1 and less than or equal to H1.
  • the CSI sent by the K receiving terminals includes the first CSI sent by the jth receiving terminal in the K receiving terminals; the first CSI includes at least one of the following items: Item 1: The CQI of H1 frequency domain units in the frequency domain units occupied by the target link of the jth receiving terminal above, the CQI of the h frequency domain units in the above H1 frequency domain units receives
  • the interference RP of the first transmitting terminal is the signal RP of the target transmitting terminal received in the above-mentioned H1 frequency domain units; H1 is greater than or equal to 1, and h is greater than or equal to 1 and less than or equal to H1.
  • the jth receiving terminal in the above K receiving terminals is the target receiving terminal of the SL of the jth transmitting terminal in the K transmitting terminals, and the first transmitting terminal is the above K
  • k and j are positive integers less than or equal to K
  • n is a positive integer less than or equal to N
  • the relationship between the power and the CSI reported by the above K receiving terminals can be expressed as follows:
  • the jth receiving terminal in the above K receiving terminals is the target receiving terminal of the SL of the jth transmitting terminal in the K transmitting terminals, and the first transmitting terminal is the above K
  • k and j are positive integers less than or equal to K
  • n is a positive integer less than or equal to N
  • the relationship between the power and the CSI reported by the above K receiving terminals can be expressed as follows:
  • the method before the first sending terminal sends the first channel state information reference signal CSI-RS on N frequency domain units, the method further includes: the first sending terminal detects the SL prediction signal. Assuming the signal energy of each frequency domain unit in the M frequency domain units in the resource pool, determine the above N frequency domain units whose signal energy is less than the preset value in the above M frequency domain units, wherein M is greater than or equal to N. positive integer.
  • the above-mentioned first sending terminal sending the first channel state information reference signal CSI-RS in N frequency domain units includes: The first CSI-RS is transmitted with equal power in each frequency domain unit in .
  • the above-mentioned first sending terminal sending the first channel state information reference signal CSI-RS in N frequency domain units includes: The first CSI-RS and user data are sent with equal power in each frequency domain unit in .
  • the present application provides a data transmission method for a sidelink, including: a first receiving terminal detects, on H1 frequency domain units in the frequency domain units occupied by a target link, data sent by L sending terminals.
  • Channel state information reference signal CSI-RS where L is greater than or equal to 2, and H1 is greater than or equal to 1; the first receiving terminal transmits the first CSI of the above-mentioned H1 frequency domain units based on the CSI-RS sent by the above-mentioned L transmitting terminals, and the first CSI It is used for the above-mentioned L transmitting terminals to update the transmit power of the above-mentioned H1 frequency domain units.
  • the method described in the second aspect is implemented, and the first receiving terminal measures the CSI of each frequency domain unit based on the CSI-RS sent by at least two transmitting terminals, and performs sub-channel level (or sub-band level) CSI reporting, so that each transmitting terminal can update the transmit power of each frequency domain unit based on the CSI reported by the first receiving terminal, thereby realizing resource multiplexing of data channels between multiple sidelink transmission pairs, and improving distributed resource allocation.
  • the resource utilization rate of the method is improved, and the spectrum efficiency is effectively improved.
  • the above-mentioned frequency domain unit may be a subchannel or a subband.
  • the channel state information reference signal CSI-RS sent by the above L sending terminals includes the first CSI-RS sent by the first sending terminal, and the first receiving terminal is on the target link.
  • the channel state information reference signal CSI-RSs sent by L sending terminals are detected on H1 frequency domain units in the occupied frequency domain units, including: the first receiving terminal detects the first indication information sent by the first sending terminal, wherein , the first CSI-RS is detected on h frequency domain units in the first H1 frequency domain units, and h is greater than or equal to 1 and less than or equal to H1.
  • the channel state information reference signal CSI-RS sent by the above L sending terminals includes the first CSI-RS sent by the first sending terminal, and the first receiving terminal occupies a target link.
  • the channel state information reference signal CSI-RSs sent by L transmitting terminals are detected on H1 frequency domain units of The first CSI-RS sent by the first sending terminal is detected on the frequency domain unit; wherein, the above-mentioned predefined rule indicates the time-frequency resource position of the CSI-RS sent by the first sending terminal.
  • the first indication information is a preset field in the first sidelink control information SCI.
  • the above-mentioned first indication information is a radio resource control RRC high-layer signaling parameter.
  • the first CSI-RS is sent periodically, and the first indication information further indicates a sending cycle of the first CSI-RS.
  • the first CSI-RS is sent periodically, and the predefined rule further indicates a sending cycle of the first CSI-RS.
  • the above-mentioned sending of the first CSI of the above-mentioned H1 frequency domain units includes: the first receiving terminal sending the second indication information and the above-mentioned first CSI of the above-mentioned H1 frequency domain units, so The second indication information is used to indicate that the first receiving terminal reports the CSI.
  • the second indication information is a preset field in the second SCI sent by the first receiving terminal; or, the second indication information is an access control layer The service ID reported by the CSI configured by the MAC layer.
  • the second indication information is a destination Layer-2 ID.
  • the first CSI includes at least one of the following items: the signal-to-interference-to-noise ratio SINR of the first receiving terminal in the above-mentioned H1 frequency domain units, in the above-mentioned The interference-to-signal ratio ISR of the interference received power RP of the first transmitting terminal and the signal RP of the target transmitting terminal received by the h frequency domain units.
  • the first CSI includes at least one of the following items: the channel quality information CQI of the first receiving terminal in the above-mentioned H1 frequency domain units, in the above-mentioned h The ISR of the interference RP of the first transmitting terminal and the signal RP of the target transmitting terminal received by the frequency domain units.
  • the first CSI includes at least one of the following items: the SINR of the first receiving terminal in the above-mentioned H1 frequency domain units, in the above-mentioned h frequency domain units
  • the interference RP of the first transmitting terminal received by the unit is the signal RP of the target transmitting terminal received in the above-mentioned H1 frequency domain units.
  • the first CSI includes at least one of the following items: the CQI of the first receiving terminal in the above-mentioned H1 frequency domain units, in the above-mentioned at least one frequency domain
  • the interference RP of the first transmitting terminal received by the unit is the signal RP of the target transmitting terminal received in the above-mentioned H1 frequency domain units.
  • the present application provides an electronic device including one or more processors and one or more memories.
  • the one or more memories are coupled to the one or more processors for storing computer program code, the computer program code comprising computer instructions that, when executed by the one or more processors, cause the electronic device to perform Any possible implementation manner of the first aspect or the second aspect above.
  • an embodiment of the present application provides a computer storage medium, including computer instructions, when the computer instructions are executed on an electronic device, the electronic device is made to execute any one of the possible implementations of the first aspect or the second aspect. .
  • an embodiment of the present application provides a computer program product, which, when the computer program product runs on a computer, enables the computer to execute any possible implementation manner of the first aspect or the second aspect.
  • FIG. 1A is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 1B and FIG. 1C are schematic diagrams of channel structures of SLs provided by the embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a data transmission scheme of SL based on interference measurement provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of another data transmission scheme of SL based on interference measurement provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a K-to-SL transmission pair provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a data transmission method for SL provided by an embodiment of the present application.
  • FIG. 7A is a schematic diagram of a data structure of a CSI of content form 1 provided by an embodiment of the present application.
  • FIG. 7B is a schematic diagram of a data structure of a CSI of content form 2 provided by an embodiment of the present application.
  • FIG. 7C is a schematic diagram of a data structure of a CSI of content form 3 provided by an embodiment of the present application.
  • 7D is a schematic diagram of a data structure of CSI in content form 4 provided by an embodiment of the present application.
  • FIG. 7E and FIG. 7F are schematic diagrams of a data structure of a CSI of content form 1 provided by an embodiment of the present application.
  • FIGS. 7G and 7H are schematic diagrams of a data structure of a CSI of content form 2 provided by an embodiment of the present application.
  • 8A is a schematic diagram of a protocol architecture of a user plane according to an embodiment of the present application.
  • 8B is a schematic structural diagram of a MAC PDU provided by an embodiment of the present application.
  • 9A is a schematic diagram of three pairs of SL transmission pairs provided by an embodiment of the present application.
  • 9B is a schematic diagram of a power update provided by an embodiment of the present application.
  • FIG. 10 is a performance comparison diagram of multiple resource multiplexing mechanisms provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as implying or implying relative importance or implying the number of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • Subcarriers OFDM technology combats multipath interference through the orthogonality between subcarriers.
  • the LTE protocol stipulates that in the case of a regular cyclic prefix (CP), a slot (slot) has 7 OFDM symbols; in the case of an extended CP, a slot has 6 OFDM symbols.
  • the 5G New Radio (NR) protocol stipulates that in the case of conventional CP, a slot (slot) has 14 OFDM symbols; in the case of extended CP, a slot has 12 OFDM symbols.
  • 5G NR supports a variety of subcarrier intervals (such as 15KHZ, 30KHZ, 60KHZ, etc.), with different subcarrier intervals and different time slot lengths.
  • RB Resource block
  • Subchannel A subchannel includes several RBs that are continuous in the frequency domain, and the size of the subchannel can be configured or predefined by the network device.
  • Subband The frequency domain granularity unit of the physical layer feedback channel information.
  • the system bandwidth can be divided into several subbands, for example, based on the difference of the system bandwidth, the size of the subbands may be 4, 6 or 8 RBs.
  • subchannels and subbands may also be referred to as frequency domain units.
  • CSI Channel State Information is information used to estimate the characteristics of a communication link, and the process of estimating CSI is called channel estimation.
  • CSI includes but is not limited to precoding matrix indicator (PMI), rank indicator (RI), channel state information-reference signal (CSI-RS), resource indicator (CSI-RS resource indicator) , CRI), one or more of precoding type indicator (precoding type indicator, PTI) and channel quality information (Channel Quality Indicator, CQI), the time-frequency resources occupied by them are controlled by network equipment.
  • PMI precoding matrix indicator
  • RI rank indicator
  • CSI-RS channel state information-reference signal
  • CSI-RS resource indicator resource indicator
  • CRI channel quality information
  • precoding type indicator precoding type indicator
  • CQI Channel Quality Indicator
  • CQI is used to measure the channel quality and is an effective parameter for resource scheduling and modulation and coding scheme (MCS) selection.
  • MCS modulation and coding scheme
  • the CQI is not only related to the received SINR, but also related to the receiving sensitivity of the modem (modem) of the UE itself.
  • the UE uses the SINR to find the MCS level closest to the target block error rate (block error rate, BLER); the CQI value corresponding to the above-mentioned MCS level can be determined by looking up the CQI mapping table.
  • BLER block error rate
  • the above target BLER may be 10%.
  • Full-bandwidth CSI reporting The receiving terminal performs CSI reporting on the full-bandwidth integrated CSI occupied by the target link.
  • the above-mentioned integrated CSI is the average value of the CSI of all sub-channels (sub-bands) occupied by the target link.
  • Subchannel level (or subband level) CSI reporting The receiving terminal performs CSI reporting on the CSI of each subchannel (subband) occupied by the target link.
  • Bitmap Use a bit (bit) bit to mark the value (Value) corresponding to an element.
  • the preset resource pool includes 8 subchannels.
  • the UE may indicate the subchannel occupied by the target link through an 8-bit Bitmap. If the target link occupies the i-th subchannel in the above-mentioned 8 subchannels, Then the value of the i-th bit in the above-mentioned 8-bit Bitmap is set to 1, otherwise the value of the above-mentioned i-th bit is set to 0.
  • Differential reporting In a differential reporting method, the UE determines the maximum value (or minimum value) among the F values to be reported, the UE quantizes and encodes the maximum value (or minimum value), and compares the above F values with the minimum value. The difference value of the maximum value (or minimum value) is quantized and encoded to obtain the quantized encoded information reported by the difference of F values and the quantized encoded information of the above-mentioned maximum value (or minimum value). It can be understood that the value with the difference value of 0 corresponding to the quantized coding information is the maximum value (or the minimum value) among the above-mentioned F values.
  • differential reporting it should be noted that if the difference between the maximum value and the minimum value among the F values to be reported is large, the above-mentioned F values are directly reported, and the required number of encoded bits will be larger, and the reporting overhead can be reduced by differential reporting. .
  • other differential reporting methods may also be used for SINR, CQI, ISR, or RP reporting in this embodiment of the present application, and the step size of quantization coding for differential reporting is not specifically limited.
  • FIG. 1A is a schematic diagram of a communication system provided by an embodiment of the application.
  • the communication system 100 may include a terminal device 101 , a terminal device 102 , a terminal device 103 , and a terminal device 104 .
  • the terminal device 101 and the terminal device 102 can transmit data through SL1
  • the terminal device 103 and the terminal device 104 can transmit data through SL2, that is, the user data is directly transmitted between the terminal devices, avoiding the user data in cellular communication. Transit transmission.
  • SL1 and SL2 use the same communication resource for communication, SL interference exists between SL1 and SL2, and the above-mentioned SL interference will reduce the communication quality of SL.
  • the SL may be a D2D link, such as a mobile phone-to-mobile communication link or a mobile phone-to-wearable device communication link; in the Internet of Vehicles, the SL may also be a vehicle-to-vehicle (vechile-to-vechile) , V2V) communication link, Vehicle to Pedestrian (V2P) communication link, vehicle-to-infrastructure (V2I) link or vehicle-to-any device (vechile-to- X, V2X) communication link.
  • V2P Vehicle to Pedestrian
  • V2I vehicle-to-infrastructure
  • V2X vehicle-to-any device
  • the communication system 100 may further include at least one network device 105 (only one is shown), and the network device 105 may provide communication coverage for the cell coverage area corresponding to the network device 105, that is, through one or more
  • the antenna communicates wirelessly with the terminal equipment within the coverage of the cell.
  • the terminal device 101 can receive data sent by the network device 105 through the downlink (Downlink, DL), and can also send data to the network through the uplink (Uplink, UL).
  • Device 105 sends data.
  • terminal device 101, terminal device 102, terminal device 103, and terminal device 104 are within the cell coverage of the same network device (eg, network device 105); alternatively, terminal device 101, terminal device 102, terminal device 103 and at least two of the terminal equipments 104 are within the cell coverage of different network equipment; or, none of the terminal equipment 101, the terminal equipment 102, the terminal equipment 103 and the terminal equipment 104 are within the cell coverage of the network equipment (that is, not within the cellular coverage of the network equipment). network coverage), which are not specifically limited here.
  • SL communication resources are scheduled by network devices (such as base stations); the other is distributed mode, that is, terminal devices spontaneously select from the pre-configured SL resource pool SL communication resources.
  • network control mode that is, SL communication resources are scheduled by network devices (such as base stations); the other is distributed mode, that is, terminal devices spontaneously select from the pre-configured SL resource pool SL communication resources.
  • network control mode and/or distributed mode can be adopted; for terminal equipment outside the cellular coverage (Out-of-coverage), only distributed mode can be adopted . It can be understood that when the terminal device 102 and the terminal device 104 use the same communication resource for SL communication, the terminal device 102 will cause SL interference to the terminal device 104 .
  • the SL includes a physical sidelink control channel (PSCCH) and a physical sidelink shared channel (PSSCH).
  • PSSCH is used to carry user data for SL communication.
  • the PSCCH is used to carry the control information of the SL, and the physical channel indicates PSSCH channel resources and transmission parameters.
  • the control information of SL may include SCI.
  • FIG. 1B is a schematic diagram of a channel structure of an SL provided by an embodiment of the present application.
  • the SL occupies N sub-channels (ie, sub-channel 0 to sub-channel N-1) in the frequency domain, and occupies 14 OFDM symbols (ie, symbols 0 to symbol 13).
  • the PSCCH of the SL occupies subchannel 0, and the subchannels occupied by the PSSCH of the SL are the above N subchannels.
  • the PSCCH channel resources include time-frequency resources corresponding to symbols 3 and 4 of subchannel 0; the PSSCH channel resources include subchannel 0 to subchannel N-1 corresponding to symbols 5 to 10 time-frequency resources.
  • the SL target link of the TX UE occupies the above-mentioned N sub-channels, and the TX UE can carry the user data of the SL communication on the above-mentioned N sub-channels, and carry the control information of the SL on the sub-channel 0 shown in the figure.
  • a time slot may not include PSCCH channel resources; the time-frequency resources corresponding to symbols 3 to 4 of sub-channel 1 to sub-channel N-1 may also be PSSCH channel resources, which are not specified here. limited.
  • the subchannels occupied by the SL may be discontinuous. Exemplarily, as shown in FIG.
  • the SL occupies part of the N subchannels in the frequency domain, and any two occupied subchannels may be continuous or discontinuous in the frequency domain.
  • the subchannel occupied by the SL in the embodiment of the present application is the subchannel occupied by the PSSCH of the SL.
  • SL communication includes three communication modes, namely SL unicast, SL multicast and SL broadcast.
  • SL unicast means that one terminal device transmits information to another terminal device;
  • SL multicast means that one terminal device transmits information to multiple terminal devices;
  • SL broadcast means that one terminal device transmits information to all terminal devices within its coverage.
  • a terminal device may determine the transmit power of the terminal device in each subchannel based on CSI fed back by other terminal devices.
  • the CSI may include SINR, channel quality indicator CQI, ISR or RP.
  • the network devices involved in the embodiments of the present application may include various forms of network devices, such as: a macro base station, a micro base station (also referred to as a small cell), a relay station, an access point, and the like.
  • the base station may be a base transceiver station (Base Transceiver Station, BTS) in a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) system, or a Long Term Evolution (Long Term Evolution, LTE) Evolved base station (Evolutional Node B, eNB) in the system, and gNB in 5G system and New Radio (New Radio, NR) system.
  • BTS Base Transceiver Station
  • TD-SCDMA Time Division Synchronous Code Division Multiple Access
  • LTE Long Term Evolution
  • Evolved base station Evolutional Node B, eNB
  • 5G system and New Radio New Radio, NR
  • the base station may also be a transceiver point (Transmission Receive Point, TRP
  • the terminal device involved in the embodiments of the present application may be a mobile phone (mobile phone), a tablet computer (Pad), a portable computer, a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) ) terminal equipment, wireless terminal in industrial control, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city, smart home (smart home) wireless terminal and so on.
  • the embodiments of the present application do not limit application scenarios.
  • Terminal equipment may also sometimes be referred to as user equipment (UE), terminal (terminal), access terminal, UE unit, UE station, mobile device, mobile station, mobile station, mobile terminal, mobile client , mobile unit, remote station, remote terminal equipment, remote unit, wireless unit, wireless communication equipment, user agent or user equipment, etc.
  • UE user equipment
  • terminal terminal
  • access terminal UE unit
  • UE station mobile device
  • mobile station mobile station
  • mobile terminal mobile client
  • mobile unit remote station
  • remote terminal equipment remote unit
  • wireless unit wireless communication equipment
  • user agent or user equipment etc.
  • FIG. 1A is only an exemplary illustration of a communication system, and should not constitute any limitation to the present application.
  • the communication system 100 may also include more or less terminal devices and network devices, which are not limited here.
  • network devices and terminal devices may also be referred to as communication devices.
  • the terminal device may be referred to as UE for short
  • the terminal device at the transmitting end is referred to as the transmitting terminal or TX UE for short
  • the terminal device at the receiving end is referred to as the receiving terminal or RX UE for short.
  • terminal device 101 may include: one or more terminal device processors 201, memory 202, communication interface 203, receiver 205, transmitter 206, coupler 207, antenna 208, terminal device interface 202, and Input and output module (including audio input and output module 210, key input module 211, display 212, etc.). These components may be connected through a bus 204 or in other ways, and FIG. 2 takes the connection through a bus as an example. in:
  • the communication interface 203 can be used for the terminal device 101 to communicate with other communication devices, such as network devices.
  • the network device may be the network device 105 shown in FIG. 1A .
  • the communication interface 203 may be a Long Term Evolution (LTE) (4G) communication interface, or may be a communication interface of 5G or a future new air interface.
  • LTE Long Term Evolution
  • the terminal device 101 may also be configured with a wired communication interface 203, such as a local access network (Local Access Network, LAN) interface.
  • LAN Local Access Network
  • the transmitter 206 may be used to perform transmission processing on the signal output by the terminal device processor 201, for example, to implement directional transmission through beamforming.
  • the receiver 205 can be used for receiving and processing the mobile communication signal received by the antenna 208, such as realizing directional reception through beamforming.
  • the transmitter 305/receiver 306 may include a beamforming controller for multiplying the transmit/receive signals by the weight vectors W1, . . . , Wm to control the directional transmit/receive of the signals.
  • the base station beam switching mentioned in the embodiments of the present application may be implemented by changing the transmit signal/receive signal and multiplying the weight vector by the beamforming controller in the transmitter 305/receiver 306.
  • the transmitter 206 and the receiver 205 may be viewed as a wireless modem.
  • the number of transmitters 206 and receivers 205 may be one or more.
  • Antenna 208 may be used to convert electromagnetic energy in a transmission line to electromagnetic waves in free space, or to convert electromagnetic waves in free space to electromagnetic energy in a transmission line.
  • the coupler 207 is used for dividing the mobile communication signal received by the antenna 208 into multiple paths and assigning them to a plurality of receivers 205 .
  • the terminal device 101 may further include other communication components, such as a GPS module, a Bluetooth (Bluetooth) module, a Wireless Fidelity (Wi-Fi) module, and the like. Not limited to the wireless communication signals described above, the terminal device 101 may also support other wireless communication signals, such as satellite signals, short-wave signals, and the like. Not limited to wireless communication, the terminal device 101 may also be configured with a wired network interface (eg, a LAN interface) to support wired communication.
  • a wired network interface eg, a LAN interface
  • the input and output module can be used to realize the interaction between the terminal device 101 and the terminal device/external environment, and can mainly include an audio input and output module 210, a key input module 211, a display 212, and the like. Specifically, the input and output module may further include: a camera, a touch screen, a sensor, and the like. The input and output modules all communicate with the terminal device processor 201 through the terminal device interface 209 .
  • the memory 202 is coupled to the terminal device processor 201 for storing various software programs and/or sets of instructions.
  • memory 202 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid-state storage devices.
  • the memory 202 may store an operating system (hereinafter referred to as a system), such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 202 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, and one or more network devices.
  • the memory 202 can also store a terminal device interface program.
  • the terminal device interface program can vividly display the content of the application program through a graphical operation interface, and receive the terminal device's response to the application program through input controls such as menus, dialog boxes, and buttons. control operation.
  • the memory 202 may be used to store an implementation program on the terminal device 101 side of the signal transmission method provided by one or more embodiments of the present application.
  • the implementation of the signal transmission method provided by one or more embodiments of this application please refer to subsequent embodiments.
  • the terminal device processor 201 may be used to read and execute computer readable instructions. Specifically, the terminal device processor 201 may be configured to call a program stored in the memory 212, such as an implementation program on the terminal device 101 side of the signal transmission method provided by one or more embodiments of this application, and execute the instructions contained in the program .
  • the terminal device 101 may be a terminal device in the wireless communication system 100 shown in FIG. 1A .
  • the terminal device 101 shown in FIG. 2 is only an implementation manner of the embodiment of the present application. In practical applications, the terminal device 101 may further include more or less components, which is not limited here.
  • the TX UE of the SL when the TX UE of the SL sends data to the RX UE, the TX UE selects time-frequency resources for transmission from the pre-configured resource pool through resource awareness.
  • the embodiments of the present application provide two data transmission schemes based on SL based on interference measurement (hereinafter referred to as scheme 1 and scheme 2).
  • the proposed scheme can effectively prevent different sending terminals from selecting the same time-frequency resources and reduce the SL of receiving terminals. interference.
  • the proposed scheme 1 and scheme 2 are further introduced below.
  • the TX UE before sending SL data, the TX UE selects time-frequency resources for data transmission from a preconfigured resource pool through resource sensing and resource selection with the aim of reducing interference between different SLs.
  • the SL control information includes two parts, namely SCI 1 and SCI 2.
  • SCI 1 is transmitted through PSCCH, mainly carrying information related to PSSCH resource scheduling and decoding SCI 2;
  • SCI 2 is transmitted through PSSCH, mainly carrying relevant information of decoding data on PSSCH.
  • the TX UEi first sets a trigger time n, sets a perception window before time n, and sets a selection window after time n. In the perception window, TX UEi detects SCI 1 of other TX UEs on all subchannels.
  • TX UE i When TX UE i successfully decodes the SCI 1 of other TX UEs, TX UE i can obtain the reserved resource indication information of other TX UEs and the position of the demodulation reference signal (Demodulation Reference Signal, DMRS) on PSSCH or PSCCH, so that it can The reference signal received power (Reference Signals Received Power, RSRP) is measured according to the PSCCH DMRS or PSSCH DMRS of other TX UEs.
  • DMRS Demodulation Reference Signal
  • RSRP Reference Signals Received Power
  • the reserved resource indication information can be used to indicate the time-frequency resources and/or the transmission period for other TX UEs to perform SL communication, and TX UE i can determine the sub-channels occupied by other TX UEs in the above selection window according to the above reserved resource indication information . If a subchannel in the selection window is not occupied by other TX UEs, or is occupied by other TX UEs but the measured RSRP is less than the preset sensing threshold, the subchannel is used as a candidate resource for TX UE i in the above selection window. If the ratio of the candidate resources to the total resources in the selection window is less than 20%, the perception threshold is increased by 3dB, and the candidate resource selection is performed again. After the candidate resources are determined, the TX UE 1 randomly selects the candidate resources from the selection window for data transmission of the SL.
  • TX UE1 detects SCI 1 sent by TX UE 2 on sub-channel 1 in the perception window before time n, measures RSRP of TX UE 2 based on the SCI 1, and determines TX UE 2 2 Time-frequency resource 1 occupied in the selection window; TX UE1 detects SCI 1 sent by TX UE 3 in sub-channel 2 in the sensing window, and based on the SCI 1, the RSRP of TX UE 3 is measured, and it is determined that TX UE 3 is in Time-frequency resource 2 occupied in the selection window; TX UE1 detects SCI 1 sent by TX UE 4 in sub-channel 3 in the sensing window, and based on the SCI 1, the RSRP of TX UE 4 is measured, and it is determined that TX UE 4 is in the selection window.
  • the RSRP of TX UE 2 and TX UE 3 is greater than the preset sensing threshold
  • the RSRP of TX UE 4 is less than the preset sensing threshold. Therefore, TX UE1 takes time-frequency resource 3 and the time-frequency resources that are not occupied by other TX UEs in the selection window as candidate resources of TX UE1.
  • TX UE1 randomly selects time-frequency resources from candidate resources for data transmission.
  • the TX UE1 can select resources according to whether the interference measured in the resource sensing process exceeds a preset sensing threshold. If the interference from other TX UEs on a subchannel is less than the preset perception threshold, the TX UE1 and the TX UE can multiplex the subchannel, otherwise the subchannel cannot be multiplexed.
  • the TX UE when sending SL data, adopts a carrier sense multiple access (Carrier Sense Multiple Access, CSMA) mechanism, and determines the sending time of SL data by detecting the channel occupancy, so as to minimize the It is possible to avoid interference between different UEs.
  • Carrier Sense Multiple Access CSMA
  • the TX UEi Before the TX UEi sends data, it first judges the occupancy of the channel through carrier sensing, that is, the TX UEi detects the energy of the signal on the channel. If the energy of the signal is greater than the preset energy threshold, it is judged that the channel is already occupied, otherwise It is judged that the channel is not occupied. When the TX UE i judges that the channel is not occupied, it randomly selects a back-off time Ti, and counts down from Ti.
  • TX UE i Before the countdown ends, when TX UE i judges that the channel is occupied through carrier sense, the countdown is frozen; after the countdown is frozen, when TX UE i judges that the channel is not occupied through carrier sense, TX UE i continues from the frozen count value Countdown; when the countdown ends (that is, the countdown is reduced to 0), the TX UE i occupies the full bandwidth and starts to send SL data.
  • the TX UE 1 and the TX UE 2 shown in FIG. 4 are relatively close.
  • the TX UE 1 (or the TX UE 2) sends the SL data
  • the TX UE 2 (or the TX UE 1) judges that the channel is blocked by the carrier sense. occupied.
  • TX UE1 starts to occupy the full bandwidth to send data to RX UE1 at time t1, and ends data transmission at time t2; from time t1 to time t2 During the time, TX UE 2 judges that the channel is occupied by carrier sensing, and freezes the countdown T2; at time t2, TX UE 2 judges that the channel is not occupied by carrier sensing, and starts the frozen countdown T2; at time t3, TX UE 2 rolls back The countdown of time T2 ends, and TX UE 2 starts to occupy the full bandwidth at time t3 to send data to RX UE2.
  • the TX UE1 can determine whether the TX UE1 and other TX UEs can simultaneously occupy the full bandwidth to send data according to the interference from other TX UEs, and then according to whether the interference exceeds the preset energy threshold. If the interference from other TX UEs is less than the preset energy threshold, the full bandwidth can be used to send data at the same time; otherwise, the full bandwidth cannot be used to send data at the same time.
  • an embodiment of the present application further provides a data transmission method for SL.
  • the proposed method redesigns the SL distributed resource multiplexing method, aiming at maximizing the system capacity, and realizing distributed power control through CSI measurement and reporting, so as to realize the resource multiplexing of data channels among multiple SL transmission pairs, and improve the
  • the resource utilization rate of the distributed resource allocation method is improved, the spectral efficiency is effectively improved, and the system performance of near-centralized control is obtained.
  • the following takes the K-to-SL transmission pair shown in FIG. 5 as an example to specifically introduce the above-mentioned SL data transmission method.
  • the communication system 100 may include K pairs of SL transmission pairs, and the kth pair of SL transmission pairs in the above K pairs of SL transmission pairs includes TX UE k and RX UE k, and RX UE k is the SL of TX UE k Target receiver, TX UE k is the SL target transmitter of RX UE k.
  • K is a positive integer greater than 1
  • k is a positive integer greater than 0 and less than or equal to K.
  • the TX UE may transmit SL data on N subchannels in the SL preset resource pool. It can be understood that if the SL target link of TX UE k and the SL target link of TX UE j multiplex the same subchannel, an SL interference link will be formed between TX UE k and RX UE j, where j ⁇ k.
  • the system capacity of the n-th sub-channel of the k-th transmission pair in the above-mentioned K-to-SL transmission pair in the above-mentioned N sub-channels can be expressed as C k [n].
  • the resource allocation problem between the above K SL transmission pairs can be modeled as the following non-convex optimization problem:
  • p k [n] is the transmit power of the kth TXUE on the nth subchannel
  • P max is the maximum transmit power of each TX UE
  • C k [n] log 2 (1+SINR k [n])
  • SINR k [n] is the SINR of RX UE k on the nth subchannel
  • h kk [n] is the channel gain of the SL target link between TX UE k and RX UE k on the nth subchannel
  • h jk [n] is the channel gain between TX UEj and RX UE k on the nth subchannel is the channel gain of the SL interference link
  • ⁇ 2 is the noise power
  • k is a positive integer greater than 0 and less than or equal to K.
  • T is a preset threshold. In one implementation, T takes a value of 0.
  • approximate optimization methods include iterative water-filling (IWF) algorithm, gradient descent (GD) algorithm, weighted least mean square error (Weighted Minimum Mean Square Error, WMMSE) algorithm, etc.
  • IWF iterative water-filling
  • GD gradient descent
  • WMMSE weighted least mean square error
  • the WMMSE algorithm is a classic interference management algorithm. At least one local optimal solution to the above problem can be obtained through iterative optimization.
  • ISR kj [n] represents the interference received power RP kj [n] from TX UE k received by RX UE j on the nth subchannel and the signal received power RP jj [n] from the target transmitting end TX UE j ] ratio, that is
  • the information required by TX UE k to update the transmit power of the nth subchannel includes: 1) the SINRs of all RX UEs occupying the SL transmission pair of the nth subchannel above, namely SINR j [n], where, j is a positive integer greater than 0 and less than or equal to K; 2) ISR of TX UE k to RX UEs of other SL transmission pairs occupying the nth subchannel, that is, ISR kj [n], where j is greater than 0 and less than or equal to K is a positive integer, and j ⁇ k. It can be understood that the signal-to-interference ratio of TX UE k to RX UE k
  • the information required by TX UE k to update the transmit power of the nth subchannel includes: 1) SINRs of all RX UEs occupying the SL transmission pair of the nth subchannel, ie SINR j [n], j is a positive integer greater than 0 and less than or equal to K; 2) The signal RP received by all RX UEs of the SL transmission pair occupying the nth subchannel above through the target link, that is, RP jj [n], j is greater than 0 and less than or equal to K Positive integer; 3) The interference RP of TX UE k to other RX UEs occupying the nth sub-channel SL transmission pair, namely RP kj [n], where j is a positive integer greater than 0 and less than or equal to K, and j ⁇ k.
  • the TX UE can update the transmit power of the TX UE on each sub-channel in a distributed manner, thereby effectively improving the system capacity and the resource multiplexing rate.
  • the TX UE obtains the information required for power update through the CSI report of the RX UE.
  • the reporting content only includes CQI and RI, which cannot meet the information required for TX UE power update in the above-mentioned representations 1 and 2.
  • the solutions proposed in the embodiments of the present application can extend the existing CSI measurement report content, so as to realize the distributed power control of the TX UE according to the CSI report content of the RX UE, and obtain the performance of approximate centralized control.
  • the following takes the K-to-SL transmission pair shown in FIG. 5 as an example, and describes in detail in conjunction with the schematic flowchart of the SL data transmission method shown in FIG. 6 .
  • the data transmission method of the above SL includes, but is not limited to, steps S101 to S105 . in:
  • TX UE k sends the first CSI-RS to RX UE k on N subchannels of the SL preset resource pool, where k is a positive integer less than or equal to K.
  • the TX UE k sends the first CSI-RS to the RX UE k on the PSSCH of the above-mentioned N subchannels based on a predefined rule.
  • the above-mentioned predefined rule indicates the time-frequency resource position of the first CSI-RS.
  • the time-frequency resource positions of the CSI-RSs sent by different TX UEs may be different, and TX UE k carries the identity of TX UE k when sending the first CSI-RS on the above N subchannels (Identity, ID ).
  • the RX UE may determine the predefined rule of the TX UE according to the ID of the TX UE k, and then determine the time-frequency resource position of the first CSI-RS sent by the TX UE.
  • the TX UE k sends the first CSI-RS and the first indication information of the first CSI-RS on the above N subchannels, and the first indication information is used to indicate the time-frequency of the first CSI-RS Resource location.
  • the first indication information is an RRC high-layer signaling parameter, and the RRC high-layer signaling parameter is carried on the PSSCH of the above-mentioned N subchannels.
  • the first indication information is a preset field in the first SCI, and the first SCI may be SCI1 borne on PSCCH, or SCI 2 borne on PSSCH.
  • the first indication information is an RRC high-level signaling parameter, and before sending the first CSI-RS to RX UE k on the above N subchannels, TX UE k first sends the first CSI-RS of the first CSI-RS. an indication information, so that the RX UE of each SL transmission pair subsequently detects the first CSI-RS sent by the TX UE k according to the first indication information of the first CSI-RS.
  • TX UE k unicasts the above-mentioned first indication information to RX UE k on the above-mentioned N subchannels; in another implementation manner, TX UE k broadcasts the above-mentioned first indication information on the above-mentioned N sub-channels Instructions.
  • the generation of the CSI-RS sequence is represented as a random generated by the scrambling ID indicated by the Radio Resource Control layer (Radio Resource Control, RRC) at the position of a specific time slot and symbol sequence
  • the TX UE modulates the above-mentioned CSI-RS sequence into a QPSK signal, and then multiplies the above-mentioned QPSK signal with a power factor, a time-domain orthogonal code and a frequency-domain orthogonal code, and maps it to a specific port time-frequency resource position, Generate CSI-RS carried on PSSCH.
  • the above-mentioned predefined rule or the first indication information is used to indicate a CSI-RS pattern (pattern), and the CSI-RS pattern is used to indicate the time of the first CSI-RS sent by the TX UE within a time slot frequency resource location.
  • 1 RB consists of 12 subcarriers
  • 1 slot consists of 14 OFDM symbols.
  • a possible CSI-RS pattern is sent on the jth subcarrier of the ith OFDM symbol.
  • CSI-RS where 3 ⁇ i ⁇ 12, 0 ⁇ j ⁇ 11; for 2 antenna ports, a possible CSI-RS pattern is to transmit CSI-RS on the j ⁇ j+1th subcarrier of the ith OFDM symbol RS, where 3 ⁇ i ⁇ 12, j ⁇ 0,2,4,6,8,10 ⁇ .
  • all possible CSI-RS patterns are numbered based on the time-frequency resource positions of the CSI-RS. For example, for 1 antenna port, for different values of j and i, there are 120 possible CSI-RS patterns, which are numbered 0 to 119 respectively. Each number of the CSI-RS pattern corresponds to a value of j and i, and the RX UE can determine the values of j and i based on the above-mentioned predefined rule or the CSI-RS pattern indicated by the first indication information, that is, the TX UE sends the CSI-RS pattern.
  • the time-frequency resource location of the RS is numbered based on the time-frequency resource positions of the CSI-RS.
  • the TX UE k periodically sends the CSI-RS to the RX UE k, and the above-mentioned predefined rule and the first indication information are also used to indicate the transmission period of the CSI-RS.
  • TX UE k sends CSI-RS to RX UE k aperiodically, and TX UE k may indicate through the preset field of the first SCI that CSI-RS has been sent in this time slot, so as to facilitate sensing Interested RX UEs may receive this CSI-RS. For example, configure a CSI-RS trigger in the first SCI, if the CSI-RS trigger value is 1, it means that TX UE k has sent CSI-RS in this time slot, otherwise, it means that TX UE k has not sent CSI in this time slot -RS.
  • TX UE k also sends fourth indication information, and the fourth indication information is used to indicate the sub-channel occupied by TX UE k, and the sub-channel occupied by TX UE k may be the SL preset resource Non-consecutive subchannels in the pool.
  • the fourth indication information may be presented as a Mbit Bitmap.
  • the first CSI-RS is sent on all sub-channels in the SL preset resource pool, and the transmit power on all sub-channels is equal . Then, the TX UE k can update the transmit power of each sub-channel based on the CSI report content of the multiple RX UEs, determine the occupied sub-channel, and send the above-mentioned user data in the above-mentioned occupied sub-channel.
  • TX UE k when TX UE k sends user data to RX UE k for the first time, it sends the first CSI-RS and user data on all subchannels in the SL preset resource pool, and the The transmit power is equal. Then, the TX UE k can update the transmit power of each sub-channel based on the CSI report content of the multiple RX UEs, determine the occupied sub-channel, and send user data in the occupied sub-channel.
  • the first transmit power of each subchannel of TX UE k is equal to P max /N.
  • the TX UEk only transmits the CSI-RS for the first time, which can avoid increasing the interference to other SL transmission pairs.
  • the TX UEk sends the CSI-RS for the first time and then sends the user data, and sends new user data after the power update, which can improve the data transmission efficiency and reduce the power consumption, but increases the interference to other SL transmission pairs.
  • the SL preset resource pool includes M subchannels in total.
  • TX UE k before TX UE k sends the first CSI-RS, TX UE k selects N sub-channels from the above-mentioned M sub-channels based on the method of interference measurement, where M is a positive integer greater than or equal to N. Then, TX UE k transmits the first CSI-RS on the PSSCH of the above N subchannels.
  • the above interference measurement method may be the aforementioned scheme 1, and may also be other schemes, which are not specifically limited here.
  • M is equal to N.
  • RX UE j detects the CSI-RS sent by at least one TX UE on the subchannel occupied by the SL target link, and the above-mentioned at least one TX UE includes TX UE k, and j is a positive integer less than or equal to K.
  • RX UE j blindly detects the control channel on all subchannels of the SL preset resource pool, and obtains the information sent by the target sender TX UE j and the TX UE j of other SL transmission pairs on the control channel.
  • Control information indicates the sub-channel occupied by the SL transmission pair.
  • RX UE j determines the H sub-channels occupied by the SL target link (that is, the sub-channels occupied by the PSSCH corresponding to the SL target link) by decoding the control information sent by the target sender TX UE j, and decodes the TX of other SL transmission pairs.
  • the control information sent by the UE determines the subchannels occupied by other SL transmission pairs.
  • RX UE j detects the CSI-RS sent by at least one TX UE on the PSSCH channel resources in the H sub-channels occupied by the SL target link, and the above at least one TX UE includes TX UE k, and j is a positive integer less than or equal to K.
  • H is a positive integer less than or equal to M.
  • the above-mentioned N sub-channels include the above-mentioned H sub-channels; the TX UE (for example, TX UE k) and TX UE j in the above-mentioned at least one TX UE can multiplex one or more sub-channels; the above-mentioned at least one When the number of TX UEs in one TX UE is greater than or equal to 2, any two TX UEs in the above at least one TX UE may multiplex 0, 1 or more subchannels.
  • the RX UE j detects the CSI-RS sent by at least one TX UE on H1 subchannels among the H subchannels occupied by the SL target link, and the CSI-RS sent by the above at least one TX UE Including the first CSI-RS sent by TX UE k, H1 is a positive integer greater than or equal to 1.
  • the TX UE k sends the first CSI-RS based on a predefined rule.
  • RX UE j may detect the first CSI-RS sent by TX UE k on h sub-channels in the above-mentioned H1 sub-channels based on the time-frequency resource position of the first CSI-RS indicated by the predefined rule of TX UE k, h is a positive integer greater than or equal to 1 and less than or equal to H1.
  • the TX UE k sends the first CSI-RS and the first indication information.
  • the RX UE j may detect the first CSI-RS sent by the TX UE k in the data received on the h sub-channels in the above-mentioned H1 sub-channels based on the time-frequency resource position of the first CSI-RS indicated by the first indication information. RS.
  • the first indication information may be RRC high-layer signaling parameters, and the RRC high-layer signaling parameters are carried on PSSCH channel resources.
  • RX UE j can decode the RRC high-level signaling parameters sent by TX UE k on PSSCH based on the control information of TX UE k obtained by blind detection, and obtain the time-frequency resource position of the first CSI-RS sent by TX UE k; and then Based on the above time-frequency resource positions, RX UE j can detect the first CSI-RS sent by TX UE k on the above-mentioned H subchannels occupied by the SL target link.
  • the first indication information may be a preset field in the first SCI, and the first SCI may be SCI1 carried on the PSCCH.
  • the control information of TX UE k obtained by blind detection of RX UE j includes SCI 1, and the time-frequency resource position of the first CSI-RS sent by TX UE k can be obtained based on the preset field in SCI 1; and then based on the above-mentioned time-frequency resource position , RX UE j can detect the first CSI-RS sent by TX UE k on the PSSCH channel resources in the above H subchannels.
  • the first indication information may be a preset field in the first SCI, and the first SCI may be SCI 2 carried on the PSSCH.
  • the control information of TX UE k obtained by RX UE j blind detection includes SCI 1, and SCI 1 carries PSSCH resource scheduling related information and decoding SCI 2 information.
  • RX UE j decodes SCI 2 sent by TX UE k on PSSCH based on SCI 1; RX UE j can obtain the time-frequency resource position of the first CSI-RS sent by TX UE k based on the preset field in SCI 2; For the above time-frequency resource positions, RX UE j can detect the first CSI-RS sent by TX UE k on the PSSCH channel resources in the above H subchannels.
  • RX UE j determines the CSI of each subchannel occupied by the SL target link based on the CSI-RS sent by the at least one TX UE, and reports the CSI of each subchannel to the at least one TX UE.
  • the RX UE j determines the CSI of at least one sub-channel in the sub-channels occupied by the SL target link based on the CSI-RS sent by the at least one TX UE, and reports the CSI of the at least one sub-channel to the at least one TX UE.
  • CSI CSI.
  • the CSI reporting content in the distributed power control of the SL may include two content forms, that is, the following content form 1 and content form 2.
  • the CSI report content includes at least one of the following items: the CSI reported by RX UE j includes the SINR of the subchannel occupied by RX UE j on the SL target link, and the received interference from each SL on this subchannel The ISR of the interfering RP of the link and the signal RP from the SL target link.
  • the CSI report content includes at least one of the following items: the CSI reported by RX UE j includes the SINR of the sub-channel occupied by RX UE j on the SL target link, and the received interference from each SL on this sub-channel The interfering RP of the link, the received signal RP from the SL target link on this subchannel.
  • the RX UE j may map the measured SINR to CQI, and the CQI may reflect the SINR information of the UE. Therefore, the SINR in Representation Form 1 and Representation Form 2 of the aforementioned power update can be replaced by CQI, and the CSI reporting content of the distributed power control of SL can also include other two content forms, namely the following content form 3 and content form 4 .
  • the CSI report content includes at least one of the following items:
  • the CSI reported by RX UE j includes the CQI of the sub-channel occupied by RX UE j on the SL target link, and the received interference from each SL on this sub-channel The ISR of the interfering RP of the link and the signal RP from the SL target link.
  • the CSI report content includes at least one of the following items: the CSI reported by RX UE j includes the CQI of the subchannel occupied by RX UE j on the SL target link, and the received interference from each SL on this subchannel The interfering RP of the link, the received signal RP from the SL target link on this subchannel.
  • the RX UE j may perform subchannel-level CSI reporting by at least one of unicast, multicast, and broadcast.
  • the CSI reporting includes but is not limited to the following two implementations, and the two implementations are introduced separately below.
  • RX UE j detects CSI-RS sent by at least two TX UEs on H1 subchannels of H subchannels occupied by the SL target link, and the above at least two TX UEs A TX UE including TX UE j and A other SL transmission pairs, where A is a positive integer less than K.
  • Implementation mode 1 RX UE j reports the CSI of the H subchannels occupied by the SL target link of RX UE j to the above A TX UEs and TX UE j through unicast, multicast or broadcast.
  • the RX UE j may report the CSI of some subchannels in the H subchannels occupied by the SL target link.
  • the CSI information reported by the RX UE j may further include third indication information, where the third indication information is used to indicate a subchannel corresponding to the CSI reported by the RX UE j.
  • the SL preset resource pool includes M sub-channels in total
  • the third indication information is presented as an M-bit Bitmap, which is used to indicate the sub-channels corresponding to the CSI reported by the RX UE j in the above-mentioned M sub-channels .
  • setting the mth bit in the Bitmap to 1 indicates that the RX UE j reports the CSI of the mth subchannel among the above M subchannels.
  • the A TX UEs and the RX UE j form A SL interference links
  • the a-th interference link in the A SL interference links occupies F(a) sub-channels in the H sub-channels Channel
  • F(a) is a positive integer less than or equal to H
  • a is a positive integer less than or equal to A.
  • the CSI reported by RX UE j may include at least one of the following items: the SINR of RX UE j on the above-mentioned H1 subchannels, the above-mentioned A TXs received on the above-mentioned H1 subchannels The interference RP of the UE and the ISR of the signal RP of the received TX UE j.
  • the CSI reported by RX UE j may include at least one of the following items: the SINR of RX UE j on the above H1 subchannels, the SINR of the TX UE j received on the above H1 subchannels.
  • A is a positive integer less than or equal to K.
  • the SL target link and each of the above-mentioned A SL interference links (for example, TX UE k, j ⁇ k) multiplex at least one subchannel, and RX UE j receives at least one subchannel. Interference from TX UE k.
  • the CSI reporting content of RX UE j can refer to the CSI reporting content for content form 1 in implementation 1; for content form 4 in implementation 1, the CSI reporting content of RX UE j can refer to implementation The CSI reporting content of content form 2 in Mode 1 is not repeated here.
  • RX UE j performs differential reporting on SINR and ISR between subchannels. Specifically, RX UE j determines the maximum value of SINR in the SINR of the above-mentioned H1 subchannels, and RX UE j performs quantization and coding on the maximum value of SINR, and performs quantization and coding on the SINR difference between the SINR of other subchannels and the maximum value of SINR.
  • the RX UE j determines the maximum value of the ISR in the ISR corresponding to the above-mentioned H1 sub-channels, and the ISR corresponding to the above-mentioned H1 sub-channels includes: the interference RP of the above-mentioned A TX UEs received on the above-mentioned H1 sub-channels to the signal of TX UE j
  • the ISR of the RP, the RX UE j quantizes and encodes the maximum value of the ISR, and performs quantization and encoding on the ISR difference between other ISRs and the maximum value of the ISR.
  • the CSI report content includes a first part and a second part, and the first part includes the Bitmap of M bits, the quantization code of the maximum SINR value, and the SINR difference of each of the above-mentioned H1 subchannels occupied by the RX UE j.
  • the above-mentioned M bit Bitmap is used to indicate the subchannel corresponding to the SINR reported by the RX UE j.
  • the second part includes the ISRs corresponding to the above-mentioned A SL interference links in the above-mentioned H1 subchannels; specifically, the second part includes the quantization code of the maximum value of the ISR, the a-th SL interference link in the above-mentioned A SL interference links
  • the identification (ID), Bitmap a of the TX UE that is, the above-mentioned a-th TX UE), Bitmap a, and the above-mentioned a-th TX UE in the above-mentioned F (a) sub-channels
  • the corresponding ISR difference value of each sub-channel is quantized and encoded.
  • Bitmap a is used to indicate the F(a) sub-channels occupied by the a-th interfering link and reporting the ISR.
  • the SINR and ISR in the CSI report content are independently encoded respectively.
  • Bitmap a includes H1 bit information, and Bitmap a is used to indicate the F(a) sub-channels that the a-th interfering link in the above-mentioned H1 sub-channels occupies and reports the ISR.
  • Bitmap a includes Mbit information, and Bitmap a is used to indicate: among the M sub-channels in the SL preset resource pool, the a-th interference link occupies and reports the F(a) sub-channels of the ISR.
  • RX UE j performs differential reporting on SINR and RP between subchannels. Specifically, RX UE j determines the maximum value of SINR in the SINR of the above-mentioned H1 subchannels, and RX UE j performs quantization and coding on the maximum value of SINR, and performs quantization and coding on the SINR difference between the SINR of other subchannels and the maximum value of SINR.
  • RX UE j determines the maximum value of RP in the interference RP of the above A TX UEs received in the above-mentioned H1 subchannels and the received signal RP of TX UE j, RX UE j quantizes and encodes the maximum value of RP, and The RP difference between other RPs and the maximum value of RP is quantized and encoded.
  • the CSI report content includes the first part and the third part, and the third part includes the quantization code of the maximum RP value and the quantization code of the RP difference value corresponding to the signal RP of the TX UE j received in the above-mentioned H1 subchannels , the identity (ID), Bitmap a of the TX UE (that is, the above-mentioned a-th TX UE) of the a-th SL-interference link in the above-mentioned A SL interference links, the above-mentioned A TXs received in the above-mentioned H1 sub-channels Quantization coding of the RP difference corresponding to the UE's interference RP.
  • Bitmap a is used to indicate that the a-th interfering link occupies and reports the F(a) sub-channels of the RP.
  • FIG. 7A For the first part, reference may be made to the related description of FIG. 7A , which will not be repeated here.
  • FIG. 7B the SINR and RP in the CSI report content are independently encoded respectively.
  • 7-bit quantization is used for the maximum value (such as the SINR maximum value and the ISP maximum value), and 7-bit quantization is used for the difference value (such as the SINR difference value and the ISP difference value). 4bit quantization.
  • FIG. 7C is a data format of CSI reporting in content form 3 provided by an embodiment of the present application. As shown in FIG.
  • the CSI reporting content includes a fourth part and a second part, and the fourth part includes Bitmap, CQI
  • the quantization coding of the maximum value, the quantization coding of the CQI difference values of the H1 subchannels occupied by the SL target link of RX UE j, and the above Bitmap is used to indicate the H1 subchannels for which RX UE j performs CQI reporting.
  • FIG. 7A For the second part, reference may be made to the related description of FIG. 7A , which will not be repeated here.
  • FIG. 7D is a data format of CSI reporting in content form 4 provided by an embodiment of the present application.
  • the CSI reporting content includes a fourth part and a third part.
  • the fourth part please refer to FIG. 7C .
  • the third part can refer to the relevant description of FIG. 7B , which will not be repeated here.
  • the power update needs to obtain the channel gain of the interfering link h kj [n], where j ⁇ k.
  • TX UE k can obtain the channel gain of the SL interference link between TX UE k and RX UE j according to the interference RP from TX UE k reported by RX UE j.
  • the channel gain of the interfering link changes very little within the coherence time, and the RX UE j only needs to report the interfering RP received through the SL interfering link once.
  • Implementation mode 2 The RX UE j reports the relevant CSI of the sub-channels occupied by the TX UE in the above-mentioned H1 sub-channels to the above-mentioned A TX UEs and TX UE j respectively through a unicast method.
  • the CSI unicast reported by RX UE j to TX UE j may include the SINR of H1 subchannels occupied by the SL target link of RX UE j;
  • the CSI reported by the a-th TX UE unicast may include at least one of the following items: the SINR of the F(a) sub-channels occupied by the a-th interfering link in the above-mentioned H1 sub-channels, in the above-mentioned F(a)
  • the ISR of the interference RP of the above-mentioned a-th TX UE received on the sub-channels to the received signal RP of TX UE j.
  • the CSI unicast reported by RX UE j to TX UE j may include at least one of the following items: SINR of RX UE j in the above H1 subchannels, RX UE j in the above H1 subchannels
  • the signal RP of the TX UE j received by the channel; the CSI unicast reported by the RX UE j to the a-th TX UE may include at least one of the following: SINR of the RX UE j in the above-mentioned F(a) sub-channels , the signal RP of the TX UE j received in the above-mentioned F(a) sub-channels, and the interference RP of the above-mentioned a-th TX UE received in the above-mentioned F(a) sub-channels.
  • the CSI reporting content of RX UE j can refer to the CSI reporting content for content form 1 in implementation 2, and for content form 4 in implementation 2, the CSI reporting content of RX UE j can refer to the implementation.
  • the CSI reporting content of content form 2 in mode 2 will not be repeated here.
  • RX UE j performs differential reporting on SINR and ISR between subchannels. Specifically, RX UE j determines the maximum value of SINR in the SINR of the above-mentioned H1 subchannels, and RX UE j performs quantization and coding on the maximum value of SINR, and performs quantization and coding on the SINR difference between the SINR of other subchannels and the maximum value of SINR.
  • RX UE j determines the ISR maximum value in the ISR corresponding to the above-mentioned F(a) sub-channels, and the ISR corresponding to the above-mentioned F(a) sub-channels includes: the above-mentioned a-th TX received on the above-mentioned F(a) sub-channels
  • the interference RP of the UE performs quantization coding on the ISR of the signal RP of the TX UE j, and the RX UE j quantizes and encodes the maximum ISR value, and quantizes and encodes the ISR difference between the other ISRs and the ISR maximum value.
  • FIG. 7E shows a data format for unicast reporting of CSI by RX UE j to TX UE j.
  • FIG. 7E shows a data format for unicast reporting of CSI by RX UE j to TX UE j.
  • FIG. 7F shows a data format in which RX UE j reports CSI unicast to the a-th TX UE.
  • the CSI report content includes the fifth part and the sixth part
  • the fifth part includes the Bitmap, the quantization code of the maximum SINR value, the quantization code of the F(a) subchannels occupied by the RX UE j in the a-th TX UE mentioned above.
  • the above Bitmap is used to indicate the F(a) sub-channels on which the a-th interference link reports CSI.
  • the sixth part includes the quantization coding of the maximum ISR value and the quantization coding of the ISR difference values corresponding to the above-mentioned a-th TX UE in the above-mentioned F(a) sub-channels.
  • RX UE j performs differential reporting on SINR and RP between subchannels. Specifically, for the differential quantization coding of SINR, reference may be made to the foregoing embodiments, and details are not described herein again.
  • RX UE j determines the maximum value of RP in the interference RP of the above-mentioned a-th TX UE received in the above-mentioned H1 subchannels and the received signal RP of TX UE j, and RX UE j quantizes and encodes the maximum value of RP, and Quantize and encode the RP difference between other RPs and the RP maximum value.
  • FIG. 7G shows a data format for unicast reporting of CSI by RX UE j to TX UE j.
  • Figure 7G shows a data format for unicast reporting of CSI by RX UE j to the a-th TX UE.
  • the CSI reporting content includes the first part and the seventh part, and the first part can be referred to as shown in Figure 7A
  • the related descriptions of the first part of the first part, and the seventh part includes the quantization coding of the RP maximum value and the quantization coding of the RP difference value corresponding to the signal RP of the TX UE j received in the H1 subchannels.
  • Figure 7H shows a data format in which RX UE j reports CSI unicast to the a-th TX UE.
  • the CSI reporting content includes a fifth part and an eighth part, and the fifth part can refer to Figure 7F
  • the eighth part includes the quantization coding of the RP maximum value, and the RP difference value corresponding to the interference RP of the a-th TX UE received in the F(a) sub-channels.
  • the CSI reported by the RX UE j may also include other information, such as RI, PTI or PMI. At least one is not specifically limited here.
  • the data sent by RX UE j to TX UE K also includes the identity of TX UE K.
  • the RX UE j reports the CSI of the sub-channel to the above at least one TX UE through multicast the data sent by the RX UE j to the above at least one TX UE also includes the identity of the above at least one TX UE.
  • the CSI report content sent by the RX UE j is carried in a media access control layer control element (Media Access Control Element, MAC CE).
  • a media access control layer control element Media Access Control Element, MAC CE
  • FIG. 8A is a schematic diagram of a user plane protocol architecture of a 5G NR provided by an embodiment of the present application.
  • the user plane protocol architecture of 5G NR includes a user data adaptation protocol (service data adaptation protocol, SDAP) layer, a packet data convergence protocol (packet data convergence protocol, PDCP) layer, a radio link control (radio link control) layer.
  • SDAP provides QoS flow for 5G core network
  • PDCP provides radio bearer for SDAP
  • RLC provides RLC channel for PDCP
  • MAC provides logical channel for RLC
  • PHY provides transport channel for MAC.
  • the RX UE j can carry the CSI report content in a media access control layer control element (Media Access Control Element, MAC CE); the MAC sub-protocol is obtained by adding a MAC subheader (subheader) to the MAC CE.
  • MAC CE Media Access Control Control Element
  • FIG. 8B is a schematic structural diagram of a MAC PDU provided by an embodiment of the present application.
  • RX UE j reports CSI to the above at least one TX UE and sends second indication information, where the second indication information is used to indicate that RX UE j reports CSI.
  • the second indication information is a preset field in the second SCI sent by RX UE j, and when the preset field is set to a preset value, the second indication information is used to indicate that RX UE j reports CSI.
  • the second indication information is a 1-bit trigger preset in the SCI, and the trigger is set to 1, indicating that RX UE j has reported CSI; the trigger is set to 0, indicating that RX UE j has not reported CSI.
  • the TX UE After the TX UE receives the data sent by RX UE j, it determines whether RX UE j has reported CSI based on the preset field in the second SCI sent by RX UE j; if it is determined that RX UE j has reported CSI, TX UE j The UE can detect the data sent by RX UE j to obtain the CSI reported by RX UE j.
  • the second indication information is a service ID configured by the MAC layer.
  • the service ID configured by the MAC layer includes the service ID reported by the CSI, it indicates that the RX UE j reports the CSI.
  • the TX UE decodes the service ID configured by the MAC layer. If the service ID configured by the MAC layer matches the service ID reported by the CSI, the TX UE determines that the RX UE j has reported the service ID.
  • CSI TX UE detects the data sent by RX UE j, and obtains the CSI reported by RX UE j.
  • the service ID reported by the CSI is destination Layer-2 ID.
  • the RX UE may indicate the CSI reporting through the second indication information, so as to facilitate the TX UE interested in the CSI reporting to receive the CSI reporting content.
  • the CSI-RS sent by the TX UE may include three types: periodic sending, semi-persistent sending, and aperiodic sending
  • the CSI-RS reported by the RX UE may include periodic reporting, semi-persistent sending
  • CSI-RS when CSI is configured for periodic reporting, CSI-RS can only be configured for periodic transmission; when CSI is configured for semi-persistent reporting, CSI-RS can be configured for periodic or semi-persistent transmission; CSI is configured for aperiodic transmission When reporting, the CSI-RS can be configured to be sent periodically, semi-persistently or aperiodically.
  • TX UE k updates the transmit power of the above N subchannels based on the CSI reported by RX UE j.
  • the TX UE k updates the transmit power of the above N subchannels based on the CSI reporting information of multiple RX UEs j. Specifically, how to update the transmit power of the above N subchannels based on the CSI reported by each RX UE can refer to the aforementioned performance.
  • the power update expression shown in Form 1 or Form 2 will not be repeated here.
  • the RX UE j may only receive the CSI-RS sent by the TX UE of the partial SL transmission pairs in the above K SL transmission pairs; the TX UE k may only receive the partial SL transmission pairs in the above K SL transmission pairs.
  • the CSI reported by the RX UE, and the transmit power of each subchannel is updated according to the CSI reported by the RX UE of the above-mentioned partial SL transmission pair.
  • the TX UE k may set the value of the CSI information not obtained in the power update expression of the foregoing expression 1 or expression 2 as 0.
  • the above-mentioned TX UE k has not received the SINR of the n-th subchannel fed back by RX UE j, and when TX UE k uses the power update expression of the above expression 1 to update the power, it can be The value is 0.
  • TX UE k selects a sub-channel whose power is greater than a preset threshold to send user data.
  • TX UE k selects sub-channels with power greater than a preset threshold to transmit user data and the second CSI-RS.
  • the fourth indication information indicates the sub-channel occupied by TX UE k.
  • the sub-channels occupied by TX UE k may be continuous or discontinuous in the frequency domain.
  • the above-mentioned preset threshold is equal to 0.
  • steps S103 to S105 may continue to be performed. That is, the RX UE can report the CSI again based on the CSI-RS sent by the TX UE; then the TX UE can update the transmit power of each sub-channel again based on the CSI reported by multiple RX UEs, thereby further optimizing the transmit power of each sub-channel. Effectively increase the system capacity.
  • the communication system 100 includes 3 SL transmission pairs, and the SL preset resource pool includes 8 sub-channels (ie, sub-channel 0 to sub-channel N) shown in FIG. 9B ;
  • TX UE1 is passing through At least one sub-channel in the above-mentioned 8 sub-channels transmits user data to RX UE1, and
  • TX UE2 is transmitting user data to RX UE2 through at least one sub-channel in the above-mentioned 8 sub-channels; each RX UE can be based on the received CSI-RS.
  • Determine the CSI and report the CSI through at least one of unicast, multicast, or broadcast.
  • TX UE3 transmits CSI-RS1 with equal power on the above-mentioned 8 subchannels when initially sending data; RX UE1 and RX UE3 that are closer to TX UE3 in space can detect the CSI-RS sent by TX UE3 1.
  • RX UE2 which is far away from TX UE3 in space, does not detect CSI-RS 1 sent by TX UE3; RX UE1 and RX UE3 perform sub-channel-level CSI reporting based on CSI-RS 1 sent by TX UE3, and TX UE3 can detect CSI reported by RX UE1 and RX UE3; TX UE3 performs the first power update on the transmit power of the above 8 subchannels based on the CSI reported by RX UE1 and RX UE3, wherein the subchannel 2 and subchannel in the above 8 subchannels The transmit power of channel 5 is updated to 0.
  • the TX UE 3 selects the updated sub-channels whose transmit power is greater than 0 (ie, sub-channel 0, sub-channel 1, sub-channel 3, sub-channel 4, sub-channel 6 and sub-channel 7) to transmit user data and CSI-RS 2, RX UE 1 and/or RX UE3 then perform sub-channel-level CSI reporting based on the detected CSI-RS 2; TX UE 3 performs a second time on the transmit power of each sub-channel according to the CSI reported by RX UE 1 and/or RX UE3 The power is updated, and sub-channels with transmit power greater than 0 (ie, sub-channel 0, sub-channel 4, sub-channel 6, and sub-channel 7) are selected to transmit data and CSI-RS 3, and so on.
  • the system capacity tends to the optimal value, and the sub-channel occupied by TX UE k no longer changes.
  • the subchannels occupied by the TX UE 3 are the same.
  • TX UE k after TX UE k performs iterative update of transmit power for each subchannel for Imax times, it stops the iterative update, and transmits data based on the transmit power of the Imax-th iterative update.
  • Imax may represent the preset maximum power iterative update times.
  • the TX UE k stops the iterative update, based on the ith iteration The updated transmit power transmits data.
  • RX UE1 and RX UE3 that are spatially closer to TX UE3 can detect CSI-RS 1 sent by TX UE3, while RX UE2 that is spatially farther from TX UE3 does not detect CSI-RS 1 sent by TX UE3. It should be noted that whether the RX UE can detect the CSI-RS 1 sent by the TX UE 3 is not only affected by the spatial distance, but also affected by many other factors (such as whether there is an obstruction between the RX UE and the TX UE 3).
  • the foregoing examples are merely illustrative in terms of spatial distance, and are not absolute, and the foregoing examples do not limit the embodiments of the present application.
  • the time-frequency resources in the preset resource pool can be scheduled in sub-channel units, and the RX UE can perform resource scheduling for each sub-channel through the RX UE.
  • CSI reporting implements distributed power control on sub-channels in the preset resource pool, and selects sub-channels with power greater than 0 for SL communication.
  • the time-frequency resources in the preset resource pool can also be scheduled by subbands as a unit, and the subband-level CSI reporting is performed by the RX UE to realize the distribution of the subbands in the preset resource pool. type power control, and select subbands with power greater than 0 for SL communication.
  • Figure 10 compares the system capacity performance under different resource multiplexing mechanisms, where the TX UEs are evenly distributed within the range of 100m*100m, and the RX UEs are within the range of 2m to 20m of the corresponding TX UEs. evenly distributed within.
  • TDMA Time Division Multiple Access
  • CSMA the TX UE judges the interference strength by detecting the channel energy before sending data, If the interference strength is lower than the preset energy threshold (set to -76dBm in the simulation), the TX UE can transmit simultaneously with other TX UEs, otherwise the TX UE and other TX UEs are controlled to transmit in different time slots
  • WMMSE that is, the scheme of the present invention is based on the WMMSE model, and proposes a resource multiplexing mechanism through distributed power control.
  • the abscissa represents the number of transmission pairs, and the ordinate represents the average achievable rate of each transmission pair.
  • Table 2 presents the performance gains of the inventive scheme relative to the CSMA mechanism. It can be seen from the simulation results in FIG. 10 and Table 2 that the solution of the present invention can significantly improve the system capacity compared with the other three resource multiplexing mechanisms. Similar to the CSMA mechanism, the spontaneous resource selection mechanism based on resource awareness in the aforementioned scheme 1 is also resource multiplexing based on interference measurement, which has the same problem as the CSMA mechanism and cannot achieve the optimal system capacity.
  • the proposed SL data transmission scheme is a distributed resource multiplexing mechanism aiming at maximizing system capacity, and realizes distributed power control through the CSI measurement reporting of RX UE, which effectively improves the efficiency of multiple SL transmissions.
  • Resource multiplexing and spectral efficiency between the two systems achieve near-centralized control of system capacity performance.
  • the first transmitting end may be the TX UE k in the foregoing embodiment
  • the first receiving end may be the RX UE j in the foregoing embodiment
  • the first CSI may be the RX UE j in the optional embodiment of step S103 CSI of each subchannel reported by UE j.
  • the present application further provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer is made to execute the method in the above-mentioned embodiment.
  • the various embodiments in this application can also be combined with each other.
  • the present application further provides a computer-readable medium, where program codes are stored in the computer-readable medium, and when the program codes are run on a computer, the computer is made to execute the methods in the foregoing embodiments. .
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种侧行链路的数据传输方法及相关装置,包括:第一发送终端在N个频域单元上发送第一信道状态信息参考信号CSI-RS,N为正整数;第一发送终端检测到K个接收终端发送的信道状态信息CSI,上述K个接收终端发送的CSI是基于第一CSI-RS确定的,K为正整数;第一发送终端基于上述K个接收终端发送的CSI更新第一发送终端在上述N个频域单元的发送功率;上述N个频域单元中的F个频域单元更新后的功率大于预设阈值时,第一发送终端在F个频域单元中的至少一个频域单元上发送用户数据,F为小于等于N的正整数。本申请实施例能够通过分布式功率控制提高资源利用率,有效提高系统性能。

Description

一种侧行链路的数据传输方法及相关装置
本申请要求于2020年11月10日提交中国专利局、申请号为202011247043.1、申请名称为“一种资源复用和CSI测量上报方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。本申请要求于2020年12月29日提交中国专利局、申请号为202011603242.1、申请名称为“一种侧行链路的数据传输方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及一种侧行链路的数据传输方法及相关装置。
背景技术
侧行链路(Sidelink,SL)通信支持用户设备(User Equipment,UE)之间的直接通信,包括设备到设备(device todevice,D2D)通信、车联网(Vehicle-to-Everything、V2X)通信等。SL中有两种资源分配模式:一种是网络控制模式,即SL通信资源由基站调度;另一种是分布式模式,即UE从预配置的SL资源池中自发选择SL通信资源。在SL分布式资源分配方式中,当发送端UE(Transmitting UE,TX UE)需要向接收端UE(Receiving UE,RX UE)发送数据时,需通过资源感知(Resource Sensing)从资源池中选择用于传输的时频资源,目的是尽可能避免不同TX UE选择相同的时频资源。
目前,TX UE在资源感知的过程中,可以测量与其他TX UE之间的干扰,选择未被其他TX UE占用、或被其他TX UE占用但干扰小于阈值的资源进行传输。然而,仅基于干扰强度的资源选择准则并不能保证RX UE的成功解码,以及实现最优的系统性能。
发明内容
本申请实施例提供了一种侧行链路的数据传输方法及相关装置,能够通过分布式功率控制提高资源利用率,有效提高系统性能。
第一方面,本申请提供了一种侧行链路的数据传输方法,包括:第一发送终端在N个频域单元上发送第一信道状态信息参考(channel stateinformation-reference signal,CSI-RS),N为正整数;第一发送终端检测到K个接收终端发送的信道状态信息参考(channel stateinformation,CSI),上述K个接收终端发送的CSI是基于第一CSI-RS确定的,K大于等于2;第一发送终端基于上述K个接收终端发送的CSI中的全部或部分更新第一发送终端在上述N个频域单元的发送功率;第一发送终端基于更新后的上述N个频域单元的发送功率发送用户数据。
实施第一方面所描述的方法,第一发送终端基于K个接收终端测量上报的CSI,通过分布式功率控制更新各频域单元的发送功率,从而实现多个侧行链路传输对之间数据信道的资源复用,提高了分布式资源分配方式的资源利用率,并有效提高了频谱效率。
结合第一方面的一种可能的实现方式中,上述频域单元可以是子信道或子带。
结合第一方面的一种可能的实现方式中,上述第一发送终端基于更新后的上述N个频域单元的发送功率发送用户数据,包括:上述N个频域单元中的F个频域单元更新后的功率大于预设阈值时,第一发送终端在上述F个频域单元中的至少一个频域单元上发送用户数据,F 为小于等于N的正整数。
结合第一方面的一种可能的实现方式中,上述第一发送终端在N个频域单元上发送第一信道状态信息参考信号CSI-RS,包括:第一发送终端在上述N个频域单元上发送第一指示信息和第一CSI-RS,其中,第一指示信息指示第一CSI-RS的时频资源位置。
结合第一方面的一种可能的实现方式中,上述第一发送终端在N个频域单元上发送第一信道状态信息参考信号CSI-RS,包括:第一发送终端基于预定义规则在上述N个频域单元上发送第一CSI-RS,其中,上述预定义规则指示第一CSI-RS的时频资源位置。
结合第一方面的一种可能的实现方式中,第一指示信息为第一侧行链路控制信息(sidelink controlinformation,SCI)中的预设字段。
结合第一方面的一种可能的实现方式中,第一发送终端在上述N个频域单元上广播发送第一指示信息。
结合第一方面的一种可能的实现方式中,上述第一指示信息为无线资源控制RRC高层信令参数。
结合第一方面的一种可能的实现方式中,第一CSI-RS为周期发送,第一指示信息还指示第一CSI-RS的发送周期。
结合第一方面的一种可能的实现方式中,第一CSI-RS为周期发送,预定义规则还指示第一CSI-RS的发送周期。
结合第一方面的一种可能的实现方式中,上述第一发送终端检测到K个接收终端发送的CSI,包括:第一发送终端检测到上述K个接收终端中的第j个接收端发送的第二指示信息,第二指示信息用于指示上述第j个接收端上报了CSI,j为小于等于K的正整数;第一发送终端基于第二指示信息,从接收到的上述第j个接收端发送的数据中检测出第一CSI。
结合第一方面的一种可能的实现方式中,第二指示信息为上述第j个接收端发送的第二SCI中的预设字段;或者,第二指示信息为媒体接入控制(media access control,MAC)层配置的CSI上报的业务标识(Identity,ID)。
结合第一方面的一种可能的实现方式中,第二指示信息为destination Layer-2 ID。
结合第一方面的一种可能的实现方式中,第一CSI包括第三指示信息,第三指示信息用于指示上述第j个接收端上报的第一CSI对应的频域单元。
结合第一方面的一种可能的实现方式中,上述第一发送终端在上述F个频域单元中的至少一个频域单元上发送用户数据,包括:第一发送终端在上述F个频域单元中的至少一个频域单元上发送第一用户数据和第四指示信息;第四指示信息用于指示第一发送终端发送用户数据的上述至少一个频域单元;当上述至少一个频域单元的频域单元数量大于1时,上述至少一个频域单元中的任意两个频域单元在频域上是连续的或者非连续的。
结合第一方面的一种可能的实现方式中,第一接收终端通过单播、组播和广播方式中的至少一种方式上报第一频域单元的第一CSI。
结合第一方面的一种可能的实现方式中,上述K个接收终端发送的CSI包括上述K个接收终端中的第j个接收端发送的第一CSI;第一CSI包括以下多项中的至少一项:上述第j个接收终端在上述第j个接收终端的目标链路占用的频域单元中的H1个频域单元的信干噪比(signal to interference plus noise ratio,SINR),在上述H1个频域单元中的h个频域单元上述接收到的第一发送终端的干扰接收功率(received power,RP)与目标发送终端的信号RP的干信比(interference to signal ratio,ISR);H1大于等于1,h大于等于1小于等于H1。
结合第一方面的一种可能的实现方式中,上述K个接收终端发送的CSI包括上述K个接收终端中的第j个接收端发送的第一CSI;第一CSI包括以下多项中的至少一项:上述第j个接收终端在上述第j个接收终端的目标链路占用的频域单元中的H1个频域单元的信道质量信息(channel quality indicator,CQI),在上述H1个频域单元中的h个频域单元接收到的第一发送终端的干扰RP与目标发送终端的信号RP的ISR;H1大于等于1,h大于等于1小于等于H1。
结合第一方面的一种可能的实现方式中,上述K个接收终端发送的CSI包括上述K个接收终端中的第j个接收端发送的第一CSI;上述第一CSI包括以下多项中的至少一项:上述第j个接收终端在上述第j个接收终端的目标链路占用的频域单元中的H1个频域单元的SINR,在上述H1个频域单元中的h个频域单元接收到的第一发送终端的干扰RP,在上述H1个频域单元接收到的目标发送终端的信号RP;H1大于等于1,h大于等于1小于等于H1。
结合第一方面的一种可能的实现方式中,上述K个接收终端发送的CSI包括上述K个接收终端中的第j个接收端发送的第一CSI;第一CSI包括以下多项中的至少一项:上述第j个接收终端在上述第j个接收终端的目标链路占用的频域单元中的H1个频域单元的CQI,在上述H1个频域单元中h个频域单元接收到的第一发送终端的干扰RP,在上述H1个频域单元接收到的目标发送终端的信号RP;H1大于等于1,h大于等于1小于等于H1。
结合第一方面的一种可能的实现方式中,上述K个接收终端中的第j个接收终端为K个发送终端中第j个发送终端的SL的目标接收终端,第一发送终端为上述K个发送终端中的第k个发送终端,k和j为小于等于K的正整数,n为小于等于N的正整数;上述第k个发送终端在上述第n个频域单元上更新后的发送功率与上述K个接收终端上报的CSI的关系可以表示如下,
Figure PCTCN2021129750-appb-000001
其中,
Figure PCTCN2021129750-appb-000002
表示上述第k个发送终端的上述第n个频域单元的更新后的发送功率,
Figure PCTCN2021129750-appb-000003
表示上述第k个发送终端的上述第n个频域单元的更新前的发送功率,
Figure PCTCN2021129750-appb-000004
表示上述第j个接收终端在上述第n个频域单元的SINR,
Figure PCTCN2021129750-appb-000005
表示在上述第n个频域单元上接收到的上述第k个发送终端的干扰RP与上述第j个发送终端的信号RP的干信比ISR;
Figure PCTCN2021129750-appb-000006
为使上述第k个发送终端在上述N个频域单元上的发送功率满足
Figure PCTCN2021129750-appb-000007
的优化参数,P max为上述第k个发送终端的最大发送功率,
Figure PCTCN2021129750-appb-000008
结合第一方面的一种可能的实现方式中,上述K个接收终端中的第j个接收终端为K个发送终端中第j个发送终端的SL的目标接收终端,第一发送终端为上述K个发送终端中的第k个发送终端,k和j为小于等于K的正整数,n为小于等于N的正整数;上述第k个发送终端在上述第n个频域单元上更新后的发送功率与上述K个接收终端上报的CSI的关系可以表示如下,
Figure PCTCN2021129750-appb-000009
其中,
Figure PCTCN2021129750-appb-000010
表示上述第k个发送终端在上述第n个频域单元的更新后的发送功率,
Figure PCTCN2021129750-appb-000011
表示上述第k个发送终端在上述第n个频域单元的更新前的发送功率,
Figure PCTCN2021129750-appb-000012
表示上述第j个接收终端在上述第n个频域单元的SINR;
Figure PCTCN2021129750-appb-000013
表示上述第j个接收终端在上述第n个频域单元接收到的上述第k个发送终端所发送的干扰RP,j≠k;上述
Figure PCTCN2021129750-appb-000014
表示在上述第n个频域单元接收到的上述第j个发送终端的信号RP;
Figure PCTCN2021129750-appb-000015
为使上述第k个发送终端在上述N个频域单元上的发送功率满足
Figure PCTCN2021129750-appb-000016
的优化参数,P max为上述k个发送终端的最大发送功率,
Figure PCTCN2021129750-appb-000017
结合第一方面的一种可能的实现方式中,上述第一发送终端在N个频域单元上发送第一信道状态信息参考信号CSI-RS之前,上述方法还包括:第一发送终端检测SL预设资源池中的M个频域单元中每个频域单元的信号能量,确定上述M个频域单元中信号能量小于预设值的上述N个频域单元,其中,M为大于等于N的正整数。
结合第一方面的一种可能的实现方式中,上述第一发送终端在N个频域单元上发送第一信道状态信息参考信号CSI-RS,包括:第一发送终端在上述N个频域单元中的每个频域单元上等功率发送第一CSI-RS。
结合第一方面的一种可能的实现方式中,上述第一发送终端在N个频域单元上发送第一信道状态信息参考信号CSI-RS,包括:第一发送终端在上述N个频域单元中的每个频域单元上等功率发送第一CSI-RS和用户数据。
第二方面,本申请提供了一种侧行链路的数据传输方法,包括:第一接收终端在目标链路占用的频域单元中的H1个频域单元上检测到L个发送终端发送的信道状态信息参考信号CSI-RS,L大于等于2,H1大于等于1;第一接收终端基于上述L个发送终端发送的CSI-RS,发送上述H1个频域单元的第一CSI,第一CSI用于上述L个发送终端更新上述H1个频域单元的发送功率。
本申请实施例中,实施第二方面所描述的方法,第一接收终端基于至少两个发送终端发送的CSI-RS测量各频域单元的CSI并进行子信道级的(或子带级的)CSI上报,以便于各发送终端基于第一接收终端上报的CSI更新各频域单元的发送功率,从而实现多个侧行链路传输对之间数据信道的资源复用,提高了分布式资源分配方式的资源利用率,并有效提高了频谱效率。
结合第一方面的一种可能的实现方式中,上述频域单元可以是子信道或子带。
结合第二方面的一种可能的实现方式中,上述L个发送终端发送的信道状态信息参考信号CSI-RS包括第一发送终端发送的第一CSI-RS,上述第一接收终端在目标链路占用的频域单元中的H1个频域单元上检测到L个发送终端发送的信道状态信息参考信号CSI-RS,包括:第一接收终端检测到第一发送终端发送的第一指示信息,其中,第一H1个频域单元中的h个频域单元上检测到第一CSI-RS,h大于等于1且小于等于H1。
结合第二方面的一种可能的实现方式中,上述L个发送终端发送的信道状态信息参考信号CSI-RS包括第一发送终端发送的第一CSI-RS,上述第一接收终端目标链路占用的频域单元中的H1个频域单元上检测到L个发送终端发送的信道状态信息参考信号CSI-RS,包括:第一接收终端基于预定义规则在上述H1个频域单元中的h个频域单元上检测到第一发送终端发送的第一CSI-RS;其中,上述预定义规则指示第一发送终端发送的CSI-RS的时频资源位置。
结合第二方面的一种可能的实现方式中,第一指示信息为第一侧行链路控制信息SCI中 的预设字段。
结合第二方面的一种可能的实现方式中,上述第一指示信息为无线资源控制RRC高层信令参数。
结合第二方面的一种可能的实现方式中,所述第一CSI-RS为周期发送,所述第一指示信息还指示所述第一CSI-RS的发送周期。
结合第二方面的一种可能的实现方式中,所述第一CSI-RS为周期发送,所述预定义规则还指示所述第一CSI-RS的发送周期。
结合第二方面的一种可能的实现方式中,上述发送上述H1个频域单元的第一CSI,包括:第一接收终端发送第二指示信息和上述H1个频域单元的第一CSI,所述第二指示信息用于指示所述第一接收终端上报了CSI。
结合第二方面的一种可能的实现方式中,所述第二指示信息为所述第一接收终端发送的第二SCI中的预设字段;或者,所述第二指示信息为接入控制层MAC层配置的CSI上报的业务ID。
结合第二方面的一种可能的实现方式中,所述第二指示信息为destination Layer-2 ID。
结合第二方面的一种可能的实现方式中,所述第一CSI包括以下多项中的至少一项:所述第一接收终端在上述H1个频域单元的信干噪比SINR,在上述h个频域单元接收到的所述第一发送终端的干扰接收功率RP与目标发送终端的信号RP的干信比ISR。
结合第二方面的一种可能的实现方式中,所述第一CSI包括以下多项中的至少一项:所述第一接收终端在上述H1个频域单元的信道质量信息CQI,在上述h个频域单元接收到的所述第一发送终端的干扰RP与目标发送终端的信号RP的ISR。
结合第二方面的一种可能的实现方式中,所述第一CSI包括以下多项中的至少一项:所述第一接收终端在上述H1个频域单元的SINR,在上述h个频域单元接收到的所述第一发送终端的干扰RP,在上述H1个频域单元接收到的目标发送终端的信号RP。
结合第二方面的一种可能的实现方式中,所述第一CSI包括以下多项中的至少一项:所述第一接收终端在上述H1个频域单元的CQI,在上述至少一个频域单元接收到的所述第一发送终端的干扰RP,在上述H1个频域单元接收到的目标发送终端的信号RP。
第三方面,本申请提供了一种电子设备,包括一个或多个处理器和一个或多个存储器。该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得电子设备执行上述第一方面或第二方面中任一种可能的实现方式。
第四方面,本申请实施例提供了一种计算机存储介质,包括计算机指令,当计算机指令在电子设备上运行时,使得电子设备执行上述第一方面或第二方面中任一种可能的实现方式。
第五方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第二方面中任一种可能的实现方式。
附图说明
图1A为本申请实施例提供的一种通信系统的结构示意图;
图1B和图1C为本申请实施例提供的SL的信道结构示意图;
图2为本申请实施例提供的一种电子设备的结构示意图;
图3为本申请实施例提供的一种基于干扰测量的SL的数据传输方案的示意图;
图4为本申请实施例提供的另一种基于干扰测量的SL的数据传输方案的示意图;
图5为本申请实施例提供的K对SL传输对示意图;
图6为本申请实施例提供的一种SL的数据传输方法流程示意图;
图7A为本申请实施例提供的一种内容形式1的CSI的数据结构示意图;
图7B为本申请实施例提供的一种内容形式2的CSI的数据结构示意图;
图7C为本申请实施例提供的一种内容形式3的CSI的数据结构示意图;
图7D为本申请实施例提供的一种内容形式4的CSI的数据结构示意图;
图7E和图7F为本申请实施例提供的一种内容形式1的CSI的数据结构示意图;
图7G和图7H为本申请实施例提供的一种内容形式2的CSI的数据结构示意图;
图8A为本申请实施例提供的一种用户面的协议架构的示意图;
图8B为本申请实施例提供的一种一种MAC PDU的结构示意图;
图9A为本申请实施例提供的3对SL传输对的示意图;
图9B为本申请实施例提供的一种功率更新的示意图;
图10为本申请实施例提供的多种资源复用机制的性能对比图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面对本申请实施例中涉及的概念进行介绍。
子载波:OFDM技术通过子载波间的正交性来对抗多径干扰。LTE协议规定,常规循环前缀(cyclic prefix,CP)情况下,一个时隙(slot)有7个OFDM符号;扩展CP情况下,一个slot有6个OFDM符号。5G新空口(New radio,NR)协议规定,常规CP情况下,一个时隙(slot)有14个OFDM符号;扩展CP情况下,一个slot有12个OFDM符号。5G NR支持多种子载波间隔(例如15KHZ、30KHZ、60KHZ等),子载波间隔不同,时隙长度不同。
资源块(resource block,RB):RB为业务信道资源分配的资源单位,在频域上占用12个连续的子载波。
子信道(subchannel):一个子信道包含若干个在频域上连续的RB,子信道的大小可以由网络设备配置或预定义。子带(subband):物理层反馈信道信息的频域粒度单位。系统带宽可以划分为若干个子带,比如基于系统带宽的不同,子带的大小可能是4个、6个或8个等RB。本申请实施例中,子信道和子带也可以被称为频域单元。
CSI信道状态信息(Channel State Information,CSI)是用来估计一条通信链路特性的信息,而估计CSI的过程便叫做信道估计。CSI包括但不限于预编码矩阵指示(precodingmatrix indicator,PMI)、秩指示(rank indicator,RI)、信道状态信息参考信号(channel stateinformation-reference signal,CSI-RS)、资源指示(CSI-RS resource indicator,CRI)、预编码类型指示(precoding type indicator,PTI)和信道质量信息(Channel Quality Indicator,CQI) 中的一或多个,其所占的时频资源是由网络设备来控制。
其中,CQI用于衡量信道质量,是资源调度和调制编码方案(modulation and coding scheme,MCS)选择的有效参数。CQI不仅和接收的SINR有关系,还和UE的调制解调器(modem)本身的接收灵敏度有关系。在一种实现方式中,UE利用SINR找到最接近目标误块率(block error rate,BLER)的MCS等级;通过查找CQI映射表可以确定上述MCS等级对应的CQI值。例如,上述目标BLER可以是10%。
全带宽的CSI上报:接收终端针对目标链路占据的全带宽的综合CSI进行CSI上报。例如,上述综合CSI是目标链路占据的所有子信道(子带)的CSI的平均值。
子信道级(或子带级)的CSI上报:接收终端针对目标链路占据的每个子信道(子带)的CSI进行CSI上报。
位图(Bitmap):用一个比特(bit)位来标记某个元素对应的值(Value)。示例性的,预设资源池中包括8个子信道,本申请实施例UE可以通过8bit的Bitmap指示目标链路占用的子信道,若目标链路占用上述8个子信道中的第i个子信道时,则上述8bit的Bitmap中的第i bit的值设为1,否则上述第i bit的值设为0。
差分上报:在一种差分上报方式中,UE确定待上报的F个数值中的最大值(或最小值),UE对该最大值(或最小值)进行量化编码,并对上述F个数值与该最大值(或最小值)的差值进行量化编码,得到F个数值的差分上报的量化编码信息以及上述最大值(或最小值)的量化编码信息。可以理解,量化编码信息对应的差值为0的数值即为上述F个数值中的最大值(或最小值)。
需要说明的,若待上报的F个数值中的最大值和最小值差值较大,对上述F个数值直接进行上报,所需要的编码比特数会较大,而通过差分上报可以降低上报开销。不限于上述差分上报方式,本申请实施例中还可以采用其他差分上报方式进行SINR、CQI、ISR或RP上报,且对差分上报的量化编码的步长不做具体限定。
下面介绍本申请实施例涉及的通信系统。
图1A为本申请实施例提供的一种通信系统示意图,该通信系统100可以包括终端设备101、终端设备102、终端设备103和终端设备104。
其中,终端设备101和终端设备102间可以通过SL1传输数据,终端设备103和终端设备104可以通过SL2传输数据,即用户数据直接在终端设备之间传输,避免了蜂窝通信中用户数据经过网络设备中转传输。当SL1和SL2采用相同的通信资源进行通信时,SL1和SL2间存在SL干扰,上述SL干扰会降低SL的通信质量。本申请实施例中,SL可以为D2D链路,例如手机到手机的通信链路或手机到可穿戴设备的通信链路;在车联网中,SL还可以为车辆对车辆(vechile-to-vechile,V2V)的通信链路、车到人(Vehicle to Pedestrian,V2P)的通信链路、车辆到基础设施(vechile-to-infrastructure,V2I)链路或车到任意设备之间(vechile-to-X,V2X)的通信链路。
本申请实施例中,通信系统100中还可以包括至少一个网络设备105(仅示出1个),网络设备105可以为网络设备105对应的小区覆盖范围提供通信覆盖,即可以通过一个或多个天线和小区覆盖范围内的终端设备进行无线通信。例如,终端设备101在网络设备105对应的小区覆盖范围内,终端设备101可以通过下行链路(Downlink,DL)接收网络设备105发送的数据,也可以通过上行链路(Uplink,UL)向网络设备105发送数据。
在一些实施例中,终端设备101、终端设备102、终端设备103和终端设备104在同一网 络设备(例如网络设备105)的小区覆盖范围内;或者,终端设备101、终端设备102、终端设备103和终端设备104中至少两个终端设备在不同网络设备的小区覆盖范围内;或者,终端设备101、终端设备102、终端设备103和终端设备104均不在网络设备的小区覆盖范围内(即不在蜂窝网络的覆盖范围内),此处均不作具体限定。
SL通信有两种资源分配模式:一种是网络控制模式,即SL通信资源由网络设备(例如基站)调度;另一种是分布式模式,即终端设备从预配置的SL资源池中自发选择SL通信资源。对于在蜂窝覆盖范围内(In-coverage)的终端设备,可以采取网络控制模式和/或分布式模式;对于在蜂窝覆盖范围外(Out-of-coverage)的终端设备,仅能采取分布式模式。可以理解,终端设备102和终端设备104采用相同的通信资源进行SL通信时,终端设备102会对终端设备104造成SL干扰。
需要说明的是,SL包括物理侧行控制信道(physical sidelink control channel,PSCCH)、物理侧行共享信道(physical sidelink shared channel,PSSCH)。PSSCH用于承载SL通信的用户数据。PSCCH用于承载SL的控制信息,该物理信道指示了PSSCH信道资源以及传输参数。其中,SL的控制信息可以包括SCI。
示例性的,图1B是本申请实施例提供的一种SL的信道结构示意图。如图1B所示,该SL在频域上占用N个子信道(即子信道0至子信道N-1),在时域上一个时隙(shot)内占用14个OFDM符号(即符号0至符号13)。其中,该SL的PSCCH占用子信道0,SL的PSSCH占用的子信道即上述N个子信道。在图1B所示的时隙中,PSCCH信道资源包括子信道0在符号3和符号4对应的时频资源;PSSCH信道资源包括子信道0至子信道N-1在符号5至符号10对应的时频资源。可以理解,TX UE的SL目标链路占用上述N个子信道,TX UE可以在上述N个子信道上承载SL通信的用户数据,在图示的子信道0承载SL的控制信息。需要说明的是,一个时隙中也可以不包括PSCCH信道资源;子信道1至子信道N-1在符号3至符号4对应的时频资源也可以是PSSCH的信道资源,此处不做具体限定。本申请实施例中,SL占用的子信道可以是非连续的。示例性的,如图1C所示,SL在频域上占用N个子信道中的部分子信道,且占用的任意两个子信道在频域上可是连续,也可以是非连续的。如图1B和图1C所示,本申请实施例中SL占用的子信道即SL的PSSCH占用的子信道。
此外,SL通信包括三种通信方式,即SL单播、SL组播和SL广播。SL单播是指一个终端设备向另一个终端设备传输信息;SL组播是指一个终端设备向多个终端设备传输信息;SL广播是指一个终端设备向其覆盖范围内所有终端设备传输信息。
本申请实施例提供的通信系统100中,一个终端设备可以基于其他终端设备反馈的CSI确定该终端设备在各子信道的发送功率。其中,CSI可以包括SINR、信道质量指示CQI、ISR或RP。
本申请实施例涉及的网络设备可以包括各种形式的网络设备,例如:宏基站,微基站(也称为小站),中继站,接入点等。其中,基站可以是时分同步码分多址(Time Division Synchronous Code Division Multiple Access,TD-SCDMA)系统中的基站收发台(Base Transceiver Station,BTS),也可以是长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB),以及5G系统、新空口(New Radio,NR)系统中的gNB。另外,基站也可以为收发点(Transmission Receive Point,TRP)、中心单元(Central Unit,CU)或其他网络实体。
本申请实施例涉及的终端设备可以是手机(mobile phone)、平板电脑(Pad)、便携电脑、 带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、终端(terminal)、接入终端、UE单元、UE站、移动设备、移动站、移动台(mobile station)、移动终端、移动客户端、移动单元(mobile unit)、远方站、远程终端设备、远程单元、无线单元、无线通信设备、用户代理或用户装置等。
应理解,图1A中仅为通信系统的示例性说明,不应对本申请构成任何限定。通信系统100还可以包括更多或更少的终端设备和网络设备,这里不作限制。本申请实施例中,网络设备和终端设备也可以被称为通信设备。
为便于描述,本文中可以将终端设备简称为UE,发送端终端设备简称为发送终端或TX UE,接收端终端设备简称为接收终端或RX UE。
下面以终端设备101为例,对本申请实施例涉及的终端设备进行介绍。如图2所示,终端设备101可包括:一个或多个终端设备处理器201、存储器202、通信接口203、接收器205、发射器206、耦合器207、天线208、终端设备接口202,以及输入输出模块(包括音频输入输出模块210、按键输入模块211以及显示器212等)。这些部件可通过总线204或者其他方式连接,图2以通过总线连接为例。其中:
通信接口203可用于终端设备101与其他通信设备,例如网络设备,进行通信。具体的,网络设备可以是图1A所示的网络设备105。具体的,通信接口203可以是长期演进(LTE)(4G)通信接口,也可以是5G或者未来新空口的通信接口。不限于无线通信接口,终端设备101还可以配置有有线的通信接口203,例如局域接入网(Local Access Network,LAN)接口。
发射器206可用于对终端设备处理器201输出的信号进行发射处理,例如通过波束成形实现定向发送。接收器205可用于对天线208接收的移动通信信号进行接收处理,例如通过波束成形实现定向接收。在本申请的一些实施例中,发射器305/接收器306可以包括波束成形控制器,用于对发送信号/接收信号乘以权重向量W1,……,Wm,控制信号的定向发射/接收。本申请实施例中提及的基站波束切换可以通过发射器305/接收器306中的波束成形控制器改变发送信号/接收信号乘以权重向量来实现。
在本申请的一些实施例中,发射器206和接收器205可看作一个无线调制解调器。在终端设备101中,发射器206和接收器205的数量均可以是一个或者多个。天线208可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器207用于将天线208接收到的移动通信信号分成多路,分配给多个接收器205。
除了图2所示的发射器206和接收器205,终端设备101还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端设备101还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端设备101还可以配置有有线网络接口(如LAN接口)来支持有线通信。
输入输出模块可用于实现终端设备101和终端设备/外部环境之间的交互,可主要包括音 频输入输出模块210、按键输入模块211以及显示器212等。具体的,输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,输入输出模块均通过终端设备接口209与终端设备处理器201进行通信。
存储器202与终端设备处理器201耦合,用于存储各种软件程序和/或多组指令。具体的,存储器202可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器202可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器202还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器202还可以存储终端设备接口程序,该终端设备接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收终端设备对应用程序的控制操作。
在本申请的一些实施例中,存储器202可用于存储本申请的一个或多个实施例提供的信号传输方法在终端设备101侧的实现程序。关于本申请的一个或多个实施例提供的信号传输方法的实现,请参考后续实施例。
终端设备处理器201可用于读取和执行计算机可读指令。具体的,终端设备处理器201可用于调用存储于存储器212中的程序,例如本申请的一个或多个实施例提供的信号传输方法在终端设备101侧的实现程序,并执行该程序包含的指令。
可以理解的,终端设备101可以是图1A示出的无线通信系统100中的终端设备。
需要说明的,图2所示的终端设备101仅仅是本申请实施例的一种实现方式,实际应用中,终端设备101还可以包括更多或更少的部件,这里不作限制。
下面结合附图对本申请实施例提供的SL的数据传输方法进行详细介绍。
在分布式资源分配方式中,当SL的TX UE向RX UE发送数据时,TX UE通过资源感知从预配置的资源池中选择用于传输的时频资源。本申请实施例提供了两种基于干扰测量的SL的数据传输方案(下文中,简称方案1和方案2),所提方案能够有效避免不同发送终端选择相同的时频资源,减少接收终端的SL干扰。下面对所提方案1和方案2做进一步介绍。
方案1
本申请实施例提供的方案1中,TX UE在发送SL数据前,以减少不同SL间干扰为出发点,通过资源感知和资源选择从预配置的资源池中选择用于数据传输的时频资源。
需要说明的是,为了便于资源感知,本申请实施例中,SL控制信息(Sidelink Control Information,SCI)包含两部分,即SCI 1和SCI 2。其中SCI 1通过PSCCH传输,主要携带PSSCH资源调度相关信息以及解码SCI 2的信息;SCI 2通过PSSCH传输,主要携带解码PSSCH上的数据的相关信息。
具体的,如图3所示,方案1中TX UEi首先设置一个触发时刻n,在时刻n之前设置一个感知窗口,在时刻n之后设置一个选择窗口。在感知窗口中,TX UEi在所有子信道上检测其他TX UE的SCI 1。当TX UE i成功解码其他TX UE的SCI 1时,TX UE i可以获得其他TX UE的预留资源指示信息,以及PSSCH或PSCCH上解调参考信号(Demodulation Reference Signal,DMRS)的位置,从而可以根据其他TX UE的PSCCH DMRS或PSSCH DMRS测量参考信号接收功率(Reference Signals Received Power,RSRP)。其中,预留资源指示信息可以用于指示其他TX UE进行SL通信的时频资源和/或发送周期,TX UE i可以根据上述预留资源指示信息确定上述选择窗内其他TX UE占用的子信道。若选择窗中某个子信道未被其他 TX UE占用,或者被其他TX UE占用但测得的RSRP小于预设感知阈值,则将该子信道作为TX UE i在上述选择窗中的候选资源。若候选资源与选择窗中总资源之比小于20%,则将感知阈值增加3dB,重新进行候选资源选择。候选资源确定之后,TX UE 1从选择窗中随机选择候选资源用于SL的数据传输。
示例性的,如图3所示,TX UE1在时刻n之前的感知窗内的子信道1检测到TX UE 2发送的SCI 1,基于该SCI 1测得TX UE 2的RSRP,并确定TX UE 2在选择窗内占用的时频资源1;TX UE1在感知窗内的子信道2检测到TX UE 3发送的SCI 1,基于该SCI 1测得TX UE 3的RSRP,并确定TX UE 3在选择窗内占用的时频资源2;TX UE1在感知窗内的子信道3检测到TX UE 4发送的SCI 1,基于该SCI 1测得TX UE 4的RSRP,并确定TX UE 4在选择窗内占用的时频资源3。其中,TX UE 2和TX UE 3的RSRP大于预设感知阈值,TX UE 4的RSRP小于预设感知阈值。因此,TX UE1将时频资源3和选择窗内未被其他TX UE占用的时频资源作为TX UE 1的候选资源。TX UE1从候选资源中随机选择时频资源进行数据传输。
可以理解,方案1中TX UE1可以根据资源感知过程中测得的干扰是否超过预设感知阈值进行资源选择。若一个子信道上来自其他TX UE的干扰小于预设感知阈值,则TX UE1和该TX UE可以复用该子信道,否则不能复用该子信道。
方案2
本申请实施例提供的方案2中,TX UE在发送SL数据时,采用载波监听多址接入(Carrier Sense Multiple Access,CSMA)机制,通过检测信道占用情况来确定SL数据的发送时刻,以尽可能避免不同UE之间的干扰。
具体的,TX UEi在发送数据前,首先通过载波监听判断信道的占用情况,即TX UEi检测信道上信号的能量大小,若信号的能量大于预设能量阈值,则判断该信道已经被占用,否则判断该信道未被占用。当TX UE i判断信道未被占用时,随机选择一个回退时间Ti,并从Ti开始倒计时。倒计时结束前,当TX UE i通过载波监听判断该信道被占用,则冻结倒计时;冻结倒计时后,当TX UE i通过载波监听判断该信道未被占用时,TX UE i从冻结的计数值开始继续倒计时;当倒计时结束(即倒计时减小至0)时,TX UE i占用全带宽开始发送SL数据。
示例性的,图4所示的TX UE 1与TX UE 2相距较近,当TX UE 1(或TX UE 2)发送SL数据时,TX UE 2(或TX UE 1)通过载波监听判断信道被占用。如图4所示,在t1时刻,TX UE 1的回退时间T1倒计时结束时,TX UE 1在t1时刻开始占用全带宽向RX UE1发送数据,在t2时刻结束数据发送;在t1时刻至t2时刻内,TX UE 2通过载波监听判断信道被占用,冻结倒计时T2;在t2时刻,TX UE 2通过载波监听判断信道未被占用,启动冻结的倒计时T2;在t3时刻,TX UE 2的回退时间T2倒计时结束,TX UE 2在t3时刻开始占用全带宽向RX UE2发送数据。
可以理解,方案2中TX UE1可以根据测得来自其他TX UE的干扰,进而根据该干扰是否超过预设能量阈值,来判断TX UE1是否可以和其他TX UE同时占用全带宽发送数据。若来自其他TX UE的干扰小于预设能量阈值,则可以同时占用全带宽发送数据,否则不能同时占用全带宽发送数据。
然而,能否成功解码目标发送端发送的数据,依赖于目标链路的信干噪比(Signal to Interference plus Noise Ratio,SINR),而不仅仅是TX UE之间的干扰强度。因此,基于TX UE 干扰测量的资源复用准则,对于实现最优性能既不是充分的也不是必要的。
为了实现最优性能,本申请实施例还提供了一种SL的数据传输方法。所提方法对SL分布式资源复用方式进行重新设计,以最大化系统容量为目标,通过CSI测量上报实现分布式功控,从而实现多个SL传输对之间数据信道的资源复用,提高了分布式资源分配方式的资源利用率,并有效提高频谱效率,获得了近集中式控制的系统性能。
下面以图5所示的K对SL传输对为例,对上述SL的数据传输方法进行具体介绍。
如图5所示,上述通信系统100可以包括K对SL传输对,上述K对SL传输对中的第k对SL传输对包括TX UE k和RX UE k,RX UE k是TX UE k的SL目标接收端,TX UE k是RX UE k的SL目标发送端。K为大于1的正整数,k为大于0小于等于K的正整数。
其中,TX UE可以在SL预设资源池中的N个子信道上传输SL数据。可以理解,若TX UE k的SL目标链路和TX UE j的SL目标链路复用相同的子信道,TX UE k和RX UE j间会形成SL干扰链路,其中,j≠k。上述K对SL传输对中的第k对传输对在上述N个子信道中的第n个子信道的系统容量可以表示为C k[n]。
首先,本申请实施例中,以最大化上述K对SL传输对的系统容量为目标,可以将上述K个SL传输对之间的资源分配问题建模为如下非凸优化问题:
Figure PCTCN2021129750-appb-000018
Figure PCTCN2021129750-appb-000019
其中,p k[n]是第k个TXUE在上述第n个子信道上的发射功率,p k[n]≥0,P max是每个TX UE的最大发射功率;C k[n]=log 2(1+SINR k[n]),SINR k[n]是RX UE k在上述第n个子信道上的SINR;
Figure PCTCN2021129750-appb-000020
h kk[n]是在第n个子信道上TX UE k与RX UE k之间的SL目标链路的信道增益,h jk[n]是在第n个子信道上TX UEj与RX UE k之间的SL干扰链路的信道增益,σ 2是噪声功率,k为大于0小于等于K的正整数。
通过求解上述优化问题,可以获得每个TX UE在各个子信道上的发射功率。若p k[n]>T,则TX UE k可以占据第n个子信道发送数据,若p k[n]≤T,则TX UE k不占据第n个子信道,由此可以实现多个SL传输对的资源复用。其中,T为预设阈值。在一种实现方式中,T取值为0。
然而,上述优化问题是非凸优化问题,难以获得全局最优解。为了简化对上述优化问题的求解,可以采用近似优化方法,常用的近似优化方法包括迭代注水(Iterative Water-Filling,IWF)算法、梯度下降(Gradient Descent,GD)算法、加权最小均方误差(Weighted Minimum Mean Square Error,WMMSE)算法等。
其中,WMMSE算法是一种经典的干扰管理算法,通过迭代优化可至少获得上述问题的一个局部最优解,其本质思想是利用最小均方误差(Minimum Mean Square Error,MMSE)与SINR的等式关系,即MMSE k[n]=1/(1+SINR k[n]),将上述优化问题转化为如下等价优化问题:
Figure PCTCN2021129750-appb-000021
Figure PCTCN2021129750-appb-000022
其中,
Figure PCTCN2021129750-appb-000023
在上述等价优化问题中,可通过交替优化的方式对{p k[n]}、{u k[n]}、{c k[n]}三组变量进行迭代优化。具体而言,第t+1次迭代中,第k个TX UE在第n个子信道上的功率更新可表示如下:
Figure PCTCN2021129750-appb-000024
Figure PCTCN2021129750-appb-000025
Figure PCTCN2021129750-appb-000026
其中,
Figure PCTCN2021129750-appb-000027
为使得
Figure PCTCN2021129750-appb-000028
成立的参数。可选的,
Figure PCTCN2021129750-appb-000029
可通过二分法进行求解。
在本申请的一些实施例中,可将上述迭代更新过程简化成如下表示形式1:
Figure PCTCN2021129750-appb-000030
其中,ISR kj[n]表示在上述第n个子信道上RX UE j接收到的来自TX UE k的干扰接收功率RP kj[n]与来自目标发送端TX UE j的信号接收功率RP jj[n]的比值,即
Figure PCTCN2021129750-appb-000031
基于表示形式1,TX UE k更新第n个子信道的发射功率所需要的信息包括:1)所有占用上述第n个子信道的SL传输对的RX UE的SINR,即SINR j[n],其中,j为大于0小于等于K的正整数;2)TX UE k对占用上述第n个子信道的其他SL传输对的RX UE的ISR,即ISR kj[n],其中,j为大于0小于等于K的正整数,且j≠k。可以理解,TX UE k对RX UE k的干信比
Figure PCTCN2021129750-appb-000032
在本申请的一些实施例中,可将上述迭代更新过程简化成如下表示形式2:
Figure PCTCN2021129750-appb-000033
其中,
Figure PCTCN2021129750-appb-000034
基于表示形式2,TX UE k更新上述第n个子信道的发射功率所需要的信息包括:1)所有 占用上述第n个子信道的SL传输对的RX UE的SINR,即SINR j[n],j为大于0小于等于K的正整数;2)所有占用上述第n个子信道的SL传输对的RX UE通过目标链路接收的信号RP,即RP jj[n],j为大于0小于等于K的正整数;3)TX UE k对其他占用上述第n个子信道的SL传输对的RX UE的干扰RP,即RP kj[n],其中,j为大于0小于等于K的正整数,且j≠k。
基于上述的模型优化可知,本申请实施例中,TX UE可以通过分布式的方式更新TX UE在各子信道上的发送功率,有效提高系统容量和资源复用率。
为了以分布式的方式进行功率更新,一种可能的实现方式是TX UE通过RX UE的CSI上报,获得功率更新所需要的信息。然而,现有SL通信中仅支持全带宽的CSI上报,且上报内容仅包含CQI和RI,无法满足上述表示形式1和表示形式2中TX UE功率更新所需要的信息。本申请实施例所提方案,可以对现有的CSI测量上报内容进行扩展,以实现TX UE根据RX UE的CSI上报内容进行分布式功控,获得近似集中式控制的性能。具体的,下面以图5所示的K对SL传输对为例,结合图6所示的SL的数据传输方法的流程示意图进行详细介绍。
如图6所示,上述SL的数据传输方法包括但不限于步骤S101至步骤S105。其中:
S101、TX UE k在SL预设资源池的N个子信道上向RX UE k发送第一CSI-RS,k为小于等于K的正整数。
在本申请的一些实施例中,TX UE k基于预定义规则在上述N个子信道的PSSCH向RX UE k发送第一CSI-RS。其中,上述预定义规则指示了第一CSI-RS的时频资源位置。
在一种实现方式中,不同TX UE发送的CSI-RS的时频资源位置可以不同,TX UE k在上述N个子信道上发送第一CSI-RS时携带TX UE k的身份标识(Identity,ID)。RX UE可以根据TX UE k的ID确定该TX UE的预定义规则,进而确定该TX UE发送的第一CSI-RS的时频资源位置。
在本申请的一些实施例中,TX UE k在上述N个子信道发送第一CSI-RS和第一CSI-RS的第一指示信息,第一指示信息用于指示第一CSI-RS的时频资源位置。
在一种实现方式中,第一指示信息为RRC高层信令参数,RRC高层信令参数承载在上述N个子信道的PSSCH上。在一种实现方式中,第一指示信息为第一SCI中的预设字段,第一SCI可以是承载在PSCCH上的SCI1,也可以是承载在PSSCH上的SCI 2。
在本申请的一些实施例中,第一指示信息为RRC高层信令参数,TX UE k在上述N个子信道上向RX UE k发送第一CSI-RS前,先发送第一CSI-RS的第一指示信息,以便于各SL传输对的RX UE后续根据第一CSI-RS的第一指示信息检测TX UE k发送的第一CSI-RS。在一种实现方式中,TX UE k在上述N个子信道上向RX UE k单播上述第一指示信息;在另一种实现方式中,TX UE k在上述N个子信道上广播发送上述第一指示信息。
需要说明的是,在一种实现方式中,CSI-RS序列的生成表现为由无线资源控制层(Radio Resource Control,RRC)指示的加扰ID在具体的时隙和符号的位置上生成的随机序列,TX UE将上述CSI-RS序列调制为QPSK信号,再将上述QPSK信号与功率因子、时域正交码和频域正交码相乘后,映射到具体的端口时频资源位置上,生成承载在PSSCH的CSI-RS。
在一种实现方式中,上述预定义规则或第一指示信息用于指示CSI-RS模式(pattern),CSI-RS pattern用于指示TX UE发送的第一CSI-RS在一个时隙内的时频资源位置。
示例性的,1个RB由12个子载波构成,1个时隙由14个OFDM符号构成,对于1天 线端口,一个可能的CSI-RS模式是在第i个OFDM符号的第j个子载波上发送CSI-RS,其中,3≤i≤12,0≤j≤11;对于2天线端口,一个可能的CSI-RS模式是在第i个OFDM符号的第j~j+1个子载波上发送CSI-RS,其中,3≤i≤12,j∈{0,2,4,6,8,10}。
在本申请的一些实施例中,基于CSI-RS的时频资源位置对所有可能的CSI-RS模式进行编号。例如,对于1天线端口,针对不同的j和i的取值,存在120中可能的CSI-RS模式,被分别编号为0至119。CSI-RS模式的每种编号对应一种j和i取值,RX UE可以基于上述预定义规则或第一指示信息指示的CSI-RS模式确定j和i的取值,即TX UE发送CSI-RS的时频资源位置。
在本申请的一些实施例中,TX UE k周期性地向RX UE k发送CSI-RS,上述预定义规则和第一指示信息还用于指示CSI-RS的发送周期。
在本申请的一些实施例中,TX UE k非周期性地向RX UE k发送CSI-RS,TX UE k可以通过第一SCI的预设字段指示本时隙发送了CSI-RS,以便于感兴趣的RX UE可以接收该CSI-RS。例如,在第一SCI配置一个CSI-RS trigger,若CSI-RS trigger值为1,则表明TX UE k在本时隙发送了CSI-RS,否则,表明TX UE k在本时隙未发送CSI-RS。
在本申请的一些实施例中,步骤S101中TX UE k还发送第四指示信息,第四指示信息用于指示TX UE k占用的子信道,TX UE k占用的子信道可以是SL预设资源池中非连续的子信道。示例性的,第四指示信息可以展现为一个Mbit Bitmap。
在本申请的一些实施例中,TX UE k首次向RX UE k发送用户数据前,在SL预设资源池中的所有子信道上发送第一CSI-RS,且所有子信道上的发送功率相等。然后,TX UE k可以基于多个RX UE的CSI上报内容更新各子信道的发送功率,确定占用的子信道,并在上述占用的子信道中发送上述用户数据。
在本申请的一些实施例中,TX UE k首次向RX UE k发送用户数据时,在SL预设资源池中的所有子信道上发送第一CSI-RS和用户数据,且所有子信道上的发送功率相等。然后,TX UE k可以基于多个RX UE的CSI上报内容更新各子信道的发送功率,确定占用的子信道,并在上述占用的子信道中发送用户数据。
可选的,TX UE k每个子信道的首次发送功率等于P max/N。
可以理解,一些实施例中,TX UEk首次仅发送CSI-RS,可以避免增加对其他SL传输对的干扰。另一些实施例中,TX UEk首次发送CSI-RS又发送用户数据,并在功率更新后发送新的用户数据,可以提高数据传输效率,降低功耗,但增加了对其他SL传输对的干扰。
本申请实施例中,SL预设资源池总共包括M个子信道。在一些实施例中,TX UE k发送第一CSI-RS之前,TX UE k基于干扰测量的方法从上述M个子信道中选择N个子信道,其中,M为大于等于N的正整数。然后,TX UE k在上述N个子信道的PSSCH上发送第一CSI-RS。上述干扰测量的方法可以是前述方案1,还可以是其他方案,此处不做具体限定。在本申请的一些实施例中,M等于N。
S102、RX UE j在SL目标链路占用的子信道上检测到至少一个TX UE发送的CSI-RS,上述至少一个TX UE包括TX UE k,j为小于等于K的正整数。
具体的,在本申请的一些实施例中,RX UE j在SL预设资源池的所有子信道盲检控制信道,获取目标发送端TX UE j和其他SL传输对的TX UE在控制信道发送的控制信息,控制信息指示了SL传输对占用的子信道。RX UE j通过解码目标发送端TX UE j发送的控制信息,确定SL目标链路占用的H个子信道(即SL目标链路对应的PSSCH占用的子信道),以及通 过解码其他SL传输对的TX UE发送的控制信息,确定其他SL传输对占用的子信道。RX UE j在SL目标链路占用的H个子信道中的PSSCH信道资源上检测到至少一个TX UE发送的CSI-RS,上述至少一个TX UE包括TX UE k,j为小于等于K的正整数。其中,H为小于等于M的正整数。可以理解,若M等于N,则上述N个子信道包括上述H个子信道;上述至少一个TX UE中的TX UE(例如TX UE k)和TX UE j可以复用1个或多个子信道;上述至少一个TX UE中的TX UE数量大于等于2时,上述至少一个TX UE中任意两个TX UE可以复用0个、1个或多个子信道。
在本申请的一些实施例中,RX UE j在SL目标链路占用的H个子信道中的H1个子信道上检测到至少一个TX UE发送的CSI-RS,上述至少一个TX UE发送的CSI-RS包括TX UE k发送的第一CSI-RS,H1为大于等于1的正整数。
在本申请的一些实施例中,步骤S101中TX UE k基于预定义规则发送第一CSI-RS。RX UE j可以基于TX UE k的预定义规则指示的第一CSI-RS的时频资源位置,在上述H1个子信道中的h个子信道上检测到TX UE k发送的第一CSI-RS,h为大于等于1且小于等于H1的正整数。
在本申请的一些实施例中,步骤S101中TX UE k发送第一CSI-RS和第一指示信息。RX UE j可以基于第一指示信息指示的第一CSI-RS的时频资源位置,在上述H1个子信道中的h个子信道上所接收到的数据中检测到TX UE k发送的第一CSI-RS。
在一种实现方式中,第一指示信息可以为RRC高层信令参数,RRC高层信令参数承载在PSSCH信道资源上。RX UE j可以基于盲检获取的TX UE k的控制信息,解码出TX UE k在PSSCH上发送的RRC高层信令参数,获取TX UE k发送的第一CSI-RS的时频资源位置;进而基于上述时频资源位置,RX UE j可以在SL目标链路占用的上述H个子信道上检测出TX UE k发送的第一CSI-RS。
在一种实现方式中,第一指示信息可以为第一SCI中的预设字段,第一SCI可以是承载在PSCCH上的SCI1。RX UE j盲检获取的TX UE k的控制信息包括SCI 1,基于SCI 1中的预设字段可以获取TX UE k发送的第一CSI-RS的时频资源位置;进而基于上述时频资源位置,RX UE j可以在上述H个子信道中的PSSCH信道资源上检测出TX UE k发送的第一CSI-RS。
在一种实现方式中,第一指示信息可以为第一SCI中的预设字段,第一SCI可以是承载在PSSCH上的SCI 2。RX UE j盲检获取的TX UE k的控制信息包括SCI 1,SCI 1携带PSSCH资源调度相关信息以及解码SCI 2的信息。RX UE j基于SCI 1解码出TX UE k在PSSCH上发送的SCI 2;RX UE j基于SCI 2中的预设字段可以获取TX UE k发送的第一CSI-RS的时频资源位置;进而基于上述时频资源位置,RX UE j可以在上述H个子信道中的PSSCH信道资源上检测出TX UE k发送的第一CSI-RS。
S103、RX UE j基于上述至少一个TX UE发送的CSI-RS,确定SL目标链路占用的各子信道的CSI,并向上述至少一个TX UE上报上述各子信道的CSI。
具体的,RX UE j基于上述至少一个TX UE发送的CSI-RS,确定SL目标链路占用的子信道中的至少一个子信道的CSI,并向上述至少一个TX UE上报上述至少一个子信道的CSI。
由前述功率更新的表示形式1和表示形式2可知,本申请实施例中,SL的分布式功控中的CSI上报内容可以包括两种内容形式,即如下内容形式1和内容形式2。
内容形式1,CSI上报内容包括以下多项中的至少一项:RX UE j上报的CSI包括RX UE  j在SL目标链路占用的子信道的SINR,在该子信道接收到的来自各个SL干扰链路的干扰RP与来自SL目标链路的信号RP的ISR。
内容形式2,CSI上报内容包括以下多项中的至少一项:RX UE j上报的CSI包括RX UE j在SL目标链路占用的子信道的SINR,在该子信道接收到的来自各个SL干扰链路的干扰RP,在该子信道接收到的来自SL目标链路的信号RP。
在本申请的一些实施例中,RX UE j可以将测量的SINR映射到CQI,CQI可以反映UE的SINR信息。因此,可以将由前述功率更新的表示形式1和表示形式2中的SINR替换为CQI,SL的分布式功控的CSI上报内容还可以包括另外两种内容形式,即如下内容形式3和内容形式4。
内容形式3,CSI上报内容包括以下多项中的至少一项:RX UE j上报的CSI包括RX UE j在SL目标链路占用的子信道的CQI,在该子信道接收到的来自各个SL干扰链路的干扰RP与来自SL目标链路的信号RP的ISR。
内容形式4,CSI上报内容包括以下多项中的至少一项:RX UE j上报的CSI包括RX UE j在SL目标链路占用的子信道的CQI,在该子信道接收到的来自各个SL干扰链路的干扰RP,在该子信道接收到的来自SL目标链路的信号RP。
本申请实施例中,RX UE j可以通过单播、组播和广播方式中的至少一种方式进行子信道级的CSI上报。本申请实施例中,CSI上报包括但不限于如下2种实现方式,下面对这2种实现方式分别进行介绍。
在本申请的一些实施例中,步骤S102中RX UE j在SL目标链路占用的H个子信道中的H1个子信道上检测到至少两个TX UE发送的CSI-RS,上述至少两个TX UE包括TX UE j和A个其他SL传输对的TX UE,A为小于K的正整数。
实现方式1:RX UE j通过单播、组播或广播方式向上述A个TX UE和TX UE j上报RX UE j的SL目标链路占用的H个子信道的CSI。
需要说明的是,RX UE j可以上报SL目标链路占用的H个子信道中的部分子信道的CSI。在一种实现方式中,RX UE j上报的CSI信息还可以包括第三指示信息,第三指示信息用于指示RX UE j上报的CSI对应的子信道。
在一种实现方式中,SL预设资源池总共包括M个子信道,则第三指示信息展现为一个M bit的Bitmap,用于指示在上述M个子信道中RX UE j上报的CSI对应的子信道。例如,Bitmap中的第m个bit设为1表明RX UE j上报了上述M个子信道中的第m个子信道的CSI。
本申请实施例中,上述A个TX UE与RX UE j形成A个SL干扰链路,上述A个SL干扰链路中的第a个干扰链路占用上述H个子信道中的F(a)个子信道,F(a)为小于等于H的正整数,a为小于等于A的正整数。
实现方式1中针对内容形式1,RX UE j上报的CSI可以包括以下多项中的至少一项:RX UE j在上述H1个子信道的SINR,在上述H1个子信道上接收到的上述A个TX UE的干扰RP与接收到的TX UE j的信号RP的ISR。实现方式1中针对内容形式2,RX UE j上报的CSI可以包括以下多项中的至少一项:RX UE j在上述H1个子信道的SINR,在上述H1个子信道上接收到的TX UE j的信号RP,在上述H1个子信道上接收到的上述A个TX UE的干扰RP。其中,A为小于等于K的正整数。
可以理解,SL目标链路和上述A个SL干扰链路中的每个干扰链路(例如TX UE k,j≠k)复用至少一个子信道,RX UE j在上述至少一个子信道接收到来自TX UE k的干扰。
实现方式1中针对内容形式3,RX UE j的CSI上报内容可以参考实现方式1中针对内容形式1的CSI上报内容;实现方式1中针对内容形式4,RX UE j的CSI上报内容可以参考实现方式1中针对内容形式2的CSI上报内容,此处不再赘述。
在本申请的一些实施例中,针对CSI上报的内容形式1,RX UE j对子信道间的SINR和ISR进行差分上报。具体的,RX UE j确定上述H1个子信道的SINR中的SINR最大值,RX UE j对该SINR最大值进行量化编码,并对其他子信道的SINR与SINR最大值的SINR差值进行量化编码。RX UE j确定在上述H1个子信道对应的ISR中的ISR最大值,上述H1个子信道对应的ISR包括:在上述H1个子信道上接收到的上述A个TX UE的干扰RP对TX UE j的信号RP的ISR,RX UE j对该ISR最大值进行量化编码,并对其他ISR与ISR最大值的ISR差值进行量化编码。
示例性的,针对内容形式1的差分上报,本申请实施例提供了一种CSI上报的数据格式。如图7A所示,CSI上报内容包括第一部分和第二部分,第一部分包括M bit的Bitmap、SINR最大值的量化编码、RX UE j占用的上述H1个子信道中的每个子信道的SINR差值的量化编码,上述M bit的Bitmap用于指示RX UE j上报的SINR对应的子信道。第二部分包括上述A个SL干扰链路在上述H1个子信道分别对应的ISR;具体的,第二部分包括ISR最大值的量化编码、上述A个SL干扰链路中第a个SL干扰链路的TX UE(即上述第a个TX UE)的身份标识(ID)、Bitmap a、上述第a个TX UE在上述F(a)个子信道中每个子信道对应的ISR差值的量化编码。其中,Bitmap a用于指示上述第a个干扰链路占用并上报ISR的F(a)个子信道。如图7A所示,CSI上报内容中的SINR和ISR分别进行独立编码。
在一种实现方式中,Bitmap a包括H1 bit信息,Bitmap a用于指示上述H1个子信道中上述第a个干扰链路占用并上报ISR的F(a)个子信道。在一种实现方式中,Bitmap a包括Mbit信息,Bitmap a用于指示:SL预设资源池的M个子信道中,上述第a个干扰链路占用并上报ISR的F(a)个子信道。
在本申请的一些实施例中,针对CSI上报的内容形式2,RX UE j对子信道间的SINR和RP进行差分上报。具体的,RX UE j确定上述H1个子信道的SINR中的SINR最大值,RX UE j对该SINR最大值进行量化编码,并对其他子信道的SINR与SINR最大值的SINR差值进行量化编码。RX UE j确定在上述H1个子信道接收到的上述A个TX UE的干扰RP与接收到的TX UE j的信号RP中的RP最大值,RX UE j对该RP最大值进行量化编码,并对其他RP与RP最大值的RP差值进行量化编码。
示例性的,针对内容形式2的差分上报,本申请实施例提供了一种CSI上报的数据格式。如图7B所示,CSI上报内容包括第一部分和第三部分,第三部分包括RP最大值的量化编码、在上述H1个子信道接收到的TX UE j的信号RP对应的RP差值的量化编码、上述A个SL干扰链路中第a个SL干扰链路的TX UE(即上述第a个TX UE)的身份标识(ID)、Bitmap a、在上述H1个子信道接收到的上述A个TX UE的干扰RP对应的RP差值的量化编码。其中,Bitmap a用于指示上述第a个干扰链路占用并上报RP的F(a)个子信道。第一部分可以参考图7A的相关描述,此处不再赘述。如图7B所示,CSI上报内容中的SINR和RP分别进行独立编码。
在一种实现方式中,针对内容形式1或内容形式2的差分上报,对最大值(例如SINR最大值和ISP最大值)采用7bit量化,对差值(例如SINR差值和ISP差值)采用4bit量化。
在本申请的一些实施例中,针对CSI上报的内容形式3,RX UE j对子信道间的CQI和ISR 进行差分上报。具体的,可以参考内容形式1的差分上报,此处不再赘述。示例性的,图7C是本申请实施例提供的一种内容形式3的CSI上报的数据格式,如图7C所示,CSI上报内容包括第四部分和第二部分,第四部分包括Bitmap、CQI最大值的量化编码、RX UE j的SL目标链路占用的H1个子信道的CQI差值的量化编码,上述Bitmap用于指示RX UE j进行CQI上报的H1个子信道。第二部分可以参考图7A的相关描述,此处不再赘述。
在本申请的一些实施例中,针对CSI上报的内容形式4,RX UE j对子信道间的CQI和RP进行差分上报。具体的,可以参考内容形式2的差分上报,此处不再赘述。示例性的,图7D是本申请实施例提供的一种内容形式4的CSI上报的数据格式,如图7D所示,CSI上报内容包括第四部分和第三部分,第四部分可以参考图7C的相关描述,第三部分可以参考图7B的相关描述,此处不再赘述。
在一种实现方式中,针对内容形式3或内容形式4的差分上报,RX UE j对子信道间的CQI和ISR进行差分上报时,对CQI最大值采用4bit量化,对CQI差值采用2bit量化,对ISR最大值采用7bit量化,对ISR差值采用4bit量化。
参见前述功率更新的表示形式2可知,功率更新需要获取干扰链路h kj[n]的信道增益,其中,j≠k。TX UE k可以根据RX UE j上报的来自TX UE k的干扰RP,获取TX UE k和RX UE j间的SL干扰链路的信道增益。在本申请的一些实施例中,在相干时间内干扰链路的信道增益变化很小,RX UE j仅需上报一次通过SL干扰链路接收的干扰RP。
实现方式2:RX UE j通过单播方式,向上述A个TX UE和TX UE j分别上报上述H1个子信道中该TX UE占用的子信道的相关CSI。
实现方式2中针对内容形式1,RX UE j向TX UE j单播上报的CSI可以包括RX UE j的SL目标链路占用的H1个子信道的SINR;RX UE j向上述A个TX UE中的第a个TX UE单播上报的CSI可以包括以下多项中的至少一项:上述H1个子信道中上述第a个干扰链路占用的F(a)个子信道的SINR,在上述F(a)个子信道上接收到的上述第a个TX UE的干扰RP对接收到的TX UE j的信号RP的ISR。实现方式1中针对内容形式2,RX UE j向TX UE j单播上报的CSI可以包括以下多项中的至少一项:RX UE j在上述H1个子信道的SINR,RX UE j在上述H1个子信道接收到的TX UE j的信号RP;RX UE j向上述第a个TX UE单播上报的CSI可以包括以下多项中的至少一项:RX UE j在上述F(a)个子信道的SINR,在上述F(a)个子信道接收到的TX UE j的信号RP,在上述F(a)个子信道接收到的上述第a个TX UE的干扰RP。
实现方式2中针对内容形式3,RX UE j的CSI上报内容可以参考实现方式2中针对内容形式1的CSI上报内容,实现方式2中针对内容形式4,RX UE j的CSI上报内容可以参考实现方式2中针对内容形式2的CSI上报内容,此处不再赘述。
在本申请的一些实施例中,针对CSI上报的内容形式1,RX UE j对子信道间的SINR和ISR进行差分上报。具体的,RX UE j确定上述H1个子信道的SINR中的SINR最大值,RX UE j对该SINR最大值进行量化编码,并对其他子信道的SINR与SINR最大值的SINR差值进行量化编码。RX UE j确定在上述F(a)个子信道对应的ISR中的ISR最大值,上述F(a)个子信道对应的ISR包括:在上述F(a)个子信道上接收到的上述第a个TX UE的干扰RP对TX UE j的信号RP的ISR,RX UE j对该ISR最大值进行量化编码,并对其他ISR与ISR最大值的ISR差值进行量化编码。
示例性的,针对内容形式1的差分上报,图7E示出了一种RX UE j向TX UE j单播上报 CSI的数据格式。如图7E所示,CSI上报内容可以参考图7A中CSI上报的第一部分,此处不再赘述。图7F示出了一种RX UE j向上述第a个TX UE单播上报CSI的数据格式。如图7F所示,CSI上报内容包括第五部分和第六部分,第五部分包括Bitmap、SINR最大值的量化编码、RX UE j在上述第a个TX UE占用的F(a)个子信道的SINR差值的量化编码,上述Bitmap用于指示上述第a个干扰链路上报CSI的F(a)个子信道。第六部分包括ISR最大值的量化编码、上述第a个TX UE在上述F(a)个子信道对应的ISR差值的量化编码。
在本申请的一些实施例中,针对CSI上报的内容形式2,RX UE j对子信道间的SINR和RP进行差分上报。具体的,SINR的差分量化编码可以参考前述实施例,此处不再赘述。RX UE j确定在上述H1个子信道接收到的上述第a个TX UE的干扰RP与接收到的TX UE j的信号RP中的RP最大值,RX UE j对该RP最大值进行量化编码,并对其他RP与RP最大值的RP差值进行量化编码。
示例性的,针对内容形式2的差分上报,图7G示出了一种RX UE j向TX UE j单播上报CSI的数据格式。图7G示出了一种RX UE j向上述第a个TX UE单播上报CSI的数据格式,如图7G所示,CSI上报内容包括第一部分和第七部分,第一部分可以参考图7A所示的第一部分的相关描述,第七部分包括RP最大值的量化编码、在H1个子信道接收到的TX UE j的信号RP对应的RP差值的量化编码。图7H示出了一种RX UE j向上述第a个TX UE单播上报CSI的数据格式,如图7H所示,CSI上报内容包括第五部分和第八部分,第五部分可以参考图7F所示的第五部分的相关描述,第八部分包括RP最大值的量化编码、在F(a)个子信道接收到的上述第a个TX UE的干扰RP对应的RP差值。
需要说明的是,不限于内容形式1、内容形式2、内容形式3或内容形式4中的CSI上报内容,RX UE j上报的CSI还可以包括其他信息,例如还包括RI、PTI或PMI中的至少一个,此处均不作具体限定。
可以理解,当RX UE j通过单播方式向上述至少一个TX UE(例如TX UE K)进行子信道的CSI上报时,RX UE j向TX UE K发送的数据中还包括TX UE K的身份标识。当RX UE j通过组播方式向上述至少一个TX UE进行子信道的CSI上报时,RX UE j向上述至少一个TX UE发送的数据中还包括上述至少一个TX UE的身份标识。
在一种实现方式中,RX UE j发送的CSI上报内容承载在媒体接入控制层控制单元(Media Access Control Control Element,MAC CE)。
图8A是本申请实施例提供的一种5G NR的用户面协议架构示意图。如图8A所示,5G NR的用户面协议架构包括用户数据适配协议(service data adaptation protocol,SDAP)层、分组数据汇聚层协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、MAC层以及物理层(physical layer,PHY)等逻辑功能协议层。SDAP为5G核心网提供QoS流;PDCP为SDAP提供无线承载;RLC为PDCP提供RLC信道;MAC为RLC提供逻辑信道;PHY为MAC提供传输信道。
在一种实现方式中,RX UE j可以将CSI上报内容承载在媒体接入控制层控制单元(Media Access Control Control Element,MAC CE);通过为MAC CE添加MAC子头(subheader)得到MAC子协议数据单元(sub-Protocol Data Unit,subPDU);MAC PDU包含一个或多个MAC subPDU,RX UE j将MAC PDU传输到PHY后通过PSSCH发送给TX UE k;TX UE k的PHY收到RX UE j发送的PSSCH后,进行解码并传递给MAC层,MAC层去除MAC子头后可获取RX UE j发送的CSI上报内容。示例性的,图8B是本申请实施例提供的一种MAC PDU 的结构示意图。
在本申请的一些实施例中,RX UE j向上述至少一个TX UE上报CSI并发送第二指示信息,第二指示信息用于指示RX UE j上报了CSI。
可选的,第二指示信息为RX UE j发送的第二SCI中的预设字段,当所述预设字段设为预设值时,第二指示信息用于指示RX UE j上报了CSI。例如,第二指示信息为SCI中预设的一个1 bit trigger,该trigger设置为1,表明RX UE j上报了CSI;该trigger设置为0,表明RX UE j未上报CSI。需要说明的是,TX UE接收到RX UE j发送的数据后,基于RX UE j发送的第二SCI中的预设字段确定RX UE j是否上报了CSI;若确定RX UE j上报了CSI,TX UE可以对RX UE j发送的数据进行检测,获取RX UE j上报的CSI。
可选的,所述第二指示信息为MAC层配置的业务ID。上述MAC层配置的业务ID包括CSI上报的业务ID时,表明RX UE j上报了CSI。需要说明的是,TX UE接收到RX UE j发送的数据后,解码出MAC层配置的业务ID,若MAC层配置的业务ID与CSI上报的业务ID相匹配,TX UE确定RX UE j上报了CSI,TX UE对RX UE j发送的数据进行检测,获取RX UE j上报的CSI。
可选的,CSI上报的业务ID为destination Layer-2 ID。
可以理解,RX UE可以通过第二指示信息指示CSI的上报,以便于对CSI上报感兴趣的TX UE进行CSI上报内容的接收。
需要说明的是,本申请实施例中,TX UE发送CSI-RS可以包括周期性发送、半持续性发送和非周期性发送这三种类型,RX UE上报CSI可以包括周期性上报、半持续性上报和非周期性上报这三种类型,本申请实施例对此不作具体限定。通常CSI配置为周期性上报时,CSI-RS只能配置为周期性发送;CSI配置为半持续性上报时,CSI-RS可以配置为周期性发送或半持续性发送;CSI配置为非周期性上报时,CSI-RS可以配置为周期性发送、半持续性发送或非周期性发送。
S104、TX UE k基于RX UE j上报的CSI更新上述N个子信道的发送功率。
本申请实施例中,TX UE k基于多个RX UE j的CSI上报信息更新上述N个子信道的发送功率,具体如何基于各RX UE上报的CSI更新上述N个子信道的发送功率,可以参考前述表现形式1或表现形式2所示的功率更新表达式,此处不再赘述。
需要说明的是,RX UE j可以只接收到上述K个SL传输对中部分SL传输对的TX UE发送的CSI-RS;TX UE k可以只接收到上述K个SL传输对中部分SL传输对的RX UE上报的CSI,并根据上述部分SL传输对的RX UE上报的CSI更新各子信道的发送功率。在一种实现方式中,TX UE k可以将前述表现形式1或表现形式2的功率更新表达式中未获取的CSI信息取值为0。例如,上述TX UE k未接收到RX UE j反馈的第n个子信道的SINR,TX UE k利用上述表现形式1的功率更新表达式进行功率更新时,可以将
Figure PCTCN2021129750-appb-000035
取值为0。
S105、TX UE k选择功率大于预设阈值的子信道发送用户数据。
在一些实施例中,TX UE k选择功率大于预设阈值的子信道发送用户数据和第二CSI-RS。
在一些实施例中,TX UE k选择功率大于预设阈值的子信道向RX UE k发送用户数据时,通过第四指示信息指示TX UE k占用的子信道。TX UE k占用的子信道在频域上可以是连续的,也可以是非连续的。
例如,上述预设阈值等于0。
在一些实施例中,步骤S105之后,可以继续执行步骤S103至S105。即RX UE可以基于TX UE发送的CSI-RS,再次上报CSI;然后TX UE基于多个RX UE上报的CSI,可以再 次更新各子信道的发送功率,从而进一步优化了各子信道的发送功率,有效提升了系统容量。
示例性的,如图9A所示,通信系统100中包括3个SL传输对,SL预设资源池包括图9B所示的8个子信道(即子信道0至子信道N);TX UE1正在通过上述8个子信道中的至少一个子信道向RX UE1传输用户数据,TX UE2正在通过上述8个子信道中的至少一个子信道向RX UE2传输用户数据;每个RX UE可以基于接收到的CSI-RS确定CSI,并通过单播、组播或广播方式中的至少一种上报CSI。
参见图9A和图9B,TX UE 3初始发送数据时在上述8个子信道上等功率发送CSI-RS1;空间上距离TX UE3较近的RX UE1和RX UE3可以检测到TX UE3发送的CSI-RS 1,空间上距离TX UE3较远的RX UE2未检测到TX UE3发送的CSI-RS 1;RX UE1和RX UE3基于TX UE3发送的CSI-RS 1进行子信道级的CSI上报,TX UE3可以检测到RX UE1和RX UE3上报的CSI;TX UE 3基于RX UE 1和RX UE3上报的CSI对上述8个子信道的发送功率进行第一次功率更新,其中,上述8个子信道中的子信道2和子信道5的发送功率更新为0。然后,TX UE 3选择更新后发送功率大于0的子信道(即子信道0、子信道1、子信道3、子信道4、子信道6和子信道7)发送用户数据和CSI-RS 2,RX UE 1和/或RX UE3再基于检测到的CSI-RS 2进行子信道级的CSI上报;TX UE 3根据RX UE 1和/或RX UE3上报的CSI对各子信道的发送功率进行第二次功率更新,并选择发送功率大于0的子信道(即子信道0、子信道4、子信道6和子信道7)发送数据和CSI-RS 3,以此类推。
需要说明的,多次迭代更新后,系统容量趋于最优值,TX UE k占用的子信道不再变化。参考图9B,第三次功率更新和第四次功率更新(图中未示出)后,TX UE 3占用的子信道相同。
在一些实施例中,TX UE k对各子信道进行Imax次发送功率的迭代更新后,停止迭代更新,并基于第Imax次迭代更新的发送功率发送数据。其中,Imax可以表示预设的最大功率迭代更新次数。在一些实施例中,当第i次迭代更新后的系统容量与第i-1次迭代更新后的系统容量的差值小于预设差值,则TX UE k停止迭代更新,基于第i次迭代更新的发送功率发送数据。
上述示例中空间上距离TX UE3较近的RX UE1和RX UE3可以检测到TX UE3发送的CSI-RS 1,空间上距离TX UE3较远的RX UE2未检测到TX UE3发送的CSI-RS 1。需要说明的是,RX UE是否能检测到TX UE 3发送的CSI-RS 1,不仅受空间距离影响,还受很多其他因素影响(例如RX UE与TX UE 3间有无遮挡物)。上述示例仅仅是以空间距离进行示例性说明,并不是绝对的,上述示例并不对本申请实施例构成限定。
此外,由图6所示SL的数据传输方法的相关实施例可知,本申请实施例可以将预设资源池中的时频资源以子信道为单元进行资源调度,通过RX UE针对各子信道的CSI上报,实现对预设资源池中的子信道进行分布式功控,并选择功率大于0的子信道进行SL通信。
在一些实施例中,还可以将预设资源池中的时频资源以子带为单元进行资源调度,通过RX UE进行子带级的CSI上报,实现对预设资源池中的子带进行分布式功控,并选择功率大于0的子带进行SL通信。
示例性的,基于表1的仿真参数,图10对比了不同资源复用机制下的系统容量性能,其中TX UE在100m*100m的范围内均匀分布,RX UE在相应TX UE的2m~20m范围内均匀分布。在图10中,对比的几种资源复用机制包括:(1)时分多址(Time Division Multiple Access,TDMA),即每个SL传输对在不同的时隙进行传输,且占据相同的时长;(2)全空间复用(Full  Spatial Reuse),即所有SL传输对在相同时隙传输,且均占用全带宽;(3)CSMA,即TX UE在发送数据前通过检测信道能量判断干扰强度,若干扰强度低于预设能量阈值(仿真中设为-76dBm),则该TX UE可以和其他TX UE同时发送,否则控制该TX UE和其他TX UE在不同时隙进行发送;(4)WMMSE,即本发明方案基于WMMSE模型,提出的通过分布式功率控制进行的资源复用机制。图4中横坐标表示传输对个数,纵坐标表示每个传输对的平均可达速率。表2给出了本发明方案相对于CSMA机制的性能增益。从图10和表2的仿真结果可以看出,本发明方案相对于另外三种资源复用机制可显著提升系统容量。与CSMA机制类似,前述方案1中基于资源感知的自发式资源选择机制也是基于干扰测量进行的资源复用,存在和CSMA机制同样的问题,不能达到最优的系统容量。
表1.仿真参数
载波频率 6GHz
带宽 20MHz
子载波间隔 30kHz
TX UE最大发射功率P max 40mW
Subchannel数 13
每个Subchannel的RB数 4
信道模型 UMi-Street Canyon;TDL-A
噪声功率谱密度 -174dBm/Hz
表2.本发明方案相对于CSMA机制的性能增益
传输对个数 4 8 12 16 20
性能增益 35.81% 71.85% 102.83% 123.61% 142.03%
综上可知,所提SL的数据传输方案以最大化系统容量为目标进行的分布式资源复用机制,通过RX UE的CSI测量上报实现了分布式功控,有效提高了多个SL传输对之间的资源复用以及频谱效率,实现近集中式控制的系统容量性能。
本申请实施例中,第一发送端可以是前述实施例中的TX UE k,第一接收端可以是前述实施例中的RX UE j,第一CSI可以是步骤S103的可选实施例中RX UE j上报的各子信道的CSI。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述实施例中的方法。本申请中的各个实施例也可以互相结合。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述实施例中的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产 生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (28)

  1. 一种侧行链路的数据传输方法,其特征在于,包括:
    第一发送终端在N个频域单元上发送第一信道状态信息参考信号CSI-RS,所述N为正整数;
    所述第一发送终端检测到K个接收终端发送的信道状态信息CSI,所述K个接收终端发送的CSI是基于所述第一CSI-RS确定的,所述K大于等于2;
    所述第一发送终端基于所述K个接收终端发送的CSI中的全部或部分更新在所述N个频域单元的发送功率;
    所述第一发送终端基于更新后的所述N个频域单元的发送功率发送用户数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一发送终端基于更新后的所述N个频域单元的发送功率发送用户数据,包括:所述N个频域单元中的F个频域单元更新后的功率大于预设阈值时,所述第一发送终端在所述F个频域单元中的至少一个频域单元上发送用户数据,所述F小于等于所述N。
  3. 根据权利要求1所述的方法,其特征在于,所述第一发送终端在N个频域单元上发送第一信道状态信息参考信号CSI-RS,包括:
    所述第一发送终端在所述N个频域单元上发送第一指示信息和第一CSI-RS,其中,所述第一指示信息指示所述第一CSI-RS的时频资源位置。
  4. 根据权利要求1所述的方法,其特征在于,所述第一发送终端在N个频域单元上发送第一信道状态信息参考信号CSI-RS,包括:
    所述第一发送终端基于预定义规则在所述N个频域单元上发送第一CSI-RS,其中,所述预定义规则指示所述第一CSI-RS的时频资源位置。
  5. 根据权利要求3所述的方法,其特征在于,所述第一指示信息为第一侧行链路控制信息SCI中的预设字段。
  6. 根据权利要求1所述的方法,其特征在于,所述第一发送终端检测到K个接收终端发送的CSI,包括:
    所述第一发送终端检测到所述K个接收终端中的第j个接收端发送的第二指示信息,所述第二指示信息指示所述第j个接收端上报了CSI,所述j为小于等于所述K的正整数;
    所述第一发送终端基于所述第二指示信息,从接收到的所述第j个接收端发送的数据中检测出第一CSI。
  7. 根据权利要求6所述的方法,其特征在于,
    所述第二指示信息为所述第j个接收端发送的第二SCI中的预设字段;
    或者,所述第二指示信息为接入控制层MAC层配置的CSI上报的业务标识。
  8. 根据权利要求6所述的方法,其特征在于,所述第一CSI包括第三指示信息,所述第 三指示信息指示所述第j个接收端上报的所述第一CSI对应的频域单元。
  9. 根据权利要求2所述的方法,其特征在于,所述第一发送终端在所述F个频域单元中的至少一个频域单元上发送用户数据,包括:
    所述第一发送终端在所述F个频域单元中的至少一个频域单元上发送第一用户数据和第四指示信息;所述第四指示信息指示所述第一发送终端发送用户数据的所述至少一个频域单元;当所述至少一个频域单元的频域单元数量大于1时,所述至少一个频域单元中的任意两个频域单元在频域上是连续的或者非连续的。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述K个接收终端发送的CSI包括所述K个接收终端中的第j个接收端发送的第一CSI;
    所述第一CSI包括以下多项中的至少一项:所述第j个接收终端在所述第j个接收终端的目标链路占用的频域单元中的H1个频域单元的信干噪比SINR,在所述H1个频域单元中的h个频域单元接收到的所述第一发送终端的干扰接收功率RP与目标发送终端的信号RP的干信比ISR;所述H1大于等于1,所述h大于等于1小于等于所述H1。
  11. 根据权利要求1至9任一项所述的方法,其特征在于,所述K个接收终端发送的CSI包括所述K个接收终端中的第j个接收端发送的第一CSI;
    所述第一CSI包括以下多项中的至少一项:所述第j个接收终端在所述第j个接收终端的目标链路占用的频域单元中的H1个频域单元的信道质量信息CQI,在所述H1个频域单元中的h个频域单元接收到的所述第一发送终端的干扰RP与目标发送终端的信号RP的ISR;所述H1大于等于1,所述h大于等于1小于等于所述H1。
  12. 根据权利要求1至9任一项所述的方法,其特征在于,所述K个接收终端发送的CSI包括所述K个接收终端中的第j个接收端发送的第一CSI;
    所述第一CSI包括以下多项中的至少一项:所述第j个接收终端在目标链路占用的频域单元中的H1个频域单元的SINR,在所述H1个频域单元中的h个频域单元接收到的所述第一发送终端的干扰RP,在所述H1个频域单元述接收到的目标发送终端的信号RP;所述H1大于等于1,所述h大于等于1小于等于所述H1。
  13. 根据权利要求1至9任一项所述的方法,其特征在于,所述K个接收终端发送的CSI包括所述K个接收终端中的第j个接收端发送的第一CSI;
    所述第一CSI包括以下多项中的至少一项:所述第j个接收终端在目标链路占用的频域单元中的H1个频域单元的CQI,在所述H1个频域单元中的h个频域单元接收到的所述第一发送终端的干扰RP,在所述H1个频域单元接收到的目标发送终端的信号RP;所述H1大于等于1,所述h大于等于1小于等于所述H1。
  14. 根据权利要求10所述的方法,其特征在于,所述K个接收终端中的第j个接收终端为K个发送终端中第j个发送终端的SL的目标接收终端,所述第一发送终端为所述K个发送终端中的第k个发送终端,所述k和所述j为小于等于所述K的正整数,所述n为小于等于所述N的正整数;
    所述第k个发送终端在所述第n个频域单元上更新后的发送功率与所述K个接收终端上报的CSI的关系可以表示如下,
    Figure PCTCN2021129750-appb-100001
    其中,
    Figure PCTCN2021129750-appb-100002
    表示所述第k个发送终端的所述第n个频域单元的更新后的发送功率,
    Figure PCTCN2021129750-appb-100003
    表示所述第k个发送终端的所述第n个频域单元的更新前的发送功率,所述
    Figure PCTCN2021129750-appb-100004
    表示所述第j个接收终端在所述第n个频域单元的SINR,所述
    Figure PCTCN2021129750-appb-100005
    表示在所述第n个频域单元上接收到的所述第k个发送终端的干扰RP与所述第j个发送终端的信号RP的ISR;
    Figure PCTCN2021129750-appb-100006
    为使所述第k个发送终端在所述N个频域单元上的发送功率满足
    Figure PCTCN2021129750-appb-100007
    的优化参数,P max为所述第k个发送终端的最大发送功率,
    Figure PCTCN2021129750-appb-100008
  15. 根据权利要求12所述的方法,其特征在于,所述K个接收终端中的第j个接收终端为K个发送终端中第j个发送终端的SL的目标接收终端,所述第一发送终端为所述K个发送终端中的第k个发送终端,所述k和所述j为小于等于所述K的正整数,所述n为小于等于所述N的正整数;
    所述第k个发送终端在所述第n个频域单元上更新后的发送功率与所述K个接收终端上报的CSI的关系可以表示如下,
    Figure PCTCN2021129750-appb-100009
    其中,
    Figure PCTCN2021129750-appb-100010
    表示所述第k个发送终端在所述第n个频域单元的更新后的发送功率,
    Figure PCTCN2021129750-appb-100011
    表示所述第k个发送终端在所述第n个频域单元的更新前的发送功率,所述
    Figure PCTCN2021129750-appb-100012
    表示所述第j个接收终端在所述第n个频域单元的SINR;所述
    Figure PCTCN2021129750-appb-100013
    表示所述第j个接收终端在所述第n个频域单元接收到的所述第k个发送终端所发送的干扰RP,j≠k;所述
    Figure PCTCN2021129750-appb-100014
    表示在所述第n个频域单元接收到的所述第j个发送终端的信号RP;
    Figure PCTCN2021129750-appb-100015
    为使所述第k个发送终端在所述N个频域单元上的发送功率满足
    Figure PCTCN2021129750-appb-100016
    的优化参数,P max为所述k个发送终端的最大发送功率,
    Figure PCTCN2021129750-appb-100017
  16. 一种侧行链路的数据传输方法,其特征在于,包括:
    第一接收终端在目标链路占用的频域单元中的H1个频域单元上检测到L个发送终端发送的信道状态信息参考信号CSI-RS,所述L大于等于2,所述H1大于等于1;
    所述第一接收终端基于所述L个发送终端发送的CSI-RS,发送所述H1个频域单元的第一信道状态信息CSI;所述第一CSI用于所述L个发送终端更新所述H1个频域单元的发送功率。
  17. 根据权利要求16所述的方法,其特征在于,所述L个发送终端发送的信道状态信息参考信号CSI-RS包括第一发送终端发送的第一CSI-RS,所述第一接收终端在目标链路占用的频域单元中的H1个频域单元上检测到L个发送终端发送的信道状态信息参考信号CSI-RS,包括:
    所述第一接收终端检测到所述第一发送终端发送的第一指示信息,其中,所述第一指示信息指示所述第一CSI-RS的时频资源位置;
    所述第一接收终端基于所述第一指示信息,在所述H1个频域单元中的h个频域单元上检测到所述第一CSI-RS,所述h大于等于1且小于等于所述H1。
  18. 根据权利要求16所述的方法,其特征在于,所述L个发送终端发送的信道状态信息参考信号CSI-RS包括第一发送终端发送的第一CSI-RS,所述第一接收终端在目标链路占用的频域单元中的H1个频域单元上检测到L个发送终端发送的信道状态信息参考信号CSI-RS,包括:
    所述第一接收终端基于预定义规则在所述H1个频域单元中的h个频域单元上检测到所述第一发送终端发送的所述第一CSI-RS,其中,所述预定义规则指示所述第一发送终端发送的CSI-RS的时频资源位置。
  19. 根据权利要求17所述的方法,其特征在于,所述第一指示信息为第一侧行链路控制信息SCI中的预设字段。
  20. 根据权利要求16所述的方法,其特征在于,所述发送所述H1个频域单元的第一信道状态信息CSI,包括:
    所述第一接收终端发送第二指示信息和所述H1个频域单元的第一CSI,所述第二指示信息指示所述第一接收终端上报了CSI。
  21. 根据权利要求20所述的方法,其特征在于,
    所述第二指示信息为所述第一接收终端发送的第二SCI中的预设字段;
    或者,所述第二指示信息为接入控制层MAC层配置的CSI上报的业务标识。
  22. 根据权利要求17或18所述的方法,其特征在于,所述第一CSI包括以下多项中的至少一项:所述第一接收终端在所述H1个频域单元的信干噪比SINR,在所述h个频域单元接收到的所述第一发送终端的干扰接收功率RP与目标发送终端的信号RP的干信比ISR。
  23. 根据权利要求17或18所述的方法,其特征在于,所述第一CSI包括以下多项中的至少一项:所述第一接收终端在所述H1个频域单元的信道质量信息CQI,在所述h个频域单元接收到的所述第一发送终端的干扰RP与目标发送终端的信号RP的ISR。
  24. 根据权利要求17或18所述的方法,其特征在于,所述第一CSI包括以下多项中的至少一项:所述第一接收终端在所述H1个频域单元的SINR,在所述h个频域单元接收到的所述第一发送终端的干扰RP,在所述H1个频域单元接收到的目标发送终端的信号RP。
  25. 根据权利要求17或18所述的方法,其特征在于,所述第一CSI包括以下多项中的至少一项:所述第一接收终端在所述H1个频域单元的CQI,在所述h个频域单元接收到的所述第一发送终端的干扰RP,在所述H1个频域单元接收到的目标发送终端的信号RP。
  26. 一种终端设备,其特征在于,包括存储器和处理器,所述存储器和所述处理器电偶合,所述存储器用于存储程序指令,所述处理器被配置用于调用所述存储器存储的全部或部分程序指令,执行如权利要求1-25任一项所述的方法。
  27. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1-25任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至25任一项所述的方法。
PCT/CN2021/129750 2020-11-10 2021-11-10 一种侧行链路的数据传输方法及相关装置 WO2022100605A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/036,070 US20230413186A1 (en) 2020-11-10 2021-11-10 Sidelink Data Transmission Method and Related Apparatus
EP21891125.3A EP4224951A1 (en) 2020-11-10 2021-11-10 Sidelink data transmission method and related apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011247043.1 2020-11-10
CN202011247043 2020-11-10
CN202011603242.1 2020-12-29
CN202011603242.1A CN114466442A (zh) 2020-11-10 2020-12-29 一种侧行链路的数据传输方法及相关装置

Publications (1)

Publication Number Publication Date
WO2022100605A1 true WO2022100605A1 (zh) 2022-05-19

Family

ID=81404723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129750 WO2022100605A1 (zh) 2020-11-10 2021-11-10 一种侧行链路的数据传输方法及相关装置

Country Status (4)

Country Link
US (1) US20230413186A1 (zh)
EP (1) EP4224951A1 (zh)
CN (1) CN114466442A (zh)
WO (1) WO2022100605A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104620626A (zh) * 2013-06-13 2015-05-13 华为技术有限公司 信道状态信息测量的方法及设备
CN108242987A (zh) * 2016-12-23 2018-07-03 中兴通讯股份有限公司 参考信号发送方法及基站,配置确定方法及终端
WO2020220934A1 (zh) * 2019-04-30 2020-11-05 华为技术有限公司 一种同步信号块的传输方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150337B (zh) * 2017-06-16 2020-09-11 华为技术有限公司 一种干扰功率测量方法及设备
CN111107618A (zh) * 2018-10-29 2020-05-05 华为技术有限公司 功率控制的方法和终端设备
CN111246558B (zh) * 2019-01-30 2022-06-28 维沃移动通信有限公司 功率控制方法、装置、终端和可读存储介质
CN111740804B (zh) * 2019-03-25 2022-03-29 华为技术有限公司 发送csi的方法及装置
CN110547000B (zh) * 2019-07-11 2023-04-11 北京小米移动软件有限公司 直连通信的功率控制方法、装置、终端及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104620626A (zh) * 2013-06-13 2015-05-13 华为技术有限公司 信道状态信息测量的方法及设备
CN108242987A (zh) * 2016-12-23 2018-07-03 中兴通讯股份有限公司 参考信号发送方法及基站,配置确定方法及终端
WO2020220934A1 (zh) * 2019-04-30 2020-11-05 华为技术有限公司 一种同步信号块的传输方法和装置

Also Published As

Publication number Publication date
CN114466442A (zh) 2022-05-10
US20230413186A1 (en) 2023-12-21
EP4224951A1 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
KR102235637B1 (ko) 무선 통신 시스템에서 D2D(Device to Device) 통신의 자원 할당을 통한 송신/수신 단말의 동작 방법 및 장치
US20210359819A1 (en) Device, Network, and Method for Sounding Reference Signal Transmission and Reception
US8594007B2 (en) Sequential ACK for multi-user transmissions
CN113574815A (zh) 用于多传输点(trp)传输的低开销信道状态信息(csi)反馈
US9125101B2 (en) Distributed power control for D2D communications
CN112703782A (zh) 用于车辆到车辆通信中的多天线传输的方法和设备
US10135674B2 (en) Wireless communication system with single-subband user equipment
CN114128346A (zh) 用于在无线通信系统中控制拥塞的装置和方法
US20130029680A1 (en) Method in which a terminal cooperates with another terminal to transmit data, and method for receiving the data
WO2020144188A1 (en) Technique for sidelink radio communication
KR20230005134A (ko) 사이드링크 자원을 결정하기 위한 방법 및 장치
US11751173B2 (en) Method and device used in node for wireless communication
WO2012068905A1 (zh) Comp模式下信道信息反馈的方法和系统
US20230284259A1 (en) Apparatus and method for handling collisions of transmissions in wireless communication system
KR20210020832A (ko) 사이드링크 통신 시스템을 위한 전력 제어 방법, 장치 및 저장 매체
WO2022100605A1 (zh) 一种侧行链路的数据传输方法及相关装置
CN110178391A (zh) 无线通信方法、终端设备和网络设备
JP6871162B2 (ja) 基地局及び無線端末
US20230379960A1 (en) Scheduling wireless communications based on aging metric
US20230085190A1 (en) Link adaptation for extremely high throughput systems
WO2023247248A1 (en) Control information for uplink transmissions on periodic resources
EP4342123A1 (en) Channel state reporting for sidelink communications
KR20240034149A (ko) 사이드링크 통신에서 빔 관리를 위한 방법 및 장치
CN115943682A (zh) 终端及通信方法
KR20210009261A (ko) 무선 통신 시스템에서 혼잡을 제어하기 위한 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021891125

Country of ref document: EP

Effective date: 20230503

NENP Non-entry into the national phase

Ref country code: DE