WO2022022579A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2022022579A1
WO2022022579A1 PCT/CN2021/108982 CN2021108982W WO2022022579A1 WO 2022022579 A1 WO2022022579 A1 WO 2022022579A1 CN 2021108982 W CN2021108982 W CN 2021108982W WO 2022022579 A1 WO2022022579 A1 WO 2022022579A1
Authority
WO
WIPO (PCT)
Prior art keywords
res
group
dmrs
occ code
consecutive
Prior art date
Application number
PCT/CN2021/108982
Other languages
English (en)
French (fr)
Inventor
余健
郭志恒
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21850344.9A priority Critical patent/EP4187800A4/en
Priority to KR1020237005627A priority patent/KR20230041054A/ko
Publication of WO2022022579A1 publication Critical patent/WO2022022579A1/zh
Priority to US18/160,039 priority patent/US20230171059A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and device.
  • a demodulation reference signal (demodulation reference signal) is defined.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • the SRS signal is used for channel state information (channel state information, CSI) measurement
  • the DMRS is used for physical uplink shared channel (physical uplink shared channel, PUSCH) data demodulation.
  • CSI channel state information
  • PUSCH physical uplink shared channel
  • the demand for uplink capacity is getting higher and higher.
  • the terminal needs to send back high-definition video to the base station, so a large uplink capacity is required.
  • the present application provides a communication method and apparatus for providing a demodulation reference signal supporting more orthogonal ports to support multi-user pairing with higher layers.
  • the present application provides a communication method, the method comprising: a network device sending indication information to a terminal device, the indication information indicating a first demodulation reference signal DMRS port and a code division where the first DMRS port is located Multiplexing the CDM group; the network device receives the first DMRS transmitted through the first DMRS port in the first group of REs and the second group of REs associated with the CDM group; wherein, the first DMRS port is The first orthogonal cover code OCC code used for transmitting the first DMRS in the first group of REs is different from the second OCC code used for transmitting the first DMRS in the second group of REs; wherein the The first group of REs and the second group of REs satisfy any of the following conditions: they are located in the same resource block RB; they are located in the same subcarrier and in different symbols of the same time slot; they are located in different resource blocks RB, and in the same symbol in the same slot.
  • the network device can distinguish the DMRS transmitted in different groups of REs through the first DMRS port according to the first OCC code and the second OCC code, so as to estimate the channels corresponding to different groups of REs, which is equivalent to not increasing the number of REs.
  • the number of DMRS ports supported by each CDM group is increased, thereby increasing the capacity of the uplink channel.
  • the first DMRS transmitted through the first DMRS port after being weighted by the first OCC code or the second OCC code satisfies the following formula:
  • is the subcarrier offset, and its value is associated with the index of the CDM group; is the offset of the OFDM symbol; ⁇ is the index of the subcarrier spacing; w f (k'+2t) represents the frequency domain OCC code, wt (l') represents the time domain OCC code;
  • the first DMRS transmitted through the first DMRS port after being weighted by the first OCC code or the second OCC code satisfies the following formula:
  • n 0,1,...
  • r(n) is the initial sequence corresponding to the first DMRS weighted by the first OCC code or the second OCC code and transmitted through the first DMRS port; is a round-down operation; mod() is a remainder operation; r(n) is the initial sequence corresponding to the first DMRS; ⁇ is a cyclic shift factor; M is a positive integer; k is a subcarrier index, l is the OFDM symbol index, is the index of the first DMRS port; mod() is the remainder operation; r(n) is the initial sequence corresponding to the first DMRS; ⁇ is the subcarrier offset, and its value is associated with the index of the CDM group; is the offset of the OFDM symbol; ⁇ is the index of the subcarrier spacing; w f (k') represents the frequency domain OCC code, w t (l') represents the time domain OCC code; v is the layer index.
  • the first group of REs includes 4 REs, and the first group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive orthogonal frequency divisions in the time domain Multiplexing OFDM symbols;
  • the second group of REs includes 4 REs, and the second group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive OFDM symbols in the time domain;
  • the first group of REs The two consecutive subcarriers occupied by group REs are different subcarriers from the two consecutive subcarriers occupied by the second group of REs;
  • the two consecutive OFDM symbols occupied by the first group of REs are different from the two consecutive subcarriers occupied by the first group of REs
  • the two consecutive sub-OFDM symbols occupied by the second group of REs are the same OFDM symbols.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1, or 2 and 3, or 4 and 5; the second group of REs occupied in the frequency domain
  • the indices of the subcarriers are 6 and 7, or 8 and 9, or 10 and 11.
  • the first group of REs includes 4 REs, the first group of REs occupy two discontinuous subcarriers in the frequency domain, and occupy two consecutive orthogonal frequencies in the time domain division multiplexing OFDM symbols;
  • the second group of REs includes 4 REs, the second group of REs occupy two discontinuous subcarriers in the frequency domain and two continuous OFDM symbols in the time domain;
  • the two discontinuous subcarriers occupied by the first group of REs are located in different RBs from the two discontinuous subcarriers occupied by the second group of REs;
  • the two consecutive sub-OFDM symbols occupied by the second group of REs are the same OFDM symbols.
  • the present application further provides an apparatus, where the apparatus may be a network device, and the apparatus has the functions of implementing the above-mentioned method example of the first aspect or each possible design example of the first aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the apparatus includes a communication unit and a processing unit, and these units can perform the corresponding functions in the first aspect or each possible design example of the first aspect.
  • these units can perform the corresponding functions in the first aspect or each possible design example of the first aspect.
  • please refer to the detailed description in the method example will not be repeated here.
  • the structure of the apparatus includes a communication interface and a processor, and optionally a memory, and the transceiver is used to send and receive data, and to communicate and interact with other devices in the communication system, so
  • the processor is configured to support the apparatus to perform the corresponding functions in the first aspect or each possible design method of the first aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the apparatus.
  • n 0,1,...
  • the first DMRS transmitted through the first DMRS port after being weighted by the first OCC code or the second OCC code satisfies the following formula:
  • r(n) is the initial sequence corresponding to the first DMRS weighted by the first OCC code or the second OCC code and transmitted through the first DMRS port; is a round-down operation; mod() is a remainder operation; r(n) is the initial sequence corresponding to the first DMRS; ⁇ is a cyclic shift factor; M is a positive integer; k is a subcarrier index, l is the OFDM symbol index, is the index of the first DMRS port; mod() is the remainder operation; r(n) is the initial sequence corresponding to the first DMRS; ⁇ is the subcarrier offset, and its value is associated with the index of the CDM group; is the offset of the OFDM symbol; ⁇ is the index of the subcarrier spacing; w f (k') represents the frequency domain OCC code, w t (l') represents the time domain OCC code; v is the layer index.
  • is preconfigured and is associated with the first DMRS port index; M is configured by the network device, or is a default value.
  • the first group of REs includes 4 REs, and the first group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive orthogonal frequency divisions in the time domain Multiplexing OFDM symbols;
  • the second group of REs includes 4 REs, and the second group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive OFDM symbols in the time domain;
  • the first group of REs The two consecutive subcarriers occupied by group REs are different subcarriers from the two consecutive subcarriers occupied by the second group of REs;
  • the two consecutive OFDM symbols occupied by the first group of REs are different from the two consecutive subcarriers occupied by the first group of REs
  • the two consecutive sub-OFDM symbols occupied by the second group of REs are the same OFDM symbols.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1, or 2 and 3, or 4 and 5; the second group of REs occupied in the frequency domain
  • the indices of the subcarriers are 6 and 7, or 8 and 9, or 10 and 11.
  • the first group of REs includes 4 REs, and the first group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive orthogonal frequency divisions in the time domain Multiplexing OFDM symbols;
  • the second group of REs includes 4 REs, and the second group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive OFDM symbols in the time domain;
  • the first group of REs The two consecutive subcarriers occupied by the group of REs are the same as the two consecutive subcarriers occupied by the second group of REs;
  • the two consecutive OFDM symbols occupied by the first group of REs are the same as the two consecutive subcarriers occupied by the first group of REs.
  • the two consecutive sub-OFDM symbols occupied by the second group of REs are different OFDM symbols.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1, or 2 and 3, or 4 and 5; the second group of REs occupied in the frequency domain
  • the indices of the subcarriers are 0 and 1, or 2 and 3, or 4 and 5.
  • the present application further provides an apparatus, where the apparatus may be a terminal device, and the apparatus has the functions of implementing the method example of the third aspect or each possible design example of the third aspect.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the apparatus includes a communication interface and a processor, and optionally a memory, and the transceiver is used to send and receive data, and to communicate and interact with other devices in the communication system, so
  • the processor is configured to support the apparatus to perform the corresponding functions in the third aspect or each possible design method of the third aspect.
  • the memory is coupled to the processor and holds program instructions and data necessary for the apparatus.
  • a computer-readable storage medium for storing a computer program, the computer program comprising instructions for executing the third aspect or the method in any possible implementation manner of the third aspect.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, the computer is made to execute any one of the third aspect or the third aspect methods in possible implementations.
  • the present application provides a communication apparatus, the communication apparatus includes a processor, and when the processor executes a computer program or an instruction in a memory, the method according to the third aspect is performed.
  • the present application provides a communication device, the communication device includes a processor and a memory, where the memory is used for storing computer programs or instructions; the processor is used for executing the computer programs or instructions stored in the memory , so that the communication device performs the corresponding method as shown in the first aspect.
  • the present application provides a communication device, the communication device includes a processor and a memory, the memory is used for storing computer programs or instructions; the processor is used for executing the computer programs or instructions stored in the memory , so that the communication device performs the corresponding method as shown in the third aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory and a communication interface, the communication interface is used for receiving a signal or sending a signal; the memory is used for storing a computer program or instruction ; the processor for invoking the computer program or instructions from the memory to execute the method according to the first aspect.
  • the present application provides a communication device, the communication device includes a processor, a memory and a communication interface, the communication interface is used for receiving a signal or sending a signal; the memory is used for storing a computer program or instruction ; the processor for invoking the computer program or instructions from the memory to execute the method according to the third aspect.
  • the present application provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory, when the processor executes the computer program or instruction , so that the method described in the first aspect is realized.
  • the present application provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory, when the processor executes the computer program or instruction When the method described in the third aspect is realized.
  • the present application provides a system, including the communication device provided in the second aspect and the communication device provided in the fourth aspect.
  • FIG. 1 shows a schematic diagram of the architecture of a communication system applicable to the present application
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a resource provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a resource provided by an embodiment of the present application.
  • the embodiments of the present application may be applied to various mobile communication systems, such as: a new radio (new radio, NR) system, a long term evolution (long term evolution, LTE) system, an evolved long term evolution (evolved long term evolution, eLTE) system, Other communication systems such as the future communication system, specifically, are not limited here.
  • a new radio new radio
  • LTE long term evolution
  • eLTE evolved long term evolution
  • Other communication systems such as the future communication system, specifically, are not limited here.
  • At least one refers to one or more, and "a plurality” refers to two or more.
  • And/or which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are an “or” relationship.
  • At least one (item) of the following” or similar expressions refer to any combination of these items, including any combination of single item (item) or plural item (item).
  • FIG. 1 shows an architecture of a communication system applicable to the present application, and the architecture of the communication system may include a network device and a terminal device. specific:
  • a network device configured to receive an uplink signal from the terminal device, or send a downlink signal to the terminal device;
  • the network device may be a long term evolution (long term evolution, LTE) and/or NR network device, and may specifically be It is a base station (NodeB), an evolved base station (eNodeB), a base station in a 5G mobile communication system, a next generation mobile communication base station (next generation Node B, gNB), a base station in a future mobile communication system or an access point in a Wi-Fi system. entry node, etc.
  • the network device may also be a network node that constitutes a gNB or a transmission point, such as a baseband unit (BBU), or a distributed unit (distributed unit, DU).
  • BBU baseband unit
  • DU distributed unit
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless chain
  • the functions of the road control radio link control, RLC
  • media access control media access control, MAC
  • physical (physical, PHY) layers The functions of the road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in a radio access network (radio access network, RAN), and the CU may also be divided into network devices in the core network CN, which is not limited.
  • a terminal device may also be called a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the terminal device is an entity on the user side for receiving or transmitting signals, and is used for sending uplink signals to the network device or receiving downlink signals from the network device.
  • the terminal equipment can include mobile phones, cars, tablet computers and sensors such as smart speakers, train detectors, gas stations, etc.
  • the main functions include collecting data (part of terminal equipment), receiving control information and downlink data of network equipment, and sending electromagnetic waves, Transmit upstream data to network devices.
  • the communication system may include one or more network devices and one or more terminal devices.
  • FIG. 1 only one network device and four terminal devices (such as terminal device 1, terminal device Device 2, terminal device 3, and terminal device 4) are shown as examples, but the number of network devices and terminal devices in the communication system cannot be limited.
  • FIG. 1 the architecture of the communication system shown in FIG. 1 is not limited to include only the nodes or devices shown in the figure, but may also include other devices that are not shown in the figure. enumerate.
  • the communication system shown in FIG. 1 may be a 4G or 5G mobile communication system, and the methods of the embodiments of the present application are also applicable to various future communication systems, such as 6G or other communication networks.
  • 6G or other communication networks As long as there is an entity in the communication system that needs to send downlink data and pilot information, another entity needs to receive the indication information, and can feed back information and transmit data through the uplink; that is, as long as there are downlink and uplink communication links in the communication system, such communication All systems can be applied to this application.
  • the word "exemplary” is used to mean serving as an example, illustration or illustration. Any embodiment or design described in this application as "exemplary” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of the word example is intended to present a concept in a concrete way.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the initial sequence r(n) of the DMRS generated based on the gold sequence can satisfy the following formula:
  • c(i) is a pseudo-random sequence
  • generation formula is:
  • N C 1600
  • c init is defined in the following form:
  • l is an orthogonal frequency division multiplexing (OFDM) symbol index
  • n SCID ⁇ ⁇ 0,1 ⁇ is the initialization parameter of the DMRS sequence
  • the value depends on different high-level parameter configurations.
  • an OFDM symbol may also be referred to as a symbol for short. If there is no special description, the symbol hereinafter refers to an OFDM symbol.
  • k is the subcarrier (equivalent to RE) index
  • l is the OFDM symbol index
  • r(n) is the initial sequence corresponding to the first DMRS.
  • w f (k') represents the frequency domain OCC code
  • wt (l') represents the time domain OCC code.
  • FIG. 1 Indicates the DMRS port number for sending the DMRS; the values of ⁇ and ⁇ are associated with a code division multiplexing (code division multiplexing, CDM) group.
  • CDM code division multiplexing
  • each CDM group supports up to 4 DMRS ports, and the DMRS sent by these 4 DMRS ports are distinguished by mutually orthogonal orthogonal cover code (OCC) codes.
  • OCC orthogonal cover code
  • the 3 CDM groups support a total of The 12 DMRS ports are orthogonal.
  • each CDM group corresponds to two groups of REs in one resource block (resource block, RB), that is to say, the DMRS corresponding to each CDM group is repeatedly transmitted in one RB.
  • two groups of REs corresponding to one CDM group in one RB respectively include 4 REs, wherein the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1, and in the time domain The indices of the occupied OFDM symbols are 2 and 3.
  • the OCC codes corresponding to the 4 REs included in the first group of REs are ⁇ 1, 1, 1, 1 ⁇ , ⁇ 1, -1, 1, -1 ⁇ , ⁇ 1, 1, -1, -1 ⁇ , ⁇ 1, -1, -1, 1 ⁇ .
  • the indices of the subcarriers occupied in the frequency domain of the second group of REs are 6 and 7, and the indices of the OFDM symbols occupied in the time domain are 2 and 3. It should be noted that the OCC codes corresponding to the four REs included in the first group of REs are the same as the OCC codes corresponding to the first group of REs.
  • OCC code corresponding to each DMRS port is determined according to w f (k') and w t (l') corresponding to the DMRS port.
  • w f (k') and w t (l') corresponding to the DMRS port.
  • the DMRS sequence based on the ZC sequence satisfies the following formula, or you can refer to TS 38.211:
  • n is the index of each element in the sequence, is the total length of the sequence
  • u ⁇ 0,1,...,29 ⁇ is the sequence group index
  • v is the number of base sequences in a certain sequence group
  • m is the number of RBs allocated by the base station to the terminal, is the number of subcarriers included in one RB.
  • N ZC is the largest prime number less than M ZC .
  • fgh indicates whether to perform sequence hopping, The value of is limited to the following two cases.
  • Case 1 When the upper layer configures the narrowband physical uplink control channel (nPUCCH)-Identity parameter, and the uplink grant (grant) information is neither random access response (RAR) grant, nor for Temporary Cell-Radio Network Temporary Identifier (TC-RNTI) scrambled downlink control information (Downlink Control Information, DCI) format 0_0, then Configured by the high-level nPUSCH-Identity parameter.
  • RAR random access response
  • TC-RNTI Temporary Cell-Radio Network Temporary Identifier
  • DCI Downlink Control Information
  • Different cells and different terminals can be configured with different Then the sequences generated by different cells have certain randomness.
  • mapping formula is (or can refer to Section 6.4.1.1.3 of TS 38.211):
  • FIG. 3 it is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • the method includes:
  • Step 301 The network device sends indication information to the terminal device.
  • the indication information indicates the first DMRS port and the CDM group in which the first DMRS port is located. It should be noted that, before the terminal device sends the DMRS, the network device may configure the DMRS port and the CDM group for sending the DMRS through the indication information. The network device may configure at least one DMRS port for the terminal device through the indication information.
  • the first DMRS port is used as an example for description in this embodiment of the present application, which does not mean that the network device is configured with only one DMRS port.
  • the network device may send the indication information through DCI.
  • Step 302 The terminal device receives the indication information, and determines N groups of REs corresponding to the CDM group indicated by the indication information.
  • N is an integer greater than 1, and a group of REs includes at least one RE.
  • each CDM group has corresponding multiple groups of REs, and the corresponding relationship is pre-configured.
  • Step 303 The terminal device transmits the first DMRS in the first group of REs and the second group of REs in the N groups of REs through the first DMRS port indicated by the indication information;
  • the first OCC code is used to transmit the first DMRS in the first group of REs through the first DMRS port
  • the second OCC code is used to transmit the first DMRS in the second group of REs.
  • the first OCC code and the second OCC code are different.
  • first group of REs and the second group of REs satisfy any of the following conditions:
  • RB resource block
  • Step 304 The network device receives the first DMRS sent through the first DMRS port in the first group of REs and the second group of REs associated with the CDM group.
  • the CDM group may further include a second DMRS port.
  • the network device may receive the second DMRS sent through the second DMRS port in the first group of REs and the second group of REs.
  • the second DMRS port may be allocated to the terminal device or to other terminal devices, which is not limited in this embodiment of the present application.
  • the second DMRS port adopts the third OCC code in the first group of REs, and adopts the fourth OCC code in the second group of REs;
  • the first extended OCC code corresponding to the first DMRS port is the same as The second extended OCC code corresponding to the second DMRS port is orthogonal;
  • the first extended OCC code includes the first OCC code and the second OCC code, and
  • the second extended OCC code includes the third The OCC code and the fourth OCC code are orthogonal.
  • the network device can distinguish the DMRS transmitted in different groups of REs through the first DMRS port according to the first OCC code and the second OCC code, so as to estimate the channels corresponding to different groups of REs respectively, which is equivalent to not increasing the DMRS overhead.
  • the number of DMRS ports supported by each CDM group is increased, thereby increasing the capacity of the uplink channel.
  • OCC extension can be performed in the time domain or the frequency domain, so as to support orthogonal DMRS sequences of more than 12 DMRS ports and improve the uplink capacity, which will be described separately below.
  • 24 DMRS ports can be orthogonally supported, and 24-layer orthogonal multi-user pairing can be realized.
  • the CDM group may correspond to at least two groups of REs, taking the two groups of REs as an example, which are the first group of REs and the second group of REs, respectively.
  • the first group of REs and the second group of REs may be located in the same RB and in the same symbol in the same time slot.
  • the first group of REs includes 4 REs, and the first group of REs occupies two consecutive subcarriers in the frequency domain and occupies two consecutive OFDM symbols in the time domain;
  • the second group of REs includes 4 REs, The second group of REs occupy two consecutive subcarriers in the frequency domain, and occupy two consecutive OFDM symbols in the time domain.
  • the two consecutive subcarriers occupied by the first group of REs are different from the two consecutive subcarriers occupied by the second group of REs; the two consecutive OFDM symbols occupied by the first group of REs , which are the same OFDM symbols as the two consecutive sub-OFDM symbols occupied by the second group of REs.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1, and the indices of the subcarriers occupied by the second group of REs in the frequency domain are 6 and 7;
  • the indices of the OFDM symbols occupied by the REs in the time domain are 2 and 3.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 2 and 3, and the indices of the subcarriers occupied by the second group of REs in the frequency domain are 8 and 9;
  • the indices of the occupied OFDM symbols on the domain are 6 and 7.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 4 and 5, and the indices of the subcarriers occupied by the second group of REs in the frequency domain are 10 and 11;
  • the indices of the occupied OFDM symbols on the domain are 10 and 11.
  • the first DMRS weighted by the first OCC code or the second OCC code transmitted through the first DMRS port satisfies the following formula:
  • is the subcarrier offset, and its value is associated with the index of the CDM group; is the offset of the OFDM symbol; ⁇ is the index of the subcarrier spacing; w f (k'+2t) represents the frequency domain OCC code, wt (l') represents the time domain OCC code;
  • Table 3-1 Indicates the DMRS port number for sending DMRS; ⁇ represents the index of the CDM group.
  • Table 3-1 By comparing Table 3-1 and Table 1, it can be known that in Table 3-1, compared with the original Table 1, the number of DMRS ports can be expanded to 24. At the same time, when the DMRS port number is 0 to 11, the values of w f (k'+2t), w t (l') and ⁇ in Table 3 can be the same as those in Table 1.
  • the embodiment of the present application provides the expanded The DMRS port number, that is, the values of w f (k'+2t), w t (l') and ⁇ corresponding to 12 to 23.
  • the DMRS is sent through the DMRS ports whose DMRS port numbers are 12 to 23, the corresponding OCC code can be determined according to Table 3-1.
  • OCC tables corresponding to the DMRS ports 0 to 11 still use the tables of the prior art, and the DMRS ports 12 to 23 use the new OCC tables. As shown in Table 3-2 below.
  • the index of the CDM group is 0, including 4 DMRS ports, which are 0, 1, 6 and 7 respectively.
  • the two groups of REs corresponding to the CDM group in one RB respectively include 4 REs, wherein the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1, and the indices of the OFDM symbols occupied in the time domain are 2 and 3 .
  • the indices of the subcarriers occupied in the frequency domain of the second group of REs are 6 and 7, and the indices of the OFDM symbols occupied in the time domain are 2 and 3.
  • the OCC codes used in the first group of REs by the four DMRS ports in the CDM group are ⁇ 1, 1, 1, 1 ⁇ , ⁇ 1, -1, 1, -1 ⁇ , ⁇ 1, 1, -1, -1 ⁇ , ⁇ 1, -1, -1, 1 ⁇ . Since in the prior art, it is required to repeatedly transmit DMRS in the second group of REs, the OCC codes used in the second group of REs by the 4 DMRS ports in the CDM group are the same as the OCC codes used in the first group of REs.
  • the first group of REs and the second group of REs may be combined, and in this case, the OCC codes of the two groups of REs may be equivalent to OCC codes with a length of 8.
  • the OCC codes used in the first group of REs by the 8 DMRS ports in the CDM group are ⁇ 1, 1, 1, 1 ⁇ , ⁇ 1, -1, 1, -1 ⁇ , ⁇ 1, 1, -1, -1 ⁇ , ⁇ 1, -1, -1, 1 ⁇ , ⁇ 1, 1, 1, 1 ⁇ , ⁇ 1, -1, 1 , -1 ⁇ , ⁇ 1, 1, 1, -1, -1 ⁇ , ⁇ 1, 1, -1, -1 ⁇ , ⁇ 1, 1, -1, -1 ⁇ , ⁇ 1, -1, -1, 1 ⁇ .
  • the OCC codes used by the 8 DMRS ports in the CDM group in the second group of REs are ⁇ -1, -1, -1, -1 ⁇ , ⁇ -1, 1, -1, 1 ⁇ , ⁇ -1 respectively , -1, 1, 1 ⁇ , ⁇ -1, 1, 1, -1 ⁇ , ⁇ -1, -1, -1, -1 ⁇ , ⁇ -1, 1, -1, 1 ⁇ , ⁇ -1 , 1, 1, -1 ⁇ .
  • the equivalent OCC code of length 8 adopted by the 8 DMRS ports in the CDM group is ⁇ 1, 1, 1, 1, -1, -1, -1 ⁇ , ⁇ 1, -1, 1, -1, -1, 1, -1, 1 ⁇ , ⁇ 1, 1, -1, -1, -1, 1, 1 ⁇ , ⁇ 1, -1, -1, -1, 1, - 1, 1, 1, 1, -1 ⁇ , ⁇ 1, 1, 1, 1, -1, -1, -1, 1, - 1, 1, 1, 1, -1 ⁇ , ⁇ 1, 1, 1, 1, 1, -1, -1, -1, 1 ⁇ , ⁇ 1, 1, -1, -1, 1, -1 , 1 ⁇ , ⁇ 1, 1, -1, -1, -1, 1, 1 ⁇ , ⁇ 1, -1, -1, 1, 1, -1, 1, 1, 1, -1 ⁇ .
  • the OCC codes are orthogonal. This can ensure that sequences corresponding to different DMRS ports in the same CDM group are mutually orthogonal, avoiding interference between DMRS ports.
  • the network device can distinguish sequences sent by the terminal device in different groups of REs through the first DMRS port, and estimate the channel corresponding to the first DMRS port.
  • the fourth OCC used in the second group of REs The code can be ⁇ -1, 1, -1, 1 ⁇ .
  • the third OCC code and the fourth OCC code are composed of The second extended OCC code is ⁇ 1, -1, 1, -1, -1, 1, -1, 1 ⁇ , the two are mutually orthogonal, so the network device can distinguish the The DMRS sent by the port, that is to say, the network device can estimate the channels corresponding to the first DMRS port and the second DMRS port respectively.
  • the OCC codes used in the first group of REs and the OCC codes used in the second group of REs are orthogonal. Since each row of OCC codes corresponds to one DMRS port, 8 rows represent OCC codes on 8 DMRS ports, and every two rows are orthogonal. Therefore, in uplink transmission, the network device can separately estimate the channel corresponding to each DMRS port when different OCC codes are used, that is to say, the terminal device can send data of different streams through the first RE and the second RE, thereby improving the uplink capacity. .
  • the network device can indicate the first DMRS port and the DMRS port group to the terminal device through the indication information.
  • the indication information sent by the network device may be an index value, thereby indicating the DMRS port, the CDM group and the CDM group. Parameters such as the number of occupied OFDM symbols.
  • the terminal device when the uplink transmission rank of the terminal device configured by the network device is 1, the terminal device only needs one DMRS port when sending uplink data, that is, the number of DMRS ports configured by the network device is 1, and the DMRS port configured by the network device is 1.
  • the mapping relationship of parameters such as ports, CDM groups, and the number of OFDM symbols occupied by the CDM groups may be shown in Table 4.
  • the values when the index values are 0 to 27 are the same as those in Table 7.3.1.1.2-20 in the prior art TS 38.212.
  • the value when the index value is 28 to 39 is provided in this embodiment of the present application.
  • the indication information sent by the network device is 30, it means that the configured DMRS port number is 14, and the number of symbols occupied by the CDM group where the DMRS port is located is 2.
  • the ⁇ of the CDM group where the DMRS port is located is 2.
  • the terminal device When the uplink transmission rank of the terminal device configured on the network device is 2, the terminal device needs two DMRS ports when sending uplink data, that is, the number of DMRS ports configured on the network device is 2, and the DMRS port, CDM group and CDM group configured on the network device
  • the mapping relationship of parameters such as the number of occupied OFDM symbols can be shown in Table 5.
  • the values when the index values are 0 to 18 are the same as those in Table 7.3.1.1.2-21 in the prior art TS 38.212.
  • the index value ranges from 19 to 24, which are provided in this embodiment of the present application.
  • the indication information sent by the network device is 24, it indicates that the configured DMRS port numbers are 22 and 23.
  • the ⁇ of the CDM group where the DMRS port numbers 22 and 23 are located is 4.
  • the terminal device When the uplink transmission rank of the terminal device configured on the network device is 3, the terminal device needs three DMRS ports when sending uplink data, that is, the number of DMRS ports configured on the network device is 3, and the DMRS ports, CDM group and CDM group configured on the network device
  • the mapping relationship of parameters such as the number of occupied OFDM symbols can be shown in Table 6.
  • the values when the index values are 0 to 5 are the same as those in Table 7.3.1.1.2-22 in the prior art TS 38.212.
  • the index value is a value from 6 to 9, which is provided in this embodiment of the present application. For example, when the indication information sent by the network device is 9, it indicates that the configured DMRS port numbers are 19, 22, and 23.
  • the terminal device When the uplink transmission rank of the terminal device configured on the network device is 4, the terminal device needs four DMRS ports when sending uplink data, that is, the number of DMRS ports configured on the network device is 4, and the DMRS ports, CDM groups and CDM groups configured on the network device
  • the mapping relationship of parameters such as the number of occupied OFDM symbols can be shown in Table 7.
  • Table 7 the values when the index values are 0 to 4 are the same as those in Table 7.3.1.1.2-23 in the prior art TS 38.212.
  • the value of the index value of 5 to 7 is provided in this embodiment of the present application. For example, when the indication information sent by the network device is 7, it indicates that the configured DMRS port numbers are 16, 17, 22 and 23.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • 24 DMRS ports can be orthogonally supported, and 24-layer orthogonal multi-user pairing can be realized.
  • the first group of REs and the second group of REs corresponding to the CDM group may be located in the same subcarrier and in different symbols of the same time slot.
  • the first group of REs includes 4 REs, and the first group of REs occupies two consecutive subcarriers in the frequency domain and occupies two consecutive OFDM symbols in the time domain;
  • the second group of REs includes 4 REs, The second group of REs occupy two consecutive subcarriers in the frequency domain, and occupy two consecutive OFDM symbols in the time domain.
  • the two consecutive subcarriers occupied by the first group of REs are the same subcarriers as the two consecutive subcarriers occupied by the second group of REs; the two consecutive OFDM symbols occupied by the first group of REs , and the two consecutive sub-OFDM symbols occupied by the second group of REs are different OFDM symbols.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1
  • the indices of the OFDM symbols occupied by the first group of REs in the time domain are 2 and 3
  • the indices of the second group of REs in the frequency domain are
  • the indices of the occupied subcarriers are 0 and 1
  • the indices of the OFDM symbols occupied by the second group of REs in the time domain are 8 and 9.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 2 and 3, and the indices of the OFDM symbols occupied by the first group of REs in the time domain are 2 and 3; the subcarriers occupied by the second group of REs in the frequency domain are The indices of the carriers are 2 and 3; the indices of the OFDM symbols occupied by the second group of REs in the time domain are 8 and 9.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 4 and 5, and the indices of the OFDM symbols occupied by the first group of REs in the time domain are 2 and 3; the subcarriers occupied by the second group of REs in the frequency domain are The indices of the carriers are 4 and 5; the indices of the OFDM symbols occupied by the second group of REs in the time domain are 8 and 9.
  • 24 DMRS orthogonal ports can be supported to realize 24-layer orthogonal multi-user pairing.
  • Table 1 when the number of DMRS ports is greater than 12, the additional For the sequence on the DMRS symbol, the values of w f (k'), wt (l') and ⁇ are shown in Table 8 below.
  • the index of the CDM group is 0, including 4 DMRS ports, which are 0, 1, 6 and 7 respectively.
  • the two groups of REs corresponding to the CDM group in one RB respectively include 4 REs, wherein the indices of the subcarriers occupied in the frequency domain of the first group of REs are 0 and 1, and the OFDM symbols occupied in the time domain are The indices are 2 and 3.
  • the indices of the subcarriers occupied in the frequency domain of the second group of REs are 0 and 1, and the indices of the OFDM symbols occupied in the time domain are 8 and 9.
  • the OFDM symbols with indexes 8 and 9 are the symbol positions where additional (Additional) DMRSs are configured in the existing standard.
  • the OCC codes used in the first group of REs by the four DMRS ports in the CDM group are ⁇ 1, 1, 1, 1 ⁇ , ⁇ 1, -1, 1, -1 ⁇ , ⁇ 1, 1, -1, -1 ⁇ , ⁇ 1, -1, -1, 1 ⁇ .
  • the OCC codes used by the 4 DMRS ports in the CDM group in the second group of REs are the same as the OCC codes used in the first group of REs.
  • the first group of REs and the second group of REs may be combined, and in this case, the OCC codes of the two groups of REs may be equivalent to OCC codes with a length of 8.
  • the OCC codes used by the 8 DMRS ports in the CDM group in the first group of REs are ⁇ 1, 1, 1, 1 ⁇ , ⁇ 1, - respectively. 1, 1, -1 ⁇ , ⁇ 1, 1, -1, -1 ⁇ , ⁇ 1, -1, -1, 1 ⁇ , ⁇ 1, 1, 1, 1 ⁇ , ⁇ 1, -1, 1, -1 ⁇ , ⁇ 1, 1, -1, -1 ⁇ , ⁇ 1, 1, -1, -1 ⁇ , ⁇ 1, 1, -1, -1 ⁇ , ⁇ 1, -1, -1, 1 ⁇ .
  • the OCC codes used by the 8 DMRS ports in the CDM group in the second group of REs are ⁇ 1, 1, 1, 1 ⁇ , ⁇ 1, -1, 1, -1 ⁇ , ⁇ 1, 1, -1 respectively , -1 ⁇ , ⁇ 1, -1, -1, 1 ⁇ , ⁇ -1, -1, -1, -1 ⁇ , ⁇ -1, 1, -1, 1 ⁇ , ⁇ -1, -1, 1, 1 ⁇ , ⁇ -1, 1, 1, -1 ⁇ .
  • the equivalent OCC code of length 8 adopted by the 8 DMRS ports in the CDM group is ⁇ 1, 1, 1, 1, 1, 1, 1, 1 ⁇ , ⁇ 1, -1, 1, -1 , 1, -1, 1, -1 ⁇ , ⁇ 1, 1, -1, -1, 1, 1, -1, -1 ⁇ , ⁇ 1, 1, -1, -1, 1, 1, -1, -1, 1 ⁇ , ⁇ 1, 1, 1, 1, 1, -1, -1, -1, 1 ⁇ , ⁇ 1, 1, 1, 1, -1, -1, -1, 1, -1, 1 ⁇ , ⁇ 1, 1, -1, -1, -1, 1, 1 ⁇ , ⁇ 1, 1, -1, -1, -1, 1, 1 ⁇ , ⁇ 1, -1, -1, 1, 1, -1, 1, 1, 1, -1 ⁇ .
  • the 8 OCC codes are orthogonal to each other.
  • the OCC codes are orthogonal. This can ensure that sequences corresponding to different DMRS ports in the same CDM group are mutually orthogonal, avoiding interference between DMRS ports.
  • the network device can distinguish sequences sent by the terminal device in different groups of REs through the first DMRS port, and estimate the channel corresponding to the first DMRS port.
  • the fourth OCC used in the second group of REs The code can be ⁇ -1, 1, -1, 1 ⁇ .
  • the third OCC code and the fourth OCC code are composed of The second extended OCC code is ⁇ 1, -1, 1, -1, -1, 1, -1, 1 ⁇ , the two are mutually orthogonal, so the network device can distinguish the The DMRS sent by the port, that is to say, the network device can estimate the channels corresponding to the first DMRS port and the second DMRS port respectively.
  • the OCC code used in the first group of REs is orthogonal to the OCC code used in the second group of REs, that is to say, the terminal equipment can use the same DMRS port or different DMRS ports in the first group of REs. Data of different streams are sent in the RE and the second RE, thereby improving the upstream capacity.
  • each CDM group performs 4 times the OCC code spread spectrum.
  • the index value indicated by the indication information sent by the network device may refer to Table 4 to Table 7 in the first embodiment, and the specific process will not be repeated.
  • the OCC code is extended in the time domain by using the slowly changing characteristics of the time domain channel, so that 24 DMRS ports are supported orthogonally and the uplink capacity is improved.
  • the design of the frequency domain OCC code of the frequency domain DMRS based on the cyclic shift of the OCC code is mainly described to support the orthogonality of 24 DMRS ports.
  • the first group of REs and the second group of REs corresponding to the CDM group may be located in the same RB and in the same symbol in the same time slot; or, the first group of REs and the second group of REs corresponding to the CDM group may be located in the same RB.
  • REs may be located in different RBs and in the same symbols of the same slot.
  • the first group of REs includes 4 REs, and the first group of REs occupies two consecutive subcarriers in the frequency domain and occupies two consecutive OFDM symbols in the time domain;
  • the second group of REs includes 4 REs, The second group of REs occupy two consecutive subcarriers in the frequency domain, and occupy two consecutive OFDM symbols in the time domain.
  • the two consecutive subcarriers occupied by the first group of REs and the two consecutive subcarriers occupied by the second group of REs are subcarriers in the same RB; the two consecutive subcarriers occupied by the first group of REs are subcarriers in the same RB;
  • the OFDM symbol is the same OFDM symbol as the two consecutive sub-OFDM symbols occupied by the second group of REs.
  • the indices of the subcarriers occupied by the first RB in the first group of REs in the frequency domain are 1 and 3, or 5 and 7, or 9 and 11;
  • the indices of subcarriers occupied in one RB are 1 and 3, or 5 and 7, or 9 and 11.
  • the first DMRS weighted by the first OCC code or the second OCC code transmitted through the first DMRS port satisfies the following formula:
  • r(n) is the initial sequence corresponding to the first DMRS, and r(n) can be determined by the preceding formula (1) or formula (5);
  • M is a positive integer, and possible values are 1, 2, 4 or other positive integers.
  • M can be configured by signaling for network devices. If the value of M is not configured in signaling, the default value is adopted. If the value of M is configured through signaling, the configuration parameters in the signaling are used.
  • the signaling may be RRC signaling, DCI signaling, or the like.
  • is a cyclic shift factor, which may be pre-configured and associated with the DMRS port index, for example, refer to Table 9 below; the cyclic shift factor ⁇ may also be determined in other ways, which are not limited in this embodiment of the present application.
  • k is the subcarrier index
  • l is the OFDM symbol index
  • is the index of the first DMRS port.
  • the value of ⁇ is associated with the index of the CDM group; is the offset of the OFDM symbol
  • is the index of the subcarrier spacing
  • w f (k') represents the frequency domain OCC code
  • w t (l') represents the time domain OCC code
  • v is the layer index, which is a pre-configured value .
  • NA indicates that there is no corresponding value.
  • NA in Table 9 can also be replaced with other values, such as 0 or 3.
  • DMRS port 2 occupies subcarriers in the first RB in the frequency domain 6 REs with indices of 1, 3, 5, 7, 9, 11 respectively, and the OCC codes on the 6 REs are ⁇ +1, +1, +1, +1, +1 ⁇ ; DMRS port 3
  • the first RB in the frequency domain occupies 6 REs with subcarrier indices of 1, 3, 5, 7, 9, and 11 respectively, and the OCC codes on the 6 REs are ⁇ +1, -1, + 1, -1, +1, -1 ⁇ .
  • the REs occupied by DMRS port 2 and DMRS port 3 in FIG. 6 are actually the same RE.
  • the REs occupied by DMRS port 2 and DMRS port 3 are shown separately.
  • sequence form can be further transformed into a cyclic shift representation, namely:
  • [1-1 1-1 1-1] [1 1 1 1 1]*[s 0 ,s 1 ,..,s M-1 ] T (12)
  • Equation (12) is an expression of a cyclic shift.
  • the first group of REs may be 4 REs with subcarrier indices of 1 and 3 in the frequency domain, and OFDM symbols in the time domain with indices of 2 and 3; the second group of REs may be the subcarrier indices of 5, 5, and 7.
  • the 4 REs whose indices are 2 and 3 in the time domain; the third group of REs may be 4 REs whose subcarrier indices are 9 and 11 in the frequency domain and 2 and 3 in the time domain.
  • DMRS port 2 or DMRS port 3 can use different OCC codes to transmit DMRS in the first group of REs, the second group of REs and the third group of REs.
  • the first group of REs may be subcarrier indices 1, 3, 5, 7, 9, and 11 in the frequency domain, and the index of the OFDM symbol in the time domain is 2.
  • 6 REs; the second group of REs may be 6 REs whose subcarrier indices in the frequency domain are 1, 3, 5, 7, 9, and 11 respectively, and the index of the OFDM symbol in the time domain is 3.
  • DMRS port 2 or DMRS port 3 can use different OCC codes to transmit DMRS in the first group of REs and the second group of REs.
  • the network device can indicate the first DMRS port and the DMRS port group to the terminal device through the indication information.
  • the indication information sent by the network device may be an index value, thereby indicating the DMRS port, the CDM group and the CDM group. Parameters such as the number of occupied OFDM symbols.
  • the terminal device when the uplink transmission rank of the terminal device configured by the network device is 1, the terminal device only needs one DMRS port when sending uplink data, that is, the number of DMRS ports configured by the network device is 1, and the DMRS port configured by the network device is 1.
  • the mapping relationship of parameters such as ports, CDM groups, and the number of OFDM symbols occupied by the CDM groups may be as shown in Table 10.
  • the values when the index values are 0 to 13 are the same as those in Table 7.3.1.1.2-12 in the prior art TS 38.212.
  • the index value ranges from 14 to 32, which are provided in this embodiment of the present application. For example, when the indication information sent by the network device is 30, it means that the configured DMRS port number is 21.
  • the terminal device When the uplink transmission rank of the terminal device configured on the network device is 2, the terminal device needs two DMRS ports when sending uplink data, that is, the number of DMRS ports configured on the network device is 2, and the DMRS port, CDM group and CDM group configured on the network device
  • the mapping relationship of parameters such as the number of occupied OFDM symbols can be shown in Table 11.
  • the values when the index values are 0 to 9 are the same as those in Table 7.3.1.1.2-13 in the prior art TS 38.212.
  • the value when the index value is 10 to 18 is provided in this embodiment of the present application. For example, when the indication information sent by the network device is 18, it indicates that the configured DMRS port numbers are 22 and 23.
  • the terminal device When the uplink transmission rank of the terminal device configured on the network device is 3, the terminal device needs three DMRS ports when sending uplink data, that is, the number of DMRS ports configured on the network device is 3, and the DMRS ports, CDM group and CDM group configured on the network device
  • the mapping relationship of parameters such as the number of occupied OFDM symbols can be shown in Table 12.
  • the values when the index values are 0 to 2 are the same as those in Table 7.3.1.1.2-14 in the prior art TS 38.212.
  • the index value is a value from 3 to 9, which is provided in this embodiment of the present application. For example, when the indication information sent by the network device is 9, it indicates that the configured DMRS port numbers are 19, 20, and 23.
  • the terminal device When the uplink transmission rank of the terminal device configured on the network device is 4, the terminal device needs four DMRS ports when sending uplink data, that is, the number of DMRS ports configured on the network device is 4, and the DMRS ports, CDM groups and CDM groups configured on the network device
  • the mapping relationship of parameters such as the number of occupied OFDM symbols can be shown in Table 13.
  • the values when the index values are 0 to 3 are the same as those in Table 7.3.1.1.2-15 in the prior art TS 38.212.
  • the index value is a value from 4 to 9, which is provided in this embodiment of the present application. For example, when the indication information sent by the network device is 9, it indicates that the configured DMRS port numbers are 16, 18, 20, and 23.
  • DMRS port expansion is performed through frequency domain cyclic shift, which can support 24 DMRS orthogonal ports, realize 24-layer orthogonal multi-user pairing, and help improve uplink capacity. At the same time, it is compatible with the existing OCC codes, and the existing terminal equipment does not need to do any hardware and software updates.
  • the various embodiments described herein may be independent solutions, or may be combined according to internal logic, and these solutions all fall within the protection scope of the present application. It can be understood that, in the above method embodiments, the methods and operations implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used in the terminal device, and the methods and operations implemented by the network device can also be implemented by A component (eg, chip or circuit) implementation that can be used in a network device.
  • components such as chips or circuits
  • a component eg, chip or circuit
  • the methods provided by the embodiments of the present application are respectively introduced from the perspective of interaction between various devices.
  • the terminal device and the network device may include hardware structures and/or software modules, and the above functions are implemented in the form of hardware structures, software modules, or hardware structures plus software modules. . Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • each functional module in each embodiment of the present application may be integrated into one processor, or may exist physically alone, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • an embodiment of the present application further provides an apparatus 700 for implementing the functions of the terminal device or the network device in the above method.
  • the apparatus may be a software module or a system-on-chip.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 700 may include: a processing unit 701 and a communication unit 702 .
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, respectively configured to perform the sending and receiving steps of the terminal device or the network device in the above method embodiments.
  • the apparatus 700 may implement steps or processes corresponding to those performed by the terminal device or the network device in the above method embodiments, which will be described separately below.
  • the processing unit 701 is configured to send indication information to the terminal device through the communication unit 702, where the indication information indicates the first demodulation reference signal DMRS port and the code division multiplexing CDM group where the first DMRS port is located;
  • the processing unit 701 is configured to receive, through the communication unit 702, the first DMRS transmitted through the first DMRS port in the first group of REs and the second group of REs associated with the CDM group; wherein, through the The first orthogonal cover code OCC code used by the first DMRS port to transmit the first DMRS in the first group of REs is different from the second OCC code used to transmit the first DMRS in the second group of REs ;
  • the first group of REs and the second group of REs satisfy any of the following conditions: located in the same resource block RB; located in the same subcarrier, and located in different symbols of the same time slot; located in different resources within a block RB and in the same symbol in the same slot.
  • the CDM group further includes a second DMRS port; and the method further includes: the network device receives data from the first group of REs and the second group of REs through the first group of REs and the second group of REs.
  • the second DMRS sent by two DMRS ports; wherein, the second DMRS port adopts the third OCC code in the first group of REs, and adopts the fourth OCC code in the second group of REs; the first DMRS
  • the first extended OCC code corresponding to the port is orthogonal to the second extended OCC code corresponding to the second DMRS port; the first extended OCC code includes the first OCC code and the second OCC code, the first extended OCC code
  • a two-spread OCC code includes the third OCC code and the fourth OCC code being orthogonal.
  • the first DMRS transmitted through the first DMRS port after being weighted by the first OCC code or the second OCC code satisfies the following formula:
  • n 0,1,...
  • is the subcarrier offset, and its value is associated with the index of the CDM group; is the offset of the OFDM symbol; ⁇ is the index of the subcarrier spacing; w f (k'+2t) represents the frequency domain OCC code, wt (l') represents the time domain OCC code;
  • the first DMRS transmitted through the first DMRS port after being weighted by the first OCC code or the second OCC code satisfies the following formula:
  • n 0,1,...
  • r(n) is the initial sequence corresponding to the first DMRS weighted by the first OCC code or the second OCC code and transmitted through the first DMRS port; is a round-down operation; mod() is a remainder operation; r(n) is the initial sequence corresponding to the first DMRS; ⁇ is a cyclic shift factor; M is a positive integer; k is a subcarrier index, l is the OFDM symbol index, is the index of the first DMRS port; mod() is the remainder operation; r(n) is the initial sequence corresponding to the first DMRS; ⁇ is the subcarrier offset, and its value is associated with the index of the CDM group; is the offset of the OFDM symbol; ⁇ is the index of the subcarrier spacing; w f (k') represents the frequency domain OCC code, w t (l') represents the time domain OCC code; v is the layer index.
  • is preconfigured and associated with the first DMRS port index; M is configured by the network device, or is a default value.
  • the first group of REs includes 4 REs, and the first group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive orthogonal frequency divisions in the time domain Multiplexing OFDM symbols;
  • the second group of REs includes 4 REs, and the second group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive OFDM symbols in the time domain;
  • the first group of REs The two consecutive subcarriers occupied by group REs are different subcarriers from the two consecutive subcarriers occupied by the second group of REs;
  • the two consecutive OFDM symbols occupied by the first group of REs are different from the two consecutive subcarriers occupied by the first group of REs
  • the two consecutive sub-OFDM symbols occupied by the second group of REs are the same OFDM symbols.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1, or 2 and 3, or 4 and 5; the second group of REs occupied in the frequency domain
  • the indices of the subcarriers are 6 and 7, or 8 and 9, or 10 and 11.
  • the first group of REs includes 4 REs, and the first group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive orthogonal frequency divisions in the time domain Multiplexing OFDM symbols;
  • the second group of REs includes 4 REs, and the second group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive OFDM symbols in the time domain;
  • the first group of REs The two consecutive subcarriers occupied by the group of REs are the same as the two consecutive subcarriers occupied by the second group of REs;
  • the two consecutive OFDM symbols occupied by the first group of REs are the same as the two consecutive subcarriers occupied by the first group of REs.
  • the two consecutive sub-OFDM symbols occupied by the second group of REs are different OFDM symbols.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1, or 2 and 3, or 4 and 5; the second group of REs occupied in the frequency domain
  • the indices of the subcarriers are 0 and 1, or 2 and 3, or 4 and 5.
  • the first group of REs includes 4 REs, the first group of REs occupy two discontinuous subcarriers in the frequency domain, and occupy two consecutive orthogonal frequencies in the time domain division multiplexing OFDM symbols;
  • the second group of REs includes 4 REs, and the second group of REs occupy two discontinuous subcarriers in the frequency domain and two consecutive OFDM symbols in the time domain;
  • the two discontinuous subcarriers occupied by the first group of REs are located in different RBs from the two discontinuous subcarriers occupied by the second group of REs;
  • the two consecutive sub-OFDM symbols occupied by the second group of REs are the same OFDM symbols.
  • a communication unit 702 configured to receive indication information, where the indication information indicates a first demodulation reference signal DMRS port and a code division multiplexing CDM group where the first DMRS port is located;
  • a processing unit 701 configured to determine N groups of resource element REs corresponding to the CDM group indicated by the indication information; N is an integer greater than 1;
  • the communication unit 702 is configured to transmit the first DMRS in the first group of REs and the second group of REs in the N groups of REs through the first DMRS port indicated by the indication information;
  • the first orthogonal cover code OCC code is used for transmitting the first DMRS in the first group of REs through the first DMRS port, and the second DMRS code is used for transmitting the first DMRS in the second group of REs.
  • OCC code, the first OCC code and the second OCC code are different;
  • first group of REs and the second group of REs satisfy any of the following conditions:
  • the CDM group further includes a second DMRS port; and the method further includes: the network device receives data from the first group of REs and the second group of REs through the first group of REs and the second group of REs.
  • the second DMRS sent by two DMRS ports; wherein, the second DMRS port adopts the third OCC code in the first group of REs, and adopts the fourth OCC code in the second group of REs; the first DMRS
  • the first extended OCC code corresponding to the port is orthogonal to the second extended OCC code corresponding to the second DMRS port; the first extended OCC code includes the first OCC code and the second OCC code, the first extended OCC code
  • a two-spread OCC code includes the third OCC code and the fourth OCC code being orthogonal.
  • the first DMRS transmitted through the first DMRS port after being weighted by the first OCC code or the second OCC code satisfies the following formula:
  • n 0,1,...
  • is the subcarrier offset, and its value is associated with the index of the CDM group; is the offset of the OFDM symbol; ⁇ is the index of the subcarrier spacing; w f (k'+2t) represents the frequency domain OCC code, wt (l') represents the time domain OCC code;
  • the first DMRS transmitted through the first DMRS port after being weighted by the first OCC code or the second OCC code satisfies the following formula:
  • n 0,1,...
  • r(n) is the initial sequence corresponding to the first DMRS weighted by the first OCC code or the second OCC code and transmitted through the first DMRS port; is a round-down operation; mod() is a remainder operation; r(n) is the initial sequence corresponding to the first DMRS; ⁇ is a cyclic shift factor; M is a positive integer; k is a subcarrier index, l is the OFDM symbol index, is the index of the first DMRS port; mod() is the remainder operation; r(n) is the initial sequence corresponding to the first DMRS; ⁇ is the subcarrier offset, and its value is associated with the index of the CDM group; is the offset of the OFDM symbol; ⁇ is the index of the subcarrier spacing; w f (k') represents the frequency domain OCC code, w t (l') represents the time domain OCC code; v is the layer index.
  • is preconfigured and associated with the first DMRS port index; M is configured by the network device, or is a default value.
  • the first group of REs includes 4 REs, and the first group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive orthogonal frequency divisions in the time domain Multiplexing OFDM symbols;
  • the second group of REs includes 4 REs, and the second group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive OFDM symbols in the time domain;
  • the first group of REs The two consecutive subcarriers occupied by group REs are different subcarriers from the two consecutive subcarriers occupied by the second group of REs;
  • the two consecutive OFDM symbols occupied by the first group of REs are different from the two consecutive subcarriers occupied by the first group of REs
  • the two consecutive sub-OFDM symbols occupied by the second group of REs are the same OFDM symbols.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1, or 2 and 3, or 4 and 5; the second group of REs occupied in the frequency domain
  • the indices of the subcarriers are 6 and 7, or 8 and 9, or 10 and 11.
  • the first group of REs includes 4 REs, and the first group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive orthogonal frequency divisions in the time domain Multiplexing OFDM symbols;
  • the second group of REs includes 4 REs, and the second group of REs occupy two consecutive subcarriers in the frequency domain and two consecutive OFDM symbols in the time domain;
  • the first group of REs The two consecutive subcarriers occupied by the group of REs are the same as the two consecutive subcarriers occupied by the second group of REs;
  • the two consecutive OFDM symbols occupied by the first group of REs are the same as the two consecutive subcarriers occupied by the first group of REs.
  • the two consecutive sub-OFDM symbols occupied by the second group of REs are different OFDM symbols.
  • the indices of the subcarriers occupied by the first group of REs in the frequency domain are 0 and 1, or 2 and 3, or 4 and 5; the second group of REs occupied in the frequency domain
  • the indices of the subcarriers are 0 and 1, or 2 and 3, or 4 and 5.
  • the first group of REs includes 4 REs, the first group of REs occupy two discontinuous subcarriers in the frequency domain, and occupy two consecutive orthogonal frequencies in the time domain division multiplexing OFDM symbols;
  • the second group of REs includes 4 REs, and the second group of REs occupy two discontinuous subcarriers in the frequency domain and two consecutive OFDM symbols in the time domain;
  • the two discontinuous subcarriers occupied by the first group of REs are located in different RBs from the two discontinuous subcarriers occupied by the second group of REs;
  • the two consecutive sub-OFDM symbols occupied by the second group of REs are the same OFDM symbols.
  • FIG. 8 shows an apparatus 800 provided by an embodiment of the present application, and the apparatus shown in FIG. 8 may be an implementation manner of a hardware circuit of the apparatus shown in FIG. 7 .
  • the communication apparatus may be applied to the flowchart shown in FIG. 3 to perform the functions of the terminal device or the network device in the foregoing method embodiments.
  • FIG. 8 only shows the main components of the communication device.
  • the apparatus 800 shown in FIG. 8 includes at least one processor 820, which is configured to implement any of the methods in FIG. 3 provided by the embodiments of the present application.
  • the apparatus 800 may also include at least one memory 830 for storing program instructions and/or data.
  • Memory 830 is coupled to processor 820 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 820 may cooperate with memory 830 .
  • Processor 820 may execute program instructions stored in memory 830 . At least one of the at least one memory may be included in the processor.
  • each step of the above-mentioned method can be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware. To avoid repetition, detailed description is omitted here.
  • the processor in this embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above method embodiments may be completed by a hardware integrated logic circuit in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processing circuit (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable chips.
  • DSP digital signal processing circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application may be embodied as executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in this embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the apparatus 800 may also include a communication interface 810 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 800 may communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver integrating a transceiver function, or an interface circuit.
  • the apparatus 800 may also include a communication line 840 .
  • the communication interface 810, the processor 820 and the memory 830 can be connected to each other through a communication line 840; the communication line 840 can be a peripheral component interconnect (PCI for short) bus or an extended industry standard architecture (extended industry standard architecture). , referred to as EISA) bus and so on.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the communication line 840 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • the processor 820 is used to execute the instructions or programs stored in the memory 830 .
  • the processor 820 is used to perform the operations performed by the processing unit 701 in the above-mentioned embodiments
  • the communication interface 810 is used to perform the operations performed by the communication unit 702 in the above-mentioned embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, can implement the process related to the terminal device in the embodiment shown in FIG. 3 provided by the foregoing method embodiment .
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, can implement the process related to the network device in the embodiment shown in FIG. 3 provided by the foregoing method embodiment .
  • An embodiment of the present application further provides a computer program product including an instruction, when the instruction is executed, executes the method of the terminal device in the method embodiment shown in FIG. 3 above.
  • An embodiment of the present application further provides a computer program product including an instruction, when the instruction is executed, executes the method of the network device in the method embodiment shown in FIG. 3 above.
  • An embodiment of the present application further provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory.
  • a processor which is coupled to a memory and configured to execute a computer program or instruction stored in the memory.
  • the processor executes the computer program or instruction, Execute the method of the terminal device in the method embodiment shown in FIG. 3 above.
  • An embodiment of the present application further provides a chip, including a processor, which is coupled to a memory and configured to execute a computer program or instruction stored in the memory.
  • a processor which is coupled to a memory and configured to execute a computer program or instruction stored in the memory.
  • the processor executes the computer program or instruction, Execute the method of the network device in the method embodiment shown in FIG. 3 above.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, optical storage, etc.) having computer-usable program code embodied therein.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,其中方法包括:网络设备向终端设备发送指示信息,所述指示信息指示第一DMRS端口以及所述第一DMRS端口所处的码分复用CDM组;所述网络设备在所述CDM组关联的第一组RE和第二组RE中接收通过所述第一DMRS端口传输的第一DMRS;其中,通过所述第一DMRS端口在所述第一组RE中传输所述第一DMRS采用的第一OCC码和在所述第二组RE中传输所述第一DMRS采用的第二OCC码不同;其中,所述第一组RE与所述第二组RE满足以下任一条件:位于相同的资源块RB内;位于相同的子载波,且位于同一时隙的不同符号中;位于不同的RB内,且位于同一时隙的相同符号中。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2020年07月30日提交中国专利局、申请号为202010753330.3、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在第四代(fourth generation,4G)和第五代(fifth generation,5G)无线通信系统,例如新无线接入技术(new radio access technology,NR)系统中,定义了解调参考信号(demodulation reference signal,DMRS),探测参考信号(sounding reference signal,SRS)用于网络侧信道估计。SRS信号用于信道状态信息(channel state information,CSI)测量,DMRS用于物理上行共享信道(physical uplink shared channel,PUSCH)数据解调。在进行CSI测量和数据解调时,都需要先根据导频进行信道估计。
在上行DMRS信道估计中,与采用的波形配置也密切相关。在NR系统中,支持两种波形,即基于循环前缀的正交频分复用(cyclic prefixed orthogonal frequency division multiplexing,CP-OFDM)和基于离散傅利叶变换扩展的正交频分复用(discrete fourier transform-spread-orthogonal frequency division multiplexing,DFT-S-OFDM)波形。上行具体选用哪种波形,主要是通过高层信令配置。当前的NR系统中,上行DFT-S-OFDM波形可支持8层正交配对,而CP-OFDM波形可支持12层正交配置。当配对层数超过了8层或12层,则会导致DMRS的信道估计不准,影响PUSCH的解调性能,降低上行容量。
随着移动通信的发展以及新兴业务的出现,对上行容量的需求越来越高。例如,对于一些视频监控场景,需要终端回传高清视频到基站,因此需要较大的上行容量。
发明内容
本申请提供一种通信方法及装置,用以提供一种支持更多正交端口的解调参考信号,以支持更高层数的多用户配对。
第一方面,本申请提供一种通信方法,该方法包括:网络设备向终端设备发送指示信息,所述指示信息指示第一解调参考信号DMRS端口以及所述第一DMRS端口所处的码分复用CDM组;所述网络设备在所述CDM组关联的第一组RE和第二组RE中接收通过所述第一DMRS端口传输的第一DMRS;其中,通过所述第一DMRS端口在所述第一组RE中传输所述第一DMRS采用的第一正交覆盖码OCC码和在所述第二组RE中传输所述第一DMRS采用的第二OCC码不同;其中,所述第一组RE与所述第二组RE满足以下任一条件:位于相同的资源块RB内;位于相同的子载波,且位于同一时隙的不同符号中;位于不同的资源块RB内,且位于同一时隙的相同符号中。
根据本申请提供的方法,在第一组RE中通过第一DMRS端口传输第一DMRS时采用 的第一OCC码与在第二组RE中通过第一DMRS端口传输第一DMRS时采用的第二OCC码不同,网络设备从而可以实现根据第一OCC码和第二OCC码区分通过第一DMRS端口在不同组RE中传输的DMRS,从而分别估计出对应不同组RE的信道,相当于在不增加DMRS开销的情况下,提高了每个CDM组支持的DMRS端口数量,从而提高了上行信道的容量。
在一种可能的设计中,所述CDM组中还包括第二DMRS端口;所述方法还包括:所述网络设备在所述第一组RE和所述第二组RE中接收通过所述第二DMRS端口发送的第二DMRS;其中,所述第二DMRS端口在所述第一组RE中采用第三OCC码,在所述第二组RE中采用第四OCC码;所述第一DMRS端口对应的第一扩展OCC码与所述第二DMRS端口对应的第二扩展OCC码正交;所述第一扩展OCC码包括所述第一OCC码和所述第二OCC码,所述第二扩展OCC码包括所述第三OCC码和所述第四OCC码正交。
在一种可能的设计中,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
Figure PCTCN2021108982-appb-000001
k=6n+k'+Δ配置类型2
k'=0,1
t=mod(n,2)
Figure PCTCN2021108982-appb-000002
n=0,1,...
j=0,1,...,v-1
其中,
Figure PCTCN2021108982-appb-000003
表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;k为子载波索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000004
为所述第一DMRS端口的索引;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;t=0时,w f(k'+2t)和w t(l')用于确定所述第一组RE中的所述第一OCC码;t=1时,w f(k'+2t)和w t(l')用于确定所述第二组RE中的所述第二OCC码,Δ为子载波偏移,其取值和CDM组的索引关联;
Figure PCTCN2021108982-appb-000005
是OFDM符号的偏移;μ为子载波间隔的索引;w f(k'+2t)表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
在一种可能的设计中,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
Figure PCTCN2021108982-appb-000006
k=4n+2k'+Δ配置类型1
k'=0,1
Figure PCTCN2021108982-appb-000007
Figure PCTCN2021108982-appb-000008
n=0,1,...
j=0,1,...,v-1
其中,
Figure PCTCN2021108982-appb-000009
表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;
Figure PCTCN2021108982-appb-000010
为向下取整运算;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;ρ为循环移位因子;M取值为正整数;k为子载波索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000011
为所述第一DMRS端口的索引;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;Δ为子载波偏移,其取值和CDM组的索引关联;
Figure PCTCN2021108982-appb-000012
是OFDM符号的偏移;μ为子载波间隔的索引;w f(k')表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
在一种可能的设计中,循环移位因子ρ为预配置的,与所述第一DMRS端口索引相关联;M为所述网络设备配置的,或者为默认值。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为不同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
在一种可能的设计中,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;所述第二组RE在频域上占用的子载波的索引为6和7,或者8和9,或者10和11。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为相同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为不同的OFDM符号。
在一种可能的设计中,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;所述第二组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE 包括4个RE,所述第二组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个不连续的子载波,与所述第二组RE占用的两个不连续的子载波位于不同的RB;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
第二方面,本申请还提供了一种装置,所述装置可以是网络设备,该装置具有实现上述第一方面方法实例或第一方面的各个可能的设计示例中的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括通信单元和处理单元,这些单元可以执行上述第一方面或第一方面各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述装置的结构中包括通信接口和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述装置执行上述第一方面或第一方面各个可能的设计方法中相应的功能。所述存储器与所述处理器耦合,其保存所述装置必要的程序指令和数据。
第三方面,提供一种方法,包括:
终端设备接收指示信息,所述指示信息指示第一解调参考信号DMRS端口以及所述第一DMRS端口所处的码分复用CDM组;所述终端设备确定所述指示信息指示的所述CDM组对应的N组资源元素RE;N为大于1的整数;所述终端设备通过所述指示信息指示的所述第一DMRS端口在所述N组RE中的第一组RE和第二组RE中传输第一DMRS;其中,通过所述第一DMRS端口在所述第一组RE中传输所述第一DMRS采用第一正交覆盖码OCC码和在所述第二组RE中传输所述第一DMRS采用第二OCC码,所述第一OCC码和所述第二OCC码不同;其中,所述第一组RE与所述第二组RE满足以下任一条件:
位于相同的资源块RB内;位于相同的子载波,且位于同一时隙的不同符号中;位于不同的资源块RB内,且位于同一时隙的相同符号中。
在一种可能的设计中,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
Figure PCTCN2021108982-appb-000013
k=6n+k'+Δ配置类型2
k'=0,1
t=mod(n,2)
Figure PCTCN2021108982-appb-000014
n=0,1,...
j=0,1,...,v-1
其中,
Figure PCTCN2021108982-appb-000015
表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;k为子载波索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000016
为所述第一DMRS端口的索引;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;t=0时,w f(k'+2t)和w t(l')用于确定所述第一组RE中的所述第一OCC码;t=1时, w f(k'+2t)和w t(l')用于确定所述第二组RE中的所述第二OCC码,Δ为子载波偏移,其取值和CDM组的索引关联;
Figure PCTCN2021108982-appb-000017
是OFDM符号的偏移;μ为子载波间隔的索引;w f(k'+2t)表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
在一种可能的设计中,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
Figure PCTCN2021108982-appb-000018
k=4n+2k'+Δ配置类型1
k'=0,1
Figure PCTCN2021108982-appb-000019
Figure PCTCN2021108982-appb-000020
n=0,1,...
j=0,1,...,v-1
其中,
Figure PCTCN2021108982-appb-000021
表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;
Figure PCTCN2021108982-appb-000022
为向下取整运算;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;ρ为循环移位因子;M取值为正整数;k为子载波索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000023
为所述第一DMRS端口的索引;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;Δ为子载波偏移,其取值和CDM组的索引关联;
Figure PCTCN2021108982-appb-000024
是OFDM符号的偏移;μ为子载波间隔的索引;w f(k')表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
在一种可能的设计中,ρ为预配置的,与所述第一DMRS端口索引相关联;M为所述网络设备配置的,或者为默认值。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为不同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
在一种可能的设计中,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;所述第二组RE在频域上占用的子载波的索引为6和7,或者8和9,或者10和11。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为相同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二 组RE占用的两个连续的子OFDM符号为不同的OFDM符号。
在一种可能的设计中,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;所述第二组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个不连续的子载波,与所述第二组RE占用的两个不连续的子载波位于不同的RB;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
第四方面,本申请还提供了一种装置,所述装置可以是终端设备,该装置具有实现上述第三方面方法实例或第三方面的各个可能的设计示例中的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括通信单元和处理单元,这些单元可以执行上述第三方面或第三方面各个可能的设计示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述装置的结构中包括通信接口和处理器,可选的还包括存储器,所述收发器用于收发数据,以及用于与通信系统中的其他设备进行通信交互,所述处理器被配置为支持所述装置执行上述第三方面或第三方面各个可能的设计方法中相应的功能。所述存储器与所述处理器耦合,其保存所述装置必要的程序指令和数据。
第五方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的指令。
第六方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第三方面或第三方面中任一种可能实现方式中的方法的指令。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面或第一方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第三方面或第三方面中任一种可能实现方式中的方法。
第九方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序或指令时,如第一方面所述的方法被执行。
第十方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序或指令时,如第三方面所述的方法被执行。
第十一方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指令,以使所述通信装置执行如第一方面中所示的相应的方法。
第十二方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或 指令,以使所述通信装置执行如第三方面中所示的相应的方法。
第十三方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第一方面所述的方法。
第十四方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和通信接口,所述通信接口,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第三方面所述的方法。
第十五方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第一方面所述的方法被实现。
第十六方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第三方面所述的方法被实现。
第十七方面,本申请提供一种系统,包括上述第二方面提供的通信装置以及上述第四方面提供的通信装置。
附图说明
图1示出了一种适用于本申请的通信系统的架构示意图;
图2为本申请实施例提供的一种资源示意图;
图3为本申请实施例提供的一种通信方法流程示意图;
图4为本申请实施例提供的一种资源示意图;
图5为本申请实施例提供的一种资源示意图;
图6为本申请实施例提供的一种资源示意图;
图7为本申请实施例提供的一种通信装置结构示意图;
图8为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例可以应用于各种移动通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、演进的长期演进(evolved long term evolution,eLTE)系统、未来通信系统等其它通信系统,具体的,在此不做限制。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
应理解,本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是 指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
为了更加清晰地描述本申请实施例的技术方案,下面结合附图,对本申请实施例提供的DMRS配置方法及装置进行详细说明。
图1示出了一种适用于本申请的通信系统的架构,所述通信系统的架构中可以包括网络设备和终端设备。具体的:
网络设备,用于从所述终端设备接收上行信号,或向所述终端设备发送下行信号;所述网络设备可以是长期演进(long term evolution,LTE)和/或NR的网络设备,具体的可以是基站(NodeB)、演进型基站(eNodeB)、5G移动通信系统中的基站、下一代移动通信基站(next generation Node B,gNB),未来移动通信系统中的基站或Wi-Fi系统中的接入节点等。所述网络设备还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为无线接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网CN中的网络设备,对此不作限定。
终端设备,又可以称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。所述终端设备是用户侧的一种用于接收或发射信号的实体,用于向所述网络设备发送上行信号,或从所述网络设备接收下行信号。所述终端设备可以包括手机、车、平板电脑以及智能音箱、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收网络设备的控制信息与下行数据,并发送电磁波,向网络设备传输上行数据。
应理解,所述通信系统中可以包括一个或多个网络设备,以及包括一个或多个终端设备,图1中仅以一个网络设备和四个终端设备(如图1中的终端设备1、终端设备2、终端设备3和终端设备4)为例示出,但是并不能对通信系统中的网络设备和终端设备的数量进行限定。
需要说明的是,图1所示的通信系统的架构中不限于仅包含图中所示的节点或设备,还可以包含其它未在图中表示的设备,具体本申请在此处不再一一列举。
需要说明的是,本申请实施例并不限定各个节点或设备的分布形式,图1所示的分布形式只是示例性的,本申请不作限定。
应理解,本申请中所有节点或设备的名称仅仅作为示例,在未来通信中还可以称为其它名称,或者在未来通信中本申请涉及的节点或设备还可以通过其它具有相同功能的实体或者设备等来替代,本申请对此均不作限定。这里做统一说明,后续不再赘述。
需要说明的是,图1所示的通信系统可以为4G或5G移动通信系统,同样本申请实施例的方法还适用于未来的各种通信系统,例如6G或者其他通信网络等。只要通信系统中存在实体需要发送下行数据以及导频信息,另一个实体需要接收该指示信息,并能通过上行反馈信息以及传输数据;也即只要通信系统存在下行和上行通信链路,这样的通信系统均可以应用为本申请。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
目前,现有技术中,可以采用ZC(Zadoff-Chu)序列或者gold序列生成DMRS序列,下面将详细描述。
基于gold序列生成的DMRS的初始序列r(n)可以满足以下公式:
Figure PCTCN2021108982-appb-000025
其中,c(i)为伪随机序列,生成公式为:
Figure PCTCN2021108982-appb-000026
其中,N C=1600,x 1(n)可以初始化为x 1(0)=1,x 1(n)=0,n=1,2,...,30,x 2(n)满足:
Figure PCTCN2021108982-appb-000027
c init定义为以下形式:
Figure PCTCN2021108982-appb-000028
其中,l为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号索引,
Figure PCTCN2021108982-appb-000029
为一个帧内的时隙数,
Figure PCTCN2021108982-appb-000030
为一个时隙内的OFDM符号数,n SCID∈{0,1}为DMRS序列初始化参数,
Figure PCTCN2021108982-appb-000031
为掩码。
Figure PCTCN2021108982-appb-000032
取值取决于不同的高层参数配置。
需要说明的是,本申请实施例中,OFDM符号也可以简称为符号,如果没有特别说明,下文中的符号就是指OFDM符号。
在将序列r(n)映射到每个资源元素(resource element,RE)上时,满足以下公式(或者可以参考TS 38.211第6.4.1.1.3节):
Figure PCTCN2021108982-appb-000033
其中,k为子载波(等效于RE)索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000034
为DMRS端口的索引。r(n)为所述第一DMRS对应的初始序列。
Figure PCTCN2021108982-appb-000035
是OFDM符号的偏移;w f(k')表示频域OCC码,w t(l')表示时域OCC码。μ表示子载波间隔索引,子载波间隔的大小可以表示为15×2 μKHz,例如μ=0,则子载波间隔为15KHz。
w f(k′),w t(l′)和Δ的取值具体可以参考后面的表1,或者可以参考文件TS 38.211第6.4.1.1.3节。
表1
Figure PCTCN2021108982-appb-000036
表1中,
Figure PCTCN2021108982-appb-000037
表示发送DMRS的DMRS端口号;λ和Δ的取值与码分多路复用(code division multiplexing,CDM)组相关联。
当前的标准中,每个CDM组最多支持4个DMRS端口,这4个DMRS端口发送的DMRS采用相互正交的正交覆盖码(Orthogonal cover code,OCC)码进行区分,3个CDM组总共支持12个DMRS端口正交。目前,每一个CDM组在一个资源块(resource block,RB)内对应2组RE,也就是说每一个CDM组对应的DMRS在一个RB内会重复传输一次。
举例来说,如图2所示,一个CDM组在一个RB内对应的两组RE分别包括4个RE,其中第一组RE频域上占用的子载波的索引为0和1,时域上占用的OFDM符号的索引为2和3。该CDM组包括4个DMRS端口{0,1,6,7}时,在第一组RE包括的4个RE对应的OCC码为{1,1,1,1},{1,-1,1,-1},{1,1,-1,-1},{1,-1,-1,1}。第二组RE频域上占用的子载波的索引为6和7,时域上占用的OFDM符号的索引为2和3。需要注意的是,第一组RE包括的4个RE对应的OCC码,和第一组RE对应的OCC码一样。
需要说明的是,每个DMRS端口对应的OCC码是根据该DMRS端口对应的w f(k′)和w t(l′)确定的,具体可以参考现有标准中的描述,在此不再赘述。
在上行传输中基于ZC序列的DMRS序列满足以下公式,或者可以参考TS 38.211:
Figure PCTCN2021108982-appb-000038
其中,n为序列中的每个元素的索引,
Figure PCTCN2021108982-appb-000039
为序列的总长度,u∈{0,1,...,29}为序列组索引,v为在某一个序列组里的基序列数,m为基站给终端分配的RB数目,
Figure PCTCN2021108982-appb-000040
为一个RB中包括的子载波数目。对于PUSCH传输,δ=1和α=0。此外,
Figure PCTCN2021108982-appb-000041
定义为:
Figure PCTCN2021108982-appb-000042
其中,
Figure PCTCN2021108982-appb-000043
N ZC的取值为小于M ZC的最大素数。对于序列组索引u,其取值为:
Figure PCTCN2021108982-appb-000044
其中,f gh指示是否进行序列跳频,
Figure PCTCN2021108982-appb-000045
的取值受限于以下两种情况。
情况1:当高层配置了窄带物理上行控制信道(narrow physical uplink control channel,nPUCCH)-Identity参数,以及上行授权(grant)信息既不是随机接入响应(random access response,RAR)grant,也不是为临时小区无线网络临时标识(Temporary Cell-Radio Network Temporary Identifier,TC-RNTI)加扰的下行控制信息(Downlink Control Information,DCI)format 0_0,则
Figure PCTCN2021108982-appb-000046
Figure PCTCN2021108982-appb-000047
由高层的nPUSCH-Identity参数配置。
情况2:
Figure PCTCN2021108982-appb-000048
即与小区标识(Identity,ID)相等。
由于不同的小区和不同的终端可以配置不同的
Figure PCTCN2021108982-appb-000049
则不同小区生成的序列具有一定的随机性。
当生成序列r(n)后,需要将序列经过OCC扩频映射到DMRS所对应的时频位置上,映射公式为(或者可以参考TS 38.211的第6.4.1.1.3节):
Figure PCTCN2021108982-appb-000050
其中,k为频域子载波(等效于RE)索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000051
为DMRS端口的索引。
该生成公式与前面的公式(4)不同的是,其只支持配置类型I DMRS,而不支持配置类型II DMRS。其中的w f(k′),w t(l′)和Δ的取值见下表2(或者也可以参考TS 38.211的第6.4.1.1.3节)。
表2
Figure PCTCN2021108982-appb-000052
表2中各种参数的含义可以参考表1中的描述,在此不再赘述。
结合前面的描述,参见图3,为本申请实施例提供的一种通信方法流程示意图。该方法包括:
步骤301:网络设备向终端设备发送指示信息。
其中,所述指示信息指示第一DMRS端口以及所述第一DMRS端口所处的CDM组。需要说明的是,终端设备在发送DMRS之前,网络设备可以通过指示信息配置发送DMRS的DMRS端口以及CDM组。网络设备可以通过所述指示信息为终端设备配置至少一个DMRS端口,本申请实施例以第一DMRS端口为例进行说明,不代表网络设备只配置了一个DMRS端口。
需要说明的是,网络设备可以通过DCI发送所述指示信息。
步骤302:终端设备接收指示信息,并确定所述指示信息指示的CDM组对应的N组RE。
其中,N为大于1的整数,一组RE包括至少一个RE。
需要说明的是,目前,每个CDM组存在对应的多组RE,该对应关系是预先配置的。
步骤303:终端设备通过指示信息指示的第一DMRS端口在N组RE中的第一组RE和第二组RE中传输第一DMRS;
其中,通过所述第一DMRS端口在所述第一组RE中传输所述第一DMRS采用第一OCC码,在所述第二组RE中传输所述第一DMRS采用第二OCC码,所述第一OCC码和所述第二OCC码不同。
其中,所述第一组RE与所述第二组RE满足以下任一条件:
位于相同的资源块(resource block,RB)内;
位于相同的子载波,且位于同一时隙的不同符号中;
位于不同的RB内,且位于同一时隙的相同符号中。
步骤304:网络设备在所述CDM组关联的第一组RE和第二组RE中接收通过所述第一DMRS端口发送的第一DMRS。
进一步的,所述CDM组中还可以包括第二DMRS端口。相应的,网络设备可以在所述第一组RE和所述第二组RE中接收通过所述第二DMRS端口发送的第二DMRS。第二DMRS端口可以分配给所述终端设备,也可以分配给其它终端设备,本申请实施例对此并不限定。
其中,所述第二DMRS端口在所述第一组RE中采用第三OCC码,在所述第二组RE中采用第四OCC码;所述第一DMRS端口对应的第一扩展OCC码与所述第二DMRS端 口对应的第二扩展OCC码正交;所述第一扩展OCC码包括所述第一OCC码和所述第二OCC码,所述第二扩展OCC码包括所述第三OCC码和所述第四OCC码正交。
上面的流程中,在第一组RE中通过第一DMRS端口传输第一DMRS时采用的第一OCC码与在第二组RE中通过第一DMRS端口传输第一DMRS时采用的第二OCC码不同,网络设备从而可以实现根据第一OCC码和第二OCC码区分通过第一DMRS端口在不同组RE中传输的DMRS,从而分别估计出对应不同组RE的信道,相当于在不增加DMRS开销的情况下,提高了每个CDM组支持的DMRS端口数量,从而提高了上行信道的容量。
本申请实施例中,可以在时域或频域进行OCC扩展,从而实现支持超过12个DMRS端口正交的DMRS序列,提高上行容量,下面分别进行描述。
实施例一:
实施例一中,通过OCC频域的扩展,可支持24个DMRS端口正交,实现24层正交的多用户配对。
在实施例一中,CDM组可以至少对应两组RE,以两组RE为例,分别为第一组RE和第二组RE。第一组RE与第二组RE可以位于相同的RB内,且位于同一时隙的相同符号中。
例如,第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号。
其中,第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为不同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
举例来说,第一组RE在频域上占用的子载波的索引为0和1,第二组RE在频域上占用的子载波的索引为6和7;第一组RE和第二组RE在时域上占用的OFDM符号的索引为2和3。
或者第一组RE在频域上占用的子载波的索引为2和3,第二组RE在频域上占用的子载波的索引为8和9;第一组RE和第二组RE在时域上占用的OFDM符号的索引为6和7。
或者第一组RE在频域上占用的子载波的索引为4和5,第二组RE在频域上占用的子载波的索引为10和11;第一组RE和第二组RE在时域上占用的OFDM符号的索引为10和11。
结合图3的流程,通过第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的第一DMRS满足以下公式:
Figure PCTCN2021108982-appb-000053
其中,
Figure PCTCN2021108982-appb-000054
表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;k为子载波索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000055
为所述第一DMRS端口的索引;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;t=0时,w f(k'+2t)和w t(l')用于确定所述第一组RE中的所述第一OCC码;t=1时,w f(k'+2t)和w t(l')用于确定所述第二组RE中的所述第二OCC码,Δ为子载波偏移,其取值和CDM组的索引关联;
Figure PCTCN2021108982-appb-000056
是OFDM符号的偏移;μ为子载波间隔的索引;w f(k'+2t)表示频域OCC码,w t(l')表示时域OCC码;v为层索引,是一个预配置的值。具体如何生成r(n)可以参考前面的公式(1)。公式(10)中,t=0时,对应第一组RE;t=1时,对应第二组RE;公式(10)中的其它参数的定义,可以参考公式(4)中的描述。
进一步的,w f(k'+2t)、w t(l')和Δ的取值可以参考表3-1所示。
表3-1
Figure PCTCN2021108982-appb-000057
表3-1中,
Figure PCTCN2021108982-appb-000058
表示发送DMRS的DMRS端口号;λ表示CDM组的索引。
通过对比表3-1和表1可知,表3-1中,相比于原有的表1,DMRS端口的数量可以扩展到24个。同时DMRS端口号为0~11时,表3中w f(k'+2t)、w t(l')和Δ的取值可以和表1中相同,本申请实施例给出了扩展后的DMRS端口号,即12~23对应的w f(k'+2t)、w t(l')和Δ的取值。当通过DMRS端口号为12~23的DMRS端口发送DMRS时,可以通过 表3-1确定出相应的OCC码。需要说明的是,对于表3-1中0~11行w f(k'+2t)、w t(l')和Δ的取值,虽然也进行了扩充,但扩充的第3列和第4列均与表1中w f(k')、w t(l')和Δ的取值相同,因此不影响0~11行的OCC码。
另一种可能的实现是,DMRS端口0~11所对应的OCC表格仍采用现有技术的表格,DMRS端口12~23采用新的OCC表格。如下表3-2所示。
表3-2
Figure PCTCN2021108982-appb-000059
举例来说,如图4所示,假设CDM组的索引为0,包括4个DMRS端口,分别为0、1、6和7。该CDM组在一个RB内对应的两组RE分别包括4个RE,其中第一组RE频域上占用的子载波的索引为0和1,时域上占用的OFDM符号的索引为2和3。第二组RE频域上占用的子载波的索引为6和7,时域上占用的OFDM符号的索引为2和3。
如果按照现有技术的方案,结合表1可知,该CDM组中的4个DMRS端口在第一组RE中采用的OCC码分别为{1,1,1,1},{1,-1,1,-1},{1,1,-1,-1},{1,-1,-1,1}。由于现有技术中,需要第二组RE中重复发送DMRS,因此该CDM组中的4个DMRS端口在第二组RE中采用的OCC码和在第一组RE中采用的OCC码相同。
本申请实施例中,可以将第一组RE合第二组RE联合起来,此时这两组RE的OCC码可以等效为长度为8的OCC码。具体的,结合表3-1可知,本申请实施例中,该CDM组中的8个DMRS端口在第一组RE中采用的OCC码分别为{1,1,1,1},{1,-1,1,-1},{1,1,-1,-1},{1,-1,-1,1},{1,1,1,1},{1,-1,1,-1},{1,1,-1,-1},{1,-1,-1,1}。该CDM组中的8个DMRS端口在第二组RE中采用的OCC码分别为{-1,-1,-1,-1},{-1,1,-1,1},{-1,-1,1,1},{-1,1,1,-1},{-1,-1,-1,-1},{-1,1,-1,1},{-1,-1,1,1},{-1,1,1,-1}。
那么该CDM组中的8个DMRS端口采用的等效的长度为8的OCC码为{1,1,1,1,-1,-1,-1,-1},{1,-1,1,-1,-1,1,-1,1},{1,1,-1,-1,-1,-1,1,1},{1,-1,-1,1,-1,1,1,-1},{1,1,1,1,-1,-1,-1,-1},{1,-1,1,-1,-1,1,-1,1},{1,1,-1,-1,-1,-1,1,1},{1,-1,-1,1,-1,1,1,-1}。以CDM组0为例(即λ=0),DMRS端口12,13,18,19对应的等效长度为8的OCC码与DMRS端口0,1,6,7的对应的等效长度 为8的OCC码是正交的。这样可以保证同一个CDM组内不同DMRS端口对应的序列是相互正交的,避免了DMRS端口之间的干扰。
例如,假设该CDM组中的第一DMRS端口在第一组RE中采用的第一OCC码为{1,1,1,1},那么在第二组RE中采用的第二OCC码可以为{-1,-1,-1,-1}。由于第一OCC码和第二OCC码不同,网络设备可以区分出终端设备通过第一DMRS端口在不同组RE中发送的序列,估计出第一DMRS端口对应的信道。
进一步的,假设该CDM组中的第二DMRS端口在第一组RE中采用的第三OCC码为{1,-1,1,-1},那么在第二组RE中采用的第四OCC码可以为{-1,1,-1,1}。由于第一OCC码和第二OCC码构成的第一扩展OCC码为{1,1,1,1,-1,-1,-1,-1},第三OCC码和第四OCC码构成的第二扩展OCC码为{1,-1,1,-1,-1,1,-1,1},两者相互正交,因此网络设备可以区分出通过第一DMRS端口和第二DMRS端口发送的DMRS,也就是说网络设备能够分别对第一DMRS端口和第二DMRS端口对应的信道进行估计。
通过对比可知,本申请实施例提供的方法,可以理解为在不同的频域上进行了2倍的OCC码扩频。
通过数学运算可知,在第一组RE中采用的OCC码与在第二组RE中采用的OCC码是正交的。由于每一行OCC码对应一个DMRS端口,则8行则代表8个DMRS端口上的OCC码,并且每两行之间均是正交的。因此在上行传输中,网络设备可以分别估计出每个DMRS端口在采用不同OCC码时对应的信道,也就是说终端设备可以通过第一RE和第二RE发送不同流的数据,从而提高上行容量。
进一步的,前面描述了网络设备可以通过指示信息向终端设备指示第一DMRS端口以及DMRS端口组。现有技术中,通过建立DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数的映射关系,网络设备通过发送的指示信息可以为一个索引值,从而指示出DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数。
具体的,当网络设备配置的终端设备上行传输的秩(rank)为1时,终端设备发送上行数据时只需要1个DMRS端口,即网络设备配置的DMRS端口数量为1,网络设备配置的DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数的映射关系可以如表4所示。
表4
Figure PCTCN2021108982-appb-000060
Figure PCTCN2021108982-appb-000061
表4中,索引值为0~27时的取值,和现有技术的TS 38.212中表7.3.1.1.2-20中的相同。索引值为28~39时的取值,为本申请实施例提供的。举例来说,当网络设备发送的指示信息为30时,表示配置的DMRS端口号为14,该DMRS端口所处的CDM组占用的符号数为2。进一步,通过表3-1可知,该DMRS端口所处的CDM组的λ为2。
当网络设备配置的终端设备上行传输的rank为2时,终端设备发送上行数据时需要2个DMRS端口,即网络设备配置的DMRS端口数量为2,网络设备配置的DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数的映射关系可以如表5所示。
表5
Figure PCTCN2021108982-appb-000062
表5中,索引值为0~18时的取值,和现有技术的TS 38.212中表7.3.1.1.2-21中的相同。索引值为19~24时的取值,为本申请实施例提供的。举例来说,当网络设备发送的指示信息为24时,表示配置的DMRS端口号为22和23。进一步,通过表3-1可知,DMRS端口号为22和23所处的CDM组的λ为4。
当网络设备配置的终端设备上行传输的rank为3时,终端设备发送上行数据时需要3个DMRS端口,即网络设备配置的DMRS端口数量为3,网络设备配置的DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数的映射关系可以如表6所示。
表6
Figure PCTCN2021108982-appb-000063
表6中,索引值为0~5时的取值,和现有技术的TS 38.212中表7.3.1.1.2-22中的相同。索引值为6~9时的取值,为本申请实施例提供的。举例来说,当网络设备发送的指示信息为9时,表示配置的DMRS端口号为19、22和23。
当网络设备配置的终端设备上行传输的rank为4时,终端设备发送上行数据时需要4个DMRS端口,即网络设备配置的DMRS端口数量为4,网络设备配置的DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数的映射关系可以如表7所示。
表7
Figure PCTCN2021108982-appb-000064
表7中,索引值为0~4时的取值,和现有技术的TS 38.212中表7.3.1.1.2-23中的相同。索引值为5~7时的取值,为本申请实施例提供的。举例来说,当网络设备发送的指示信息为7时,表示配置的DMRS端口号为16、17、22和23。
实施例二:
实施例二中,通过OCC时域的扩展,可支持24个DMRS端口正交,实现24层正交的多用户配对。
在实施例二中,CDM组对应的第一组RE和第二组RE可以位于相同的子载波,且位 于同一时隙的不同符号中。
例如,第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号。
其中,第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为相同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为不同的OFDM符号。
举例来说,第一组RE在频域上占用的子载波的索引为0和1,第一组RE在时域上占用的OFDM符号的索引为2和3;第二组RE在频域上占用的子载波的索引为0和1;第二组RE在时域上占用的OFDM符号的索引为8和9。
或者第一组RE在频域上占用的子载波的索引为2和3,第一组RE在时域上占用的OFDM符号的索引为2和3;第二组RE在频域上占用的子载波的索引为2和3;第二组RE在时域上占用的OFDM符号的索引为8和9。
或者第一组RE在频域上占用的子载波的索引为4和5,第一组RE在时域上占用的OFDM符号的索引为2和3;第二组RE在频域上占用的子载波的索引为4和5;第二组RE在时域上占用的OFDM符号的索引为8和9。
需要说明的是,在实施例二中,第一DMRS通过第一DMRS端口映射到第一组RE以及第二组RE时,可以满足前面的公式(4)。
进一步的,为了实现通过OCC码时域的扩展,可支持24个DMRS正交端口,实现24层正交的多用户配对,在表1的基础上,当DMRS端口数大于12时,在生成Additional DMRS符号上的序列时,w f(k′),w t(l′)和Δ的取值见下表8。
表8
Figure PCTCN2021108982-appb-000065
结合表8,假设CDM组的索引为0,包括4个DMRS端口,分别为0、1、6和7。如图5所示,该CDM组在一个RB内对应的两组RE分别包括4个RE,其中第一组RE频域上占用的子载波的索引为0和1,时域上占用的OFDM符号的索引为2和3。第二组RE频域上占用的子载波的索引为0和1,时域上占用的OFDM符号的索引为8和9。其中索引为8和9的OFDM符号为现有标准中配置附加(Additional)DMRS的符号位置。
如果按照现有技术的方案,结合表1可知,该CDM组中的4个DMRS端口在第一组 RE中采用的OCC码分别为{1,1,1,1},{1,-1,1,-1},{1,1,-1,-1},{1,-1,-1,1}。该CDM组中的4个DMRS端口在第二组RE中采用的OCC码和在第一组RE中采用的OCC码相同。
本申请实施例中,可以将第一组RE合第二组RE联合起来,此时这两组RE的OCC码可以等效为长度为8的OCC码。具体的,假设该CDM组中包括8个DMRS端口,那么该CDM组中的8个DMRS端口在第一组RE中采用的OCC码分别为{1,1,1,1},{1,-1,1,-1},{1,1,-1,-1},{1,-1,-1,1},{1,1,1,1},{1,-1,1,-1},{1,1,-1,-1},{1,-1,-1,1}。该CDM组中的8个DMRS端口在第二组RE中采用的OCC码分别为{1,1,1,1},{1,-1,1,-1},{1,1,-1,-1},{1,-1,-1,1},{-1,-1,-1,-1},{-1,1,-1,1},{-1,-1,1,1},{-1,1,1,-1}。
那么该CDM组中的8个DMRS端口采用的等效的长度为8的OCC码为{1,1,1,1,1,1,1,1},{1,-1,1,-1,1,-1,1,-1},{1,1,-1,-1,1,1,-1,-1},{1,-1,-1,1,1,-1,-1,1},{1,1,1,1,-1,-1,-1,-1},{1,-1,1,-1,-1,1,-1,1},{1,1,-1,-1,-1,-1,1,1},{1,-1,-1,1,-1,1,1,-1}。这8个OCC码相互正交。以CDM组0为例(即λ=0),DMRS端口12,13,18,19对应的等效长度为8的OCC码与DMRS端口0,1,6,7的对应的等效长度为8的OCC码是正交的。这样可以保证同一个CDM组内不同DMRS端口对应的序列是相互正交的,避免了DMRS端口之间的干扰。
结合上面的描述,假设该CDM组中的第一DMRS端口在第一组RE中采用的第一OCC码为{1,1,1,1},那么在第二组RE中采用的第二OCC码可以为{-1,-1,-1,-1}。由于第一OCC码和第二OCC码不同,网络设备可以区分出终端设备通过第一DMRS端口在不同组RE中发送的序列,估计出第一DMRS端口对应的信道。
进一步的,假设该CDM组中的第二DMRS端口在第一组RE中采用的第三OCC码为{1,-1,1,-1},那么在第二组RE中采用的第四OCC码可以为{-1,1,-1,1}。由于第一OCC码和第二OCC码构成的第一扩展OCC码为{1,1,1,1,-1,-1,-1,-1},第三OCC码和第四OCC码构成的第二扩展OCC码为{1,-1,1,-1,-1,1,-1,1},两者相互正交,因此网络设备可以区分出通过第一DMRS端口和第二DMRS端口发送的DMRS,也就是说网络设备能够分别对第一DMRS端口和第二DMRS端口对应的信道进行估计。
通过数学运算可知,在第一组RE中采用的OCC码与在第二组RE中采用的OCC码是正交的,也就是说终端设备可以通过同一个DMRS端口或者不同的DMRS端口在第一RE和第二RE中发送不同流的数据,从而提高上行容量。
进一步的,通过对比可知,本申请实施例提供的方法,可以理解为在不同的时域上进行了2倍的OCC码扩频,当DMRS配置为两个OFDM符号时,每个CDM组内进行了4倍的OCC码扩频。
进一步的,实施例二中,网络设备发送的指示信息指示的索引值可以参考实施例一中的表4至表7,具体过程不再赘述。
上面的实施例二中,在不影响现有标准终端的情况下,利用时域信道慢变特性,在时域上对OCC码进行扩展,实现支持24个DMRS端口正交,提高上行容量。
实施例三:
实施例三中,主要描述基于OCC码的循环移位来设计频域DMRS的频域OCC码,以支持24个DMRS端口正交。
在实施例三中,CDM组对应的第一组RE与第二组RE可以位于相同的RB内,且位于同一时隙的相同符号中;或者,CDM组对应的第一组RE与第二组RE可以位于不相同的RB内,且位于同一时隙的相同符号中。
例如,第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号。
其中,第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为相同RB内的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
举例来说,第一组RE在频域上的第一RB中占用的子载波的索引为1和3,或者5和7,或者9和11;所述第二组RE在频域上的第一RB中占用的子载波的索引为1和3,或者5和7,或者9和11。
进一步的,实施例三中,通过第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
Figure PCTCN2021108982-appb-000066
其中,
Figure PCTCN2021108982-appb-000067
表示通过第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;
Figure PCTCN2021108982-appb-000068
为向下取整运算;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列,r(n)可以通过前面的公式(1)或者公式(5)确定;
M取值为正整数,可能的取值为1,2,4或其它正整数。M可以为网络设备通过信令配置。如果没有信令配置M的取值,则采用默认值。如果M的取值通过信令配置,取采用该信令中的配置参数。所述信令可以为RRC信令、DCI信令等。
ρ为循环移位因子,可以为预配置的,并与DMRS端口索引相关联,例如可以参考后面的表9;循环移位因子ρ还可以通过其他方式确定,本申请实施例并不限定。k为子载波索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000069
为所述第一DMRS端口的索引。Δ的取值和CDM组的索引关联;
Figure PCTCN2021108982-appb-000070
是OFDM符号的偏移;μ为子载波间隔的索引;w f(k')表示频域OCC码,w t(l')表示时域OCC码;v为层索引,是一个预配置的值。公式(11)中的其它参数的定义,可以参考公式(9)中的描述。
结合公式(11),w f(k′),w t(l′)和Δ的取值,具体可以参考表9所示。
表9
Figure PCTCN2021108982-appb-000071
其中,表9中,NA表示无对应取值。表9中的NA也可以替换为其它值,例如0或3。
结合表9以及前面的公式(11),假设M=1,CDM组中包括DMRS端口2和DMRS端口3,如图6所示,DMRS端口2在频域上的第一RB中占了子载波索引分别为1、3、5、7、9、11的6个RE,并且6个RE上的OCC码为{+1,+1,+1,+1,+1,+1};DMRS端口3在频域上的第一RB中占了子载波索引分别为1、3、5、7、9、11的6个RE,并且6个RE上的OCC码为{+1,-1,+1,-1,+1,-1}。图6中DMRS端口2和DMRS端口3占用的RE实际上是相同的RE,为了更好的进行区分,在图6中,将DMRS端口2和DMRS端口3占用的RE分开示意。
该序列形式可以进一步转化为循环移位的表现形式,即:
[1-1 1-1 1-1]=[1 1 1 1 1 1]*[s 0,s 1,..,s M-1] T       (12)
其中以M=1为例,此时
Figure PCTCN2021108982-appb-000072
m为RE的相对索引,即m=0,1,2,3,4,5。公式(12)即为一个循环移位的表达式。利用上述公式的特点,当ρ=1时,可构造出序列
Figure PCTCN2021108982-appb-000073
并且该序列与ρ=0和ρ=3时的序列是正交的。同理,可得出ρ=2,ρ=4,ρ=5时得到的序列与上述序列也是正交的。因此,在1个OFDM符号上可以构造出6个正交的序列。进一步将两个OFDM符号上的序列进行扩展,可以构造出12个正交的序列,再加上表9中时域OCC码长为2的序列,便可构造出24个正交的序列,进而支持24个正交的DMRS端口的DMRS的扩展示意图。
结合图6,图6中可以包括三组RE。第一组RE可以为频域上子载波索引分别为1、3, 时域上OFDM符号的索引为2、3的4个RE;第二组RE可以为频域上子载波索引分别为5、7,时域上OFDM符号的索引为2、3的4个RE;第三组RE可以为频域上子载波索引分别为9、11,时域上OFDM符号的索引为2、3的4个RE。根据公式(12)可知,DMRS端口2或者DMRS端口3可以在第一组RE、第二组RE以及第三组RE中采用不同的OCC码发送DMRS。
还可以存在其它划分方式划分RE,例如结合图6,第一组RE可以为频域上子载波索引分别为1、3、5、7、9、11,时域上OFDM符号的索引为2的6个RE;第二组RE可以为频域上子载波索引分别为1、3、5、7、9、11,时域上OFDM符号的索引为3的6个RE。根据公式(12)可知,DMRS端口2或者DMRS端口3可以在第一组RE和第二组RE中采用不同的OCC码发送DMRS。
进一步的,前面描述了网络设备可以通过指示信息向终端设备指示第一DMRS端口以及DMRS端口组。现有技术中,通过建立DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数的映射关系,网络设备通过发送的指示信息可以为一个索引值,从而指示出DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数。
具体的,当网络设备配置的终端设备上行传输的秩(rank)为1时,终端设备发送上行数据时只需要1个DMRS端口,即网络设备配置的DMRS端口数量为1,网络设备配置的DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数的映射关系可以如表10所示。
表10
Figure PCTCN2021108982-appb-000074
Figure PCTCN2021108982-appb-000075
表10中,索引值为0~13时的取值,和现有技术的TS 38.212中表7.3.1.1.2-12中的相同。索引值为14~32时的取值,为本申请实施例提供的。举例来说,当网络设备发送的指示信息为30时,表示配置的DMRS端口号为21。
当网络设备配置的终端设备上行传输的rank为2时,终端设备发送上行数据时需要2个DMRS端口,即网络设备配置的DMRS端口数量为2,网络设备配置的DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数的映射关系可以如表11所示。
表11
Figure PCTCN2021108982-appb-000076
Figure PCTCN2021108982-appb-000077
表11中,索引值为0~9时的取值,和现有技术的TS 38.212中表7.3.1.1.2-13中的相同。索引值为10~18时的取值,为本申请实施例提供的。举例来说,当网络设备发送的指示信息为18时,表示配置的DMRS端口号为22和23。
当网络设备配置的终端设备上行传输的rank为3时,终端设备发送上行数据时需要3个DMRS端口,即网络设备配置的DMRS端口数量为3,网络设备配置的DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数的映射关系可以如表12所示。
表12
Figure PCTCN2021108982-appb-000078
表12中,索引值为0~2时的取值,和现有技术的TS 38.212中表7.3.1.1.2-14中的相同。索引值为3~9时的取值,为本申请实施例提供的。举例来说,当网络设备发送的指示信息为9时,表示配置的DMRS端口号为19、20和23。
当网络设备配置的终端设备上行传输的rank为4时,终端设备发送上行数据时需要4个DMRS端口,即网络设备配置的DMRS端口数量为4,网络设备配置的DMRS端口、CDM组以及CDM组占用的OFDM符号数等参数的映射关系可以如表13所示。
表13
Figure PCTCN2021108982-appb-000079
Figure PCTCN2021108982-appb-000080
表13中,索引值为0~3时的取值,和现有技术的TS 38.212中表7.3.1.1.2-15中的相同。索引值为4~9时的取值,为本申请实施例提供的。举例来说,当网络设备发送的指示信息为9时,表示配置的DMRS端口号为16、18、20和23。
上面的实施例三中,通过频域循环移位进行DMRS端口扩展,可支持24个DMRS正交端口,实现24层正交的多用户配对,有利于提升上行容量。同时兼容现有OCC码,现有终端设备无需做任何硬件和软件上的更新。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备与网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图7所示,本申请实施例还提供一种装置700用于实现上述方法中终端设备或网络设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置700可以包括:处理单元701和通信单元702。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中终端设备或网络设备发送和接收的步骤。
以下,结合图7至图8详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
在一种可能的设计中,该装置700可实现对应于上文方法实施例中的终端设备或者网络设备执行的步骤或者流程,下面分别进行描述。
示例性地,当该装置700实现图3所示的流程中网络设备的功能时:
处理单元701,用于通过通信单元702向终端设备发送指示信息,所述指示信息指示第一解调参考信号DMRS端口以及所述第一DMRS端口所处的码分复用CDM组;
所述处理单元701,用于通过所述通信单元702在所述CDM组关联的第一组RE和第二组RE中接收通过所述第一DMRS端口传输的第一DMRS;其中,通过所述第一DMRS端口在所述第一组RE中传输所述第一DMRS采用的第一正交覆盖码OCC码和在所述第二组RE中传输所述第一DMRS采用的第二OCC码不同;其中,所述第一组RE与所述第二组RE满足以下任一条件:位于相同的资源块RB内;位于相同的子载波,且位于同一时隙的不同符号中;位于不同的资源块RB内,且位于同一时隙的相同符号中。
在一种可能的设计中,所述CDM组中还包括第二DMRS端口;所述方法还包括:所述网络设备在所述第一组RE和所述第二组RE中接收通过所述第二DMRS端口发送的第二DMRS;其中,所述第二DMRS端口在所述第一组RE中采用第三OCC码,在所述第二组RE中采用第四OCC码;所述第一DMRS端口对应的第一扩展OCC码与所述第二DMRS端口对应的第二扩展OCC码正交;所述第一扩展OCC码包括所述第一OCC码和所述第二OCC码,所述第二扩展OCC码包括所述第三OCC码和所述第四OCC码正交。
在一种可能的设计中,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
Figure PCTCN2021108982-appb-000081
k=6n+k'+Δ配置类型2
k'=0,1
t=mod(n,2)
Figure PCTCN2021108982-appb-000082
n=0,1,...
j=0,1,...,v-1
其中,
Figure PCTCN2021108982-appb-000083
表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;k为子载波索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000084
为所述第一DMRS端口的索引;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;t=0时,w f(k'+2t)和w t(l')用于确定所述第一组RE中的所述第一OCC码;t=1时,w f(k'+2t)和w t(l')用于确定所述第二组RE中的所述第二OCC码,Δ为子载波偏移,其取值和CDM组的索引关联;
Figure PCTCN2021108982-appb-000085
是OFDM符号的偏移;μ为子载波间隔的索引;w f(k'+2t)表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
在一种可能的设计中,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
Figure PCTCN2021108982-appb-000086
k=4n+2k'+Δ配置类型1
k'=0,1
Figure PCTCN2021108982-appb-000087
Figure PCTCN2021108982-appb-000088
n=0,1,...
j=0,1,...,v-1
其中,
Figure PCTCN2021108982-appb-000089
表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;
Figure PCTCN2021108982-appb-000090
为向下取整运算;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;ρ为循环移位因子;M取值为正整数;k为子载波索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000091
为所述第一DMRS端口的索引;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;Δ为子载波偏移,其取值和CDM组的索引关联;
Figure PCTCN2021108982-appb-000092
是OFDM符号的偏移;μ为子载波间隔的索引;w f(k')表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
在一种可能的设计中,ρ为预配置的,并且与所述第一DMRS端口索引相关联;M为所述网络设备配置的,或者为默认值。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为不同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
在一种可能的设计中,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;所述第二组RE在频域上占用的子载波的索引为6和7,或者8和9,或者10和11。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为相同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为不同的OFDM符号。
在一种可能的设计中,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;所述第二组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个不连续的子载波,与所述第二组RE占用的两个不连续的子载波位于不同的RB;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
示例性地,当该装置700实现图3所示的流程中终端设备的功能时:
通信单元702,用于接收指示信息,所述指示信息指示第一解调参考信号DMRS端口以及所述第一DMRS端口所处的码分复用CDM组;
处理单元701,用于确定所述指示信息指示的所述CDM组对应的N组资源元素RE;N为大于1的整数;
所述通信单元702,用于通过所述指示信息指示的所述第一DMRS端口在所述N组 RE中的第一组RE和第二组RE中传输第一DMRS;
其中,通过所述第一DMRS端口在所述第一组RE中传输所述第一DMRS采用第一正交覆盖码OCC码和在所述第二组RE中传输所述第一DMRS采用第二OCC码,所述第一OCC码和所述第二OCC码不同;
其中,所述第一组RE与所述第二组RE满足以下任一条件:
位于相同的资源块RB内;
位于相同的子载波,且位于同一时隙的不同符号中;
位于不同的资源块RB内,且位于同一时隙的相同符号中。
在一种可能的设计中,所述CDM组中还包括第二DMRS端口;所述方法还包括:所述网络设备在所述第一组RE和所述第二组RE中接收通过所述第二DMRS端口发送的第二DMRS;其中,所述第二DMRS端口在所述第一组RE中采用第三OCC码,在所述第二组RE中采用第四OCC码;所述第一DMRS端口对应的第一扩展OCC码与所述第二DMRS端口对应的第二扩展OCC码正交;所述第一扩展OCC码包括所述第一OCC码和所述第二OCC码,所述第二扩展OCC码包括所述第三OCC码和所述第四OCC码正交。
在一种可能的设计中,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
Figure PCTCN2021108982-appb-000093
k=6n+k'+Δ配置类型2
k'=0,1
t=mod(n,2)
Figure PCTCN2021108982-appb-000094
n=0,1,...
j=0,1,...,v-1
其中,
Figure PCTCN2021108982-appb-000095
表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;k为子载波索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000096
为所述第一DMRS端口的索引;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;t=0时,w f(k'+2t)和w t(l')用于确定所述第一组RE中的所述第一OCC码;t=1时,w f(k'+2t)和w t(l')用于确定所述第二组RE中的所述第二OCC码,Δ为子载波偏移,其取值和CDM组的索引关联;
Figure PCTCN2021108982-appb-000097
是OFDM符号的偏移;μ为子载波间隔的索引;w f(k'+2t)表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
在一种可能的设计中,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
Figure PCTCN2021108982-appb-000098
k=4n+2k'+Δ配置类型1
k'=0,1
Figure PCTCN2021108982-appb-000099
Figure PCTCN2021108982-appb-000100
n=0,1,...
j=0,1,...,v-1
其中,
Figure PCTCN2021108982-appb-000101
表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;
Figure PCTCN2021108982-appb-000102
为向下取整运算;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;ρ为循环移位因子;M取值为正整数;k为子载波索引,l为OFDM符号索引,
Figure PCTCN2021108982-appb-000103
为所述第一DMRS端口的索引;mod()为取余运算;r(n)为所述第一DMRS对应的初始序列;Δ为子载波偏移,其取值和CDM组的索引关联;
Figure PCTCN2021108982-appb-000104
是OFDM符号的偏移;μ为子载波间隔的索引;w f(k')表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
在一种可能的设计中,ρ为预配置的,并且与所述第一DMRS端口索引相关联;M为所述网络设备配置的,或者为默认值。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为不同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
在一种可能的设计中,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;所述第二组RE在频域上占用的子载波的索引为6和7,或者8和9,或者10和11。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为相同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为不同的OFDM符号。
在一种可能的设计中,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;所述第二组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5。
在一种可能的设计中,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;所述第二组RE包括4个RE,所述第二组RE在频域上占用两个不连续的子载波,在时域上占用两个连续 的OFDM符号;所述第一组RE占用的两个不连续的子载波,与所述第二组RE占用的两个不连续的子载波位于不同的RB;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
如图8所示为本申请实施例提供的装置800,图8所示的装置可以为图7所示的装置的一种硬件电路的实现方式。该通信装置可适用于图3所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图8仅示出了该通信装置的主要部件。
图8所示的装置800包括至少一个处理器820,用于实现本申请实施例提供的图3中任一方法。
装置800还可以包括至少一个存储器830,用于存储程序指令和/或数据。存储器830和处理器820耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器820可能和存储器830协同操作。处理器820可能执行存储器830中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理电路(digital signal processor,DSP)、专用集成芯片(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器 (enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
装置800还可以包括通信接口810,用于通过传输介质和其它设备进行通信,从而用于装置800中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
装置800还可以包括通信线路840。其中,通信接口810、处理器820以及存储器830可以通过通信线路840相互连接;通信线路840可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路840可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,处理器820用于执行存储器830中存储的指令或程序。存储器830中存储的指令或程序被执行时,该处理器820用于执行上述实施例中处理单元701执行的操作,通信接口810用于执行上述实施例中通信单元702执行的操作,具体可以参考前面的描述,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图3所示的实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的图3所示的实施例中与网络设备相关的流程。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图3所示的方法实施例中终端设备的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述图3所示的方法实施例中网络设备的方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,执行上述图3所示的方法实施例中终端设备的方法。
本申请实施例还提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,执行上述图3所示的方法实施例中网络设备的方法。
还应理解,本文中涉及的第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或 方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送指示信息,所述指示信息指示第一解调参考信号DMRS端口以及所述第一DMRS端口所处的码分复用CDM组;
    所述网络设备在所述CDM组关联的第一组RE和第二组RE中接收通过所述第一DMRS端口传输的第一DMRS;
    其中,通过所述第一DMRS端口在所述第一组RE中传输所述第一DMRS采用的第一正交覆盖码OCC码和在所述第二组RE中传输所述第一DMRS采用的第二OCC码不同;
    其中,所述第一组RE与所述第二组RE满足以下任一条件:
    位于相同的资源块RB内;
    位于相同的子载波,且位于同一时隙的不同符号中;
    位于不同的资源块RB内,且位于同一时隙的相同符号中。
  2. 根据权利要求1所述的方法,其特征在于,所述CDM组中还包括第二DMRS端口;所述方法还包括:
    所述网络设备在所述第一组RE和所述第二组RE中接收通过所述第二DMRS端口发送的第二DMRS;
    其中,所述第二DMRS端口在所述第一组RE中采用第三OCC码,在所述第二组RE中采用第四OCC码;
    所述第一DMRS端口对应的第一扩展OCC码与所述第二DMRS端口对应的第二扩展OCC码正交;所述第一扩展OCC码包括所述第一OCC码和所述第二OCC码,所述第二扩展OCC码包括所述第三OCC码和所述第四OCC码正交。
  3. 根据权利要求1或2所述的方法,其特征在于,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
    Figure PCTCN2021108982-appb-100001
    k=6n+k'+Δ  配置类型2
    k'=0,1
    t=mod(n,2)
    Figure PCTCN2021108982-appb-100002
    n=0,1,...
    j=0,1,...,v-1
    其中,
    Figure PCTCN2021108982-appb-100003
    表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;k为子载波索引,l为OFDM符号索引,
    Figure PCTCN2021108982-appb-100004
    为所述第一DMRS端口的索引;mod( )为取余运算;r(n)为所述第一DMRS对应的初始序列;t=0时,w f(k'+2t)和w t(l')用于确定所述第一组RE中的所述第一OCC码;t=1时,w f(k'+2t)和w t(l')用于确定所述第二组RE中的所述第二OCC码,Δ为子载波偏移,其取值和CDM组的索引关联;
    Figure PCTCN2021108982-appb-100005
    是OFDM符号的偏移;μ子载波间隔的索引;w f(k'+2t)表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
  4. 根据权利要求1或2所述的方法,其特征在于,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
    Figure PCTCN2021108982-appb-100006
    k=4n+2k'+Δ  配置类型1
    k'=0,1
    Figure PCTCN2021108982-appb-100007
    Figure PCTCN2021108982-appb-100008
    n=0,1,...
    j=0,1,...,v-1
    其中,
    Figure PCTCN2021108982-appb-100009
    表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;
    Figure PCTCN2021108982-appb-100010
    为向下取整运算;mod( )为取余运算;r(n)为所述第一DMRS对应的初始序列;ρ为循环移位因子;M取值为正整数;k为子载波索引,l为OFDM符号索引,
    Figure PCTCN2021108982-appb-100011
    为所述第一DMRS端口的索引;mod( )为取余运算;r(n)为所述第一DMRS对应的初始序列;Δ为子载波偏移,其取值和CDM组的索引关联;
    Figure PCTCN2021108982-appb-100012
    是OFDM符号的偏移;μ为子载波间隔的索引;w f(k')表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
  5. 根据权利要求4所述的方法,其特征在于,循环移位因子ρ为预配置的,与所述第一DMRS端口索引相关联;
    M为所述网络设备配置的,或者为默认值。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;
    所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;
    所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为不同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
  7. 根据权利要求6所述的方法,其特征在于,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;
    所述第二组RE在频域上占用的子载波的索引为6和7,或者8和9,或者10和11。
  8. 根据权利要求1至5任一所述的方法,其特征在于,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;
    所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;
    所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载 波为相同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为不同的OFDM符号。
  9. 根据权利要求8所述的方法,其特征在于,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;
    所述第二组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5。
  10. 根据权利要求1至5任一所述的方法,其特征在于,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;
    所述第二组RE包括4个RE,所述第二组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的OFDM符号;
    所述第一组RE占用的两个不连续的子载波,与所述第二组RE占用的两个不连续的子载波位于不同的RB;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
  11. 一种通信方法,其特征在于,包括:
    终端设备接收指示信息,所述指示信息指示第一解调参考信号DMRS端口以及所述第一DMRS端口所处的码分复用CDM组;
    所述终端设备确定所述指示信息指示的所述CDM组对应的N组资源元素RE;N为大于1的整数;
    所述终端设备通过所述指示信息指示的所述第一DMRS端口在所述N组RE中的第一组RE和第二组RE中传输第一DMRS;
    其中,通过所述第一DMRS端口在所述第一组RE中传输所述第一DMRS采用第一正交覆盖码OCC码和在所述第二组RE中传输所述第一DMRS采用第二OCC码,所述第一OCC码和所述第二OCC码不同;
    其中,所述第一组RE与所述第二组RE满足以下任一条件:
    位于相同的资源块RB内;
    位于相同的子载波,且位于同一时隙的不同符号中;
    位于不同的资源块RB内,且位于同一时隙的相同符号中。
  12. 根据权利要求11所述的方法,其特征在于,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
    Figure PCTCN2021108982-appb-100013
    k=6n+k'+Δ  配置类型2
    k'=0,1
    t=mod(n,2)
    Figure PCTCN2021108982-appb-100014
    n=0,1,...
    j=0,1,...,v-1
    其中,
    Figure PCTCN2021108982-appb-100015
    表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;k为子载波索引,l为OFDM符号索引,
    Figure PCTCN2021108982-appb-100016
    为所述第一DMRS端口的索引;mod( )为取余运算;r(n)为所述第一DMRS对应的初始序列;t=0时,w f(k'+2t)和w t(l')用于确定所述第一组RE中的所述第一OCC码;t=1时,w f(k'+2t)和w t(l')用于确定所述第二组RE中的所述第二OCC码,Δ为子载波偏移,其取值和CDM组的索引关联;
    Figure PCTCN2021108982-appb-100017
    是OFDM符号的偏移;μ为子载波间隔的索引;w f(k'+2t)表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
  13. 根据权利要求11所述的方法,其特征在于,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
    Figure PCTCN2021108982-appb-100018
    k=4n+2k'+Δ  配置类型1
    k'=0,1
    Figure PCTCN2021108982-appb-100019
    Figure PCTCN2021108982-appb-100020
    n=0,1,...
    j=0,1,...,v-1
    其中,
    Figure PCTCN2021108982-appb-100021
    表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;
    Figure PCTCN2021108982-appb-100022
    为向下取整运算;mod( )为取余运算;r(n)为所述第一DMRS对应的初始序列;ρ为循环移位因子;M取值为正整数;k为子载波索引,l为OFDM符号索引,
    Figure PCTCN2021108982-appb-100023
    为所述第一DMRS端口的索引;mod( )为取余运算;r(n)为所述第一DMRS对应的初始序列;Δ为子载波偏移,其取值和CDM组的索引关联;
    Figure PCTCN2021108982-appb-100024
    是OFDM符号的偏移;μ为子载波间隔的索引;w f(k')表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
  14. 根据权利要求13所述的方法,其特征在于,循环移位因子ρ为预配置的,与所述第一DMRS端口索引相关联;
    M为所述网络设备配置的,或者为默认值。
  15. 根据权利要求11至14任一所述的方法,其特征在于,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;
    所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;
    所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为不同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
  16. 根据权利要求15所述的方法,其特征在于,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;
    所述第二组RE在频域上占用的子载波的索引为6和7,或者8和9,或者10和11。
  17. 根据权利要求11至14任一所述的方法,其特征在于,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;
    所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;
    所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为相同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为不同的OFDM符号。
  18. 根据权利要求17所述的方法,其特征在于,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;
    所述第二组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5。
  19. 根据权利要求11至14任一所述的方法,其特征在于,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;
    所述第二组RE包括4个RE,所述第二组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的OFDM符号;
    所述第一组RE占用的两个不连续的子载波,与所述第二组RE占用的两个不连续的子载波位于不同的RB;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
  20. 一种通信装置,其特征在于,包括:
    处理单元,用于通过通信单元向终端设备发送指示信息,所述指示信息指示第一解调参考信号DMRS端口以及所述第一DMRS端口所处的码分复用CDM组;
    所述处理单元,用于通过所述通信单元在所述CDM组关联的第一组RE和第二组RE中接收通过所述第一DMRS端口传输的第一DMRS;
    其中,通过所述第一DMRS端口在所述第一组RE中传输所述第一DMRS采用的第一正交覆盖码OCC码和在所述第二组RE中传输所述第一DMRS采用的第二OCC码不同;
    其中,所述第一组RE与所述第二组RE满足以下任一条件:
    位于相同的资源块RB内;
    位于相同的子载波,且位于同一时隙的不同符号中;
    位于不同的资源块RB内,且位于同一时隙的相同符号中。
  21. 根据权利要求20所述的装置,其特征在于,所述CDM组中还包括第二DMRS端口;所述通信单元还用于:
    在所述第一组RE和所述第二组RE中接收通过所述第二DMRS端口发送的第二DMRS;
    其中,所述第二DMRS端口在所述第一组RE中采用第三OCC码,在所述第二组RE中采用第四OCC码;
    所述第一DMRS端口对应的第一扩展OCC码与所述第二DMRS端口对应的第二扩展OCC码正交;所述第一扩展OCC码包括所述第一OCC码和所述第二OCC码,所述第二扩展OCC码包括所述第三OCC码和所述第四OCC码正交。
  22. 一种通信装置,其特征在于,包括:
    通信单元,用于接收指示信息,所述指示信息指示第一解调参考信号DMRS端口以及所述第一DMRS端口所处的码分复用CDM组;
    处理单元,用于确定所述指示信息指示的所述CDM组对应的N组资源元素RE;N为大于1的整数;
    所述通信单元,用于通过所述指示信息指示的所述第一DMRS端口在所述N组RE中的第一组RE和第二组RE中传输第一DMRS;
    其中,通过所述第一DMRS端口在所述第一组RE中传输所述第一DMRS采用第一正交覆盖码OCC码和在所述第二组RE中传输所述第一DMRS采用第二OCC码,所述第一OCC码和所述第二OCC码不同;
    其中,所述第一组RE与所述第二组RE满足以下任一条件:
    位于相同的资源块RB内;
    位于相同的子载波,且位于同一时隙的不同符号中;
    位于不同的资源块RB内,且位于同一时隙的相同符号中。
  23. 根据权利要求20至22任一所述的装置,其特征在于,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
    Figure PCTCN2021108982-appb-100025
    k=6n+k'+Δ  配置类型2
    k'=0,1
    t=mod(n,2)
    Figure PCTCN2021108982-appb-100026
    n=0,1,...
    j=0,1,...,v-1
    其中,
    Figure PCTCN2021108982-appb-100027
    表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;k为子载波索引,l为OFDM符号索引,
    Figure PCTCN2021108982-appb-100028
    为所述第一DMRS端口的索引;mod( )为取余运算;r(n)为所述第一DMRS对应的初始序列;t=0时,w f(k'+2t)和w t(l')用于确定所述第一组RE中的所述第一OCC码;t=1时,w f(k'+2t)和w t(l')用于确定所述第二组RE中的所述第二OCC码,Δ为子载波偏移,其取值和CDM组的索引关联;
    Figure PCTCN2021108982-appb-100029
    是OFDM符号的偏移;μ为子载波间隔的索引;w f(k'+2t)表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
  24. 根据权利要求20至22任一所述的装置,其特征在于,通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS满足以下公式:
    Figure PCTCN2021108982-appb-100030
    k=4n+2k'+Δ  配置类型1
    k'=0,1
    Figure PCTCN2021108982-appb-100031
    Figure PCTCN2021108982-appb-100032
    n=0,1,...
    j=0,1,...,v-1
    其中,
    Figure PCTCN2021108982-appb-100033
    表示通过所述第一DMRS端口传输的经过所述第一OCC码或所述第二OCC码加权后的所述第一DMRS对应的序列;
    Figure PCTCN2021108982-appb-100034
    为向下取整运算;mod( )为取余运算;r(n)为所述第一DMRS对应的初始序列;ρ为循环移位因子;M取值为正整数;k为子载波索引,l为OFDM符号索引,
    Figure PCTCN2021108982-appb-100035
    为所述第一DMRS端口的索引;mod( )为取余运算;r(n)为所述第一DMRS对应的初始序列;Δ为子载波偏移,其取值和CDM组的索引关联;
    Figure PCTCN2021108982-appb-100036
    是OFDM符号的偏移;μ为子载波间隔的索引;w f(k')表示频域OCC码,w t(l')表示时域OCC码;v为层索引。
  25. 根据权利要求24所述的装置,其特征在于,循环移位因子ρ为预配置的,与所述第一DMRS端口索引相关联;
    M为所述网络设备配置的,或者为默认值。
  26. 根据权利要求20至25任一所述的装置,其特征在于,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;
    所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;
    所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为不同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
  27. 根据权利要求26所述的装置,其特征在于,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;
    所述第二组RE在频域上占用的子载波的索引为6和7,或者8和9,或者10和11。
  28. 根据权利要求20至25任一所述的装置,其特征在于,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;
    所述第二组RE包括4个RE,所述第二组RE在频域上占用两个连续的子载波,在时域上占用两个连续的OFDM符号;
    所述第一组RE占用的两个连续的子载波,与所述第二组RE占用的两个连续的子载波为相同的子载波;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为不同的OFDM符号。
  29. 根据权利要求28所述的装置,其特征在于,所述第一组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5;
    所述第二组RE在频域上占用的子载波的索引为0和1,或者2和3,或者4和5。
  30. 根据权利要求20至25任一所述的装置,其特征在于,所述第一组RE包括4个RE,所述第一组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的正交频分复用OFDM符号;
    所述第二组RE包括4个RE,所述第二组RE在频域上占用两个不连续的子载波,在时域上占用两个连续的OFDM符号;
    所述第一组RE占用的两个不连续的子载波,与所述第二组RE占用的两个不连续的子载波位于不同的RB;所述第一组RE占用的两个连续的OFDM符号,与所述第二组RE占用的两个连续的子OFDM符号为相同的OFDM符号。
  31. 一种可读存储介质,其特征在于,包括计算机程序或指令,当通信装置执行所述计算机程序或指令时,如权利要求1至19中任意一项所述的方法被执行。
  32. 一种芯片,其特征在于,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,如权利要求1至19中任意一项所述的方法被执行。
  33. 一种计算机程序产品,其特征在于,当所述计算机程序产品在通信装置上运行时,使得所述通信装置执行权利要求1至19任一所述的方法。
PCT/CN2021/108982 2020-07-30 2021-07-28 一种通信方法及装置 WO2022022579A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21850344.9A EP4187800A4 (en) 2020-07-30 2021-07-28 COMMUNICATION METHOD AND DEVICE
KR1020237005627A KR20230041054A (ko) 2020-07-30 2021-07-28 통신 방법 및 장치
US18/160,039 US20230171059A1 (en) 2020-07-30 2023-01-26 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010753330.3A CN114071723A (zh) 2020-07-30 2020-07-30 一种通信方法及装置
CN202010753330.3 2020-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/160,039 Continuation US20230171059A1 (en) 2020-07-30 2023-01-26 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2022022579A1 true WO2022022579A1 (zh) 2022-02-03

Family

ID=80037171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108982 WO2022022579A1 (zh) 2020-07-30 2021-07-28 一种通信方法及装置

Country Status (5)

Country Link
US (1) US20230171059A1 (zh)
EP (1) EP4187800A4 (zh)
KR (1) KR20230041054A (zh)
CN (1) CN114071723A (zh)
WO (1) WO2022022579A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023092158A3 (en) * 2022-04-27 2023-07-20 Futurewei Technologies, Inc. System and method for providing additional dm-rs ports for 5g mu-mimo transmission
WO2023212881A1 (zh) * 2022-05-05 2023-11-09 北京小米移动软件有限公司 解调参考信号dmrs的传输方法和装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116846523A (zh) * 2022-03-24 2023-10-03 维沃移动通信有限公司 Dmrs传输方法、装置及相关设备
WO2023197154A1 (zh) * 2022-04-12 2023-10-19 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
WO2023206197A1 (en) * 2022-04-28 2023-11-02 Apple Inc. Dmrs design with cdm group expansion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190068352A1 (en) * 2015-10-16 2019-02-28 Intel IP Corporation Enhanced resource mapping scheme
CN110418411A (zh) * 2018-04-27 2019-11-05 维沃移动通信有限公司 Dmrs的指示方法、装置及网络设备
CN110447258A (zh) * 2017-03-23 2019-11-12 华为技术有限公司 一种上行控制信道的资源映射方法及装置
WO2020069147A1 (en) * 2018-09-28 2020-04-02 Intel Corporation Demodulation reference signal transmission from multiple base stations
CN111133686A (zh) * 2017-08-03 2020-05-08 日本电气株式会社 用于参考信号配置的方法和装置
US20200169968A1 (en) * 2017-08-08 2020-05-28 Lg Electronics Inc. Method for transmitting/receiving reference signal in wireless communication system, and device therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107404376A (zh) * 2010-06-16 2017-11-28 爱立信(中国)通信有限公司 用于传送和解码参考信号的方法和装置
WO2016127309A1 (en) * 2015-02-10 2016-08-18 Qualcomm Incorporated Dmrs enhancement for higher order mu-mimo
US10644849B2 (en) * 2017-03-23 2020-05-05 Innovative Technology Lab Co., Ltd. Method and apparatus for transmitting and receiving demodulation reference signal
EP3468061A1 (en) * 2017-10-03 2019-04-10 Panasonic Intellectual Property Corporation of America Signaling aspects for indication of co-scheduled dmrs ports in mu-mimo
CN115473617B (zh) * 2018-09-14 2024-06-04 华为技术有限公司 参考信号配置方法和装置
CN111147206B (zh) * 2018-11-02 2023-01-13 中国移动通信有限公司研究院 一种信息配置和信息发送及接收方法、装置和存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190068352A1 (en) * 2015-10-16 2019-02-28 Intel IP Corporation Enhanced resource mapping scheme
CN110447258A (zh) * 2017-03-23 2019-11-12 华为技术有限公司 一种上行控制信道的资源映射方法及装置
CN111133686A (zh) * 2017-08-03 2020-05-08 日本电气株式会社 用于参考信号配置的方法和装置
US20200169968A1 (en) * 2017-08-08 2020-05-28 Lg Electronics Inc. Method for transmitting/receiving reference signal in wireless communication system, and device therefor
CN110418411A (zh) * 2018-04-27 2019-11-05 维沃移动通信有限公司 Dmrs的指示方法、装置及网络设备
WO2020069147A1 (en) * 2018-09-28 2020-04-02 Intel Corporation Demodulation reference signal transmission from multiple base stations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On DL DMRS design", 3GPP DRAFT; R1-1703216, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20170213 - 20170217, 12 February 2017 (2017-02-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051210349 *
See also references of EP4187800A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023092158A3 (en) * 2022-04-27 2023-07-20 Futurewei Technologies, Inc. System and method for providing additional dm-rs ports for 5g mu-mimo transmission
WO2023212881A1 (zh) * 2022-05-05 2023-11-09 北京小米移动软件有限公司 解调参考信号dmrs的传输方法和装置

Also Published As

Publication number Publication date
US20230171059A1 (en) 2023-06-01
EP4187800A4 (en) 2024-01-10
KR20230041054A (ko) 2023-03-23
EP4187800A1 (en) 2023-05-31
CN114071723A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2022022579A1 (zh) 一种通信方法及装置
WO2018137690A1 (zh) 一种通信系统中资源分配的方法及设备
EP3739800A1 (en) Pilot signal generation method and apparatus
US11363499B2 (en) Resource configuration method, apparatus, and system
US11272491B2 (en) Resource indication method, network device, and terminal device
WO2018228335A1 (zh) 导频信号发送、接收方法及装置、设备、存储介质
JP2020516128A (ja) Dmrs送信方法及び通信デバイス
WO2022033555A1 (zh) 信号传输方法和装置
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
WO2014043922A1 (zh) 传输广播消息的方法、基站和用户设备
WO2021233369A1 (zh) 一种资源配置方法以及网络节点
KR20210100178A (ko) 데이터 전송 방법 및 장치
WO2019029731A1 (zh) 一种资源配置方法及设备
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2018202103A1 (zh) 一种参考信号图样的传输方法及其装置
WO2018228460A1 (zh) 相位跟踪参考信号处理方法与装置
WO2019191971A1 (zh) 数据传输方法、终端设备及网络设备
WO2018127180A1 (zh) 一种参考信号传输方法及装置
JP2024503850A (ja) 伝送タイミング決定方法及び装置
TWI826057B (zh) 一種實體上行控制通道的發送方法、接收方法及通信裝置
WO2022205022A1 (zh) 用于传输参考信号的方法和装置
WO2022082792A1 (zh) 一种信号发送、信号检测方法及装置
WO2021062872A1 (zh) 一种通信方法及装置
WO2023207476A1 (zh) 一种通信方法、装置及设备
WO2024067265A1 (zh) 一种通信方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237005627

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021850344

Country of ref document: EP

Effective date: 20230221

NENP Non-entry into the national phase

Ref country code: DE