WO2018137690A1 - 一种通信系统中资源分配的方法及设备 - Google Patents

一种通信系统中资源分配的方法及设备 Download PDF

Info

Publication number
WO2018137690A1
WO2018137690A1 PCT/CN2018/074204 CN2018074204W WO2018137690A1 WO 2018137690 A1 WO2018137690 A1 WO 2018137690A1 CN 2018074204 W CN2018074204 W CN 2018074204W WO 2018137690 A1 WO2018137690 A1 WO 2018137690A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
domain resource
resource unit
configuration information
resource allocation
Prior art date
Application number
PCT/CN2018/074204
Other languages
English (en)
French (fr)
Inventor
吴明
张弛
赵悦莹
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18744461.7A priority Critical patent/EP3567954B1/en
Publication of WO2018137690A1 publication Critical patent/WO2018137690A1/zh
Priority to US16/521,811 priority patent/US11064498B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to the field of mobile communications technologies, and in particular, to a method and device for resource allocation in a communication system.
  • the frequency domain resource granularity of the resource is a resource block (RB).
  • RB resource block
  • DCI downlink control information
  • the standard defines a resource block group (RBG).
  • An RBG consists of one or more consecutive virtual resource blocks (VRBs).
  • VRBs virtual resource blocks
  • resource allocation is related to the RBG size.
  • the RBG size can be regarded as the basic granularity of resource scheduling.
  • the maximum system bandwidth supported by the LTE-A system is 20 MHz.
  • the RBG size is fixed under the fixed system bandwidth.
  • the RBG size refers to the number of VRBs included in the RBG. As long as the system bandwidth is determined, the RBG size can be determined. .
  • the bandwidth supported by the new radio (NR) system will be greatly increased, even up to 1 GHz.
  • the resource allocation method of LTE-A is applied to a large bandwidth, the size of the RBG is too small, which may result in excessive resource scheduling overhead, which is not expected.
  • the RBG size is increased only according to the system bandwidth, for example, when the RBG size is increased to 40 RBs at 800 MHz, the scheduling granularity is limited, and flexible scheduling cannot be performed.
  • Different users have different scheduling granularities due to different services. Large-band users have low overhead, low latency, and large bandwidth. They are more suitable for larger scheduling granularity, while small packet users have low overhead and small bandwidth. Business needs require a smaller scheduling granularity.
  • the present application provides a method and a device for resource allocation in a communication system, which are used to implement configurability of resource allocation granularity.
  • an embodiment of the present application provides a method for resource allocation in a communication system, including:
  • the terminal determines the size of the first frequency domain resource unit according to the configuration information; the configuration information includes the predefined first configuration information; or the configuration information includes the second configuration information that is sent by the base station to the terminal; or The configuration information includes the first configuration information and the second configuration information;
  • the terminal determines a resource allocation related parameter according to the size of the first frequency domain resource unit.
  • the terminal only needs to determine the size of the first frequency domain resource unit according to the configuration information, and different first frequency domain resource units may be used for different configuration information of the first frequency domain resource unit size.
  • the size and size of the first frequency domain resource unit are configurable, so that the resource allocation granularity can be flexibly configured to meet different service requirements in a scenario with large bandwidth or new application requirements. Determining the size of the first frequency domain resource unit according to the predefined first configuration information, avoiding the overhead caused by the base station indicating the size of the first frequency domain resource unit to the terminal.
  • the first frequency domain resource unit is a set of one or more consecutive virtual resource blocks.
  • the first frequency domain resource unit is the foregoing RBG, the RBG is a VRB, or the RBG is a set including n consecutive VRBs. Multiple configuration values of the RBG size are implemented by configuring different values of n.
  • the first configuration information includes a correspondence between at least one of a subband identifier and a frequency band identifier and a size of the first frequency domain resource unit.
  • the first configuration information includes a correspondence between the subband identifier and the size of the first frequency domain resource unit, and may be a one-to-one correspondence or a one-to-many correspondence.
  • the terminal may directly determine, according to the first configuration information, the size of the first frequency domain resource unit corresponding to the sub-band identifier, so that there is a corresponding Businesses with RBG size requirements can allocate the resources they need to allocate to the corresponding sub-bands to meet different business needs.
  • a first frequency is selected from the plurality of first frequency domain resource unit sizes corresponding to the subband identifier.
  • the second resource configuration where the second configuration information is sent by the base station to the terminal, where the indication information can indicate the size of the plurality of first frequency domain resource units corresponding to the sub-band identifier.
  • the value of a first frequency domain resource unit size In this scenario, the second configuration information only needs to occupy fewer bits to implement the indication of the size of the first frequency domain resource unit, so that the bandwidth allocation can be flexibly configured with a small overhead in a large bandwidth scenario. To meet different business needs.
  • the determining, by the terminal, the resource allocation related parameter according to the first frequency domain resource unit size includes: determining, by the terminal, a bit required for resource allocation according to the first frequency domain resource unit size number. Since the size of the first frequency domain resource unit is configurable, the number of bits required for resource allocation is also adjustable. Therefore, in a scenario of a large bandwidth scenario or a new application requirement, the size of the first frequency domain resource unit is The settings will take into account the overhead of resource allocation.
  • the method further includes: the resource allocation parameter of the terminal is related to the second frequency domain resource unit size.
  • the existing resource allocation type 2 may be improved, so that the resource indication value of the resource allocation is related to the size and number of the second frequency domain resource unit. .
  • improving the mapping manner of the resources so that the interleaving manner of the resources is related to the size of the second frequency domain resource unit in the distributed resource mapping process.
  • the method further includes: determining, by the terminal, the resource allocation related parameter according to the first frequency domain unit size and the second frequency domain resource unit size.
  • the resource allocation related parameter includes at least one of a number of bits required for resource allocation, a resource indication value of resource allocation, and a resource mapping manner of resource allocation.
  • the resource mapping manner of the existing resource allocation type 1 and the resource allocation type 1 can be improved, and the resource allocation indication is made.
  • the number of bits of the first domain and the third domain in the DCI information is still related to the size of the first frequency domain resource unit, but the size of the first resource unit at this time is an integer multiple of the size of the second frequency domain resource unit.
  • the parameter, in the LTE-A system represents the total number of downlink RBs in the system, which in this design becomes the total number of total second frequency domain resource elements in the system.
  • the second frequency domain resource unit is a set of one or more consecutive physical resource blocks.
  • the second frequency domain resource unit may be a block, one block includes one PRB, or one block is a set including n consecutive physical resource blocks (PRBs) or RBs.
  • PRBs physical resource blocks
  • n is a positive integer greater than one. For example, every two physical resource blocks in a system bandwidth are divided into two second frequency domain resource units, and the second frequency domain resource unit size is 2.
  • the method further includes: the terminal receiving base station transmitting a first reference signal, where the first reference signal is carried by at least one of the second frequency domain resource units.
  • the method further includes: the terminal sending a second reference signal to the base station, where the second reference signal is carried by at least one of the second frequency domain resource units.
  • the first frequency domain resource unit size is N times the size of the second frequency domain resource unit, and N is an integer greater than or equal to 1. Determining the first frequency domain resource unit size as a positive integer multiple of the second frequency domain resource unit size, and determining the first frequency according to the second frequency domain resource unit size when the second frequency domain resource unit size has multiple configuration values The size of the domain resource unit, so that the size of the first frequency domain resource unit is configurable, or when the first frequency domain resource unit size has multiple configuration values, determining the second frequency domain resource unit according to the first frequency domain resource unit size The size, and thus the second frequency domain resource unit size, is configurable.
  • the resource mapping manner supported by the existing resource allocation type 1 is improved by using the N-fold relationship between the size of the first frequency domain resource unit and the size of the second frequency domain resource unit, so that the allocated continuous VRB can be made.
  • the application provides a method for resource allocation in a communication system, including:
  • the base station sends the second configuration information to the terminal, where the second configuration information is used to indicate the first frequency domain resource unit size to the terminal, where the first frequency domain resource unit size is used to determine the resource allocation related parameter.
  • the base station directly indicates the second configuration information to the terminal, so that the terminal can determine the size of the first frequency domain resource unit according to the second configuration information, and implement configurability of the size of the first frequency domain resource unit, or the second configuration of the terminal according to the base station indication.
  • the information and the first configuration information pre-defined in the terminal may determine the size of the first frequency domain resource unit, and implement the configurability of the size of the first frequency domain resource unit, so that the scenario with large bandwidth or new application requirements can be
  • the resource allocation granularity is flexibly configured to meet different business needs.
  • the first frequency domain resource unit is a set of one or more consecutive virtual resource blocks.
  • the first frequency domain resource unit is the foregoing RBG, the RBG is a VRB, or the RBG is a set including m consecutive VRBs, and m is a positive integer greater than 1.
  • Multiple configuration values of the RBG size are implemented by configuring different m values.
  • it also includes:
  • the base station receives a second reference signal sent by the terminal, where the second reference signal is carried in at least one of the second frequency domain resource units.
  • the first frequency domain resource unit size is N times the size of the second frequency domain resource unit, and N is an integer greater than or equal to 1. Determining the first frequency domain resource unit size as a positive integer multiple of the second frequency domain resource unit size, and determining the first frequency according to the second frequency domain resource unit size when the second frequency domain resource unit size has multiple configuration values The size of the domain resource unit, so that the size of the first frequency domain resource unit is configurable, or when the first frequency domain resource unit size has multiple configuration values, determining the second frequency domain resource unit according to the first frequency domain resource unit size The size, and thus the second frequency domain resource unit size, is configurable.
  • the resource mapping manner supported by the existing resource allocation type 1 is improved by using the N-fold relationship between the size of the first frequency domain resource unit and the size of the second frequency domain resource unit, so that the allocated continuous VRB can be made.
  • the second frequency domain resource unit is a set of one or more consecutive physical resource blocks.
  • the second frequency domain resource unit is a block, one block includes one PRB, or the block is a set containing m consecutive PRBs.
  • m is a positive integer greater than 1.
  • the present application provides a terminal that can perform method steps related to a terminal in various embodiments involved in the present application, so as to avoid an indication overhead of resource allocation in a scenario of large bandwidth and new application requirements.
  • the terminal includes a plurality of functional modules for performing terminal-related method steps in various embodiments involved in the present application, so that the resource allocation granularity can be flexibly configured in a large bandwidth scenario. To meet different business needs.
  • the structure of the terminal includes a processor and a transceiver configured to support a corresponding function in a method in which the terminal performs resource allocation in the communication system described above.
  • the transceiver is configured to support communication between the terminal and the base station, and send information or instructions involved in the method for resource allocation in the communication system to the base station.
  • the terminal may also include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • the present application provides a base station, which can perform method steps related to a base station in various embodiments involved in the present application, so that an indication overhead of avoiding resource allocation is excessive in a large bandwidth scenario, and at the same time,
  • the resource allocation granularity is flexibly configured to meet different business needs.
  • the base station includes a plurality of functional modules for performing the method steps related to the base station in the various embodiments involved in the present application, so that the resource allocation granularity can be flexibly configured in a large bandwidth scenario. To meet different business needs.
  • the base station includes a processor and a transceiver configured to support a base station corresponding function in a method in which the base station performs resource allocation in the communication system.
  • the transceiver is configured to support communication between the base station and the terminal, and transmit information or instructions involved in the method for resource allocation in the communication system to the terminal.
  • a memory may also be included in the base station for coupling with the processor, which stores the necessary program instructions and data for the base station.
  • the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform any of the first aspect or the first aspect described above The method described in the implementation.
  • the present application provides a computer readable storage medium having stored therein instructions that, when run on a computer, cause the computer to perform any of the above second or second aspects The method described in the implementation.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method described in the first aspect or any of the possible implementations of the first aspect.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method described in any of the second aspect or the second aspect of the second aspect.
  • FIG. 1 is a schematic structural diagram of an LTE system and a new generation wireless communication system provided by the present application;
  • FIG. 3 is a schematic diagram of allocation of a block RS according to the present application.
  • FIG. 5 is a schematic diagram of indication information of a bitmap according to the present application.
  • FIG. 6 is a schematic diagram of resource mapping of a virtual block and a physical block provided by the present application.
  • FIG. 7 is a schematic structural diagram of a terminal provided by the present application.
  • FIG. 8 is a schematic structural diagram of a base station provided by the present application.
  • FIG. 9 is a schematic structural diagram of a terminal or a base station provided by the present application.
  • LTE systems such as LTE/LTE-A/eLTE systems
  • LTE/LTE-A/eLTE systems or other wireless communication systems using various wireless access technologies, for example, using multiple code divisions.
  • SC-FDMA single carrier-frequency division multiple access
  • 5G also known as new radio
  • NR new radio
  • the base station and the terminal can perform data or signaling transmission through the wireless interface, including uplink transmission and downlink transmission.
  • the terminal involved in the present application may be a device that provides voice and/or data connectivity to a user, including a wired terminal and a wireless terminal.
  • the wireless terminal can be a handheld device with wireless connectivity, or other processing device connected to a wireless modem, and a mobile terminal that communicates with one or more core networks via a wireless access network.
  • the wireless terminal can be a mobile phone, a computer, a tablet, a personal digital assistant (PDA), a mobile internet device (MID), a wearable device, and an e-book reader. Wait.
  • the wireless terminal can also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device.
  • the wireless terminal can be a mobile station or an access point.
  • the aforementioned UE is a type of terminal and is a title in the LTE system.
  • the above-mentioned devices are collectively referred to as terminals.
  • the base station involved in the present application is a device deployed in a radio access network (RAN) to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access point base station controllers, transmission and reception nodes (TRPs), and the like.
  • TRPs transmission and reception nodes
  • the specific name of the base station may be different.
  • an evolved NodeB eNB
  • gNB new radio node B
  • the relationship between the user and the terminal (or UE) in the present application may be that the user accesses the network by using the terminal (or UE) to implement communication with the base station.
  • the physical resource block (PRB) in the present application is a unit of time-frequency resources, occupying 1 subframe or 1 slot in the time domain, and occupying consecutive M subcarriers in the frequency domain.
  • M is a natural number greater than zero.
  • 14 consecutive OFDM symbols occupy one subframe in the time domain, and occupy 12 consecutive subcarriers in the frequency domain.
  • the first frequency domain resource unit in the present application may be an RBG, and one RBG may be a set of one or more consecutive virtual resource blocks, or may include one or more second frequency domain resource units, and the second frequency domain.
  • a resource unit is a block, a block contains one physical resource block, or a block is a collection of m consecutive physical resource blocks.
  • the second frequency domain resource unit referred to in the present application can be understood as: block (or resource unit), which is obtained by dividing a bandwidth according to a frequency domain dimension.
  • the RS of the UE on a certain bandwidth is an RS on a second frequency domain resource unit, or is a combination of reference signals (RS) connections on multiple second frequency domain resource units.
  • the second frequency domain resource unit can also be viewed as a collection of one or more consecutive physical resource blocks (VRBs). In some application scenarios, at least N consecutive virtual resource blocks (VRBs) are mapped to consecutive N PRBs, and the length of the second frequency domain resource unit is N.
  • the precoding resource block group (PRG) referred to in this application is a parameter indicating the precoding granularity, which is used to indicate how many RBs can use the same precoding. Similar to RBG, the PRG size is also a parameter related to the system bandwidth, and the size of the PRG has a certain correlation with the size of the RBG.
  • the block reference signal referred to in this application refers to a block RS, or a resource unit specific reference signal (resource unit specific RS, which is a new reference signal design, and the main design idea of a block RS (or resource unit specific RS) is
  • the bandwidth is divided into multiple blocks (or resource units), and one RS is designed for each block (or resource unit), and the RS of the UE on a certain bandwidth is combined by one or more block RS connections.
  • the sub-frames in this application can be understood as: a time-frequency resource that occupies the entire system bandwidth in the frequency domain, and a fixed time length in the time domain, for example, 1 millisecond (ms).
  • one subframe can also occupy consecutive K symbols, and K is a natural number greater than zero.
  • the value of K can be determined according to actual conditions, and is not limited herein.
  • 1 subframe occupies consecutive 14 OFDM symbols in the time domain.
  • a time slot refers to a basic time-frequency resource unit, which occupies consecutive L OFDM symbols in the time domain, and L is a natural number greater than zero.
  • the value of L can be determined according to actual conditions, for example, 7 OFDM symbols.
  • the symbols mentioned in the present application include, but are not limited to, orthogonal frequency division multiplexing (OFDM) symbols, sparse code division access (SCMA) symbols, and filtered orthogonal frequency division.
  • OFDM orthogonal frequency division multiplexing
  • SCMA sparse code division access
  • NOMA non-orthogonal multiple access
  • time slots referred to in this application may be slots, mini-slots, and other time resource elements.
  • the subcarrier width referred to in this application can be understood as the smallest granularity in the frequency domain.
  • the subcarrier width of one subcarrier is 15 kHz.
  • the maximum system bandwidth supported by the LTE-A system is 20 MHz.
  • the resource allocation granularity RBG size can be determined, and under the fixed system bandwidth, there is only one RBG size.
  • higher bandwidth will be supported.
  • the high frequency band for example, the frequency band higher than 6 GHz
  • the spectrum space is large, so the supported bandwidth will be greatly increased, even reaching the system bandwidth of 800 MHz or 1 GHz.
  • the number of RBs will be significantly higher than that in LTE.
  • the 800MHz system bandwidth and the 60KHz subcarrier spacing may exceed 1100RB.
  • the resource allocation granularity may be different, and a plurality of RBG sizes may be configured under one system bandwidth, and the specific RBG size may be indicated by the base station.
  • the bandwidth allocation that is, the RBG size, is flexibly configured to meet different service requirements.
  • the present application provides a method for resource allocation, which is mainly used to determine the size of a first frequency domain resource unit.
  • the method includes: determining, by the terminal, a first frequency domain resource unit size according to the configuration information.
  • the first frequency domain resource unit is a set of one or more consecutive virtual resource blocks.
  • the first frequency domain resource unit is the foregoing RBG, and the RBG is a set of one VRB or n consecutive VRBs. Multiple configuration values of the RBG size are implemented by configuring different values of n.
  • the terminal determines, according to the configuration information, that the size of the first frequency domain resource unit has multiple implementation modes:
  • the configuration information includes predefined first configuration information between the terminal and a base station.
  • the first configuration information includes a correspondence between a first frequency domain resource unit size and at least one resource location information, where the resource location information may include related configuration information of at least one of a subband, a frequency band, a numerology, and a subcarrier in which the allocated resource is located.
  • the first configuration information includes a correspondence between at least one of a subband identifier, a band identifier, a numerology, and a subcarrier and a size of the first frequency domain resource unit.
  • numerology refers to a collection of various possible parameters or configuration parameters, such as bandwidth, cyclic prefix, and so on.
  • the predefined first configuration information may be a correspondence between the subband identifier and the first frequency domain resource unit size, or a correspondence between the frequency band identifier and the first frequency domain resource unit size, or a numerology identifier and a first frequency domain resource unit size. The corresponding relationship, or the correspondence between the subcarrier identifier and the size of the first frequency domain resource unit.
  • the predefined first configuration information is a predefined first frequency domain resource unit size related configuration information, which may be specified by a protocol or a standard, and the base station and the terminal side may be regarded as known to the predefined configuration information, which may be avoided.
  • the base station uses the indication information to indicate the size of the first frequency domain resource unit to the terminal, and avoids the overhead that the base station uses the indication information to indicate to the terminal. It is of course not excluded that the predefined first configuration information is indicated by the base station to the terminal through system information, high layer signaling or initial access information.
  • the terminal may determine the first frequency domain according to the predefined first configuration information, as long as the terminal knows the location information of the allocated resource, such as the subband identifier, the frequency band identifier, the numerology identifier, and the subcarrier identifier. Resource unit size. Or the terminal may determine at least one of a subband, a frequency band, a numerology, and a subcarrier in which the allocated resource is located according to the resource allocation related information or other information, and determine the first frequency domain resource unit according to the predefined first configuration information. size.
  • the terminal obtains the location information of the allocated resource by using the resource allocation indication information indicated by the base station. For example, the base station sends the resource allocation indication information to the terminal, where the resource allocation indication information includes the location information of the allocated resource, and the terminal receives the resource allocation indication information, and the terminal can learn, according to the resource allocation indication information, which subband the allocated resource is in. , or in which frequency band, or which kind of numerology is used to obtain the allocated resources, or which subcarrier is used to obtain the allocated resources.
  • the pre-defined configuration information may be a correspondence between the sub-band identifier and the size of the first frequency-domain resource unit.
  • the base station can divide the sub-bands according to different services, different numerologies, sub-carriers or the like.
  • the terminal may determine the currently selected first frequency domain resource unit size according to which subband the allocated resource is on. In summary, as long as the subband identifier is determined, there must be a first frequency domain resource unit size value corresponding thereto.
  • Subband First frequency domain resource unit size Subband#1 V a1 Subband#2 V a2 ... ... Subband#i V ai ... ... Subband#N V aN
  • the configuration value of the first frequency domain resource unit size is 4, 6, 8, 10, and the configuration value of the first frequency domain resource unit size used on the subband 1 is 4, and the subband 2
  • the configuration value of the first frequency domain resource unit size used on the subband 3 is 8 and the configuration of the first frequency domain resource unit size used on the subband 4 is configured.
  • the value is 10.
  • the first frequency domain resource unit size corresponding to the frequency band identifier may be determined according to the correspondence between the predefined frequency band identifier and the first frequency domain resource unit size. For example, when the frequency band is 4 GHz and the frequency band is 30 GHz, the first frequency domain resource unit size configurable values are different.
  • the sub-bands are divided by the base station, and the base station may divide the sub-bands according to different services or different numerologies or sub-carriers or the like.
  • the first frequency domain resource unit size may also be directly related to the numerology or subcarrier, the relationship between the numerology or subcarrier and the first frequency domain resource unit size, and the size of the subband and the first frequency domain resource unit.
  • the relationship between the subband identifiers in the above table is replaced with the numerology identifier or the subcarrier identifier is the relationship between the size of the first frequency domain resource unit and the numerology identifier or the subcarrier identifier.
  • the frequency band refers to the carrier frequency of the frequency band in which the communication system operates, such as 4 GHz, 30 GHz, etc. discussed in NR. If the corresponding relationship between the subband and the first frequency domain resource unit size (such as the above table) is different in different frequency bands, the user equipment needs to determine the first frequency domain resource unit size by combining the frequency band identifier, the subband identifier, and the configuration information of the base station. .
  • the configuration information includes second configuration information that is sent by the base station to the terminal, where the second configuration information is indication information that is sent by the base station to the terminal, and the indication information can directly indicate the first
  • the scenario applied by the solution is: the base station directly indicates the size of the first frequency domain resource unit to the terminal.
  • the base station sends the second configuration information to the terminal, where the second configuration information includes the first frequency domain resource unit size indication, and the terminal receives the second configuration information sent by the base station, according to the first frequency domain resource in the second configuration information.
  • the unit size indication determines the size of the first frequency domain resource unit.
  • the first frequency domain resource unit size indicates the number of bits occupied, and is determined according to the configured number of the first frequency domain resource unit size in the system bandwidth. If the size of the first frequency domain resource unit in a system bandwidth has N (N>1) optional configuration values, the number of bits in the first frequency domain resource unit size indication is:
  • Example 1 When the system bandwidth is 100 RB, the configurable value of the first frequency domain resource unit is 4, 6, 8, and 10. When the system bandwidth is 200 RB, the configurable value of the first frequency domain resource unit is 4, 8, 12 16, the number of configurable sizes of the first frequency domain resource unit is four, so that the base station can use the 2-bit indication information to indicate the value of the first frequency domain resource unit size currently used.
  • Example 2 based on the first example, when the system bandwidth is 100 RB, if the indication information of 2 bits is 00, the size of the selected first frequency domain resource unit is 4, and if the indication information of 2 bits is 01, the selected information is selected.
  • the first frequency domain resource unit size is 6; if the 2-bit indication information is 10, the selected first frequency domain resource unit size is 8; if the 2-bit indication information is 11, the selected first frequency domain is The resource unit size is 10.
  • Example 3 based on the first example, when the system bandwidth is 200 RB, if the 2-bit indication information is 00, the selected first frequency-domain resource unit size is 4; if the 2-bit indication information is 01, the selected The first frequency domain resource unit size is 8; if the 2-bit indication information is 10, the selected first frequency domain resource unit size is 12; if the 2-bit indication information is 11, the selected first frequency domain resource is indicated.
  • the unit size is 16.
  • the RBG-related configuration information may be carried in at least one of the following: broadcast signaling, high-level signaling (radio resource control (RRC) signaling, etc.), and media access control element (MAC CE) Signaling, L1 control signaling (DCI, etc.), etc.
  • the high layer signaling includes a master information block (MIB), a system information block (SIB), or radio resource control (RRC) signaling, or other similar features.
  • High-level signaling can be used for indication in each time slot (slot, slot, mini-slot, etc.), which indicates a large overhead.
  • the RBG size is a certain value for a period of time, for example, similar to broadcast signaling carried in a PCFICH channel in LTE; or, the physical layer broadcast control signaling
  • the occupied time-frequency resource includes at least one OFDM symbol of a start OFDM symbol of a time slot or a subframe, and the physical layer broadcast control signaling may be detected and received by one or all terminals in the cell.
  • DCI and high-level signaling or broadcast signaling to indicate that the RBG size can be some of all configurable values through high-level signaling or broadcast signaling within a short period of time, and then through DCI. Indicates which value the RBG size is.
  • Other indication methods can also be used. This configuration method is equally applicable to the configuration process in the following embodiments.
  • the configuration information includes the first configuration information and the second configuration information
  • the first configuration information includes a correspondence between at least one of a subband identifier, a frequency band identifier, a numerology or a subcarrier, and a plurality of configuration values of the first frequency domain resource unit size.
  • the application scenario is that there is a correspondence between a subband identifier or a band identifier of the predefined RBG size configuration information and multiple configuration values of the RBG size.
  • Each subband under one system bandwidth corresponds to a first frequency domain resource unit size set, or each frequency band under one system bandwidth corresponds to a first frequency domain resource unit size set, or each numerology or sub-system bandwidth
  • the carrier corresponds to a first frequency domain resource unit size set.
  • the second configuration information is indication information that is sent by the base station to the terminal, and the indication information can indicate one of a plurality of configuration values of the first frequency domain resource unit size corresponding to the subband identifier; or the indication information can indicate The frequency identifier identifies one of a plurality of configuration values of the first frequency domain resource unit size; or the indication information can indicate one of a plurality of configuration values of the first frequency domain resource unit size corresponding to the numerology or the subcarrier. Configuration value.
  • the base station may use log 2 Max(n i )(1 ⁇ i ⁇ N) bit information to indicate a configuration value of the first frequency domain resource unit size, and n i is a first frequency domain resource unit corresponding to one subband. The total number of configuration values in the size collection.
  • subband #1 there is a configuration value of N (N>1) first frequency domain resource unit sizes, and the base station needs to use [log 2 N] bits to indicate which first frequency domain corresponding to subband #1 is used.
  • the configuration value of the resource unit size is a configuration value of N (N>1) first frequency domain resource unit sizes, and the base station needs to use [log 2 N] bits to indicate which first frequency domain corresponding to subband #1 is used.
  • the first frequency domain resource unit size may be determined together with the subband identifier, the first configuration information, and the information indicated by the base station.
  • the terminal obtains the location information of the allocated resource by using the resource allocation related indication information indicated by the base station or the other information, and the resource allocation indication information includes the location information of the allocated resource, and can be determined by the location information of the resource. Which subband is in which band the allocated resource is in or which band.
  • the terminal selects one configuration value from the plurality of configuration values in the first frequency domain resource unit size set corresponding to the sub-band 1 according to the second configuration information indicated by the base station.
  • the base station may separately send the resource allocation related indication information and the second configuration information, or may send the information together.
  • the configuration value of the first frequency domain resource unit size that is optional on the subband 1 is 2, 3, and the first frequency domain resource unit that is optional on the subband 2
  • the configuration value for the size is 4, 5.
  • Example 4 In the case that the allocated resource is on the sub-band 1, the base station uses one bit to indicate one configuration value in the first frequency-domain resource unit size set corresponding to the sub-band 1, and the 1-bit indication value is When 0, the size of the first frequency domain resource unit is 2, and when the indicator value of the 1 bit is 1, the size of the resource element corresponding to the first frequency domain is 3.
  • Example 5 In the case that the allocated resource is on the subband 2, the base station uses 1 bit to indicate the configuration value of the first frequency domain resource unit size in the first frequency domain resource unit size set corresponding to the subband 2, When the indicator value of the 1-bit is 0, the size of the resource region corresponding to the first frequency domain is 4, and when the indication value of the 1-bit is 1, the size of the resource region corresponding to the first frequency domain is 5.
  • one configuration value in the first frequency domain resource unit size set corresponding to the frequency band may also be determined in the same manner, where no longer Repeated.
  • the frequency band refers to the carrier frequency of the frequency band in which the communication system operates, such as 4 GHz, 30 GHz, etc. discussed in NR.
  • the first frequency domain resource unit size and frequency band may also have the following relationship: under the same system bandwidth, there are multiple first frequency domain resource unit size configuration values on different frequency bands, for example, on frequency band #1, there is N (N>1). a first frequency domain resource unit size configurable value, the base station needs to use The bit indicates which first frequency domain resource unit size to use. On the frequency band #2, there are M (M>1) first frequency domain resource unit size configurable values, and the base station needs to use The bit indicates which first frequency domain resource unit size to use.
  • the user equipment needs to determine the first frequency domain resource unit size according to the frequency band identifier and the first configuration information of the base station. If the corresponding relationship between the subband and the first frequency domain resource unit size (such as the above table) is different in different frequency bands, the user equipment needs to determine the first frequency domain resource unit size by combining the frequency band identifier, the subband identifier, and the configuration information of the base station. .
  • the configuration of the first frequency domain resource unit size may also be related to the numerology, and the configuration method and the configuration method between the subband and the first frequency domain resource unit size are similar, and the subband in the description of the foregoing configuration method is replaced.
  • numerology it can be seen as the relationship between numerology and the size of the first frequency domain resource unit, and the corresponding configuration method.
  • the configuration of the first frequency domain resource unit size may also be related to the subcarrier, and the configuration method and the configuration method between the subband and the first frequency domain resource unit size are similar, and the subband in the description of the foregoing configuration method is replaced with a subcarrier. It can be seen as the relationship between the subcarrier and the size of the first frequency domain resource unit, and the corresponding configuration method.
  • the first frequency domain resource unit size is determined by a size of the second frequency domain resource unit.
  • the terminal determines a second frequency domain resource unit size according to the related configuration information.
  • the second frequency domain resource unit is a set of one or more consecutive physical resource blocks.
  • the second frequency domain resource unit is a block, the block includes one PRB, or the block is a set containing n consecutive PRBs.
  • n By configuring different values of n, multiple configuration values of the block size can be achieved.
  • the first frequency domain resource unit size is N times the size of the second frequency domain resource unit, and N is an integer greater than or equal to 1.
  • the second frequency domain resource unit is a set of one or more consecutive physical resource blocks.
  • the second frequency domain resource unit size is predefined between the base station and the terminal.
  • the first frequency domain resource unit size is determined according to the second frequency domain resource unit size.
  • the configurability of the first frequency domain resource unit size is also implemented by configurability of the second frequency domain resource unit size.
  • the PRG is a parameter indicating the precoding granularity, which is used to indicate how many RBs can use the same precoding. Similar to RBG, the PRG size is also a parameter related to the system bandwidth, and the size of the PRG has a certain correlation with the size of the RBG. In order to adapt to the new business scenario requirements, the RBG size can be configured, and the corresponding PRG size also needs to be configurable.
  • the user equipment sets a precoding granularity to indicate that multiple RBs in the frequency domain can use the same precoding.
  • the PRG size is used to indicate how many RBs can use the same precoded parameters.
  • the resource block precoding size is similar to the first frequency domain resource unit size, and the value is also related to the system bandwidth. The relationship is shown in Table 3:
  • the RBG size can be configured.
  • the PRG size is also configurable.
  • RBG size configuration methods in the foregoing embodiments are equally applicable to the PRG size configuration, except that the RBG size and the configurable value of the PRG size may be the same or different.
  • the present application provides a method for resource allocation in a communication system. As shown in FIG. 2, the method includes:
  • Step 201 The terminal determines, according to the configuration information, a size of the first frequency domain resource unit.
  • Step 202 The terminal determines, according to the size of the first frequency domain resource unit, a resource allocation related parameter.
  • the resource allocation related parameter includes at least one of a number of bits required for resource allocation, a resource indication value of resource allocation, and a resource mapping manner of resource allocation, where the number of bits required for the resource allocation
  • the number of bits occupied by the indication information used to indicate at least one of the resource allocation related parameters for example, the number of bits required for the resource allocation is the number of bits occupied by the DCI delivered by the base station, or the base station.
  • the LTE-A system defines three resource allocation types, resource allocation type 0, resource allocation type 1 and resource allocation type 2.
  • the number of bits required for resource allocation can be determined according to the size of the first frequency domain resource unit.
  • the base station allocates resources by using a bitmap, each bit corresponds to one RBG, and the value of each bit is used to indicate whether each RBG is scheduled.
  • the number of bits required for resource allocation is the number of bits occupied by the bitmap.
  • the number of bits occupied by the bitmap is equal to the number of RBGs.
  • the number of RBGs is determined according to the size of the RBG.
  • the size of the RBG refers to the first frequency domain resource.
  • the unit size, that is, the number of consecutive VRBs in the RBG, the number of RBGs can be expressed as: Where p is the size of the RBG, The total number of RBs.
  • the virtual VRBs allocated to the terminal are indicated by the three domains of the DCI, the virtual VRBs allocated to the terminals are in one RBG subset, one RBG subset includes all RBGs, and each RBG includes multiple consecutive The size of VRB and RBG is the number of consecutive VRBs in the RBG.
  • the first field is used to indicate the selected RBG subset.
  • the number of bits occupied by the first field is related to the size of the RBG.
  • the number of bits occupied by the first field can be expressed as: Where p is the size of the RBG.
  • the size of the first frequency domain resource unit is configurable, the number of bits required for the above two resource allocations also changes accordingly.
  • the size of the first frequency domain resource unit is combined with the size of the second frequency domain resource unit to determine a resource allocation related parameter.
  • the existing resource allocation type 1 may also be modified, for example, to make the resource allocation indication DCI information in the first domain and
  • the number of bits of the third domain is still related to the size of the first frequency domain resource unit, but the size of the first resource unit at this time is an integer multiple of the size of the second frequency domain resource unit.
  • the parameter, in LTE-A represents the total number of downlink RBs in the system, which in this design becomes the total number of total second frequency domain resource elements in the system.
  • the resource allocation parameter of the terminal is related to the size of the second frequency domain resource unit.
  • the existing resource allocation type 2 may be improved, so that the resource indication value of the resource allocation is related to the size and number of the second frequency domain resource unit. .
  • improving the mapping manner of the resources so that the interleaving manner of the resources is related to the size of the second frequency domain resource unit in the distributed resource mapping process.
  • the resource indication value of the resource allocation may also be determined according to the second frequency domain resource unit.
  • the resource allocated to the terminal is indicated by the RIV
  • the resource allocated to the terminal is a continuous VRB.
  • the initial VRB number RB start assigned to the terminal and the consecutive VRB number L CRBs starting from the starting VRB number are indicated by an expression of the RIV.
  • the application further provides a method for sending a reference signal, which specifically includes:
  • the terminal receiving base station sends a first reference signal, where the first reference signal is carried in at least one of the second frequency domain resource units;
  • the terminal sends a second reference signal to the base station, where the second reference signal is carried in at least one of the second frequency domain resource units.
  • the second frequency domain resource unit is a block
  • the first reference signal and the second reference signal are collectively referred to as a block RS, which means a reference signal carried in a specific frequency domain resource unit.
  • the main design method of block RS is to divide a large bandwidth into multiple blocks or resource units, and design RS for each block.
  • the RS of a user on a certain bandwidth is composed of one or more block RS connections, and different blocks are used.
  • the ZC sequences generated by different ZC roots are shown in Figure 3.
  • the communication resources used by UE1, UE2, UE3, and UE4 are displayed in the figure, and their time domain locations are actually the same.
  • the communication resources used by the UE 2, the UE 3, and the UE 4 overlap with the communication resources used by the UE 1 in the time domain, respectively.
  • these 4 blocks use the ZC sequence generated by root#1, root#2, root#3 and root#4 to generate RSs respectively.
  • these four blocks use the ZC sequence generated by root#1, root#2 to generate the RS.
  • these 4 blocks use the ZC sequence generated by root#3 to generate the RS.
  • these 4 blocks use the ZC sequence generated by root#4 to generate the RS.
  • the length of the overlapping portion of the resource must be an integer multiple of the minimum scheduling resource length, by setting the length of the block RS to the length of the minimum scheduling resource, and performing the block RS sequence.
  • a certain design can ensure the RS orthogonality of the MU-MIMO multi-user overlapping part only by satisfying the orthogonality of the block parts of the multi-user resource overlap.
  • the uplink resource allocation in LTE is a continuous PRB, and the ZC sequence mapping can satisfy the low PAPR performance on consecutive PRBs. If the ZC sequence is mapped to a dispersed PRB, the PAPR may become large, that is, the low PAPR characteristics are no longer satisfied.
  • the NR standard discussion also considers the symmetrical design of the uplink and downlink reference signals.
  • One of the symmetrical designs is the design method of using the same reference signal at the same symbol position for the uplink and the downlink.
  • both the uplink and the downlink are designed with block RS. Therefore, block RS may also be used for downstream reference signal design.
  • the first reference signal and the second reference signal are exactly symmetric block RSs.
  • the existing LTE-A has multiple resource allocation methods, wherein the downlink resource allocation type 1 and the resource allocation type 2 of the LTE-A may cause the allocated consecutive virtual resource blocks to be mapped onto the physical resource blocks, which may be dispersed. In some new application scenarios, it may be necessary to ensure that a part of consecutive VRBs are mapped to consecutive PRBs. For this need, existing resource mapping methods may not be applicable.
  • the uplink resource in the LTE The resources allocated by the allocation of ZC sequences are mapped to consecutive PRBs, and the ZC sequence mapping can satisfy the performance of low peak to average power ratio (PAPR) on consecutive PRBs.
  • PAPR peak to average power ratio
  • the resources allocated by using the ZC sequence may be mapped to the dispersed PRBs, which may cause the PAPR to become larger, that is, the low PAPR characteristics are no longer satisfied.
  • the base station allocates resources by using a bitmap, each bit corresponds to one RBG, and the value of each bit is used to indicate whether each RBG is scheduled.
  • the number of bits required for resource allocation is the number of bits occupied by the bitmap.
  • the number of bits occupied by the bitmap is equal to the number of RBGs.
  • the number of RBGs is determined according to the size of the RBG.
  • the size of the RBG refers to the first frequency domain resource.
  • the unit size, that is, the number of consecutive VRBs in the RBG, the number of RBGs can be expressed as: Where p is the size of the RBG, The total number of RBs.
  • the mapping mode corresponding to the resource allocation type 0 is a centralized mapping, that is, the VRBs are directly mapped to the PRBs, and the indexes of the two are the same, and the slots do not hop between the slots. Therefore, resource allocation type 0 can guarantee that each RBG is mapped to a continuous PRB.
  • the VRBs assigned to the terminal are indicated by the three domains of the DCI.
  • the virtual VRB allocated to the terminal is from one RBG subset, one RBG subset includes all RBGs, and each RBG includes multiple consecutive VRBs, and the size of the RBG is the number of consecutive VRBs in the RBG.
  • the DCI format includes, but is not limited to, DCI format1/2/2A/2B/2C.
  • All RBGs in the system bandwidth are divided into P RBG subsets, where P is the number of RBs included in the RBG or the number of VRBs included.
  • Each RBG subset contains all RBGs, but the ordering is different. Taking the RBG subset p as an example, the RBG subset p includes all RBGs starting from RBG p with an interval of P RBGs.
  • the indication information of the three domains of the DCI is specifically:
  • the first domain contains a bit, used to specify a selected RBG subset, where P is the number of RBs included in the RBG in the RBG subset p;
  • the second field contains a shift bit for specifying whether the resource in the subset is offset, 1 for offset, and 0 for no offset;
  • the third field contains a bit bitmap, each bit of the bitmap corresponds to a VRB in the selected RBG subset, and the number of bits included in the bitmap is:
  • the number of bits in the bitmap is the same as the number of VRBs in the RBG group.
  • the terminal After receiving the DCI indication information, the terminal first determines the allocated RBG subset according to the indication information of the first domain.
  • the RBGs in the RBG subset are divided into two groups, the corresponding two groups are corresponding resource offsets and resource non-offsets, and some RBGs overlap between the two groups of RBGs, and the RBGs of the two groups are the RBGs. Subset.
  • the minimum VRB number of the selected RBG group is the smallest VRB number of the selected RBG subset + ⁇ shift (p). among them For the number of VRBs included in the RBG subset p, the formula is as follows:
  • the corresponding VRB when the value of one bit in the bit bitmap is 1, the corresponding VRB is configured to be unscheduled, and when the value of one bit in the bit bitmap is 0, the corresponding VRB is configured to be scheduled.
  • the corresponding VRB can be calculated by the following formula:
  • the resource mapping mode of the resource allocation type 1 is a centralized mapping, that is, the VRBs are directly mapped to the PRB, and the indexes of the two are the same, and the slots do not hop between the slots. Since each VRB in the RBG subset in the bitmap has one bit, the degree of freedom of the bit configuration to 0 or 1 is large, so the VRBs allocated to the terminal may not all be contiguous, so the PRB mapped PRB may have a part of continuous Some of them may also be discontinuous.
  • a VRB that is allocated to a terminal for resource allocation type 1 is mapped to a discontinuous PRB, resulting in a technical problem that does not satisfy the low PAPR feature.
  • a service needs to use a block RS or there is another need to satisfy a continuous VRB, it must be mapped to In the scenario of continuous PRB, it is necessary to improve the resource allocation type 1 resource allocation method so that the allocated resources can be mapped to consecutive PRBs.
  • the present application provides an improved resource allocation method based on resource allocation type 1 to meet the requirements of block RS and other application scenarios similar to block RS requirements.
  • the following predefined resource configuration is performed between the base station and the terminal:
  • Each RBG is configured to include a plurality of virtual blocks, each virtual block being mapped to one physical block, and each physical block is composed of one or more consecutive PRB sets.
  • the RBG size is an integer multiple of the block size. It is no longer the number of RBs in the downlink, but the number of blocks in the downlink.
  • the RBG is the first frequency domain resource unit in the foregoing
  • the RBG size is the first frequency domain resource unit size in the foregoing embodiment, where the block is the second frequency domain resource unit in the foregoing embodiment, and the block size is the foregoing.
  • the second frequency domain resource unit size in the embodiment is the first frequency domain resource unit size in the embodiment.
  • All RBGs in the system bandwidth are divided into P RBG subsets, and P is the number of virtual blocks included in the RBG.
  • the RBG subset p contains all RBGs starting from RBG p with an interval of P RBGs.
  • the virtual block assigned to a user must come from the same RBG subset.
  • a resource block RB in a system bandwidth is 0 to 99, a total of 100, and a block size is 2 RBs, that is, 0 to 99 RBs, and two consecutive RBs are one block, and the total number of blocks 50, ie Is 50.
  • the RBG size is an integer multiple of the block size. Assuming that the RBG size is 2 blocks at this time, 50 blocks are divided into 25 RBGs, for example, RBG0 to RBG24. At this time, 25 RBGs may constitute 2 RBG subsets, and each RBG subset includes 25 RBGs.
  • the RBG 1 subset is all RBGs starting from RBG 1 and spacing 2 RBGs, then RBG 1 subset
  • the RBGs are: RBG 1 , RBG 4 , RBG 7 , RBG 10 , RBG 13 , RBG 16 , RBG 19 , RBG 22 , RBG 0 , RBG 3 , RBG 6 , RBG 9 , RBG 12 , RBG 15 , RBG 18 , RBG 21 , RBG 24 , RBG 2 , RBG 5 , RBG 8 , RBG 11 , RBG 14 , RBG 17 , RBG 20 , RBG 23 .
  • the DCI indicated by the base station to the terminal is transformed into three domains:
  • the first domain contains Bit, used to specify the selected RBG subset, that is, the value of p, where P is the number of virtual blocks included in the RBG, that is, the RBG size. According to the above example, the value of p is 2, then the first field The number of bits is 1.
  • the size of the first field is related to the RBG size, and the RBG size is related to the block size, or the RBG size is the number of blocks included in the RBG.
  • the second field contains a shift bit for specifying whether the resource in the subset is offset, 1 for offset, and 0 for no offset;
  • the third field contains a bitmap bitmap.
  • Each bit of the bitmap corresponds to a virtual block in the selected RBG subset.
  • the number of bits in the bitmap is the same as the number of virtual blocks in the RBG group.
  • the number of bits in the bitmap is:
  • the terminal After receiving the DCI indication information, the terminal first determines the allocated RBG subset according to the indication information of the first domain; and further determines, according to the information of the second domain, whether the resources in the subset of the RBG are offset; Then, according to the bitmap of the third domain, it is determined whether each virtual block in the RBG subset indicated by the first domain is scheduled.
  • RBG subset selected in the first domain includes 25 blocks, and the 25 blocks in the third domain are sorted, see Figure 5.
  • a virtual block that can be regarded as being allocated to the terminal is block0, block5, block8, block9, block13, wherein the physical block to which each virtual block is mapped is composed of consecutive PRBs, such as the physical block to which block0 is mapped by continuous RB0 and RB1 are composed.
  • each bit of the bitmap corresponds to a virtual block selected, and the physical block to which each virtual block is mapped is composed of consecutive PRBs. That is, the user determines the scheduled virtual block according to the bitmap in the third domain, or determines the virtual PRB group composed of consecutive PRBs.
  • the mapping table corresponding to the bitmap bitmap and the VRB can still be obtained, but the identifier (number) of the VRB of the mapping table is replaced with the identifier (number) of the virtual block.
  • This centralized mapping ensures that each virtual block maps consecutive PRBs. This is because each bit in the bitmap in the third domain corresponds to a virtual block in the RBG subset, rather than a VRB, so according to the centralized mapping method, it can be ensured that the physical block mapped to each virtual block is continuous.
  • the composition of the PRB is because each bit in the bitmap in the third domain corresponds to a virtual block in the RBG subset, rather than a VRB
  • the base station needs to configure the number of RBs in a block, that is, the block size, for example, the base station configures through RRC signaling/broadcast information/MAC CE or other higher layer signaling, or a control channel, which may be a cell. Level configuration or user level configuration.
  • the improvement scheme is not limited to downlink, and the same resource allocation method can also be applied to the uplink.
  • the number of bits of the first domain is related to the size of the first frequency domain resource unit
  • the third domain is The number of bits is related to the size of the second frequency domain resource unit, such that the required number of bits of the resource allocation is reduced, that is, the number of bits of the first domain and the number of bits of the third domain are reduced, in combination with the first frequency domain in the foregoing content.
  • the improvement of this embodiment leads to the number of bits required for resource allocation and the block size and the total number of blocks. For example, when the block size is small, the number of bits of the resource allocation information in the DCI is large; when the block size is large, the number of bits of the resource allocation information in the DCI is small. Therefore, it is necessary to determine the number of bits of the resource allocation information in the DCI according to the block size, or determine the number of bits of the DCI, and the resource allocation indication parameter.
  • the foregoing resource allocation method for resource allocation type 1 solves the problem that the continuous VRBs allocated to the terminal in the resource allocation type 1 are not consecutively PRBs.
  • the scheme is configurable in combination with the resource allocation granularity, and the resources allocated to the terminal can be mapped to some continuous or non-contiguous blocks, and each block resource is a continuous PRB.
  • the resource allocated to the terminal is indicated by a resource indication value (RIV), and the resource allocated to the terminal is a continuous VRB.
  • RIV resource indication value
  • the initial VRB number RB star t assigned to the terminal and the number of consecutive VRBs L CRBs starting from the starting VRB number are indicated by an expression of the RIV.
  • the base station performs indication by configuring a resource indication value RIV.
  • a DCI format (DCI format) of a channel such as an enhanced physical downlink control channel (ePDCCH), such as DCI format1A, DCI format 1B, DCI format1D, RIV value is defined as:
  • RB start is the starting VRB number and L CRBs is the continuous number of VRBs.
  • Resource allocation type 2 supports both centralized mapping and distributed mapping.
  • the method is divided into two steps:
  • Step 1 interleaving: mapping successive VRB pairs to non-contiguous PRB pairs;
  • Step 2 Frequency hopping between the same VRB number in the slot.
  • step one Calculate the number of VRBs that can be used for distributed mapping within the system bandwidth according to the following formula.
  • N gap,1 ,N gap,2 is determined according to the system bandwidth , and the correspondence between N gap,1 ,N gap,2 and system bandwidth is as follows:
  • the number of interleaved VRBs may be less than the total number of VRBs, the interleaved VRBs are interleaved.
  • the number of elements filled with null is Then, the VRB number is read in a column-by-column manner, and the null element is ignored, so that the interleaved VRB order is obtained, and the serial number of the interleaved VRB sequence corresponds to the PRB number, that is, the j-th VRB (VRB k) corresponding to the interleaving corresponds to The PRB is PRB j.
  • a VRB is mapped to a different PRB slot between two slots in LTE, wherein the PRB of the even slot (slot 0) is the PRB obtained in step 1, the odd slot ( Slot 1)
  • the corresponding PRB is the number of the PBR obtained in step 1 and is offset in the interleaved unit of the VRB.
  • the resource allocation type 2 determines a continuous VRB, in the distributed mapping, the continuous VRBs are mapped on the non-contiguous PRBs, and therefore, the PRB resources allocated to the terminals are discontinuous.
  • the continuous VRBs assigned to the terminal are mapped to the discontinuous PRBs, resulting in a technical problem that the low PAPR characteristics are not met.
  • the resource allocation type 2 resource allocation method needs to be performed. Improved to enable allocated resources to be mapped to consecutive PRBs.
  • the present application provides an improved resource allocation method based on resource allocation type 2 to meet the requirements of block RS and other application scenarios similar to block RS requirements.
  • resource type 2 the following predefined resource configuration is performed between the base station and the terminal:
  • each virtual block is mapped to one physical block, and each physical block is composed of one or more consecutive PRB sets. It is no longer the number of RBs in the downlink, but the number of blocks in the downlink.
  • the block here is the second frequency domain resource unit in the foregoing, and the block size is the second frequency domain resource unit size. If all PRB resources correspond to 1 block per 2 PRBs, the virtual block number is 0 to 49 instead of 0 to 99.
  • the elements in the interleaving matrix in the distributed mapping of the VRB to the PRB are replaced by the VRB number with the virtual block number, so that each virtual block allocated can be realized. Can be mapped to consecutive PRBs.
  • the base station performs indication by configuring the RIV.
  • the RIV value is defined as:
  • Block start is the starting virtual block number and L CBLs is the number of consecutive virtual blocks. The total number of blocks for the downstream system bandwidth.
  • Step 1 interleaving: mapping successive virtual blocks to non-contiguous blocks
  • Step 2 Frequency hopping between different time domain resources of the same virtual block. Among them, step two is optional.
  • step one Calculate the number of virtual blocks in the system bandwidth that can be used for distributed mapping according to the following formula
  • N gap, 1 N gap, 2 is determined according to the number of blocks included in the system bandwidth, as shown in Table 4.
  • the virtual block number is read in a column-by-column manner, and the null element is ignored, thereby obtaining the interleaved virtual block order, and the serial number of the interleaved virtual block sequence corresponds to the block number, that is, the j-th virtual block after interleaving (
  • the block corresponding to virtual block k ) is block j.
  • the virtual block 1 corresponds to the physical block 6
  • the physical block 6 includes the PRBs 12 and 13.
  • Virtual block 2 corresponds to physical block 9, and physical block 9 contains PRBs 18 and 19.
  • step 2 For the frequency hopping between different time domain resources in step 2, it means that a virtual block is mapped to a time resource of a different physical block between different time domain resources (different slots).
  • each physical block includes two time resources, such as a block of 14 symbols, and each time resource includes 7 symbols (the first 7 and the last 7), then the physical block on the first time resource is a step.
  • a physical block obtained, the physical block on the first time resource is offset from the physical block obtained in step one in the interleaved unit of the virtual block
  • the starting position of the resource allocation is changed from the starting VRB number (RB start ) to the starting point.
  • the existing allocation method of LTE resource allocation type 2 and the mapping formula of distributed VRB to PRB still apply. At this time, the elements in the interlace matrix in the distributed VRB mapping process are replaced by the VRB number as the virtual block number.
  • the PRB of each virtual block mapping can be made continuous by adopting the above improved resource allocation method.
  • the base station needs to configure the number of RBs in a block, that is, blocksize, for example, the base station configures through RRC signaling/broadcast information/MAC CE or other high-level signaling, or the control channel, and the configuration may be a cell level. Configuration or user level configuration.
  • the block-related resource allocation method may also be used.
  • the length of all blocks in the present invention can be regarded as Is N.
  • the improvement scheme is not limited to downlink, and the same resource allocation method can also be applied to the uplink.
  • the number of bits required for resource allocation is mainly the number of bits occupied by the resource indication value, the number of bits required for resource allocation, and the number of consecutive VRBs or related.
  • the improvement scheme will result in the number of bits required for resource allocation and the block size and the total number of blocks. For example, when the block size is small, the number of bits of the resource indication value is large; when the block size is large, the number of bits of the resource indication value is small. Therefore, it is necessary to determine the number of bits of the resource indication value in the DCI according to the block size, or determine the number of bits of the DCI, and the resource allocation indication parameter.
  • the elements in the interleaving matrix that maintains the resource allocation type 2 are still existing VRBs, and the improvement is that the VRB interlaces in the VRB interleave matrix are changed into block interleaving to form a block interleaving matrix, wherein Each block is equivalent to a VRB group and contains multiple VRBs.
  • the length of each interleave block can be set to the length of the block, so that the VRB of each block length can be mapped on consecutive PRBs.
  • each block contains two RBs.
  • the input block interleaving matrix is:
  • the input mode is input per line k, k>1, k is the number of RBs in each block, for example, assuming each
  • the block contains two RBs, and the input block interleaving matrix is:
  • mapping formula of VRB to PRB is related to the parameters of the block, and the parameters of the block include the size of the block and the number of blocks that can be distributed mapped.
  • mapping (interleaving) method of the foregoing VRB-PRB can also be applied to other scenarios, that is, the interleaving of a single element in the original interleaving matrix becomes block interleaving, and the length of the block in the block interleaving can be independent of the block. It is a fixed value, either configured by the base station or related to other parameters such as subband bandwidth, full band bandwidth, and the like.
  • the VRB to PRB mapping method is for the concept in the frequency domain. In the time domain, the VRB/PRB can span one symbol or multiple symbols or slots or mini-slots or subframes.
  • the interleaving method is applicable not only to data channels/signals, but also to control channels or control signals, or other channels or signals, and the mapping (interleaving) method can be used for both uplink and downlink.
  • the resource allocation of control information is related to a resource element group/resource element group (REG).
  • REG resource element group/resource element group
  • One REG occupies one symbol in the time domain, and one RB in the frequency domain.
  • Several REGs in the frequency domain are regarded as one REG group.
  • the mapping (interleaving) method of the above VRB to PRB can be regarded as mapping to REG. (interlaced).
  • the base station needs to configure the number of VRBs in one block to the user, and the VRB in each block maps consecutive PRBs, for example, the base station passes RRC signaling/broadcast information/MAC.
  • CE or other higher layer signaling configuration, or control channel which may be a cell level configuration or a user level configuration.
  • the improvement scheme is not limited to downlink, and the same resource allocation method can also be applied to the uplink.
  • the number of bits required for resource allocation is mainly the number of bits occupied by the resource indication value, the number of bits required for resource allocation, and the number of consecutive VRBs or related.
  • the improvement scheme will result in the number of bits required for resource allocation and the size of the block and the total number of blocks. For example, when the size of the block is small, the number of bits of the resource indication value is large; when the size of the block is large, the number of bits of the resource indication value is small. Therefore, it is necessary to determine the number of bits of the resource indication value in the DCI according to the size of the block, or determine the number of bits of the DCI, and the resource allocation indication parameter.
  • the block at this improvement scheme can also be a PRB group consisting of consecutive PRBs, which can cope with different scheduling granularity requirements.
  • the above two resource allocation methods for resource allocation type 2 solve the problem that the continuous VRBs allocated to the terminal in the resource allocation type 2 are not consecutively PRB.
  • the scheme is configurable in combination with the resource allocation granularity, and the resources allocated to the terminal may be mapped to some consecutive or non-contiguous blocks or blocks, and the resources included in each block or the resources included in each block are consecutive PRBs.
  • the existing resource allocation type 0 can better implement the block RS, and the existing resource allocation type 1 and the existing resource allocation type 2 need special design to satisfy the uplink reference signal and downlink.
  • the reference signal is a low PAPR application requirement for a symmetric block RS.
  • resource allocation type 0 can be defined as a resource allocation method with block RS requirements, while existing existing resource allocation type 1 and existing resource allocation type 2 are other RS type resource allocation methods.
  • two sets of RS configurations are predefined between the terminal and the base station.
  • the first set of RSs is configured to allocate the uplink or downlink resources by using the resource allocation type 0 for the uplink RS and the downlink reference signal to be symmetric, to ensure that the allocated resources are mapped on multiple consecutive PRBs.
  • the second set of RSs is configured to: when the at least one reference signal is another type of reference signal, for example, when the resource that does not need to be allocated is mapped in multiple consecutive PRBs, the existing resource allocation type 0, the existing resource allocation type 1 may be adopted. Allocation of uplink or downlink resources is performed with any of the existing resource allocation types 2.
  • the type of RS used can be determined according to the type of resource allocation.
  • the uplink reference signal or the downlink reference signal selects other types of reference signals; when the resource allocation type is the existing resource allocation type 0, the uplink reference signal And/or the downlink reference signal uses a symmetric block RS.
  • the resource allocation type is the existing resource allocation type 1 or the existing resource allocation type 2
  • the uplink reference signal or the downlink reference signal selects other types of reference signals; when the resource allocation type is the existing resource allocation type 0, the uplink reference signal And/or the downlink reference signal uses a symmetric block RS.
  • the terminal may determine the resource allocation type according to the configuration information of the resource allocation.
  • the present application provides a terminal as described above, which is used to perform the method steps related to the terminal in various embodiments related to the present application.
  • the terminal includes a plurality of functional modules for performing terminal-related method steps in various embodiments involved in the present application, so that the indication overhead of resource allocation is avoided in a large bandwidth scenario.
  • the terminal 700 includes a processing unit 710 and a transceiver unit 720. It should be noted that the operations performed by the processing unit 710 or the transceiver unit 720 can be regarded as the operation of the terminal 700.
  • the structure of the terminal includes a processor and a transceiver configured to support a corresponding function in a method in which the terminal performs resource allocation in the communication system described above.
  • the transceiver is configured to support communication between the terminal and the base station, and send information or instructions involved in the method for resource allocation in the communication system to the base station.
  • the terminal may also include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • the processing unit 710 in the terminal 700 can be implemented by a processor in the terminal 700, and the transceiver unit 720 can be implemented by a transceiver in the terminal 700.
  • the processor is configured to determine, according to the configuration information, a first frequency domain resource unit size; the configuration information includes predefined first configuration information; or the configuration information includes the base station sending the terminal to the terminal Second configuration information; or, the configuration information includes the first configuration information and the second configuration information; and determining resource allocation related parameters according to the first frequency domain resource unit size.
  • the first frequency domain resource unit is a set of one or more consecutive virtual resource blocks.
  • the first configuration information includes a correspondence between at least one of a subband identifier and a frequency band identifier and a size of the first frequency domain resource unit.
  • the processor is configured to determine a number of bits required for resource allocation according to the first frequency domain resource unit size.
  • the processor is further configured to: determine, according to the third configuration information, a second frequency domain resource unit size; the third configuration information is configuration information that is sent by the base station to the terminal, or The third configuration information is predefined configuration information.
  • the processor is further configured to: determine the resource allocation related parameter according to the second frequency domain unit size; or, according to the first frequency domain unit size and the second frequency The domain resource unit size determines the resource allocation related parameter.
  • the second frequency domain resource unit is a set of one or more consecutive physical resource blocks.
  • the transceiver further includes: the transceiver, configured to receive, by the base station, a first reference signal, where the first reference signal is carried in at least one of the second frequency domain resource units; And the transceiver is further configured to send a second reference signal to the base station, where the second reference signal is carried in at least one of the second frequency domain resource units.
  • the first frequency domain resource unit size is N times the size of the second frequency domain resource unit, and N is an integer greater than or equal to 1.
  • the resource allocation related parameter includes at least one of a number of bits required for resource allocation, a resource indication value of resource allocation, and a resource mapping manner of resource allocation.
  • the present application provides a base station as described above, which is used by a base station as described above to perform the method steps associated with a base station in various embodiments involved in the present application.
  • the base station includes a plurality of functional modules for performing the method steps related to the base station in the various embodiments involved in the present application, so that the indication overhead of resource allocation is avoided in a large bandwidth scenario.
  • the base station 800 shown in FIG. 8 includes a processing unit 810 and a transceiver unit 820. The operations performed by the processing unit 810 or the transceiver unit 820 can be considered as operations of the base station 800.
  • the base station includes a processor and a transceiver configured to support a corresponding function in a method in which the base station performs resource allocation in the communication system described above.
  • the transceiver is configured to support communication between the terminal and the base station, and transmit information or instructions involved in the method for resource allocation in the communication system to the terminal.
  • a memory may also be included in the base station for coupling with the processor, which stores the necessary program instructions and data for the base station.
  • the processing unit 810 in the base station 800 can be implemented by a processor of the base station 800, which can be implemented by a transceiver in the base station 800.
  • the transceiver is configured to send second configuration information to the terminal, where the second configuration information is used to indicate, to the terminal, a first frequency domain resource unit size, where the first frequency domain resource unit size Used to determine resource allocation related parameters.
  • the first frequency domain resource unit is a set of one or more consecutive virtual resource blocks.
  • the transceiver is further configured to send a first reference signal to the terminal, where the first reference signal is carried in at least one of the second frequency domain resource units; and/or The transceiver is further configured to receive a second reference signal sent by the terminal, where the second reference signal is carried in at least one of the second frequency domain resource units.
  • the first frequency domain resource unit size is N times the size of the second frequency domain resource unit, and N is an integer greater than or equal to 1.
  • the second frequency domain resource unit is a set of one or more consecutive physical resource blocks.
  • the transceiver 905 in FIG. 9 may be a wired transceiver, a wireless transceiver, or a combination thereof.
  • the wired transceiver can be, for example, an Ethernet interface.
  • the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
  • the wireless transceiver can be, for example, a wireless local area network communication interface, a cellular network communication interface, or a combination thereof.
  • the processor 902 in the embodiment of the present application may be a central processing unit (English: central processing unit, abbreviated as CPU), a network processor (English: network processor, abbreviated as NP) or a combination of a CPU and an NP.
  • the processor may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (abbreviated as PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above PLD can be a complex programmable logic device (English: complex programmable logic device, abbreviation: CPLD), field-programmable gate array (English: field-programmable gate array, abbreviation: FPGA), general array logic (English: generic array Logic, abbreviation: GAL) or any combination thereof.
  • the memory 903 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory 903 may also include a non-volatile memory (English: non-volatile memory) ), such as read-only memory (English: read-only memory, abbreviation: ROM), flash memory (English: flash memory), hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid-state Drive, abbreviation: SSD); the memory 903 may also include a combination of the above types of memories.
  • ROM read-only memory
  • flash memory English: flash memory
  • HDD hard disk drive
  • SSD solid state drive
  • the embodiment of the present application may further include a bus system 904, which may include any number of interconnected buses and bridges, and specifically, various circuit links of the memory represented by one or more processors 902 and memory 903 represented by the processor. Together.
  • the bus can also link various other circuits such as peripherals, voltage regulators, and power management circuits, and will not be further described in this application.
  • Transceiver 905 provides means for communicating with various other devices on a transmission medium.
  • the processor 902 is responsible for managing the bus architecture and general processing, and the memory 903 can store data used by the processor 902 in performing operations.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to execute the various embodiments and terminals involved in the present application Related method steps.
  • the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform various embodiments in accordance with the present application with a base station Related method steps.
  • the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the method steps associated with the terminal in various embodiments of the present application.
  • the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the method steps associated with the base station in various embodiments of the present application.
  • the present application further provides a method for resource allocation in a communication system, the method includes: the terminal acquires indication information, where the indication information is used to indicate a size of a resource block group, and the terminal determines the resource block according to the indication information. The size of the group.
  • the terminal determines the size of the resource block group according to the indication information and the subband identifier and/or the frequency band identifier of the terminal.
  • the base station may further determine the indication information according to the subband identifier and/or the frequency band identifier of the terminal, and send the indication information to the terminal.
  • the terminal determines the size of the resource block group according to the sub-band identifier and/or the frequency band identifier and the preset relationship, where the preset relationship is the sub-band identifier and/or the terminal is located.
  • the correspondence between the band identifier and the size of the resource block group can be flexibly configured, which can adapt to the requirements of different services in the future mobile communication system.
  • the communication system further includes a second resource block group, where the second resource block group includes at least one consecutive resource block, and the size of the first resource block group is N times the size of the second resource block group, N Is an integer greater than or equal to 1.
  • the base station indicates the resource allocation information to the terminal through the DCI, and the granularity of the resource allocation is the second resource block group.
  • the terminal determines the resource allocation parameter of the terminal according to the DCI and the size of the second resource block group, and uses the second resource block group as the resource allocation mode of the resource allocation granularity to ensure resource continuity when the terminal is scheduled.
  • the present application further provides a terminal for performing method steps related to a terminal in a resource allocation method in the foregoing communication system. Based on the same concept, the present application further provides a base station for performing the method steps related to the base station in the resource allocation method in the foregoing communication system.
  • the various illustrative logic blocks, modules and circuits described in the embodiments of the present application may be implemented by a general purpose processing unit, a digital signal processing unit, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic. Devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the functions described.
  • the general purpose processing unit may be a micro processing unit.
  • the general purpose processing unit may be any conventional processing unit, controller, microcontroller or state machine.
  • the processing unit may also be implemented by a combination of computing devices, such as a digital signal processing unit and a microprocessing unit, a plurality of microprocessing units, one or more microprocessing units in conjunction with a digital signal processing unit core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software module executed by a processing unit, or a combination of the two.
  • the software modules can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processing unit such that the processing unit can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processing unit.
  • the processing unit and the storage medium may be configured in an ASIC, and the ASIC may be configured in the user terminal. Alternatively, the processing unit and the storage medium may also be configured in different components in the user terminal.
  • the above-described functions described in the embodiments of the present application may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general or special processing unit.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信系统中资源分配的方法及设备,该方法包括:终端根据配置信息,确定第一频域资源单元大小;配置信息包括预定义的第一配置信息;或者,配置信息包括基站向终端发送的第二配置信息;或者,配置信息包括第一配置信息和第二配置信息,终端根据第一频域资源单元大小,确定资源分配相关参数。终端根据预定义的第一配置信息,确定第一频域资源单元大小,或者根据基站指示的第二配置信息确定第一频域资源单元大小,或者根据基站指示的第二配置信息和终端预定义的第一配置信息,确定第一频域资源单元大小,实现第一频域资源单元大小的可配置,使得大带宽或有新应用需求的场景下,能够对资源分配粒度进行灵活配置,满足不同业务需求。

Description

一种通信系统中资源分配的方法及设备
本申请要求在2017年1月25日提交中国专利局、申请号为201710061297.6、发明名称为“一种通信系统中资源分配的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信系统中资源分配的方法及设备。
背景技术
在LTE-A系统中,资源的频域资源粒度为资源块(resource block,RB),为了避免带宽较大时系统的RB数量多导致的下行控制信息(downlink control information,DCI)开销过大,标准定义了资源块组(resource block group,RBG),一个RBG由一个或多个连续虚拟资源块(virtual resource block,VRB)组成。在LTE-A系统中,在某些传输模式下,资源分配和RBG大小相关,通常RBG大小可以看做是资源调度的基本粒度。LTE-A系统支持的最大系统带宽是20MHZ,且在固定系统带宽下,RBG的大小是固定的,RBG的大小是指RBG包括的VRB的数目,只要确定了系统带宽大小,就可以确定RBG大小。
与LTE-A系统相比,新无线电(new radio,NR)系统支持的带宽将会大幅度提高,甚至会高达1GHZ。当LTE-A的资源分配方法应用到大带宽时,RBG的大小过小,会导致资源调度开销过大,这是不被期望的。然而若仅仅根据系统带宽增加RBG大小,例如800MHz时等比例增加到RBG大小为40RB,会限制调度粒度,无法进行灵活的调度。不同的用户的因业务不同,需要的调度粒度不同,大包用户具有低开销、低时延和大带宽的业务需求,更适合采用较大的调度粒度,而小包用户具有低开销和小带宽的业务需求,需要采用较小的调度粒度。
综上,不同的业务对资源调度粒度的需求不同,NR系统中更期望针对不同的业务配置不同的资源调度粒度。显然现有技术中存在着资源调度粒度固定,不能满足不同业务的不同资源调度粒度的需求的技术问题。
发明内容
本申请提供一种通信系统中资源分配的方法及设备,用以实现资源分配粒度的可配置。
第一方面,本申请实施例提供一种通信系统中资源分配的方法,包括:
终端根据配置信息,确定第一频域资源单元大小;所述配置信息包括预定义的第一配置信息;或者,所述配置信息包括所述基站向所述终端发送的第二配置信息;或者,所述配置信息包括所述第一配置信息和所述第二配置信息;
所述终端根据所述第一频域资源单元大小,确定资源分配相关参数。
与现有技术相比,只需终端根据配置信息,就可确定第一频域资源单元大小,针对不同的第一频域资源单元大小的配置信息,就可使用不同的第一频域资源单元大小,实现第一频域资源单元的大小的可配置,使得大带宽或有新应用需求的场景下,能够对资源分配 粒度进行灵活配置,满足不同业务需求。根据预定义的第一配置信息确定第一频域资源单元大小,避免了由基站向终端指示第一频域资源单元大小所带来的开销。
在一种可能的设计中,所述第一频域资源单元为一个或多个连续的虚拟资源块的集合。
例如,所述第一频域资源单元为前述的RBG,RBG为一个VRB,或者RBG为包含n个连续的VRB的集合。通过配置不同的n值实现RBG大小的多个配置值。
在一种可能的设计中,所述第一配置信息包括子带标识、频带标识中的至少一个与所述第一频域资源单元大小的对应关系。
比如,第一配置信息包括子带标识与所述第一频域资源单元大小的对应关系,可以是一对一的对应关系,也可以是一对多的对应关系。当子带标识与所述第一频域资源单元大小为一对一的对应关系时,终端可以直接根据第一配置信息,确定子带标识对应的第一频域资源单元大小,这样,有相应RBG大小需求的业务可以将其所需使用的资源分配到相应的子带上,满足不同业务需求。
再比如,当子带标识与所述第一频域资源单元大小为一对多的对应关系时,为了能够从子带标识对应的多个第一频域资源单元大小中选出一个第一频域资源单元大小,终端还可以获取第二配置信息,其中,第二配置信息为基站向终端发送的指示信息,该指示信息能够指示子带标识对应的多个第一频域资源单元大小中的一个第一频域资源单元大小的取值。在这种场景下,第二配置信息只需占用较少的比特即可实现第一频域资源单元大小的指示,使得大带宽场景下,使用较小的开销即可对资源分配粒度进行灵活配置,满足不同业务需求。
在一种可能的设计中,所述终端根据所述第一频域资源单元大小确定资源分配相关参数,包括:所述终端根据所述第一频域资源单元大小,确定资源分配所需的比特数。由于第一频域资源单元大小是可配置的,因此,资源分配所需的比特数也是可调的,因此在大带宽场景或有新的应用需求的场景下,第一频域资源单元的大小的设置会考虑资源分配的开销问题。
在一种可能的设计中,还包括:所述终端的资源分配参数和第二频域资源单元大小相关。
比如,通过第二频域资源单元大小与连续物理资源块的关系,还可以对现有的资源分配类型2进行改进,使得资源分配的资源指示值和第二频域资源单元大小以及个数相关。或者对资源的映射方式进行改进,使得分布式资源映射过程中,资源的交织方式和第二频域资源单元大小相关。
在一种可能的设计中,还包括:所述终端根据第一频域单元大小和所述第二频域资源单元大小,确定所述资源分配相关参数。
其中,所述资源分配相关参数包括资源分配所需的比特数、资源分配的资源指示值、资源分配的资源映射方式中的至少一个。
比如,通过配置第一频域资源单元大小和第二频域资源单元大小之间的关系,还可以对现有的资源分配类型1以及资源分配类型1的资源映射方式进行改进,令资源分配指示的DCI信息中第一域和第三域的比特数仍与第一频域资源单元大小有关,但此时的第一资源单元大小为第二频域资源单元大小的整数倍。且DCI信息中的
Figure PCTCN2018074204-appb-000001
参数,在LTE-A系统中表示系统中下行RB数的总数,在该设计中该参数变为系统中总的第二频域资源单元的 总数。
在一种可能的设计中,所述第二频域资源单元为一个或多个连续的物理资源块的集合。
所述第二频域资源单元可以为block,一个block包含一个PRB,或者一个block为包含n个连续的物理资源块(Physical Resource block,PRB)或RB的集合。通过配置不同的n值,即可实现block大小的多个配置值,n为大于1的正整数。比如一个系统带宽下的物理资源块每两个划分为一个第二频域资源单元,则第二频域资源单元大小为2。
在一种可能的设计中,上述方法还包括:所述终端接收基站发送第一参考信号,所述第一参考信号承载于至少一个所述第二频域资源单元。
在一种可能的设计中,上述方法还包括:所述终端向所述基站发送第二参考信号,所述第二参考信号承载于至少一个所述第二频域资源单元。
在一种可能的设计中,所述第一频域资源单元大小为所述第二频域资源单元大小的N倍,N为大于或等于1的整数。将第一频域资源单元大小确定为第二频域资源单元大小的正整数倍,可以在第二频域资源单元大小具有多个配置值时,根据第二频域资源单元大小确定第一频域资源单元大小,从而实现第一频域资源单元大小的可配置,或者,在第一频域资源单元大小具有多个配置值时,根据第一频域资源单元大小确定第二频域资源单元大小,进而实现第二频域资源单元大小可配置。
再比如,通过所述第一频域资源单元大小与所述第二频域资源单元大小的N倍关系,对现有的资源分配类型1支持的资源映射方式进行改进,可使得分配的连续VRB能够映射连续的物理资源块。
第二方面,本申请提供一种通信系统中资源分配的方法,包括:
基站向终端发送第二配置信息,所述第二配置信息用于向所述终端指示第一频域资源单元大小;其中,所述第一频域资源单元大小用于确定资源分配相关参数。
基站向终端直接指示第二配置信息,使得终端根据第二配置信息就可以确定第一频域资源单元大小,实现第一频域资源单元的大小的可配置,或者终端根据基站指示的第二配置信息和终端中预定义的第一配置信息,就可以确定第一频域资源单元大小,实现第一频域资源单元的大小的可配置,使得大带宽或有新应用需求的场景下,能够对资源分配粒度进行灵活配置,满足不同业务需求。
在一种可能的设计中,所述第一频域资源单元为一个或多个连续的虚拟资源块的集合。例如,所述第一频域资源单元为前述的RBG,RBG为一个VRB,或者RBG为包含m个连续的VRB的集合,m为大于1的正整数。通过配置不同的m值实现RBG大小的多个配置值。
在一种可能的设计中,还包括:
所述基站向所述终端发送第一参考信号,所述第一参考信号承载于至少一个所述第二频域资源单元;和/或,
所述基站接收所述终端发送的第二参考信号,所述第二参考信号承载于至少一个所述第二频域资源单元。
在一种可能的设计中,所述第一频域资源单元大小为所述第二频域资源单元大小的N倍,N为大于或等于1的整数。将第一频域资源单元大小确定为第二频域资源单元大小的正整数倍,可以在第二频域资源单元大小具有多个配置值时,根据第二频域资源单元大小 确定第一频域资源单元大小,从而实现第一频域资源单元大小的可配置,或者,在第一频域资源单元大小具有多个配置值时,根据第一频域资源单元大小确定第二频域资源单元大小,进而实现第二频域资源单元大小可配置。
再比如,通过所述第一频域资源单元大小与所述第二频域资源单元大小的N倍关系,对现有的资源分配类型1支持的资源映射方式进行改进,可使得分配的连续VRB能够映射连续的物理资源块。
在一种可能的设计中,所述第二频域资源单元为一个或多个连续的物理资源块的集合。例如,所述第二频域资源单元为一个block,一个block包含一个PRB,或者block为包含m个连续的PRB的集合。通过配置不同的m值,即可实现block大小的多个配置值,m为大于1的正整数。
第三方面,本申请提供一种终端,可以执行本申请所涉及的各种实施例中与终端相关的方法步骤,使得大带宽以及有新的应用需求的场景下,避免资源分配的指示开销过大,同时还能够对资源分配粒度进行灵活配置,满足不同业务需求。
在一种可能的设计中,该终端包括多个功能模块,用于执行本申请所涉及的各种实施例中与终端相关的方法步骤,使得大带宽场景下,能够对资源分配粒度进行灵活配置,满足不同业务需求。
在一种可能的设计中,该终端的结构中包括处理器和收发机,所述处理器被配置为支持终端执行上述通信系统中资源分配的方法中相应的功能。所述收发机用于支持终端与基站之间的通信,向基站发送上述通信系统中资源分配的方法中所涉及的信息或者指令。终端中还可以包括存储器,所述存储器用于与处理器耦合,其保存终端必要的程序指令和数据。
第四方面,本申请提供一种基站,可以执行本申请所涉及的各种实施例中与基站相关的方法步骤,使得使得大带宽场景下,避免资源分配的指示开销过大,同时还能够对资源分配粒度进行灵活配置,满足不同业务需求。
在一种可能的设计中,该基站包括多个功能模块,用于执行本申请所涉及的各种实施例中与基站相关的方法步骤,使得大带宽场景下,能够对资源分配粒度进行灵活配置,满足不同业务需求。
在一种可能的设计中,该基站的结构中包括处理器和收发机,所述处理器被配置为支持基站执行上述通信系统中资源分配的方法中基站相应的功能。所述收发机用于支持基站与终端之间的通信,向终端发送上述通信系统中资源分配的方法中所涉及的信息或者指令。基站中还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
第五方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中所述的方法。
第六方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意可能的实现方式中所述的方法。
第七方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中所述的方法。
第八方面,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意可能的实现方式中所述的方法。
附图说明
图1为本申请提供的一种LTE系统、新一代无线通信系统的架构示意图;
图2为本申请提供的资源分配的方法流程图;
图3为本申请提供的一种block RS的分配示意图;
图4为本申请提供的资源配置的结构示意图;
图5为本申请提供的一种比特图的指示信息示意图;
图6为本申请提供的一种虚拟block与物理block的资源映射示意图;
图7为本申请提供的一种终端的结构示意图;
图8为本申请提供的一种基站的结构示意图;
图9为本申请提供的一种终端或基站的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
下面介绍一下本申请的系统运行环境,本申请描述的技术可以适用于LTE系统,如LTE/LTE-A/eLTE系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址(code division multiple access,CDMA),频分多址(frequency division multiple access,FDMA),时分多址(time division multiple access,TDMA),正交频分多址(orthogonal frequency division multiple access,OFDMA),单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)等接入技术的系统,还适用于后续的演进系统,如第五代5G(还可以称为新无线电(new radio,NR))系统等,也可以扩展到类似的无线通信系统中,如wifi、wimax、以及3gpp相关的蜂窝系统。
如图1所示,为本申请通信系统的一种基础架构。基站和终端通过无线接口可以进行数据或者信令的传输,包括上行传输和下行传输。本申请所涉及到的终端可以为向用户提供语音和/或数据连通性的设备(device),包括有线终端和无线终端。无线终端可以是具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,经无线接入网与一个或多个核心网进行通信的移动终端。例如,无线终端可以为移动电话、计算机、平板电脑、个人数码助理(personal digital assistant,PDA)、移动互联网设备(mobile Internet device,MID)、可穿戴设备和电子书阅读器(e-book reader)等。又如,无线终端也可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动设备。再如,无线终端可以为移动站(mobile station)、接入点(access point)。前述提及的UE即为终端的一种,是在LTE系统中的称谓。为方便描述,本申请后续的描述中,上面提到的设备统称为终端。本申请所涉及到的基站是一种部署在无线接入网(radio access network,RAN)中用以为终端提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点基站控制器,收发节点(transmission reception point,TRP)等等。在采用不同的无线接入技术的系统中,基站的具体名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB),在后续的演进系统中,还可以称为新无线节点B(new radio nodeB, gNB)。
下面对本申请中涉及到的名词做一些说明。
本申请中所说的用户和终端(或者UE),它们之间的关系可以是:用户使用终端(或者UE)接入网络,与基站实现通信。
本申请中所说的物理资源块(physical resource block,PRB),是一种时频资源的单位,在时域上占用1个子帧或1个时隙,在频域上占用连续的M个子载波,M为大于零的自然数。LTE中,在时域上占一个子帧中连续的14个OFDM符号,频域上占用连续的12个子载波。
本申请中所说的第一频域资源单元,可以为RBG,一个RBG可以是一个或多个连续虚拟资源块的集合,也可以包含一个或多个第二频域资源单元,第二频域资源单元为block,一个block包含一个物理资源块,或者block为m个连续的物理资源块的集合。
本申请中所说的第二频域资源单元,可以理解为:block(或资源单元resource unit),是基于频域的维度对一段带宽进行划分而得到的。这样,UE在某一带宽上的RS为一个第二频域资源单元上的RS,或由多个第二频域资源单元上的参考信号(reference signal,RS)连接组合而成。除此之外,第二频域资源单元还可以看做是一个或多个连续的物理资源块(VRB)的集合。在某些应用场景下,至少要保证连续的N个虚拟资源块(VRB)映射到连续的N个PRB上,所述的第二频域资源单元的长度就是N。
本申请所说的预编码资源块组(precoding resource block group,PRG)是一个表示预编码粒度的参数,用来指示多少个RB可使用相同预编码。和RBG类似,PRG大小也是和系统带宽相关的一个参数,PRG的大小和RBG的大小有一定的相关性。
本申请所说的块参考信号是指block RS,或者,资源单元特定参考信号(resource unit specific RS,是一种新的参考信号的设计,block RS(或者resource unit specific RS)的主要设计思路是将一段带宽分成多个block(或resource unit),针对每个block(或resource unit)设计一个RS,UE在某一带宽上的RS由一个或多个block RS连接组合而成。
本申请中所说的子帧,可以理解为:一个子帧在频域上占用整个系统带宽的时频资源、在时域上上占用固定的时间长度,例如1毫秒(ms)。同时一个子帧也可占用连续的K个符号,K为大于零的自然数。K的取值可以根据实际情况确定,在此并不限定。例如,LTE中,1个子帧在时域上占用连续的14个OFDM符号。
本申请中所说的时隙,可以理解为:时隙是指一个基本的时频资源单元,在时域上占用连续的L个OFDM符号,L为大于零的自然数。L的取值可以根据实际情况确定,例如,7个OFDM符号。
本申请中所说的符号,包含但不限于正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、稀疏码分多址技术(sparse code multiplexing access,SCMA)符号、过滤正交频分复用(filtered orthogonal frequency division multiplexing,F-OFDM)符号、非正交多址接入(non-orthogonal multiple access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
本申请中所说的时隙可以是slot,mini-slot以及其他时间资源单元。
本申请中所说的子载波宽度,可以理解为频域上最小的粒度。例如,LTE中,1个子载波的子载波宽度为15kHZ。
LTE-A系统支持的最大系统带宽为20MHz,在LTE中系统带宽确定后,资源分配粒度RBG大小即可确定,且在固定系统带宽下,只有一种RBG大小。而在NR系统中,将支持更高的带宽。特别是在高频频段(例如高于6GHz的频段),频谱空间很大,所以支持的带宽将大幅度提升,甚至达到800MHz或1GHz的系统带宽。在同一种系统带宽下,RB数目比LTE中将大幅度提升,例如800MHz系统带宽,60KHz子载波间隔时,系统的RB数可能超过1100RB。由于多种业务需要,可能需要的资源分配粒度不同,可以在一种系统带宽下具有多种可配的RBG大小,具体使用哪种RBG大小,可由基站指示。本实施例针对大带宽下场景,对资源分配粒度,即RBG大小,进行灵活配置,满足不同业务需求。
基于上述内容,本申请提供一种资源分配的方法,主要用于实现第一频域资源单元大小的确定,该方法包括:终端根据配置信息,确定第一频域资源单元大小。
其中,所述第一频域资源单元为一个或多个连续的虚拟资源块的集合。所述第一频域资源单元为前述的RBG,RBG为一个VRB或者n个连续的VRB的集合。通过配置不同的n值实现RBG大小的多个配置值。
终端根据配置信息,确定第一频域资源单元大小有多种实现方式:
第一种可能的设计中,所述配置信息包括所述终端与基站之间预定义的第一配置信息。第一配置信息包括第一频域资源单元大小与至少一个资源位置信息的对应关系,资源位置信息可以包括分配的资源所处的子带、频带、numerology、子载波中的至少一个的相关配置信息。例如,所述第一配置信息包括子带标识、频带标识、numerology、子载波中的至少一个与所述第一频域资源单元大小的对应关系。其中,numerology是指各种可能的参数或配置参数的集合,如带宽,循环前缀等。
预定义的第一配置信息可以是子带标识与第一频域资源单元大小的对应关系,或者频带标识与第一频域资源单元大小的对应关系,或者numerology标识与第一频域资源单元大小的对应关系,或者子载波标识与第一频域资源单元大小的对应关系。该预定义的第一配置信息为预定义的第一频域资源单元大小相关配置信息,可能是有协议或标准规定,基站和终端侧可以看做是已知该预定义的配置信息,可以避免基站使用指示信息来向终端指示第一频域资源单元大小,避免了基站使用指示信息来向终端指示带来的开销。当然也不排除预定义的第一配置信息由基站通过系统信息、高层信令或初始接入信息向终端进行指示。
具体的,终端只要知道了分配的资源所处的位置信息,如子带标识、频带标识、numerology标识、子载波标识中的至少一个,就可以根据预定义的第一配置信息确定第一频域资源单元大小。或者终端可以根据资源分配相关信息或者其他信息判断出分配的资源所处的子带、频带、numerology、子载波中的至少一个,就可以根据预定义的第一配置信息确定第一频域资源单元大小。
其中,终端通过基站指示的资源分配指示信息获知分配的资源所处的位置信息。例如,基站向终端发送资源分配指示信息,资源分配指示信息中包含分配的资源所处的位置信息,终端接收该资源分配指示信息,终端根据资源分配指示信息,可以获知分配的资源处于哪个子带,或者处于哪个频带,或者使用哪种numerology获取分配的资源,或者使用哪个子载波获取分配的资源。
以预定义的配置信息可以是子带标识与第一频域资源单元大小的对应关系为例来说, 子带由基站来划分,可设置k(k>=1)个连续的PRB为一个子带,基站可根据不同业务、不同numerology、子载波或其他来划分子带。在固定系统带宽下,有多个可使用的第一频域资源单元大小值,第一频域资源单元大小值和子带一一对应。终端可根据分配的资源在哪个子带上,来确定当前选定的第一频域资源单元大小。总之,只要确定了子带标识,则必有一个与其对应的第一频域资源单元大小值。
例如,在某一系统带宽下有N(N>1)个子带(subband),分别为subband#1,subband#2,…,subband#i,…,subband#N;该系统带宽下有M(M>1)个可使用的第一频域资源单元大小的配置值,分别为V 1,V 2,…,V i,…,V M,N>=M,那么子带与第一频域资源单元大小的配置值的对应关系参见表1,其中,1≤i≤N,1≤a i≤M。且1≤i≤N,1≤j≤N,i≠j时,a i和a j可以相等也可以不相等。
表1
子带 第一频域资源单元大小
Subband#1 V a1
Subband#2 V a2
Subband#i V ai
Subband#N V aN
再例如,系统带宽为100RB时,第一频域资源单元大小的配置值为4,6,8,10,子带1上使用的第一频域资源单元大小的配置值为4,子带2上使用的第一频域资源单元大小的配置值为6,子带3上使用的第一频域资源单元大小的配置值为8,子带4上使用的第一频域资源单元大小的配置值为10。
在同一系统带宽下,也可以根据预定义的频带标识与第一频域资源单元大小的对应关系,确定频带标识对应的第一频域资源单元大小值。例如在频带为4GHz和频带为30GHz时,第一频域资源单元大小可配置值不相同。
需要说明的是,子带由基站来划分,基站可根据不同业务或者不同numerology或子载波或其他来划分子带。除此之外,第一频域资源单元大小还可以直接和numerology或子载波相关,numerology或子载波和第一频域资源单元大小之间的关系,和子带与第一频域资源单元大小之间的关系类似,将上述表格中的subband标识替换成numerology标识或者子载波标识就是第一频域资源单元大小和numerology标识或者子载波标识的关系。
值得说明的是,频带是指通信系统工作的频段所在载频,例如NR中讨论的4GHz,30GHz等。若在不同频带上,子带和第一频域资源单元大小的对应关系(如上述表格)不同,则用户设备需结合频带标识、子带标识以及基站的配置信息确定第一频域资源单元大小。
第二种可能的设计中,所述配置信息包括所述基站向所述终端发送的第二配置信息,其中,第二配置信息为基站向终端发送的指示信息,该指示信息能够直接指示第一频域资源单元大小,该方案所应用的场景为:由基站直接向终端指示第一频域资源单元大小。
具体的,基站向终端发送第二配置信息,第二配置信息包含第一频域资源单元大小指示,终端接收基站发送的该第二配置信息,根据该第二配置信息中的第一频域资源单元大 小指示,确定第一频域资源单元大小。
其中,第一频域资源单元大小指示所占的比特数,根据系统带宽下第一频域资源单元大小的配置个数确定。如果一种系统带宽下第一频域资源单元大小有N(N>1)个可选的配置值,则第一频域资源单元大小指示所占的比特数为:
Figure PCTCN2018074204-appb-000002
示例一,系统带宽为100RB时,第一频域资源单元大小可配置值为4,6,8,10;系统带宽为200RB时,第一频域资源单元大小可配置值为4,8,12,16,第一频域资源单元大小的可配置个数为4个,这样基站可以使用2比特指示信息来指示当前使用的第一频域资源单元大小为何值。
示例二,基于示例一,在系统带宽为100RB时,若2比特的指示信息为00,表示选定的第一频域资源单元大小为4,若2比特的指示信息为01,表示选定的第一频域资源单元大小为6;若2比特的指示信息为10,表示选定的第一频域资源单元大小为8;若2比特的指示信息为11,表示选定的第一频域资源单元大小为10。
示例三,基于示例一,在系统带宽为200RB时,若2比特的指示信息为00,表示选定的第一频域资源单元大小为4;若2比特的指示信息为01,表示选定的第一频域资源单元大小为8;若2比特的指示信息为10表示选定的第一频域资源单元大小为12;若2比特的指示信息为11,表示选定的第一频域资源单元大小为16。
RBG相关配置信息可以承载于以下至少之一:广播信令,高层信令(无线资源控制(radio resource control,RRC)信令等)、媒体接入控制控制元素(media access control element,MAC CE)信令、L1控制信令(DCI等)等。例如,所述高层信令,包括主信息块(master information block,MIB),系统信息块(system information block,SIB),或无线资源控制(radio resource control,RRC)信令,或其他具有类似特征的高层信令。例如,可以在每个时隙(子帧,slot,mini-slot等)使用DCI进行指示,这样指示的开销较大。也可以使用高层信令或广播信令指示,在一段时间内RBG大小为某个值,例如,类似于在LTE中的PCFICH信道中承载的广播信令;或者,所述物理层广播控制信令所占用的时频资源,包括时隙或子帧的起始OFDM符号的至少一个OFDM符号,所述物理层广播控制信令可被小区内一组或全部终端检测和接收。也可以结合DCI和高层信令或广播信令进行指示,在某一时间短内,通过高层信令或者广播信令指示RBG大小可以为所有可配置值中的某几个值,再通过DCI来指示RBG大小具体为哪个值。当然,也可以使用其他的指示方法。该配置方法同样适用于下述实施例中的配置过程。
第三种可能的设计中,所述配置信息包括所述第一配置信息和所述第二配置信息;
其中,第一配置信息包括子带标识、频带标识,numerology或子载波中的至少一个与所述第一频域资源单元大小的多个配置值的对应关系。此种应用场景为预定义的RBG大小配置信息的子带标识或频带标识与RBG大小的多个配置值之间存在对应关系。一个系统带宽下的每个子带对应一个第一频域资源单元大小集合,或一个系统带宽下的每个频带对应一个第一频域资源单元大小集合,或者一个系统带宽下的每个numerology或者子载波对应一个第一频域资源单元大小集合。
其中,第二配置信息为基站向终端发送的指示信息,该指示信息能够指示子带标识对应的第一频域资源单元大小的多个配置值中的一个配置值;或者,该指示信息能够指示频率标识对应的第一频域资源单元大小的多个配置值中的一个配置值;或者,该指示信息能够指示numerology或子载波对应的第一频域资源单元大小的多个配置值中的一个配置值。
例如,此时基站可使用log 2Max(n i)(1≤i≤N)比特信息来指示第一频域资源单元大小的配置值,n i是一个子带对应的第一频域资源单元大小集合中配置值的总个数。
比如,子带#1上,有N(N>1)个第一频域资源单元大小的配置值,基站需要使用[log 2N]比特来指示使用子带#1对应的哪个第一频域资源单元大小的配置值。
例如,在某一系统带宽下有N(N>1)个子带,分别为子带subband#1,subband#2,…,subband#i,…,subband#N;每个子带对应有n i(n i≥1,1≤i≤N)个第一频域资源单元大小值,分别对应第一频域资源单元大小值为V 11,V 12,…,
Figure PCTCN2018074204-appb-000003
V 21,V 22,…,
Figure PCTCN2018074204-appb-000004
V N1,V N2,…,
Figure PCTCN2018074204-appb-000005
那么子带与第一频域资源单元大小值对应关系参见表2,其中,若1≤i 1,i 2≤N,
Figure PCTCN2018074204-appb-000006
当i 1=i 2和j 1=j 2不是同时成立时,
Figure PCTCN2018074204-appb-000007
Figure PCTCN2018074204-appb-000008
可以相等也可以不相等。
表2
Figure PCTCN2018074204-appb-000009
这种情况下,可结合子带标识、第一配置信息以及基站指示的信息一起确定第一频域资源单元大小。
首先,终端通过基站指示的资源分配相关指示信息或者通过其他信息获知分配的资源所处的位置信息,资源分配指示信息中包含分配的资源所处的位置信息,通过资源所处的位置信息可以判断分配的资源处于哪个子带或者处于哪个频带。
其次,终端根据预定义的第一配置信息,获取与分配的资源所处的子带标识对应的第一频域资源单元大小集合,如资源分配指示信息中指示的子带标识为子带1,获取子带1对应的第一频域资源单元大小集合;
再次,终端根据基站指示的第二配置信息,从子带1对应的第一频域资源单元大小集合中的多个配置值中选择出一个配置值。
其中,基站可以分开发送资源分配相关指示信息和第二配置信息,也可以一起发送。
假如基站和终端之间预定义的第一配置信息为:子带1上可选的第一频域资源单元大小的配置值为2、3,子带2上可选的第一频域资源单元大小的配置值为4、5。
示例四:基于上述条件,分配的资源在子带1上的情况下,基站使用1比特指示子带1对应的第一频域资源单元大小集合中的一个配置值,该1比特的指示值为0时,对应第一频域资源单元大小为2,该1比特的指示值为1时,对应第一频域资源单元大小为3。
示例五:基于上述条件,分配的资源在子带2上的情况下,基站使用1比特指示子带2对应的第一频域资源单元大小集合中的第一频域资源单元大小的配置值,该1比特的指示值为0时,对应第一频域资源单元大小为4,该1比特的指示值为1时,对应第一频域资源单元大小为5。
同样的,一个系统带宽下的每个频带对应第一频域资源单元大小集合时,也可以按照相同的方式确定频带对应的第一频域资源单元大小集合中的一个配置值,此处不再累述。
值得说明的是,频带是指通信系统工作的频段所在载频,例如NR中讨论的4GHz,30GHz等。第一频域资源单元大小和频带还可以有以下关系:在相同系统带宽下,不同频带上均有多种第一频域资源单元大小配置值,如频带#1上,有N(N>1)个第一频域资源单元大小可配置值,基站需要使用
Figure PCTCN2018074204-appb-000010
比特来指示使用哪个第一频域资源单元大小,在频带#2上,有M(M>1)个第一频域资源单元大小可配置值,基站需要使用
Figure PCTCN2018074204-appb-000011
比特来指示使用哪个第一频域资源单元大小。用户设备需结合频带标识和基站的第一配置信息确定第一频域资源单元大小。若在不同频带上,子带和第一频域资源单元大小的对应关系(如上述表格)不同,则用户设备需结合频带标识、子带标识以及基站的配置信息确定第一频域资源单元大小。
上述第一频域资源单元大小的配置还可能和numerology相关,其配置方法和子带与第一频域资源单元大小之间的配置方法类似,将上述配置方法的描述中的子带(subband)替换成numerology,即可看成numerology与第一频域资源单元大小的关系,以及对应的配置方法。
上述第一频域资源单元大小的配置还可能和子载波相关,其配置方法和子带与第一频域资源单元大小之间的配置方法类似,将上述配置方法的描述中的子带替换成子载波,即可看成子载波与第一频域资源单元大小的关系,以及对应的配置方法。
第四种可能的设计中,所述第一频域资源单元大小通过第二频域资源单元的大小确定。
具体的,所述终端根据相关的配置信息确定第二频域资源单元大小。
在一种可能的设计中,所述第二频域资源单元为一个或多个连续的物理资源块的集合。例如,所述第二频域资源单元为block,block包含一个PRB,或者block为包含n个连续的PRB的集合。通过配置不同的n值,即可实现block大小的多个配置值。
例如,所述第一频域资源单元大小为所述第二频域资源单元大小的N倍,N为大于或等于1的整数。所述第二频域资源单元为一个或多个连续的物理资源块的集合。基站和终端之间预定义第二频域资源单元大小,在第二频域资源单元大小具有多个配置值时,根据第二频域资源单元大小,确定第一频域资源单元大小。所述第一频域资源单元大小的可配置也通过第二频域资源单元大小的可配置实现。
LTE系统中,PRG是一个表示预编码粒度的参数,用来指示多少个RB可使用相同预编码。和RBG类似,PRG大小也是和系统带宽相关的一个参数,PRG的大小和RBG的大小有一定的相关性。为了适应新的业务场景需求,RBG大小可配置,相应的PRG大小也需要可配置。
LTE系统中,用户设备在传输模式(transmission mode)9的情况下,会设置一个预编码的粒度,用来指示频域上多个RB可使用相同的预编码。PRG大小就是用来指示多少个RB可使用相同预编码的参数。LTE系统中,资源块预编码大小和第一频域资源单元大小类似,其值也是和系统带宽相关,关系如表3所示:
表3
Figure PCTCN2018074204-appb-000012
从表3可以看出PRG大小的取值和RBG大小的取值有一定相关性。在新的应用场景需求下,RBG大小可配,同样,PRG大小也是可配置的。
因此,上述实施例中所有的RBG大小的配置方法同样适用于PRG大小的配置,只是RBG大小和PRG大小的可配置值的大小以及个数可能相同也可能不同。
基于上述实施例中的RBG可配置和PRG可配置的具体内容,本申请提供一种通信系统中资源分配的方法,如图2所示,该方法包括:
步骤201,终端根据配置信息,确定第一频域资源单元大小;
终端根据配置信息,确定第一频域资源单元大小的具体内容参见上述实施例,此处不再累述。
步骤202,所述终端根据所述第一频域资源单元大小,确定资源分配相关参数。
其中,步骤202中,所述资源分配相关参数包括资源分配所需的比特数、资源分配的资源指示值、资源分配的资源映射方式中的至少一个,其中,所述资源分配所需的比特数包括用于指示所述资源分配相关参数中的至少一个参数的指示信息所占的比特数,例如,所述资源分配所需的比特数为由基站下发的DCI所占的比特数,或者基站下发的DIC中至少一部分域所占的比特数,或者资源指示值(resource indication value,RIV)所占的比特数,但并不限于以上几种举例。
针对下行资源分配,LTE-A系统定义了三种资源分配类型,资源分配类型0,资源分配类型1和资源分配类型2。
第一种可能的设计中,可根据第一频域资源单元大小,确定资源分配所需的比特数。
在资源分配类型0中,基站采用比特图的方式进行资源分配,每个比特对应一个RBG,每个比特的值用来指示每个RBG是否被调度。资源分配所需的比特数即为比特图所占的比特数,比特图所占的比特数等于RBG的个数,RBG的个数根据RBG的大小确定,RBG的大小是指第一频域资源单元大小,即RBG中的连续VRB的个数,RBG的个数可表示为:
Figure PCTCN2018074204-appb-000013
其中,p为RBG的大小,
Figure PCTCN2018074204-appb-000014
为RB的总个数。
在资源分配类型1中,通过DCI的三个域来指示分配给终端的虚拟VRB,分配给终端的虚拟VRB在一个RBG子集中,一个RBG子集包括所有的RBG,每个RBG包含多个连续VRB,RBG的大小为RBG中的连续VRB的个数。
其中,第一个域用来指示选定的RBG子集,第一个域所占的比特数与RBG的大小有关,第一个域所占的比特数可以表示为:
Figure PCTCN2018074204-appb-000015
其中,p为RBG的大小。
由于第一频域资源单元大小是可配置的,因此,上述两种资源分配所需的比特数也会有相应的改变。
第二种可能的设计中,将第一频域资源单元的大小与第二频域资源单元的大小结合来确定资源分配相关参数。
比如,通过配置第一频域资源单元大小和第二频域资源单元大小之间的关系,还可以对现有的资源分配类型1进行改进例如,令资源分配指示的DCI信息中第一域和第三域的比特数仍与第一频域资源单元大小有关,但此时的第一资源单元大小为第二频域资源单元大小的整数倍。且DCI信息中的
Figure PCTCN2018074204-appb-000016
参数,在LTE-A中表示系统中下行RB数的总数,在该设计中该参数变为系统中总的第二频域资源单元的总数。
所述终端的资源分配参数和第二频域资源单元大小相关。
比如,通过第二频域资源单元大小与连续物理资源块的关系,还可以对现有的资源分配类型2进行改进,使得资源分配的资源指示值和第二频域资源单元大小以及个数相关。或者对资源的映射方式进行改进,使得分布式资源映射过程中,资源的交织方式和第二频域资源单元大小相关。
除了上述举例,还可根据第二频域资源单元确定资源分配的资源指示值。例如,在资源分配类型2中,通过RIV指示分配给终端的资源,分配给终端的资源是一段连续的VRB。具体是通过RIV的表达式来指示分配给终端的起始VRB编号RB start以及自起始VRB编号开始的连续VRB个数L CRBs
通过所述第一频域资源单元大小与所述第二频域资源单元大小的N倍关系,对现有的资源分配类型2支持的资源映射方式进行改进,通过RIV的表达式来指示分配给终端的起始虚拟block编号Block start,连续的虚拟block数L CBLs,下行系统带宽的总block数
Figure PCTCN2018074204-appb-000017
使得资源指示值的比特数减小。
基于上述实施例记载的内容,本申请还提供一种发送参考信号的方法,具体包括:
所述终端接收基站发送第一参考信号,所述第一参考信号承载于至少一个所述第二频域资源单元;或者,
所述终端向所述基站发送第二参考信号,所述第二参考信号承载于至少一个所述第二频域资源单元。
根据前述内容,所述第二频域资源单元为block,将上述第一参考信号和第二参考信号统称为block RS,其含义为承载于特定频域资源单元的参考信号。
block RS的主要设计方法是将一段大带宽分成多个block或资源单元,针对每个block设计RS,用户在某一带宽上的RS由一个或多个block RS连接组合而成,不同的block使用不同ZC root生成的ZC序列如图3所示,为了方便阅读,UE1、UE2、UE3和UE4使用的通信资源在图中展开显示,实际上它们的时域位置是相同的。从图3可知,UE 2、UE3和UE 4使用的通信资源分别与UE 1使用的通信资源存在时域上的重叠。在一段频带被分成4个block,对UE1来说,这4个block分别使用通过root#1,root#2,root#3和root#4生成的ZC序列来生成RS。对UE2来说,这4个block分别使用通过root#1,root#2生成的ZC序列来生成RS。对UE3来说,这4个block分别使用通过root#3生成的ZC序列来生成RS。对UE4来说,这4个block分别使用通过root#4生成的ZC序列来生成RS。
MU-MIMO的多用户之间出现资源部分重叠的情况下资源重叠部分的长度一定为最小调度资源长度的整数倍,通过将block RS的长度设置为最小调度资源的长度,并对block RS 序列进行一定的设计,只需满足多用户资源重叠的block部分正交即可保证MU-MIMO多用户重叠部分的RS正交性。NR的标准讨论过程中,部分公司考虑将block RS用于上行,来解决上行MU-MIMO多用户之间出现部分资源重叠的问题。考虑到上行需要降低PAPR的问题,block RS讨论的时候多是采用ZC序列,LTE中上行资源分配是连续的PRB,ZC序列映射在连续的PRB上可以满足PAPR低的性能。若ZC序列映射到分散的PRB,可能会导致PAPR变大,即不再满足低PAPR特性。NR的标准讨论中也考虑了上下行参考信号的对称设计,其中一种对称设计就是上下行在相同的符号位置上使用相同的参考信号的设计方法,例如上下行都是用block RS设计。因此,block RS也可能被用于下行的参考信号设计。本实施例中,第一参考信号和第二参考信号正是对称的block RS。
现有LTE-A有多种资源分配方法,其中LTE-A的下行资源分配类型1和资源分配类型2可能会导致分配的连续的虚拟资源块映射到物理资源块上可能是分散的。在一些新的应用场景下,可能需要保证部分连续的VRB映射到连续的PRB上。这对这种需求,现有的资源映射方法可能无法适用。
例如,基于中基站和终端之间传输对称的第一参考信号和第二参考信号,且第一参考信号和第二参考信号分别承载于至少一个第二频域资源单元上时,LTE中上行资源分配采用ZC序列所分配的资源会映射到连续的PRB,ZC序列映射在连续的PRB上可以满足峰值平均功率比(peak to average power ratio,PAPR)低的性能。但是,根据LTE系统定义的三种下行资源分配类型以及对应的资源映射方式,采用ZC序列所分配的资源可能会映射到分散的PRB,会导致PAPR变大,即不再满足低PAPR特性。
对于资源类型0,基站采用比特图的方式进行资源分配,每个比特对应一个RBG,每个比特的值用来指示每个RBG是否被调度。资源分配所需的比特数即为比特图所占的比特数,比特图所占的比特数等于RBG的个数,RBG的个数根据RBG的大小确定,RBG的大小是指第一频域资源单元大小,即RBG中的连续VRB的个数,RBG的个数可表示为:
Figure PCTCN2018074204-appb-000018
其中,p为RBG的大小,
Figure PCTCN2018074204-appb-000019
为RB的总个数。
资源分配类型0对应的映射方式是集中式映射,即VRB直接一一映射到PRB,两者的索引相同,且slot之间不跳频。因此,资源分配类型0可以保证每个RBG映射到连续的PRB。
对于资源分配类型1,通过DCI的三个域来指示分配给终端的VRB。分配给终端的虚拟VRB来自于一个RBG子集,一个RBG子集包括所有的RBG,每个RBG包含多个连续VRB,RBG的大小为RBG中的连续VRB的个数。DCI format包括但不限于DCI format1/2/2A/2B/2C等制式。
其中,系统带宽中所有的RBG被分为P个RBG子集,其中,P为RBG中包含的RB数或者包含的VRB数。每个RBG子集包含所有RBG,但是排序不同。以RBG子集p为例,RBG子集p包含从RBG p开始,间隔为P个RBG的所有RBG。
其中,DCI的三个域的指示信息具体为:
第一个域包含
Figure PCTCN2018074204-appb-000020
比特,用于指定所选的RBG子集,此处的P为RBG子集p中的RBG包括的RB的个数;
第二个域包含1比特(shift bit),用于指定子集内的资源是否偏移,1表示偏移,0表示不偏移;
第三个域包含一个比特位图bitmap,bitmap的每一比特对应所选RBG子集中的一个VRB,bitmap包含的比特数为:
Figure PCTCN2018074204-appb-000021
bitmap的比特数与RBG组中的VRB数相同。
当终端接收到DCI指示信息之后,首先根据第一个域的指示信息,确定分配的RBG子集。
其次,再根据第二个域的信息,确定RBG的子集内的资源是否进行偏移。
具体的,RBG子集内的RBG被分为两组,两组分别为对应资源偏移和资源不偏移,两组RBG间有部分RBG是重叠的,两组的RBG的并集为该RBG子集。
若第二个域的值为0,则偏移量Δ shift(p)=0,否则
Figure PCTCN2018074204-appb-000022
选定的RBG组的最小VRB编号为选定的RBG子集的最小VRB号+Δ shift(p)。其中
Figure PCTCN2018074204-appb-000023
为RBG子集p包含的VRB数,计算公式如下:
Figure PCTCN2018074204-appb-000024
最后,再根据第三个域的bitmap确定之前确定的RBG组中的每个VRB是否被调度。
例如,比特位图中的一个比特位的值为1时,对应的VRB配置为未被调度,比特位图中的一个比特位的值为0时,对应的VRB配置为已被调度。
对于第三个域,每个比特i,对应的VRB可以通过以下公式计算:
Figure PCTCN2018074204-appb-000025
对于资源分配类型1的资源映射方式为集中式映射,即VRB直接一一映射到PRB,两者的索引相同,且slot之间不跳频。由于比特图中RBG子集中每个VRB对应一个比特,该比特配置为0或1的自由度较大,因此分配给终端的VRB可能不全部是连续的,因此VRB映射的PRB可能有一部分是连续的,也可能有一部分是不连续的。
针对资源分配类型1分配给终端的VRB映射到不连续的PRB,导致不满足低PAPR特性的技术问题,当业务有需求使用block RS的场景下或者有其他需要满足一段连续的VRB必须要映射到连续的PRB的场景下,就需要对资源分配类型1资源分配方法进行改进,使分配的资源能映射到连续的PRB上。针对资源分配类型1,本申请提供一种基于资源分配类型1进行改进的资源分配方法,以满足block RS的需求以及有其他类似block RS需求的应用场景。
首先,针对资源类型1,基站和终端之间进行如下预定义的资源配置:
配置每个RBG包括多个虚拟block,每个虚拟block映射到一个物理block,每个物理block由一个或多个连续的PRB集合组成。并且RBG大小为block大小的整数倍,
Figure PCTCN2018074204-appb-000026
不再是下行的RB个数,而是下行的block个数。这里的RBG为前述中的第一频域资源单元,RBG大小为前述实施例中的第一频域资源单元大小,这里的block为前述实施例中的第二 频域资源单元,block大小为前述实施例中的第二频域资源单元大小。
其中,系统带宽中所有的RBG被分为P个RBG子集,P为RBG中包含的虚拟block数。RBG子集p包含从RBG p开始,间隔为P个RBG的所有RBG。分配给某个用户的虚拟block必须来自于同一个RBG子集。
例如,如图4所示,一个系统带宽下的资源块RB为0到99,共100个,block大小为2RB,即0到99个RB每连续两个RB为一个block,block的总个数为50,即
Figure PCTCN2018074204-appb-000027
为50。RBG大小为block大小的整数倍,假设此时RBG大小为2个block,则50个block划分为25个RBG,假如为RBG0~RBG24。此时,25个RBG可构成2个RBG子集,每个RBG子集中包括25个RBG,例如,第RBG 1子集是从RBG 1开始,间隔2个RBG的所有RBG,则RBG 1子集内的RBG分别为:RBG 1,RBG 4,RBG 7,RBG 10,RBG 13,RBG 16,RBG 19,RBG 22,RBG 0,RBG 3,RBG 6,RBG 9,RBG 12,RBG 15,RBG 18,RBG 21,RBG 24,RBG 2,RBG 5,RBG 8,RBG 11,RBG 14,RBG 17,RBG 20,RBG 23
基于上述预定义配置,基站向终端指示的DCI,包括的三个域变形为:
第一个域包含
Figure PCTCN2018074204-appb-000028
比特,用于指定所选的RBG子集,即p的值,此处P为RBG中包含的虚拟block的个数,即RBG大小,按照上述示例,p的值为2,则第一个域的比特数为1。第一个域的大小与RBG大小有关,RBG大小与block大小有关,或者,RBG大小为RBG中包括的block个数。
第二个域包含1比特(shift bit),用于指定子集内的资源是否偏移,1表示偏移,0表示不偏移;
第三个域包含一个比特图bitmap,bitmap的每一比特对应所选RBG子集中的一个虚拟block,bitmap的比特数与RBG组中的虚拟block数相同,bitmap包含的比特数为:
Figure PCTCN2018074204-appb-000029
当终端接收到DCI指示信息之后,首先根据第一个域的指示信息,确定分配的RBG子集;再根据第二个域的信息,确定RBG的子集内的资源是否进行偏移;最后用户再根据第三个域的bitmap确定第一个域所指示的RBG子集中的每个虚拟block是否被调度。
假如第一个域选定的RBG子集包括25个block,第三个域的bitmap中25个block排序参见图5,RBG的子集内的虚拟block0,block5,block8,block9,block13的比特值为1,可以视为分配给终端的虚拟block为block0,block5,block8,block9,block13,其中,每个虚拟block映射到的物理block由连续的PRB组成,如block0映射到的物理block由连续的RB0和RB1组成。
对于第三个域,bitmap的每一个比特对应所选的为一个虚拟block,保证每个虚拟block映射到的物理block由连续的PRB组成。即用户根据第三个域中的bitmap确定调度的虚拟block,或者确定由连续PRB组成的虚拟PRB组。
如果套用资源分配类型1的公式,仍能得到比特图bitmap与VRB对应的映射表,只是此时映射表的VRB的标识(编号)替换为虚拟block的标识(编号)。这样集中式映射可以保证每个虚拟block映射连续的PRB。这是因为第三个域中的比特图中的每一个比特对应RBG子集中的虚拟block,而不是一个VRB,因此按照集中式的映射方式,可以保证每个虚拟block映射到的物理block由连续的PRB组成。
在这个改进方案中,基站需要向用户配置一个block中的RB数目,即block大小,例 如基站通过RRC信令/广播信息/MAC CE或其他高层信令配置,或者控制信道,该配置可以是小区级配置或用户级配置。
该改进方案不限于下行,同样的资源分配方法也可以应用于上行。
此外,在此改进方案中,根据前述第一频域资源单元大小和第二频域资源单元大小之间的关系,第一域的比特数与第一频域资源单元大小有关,第三域的比特数与第二频域资源单元大小有关,使得资源分配的所需的比特数减小,即第一域的比特数和第三域的比特数减小,在结合前述内容中第一频域资源单元大小和第二频域资源单元大小中至少一个的可配置方案,来避免资源分配的所需的比特数的开销过大。
现有技术中,DCI指示的资源分配所需的比特数和RBG大小或者RB的总个数
Figure PCTCN2018074204-appb-000030
有关。而本实施例的改进方案会导致资源分配所需的比特数和block大小以及block总个数相关。例如block大小较小时,DCI中资源分配信息的比特数较大;block大小较大时,DCI中的资源分配信息的比特数较小。因此,需根据block大小确定DCI中的资源分配信息的比特数,或确定DCI的比特数,以及资源分配指示参数。
上述针对资源分配类型1进行改进的资源分配方法,解决了资源分配类型1中分配给终端的连续VRB映射不连续的PRB的问题。该方案结合资源分配粒度的可配置,可将分配给终端的资源映射到一些连续或非连续的block,而每个block资源为连续的PRB。
对于现有技术中的资源分配类型2,通过资源指示值(resource indication value,RIV)指示分配给终端的资源,分配给终端的资源是一段连续的VRB。具体是通过RIV的表达式来指示分配给终端的起始VRB编号RB start以及自起始VRB编号开始的连续VRB个数L CRBs
具体的,基站通过配置资源指示值RIV进行指示。例如,对于物理下行链路控制信道(physical downlink control channel,PDCCH),增强物理下行链路控制信道(enhanced physical downlink control channel,ePDCCH)等信道的DCI format(DCI制式),如DCI format1A、DCI format 1B、DCI format1D,RIV值定义为:
Figure PCTCN2018074204-appb-000031
Figure PCTCN2018074204-appb-000032
其他情况下有
Figure PCTCN2018074204-appb-000033
其中,RB start为起始VRB编号,L CRBs为连续的VRB数。
Figure PCTCN2018074204-appb-000034
为下行系统带宽的总RB数。
资源分配类型2既支持集中式映射,也支持分布式映射。
例如,根据基站指示的RIV值,采用分布式映射进行VRB到PRB的资源映射时,分为两个步骤:
步骤一:交织(interleaving):将连续的VRB pair映射到非连续的PRB pair上;
步骤二:同一VRB number在slot间的跳频。
对于步骤一:根据以下公式计算系统带宽内所有可以用于分布式映射的VRB数量。
Figure PCTCN2018074204-appb-000035
若N gap=N gap,1
Figure PCTCN2018074204-appb-000036
若N gap=N gap,2
其中,N gap,1,N gap,2根据系统带宽确定,N gap,1,N gap,2与系统带宽的对应关系,如下表
表4
Figure PCTCN2018074204-appb-000037
步骤一中,基站可通过信令向终端指示N gap=N gap,1或N gap=N gap,2。当可交织的VRB数可能小于总VRB数时,对可交织的VRB进行交织。
确定可交织的VRB之后,将可交织的VRB分为一个或多个交织单元,具体的,当
Figure PCTCN2018074204-appb-000038
Figure PCTCN2018074204-appb-000039
将一个交织单元内的VRB编号逐行写入交织矩阵,交织矩阵为4列
Figure PCTCN2018074204-appb-000040
行,其中P是RBG大小。若无法充填满整个矩阵,则充填空白元素(null),null元素位于最后的最后N null/2行的第2列和第4列。填充为null的元素个数为
Figure PCTCN2018074204-appb-000041
随后再以逐列的方式读取VRB编号,并且忽略null元素,从而得到交织后的VRB顺序,而交织后的VRB序列的序号对应PRB号,即交织后的第j个VRB(VRB k)对应的PRB为PRB j。
对于步骤二的slot间跳频,是指在LTE的两个slot间,一个VRB映射到不同的PRB的slot上,其中,偶数slot(slot 0)的PRB为步骤一得到的PRB,奇数slot(slot 1)对应的PRB为步骤一得到的PBR的编号在VRB的交织单元内偏移
Figure PCTCN2018074204-appb-000042
虽然资源分配类型2确定的是连续的VRB,但是分布式映射时,连续的VRB映射在了非连续的PRB上,因此,分配给终端的PRB资源是不连续的。
针对资源分配类型2分配给终端的连续VRB映射到不连续的PRB,导致不满足低PAPR特性的技术问题,当业务有需求使用block RS的场景下,就需要对资源分配类型2资源分配方法进行改进,使分配的资源能映射到连续的PRB上。针对资源分配类型2,本申请提供一种基于资源分配类型2进行改进的资源分配方法,以满足block RS的需求以及有其他类似block RS需求的应用场景。
第一种可能的设计中,针对资源类型2,基站和终端之间进行如下预定义的资源配置:
配置多个虚拟block,每个虚拟block映射到一个物理block,每个物理block由一个或多个连续的PRB集合组成。
Figure PCTCN2018074204-appb-000043
不再是下行的RB个数,而是下行的block个数。这里的block为前述中的第二频域资源单元,block大小为第二频域资源单元大小。假如所有的PRB 资源每2个PRB对应1个block,则虚拟block的编号为0~49,而不是0~99。
与现有的资源分配类型2的上述分布式映射方式相比,令VRB到PRB的分布式映射中的交织矩阵中的元素由VRB编号替换为虚拟block编号,即可实现分配的每个虚拟block能够映射到连续的PRB上。
具体的,基站通过配置RIV进行指示。
RIV值定义为:
Figure PCTCN2018074204-appb-000044
其他情况下有
Figure PCTCN2018074204-appb-000045
其中Block start为起始虚拟block编号,L CBLs为连续的虚拟block数。
Figure PCTCN2018074204-appb-000046
为下行系统带宽的总block数。
根据基站指示的RIV值,采用分布式映射进行block到PRB的资源映射时,分为两个步骤:
步骤一:交织(interleaving):将连续的虚拟block映射到非连续的block上;
步骤二:同一虚拟block在不同时域资源间的跳频。其中,步骤二是可选的。
对于步骤一:根据以下公式计算系统带宽内所有可以用于分布式映射的虚拟block数量
Figure PCTCN2018074204-appb-000047
若N gap=N gap,1
Figure PCTCN2018074204-appb-000048
若N gap=N gap,2
其中,N gap,1N gap,2根据系统带宽包含的block数确定,具体见表4。基站通过信令指示N gap=N gap,1或N gap=N gap,2。对可交织虚拟block进行交织,将虚拟block分为一个或多个交织单元,具体的,当N gap=N gap,1
Figure PCTCN2018074204-appb-000049
当N gap=N gap,2
Figure PCTCN2018074204-appb-000050
将一个交织单元内的虚拟block编号逐行写入交织矩阵,交织矩阵为4列
Figure PCTCN2018074204-appb-000051
行,其中P是RBG内的细末block数。若无法充填满整个矩阵,则充填空白元素(null),null元素位于最后的最后N null/2行的第2列和第4列。填充为null的元素个数为
Figure PCTCN2018074204-appb-000052
根据公式,可得到交织矩阵如下:
Figure PCTCN2018074204-appb-000053
随后再以逐列的方式读取虚拟block编号,并且忽略null元素,从而得到交织后的虚拟block顺序,而交织后的虚拟block序列的序号对应block号,即交织后的第j个虚拟block(虚拟block k)对应的block为block j。
例如,如图6所示,虚拟block到PRB的资源映射结果中,虚拟block1对应物理block6,物理block6中包含PRB12和13。虚拟block2对应物理block9,物理block9中包含PRB18和19。
对于步骤二的不同时域资源间跳频,是指在不同时域资源(不同slot)间,一个虚拟block映射到不同的物理block的时间资源上。
例如,每个物理block包括两个时间资源,如一个block为14个符号,每个时间资源包括7个符号(前7个和后7个),则第一个时间资源上的物理block为步骤一得到的物理block,第一个时间资源上的物理block为步骤一得到的物理block在虚拟block的交织单元内偏移
Figure PCTCN2018074204-appb-000054
需要说明的是,相比现有技术中的资源分配类型2,改进的资源分配类型2的RIV值的计算公式中,资源分配的起始位置由起始VRB编号(RB start)改为起始虚拟block编号(Block start);连续分配的VRB长度(L CRBs)改为连续分配的虚拟block个数(L CBLs);
Figure PCTCN2018074204-appb-000055
不再是下行的RB总个数,而是下行的block总个数;gap值也需要根据下行虚拟block数改变。现有LTE资源分配类型2的分配方法以及分布式VRB到PRB的映射公式仍适用,此时分布式VRB映射过程中交织矩阵中的元素由VRB编号替换为虚拟block编号。
由于每个虚拟block映射的物理block包含连续的PRB,因此采用上述改进的资源分配方法,可使每个虚拟block映射的PRB为连续的。
在这个改进方案中,基站需要向用户配置一个block中的RB数目,即blocksize,例如基站通过RRC信令/广播信息/MAC CE或其他高层信令配置,或者控制信道,该配置可以是小区级配置或用户级配置。
在某些应用场景下,需要保证N个连续的PRB映射到N个连续的VRB上,在该场景下也可以使用上述block相关的资源分配方法,此时本发明中所有block的长度可以看做为N。
该改进方案不限于下行,同样的资源分配方法也可以应用于上行。
现有技术中,资源分配所需的比特数主要是资源指示值所占的比特数,资源分配所需的比特数与连续的VRB个数或者
Figure PCTCN2018074204-appb-000056
有关。而本改进方案会导致资源分配所需的比特数和block大小以及block总个数相关。例如block大小较小时,资源指示值的比特数较大;block大小较大时,资源指示值的比特数较小。因此,需根据block大小确定DCI中的资源指示值的比特数,或确定DCI的比特数,以及资源分配指示参数。
第二种可能的设计中,保持资源分配类型2的交织矩阵中的元素仍然为现有的VRB,改进之处在于:将VRB交织矩阵中的VRB交织更改成块交织,形成块交织矩阵,其中,每个块相当于一个VRB组,包含多个VRB,每个交织块的长度可以设置成block的长度,这样就可以保证每个block长度的VRB可以映射在连续的PRB上。
假设每个块包含两个RB,第一种情形下,输入的块交织矩阵为:
Figure PCTCN2018074204-appb-000057
第二种情形下,输入方式为逐k行输入,k>1,k为每个块中的RB数,例如假设每个
block包含两个RB,则输入的块交织矩阵为:
Figure PCTCN2018074204-appb-000058
此时,VRB到PRB的映射公式和块的参数相关,块的参数包括块的大小和可进行分布式映射的块的个数。
需要说明的是,上述VRB-PRB的映射(交织)方法也可以适用于其他场景,即由原来的交织矩阵中单个元素的交织变成块交织,块交织中块的长度可以和block无关,可以为一个固定值,或者由基站配置,或者和其他参数,例如子带带宽、全带带宽等相关。该VRB到PRB的映射方法是针对频域上的概念,在时域上,该VRB/PRB可以跨越一个符号或多个符号或slot或mini-slot或子帧等。同样,该交织方法不仅适用于数据信道/信号,还可以适用于控制信道或控制信号,或其他信道或信号,并且上下行均可使用该映射(交织)方法。例如,对于控制信道,控制信息的资源分配和资源单元组/资源元素组(resource element group,REG)有关。一个REG是在时域上占一个符号,频域上占一个RB,频域上连续若干个REG看做一个REG group,上述VRB到PRB的映射(交织)方法就可以看做是对REG的映射(交织)。
与第一可能的设计方案相似,在这个改进方案中,基站需要向用户配置一个块中的VRB数目,且每个块中的VRB映射连续的PRB,例如基站通过RRC信令/广播信息/MAC CE或其他高层信令配置,或者控制信道,该配置可以是小区级配置或用户级配置。
该改进方案不限于下行,同样的资源分配方法也可以应用于上行。
现有技术中,资源分配所需的比特数主要是资源指示值所占的比特数,资源分配所需的比特数与连续的VRB个数或者
Figure PCTCN2018074204-appb-000059
有关。而本改进方案会导致资源分配所需的比特数和块的大小以及块的总个数相关。例如块的大小较小时,资源指示值的比特数较大;块的大小较大时,资源指示值的比特数较小。因此,需根据块的大小确定DCI中的资源指示值的比特数,或确定DCI的比特数,以及资源分配指示参数。
此外,此改进方案处的块也可以为由连续PRB组成的PRB组,应对不同的调度粒度需求。
上述针对资源分配类型2进行改进的两种资源分配方法,解决了资源分配类型2中分配给终端的连续VRB映射不连续的PRB的问题。该方案结合资源分配粒度的可配置,可将分配给终端的资源映射到一些连续或非连续的block或块,而每个block包含的资源或每个块包含的资源为连续的PRB。
从上述几个实施例可以看出,现有的资源分配类型0可以较好的实现block RS,而现有资源分配类型1和现有资源分配类型2则需要特殊设计才能满足上行参考信号和下行参考信号为对称的block RS的低PAPR应用需求。除此之外,可定义资源分配类型0为有block RS需求的资源分配方法,而现有现有资源分配类型1和现有资源分配类型2为其他RS类 型的资源分配方法。
第一种可能的设计中,终端和基站之间预定义两套RS配置。
第一套RS配置为:对于上行参考信号和下行参考信号为对称的block RS时,都使用资源分配类型0进行上行或下行资源的分配,确保分配的资源映射在多个连续的PRB上。
第二套RS配置为:对于至少一种参考信号为其他类型的参考信号,比如不要求分配的资源映射在多个连续的PRB时,可采用现有资源分配类型0,现有资源分配类型1和现有资源分配类型2中的任意一种进行上行或者下行资源的分配。
对于终端来说,可根据资源分配类型确定使用的RS类型。
当资源分配类型为现有资源分配类型1或现有资源分配类型2时,上行参考信号或下行参考信号选用其他类型的参考信号;当资源分配类型为现有资源分配类型0时,上行参考信号和/或下行参考信号选用对称的block RS。通过建立资源分配类型和RS类型的关系,有blockRS类型专属的资源分配类型,减小了系统设计的复杂度。
其中,终端可根据资源分配的配置信息来确定资源分配类型。
基于相同构思,本申请提供一种如上所述的终端,如上所述的终端用于执行本申请所涉及的各种实施例中与终端相关的方法步骤。
在一种可能的设计中,该终端包括多个功能模块,用于执行本申请所涉及的各种实施例中与终端相关的方法步骤,使得使得大带宽场景下,避免资源分配的指示开销过大,同时还能够对资源分配粒度进行灵活配置,满足不同业务需求。
如图7所示,终端700包括处理单元710和收发单元720。需要说明的是,处理单元710或者收发单元720所执行的操作都可以视为是终端700的操作。
在一种可能的设计中,该终端的结构中包括处理器和收发机,所述处理器被配置为支持终端执行上述通信系统中资源分配的方法中相应的功能。所述收发机用于支持终端与基站之间的通信,向基站发送上述通信系统中资源分配的方法中所涉及的信息或者指令。终端中还可以包括存储器,所述存储器用于与处理器耦合,其保存终端必要的程序指令和数据。所述终端700中的处理单元710可以由终端700中的处理器实现,所述收发单元720可以由终端700中的收发机实现。
具体的,处理器,用于根据配置信息,确定第一频域资源单元大小;所述配置信息包括预定义的第一配置信息;或者,所述配置信息包括所述基站向所述终端发送的第二配置信息;或者,所述配置信息包括所述第一配置信息和所述第二配置信息;以及根据所述第一频域资源单元大小,确定资源分配相关参数。
在一种可能的设计中,所述第一频域资源单元为一个或多个连续的虚拟资源块的集合。
在一种可能的设计中,所述第一配置信息包括子带标识、频带标识中的至少一个与所述第一频域资源单元大小的对应关系。
在一种可能的设计中,所述处理器用于:根据所述第一频域资源单元大小,确定资源分配所需的比特数。
在一种可能的设计中,所述处理器还用于:根据第三配置信息确定第二频域资源单元大小;所述第三配置信息为所述基站发送给所述终端的配置信息,或者,所述第三配置信息是预定义的配置信息。
在一种可能的设计中,所述处理器还用于:根据所述第二频域单元大小确定所述资源 分配相关参数;或者,根据所述第一频域单元大小和所述第二频域资源单元大小,确定所述资源分配相关参数。
在一种可能的设计中,所述第二频域资源单元为一个或多个连续的物理资源块的集合。
在一种可能的设计中,还包括收发机;所述收发机,用于接收所述基站发送第一参考信号,所述第一参考信号承载于至少一个所述第二频域资源单元;和/或所述收发机,还用于向所述基站发送第二参考信号,所述第二参考信号承载于至少一个所述第二频域资源单元。
在一种可能的设计中,所述第一频域资源单元大小为所述第二频域资源单元大小的N倍,N为大于或等于1的整数。
在一种可能的设计中,所述资源分配相关参数包括资源分配所需的比特数、资源分配的资源指示值、资源分配的资源映射方式中的至少一个。
关于该终端内装置或器件的功能的详细描述可以参照本申请其他实施例的相关内容,在此不做赘述。
基于相同构思,本申请提供一种如上所述的基站,如上所述的基站用于执行本申请所涉及的各种实施例中与基站相关的方法步骤。
在一种可能的设计中,该基站包括多个功能模块,用于执行本申请所涉及的各种实施例中与基站相关的方法步骤,使得使得大带宽场景下,避免资源分配的指示开销过大,同时还能够对资源分配粒度进行灵活配置,满足不同业务需求。如图8所示的基站800包括处理单元810和收发单元820。所述处理单元810或者所述收发单元820所执行的操作都可以视为是基站800的操作。
在一种可能的设计中,该基站的结构中包括处理器和收发机,所述处理器被配置为支持基站执行上述通信系统中资源分配的方法中相应的功能。所述收发机用于支持终端与基站之间的通信,向终端发送上述通信系统中资源分配的方法中所涉及的信息或者指令。基站中还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。所述基站800中的处理单元810可以由基站800的处理器实现,所述收发单元820可以由基站800中的收发机实现。
具体的,所述收发机,用于向终端发送第二配置信息,所述第二配置信息用于向所述终端指示第一频域资源单元大小;其中,所述第一频域资源单元大小用于确定资源分配相关参数。
在一种可能的设计中,所述第一频域资源单元为一个或多个连续的虚拟资源块的集合。
在一种可能的设计中,所述收发机,还用于向所述终端发送第一参考信号,所述第一参考信号承载于至少一个所述第二频域资源单元;和/或所述收发机,还用于接收所述终端发送的第二参考信号,所述第二参考信号承载于至少一个所述第二频域资源单元。
在一种可能的设计中,所述第一频域资源单元大小为所述第二频域资源单元大小的N倍,N为大于或等于1的整数。
在一种可能的设计中,所述第二频域资源单元为一个或多个连续的物理资源块的集合。
关于该基站内装置或器件的功能的详细描述可以参照本申请其他实施例的相关内容, 在此不做赘述。
需要说明的是,本申请实施例中上述终端和基站包括的收发机、处理器、存储器以及总线系统的结构关系可参见图9。其中,图9中的收发机905可以是有线收发机,无线收发机或其组合。有线收发机例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发机例如可以为无线局域网通信接口,蜂窝网络通信接口或其组合。
本申请实施例中的处理器902可以是中央处理器(英文:central processing unit,缩写:CPU),网络处理器(英文:network processor,缩写:NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(英文:application-specific integrated circuit,缩写:ASIC),可编程逻辑器件(英文:programmable logic device,缩写:PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(英文:complex programmable logic device,缩写:CPLD),现场可编程逻辑门阵列(英文:field-programmable gate array,缩写:FPGA),通用阵列逻辑(英文:generic array logic,缩写:GAL)或其任意组合。存储器903可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器903也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid-state drive,缩写:SSD);存储器903还可以包括上述种类的存储器的组合。
本申请实施例中还可以包括总线系统904,总线系统904可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器902和存储器903代表的存储器的各种电路链接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,本申请不再对其进行进一步描述。收发机905提供用于在传输介质上与各种其他设备通信的单元。处理器902负责管理总线架构和通常的处理,存储器903可以存储处理器902在执行操作时所使用的数据。
基于相同构思,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与终端相关的方法步骤。
基于相同构思,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与基站相关的方法步骤。
基于相同构思,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与终端相关的方法步骤。
基于相同构思,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与基站相关的方法步骤。
本所属领域的技术人员可以清楚地了解到,本发明提供的各实施例的描述可以相互参照,为描述的方便和简洁,关于本发明实施例提供的各装置、设备的功能以及执行的步骤可以参照本发明方法实施例的相关描述,在此不做赘述。
基于相同构思,本申请还提供了一种通信系统中资源分配的方法,该方法包括:终端获取指示信息,该指示信息用于指示资源块组的大小,该终端根据该指示信息确定该资源块组的大小。
在一种可能的设计中,该终端根据该指示信息和该终端所在的子带标识和/或频带标识确定该资源块组的大小。
在一种可能的设计中,基站还可以根据该终端所在的子带标识和/或频带标识确定该指示信息,并将该指示信息发送给该终端。
作为另一种可实现方法,可选的,终端根据所在的子带标识和/或频带标识以及预设关系确定资源块组的大小,该预设关系为该终端所在的子带标识和/或频带标识和资源块组的大小的对应关系。通过上述方法实现了资源块组的大小灵活配置,可以适应未来移动通信系统中不同业务的需求。
上述资源块组的大小的第一资源块组的大小,该第一资源块组包括至少一个连续的资源块。进一步的,通信系统中还包括第二资源块组,该第二资源块组包括至少一个连续的资源块,该第一资源块组的大小为该第二资源块组的大小的N倍,N为大于或等于1的整数。
对于资源分配类型1或2,基站通过DCI向终端指示资源分配信息,其资源分配的粒度为该第二资源块组。终端根据该DCI以及该第二资源块组的大小等确定调度该终端的资源分配参数,以第二资源块组为资源分配粒度的资源分配方式,可以保证调度该终端时的资源连续性。
基于相同构思,本申请还提供了一种终端,用于执行上述通信系统中资源分配方法中与终端相关的方法步骤。基于相同构思,本申请还提供了一种基站,用于执行上述通信系统中资源分配方法中与基站相关的方法步骤。
上述通信系统中资源分配的方法的具体内容可以参照本申请所涉及的各种实施例中的内容,此处不再累述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。为清楚展示硬件和软件的可替换性(interchangeability),上述的各种说明性部件(illustrative components)和步骤已经通用地描述了它们的功能。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑块,模块和电路可以通过通用处理单元,数字信号处理单元,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理单元可以为微处理单元,可选地,该通用处理单元也可以为任何传统的处理单元、控制器、微控制器或状态机。处理单元也可以通过计算装置的组合来实现,例如数字信号处理单元和微处理单元,多个微处理单元,一个或多个微处理单元联合一个数字信号处理单元核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理单元执行的软件模块、或者这两者的结合。软件模块可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理单元连接,以使得处理单元可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理单 元中。处理单元和存储媒介可以配置于ASIC中,ASIC可以配置于用户终端中。可选地,处理单元和存储媒介也可以配置于用户终端中的不同的部件中。
在一个或多个示例性的设计中,本申请实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理单元读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本申请说明书的上述描述可以使得本领域技术任何可以利用或实现本申请的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本申请所描述的基本原则可以应用到其它变形中而不偏离本申请的发明本质和范围。因此,本申请所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本申请原则和所公开的新特征一致的最大范围。

Claims (48)

  1. 一种通信系统中资源分配的方法,其特征在于,所述方法包括:
    终端根据配置信息,确定第一频域资源单元大小;所述配置信息包括预定义的第一配置信息;或者,所述配置信息包括所述基站向所述终端发送的第二配置信息;或者,所述配置信息包括所述第一配置信息和所述第二配置信息;
    所述终端根据所述第一频域资源单元大小,确定资源分配相关参数。
  2. 如权利要求1所述的方法,其特征在于,所述第一频域资源单元为一个或多个连续的虚拟资源块的集合。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一配置信息包括子带标识、频带标识中的至少一个与所述第一频域资源单元大小的对应关系。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述终端根据所述第一频域资源单元大小确定资源分配相关参数,包括:
    所述终端根据所述第一频域资源单元大小,确定资源分配所需的比特数。
  5. 如权利要求1至3中任一项所述的方法,其特征在于,还包括:
    所述终端根据第二频域单元大小确定所述资源分配相关参数;或者,
    所述终端根据第一频域单元大小和所述第二频域资源单元大小,确定所述资源分配相关参数。
  6. 如权利要求5所述的方法,其特征在于,所述第二频域资源单元为一个或多个连续的物理资源块的集合。
  7. 如权利要求5或6所述的方法,其特征在于,还包括:
    所述终端接收基站发送第一参考信号,所述第一参考信号承载于至少一个所述第二频域资源单元;和/或
    所述终端向所述基站发送第二参考信号,所述第二参考信号承载于至少一个所述第二频域资源单元。
  8. 如权利要求5至7中任一项所述的方法,其特征在于,所述第一频域资源单元大小为所述第二频域资源单元大小的N倍,N为大于或等于1的整数。
  9. 如权利要求5至8中任一项所述的方法,其特征在于,所述资源分配相关参数包括资源分配所需的比特数、资源分配的资源指示值、资源分配的资源映射方式中的至少一个。
  10. 一种通信系统中资源分配的方法,其特征在于,所述方法包括:
    基站向终端发送第二配置信息,所述第二配置信息用于向所述终端指示第一频域资源单元大小;其中,所述第一频域资源单元大小用于确定资源分配相关参数。
  11. 如权利要求10所述的方法,其特征在于,所述第一频域资源单元为一个或多个连续的虚拟资源块的集合。
  12. 如权利要求10或11所述的方法,其特征在于,还包括:
    所述基站向所述终端发送第一参考信号,所述第一参考信号承载于至少一个所述第二频域资源单元;或者,
    所述基站接收所述终端发送的第二参考信号,所述第二参考信号承载于至少一个所述第二频域资源单元。
  13. 如权利要求10至12中任一项所述的方法,其特征在于,所述第一频域资源单元 大小为第二频域资源单元大小的N倍,N为大于或等于1的整数。
  14. 如权利要求13所述的方法,其特征在于,所述第二频域资源单元为一个或多个连续的物理资源块的集合。
  15. 一种终端,其特征在于,包括:
    处理器,用于根据配置信息,确定第一频域资源单元大小;所述配置信息包括预定义的第一配置信息;或者,所述配置信息包括所述基站向所述终端发送的第二配置信息;或者,所述配置信息包括所述第一配置信息和所述第二配置信息;
    根据所述第一频域资源单元大小,确定资源分配相关参数。
  16. 如权利要求15所述的终端,其特征在于,所述第一频域资源单元为一个或多个连续的虚拟资源块的集合。
  17. 如权利要求15或16所述的终端,其特征在于,所述第一配置信息包括子带标识、频带标识中的至少一个与所述第一频域资源单元大小的对应关系。
  18. 如权利要求15至17中任一项所述的终端,其特征在于,所述处理器用于:
    根据所述第一频域资源单元大小,确定资源分配所需的比特数。
  19. 如权利要求15至17中任一项所述的终端,其特征在于,所述处理器还用于:
    根据第二频域单元大小确定所述资源分配相关参数;或者,
    根据所述第一频域单元大小和所述第二频域资源单元大小,确定所述资源分配相关参数。
  20. 如权利要求19所述的终端,其特征在于,所述第二频域资源单元为一个或多个连续的物理资源块的集合。
  21. 如权利要求19或20所述的终端,其特征在于,还包括收发机:
    所述收发机,用于接收所述基站发送第一参考信号,所述第一参考信号承载于至少一个所述第二频域资源单元;和/或
    所述收发机,还用于向所述基站发送第二参考信号,所述第二参考信号承载于至少一个所述第二频域资源单元。
  22. 如权利要求19至21中任一项所述的终端,其特征在于,所述第一频域资源单元大小为所述第二频域资源单元大小的N倍,N为大于或等于1的整数。
  23. 如权利要求19至22中任一项所述的终端,其特征在于,所述资源分配相关参数包括资源分配所需的比特数、资源分配的资源指示值、资源分配的资源映射方式中的至少一个。
  24. 一种基站,其特征在于,包括收发机;
    所述收发机,用于基站向终端发送第二配置信息,所述第二配置信息用于向所述终端指示第一频域资源单元大小;其中,所述第一频域资源单元大小用于确定资源分配相关参数。
  25. 如权利要求24所述的基站,其特征在于,所述第一频域资源单元为一个或多个连续的虚拟资源块的集合。
  26. 如权利要求24或25所述的基站,其特征在于,
    所述收发机,还用于向所述终端发送第一参考信号,所述第一参考信号承载于至少一个所述第二频域资源单元;和/或
    所述收发机,还用于接收所述终端发送的第二参考信号,所述第二参考信号承载于至 少一个所述第二频域资源单元。
  27. 如权利要求24至26中任一项所述的基站,其特征在于,所述第一频域资源单元大小为所述第二频域资源单元大小的N倍,N为大于或等于1的整数。
  28. 如权利要求27所述的基站,其特征在于,所述第二频域资源单元为一个或多个连续的物理资源块的集合。
  29. 一种通信系统中资源分配的方法,其特征在于,包括:
    接收资源分配指示信息,所述资源分配指示信息用于确定分配的资源对应的子带或频带;
    根据第一配置信息,确定所述子带或频带对应的第一频域资源单元大小集合,所述第一配置信息包括子带或频带与第一频域资源单元大小集合的对应关系;
    接收第二配置信息;
    根据所述第二配置信息和所述第一频域资源单元大小集合,确定第一频域资源单元大小。
  30. 如权利要求29所述的方法,其特征在于,所述方法还包括:
    根据所述第一频域资源单元大小,确定资源分配相关参数。
  31. 如权利要求30述的方法,其特征在于,所述资源分配相关参数包括资源分配所需的比特数。
  32. 如权利要求29至31所述的方法,其特征在于,还包括:预定义所述第一配置信息。
  33. 一种通信系统中资源分配的方法,其特征在于,包括:
    发送资源分配指示信息,所述资源分配指示信息用于确定分配的资源对应的子带或频带;
    根据第一配置信息确定所述子带或频带对应的第一频域资源单元大小集合,所述第一配置信息包括子带或频带与第一频域资源单元大小集合的对应关系;
    发送第二配置信息,所述第二配置信息结合所述第一频域资源单元大小集合用于确定第一频域资源单元大小。
  34. 如权利要求33所述的方法,其特征在于,所述方法还包括:
    根据所述第一频域资源单元大小,确定资源分配相关参数。
  35. 如权利要求34述的方法,其特征在于,所述资源分配相关参数包括资源分配所需的比特数。
  36. 如权利要求33至35所述的方法,其特征在于,还包括:预定义所述第一配置信息。
  37. 一种通信装置,其特征在于,包括:
    用于接收资源分配指示信息的模块,所述资源分配指示信息用于确定分配的资源对应的子带或频带;
    用于根据第一配置信息确定所述子带或频带对应的第一频域资源单元大小集合的模块,所述第一配置信息包括子带或频带与第一频域资源单元大小集合的对应关系;
    用于接收第二配置信息的模块;
    用于根据所述第二配置信息和所述第一频域资源单元大小集合确定第一频域资源单元大小的模块。
  38. 如权利要求37所述的装置,其特征在于,所述装置还包括:
    用于根据所述第一频域资源单元大小确定资源分配相关参数的模块。
  39. 如权利要求38述的装置,其特征在于,所述资源分配相关参数包括资源分配所需的比特数。
  40. 如权利要求37至39所述的装置,其特征在于,还包括:用于预定义所述第一配置信息的模块。
  41. 一种通信装置,其特征在于,包括:
    用于发送资源分配指示信息的模块,所述资源分配指示信息用于确定分配的资源对应的子带或频带;
    用于根据第一配置信息,确定所述子带或频带对应的第一频域资源单元大小集合的模块,所述第一配置信息包括子带或频带与第一频域资源单元大小集合的对应关系;
    用于发送第二配置信息的模块,所述第二配置信息结合所述第一频域资源单元大小集合用于确定第一频域资源单元大小。
  42. 如权利要求41所述的装置,其特征在于,所述装置还包括:
    用于根据所述第一频域资源单元大小确定资源分配相关参数的模块。
  43. 如权利要求42所述的装置,其特征在于,所述资源分配相关参数包括资源分配所需的比特数。
  44. 如权利要求41至43所述的装置,其特征在于,还包括:用于预定义所述第一配置信息的模块。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述权利要求1至9或29至32中任一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述权利要求10至14或33至36中任一项所述的方法。
  47. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行上述权利要求1至9或29至32中任一项所述的方法。
  48. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行上述权利要求10至14或33至36中任一项所述的方法。
PCT/CN2018/074204 2017-01-25 2018-01-25 一种通信系统中资源分配的方法及设备 WO2018137690A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18744461.7A EP3567954B1 (en) 2017-01-25 2018-01-25 Method and device for resource allocation in communication system
US16/521,811 US11064498B2 (en) 2017-01-25 2019-07-25 Resource allocation method and device in communications system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710061297.6A CN108347776B (zh) 2017-01-25 2017-01-25 一种通信系统中资源分配的方法及设备
CN201710061297.6 2017-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/521,811 Continuation US11064498B2 (en) 2017-01-25 2019-07-25 Resource allocation method and device in communications system

Publications (1)

Publication Number Publication Date
WO2018137690A1 true WO2018137690A1 (zh) 2018-08-02

Family

ID=62963331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074204 WO2018137690A1 (zh) 2017-01-25 2018-01-25 一种通信系统中资源分配的方法及设备

Country Status (4)

Country Link
US (1) US11064498B2 (zh)
EP (1) EP3567954B1 (zh)
CN (1) CN108347776B (zh)
WO (1) WO2018137690A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10742386B2 (en) 2017-06-16 2020-08-11 Huawei Technologies Co., Ltd. Method and apparatus for determining resource block group size
CN113163491A (zh) * 2020-01-23 2021-07-23 维沃移动通信有限公司 频域资源处理方法、频域资源配置方法及相关设备

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018132944A1 (zh) * 2017-01-17 2018-07-26 广东欧珀移动通信有限公司 信号传输方法和设备
SG11201911691UA (en) * 2017-06-08 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Data transmission method, terminal device and network device
WO2018229954A1 (ja) * 2017-06-15 2018-12-20 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN111247849B (zh) * 2017-11-17 2023-05-12 松下电器(美国)知识产权公司 基站、用户设备和无线通信方法
CN112888073B (zh) * 2017-11-17 2022-12-16 维沃移动通信有限公司 资源映射方法、确定方法、网络侧设备及用户终端
US11050598B2 (en) * 2017-11-28 2021-06-29 Qualcomm Incorporated Carrier information signaling in a 5G network
CN110351849B (zh) * 2018-04-04 2023-07-04 大唐移动通信设备有限公司 资源分配方法及装置、基站和终端
CN110831162B (zh) * 2018-08-07 2022-04-22 华为技术有限公司 参考信号传输方法及设备
CN110831022B (zh) * 2018-08-09 2023-05-26 北京三星通信技术研究有限公司 物理资源处理方法及用户设备
CN109165045A (zh) * 2018-08-09 2019-01-08 网宿科技股份有限公司 一种调整服务器的硬件配置的方法和装置
CN110831182B (zh) * 2018-08-10 2023-09-26 华为技术有限公司 一种资源分配方法、相关设备及装置
WO2020034226A1 (zh) * 2018-08-17 2020-02-20 华为技术有限公司 一种下行控制信息传输方法及装置
CN109597834B (zh) * 2018-10-22 2024-05-07 平安科技(深圳)有限公司 基于redis的海量数据存储方法、装置、介质和设备
CN109614223B (zh) * 2018-11-01 2023-06-09 新华三技术有限公司成都分公司 硬件资源调度方法、装置及硬件资源调度设备
BR112020026981A2 (pt) * 2018-11-01 2021-05-18 Panasonic Intellectual Property Corporation Of America estação móvel, estação base, método de transmissão e método de recepção.
CN113016146B (zh) 2018-11-15 2024-03-26 上海诺基亚贝尔股份有限公司 用于mu-mimo的功率分配的方法、装置和计算机可读介质
CN111510189B (zh) * 2019-01-30 2021-09-14 华为技术有限公司 信息反馈方法及装置
CN111526589B (zh) * 2019-02-02 2022-05-24 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN111565458B (zh) * 2019-02-14 2022-11-08 大唐移动通信设备有限公司 一种下行传输方法及其装置
CN109769306A (zh) * 2019-03-20 2019-05-17 北京智芯微电子科技有限公司 适用于电力无线专网的共享信道资源调度分配方法及系统
CN111867095B (zh) * 2019-04-30 2024-04-16 华为技术有限公司 一种通信方法与终端装置
CN113841449B (zh) * 2019-05-14 2024-06-18 三星电子株式会社 用于超可靠低时延通信上行链路的资源选择
CN112399590B (zh) * 2019-08-16 2023-11-10 华为技术有限公司 频域资源分配方法及装置
CN112996112B (zh) * 2019-12-12 2023-01-20 大唐移动通信设备有限公司 一种频域资源分配方法、装置、电子设备及存储介质
CN115380594A (zh) * 2020-04-10 2022-11-22 Oppo广东移动通信有限公司 资源配置方法、装置、设备及存储介质
CN118175559A (zh) * 2020-08-27 2024-06-11 上海朗帛通信技术有限公司 一种用于无线通信的节点中的方法和装置
CN114501353B (zh) * 2020-10-23 2024-01-05 维沃移动通信有限公司 通信信息的发送、接收方法及通信设备
CN116249118A (zh) * 2021-12-07 2023-06-09 华为技术有限公司 资源分配方法、装置和通信设备
CN114828189B (zh) * 2022-04-18 2023-05-26 超讯通信股份有限公司 5g小基站服务距离调整方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374018A (zh) * 2007-08-23 2009-02-25 中兴通讯股份有限公司 Ofdm系统的物理资源块自适应分配方法
CN105636211A (zh) * 2015-06-30 2016-06-01 宇龙计算机通信科技(深圳)有限公司 资源分配的指示方法及指示装置、基站和终端
CN105979597A (zh) * 2016-06-27 2016-09-28 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950703B2 (ja) * 1992-04-30 1999-09-20 シャープ株式会社 高速フーリエ変換用ディジット反転のためのアドレス発生器及び反転フィールドシーケンス発生器並びにディジット反転シーケンス信号発生方法
CN101778394B (zh) * 2009-01-12 2013-04-24 电信科学技术研究院 一种实现资源映射的方法和装置
WO2011055957A2 (en) 2009-11-05 2011-05-12 Lg Electronics Inc. Method and apparatus of downlink subchannelization in wireless communication system
WO2011152663A2 (ko) * 2010-06-01 2011-12-08 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 방법 및 장치
US9130708B2 (en) * 2010-06-18 2015-09-08 Qualcomm Incorporated Method and apparatus for bundling resource blocks in wireless communication
RU2529880C1 (ru) * 2010-09-14 2014-10-10 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и устройство для распределения ресурсов восходящей линии связи
JP5862778B2 (ja) * 2011-08-16 2016-02-16 富士通株式会社 リソース割り当て方法、基地局及び端末装置
CN103298117B (zh) * 2012-02-29 2016-03-23 电信科学技术研究院 一种时频资源的指示及确认方法和装置
US10367551B2 (en) * 2015-01-29 2019-07-30 Intel Corporation Precoding resource block group bundling enhancement for full dimension multi-in-multi-output
WO2018086063A1 (zh) * 2016-11-11 2018-05-17 北京小米移动软件有限公司 配置工作带宽的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101374018A (zh) * 2007-08-23 2009-02-25 中兴通讯股份有限公司 Ofdm系统的物理资源块自适应分配方法
CN105636211A (zh) * 2015-06-30 2016-06-01 宇龙计算机通信科技(深圳)有限公司 资源分配的指示方法及指示装置、基站和终端
CN105979597A (zh) * 2016-06-27 2016-09-28 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10742386B2 (en) 2017-06-16 2020-08-11 Huawei Technologies Co., Ltd. Method and apparatus for determining resource block group size
US11329792B2 (en) 2017-06-16 2022-05-10 Huawei Technologies Co., Ltd. Method and apparatus for determining resource block group size
US11582013B2 (en) 2017-06-16 2023-02-14 Huawei Technologies Co., Ltd. Method and apparatus for determining resource block group size
CN113163491A (zh) * 2020-01-23 2021-07-23 维沃移动通信有限公司 频域资源处理方法、频域资源配置方法及相关设备
CN113163491B (zh) * 2020-01-23 2023-03-24 维沃移动通信有限公司 频域资源处理方法、频域资源配置方法及相关设备

Also Published As

Publication number Publication date
EP3567954A4 (en) 2020-01-29
CN108347776A (zh) 2018-07-31
US11064498B2 (en) 2021-07-13
US20190349943A1 (en) 2019-11-14
EP3567954A1 (en) 2019-11-13
EP3567954B1 (en) 2023-11-22
CN108347776B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
WO2018137690A1 (zh) 一种通信系统中资源分配的方法及设备
JP7449974B2 (ja) ダウンリンク制御情報伝送方法
JP6630838B2 (ja) ダウンリンク制御情報の伝送方法及び装置
US11395291B2 (en) Allocating transmission resources in communication networks that provide low latency services
CN108141326B (zh) 基于qos参数的多载波模式的动态选择
US11363499B2 (en) Resource configuration method, apparatus, and system
WO2022022579A1 (zh) 一种通信方法及装置
CN110932827B (zh) 一种侧行信息的传输方法、通信设备和网络设备
WO2018126854A1 (zh) 一种上行传输方法、终端、网络侧设备
WO2021017995A1 (zh) 控制信息传输方法及装置
WO2019029731A1 (zh) 一种资源配置方法及设备
WO2020029228A1 (zh) 解调参考信号的资源分配方法和基站
US11258571B2 (en) Downlink control information transmission method, apparatus, and system
WO2017031643A1 (zh) 资源分配、指示及识别资源类型、接收数据的方法及装置
WO2019041671A1 (zh) 下行控制信道配置方法、装置和存储介质
WO2017133444A1 (zh) 一种上下行传输资源分配方法及装置
US11026228B2 (en) Slot type indication method and apparatus, and slot type determining method and apparatus
WO2019062789A1 (zh) 一种时域信息的确定方法及装置
WO2017028071A1 (zh) 下行控制信息的接收、发送方法及装置
JP6752967B2 (ja) ワイヤレス通信方法およびデバイス
KR20190086319A (ko) 무선 통신 시스템에서 자원 할당을 위한 방법 및 장치
CN108282884B (zh) 一种时隙类型指示方法及装置
CN107155219B (zh) 一种降低网络延时的无线通信方法和装置
WO2019113734A1 (zh) 一种资源指示方法及装置、计算机存储介质
KR20240066038A (ko) 향상된 듀플렉스를 갖는 통신 네트워크 및 방법들

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744461

Country of ref document: EP

Effective date: 20190805