WO2021017995A1 - 控制信息传输方法及装置 - Google Patents

控制信息传输方法及装置 Download PDF

Info

Publication number
WO2021017995A1
WO2021017995A1 PCT/CN2020/103749 CN2020103749W WO2021017995A1 WO 2021017995 A1 WO2021017995 A1 WO 2021017995A1 CN 2020103749 W CN2020103749 W CN 2020103749W WO 2021017995 A1 WO2021017995 A1 WO 2021017995A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
resource
cce
resources
scs
Prior art date
Application number
PCT/CN2020/103749
Other languages
English (en)
French (fr)
Inventor
刘哲
董朋朋
彭金磷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021017995A1 publication Critical patent/WO2021017995A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular to a method and device for transmission of control information.
  • new air interface new radio, NR
  • 5G fifth-generation mobile communication
  • LTE long term evolution
  • the carrier in the NR system and the carrier in the LTE system can be deployed on the same frequency domain resources.
  • the LTE system can support subcarrier spacing (SCS) of 15 kilohertz (kHz).
  • SCS subcarrier spacing
  • the NR system can support multiple types of subcarrier spacing, such as 15kHz, 30kHz, 60kHz, 120kHz, etc. If the SCS used by the LTE system is inconsistent with the SCS used by the NR system on the shared spectrum resources, it will cause mutual interference between the LTE system and the NR system.
  • the embodiments of the present application provide a control information transmission method and device, which can reduce transmission interference between the two communication systems when two communication systems share spectrum resources but use different SCSs.
  • the first aspect of the embodiments of the present application provides a control information transmission method, which may be executed by a terminal or a component of the terminal (for example, a processor, a chip, or a chip system, etc.), including:
  • CCE control channel element
  • the foregoing first CCE and the foregoing one or more second CCEs are included in a control resource set (control resource set, CORESET), the CORESET includes N CCEs, and N is an integer greater than 1, and the numbers of the N CCEs satisfy The numbering rule in the time domain first and then the frequency domain.
  • receiving control information on the above-mentioned first CCE and receiving the control information on the above-mentioned one or more second CCEs can realize repeated transmission of control information in the time domain, thereby reducing shared spectrum resources but using different For transmission interference between the two communication systems of SCS, the CCE number meeting the numbering rule in the time domain and then the frequency domain is the basis for realizing repeated transmission in the time domain to reduce interference.
  • the CORESET includes M resource element groups (REG), the numbering of the M REGs meets the numbering rule of the frequency domain first and then the time domain, and M is an integer greater than 1.
  • REG resource element groups
  • M is an integer greater than 1.
  • the control information is divided by the rate matching resource from the CORESET resource
  • Other resource bearers that is, resources other than the rate matching resource in the CORESET resource can bear control information. This allows more resources that can carry control information and less resources occupied by rate matching resources.
  • the first configuration information is received, and the rate matching resource is determined according to the first configuration information, and the subcarrier interval SCS corresponding to the rate matching resource is different from the SCS corresponding to the resource indicated by the first configuration information.
  • the SCS corresponding to the rate matching resource is the first SCS
  • the SCS corresponding to the resource indicated by the first configuration information is the second SCS
  • the first SCS is 2 n times the second SCS
  • n is a positive integer.
  • the first configuration information is used to indicate the resource of the reference signal corresponding to the second SCS. According to the resource of the reference signal corresponding to the second SCS and the relationship between the first SCS and the second SCS, the rate matching resource can be determined.
  • the matching resource is the rate matching resource on the bandwidth part (BWP) of the first SCS, and the resource of the reference signal corresponding to the second SCS is the rate matching resource of the second SCS.
  • the capability information is sent, and the capability information indicates the parsing time required to parse the control information, the parsing time is less than or equal to a first threshold, and the first threshold is the start of parsing the control information and sending The minimum time interval between upstream data.
  • Send the capability information so that the network device can flexibly configure the search space location for the terminal according to the capability information.
  • the second configuration information is received, and the second configuration information configures the start time domain position of receiving the control information, the start time domain position of the control information, the time domain length of CORESET and the resolution
  • the sum of time is less than a second threshold, and the second threshold is the length of the time domain of the time unit, and the time unit is a time slot, mini-slot, sub-frame, half-frame, or frame.
  • the CORESET resource that is, the control information resource
  • the CORESET resource can be determined according to the CORESET configuration information and the second configuration information.
  • control information When the control information is received in the control information resource, the control information is received on the first CCE, and the control information is received on the one or more second CCEs.
  • the numbering rule of CCEs is first time domain and then frequency domain. It can avoid transmission interference and make the capacity of control information large enough to schedule more terminals to transmit downlink data.
  • a second aspect of the embodiments of the present application provides a communication device.
  • the communication device may be a terminal, a device in the terminal, or a device that can be matched and used with the terminal.
  • the device may include a module corresponding to the method/operation/step/action described in the first aspect.
  • the module may be a hardware circuit, software, or a combination of hardware circuit and software.
  • the device may include a transceiver module. Exemplary,
  • the transceiver module is configured to receive control information on the first control channel unit CCE; receive the control information on one or more second CCEs;
  • the CORESET includes N CCEs, where N is an integer greater than 1, and the number of the N CCEs satisfies the first time domain and then the frequency domain. The number sequence.
  • the CORESET includes M resource unit groups REG, and the numbering of the M REGs meets the numbering rule of the frequency domain first and then the time domain, and M is an integer greater than 1.
  • REG numbering rules and CCE numbering rules is the basis for realizing repeated transmission in the time domain to avoid interference.
  • the device further includes a processing module configured to determine that when the resource of any one of the first CCE and the one or more second CCEs coincides with the rate matching resource, the control The information is carried by resources other than the rate matching resource in the CORESET resource, that is, the resources other than the rate matching resource in the CORESET resource can carry control information. This allows more resources that can carry control information and less resources occupied by rate matching resources.
  • the transceiver module is further used to receive the first configuration information; the processing module is further used to determine the rate matching resource according to the first configuration information, and the subcarrier interval SCS corresponding to the rate matching resource is compared with the The SCS corresponding to the resource indicated by the first configuration information is different.
  • the SCS corresponding to the rate matching resource is the first SCS
  • the SCS corresponding to the resource indicated by the first configuration information is the second SCS
  • the first SCS is 2 n times the second SCS
  • n is a positive integer.
  • the first configuration information is used to indicate the resource of the reference signal corresponding to the second SCS, and the processing module can determine the rate matching resource according to the resource of the reference signal corresponding to the second SCS and the relationship between the first SCS and the second SCS,
  • the rate matching resource is the rate matching resource on the BWP of the first SCS, and the reference signal resource corresponding to the second SCS is the rate matching resource of the second SCS.
  • the processing module determines the rate matching resource so that when the resources of any one of the above-mentioned first CCE and the above-mentioned one or more second CCEs coincide with the rate matching resource, it can determine which resources carry control information and which resources are not. Carry control information.
  • the transceiver module is also used to send capability information
  • the capability information indicates the resolution time required to resolve the control information
  • the resolution time is less than or equal to a first threshold
  • the first threshold is to start the analysis The minimum time interval between the control information and sending uplink data. Send the capability information so that the network device can flexibly configure the search space location for the terminal according to the capability information.
  • the transceiver module is also used to receive second configuration information that configures the start time domain position of receiving the control information, the start time domain position of the control information, and the CORESET
  • the sum of the time domain length and the analysis time is less than a second threshold, and the second threshold is the time domain length of a time unit, and the time unit is a time slot, mini-slot, sub-frame, half-frame, or frame.
  • the processing module is further configured to determine the resource of CORESET, that is, the resource of control information, according to the CORESET configuration information and the second configuration information.
  • control information When the control information is received in the control information resource, the control information is received on the first CCE, and the control information is received on the one or more second CCEs.
  • the numbering rule of CCEs is first time domain and then frequency domain. It can avoid transmission interference and make the capacity of control information large enough to schedule more terminals to transmit downlink data.
  • a third aspect of the embodiments of the present application provides a communication device, which includes a processor, configured to implement the method described in the first aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the device can implement the method described in the first aspect.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module or other type of communication interface, and the other device may be a network device. Wait.
  • the device includes:
  • Memory used to store program instructions
  • a processor configured to control the communication interface to receive control information on the first control channel unit CCE; receive the control information on one or more second CCEs;
  • the CORESET includes N CCEs, where N is an integer greater than 1, and the number of the N CCEs satisfies the first time domain and then the frequency domain. The number sequence.
  • the CORESET includes M resource unit groups REG, and the numbering of the M REGs meets the numbering rule of the frequency domain first and then the time domain, and M is an integer greater than 1.
  • REG numbering rules and CCE numbering rules is the basis for realizing repeated transmission in the time domain to avoid interference.
  • the processor is further configured to determine that when the resource of any one of the first CCE and the one or more second CCEs coincides with the rate matching resource, the control information is determined by the resource of the CORESET.
  • the resources other than the rate matching resource in the resource bearer, that is, the resources other than the rate matching resource in the CORESET resource can carry control information. This allows more resources that can carry control information and less resources occupied by rate matching resources.
  • the processor is further configured to control the communication interface to receive the first configuration information, and determine the rate matching resource according to the first configuration information, and the subcarrier interval SCS corresponding to the rate matching resource and the first configuration
  • the SCS corresponding to the resource indicated by the information is different. Assume that the SCS corresponding to the rate matching resource is the first SCS, the SCS corresponding to the resource indicated by the first configuration information is the second SCS, the first SCS is 2 n times the second SCS, and n is a positive integer.
  • the first configuration information is used to indicate the resource of the reference signal corresponding to the second SCS
  • the processor may specifically determine the rate matching according to the resource of the reference signal corresponding to the second SCS and the relationship between the first SCS and the second SCS Resource, the rate matching resource is the rate matching resource on the BWP of the first SCS, and the resource of the reference signal corresponding to the second SCS is the rate matching resource of the second SCS.
  • the processor determines the rate matching resource, so that when the resources of any one of the above-mentioned first CCE and the above-mentioned one or more second CCEs coincide with the rate matching resource, it can determine which resources carry control information and which resources are not. Carry control information.
  • the processor is further configured to control the communication interface to send capability information, the capability information indicates the resolution time required to resolve the control information, the resolution time is less than or equal to a first threshold, and the first threshold To start analyzing the minimum time interval between the control information and sending uplink data. Send the capability information so that the network device can flexibly configure the search space location for the terminal according to the capability information.
  • the processor is further configured to control the communication interface to receive second configuration information, and the second configuration information configures the start time domain position of receiving the control information, and the start time domain position of the control information ,
  • the sum of the time domain length of CORESET and the analysis time is less than a second threshold, and the second threshold is the time domain length of a time unit, which is a time slot, mini-slot, sub-frame, half-frame, or frame.
  • the processor is further configured to determine the resource of CORESET, that is, the resource of control information, according to the CORESET configuration information and the second configuration information.
  • control information When the control information is received in the control information resource, the control information is received on the first CCE, and the control information is received on the one or more second CCEs.
  • the numbering rule of CCEs is first time domain and then frequency domain. It can avoid transmission interference and make the capacity of control information large enough to schedule more terminals to transmit downlink data.
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method provided in the first aspect.
  • a fifth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory, configured to implement the method provided in the first aspect.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • the sixth aspect of the embodiments of the present application provides a control information transmission method, which may be executed by a network device or a component of the network device (for example, a processor, a chip, or a chip system), including:
  • the CORESET includes N CCEs, where N is an integer greater than 1, and the number of the N CCEs satisfies the first time domain and then the frequency domain. The number sequence.
  • control information is sent on the above-mentioned first CCE, and the control information is sent on the above-mentioned one or more second CCEs to realize repeated transmission of control information in the time domain, thereby reducing shared spectrum resources but different usage.
  • the CCE number meeting the numbering rule in the time domain and then the frequency domain is the basis for realizing repeated transmission in the time domain to avoid interference.
  • the CORESET includes M resource unit groups REG, and the numbering of the M REGs meets the numbering rule of the frequency domain first and then the time domain, and M is an integer greater than 1.
  • REG numbering rules and CCE numbering rules is the basis for realizing repeated transmission in the time domain to avoid interference.
  • the control information is divided by the rate matching resource from the CORESET resource
  • Other resource bearers that is, resources other than the rate matching resource in the CORESET resource can bear control information. This allows more resources that can carry control information and less resources occupied by rate matching resources.
  • first configuration information is sent, and the first configuration information is used to determine a rate matching resource, and the subcarrier interval SCS corresponding to the rate matching resource is different from the SCS corresponding to the resource indicated by the first configuration information .
  • the SCS corresponding to the rate matching resource is the first SCS
  • the SCS corresponding to the resource indicated by the first configuration information is the second SCS
  • the first SCS is 2 n times the second SCS
  • n is a positive integer.
  • capability information is received, and the capability information indicates the resolution time required to resolve the control information.
  • the capability information indicates the resolution time required to resolve the control information.
  • a search space position that can be flexibly configured according to the capability information, that is, the starting time domain position for receiving the control information.
  • the second configuration information is sent, and the second configuration information configures the starting time domain position of the control information, the starting time domain position of the control information, the time domain length of CORESET, and the resolution time
  • the sum is less than the second threshold, and the second threshold is the time domain length of the time unit, and the time unit is a time slot, mini-slot, sub-frame, half-frame, or frame.
  • a seventh aspect of the embodiments of the present application provides a communication device.
  • the communication device may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may include a module corresponding to the method/operation/step/action described in the sixth aspect.
  • the module may be a hardware circuit, software, or hardware circuit combined with software.
  • the device may include a transceiver module. Exemplary,
  • a transceiver module configured to send the control information on one or more second CCEs
  • the CORESET includes N CCEs, where N is an integer greater than 1, and the number of the N CCEs satisfies the first time domain and then the frequency domain. The number sequence.
  • the CORESET includes M resource unit groups REG, and the numbering of the M REGs meets the numbering rule of the frequency domain first and then the time domain, and M is an integer greater than 1.
  • REG numbering rules and CCE numbering rules is the basis for realizing repeated transmission in the time domain to avoid interference.
  • the device further includes a processing module configured to determine that when the resource of any one of the first CCE and the one or more second CCEs coincides with the rate matching resource, the control The information is carried by resources other than the rate matching resource in the CORESET resource, that is, the resources other than the rate matching resource in the CORESET resource can carry control information. This allows more resources that can carry control information and less resources occupied by rate matching resources.
  • the transceiver module is further configured to send first configuration information, where the first configuration information is used to determine a rate matching resource, and the subcarrier interval SCS corresponding to the rate matching resource is indicated by the first configuration information
  • the corresponding SCS of the resource is different. Assume that the SCS corresponding to the rate matching resource is the first SCS, the SCS corresponding to the resource indicated by the first configuration information is the second SCS, the first SCS is 2 n times the second SCS, and n is a positive integer.
  • the transceiver module is also used to receive capability information, where the capability information indicates the resolution time required to resolve the control information.
  • the processing module can flexibly configure the search space position according to the capability information, that is, the starting time domain position for receiving the control information.
  • the transceiver module is also used to send second configuration information that configures the start time domain position of the control information, the start time domain position of the control information, and the time of CORESET
  • the sum of the domain length and the analysis time is less than a second threshold, and the second threshold is the time domain length of a time unit, and the time unit is a time slot, mini-slot, sub-frame, half-frame, or frame.
  • An eighth aspect of the embodiments of the present application provides a communication device, which includes a processor, configured to implement the method described in the sixth aspect.
  • the device may also include a memory for storing instructions and data.
  • the memory is coupled with the processor, and when the processor executes the instructions stored in the memory, the device can implement the method described in the sixth aspect.
  • the device may also include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module or other type of communication interface, and other devices may be terminals, etc. .
  • the device includes:
  • Memory used to store program instructions
  • a processor configured to control the communication interface to send the control information on one or more second CCEs
  • the CORESET includes N CCEs, where N is an integer greater than 1, and the number of the N CCEs satisfies the first time domain and then the frequency domain. The number sequence.
  • the CORESET includes M resource unit groups REG, and the numbering of the M REGs meets the numbering rule of the frequency domain first and then the time domain, and M is an integer greater than 1.
  • REG numbering rules and CCE numbering rules is the basis for realizing repeated transmission in the time domain to avoid interference.
  • the processor is further configured to determine that when the resource of any one of the first CCE and the one or more second CCEs coincides with the rate matching resource, the control information is determined by the resource of the CORESET.
  • the resources other than the rate matching resource in the resource bearer, that is, the resources other than the rate matching resource in the CORESET resource can carry control information. This allows more resources that can carry control information and less resources occupied by rate matching resources.
  • the processor is further configured to control the communication interface to send first configuration information, where the first configuration information is used to determine a rate matching resource, and the subcarrier interval SCS corresponding to the rate matching resource is compared with the first configuration information.
  • the SCS corresponding to the resource indicated by the configuration information is different. Assume that the SCS corresponding to the rate matching resource is the first SCS, the SCS corresponding to the resource indicated by the first configuration information is the second SCS, the first SCS is 2 n times the second SCS, and n is a positive integer.
  • the processor is further configured to control the communication interface to receive capability information, where the capability information indicates the resolution time required to resolve the control information.
  • the processor can flexibly configure the search space position according to the capability information, that is, the starting time domain position for receiving the control information.
  • the processor is further configured to control the communication interface to send second configuration information, where the second configuration information configures the starting time domain position of the control information, the starting time domain position of the control information,
  • the sum of the time domain length of CORESET and the analysis time is less than a second threshold, and the second threshold is the time domain length of a time unit, which is a time slot, mini-slot, sub-frame, half-frame, or frame.
  • the ninth aspect of the embodiments of the present application provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method provided in the sixth aspect.
  • a tenth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for implementing the method provided in the sixth aspect.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • the eleventh aspect of the embodiments of the present application provides a communication system, which includes the terminal provided in the third aspect and the network device provided in the seventh aspect; or the terminal provided in the fourth aspect and the network device provided in the eighth aspect.
  • Fig. 1 is an example diagram of time-frequency resources occupied by reference signals
  • Figure 2 is an example diagram of a cyclic prefix
  • Figure 3 is another example diagram of cyclic prefix
  • Figure 4 is an example diagram of a cyclic suffix
  • Figure 5a is an example diagram of non-interleaved mapping
  • Figure 5b is an example diagram of interleaving mapping
  • Figure 6(A) is an example diagram of a resource grid
  • Figure 6(B) is an example diagram of another resource grid
  • FIG. 7(A) is a schematic diagram of the frequency spectrum corresponding to FIG. 6(A);
  • Fig. 7(B) is a schematic diagram of the frequency spectrum corresponding to Fig. 6(B);
  • Figure 8 is a schematic diagram of a network architecture applying an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a control information transmission method provided by an embodiment of this application.
  • FIG. 10a is an example diagram of non-interlaced mapping provided by an embodiment of this application.
  • FIG. 10b is an example diagram of interleaving mapping provided by an embodiment of this application.
  • FIG. 11 is an example diagram of a cyclic prefix and a cyclic suffix provided by an embodiment of the application.
  • FIG. 12 is an example diagram of repeated transmission control information provided by an embodiment of this application.
  • FIG. 13a is an example diagram of a cyclic prefix provided by an embodiment of this application.
  • FIG. 13b is a diagram of another example of a cyclic prefix provided by an embodiment of this application.
  • FIG. 14 is another example diagram of repeated transmission control information provided by an embodiment of this application.
  • FIG. 15(A) is a schematic diagram of a frequency spectrum provided by an embodiment of this application.
  • FIG. 15(B) is a schematic diagram of another spectrum provided by an embodiment of this application.
  • FIG. 15(C) is another schematic diagram of frequency spectrum provided by an embodiment of this application.
  • FIG. 15(D) is another schematic diagram of frequency spectrum provided by an embodiment of this application.
  • Fig. 16(A) is an example diagram of a resource grid provided by an embodiment of this application.
  • Figure 16(B) is an example diagram of another resource grid provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 19 is a schematic diagram of another structure of a communication device provided by an embodiment of this application.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or plural items (a).
  • at least one of a, b, or c can mean: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • words such as “first” and “second” are used to distinguish technical features that have substantially the same or similar functions and functions. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-fired.
  • Resource grid resource element (resource element, RE), time slot, resource block (resource block, RB)
  • Resource grid used to represent time-frequency resources for data transmission.
  • RE is a resource unit used for data transmission, or a resource unit used for resource mapping of data to be sent.
  • One RE can be used to map a complex symbol, for example, a complex symbol obtained through modulation, or a complex symbol obtained through precoding.
  • one RE corresponds to 1 symbol in the time domain and 1 subcarrier in the frequency domain.
  • Symbols can be orthogonal frequency division multiplexing (OFDM) symbols, discrete fourier transform spreading orthogonal frequency division multiplexing (discrete fourier transform spread spectrum, orthogonal frequency division multiplexing, DFT-S-OFDM) Symbols etc.
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete fourier transform spread spectrum, orthogonal frequency division multiplexing
  • a slot can be defined in the resource grid or the time domain of the time-frequency resource.
  • a slot can include a positive integer number of symbols, for example, 7, 14, 6, or 12 symbols.
  • One subframe may include a positive integer number of time slots. Exemplarily, for a system supporting multiple sub-carrier intervals, when the sub-carrier interval is 15 kilohertz (kHz), one sub-frame includes 1 time slot; when the sub-carrier interval is 30 kHz, one sub-frame includes 2 Time slots; when the subcarrier interval is 60kHz, a subframe includes 4 time slots.
  • kHz kilohertz
  • RBs can be defined in the resource grid.
  • One RB in the frequency domain may include a positive integer number of subcarriers, for example, 6 or 12 subcarriers.
  • the definition of RB can also be extended to the time domain.
  • an RB includes a positive integer number of subcarriers in the frequency domain and a positive integer number of symbols in the time domain.
  • an RB includes 12 subcarriers in the frequency domain and 7 or 14 symbols in the time domain. ⁇ time-frequency resource block.
  • the subcarrier number or subcarrier index may start from “0", and the number or index of the OFDM symbol may also start from “0".
  • the subcarrier number of the RE may be 0-12*K-1, and K is the number of RBs included in the BWP in the frequency domain.
  • the index of the RE includes the subcarrier number and the number of the OFDM symbol.
  • the index of RE can be expressed as (k, l). Among them, k represents the subcarrier number, and l represents the number of the OFDM symbol.
  • each row in the resource grid shown in FIG. 1 represents a subcarrier, each column represents an OFDM symbol, and each square represents an RE.
  • the index of the first RE in the lower left corner of the resource grid shown in FIG. 1 is (0, 0).
  • the communication system can support multiple parameter sets (numerologies).
  • numerology can be defined by one or more of the following parameter information: subcarrier spacing, cyclic prefix (CP), time unit, bandwidth, etc.
  • numerology can be defined by subcarrier spacing and CP.
  • the subcarrier interval is used to describe the bandwidth of the subcarrier or the interval between adjacent subcarriers, and can be an integer greater than "0", such as 15kHz, 30kHz, 60KHz, 120KHz, 240KHz, 480KHz, etc.
  • the interval of different subcarriers can be an integer multiple of 2, and can also be designed to other values.
  • CP information may include CP length and/or CP type.
  • the CP may be a normal CP (normal CP, NCP), or an extended CP (extended CP, ECP).
  • the time unit is used to represent the time unit in the time domain, for example, it can be a sampling point, a symbol, a mini-slot, a time slot, a subframe, or a radio frame, etc.
  • the time unit information may include the type, length, or structure of the time unit.
  • the time unit length may be, for example, the number of symbols included in a time slot, and/or the number of symbols or time slots included in a subframe, and/or the number of subframes or time slots included in a radio frame.
  • the OFDM symbol is the basic unit of time domain resources.
  • the OFDM symbol may include the useful signal and the cyclic prefix, or the OFDM symbol may include the useful signal and the cyclic suffix, or the OFDM symbol may include the useful signal (that is, the cyclic prefix and the cyclic suffix are not included).
  • the useful signal can also be called the time domain signal.
  • the effective length of the OFDM symbol is the length of the useful signal.
  • the length of the OFDM symbol is equal to the sum of the effective length of the OFDM symbol and the length of the cyclic prefix.
  • a slot may include a positive integer number of OFDM symbols. For example, for a normal CP, one slot may include 14 OFDM symbols. For extended CP, 1 slot can contain 12 OFDM symbols.
  • one slot includes 14 OFDM symbols as an example.
  • the 14 OFDM symbols are numbered sequentially from smallest to largest, that is, one slot includes OFDM symbol #0 to OFDM symbol #13.
  • OFDM symbol #X indicates that the number of the OFDM symbol is X.
  • the length of the OFDM symbol is inversely proportional to the subcarrier spacing. In other words, as the subcarrier spacing increases, the length of the OFDM symbol decreases.
  • the length of the time slot is also inversely proportional to the subcarrier spacing. In other words, as the subcarrier spacing increases, the length of the time slot decreases.
  • Table 1 shows the correspondence between the subcarrier spacing and the length of the OFDM symbol and the length of the time slot.
  • the cyclic prefix is to copy the last part of the useful signal in the OFDM symbol to the head of the OFDM symbol. Therefore, the OFDM symbol includes a cyclic prefix and a useful signal, and the cyclic prefix is used to make the transmission of the OFDM symbol resistant to inter-symbol interference (ISI) and inter-channel interference (ICI).
  • ISI inter-symbol interference
  • ICI inter-channel interference
  • the useful signal in the OFDM symbol includes 2048 sampling points, and the cyclic prefix includes the last 144 sampling points of the useful signal (that is, sampling points 1905-2048).
  • the useful signal in the OFDM symbol includes 1024 sampling points, and the cyclic prefix includes the last 72 sampling points of the useful signal (that is, sampling points 953-1024).
  • the length of the cyclic prefix of different OFDM symbols may be the same or different. It can be seen from Table 1 that taking the OFDM symbol of 15kHz SCS as an example, since the absolute time length of a sampling point is 1/(2048*15*1000) second, in order to make the 14 OFDM symbols contained in a slot The absolute time length of is 1ms. For every 7 OFDM symbols in 0.5ms, the length of the cyclic prefix of the first OFDM symbol is 160 samples, and the length of the cyclic prefix of the other 6 OFDM symbols is 144 samples point.
  • the cyclic suffix is to copy the front part of the useful signal in the OFDM symbol to the tail of the OFDM symbol.
  • the OFDM symbol includes a useful signal and a cyclic suffix, and the cyclic suffix is used to make the OFDM symbol resistant to ISI and ICI.
  • the useful signal in the OFDM symbol includes 1024 sampling points, and the cyclic suffix includes the first 72 sampling points of the useful signal (that is, sampling points 1 to 72).
  • the sampling points may all be sampling points based on the 15kHz SCS, that is, the time domain length of the 15kHz signal sampling points or the time interval between adjacent sampling points are all Ts, as follows No longer.
  • the useful signal in the OFDM symbol of the 30kHz SCS also includes 2048 sampling points.
  • the time domain length of the sampling point of the 30kHz signal is actually 1/(2048*30000) second, which is equal to Ts/2. It can be considered that the useful signal of the OFDM symbol of 30kHz SCS includes 1024 sampling points of 15kHz SCS.
  • Reference signal reference signal
  • the reference signal is a known signal used for channel estimation, channel sounding, data demodulation, or channel measurement.
  • the reference signal in the LTE system may include LTE cell-specific reference signal (CRS) and LTE channel state information reference signal (channel state information-reference signal, CSI-RS) Or one or more of LTE demodulation reference signals (demodulation reference signals, DMRS);
  • the reference signals in the NR system may include NR CSI-RS and/or NR DMRS.
  • the reference signal in the embodiment of this application takes LTE CRS as an example.
  • the base station can send CRS to the terminal, and the terminal uses the CRS to perform channel estimation, and demodulate the data channel or control channel sent by the base station to the terminal according to the channel estimation result, thereby obtaining data information or control information sent by the base station for the terminal.
  • the base station may send CRS to the terminal through one or more antenna ports, for example, send CRS to the terminal through one, 2 or 4 antenna ports.
  • FIG. 1 illustrates the example diagram of time-frequency resources occupied by LTE reference signals shown in FIG. 1.
  • This example diagram may represent the time-frequency resources occupied when LTE CRS is transmitted through one antenna port.
  • the black square in FIG. 1 represents LTE Time-frequency resources occupied by CRS.
  • the RE resources actually occupied by the LTE CRS are related to the shift value of the LTE CRS, and the shift of the LTE CRS is the physical cell identity (ID) mod 6 of the LTE carrier.
  • the shift of the LTE CRS represents the shift of the time-frequency resources of the LTE CRS in the frequency domain. For example, when the shift of LTE CRS is "0", the time-frequency resources occupied when LTE CRS is transmitted through one antenna port are shown in Figure 1. For example, the first symbol occupies the first subcarrier and the sixth subcarrier; When shift is "1", the time-frequency resource occupied when LTE CRS is transmitted through one antenna port is shifted by 1 subcarrier based on Figure 1.
  • the first symbol occupies the second and seventh subcarriers
  • the fifth Each symbol occupies the 5th subcarrier and the 11th subcarrier. It can be understood that when the shift of the LTE CRS is "K", K subcarriers are cyclically shifted on the basis of FIG. 1.
  • PDCCH Physical downlink control channel
  • PDCCH transmission takes the form of control channel element (CCE), that is, CCE is the smallest resource unit for PDCCH transmission.
  • CCE control channel element
  • a PDCCH may include one or more CCEs, and the number of CCEs included in a PDCCH is determined by the aggregation level (AL). For details, see Table 2.
  • One CCE can transmit one downlink control information (downlink control information, DCI). If the terminal is far away, the signal is poor and the PDCCH cannot be demodulated. Therefore, it is necessary to increase the aggregation level to improve the receiving performance of the PDCCH, so that the remote terminal can also demodulate the PDCCH smoothly.
  • DCI downlink control information
  • One CCE includes 6 resource element groups (REG), and one REG occupies 1 OFDM symbol in the time domain and 1 RB in the frequency domain.
  • a CCE includes 72 REs, and one RE carries 2 bits (bits). Excluding the PDCCH DMRS occupies 3 REs in one REG, one CCE can carry 108 bits.
  • REGs can be first formed into REG bundles in a time-first manner, and then interwoven or non-interlacedly mapped to control resources with the REG bundle as the granularity.
  • a REG bundle is composed of a group of REGs that are continuous in the time domain and/or frequency domain.
  • the size of a REG bundle is equal to the size of the REG in the frequency domain multiplied by the size of the OFDM symbol in the time domain.
  • the high-level parameter CORESET- REG-bundle-size indication is the high-level parameter CORESET- REG-bundle-size indication.
  • CORESET control resource set
  • a CORESET includes one or more RBs in the frequency domain, which can be expressed as It can be indicated by the frequency domain resources in the high-level parameter control resource set information element (information element, IE).
  • a CORESET includes 1, 2 or 3 OFDM symbols in the time domain, which can be expressed as It can be indicated by the duration in the high-level parameter control resource set IE.
  • the high-level parameter duration 3, that is, the number of CORESET symbols indicated by the duration is 3.
  • the number of REGs included in a CORESET can be expressed as
  • the mapping mode of a CORESET CCE-REG includes interleaved mapping and non-interleaved mapping. Which mapping is actually used can be indicated by the high-level parameter CORESET-CCE-REG-mapping-type. High-level parameters can be configured with multiple CORESETs, and one CORESET corresponds to one CCE-REG mapping method.
  • the size of the REG bundle can be expressed as L, and the i-th REG bundle can be expressed as a REG set
  • the jth CCE is composed of 1 REG bundle set ⁇ f(6j/L),f(6j/L+1),...,f(6j/L+6/L-1) ⁇ , where f(j ) Represents the mapping relationship, which can be implemented by an interleaver.
  • Fig. 5a for an example diagram of non-interleaved mapping.
  • L 2
  • REG bundle includes 2 REGs
  • 1 CCE consists of 6 REGs.
  • the CORESET includes 8 CCEs, numbered 0,1...,7.
  • CCE 0 includes 2 OFDM symbols in the time domain and 3 RBs in the frequency domain, namely REG0 to REG5.
  • the REG numbering rule is the time domain first and then the frequency domain, and the CCE numbering reflects the increase in the frequency domain.
  • n shift is greater than or equal to the physical cell ID; n shift is determined by the high-level parameter CORESET- When the shift-index indicates, the value range is 0 ⁇ 274.
  • C is an integer.
  • FIG. 5b is an example diagram of an interleaving mapping.
  • Table 3 can be obtained.
  • CCE 0 is composed of REG bundle set ⁇ f(0), f(1), f(2) ⁇ , and the values are respectively 0, 8, 16; 1 REG bundle includes two OFDM symbols in the time domain and one RB in the frequency domain, so f(0) is mapped to REG 0 and REG 1, and f(1) is mapped to REG 16 and REG 17, f(2) is mapped to REG 32 and REG 33, then CCE 0 is composed of REG 0, REG 1, REG 16, REG 17, REG 32, and REG 33.
  • CCE 1 is composed of REG 2, REG 3, REG 18, REG 19, REG 34, and REG 35.
  • Slot scheduling refers to the physical downlink shared channel (physical downlink shared channel, PDSCH) scheduled by PDCCH.
  • the starting symbol position can be ⁇ 0,1,2,3 ⁇ , PDCCH It can be located in one or more OFDM symbols among the first 3 OFDM symbols in a slot.
  • This slot scheduling means that the PDCCH and the PDSCH scheduled by the PDCCH are located in the same slot.
  • Cross-slot scheduling means that the PDCCH can schedule PDSCH across slots, the PDCCH and the PDSCH scheduled by the PDCCH are located in different slots, and the slot for transmitting the PDCCH is earlier than the slot for transmitting the PDSCH.
  • Mini-slot scheduling refers to the starting symbol position of PDSCH scheduled by PDCCH can be ⁇ 0,...,12 ⁇ , PDCCH can be located at any symbol in the slot, but PDCCH occupies The symbol of is before the symbol occupied by the PDSCH scheduled by the PDCCH.
  • the PDCCH under this slot scheduling can be located in the first 3 OFDM symbols of a slot, that is, the PDCCH is mapped on the first 3 OFDM symbols of a slot, and the mapped PDCCH can be scheduled PDSCH, the scheduled PDSCH and PDCCH are in the same slot.
  • PDCCHs other than the first 3 OFDM symbols can schedule PDSCH across slots, and the scheduled PDSCH and PDCCH are in different slots, and the PDCCH transmission slot is earlier than the PDSCH transmission slot.
  • the PDCCH located in any OFDM symbol can schedule the PDSCH in a mini-slot.
  • mini-slot includes two or more OFDM symbols, but the number of OFDM symbols included in mini-slot is less than the number of OFDM symbols included in slot, for example, slot includes 14 OFDM symbols, and mini-slot includes 7 OFDM symbols. symbol.
  • PDCCH scheduling PDSCH can also be described as DCI scheduling PDSCH, or control information scheduling PDSCH, etc.
  • resources can be shared between different communication systems.
  • the LTE system and the NR system can share spectrum resources.
  • the NR system in order to support the normal communication of the LTE system, when the NR system uses resources not used by the LTE system, it cannot use specific signals or resources used by specific channels of the LTE system.
  • the NR system cannot use the resources to be mapped to the CRS of LTE and/or PDCCH of LTE in the shared spectrum resource. That is, in shared spectrum resources, NR needs to perform rate matching on the resource to which a specific signal of LTE is to be mapped.
  • the embodiments of this application are described by taking as an example the rate matching of the NR PDCCH on the resource to which the CRS of the LTE is to be mapped.
  • the LTE system supports 15kHz SCS.
  • the NR system can support multiple types of subcarrier spacing, such as 15kHz, 30kHz, 60kHz, 120kHz, etc.
  • subcarrier spacing such as 15kHz, 30kHz, 60kHz, 120kHz, etc.
  • the NR system When the NR system performs rate matching on the resources to which the CRS of LTE is to be mapped, if both the LTE system and the NR system use 15kHz time-frequency resources, in the shared spectrum resources, the NR system does not use the RE used to map the CRS of LTE. Map PDSCH. For example, in the shared spectrum resources, the NR PDSCH corresponding to the 15kHz SCS is not mapped to the RE used to carry the LTE CRS, which can make the NR PDSCH corresponding to the 15kHz SCS and the LTE CRS not interfere with each other, and the 15kHz The NR PDSCH corresponding to the SCS can make full use of the unused time-frequency resources of the LTE CRS, thereby improving the utilization of shared resources.
  • the resource to which the CRS of LTE is to be mapped can also be described as: resources used for mapping the CRS of LTE, resources to be occupied by the CRS of LTE, candidate resources of the CRS of LTE, or resources corresponding to the CRS of LTE, etc.
  • the SCS adopted by the NR system is different from the SCS adopted by the LTE system, when the NR system performs rate matching on the resources corresponding to the LTE CRS, it may not be possible to avoid mutual interference between the NR PDSCH and the LTE CRS.
  • the SCS adopted by the NR system is 30 kHz
  • the SCS adopted by the LTE system is 15 kHz as an example, which will be described in conjunction with FIG. 6(A) and FIG. 6(B).
  • the resource grid shown in FIG. 6(A) corresponds to the LTE system using 15kHz SCS
  • the resource grid shown in FIG. 6(B) corresponds to the NR system using 30kHz SCS.
  • the black squares indicate the positions of REs carrying CRS of LTE.
  • the black squares indicate the locations of REs that are not mapped to NR PDSCH.
  • the NR PDSCH when the NR PDSCH is transmitted on the resource grid shown in FIG. 6(B), the NR PDSCH performs rate matching on the RE corresponding to the LTE CRS. In the same time-frequency resources, there is an overlap between the REs for rate matching of the NR PDSCH and the REs corresponding to the LTE CRS.
  • the resource grid shown in FIG. 6(A) includes a total of 14 OFDM symbols from the first to the fourteenth.
  • Figure 7(A) is a schematic diagram of the spectrum of LTE CRS on the fifth OFDM symbol in the resource grid shown in Figure 6(A).
  • the bold black arrow in Figure 7(A) indicates that it is used to carry LTE CRS
  • the dashed line indicates the subcarriers not used to carry LTE CRS, and the interval between adjacent subcarriers is 15kHz.
  • the resource grid shown in FIG. 6(B) includes a total of 28 OFDM symbols from the first to the 28th.
  • Fig. 7(B) is a schematic diagram of the frequency spectrum on the 9th or 10th OFDM symbol in the resource grid shown in Fig. 6(B).
  • the one-way arrow in the solid line in Figure 7(B) indicates the sub-carrier that can carry NR PDSCH, and the one-way arrow in the dotted line indicates the sub-carrier that cannot carry NR PDSCH (used for rate matching).
  • the interval is 30kHz.
  • the bold double-headed arrow in Figure 7(B) is used to describe on the 5th time domain symbol shown in Figure 6(A) or on the 9th or 10th time domain symbol shown in Figure 6(B)
  • NR PDSCH signals may cause interference to LTE CRS.
  • Figure 7(B) includes a total of 12 30kHz subcarriers from subcarrier #0 to subcarrier #11. It can be seen from Figure 7(B) that the signal energy of 30kHz subcarrier #2 is non-zero at the position of 15kHz subcarrier #3 (the LTE CRS position), and the signal energy of 30kHz subcarrier #3 is at The position of the 15kHz subcarrier #3 is non-zero, then the 30kHz subcarrier #2 and the 15kHz subcarrier #3 are not orthogonal, and the 30kHz subcarrier #3 and the 15kHz subcarrier #3 are not orthogonal. That is, the LTE CRS on the 15kHz subcarrier #3 may be interfered by the NR PDSCH; the LTE CRS on the 15kHz subcarrier #3 may also interfere with the NR PDSCH.
  • the indexes of OFDM symbols occupied by LTE CRS on the time-frequency resources of 15kHz SCS are #0, #1, #4, #7, #8, and # 11.
  • Map it to the index of the OFDM symbol occupied on the time-frequency resource of 30kHz SCS may be #0, #1, #2, #3, #8, and #9, because DCI does not support the rate Due to the matching, the PDCCH scheduled by the NR system slot cannot be transmitted on the time-frequency resources of 30kHz SCS.
  • the embodiments of this application provide a control information transmission method and device, which can reduce NR PDCCH and LTE CRS Transmission interference between. Further, in a scenario where two communication systems supporting different SCSs are deployed in a common frequency band, the embodiment of the present application can reduce transmission interference between the two communication systems.
  • two communication systems supporting different SCS co-band deployment scenarios including but not limited to: NR system and LTE system co-band deployment scenario, two NR networks co-band deployment scenario, LTE system or NR system and future communication Scenarios for system deployment in a common frequency band, etc.
  • FIG 8 is a schematic diagram of a network architecture applying an embodiment of the present application.
  • the network architecture includes network equipment and terminals.
  • the number and form of network equipment and terminals shown in Figure 8 do not constitute a limitation to the embodiments of the present application.
  • the network architecture in the application includes multiple network devices and multiple terminals.
  • the network device can be any device with a wireless transceiver function. Including but not limited to: evolutionary base station (evolutional Node B, NodeB or eNB or e-NodeB) in LTE, base station (gNodeB or gNB) or transmission receiving point/transmission reception point (TRP) in NR, 3GPP Subsequent evolution of base stations, access nodes in wireless fidelity (WiFi) systems, wireless relay nodes, wireless backhaul nodes, etc.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc. Multiple base stations can support networks of the same technology mentioned above, or networks of different technologies mentioned above.
  • the base station can contain one or more co-site or non-co-site TRPs.
  • the network device may also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, wearable device, or vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal, and it can also communicate with the terminal through a relay station.
  • the terminal can communicate with multiple base stations of different technologies.
  • the terminal can communicate with a base station that supports an LTE network, or can communicate with a base station that supports a 5G network, and can also support dual connections with a base station of an LTE network and a base station of a 5G network. .
  • a terminal is a device with a wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons, etc.) And satellite class).
  • the terminal may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control (industrial control) Wireless terminals in control), vehicle-mounted terminal equipment, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety (transportation safety) ), wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, and so on.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • Wireless terminals in control vehicle-mounted terminal equipment, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety (transportation safety) ), wireless terminals in smart cities, wireless terminals in smart homes, wearable terminal devices, and so on.
  • the embodiment of this application does not limit the application scenario.
  • Terminals can sometimes be referred to as terminal equipment, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile Equipment, UE terminal equipment, terminal equipment, wireless communication equipment, UE agent or UE device, etc.
  • the terminal can also be fixed or mobile.
  • FIG. 9 is a schematic flowchart of a control information transmission method provided by an embodiment of this application.
  • the process may include but is not limited to the following steps:
  • Step 101a The network device sends control information to the terminal on the first CCE.
  • the terminal receives the control information from the network device on the first CCE.
  • Step 102a The network device sends the control information to the terminal on one or more second CCEs.
  • the terminal receives the control information from the network device on one or more second CCEs.
  • step 101a and step 102a can be performed simultaneously, or step 101a can be performed first and then step 102a, or step 102a can be performed before step 101a.
  • step 101b and step 102b can be executed at the same time, or step 101b can be executed first and then step 102b, or step 102b can be executed first and then step 101b.
  • the terminal can perform step 101b and step 102b after the network device performs step 101a and step 102a; the terminal can also perform step 101b after the network device performs step 101a, and perform step 102b after the network device performs step 102a.
  • the control information may be various types of control information sent by the network device to the terminal, for example, it may be information such as DCI.
  • the control information can be control information in the NR system or control information in a future communication system.
  • Control information is transmitted through PDCCH or CCE, and CCE is the smallest resource unit for PDCCH transmission.
  • PDCCH and reference signal correspond to different SCS.
  • PDCCH is NR PDCCH corresponding to 30kHz SCS in NR system
  • reference signal is LTE CRS corresponding to 15kHz SCS in LTE system
  • PDCCH is NR PDCCH corresponding to 30kHz SCS in NR system
  • the signal is the NR CRS corresponding to 15kHz SCS in the NR system.
  • the PDCCH is the NR PDCCH corresponding to 30kHz SCS in the NR system
  • the reference signal is described by taking the LTE CRS corresponding to 15kHz SCS in the LTE system as an example.
  • the PDCCH and the reference signal correspond to different SCSs, which can also be described as the SCS corresponding to the time-frequency resource occupied by the control information and the SCS corresponding to the time-frequency resource occupied by the reference signal are different.
  • the number of CCEs included in one PDCCH is related to the aggregation level. In a possible implementation manner, the number of CCEs included in one PDCCH is equal to the aggregation level.
  • the aggregated CCEs include one first CCE and one or more second CCEs, where the number of the one or more second CCEs is equal to the aggregation level minus one.
  • the number of the first CCE is one
  • the number of one or more second CCEs is related to the aggregation level. If the aggregation level is 2, a second CCE is included, and this second CCE transmits the same control information as the first CCE. If the aggregation level is 4, it includes three second CCEs, and these three second CCEs transmit the same control information as the first CCE.
  • the number of second CCEs under other aggregation levels.
  • the first CCE and one or more second CCEs are included in the CORESET, and the CORESET includes N CCEs, and the specific value of N may be determined by CORESET configuration information.
  • the numbering of the N CCEs meets the numbering rule of the time domain first and then the frequency domain. Different from the numbering rules of CCEs in Figures 5a and 5b, the numbering rules of CCEs in Figures 5a and 5b are frequency domain numbering. If you follow the numbering rules of CCEs in Figures 5a and 5b, 30kHz cannot be avoided no matter what measures are taken. Inter-subcarrier interference between NR PDCCH corresponding to SCS and LTE CRS corresponding to 15kHz SCS.
  • the numbering of CCEs in the embodiments of this application adopts the numbering rule of the time domain and then the frequency domain.
  • the first CCE and one or more second CCEs transmit the same control information, which can make the NR PDCCH corresponding to 30kHz SCS and 15kHz SCS There is no sub-carrier interference between the corresponding LTE CRS.
  • the CORESET includes M REGs, and the specific value of M can be determined by CORESET configuration information.
  • the numbering of these M REGs meets the numbering rule of frequency domain first and time domain later. Different from the REG numbering rules in Figs. 5a and 5b, the REG numbering rules in Figs. 5a and 5b are first time domain and then frequency domain. In the embodiments of this application, the numbering of CCEs adopts the numbering rule of time domain and then frequency domain, and the numbering of REG adopts the numbering rule of frequency domain first and then time domain.
  • CCE numbering rules and REG numbering rules adopted in the embodiments of the present application are the basis for realizing repeated transmission in the time domain to avoid interference.
  • the numbering of CCE is the numbering rule of time domain and then frequency domain, or the numbering of CCE is the numbering rule of time domain first and then frequency domain, and the numbering of REG is the numbering rule of frequency domain first and then time domain. It can be predefined or It may be configured to the terminal through signaling (for example, radio resource control (RRC) signaling).
  • RRC radio resource control
  • the numbering rule in the time domain and then the frequency domain can also be described as the numbering rule in the time domain first or the numbering rule in the time domain-frequency domain, etc.
  • the numbering rule of frequency domain first and then time domain can also be described as the numbering rule of frequency domain first or the numbering rule of frequency domain-time domain, etc.
  • the network device may send control information to the terminal on the resources of the first CCE, and send the control information to the terminal on the resources of one or more second CCEs.
  • the terminal may receive the control information from the network device on the resources of the first CCE, and receive the control information from the network device on the resources of the one or more second CCEs.
  • the resources of the first CCE may include one or more of resources such as time-frequency resources, code domain resources, or space resources
  • the resources of the second CCE may include one of resources such as time-frequency resources, code domain resources, or space resources. Or more.
  • the resources of the first CCE include time-frequency resources and the resources of the second CCE include time-frequency resources are described as an example.
  • the terminal Before receiving the control information, the terminal determines the CORESET according to the CORESET configuration information and the above two numbering rules (the numbering of CCE adopts the numbering rule of time domain followed by frequency domain, and the numbering of REG adopts the numbering rule of frequency domain first and then time domain).
  • the time-frequency resources of the included N CCEs The network device sends the CORESET configuration information to the terminal, so that the terminal can determine the time-frequency resources of the CCE included in the CORESET, and how and when it is sent are not limited in the embodiments of the present application.
  • CORESET configuration information can be as follows:
  • the controlResourceSetId is used to configure the CORESET identity (ID), that is, the ID used to configure the PDCCH resource set.
  • ID the ID used to configure the PDCCH resource set.
  • frequencyDomainResources is used to configure the frequency domain size of CORESET
  • position the granularity of configuration is 6 RBs, that is, 6 RBs are used as the configuration unit of the CORESET frequency domain.
  • duration is used to configure the time domain size of CORESET
  • cce-REG-MappingType is used to configure the CCE-REG mapping type: non-interleaved or interleaved.
  • reg-BundleSize is used to configure the REG interleaving granularity, that is, the size of the REG bundle (L); interleaverSize is used to configure the number of rows of the interleaver (R); shiftIndex is used to configure the REG bundle offset of the interleaver ( n shift ).
  • Non-interleaved mapping can also be called centralized mapping.
  • the number of symbols configured in the time domain can be the number of OFDM symbols configured in the time-frequency domain. It can be configured as 1, 2 or 4, namely The size of the REG bundle can be configured as 1, 2, 3, or 6, that is, L ⁇ 1,2,3,6 ⁇ .
  • FIG. 10a is an example diagram of a non-interlaced mapping provided in an embodiment of this application.
  • L 2
  • the numbering of REG adopts the numbering rule of frequency domain first and then time domain.
  • One CCE includes 6 REGs, and the CORESET includes 8 CCEs, numbered 0, 1..., 7. The numbering of these 8 CCEs adopts the numbering rule of time domain and frequency domain.
  • the row represents the frequency domain
  • the column represents the time domain.
  • CCE 0 includes 1 OFDM symbol in the time domain and 6 RBs in the frequency domain, namely, REG 0, REG1, REG 2, REG 3, REG 4, and REG 5, which are 6 REGs.
  • CCE 1 includes 1 OFDM symbol in the time domain and 6 RBs in the frequency domain, namely, REG 24, REG 25, REG 26, REG 27, REG 28, and REG 29.
  • a CCE in Fig. 10a includes 1 OFDM symbol in the time domain and 6 RBs in the frequency domain
  • a CCE in Fig. 5a includes two OFDM symbols in the time domain and frequency domain. 3 RBs.
  • the interleaver can be expressed by the following formula.
  • FIG. 10b is an example diagram of an interleaving mapping provided in an embodiment of this application.
  • i ⁇ 0,1,..,23 ⁇ which includes 24 REG bundles, numbered 0,1,...,23, 1 REG bundle includes 2 REGs, these 24 REG bundles and these 48
  • the numbering of REG adopts the numbering rule of frequency domain first and then time domain.
  • 1 CCE includes 6 REGs
  • the CORESET includes 8 CCEs, and the numbers of these 8 CCEs are 0,1...,7.
  • the numbering of these 8 CCEs adopts a numbering rule in the time domain and then the frequency domain.
  • the row represents the frequency domain and the column represents the time domain. According to the interleaver expression of the interleaving mapping, Table 5 can be obtained.
  • CCE 0 is composed of REG bundle set ⁇ f(0), f(1), f(2) ⁇ , and the values are respectively 0, 4, 8; 1 REG bundle includes one OFDM symbol in the time domain and two RBs in the frequency domain, so f(0) is mapped to REG 0 and REG 1, and f(1) is mapped to REG 8 and REG 9. , F(2) is mapped to REG 16 and REG 17, then CCE 0 is composed of REG 0, REG 1, REG 8, REG 9, REG 16, and REG 17.
  • CCE 1 consists of a set of REG bundles ⁇ f(12), f(13), f(14) ⁇ , and the values are 12, 16, 17; 1 REG bundle includes an OFDM symbol in the time domain.
  • the domain includes two RBs, so f(12) is mapped to REG 24 and REG 25, f(13) is mapped to REG 32 and REG 33, and f(14) is mapped to REG 40 and REG 41.
  • CCE 1 is mapped to REG 24, REG 25, REG 32, REG 33, REG 40 and REG 41 are composed.
  • the CCE numbering rule is the time domain and then the frequency domain. Then the interlaced submatrix of symbol 0 represents the interlaced submatrix of CCE 0, CCE 2, CCE 4, and CCE 6, and the interlaced submatrix of symbol 1 represents CCE 1. , CCE 3, CCE 5, and CCE 7 corresponding interlaced sub-arrays. Symbol 0 and symbol 1 may be OFDM symbols or DFT-S-OFDM symbols, etc.
  • CCE 0 and CCE 1 correspond to different OFDM symbols in the time domain, and correspond to the same RB in the frequency domain.
  • the network device may send control information on the time-frequency resource of the CCE included in the CORESET according to the aggregation level.
  • the terminal can blindly detect the PDCCH on the time-frequency resources of the CCE included in the CORESET according to the aggregation level to receive control information.
  • the network device may select an appropriate aggregation level AL on the time-frequency resources of the CCEs included in the CORESET according to the signal-to-noise ratio of the terminal, and send control information on the AL CCEs.
  • the terminal can blindly detect the PDCCH on the time-frequency resources of the CCE included in the CORESET to receive control information.
  • the terminal blindly detects the PDCCH on CCE 1 the information carried on CCE 0 can be considered transparent to the terminal.
  • the network device sends two control messages on two CCEs, and the terminal receives one control message on one CCE.
  • Network equipment sends control information 1 on CCE 0 and CCE 1 respectively, terminal 1 receives control information 1 on CCE 0 or CCE 1; network equipment sends control information 2 on CCE 2 and CCE 3 respectively, and terminal 2 sends control information 2 on CCE 2 or CCE 3 receives control information 2; network equipment sends control information 2 on CCE 4 and CCE 5 respectively, terminal 3 receives control information 3 on CCE 4 or CCE 5; network equipment sends control information on CCE 6 and CCE 7 respectively 4.
  • Terminal 4 receives control information 4 on CCE 6 or CCE 7.
  • the network device sends AL control information on AL CCEs, and the terminal receives AL control information on AL CCEs.
  • AL 2
  • the network device repeatedly transmits control information on CCE 0 and CCE 1, and the terminal blindly detects the PDCCH on CCE 0 and CCE 1 to receive two identical control information.
  • the network device sends two control messages on two CCEs, and the terminal receives two control messages on two CCEs.
  • Network equipment sends control information 1 on CCE 0 and CCE 1 respectively, terminal 1 receives control information 1 on CCE 0 and CCE 1 respectively;
  • network equipment sends control information 2 on CCE 2 and CCE 3 respectively, and terminal 2 on CCE 2 And CCE 3 respectively receive control information 2;
  • network equipment sends control information 2 on CCE 4 and CCE 5 respectively, terminal 3 receives control information 3 on CCE 4 and CCE 5 respectively;
  • network equipment on CCE 6 and CCE 7 respectively Sending control information 4, terminal 4 receives control information 4 on CCE 6 and CCE 7 respectively.
  • the number of CCEs for which the network device sends control information is greater than or equal to 2
  • the number of CCEs for which the terminal receives control information is greater than or equal to 1.
  • the same control information is carried on the aggregated CCE.
  • CCE 1 carries control information 1.
  • CCE 1 carries control information 1
  • CCE 2 carries control Information 1
  • CCE 3 carries control information 1. 10a and 10b, CCE 0 corresponds to symbol 0 in the time domain, CCE 1 corresponds to symbol 1 in the time domain, CCE 0 and CCE 1 carry the same control information, then symbol 0 and symbol 1 carry the same control information.
  • control information transmitted on the symbol 0 and the symbol 1 are repeated, or described as the control information being repeatedly transmitted on the symbol 0 and the symbol 1, and the repeated transmission is repeated transmission in the time domain. Further, the control information can be repeatedly transmitted on 4 symbols. Further, the control information can be repeatedly transmitted on 2 n OFDM symbols, and n is a positive integer.
  • the CCE numbering adopts the numbering rule of the time domain and then the frequency domain
  • the REG numbering adopts the numbering rule of the frequency domain first and then the time domain, so that the first CCE and one or more second CCEs
  • the same control information is transmitted, so that the control information is repeatedly transmitted on 2 n symbols.
  • the control information is repeatedly transmitted on 2 n symbols, that is, the control information is repeated in the time domain, which is equivalent to inserting 0 in the frequency domain for the control information.
  • control information is repeatedly transmitted on 2 n symbols, these 2 n symbols are aligned with another symbol in the time domain, thereby reducing the signal carried by the control information and another symbol in the scenario of sharing spectrum resources but using different SCS For example, the transmission interference between NR PDCCH and LTE CRS can be reduced.
  • the 2 n symbols for repeated transmission of control information are called 2 n first OFDM symbols. These 2 n first OFDM symbols are aligned with the second OFDM symbol in the time domain.
  • the second OFDM symbol is used for For the OFDM symbol that carries another signal, the SCS corresponding to the other signal is different from the SCS corresponding to the control information.
  • the control information is NR DCI
  • the second OFDM symbol is an OFDM symbol used to carry LTE CRS.
  • the 2 n first OFDM symbols and the second OFDM symbols are aligned in the time domain, which means that the 2 n first OFDM symbols and the second OFDM symbols share the same time domain resources.
  • 2 n is a multiple between the first SCS and the second SCS, that is, the first SCS is 2 n times the second SCS.
  • the first SCS is the subcarrier interval corresponding to the time-frequency resource of the control information, or understood as the subcarrier interval of the PDCCH;
  • the second SCS is the subcarrier interval corresponding to the time-frequency resource of another signal. For example, if the first SCS is 30kHz and the second SCS is 15kHz, then the control information can be repeatedly transmitted on two first OFDM symbols.
  • These two first OFDM symbols are aligned with one second OFDM symbol in the time domain, and this one is second OFDM symbols are used to carry LTE CRS; for example, the first SCS is 60kHz and the second SCS is 15kz, then the control information can be repeatedly transmitted on the 4 first OFDM symbols, these 4 first OFDM symbols and one second OFDM symbol Aligned in the time domain, this second OFDM symbol is used to carry LTE CRS.
  • the sub-carrier interval in the resource grid shown in Fig. 6(A) is 15 kHz; the sub-carrier interval in Fig. 6(B) is 30 kHz.
  • the resource grids shown in Fig. 6(A) and Fig. 6(B) are for the same time-frequency resource, the bandwidth of the time-frequency resource is 360kHz (ie 15kHz ⁇ 24 or 30kHz ⁇ 12), and the time length is 1ms.
  • the implementation of repeated transmission of control information on the 2 n first OFDM symbols may include but is not limited to the following two methods:
  • the control information is repeatedly transmitted on two first OFDM symbols
  • the first first OFDM symbol includes a cyclic prefix
  • the second first OFDM symbol includes a cyclic suffix.
  • the first first OFDM symbol includes the useful signal and the cyclic prefix
  • the second first OFDM symbol includes the useful signal and the cyclic suffix
  • the useful signal is the time domain signal of the control information.
  • FIG. 11 is an example diagram of a cyclic prefix and a cyclic suffix provided in an embodiment of this application.
  • the cyclic prefix in the first first OFDM symbol includes sampling points 953 to 1024, the useful signal in the first first OFDM symbol includes sampling points 1 to 1024; the cyclic suffix in the second first OFDM symbol Including sampling points 1 to 72, the useful signal in the second first OFDM symbol includes sampling points 1 to 1024; the cyclic prefix in the second OFDM symbol includes sampling points 1905 to 2048, and the useful signal in the second OFDM symbol includes 1 ⁇ Sampling point No. 2048. It can be seen from Fig.
  • the last 2048 sampling points of the two first OFDM symbols include two identical sampling points from 1 to 1024.
  • the last 2048 sampling points of the two first OFDM symbols are the same as those of the second OFDM symbol.
  • the useful signal after removing the cyclic prefix (144 sampling points from 1905 to 2048) (2048 sampling points from 1 to 2048) is aligned in the time domain. That is, when two 30kHz first OFDM symbols are used for fast Fourier transform (FFT) at 15kHz, after removing the cyclic prefix of 144 sampling points, under the sampling window of 2048 sampling points, sampling points 1 to 1024 are Repeated 2 times in the time domain. In this way, the transmission interference between the 30kHz control information and the 15kHz LTE CRS can be avoided.
  • FFT fast Fourier transform
  • the two first OFDM symbols both include a cyclic prefix (a total of 72 sampling points from 953 to 1024) and a useful signal (a total of 1024 sampling points from 1 to 1024), then the two first OFDM symbols are used for FFT at 15kHz After removing the cyclic prefix of 144 sampling points, under the sampling window of 2048 sampling points, due to the cyclic prefix of the second first OFDM symbol, sampling points 1 to 1024 cannot be repeated twice in the time domain. This will cause transmission interference between the 30kHz control information and the 15kHz LTE CRS.
  • the network device repeatedly sends control information on two first OFDM symbols, and the terminal repeatedly receives control information on two first OFDM symbols.
  • method two is adopted.
  • Manner 2 Among the 2 n first OFDM symbols, the control information transmitted on the i-th first OFDM symbol is obtained after the corresponding frequency domain signal undergoes phase rotation processing, i is greater than 1 and less than or equal to 2 n Integer.
  • the input signal of the inverse fast Fourier transform (IFFT) on the i-th first OFDM symbol is a 1,k *e j* ⁇ , and a 1,k represents the first OFDM symbol
  • the frequency domain signal at the k-th subcarrier interval; ⁇ represents the phase size that needs to be rotated when the frequency domain signal phase rotation processing is required. It is understandable that in the 2 n first OFDM symbols, the control information transmitted on each first OFDM symbol except the first first OFDM symbol is obtained after the corresponding frequency domain signal undergoes phase rotation processing. .
  • FIG. 12 is an example diagram of repeated transmission of control information provided by an embodiment of this application, which is an example of repeated transmission of control information on two first OFDM symbols.
  • the first SCS is 30 kHz
  • the frequency domain resources used to transmit control information on the first OFDM symbol include shared bandwidth as an example.
  • the data mapped on the first first OFDM symbol and the second first OFDM symbol are the same, which are a 1,n to a 1,n+k, respectively .
  • a 1,n to a 1,n+k are complex signals, and the values of different data may be the same or different, which is not limited in the embodiment of the present application.
  • phase rotation can be performed respectively.
  • the first first OFDM symbol Map respective data on the upper and second first OFDM symbols.
  • the frequency domain signals corresponding to the 2 n first OFDM symbols are the same.
  • the specific implementation manner of the phase rotation processing is: the frequency domain signal is multiplied by the phase rotation factor.
  • the phase rotation factor is used to indicate the phase of the frequency domain signal rotation.
  • the phase of the frequency domain signal rotation corresponding to the i-th first OFDM symbol is proportional to i-1.
  • the time domain signal that is, the useful signal of the first OFDM symbol will undergo a cyclic shift.
  • the phase rotation factor corresponding to the i-th first OFDM symbol is: Among them, the CP length on the i-th first OFDM symbol The rotation phase corresponding to the i-th first OFDM symbol is:
  • the k 1 in the phase rotation factor is the subcarrier index, which corresponds to n to n+k in the phase rotation factor of the second first OFDM symbol in FIG. 12.
  • the phase rotation factor corresponding to the i-th first OFDM symbol is: That is, the rotated phase corresponding to the i-th first OFDM symbol among them
  • N is the number of FFT points
  • I the number of subcarriers contained in an RB. It is the CP length of the symbol i of the subcarrier interval ⁇ , and the unit is the number of sampling points.
  • ⁇ f is the size of the subcarrier interval ⁇ .
  • T c 1/(480 ⁇ 1000 ⁇ 4096).
  • j is an imaginary unit, and the square of j is equal to -1.
  • is the ratio of pi. Represents the number of RBs included in a carrier with a subcarrier interval of ⁇ configured by radio resource control (radio resource control, RRC) signaling, and x represents uplink or downlink.
  • RRC radio resource control
  • ⁇ 0 represents the largest subcarrier interval among one or more subcarrier intervals configured by RRC signaling.
  • FIG. 13a is an example diagram of a cyclic prefix provided in an embodiment of this application.
  • the first SCS is 30kHz and the second SCS is 15kHz.
  • the useful signal in the first first OFDM symbol includes sampling points from 1 to 1024; the cyclic prefix of the first first OFDM symbol includes sampling points from 953 to 1024.
  • the useful signal is cyclically shifted, and the useful signal after cyclic shift includes sampling points 73 to 1024 sequentially. And sampling points from 1 to 72.
  • the cyclic prefix of the second first OFDM symbol includes the last 72 sampling points of the cyclically shifted useful signal (that is, sampling points 1 to 72). It can be seen from Fig. 13a that the last 1024 sampling points of each of the two first OFDM symbols include two identical sampling points 1 to 1024, for a total of 2048 sampling points. That is, under the sampling window of 2048 sampling points, sampling points 1 to 1024 are repeated twice in the time domain.
  • the phase rotation factor for phase rotation processing is: In the analog domain, the phase rotation factor for phase rotation processing is: If the terminal receives the control information on CCE 0, the terminal removes the cyclic prefix on the first OFDM symbol to obtain the original frequency domain signal.
  • FIG. 13b is another example diagram of a cyclic prefix provided in an embodiment of this application.
  • the useful signal in the first first OFDM symbol includes sampling points from 1 to 512; the cyclic prefix of the first first OFDM symbol includes sampling points from 477 to 512.
  • the useful signal is cyclically shifted.
  • the useful signal after cyclic shift includes sampling points 37 to 512 in turn.
  • sampling points 1 to 36; the cyclic prefix of the second first OFDM symbol includes the last 36 sampling points of the useful signal after cyclic shift (that is, sampling points 1 to 36).
  • the useful signal is cyclically shifted, and the useful signal after cyclic shift includes sampling points 73 to 512 in turn. And sampling points 1 to 72; the cyclic prefix of the third first OFDM symbol includes the last 36 sampling points of the cyclically shifted useful signal (that is, sampling points 37 to 72).
  • the useful signal is cyclically shifted, and the useful signal after cyclic shift includes sampling points 109-512 sequentially.
  • the cyclic prefix of the fourth first OFDM symbol includes the last 36 sampling points (that is, 73 to 108 sampling points) of the cyclically shifted useful signal. It can be seen from Fig. 13b that the last 2048 sampling points of the four first OFDM symbols include four identical sampling points No. 1 to 512. That is, under the sampling window of 2048 sampling points, sampling points 1 to 512 are repeated 4 times in the time domain.
  • FIG. 14 is another example diagram of repeated transmission control information provided in this embodiment of the application.
  • the terminal can obtain the time domain of the i-th first OFDM symbol by removing the cyclic prefix in the i-th first OFDM symbol Signal; perform the fast Fourier change corresponding to the first SCS on the time domain signal of the i-th first OFDM symbol to obtain the frequency domain signal after phase rotation processing; then, the frequency domain signal after phase rotation The signal is divided by the phase rotation factor to determine the original frequency domain signal.
  • the terminal can perform cyclic prefix removal, fast Fourier transform, and division by all of the 2 n first OFDM symbols.
  • the phase rotation factor is processed to obtain the original frequency domain signal of this part of the first OFDM symbol.
  • part of the first OFDM symbols can be odd-numbered first OFDM symbols, even-numbered first OFDM symbols, or other options.
  • the number of this part of first OFDM symbols is 2 n /2 .
  • the network device repeatedly sends control information 1 on the 8 first OFDM symbols (numbered 0-7), and the terminal receives 4 control information 1 on the 4 first OFDM symbols, and these 4 first OFDM symbols OFDM symbols can be numbered 0, 2, 4, 6; numbered 1, 3, 5, 7; numbered 0, 1, 2, 3; numbered 4, 5, 6, 7; or numbered 0, 2, 5, 7, etc. .
  • the terminal performs cyclic prefix removal, fast Fourier transform, and division by the phase rotation factor processing on the first OFDM symbols numbered 0, 1, 2, and 3 to obtain respective original frequency domain signals.
  • the subcarrier corresponding to the first SCS is referred to as the first subcarrier
  • the subcarrier corresponding to the second SCS is referred to as the second subcarrier.
  • repeating the signal in the time domain is equivalent to interpolating 0 for the signal in the frequency domain.
  • the signal value of the control information of the first SCS is at the second number which is not an integer multiple of 2 n .
  • the subcarrier is equal to zero.
  • the first SCS is 30 kHz
  • the second SCS is 15 kHz as an example.
  • the control information is repeatedly transmitted on the ninth OFDM symbol and the tenth OFDM symbol in the resource grid shown in Figure 16(B)
  • the frequency spectrum of the control information on the ninth OFDM symbol can refer to Figure 15(D) .
  • a solid one-way arrow indicates a subcarrier used to carry control information.
  • the 30kHz subcarrier interval signal is set to 0 at the position of the odd-numbered 15kHz subcarrier. Therefore, the 30kHz subcarrier interval signal will not affect the reference signal carried by the odd-numbered 15kHz subcarrier (e.g. LTE CRS carried by the 15kHz subcarrier numbered 3.
  • the signal of the first SCS is set to 0 at the position corresponding to the second subcarrier whose number is not an integer multiple of 2 n . Therefore, in the shared spectrum, the signal of the first SCS will not affect the signal of the second subcarrier whose corresponding number is not an integer multiple of 2n . In other words, in the shared spectrum, on the RE corresponding to the second SCS whose subcarrier number is not an integer multiple of 2 n , the signal of the first SCS (such as control information) will not affect the reference signal of the corresponding second SCS (such as LTE CRS).
  • the first SCS is 60kHz
  • the second SCS is 15kHz
  • the first SCS The signal value of is equal to 0.
  • the embodiment shown in FIG. 9 further includes that the network device sends the first configuration information to the terminal through high-layer signaling (for example, RRC signaling). Or the first configuration information is predefined.
  • high-layer signaling for example, RRC signaling
  • High-level signaling can also be called semi-static signaling, which can be RRC signaling, broadcast message, system message, or media access control (medium access control, MAC) control element (CE).
  • the broadcast message may include remaining minimum system information (RMSI).
  • the network device may configure the first configuration information of the second SCS for the terminal on the BWP of the first SCS.
  • the terminal may receive the first configuration information of the second SCS on the BWP of the first SCS.
  • the terminal determines the rate matching resource of the second SCS according to the first configuration information, and then obtains the rate matching resource on the BWP of the first SCS according to the relationship between the first SCS and the second SCS.
  • the first configuration information is used to indicate the resource of the reference signal corresponding to the second SCS, and the resource may include one or more of time domain resources, frequency domain resources, space domain resources, or code domain resources.
  • the resource is described as an example.
  • the first configuration information may directly or indirectly indicate the time-frequency resource of the reference signal corresponding to the second SCS, and the specific indication manner is not limited in the embodiment of the present application.
  • the first configuration information can configure the bandwidth, the number of antenna ports, the offset value, the center position of the carrier, the resource pattern, and the like. There is a corresponding relationship between the number of antenna ports and the resource pattern. For example, FIG. 1 is a resource pattern corresponding to one antenna port.
  • the first configuration information is used to indicate the time-frequency resource of the LTE CRS corresponding to 15kHz SCS, that is, the first configuration information is the configuration information of the LTE CRS and is used to indicate the time-frequency resource of the LTE CRS.
  • LTE CRS configuration information includes the bandwidth of the LTE carrier (such as 1.4M, 3M, or 5M, etc.), the number of CRS antenna ports (such as 1/2/4), and the offset value of the CRS mapping RE (such as 0/1/2/ 3/4/5) and one or more of the information such as the center position of the LTE carrier.
  • the terminal After receiving the first configuration information, the terminal determines the bandwidth and position of the frequency domain resource through the bandwidth and the center position of the carrier; determines the corresponding resource pattern according to the number of antenna ports; then, according to the offset value and resource Pattern, determine the position of the RE carrying the reference signal in the resource grid, that is, determine the time-frequency resource used to carry the reference signal in the resource grid corresponding to the second SCS, that is, determine the rate matching resource of the second SCS.
  • the terminal may determine the time-frequency resource position of the rate matching resource on the BWP of the first SCS according to the relationship between the first SCS and the second SCS, and the SCS corresponding to the rate matching resource is the first SCS;
  • the SCS corresponding to the resource indicated by the configuration information is the second SCS, and the first SCS is 2 n times the second SCS.
  • the terminal determines the resource of the reference signal corresponding to the second SCS (that is, the rate matching resource of the second SCS) according to the first configuration information, and then matches the time-frequency resource position of the resource according to the rate of the second SCS and the first SCS and the first SCS
  • the relationship between the second SCS determines the time-frequency resource location of the rate matching resource on the BWP of the first SCS.
  • the rate matching resource on the BWP of the first SCS is the rate matching resource determined according to the first configuration information.
  • the rate matching resources involved below refer to the rate on the BWP of the first SCS without other explanation. Matching resources.
  • the SCS of the resource grid shown in Figure 16(B) is the first SCS
  • the SCS of the resource grid shown in Figure 16(A) is the second SCS
  • the first SCS is 30kHz
  • the second SCS is 15kHz.
  • the terminal obtains the rate matching resource of the second SCS according to the first configuration information, that is, the black RE in FIG. 16(A).
  • the terminal determines the rate matching resource of the first SCS according to the relationship between the first SCS and the second SCS and the rate matching resource of the second SCS, that is, the black RE in FIG. 16(B).
  • the terminal may directly obtain the rate matching resource of the first SCS according to the first configuration information.
  • the first configuration information may include one or more RE-level rate matching resource indication information
  • the RE-level rate matching resource indication information includes indication information of a symbol index and indication information of RE position on a symbol corresponding to the symbol index that requires rate matching.
  • the indication information of the symbol index may be a 14-bit bitmap (bitmap), which is used to indicate the symbol index of one or more symbols; or it may be a 4-bit index indication, which indicates the symbol index of one symbol.
  • the RE location indication information can be a 12-bit bitmap.
  • the 12-bit bitmap is used to indicate that one or more REs are rate matching resources.
  • the "1" in the bitmap indicates that the corresponding RE on the symbol is the rate. Matching resources.
  • the terminal may determine the rate matching resource of the first SCS according to one or more RE-level rate matching resource indication information.
  • control information is carried by resources other than the rate matching resources in the resources of CORESET.
  • control information on the 2 n of the first OFDM symbol is repeated transmission rate if the resources on a first OFDM symbol overlap matching resource, the resources of the first OFDM symbol does not carry control information, in which the 2 n Resources other than the resources of the first OFDM symbol among the resources of the first OFDM symbol may carry control information.
  • Example 1 If the LTE CRS is transmitted on the first OFDM symbol in the resource grid shown in Fig. 16(A), the frequency spectrum of the LTE CRS on the first OFDM symbol can be seen in Fig. 15(A).
  • the bold black arrows indicate subcarriers used to carry LTE CRS
  • the dashed lines indicate subcarriers not used to carry LTE CRS
  • the interval between adjacent subcarriers is 15kHz.
  • the rate matching resource is RE ⁇ (0,1),(0,2),(3,1) in Figure 16(B) ,(3,2),(6,1),(6,2),(9,1),(9,2 ⁇ ).
  • the rate matching resources overlap with the resources of the first OFDM symbol and the second OFDM symbol .
  • the overlapping part is RE ⁇ (0,1),(0,2),(3,1),(3,2),(6,1),(6,2), in Figure 16(B) (9,1),(9,2) ⁇ , then no control is carried on subcarrier #0, subcarrier #3, subcarrier #6, and subcarrier #9 of the first OFDM symbol and the second OFDM symbol
  • the dashed line indicates the subcarriers not used to carry control information
  • the one-way arrow of the solid line indicates the subcarriers that can carry control information
  • the interval between adjacent subcarriers is 30kHz.
  • Example 2 If the LTE CRS is transmitted on the fifth OFDM symbol in the resource grid shown in FIG. 16(A), the frequency spectrum of the LTE CRS on the first OFDM symbol can be seen in FIG. 15(C).
  • the bold black arrows indicate subcarriers used to carry LTE CRS
  • the dashed lines indicate subcarriers not used to carry LTE CRS
  • the interval between adjacent subcarriers is 15 kHz.
  • the subcarriers of the rate matching resources do not overlap with the subcarriers corresponding to the 30kHz resource grid, that is, the rate matching resources are the same as those in the 30kHz resource grid.
  • Example 1 and Example 2 when the control information is repeatedly transmitted on the 2 n first OFDM symbols, if the resource on a certain first OFDM symbol coincides with the rate matching resource, the resource on the first OFDM symbol No control information is carried, and the control information is carried on resources other than the resource of the first OFDM symbol among the resources of the 2 n first OFDM symbols.
  • the resource grids shown in Figure 16 (A) and Figure 16 (B) can be obtained.
  • Figure 16 (A) is the same as Figure 6 (A).
  • the black squares in Figure 16 (B) indicate those that do not carry control information.
  • RE refers to the RE whose control information needs to be rate-matched based on the LTE CRS. Compared with FIG. 6(B), FIG. 16(B) has more available RE resources and fewer RE resources that need to be rate-matched.
  • any one of the first REs in the first RE set corresponding to each first OFDM symbol does not carry control information, and the first RE set and the second RE set There is an overlap in the frequency domain.
  • the first RE set is the rate matching resource on the BWP of the first SCS.
  • the second RE in the second RE set is used to carry the reference signal corresponding to the second SCS, for example, to carry the LTE CRS.
  • first RE set and the second RE set overlap in the frequency domain, which means that one first RE in the first RE set and at least one second RE in the second RE set exist in the frequency domain. Overlap. In other words, one first RE in the second RE set and at least one second RE in the second RE set overlap in the frequency domain.
  • the first RE included in the first RE set may be determined according to the second RE included in the second RE set.
  • the position of the first RE in the first RE set may be determined according to the position of the second RE in the second RE set.
  • the second RE set is a subset of the third RE set.
  • the third set of REs corresponding to the second OFDM symbol includes all REs used to carry reference signals on the second OFDM symbol.
  • the third RE set corresponding to OFDM symbol #0 may be ⁇ (0,0), (6,0), (12,0), (18,0) ⁇ .
  • any RE in the third RE set belongs to the second RE set. That is, the second set of REs is equal to the third set of REs.
  • the second OFDM symbol #0 in FIG. 6(A) is aligned with the first OFDM symbol #0 in FIG. 6(B) in the time domain.
  • the first OFDM symbol #1 and the second OFDM symbol #4 in FIG. 6(A) are aligned in the time domain with the first OFDM symbol #8 and the first OFDM symbol #9 in FIG. 6(B).
  • the third RE set includes REs corresponding to the second OFDM symbol #4 ⁇ (3, 4), (9, 4), (15, 4), (21, 4) ⁇ , and REs corresponding to the second OFDM symbol #0 ⁇ (0,0),(6,0),(12,0),(18,0) ⁇ .
  • the second set of REs is equal to the third set of REs.
  • the first set of REs includes REs corresponding to the first OFDM symbol #8 and the first OFDM symbol #9 ⁇ (1,8),(4,8),(7,8),(10,8),(1 ,9),(4,9),(7,9),(10,9) ⁇ , and RE ⁇ (0,0),(3,) corresponding to the first OFDM symbol #0 and the first OFDM symbol #1 0),(6,0),(9,0),(0,1),(3,1),(6,1),(9,1) ⁇ .
  • some REs in the third RE set belong to the second RE set.
  • the control information since the control information is repeatedly transmitted on the 2 n first OFDM symbols, the control information is different from the reference signal carried on the REs whose subcarrier numbers on the second OFDM symbol are not an integer multiple of 2 n . Do not interfere with each other. Therefore, the control information only needs to perform rate matching on the REs that are numbered an integer multiple of 2 n on the second OFDM symbol and used to carry the reference signal. Based on this consideration, REs whose subcarrier numbers are integer multiples of 2 n in the third RE set belong to the second RE set. In this way, the subcarrier number of the second RE in the second RE set is an integer multiple of 2n . It can be understood that, in this case, 2 n times the subcarrier number of the first RE in the first RE set is equal to the number of a second RE in the second RE set.
  • the second OFDM symbol #0 in FIG. 16(A) is aligned with the first OFDM symbol #0 in FIG. 16(B) in the time domain.
  • the first OFDM symbol #1 and the second OFDM symbol #4 in FIG. 16(A) are aligned in the time domain with the first OFDM symbol #8 and the first OFDM symbol #9 in FIG. 16(B).
  • the third RE set includes REs corresponding to the second OFDM symbol #4 ⁇ (3, 4), (9, 4), (15, 4), (21, 4) ⁇ , and REs corresponding to the second OFDM symbol #0 ⁇ (0,0),(6,0),(12,0),(18,0) ⁇ .
  • the second OFDM symbol #4 corresponds to ⁇ (3,4),(9,4),(15,4) ,(21,4) ⁇ does not have any RE subcarrier number is an integer multiple of 2 n , where n is equal to 1, therefore, the second OFDM symbol #4 corresponds to RE ⁇ (4,3),(4, 9), (4, 15), (4, 21) ⁇ are not included in the second RE set, that is, the second RE set corresponding to the second OFDM symbol #4 is an empty set.
  • the first set of REs includes the first OFDM symbol #0 and the RE corresponding to the first OFDM symbol #1 ⁇ (0,0),(3,0),(6,0),(9,0),(0 ,1),(3,1),(6,1),(9,1) ⁇ .
  • the first RE set, the second RE set, and the third RE set may be defined in a second SCS time slot range, or may be defined in a second SCS symbol range.
  • the first OFDM symbol and the second OFDM symbol are respectively used to describe a type of signal.
  • one or more groups of 2 n first OFDM symbols may be included, which is not limited in the embodiment of the present application.
  • the CCE numbering adopts the numbering rule of time domain and then the frequency domain
  • the REG numbering adopts the numbering rule of frequency domain and then time domain, so that the control information can be repeatedly transmitted in the 2n first OFDM symbols.
  • the control information of one SCS can be rate matched around the reference signal of the second SCS, so that when the control information and the reference signal share resources but use different SCSs, the transmission interference between the two can be reduced. Even if the reference signal of the second SCS is a 4-port LTE CRS, the transmission interference between the control information and the LTE CRS can be reduced.
  • the network device may send downlink data to the terminal according to the control information.
  • the terminal after receiving the control information according to the embodiment shown in FIG. 9, the terminal can receive downlink data according to the control information.
  • the downlink data may be PDSCH data, or described as PDSCH information, data transmitted through PDSCH, and so on.
  • the downlink data is PDSCH data as an example.
  • the control information may indicate one or more of the following information: time-frequency resources of PDSCH data, modulation mechanism of PDSCH data, coding rate, etc.
  • the time-frequency resource of PDSCH data refers to the time-frequency resource occupied by the network device to send PDSCH data or the time-domain resource for terminal receiving PDSCH data.
  • the modulation mechanism of PDSCH data may be a modulation method of PDSCH data or a modulation and coding scheme (modulation and coding scheme, MCS), and MCS may indicate the modulation method and/or coding rate.
  • the PDSCH data of one communication system and the reference signal of the other communication system need to reduce transmission interference.
  • NR PDSCH data and LTE CRS need to reduce transmission interference.
  • the NR PDSCH data can be repeatedly transmitted on the 2 n first OFDM symbols, and the 2 n first OFDM symbols are aligned with the reference signal in the time domain to reduce the transmission interference. It is also repetitive in the time domain and zero insertion in the frequency domain. .
  • Step 201 The terminal sends capability information to the network device.
  • the network device receives capability information from the terminal.
  • the capability information is used to indicate the analysis time required by the terminal to analyze the control information, the analysis time is less than a first threshold, and the first threshold is the minimum time interval between starting to analyze the control information and sending the uplink data.
  • the downlink data may be a physical uplink shared channel (PUSCH), or described as PUSCH data, PUSCH information, data transmitted through PUSCH, and so on.
  • the control information requires 3 OFDM symbols.
  • the capability information can be understood as how many OFDM symbols are required to resolve the control information.
  • the value of N3 is related to the subcarrier spacing of the control information.
  • the first threshold value can be represented by N2.
  • N2 is the minimum time interval between when the terminal starts analyzing control information and sending uplink data, which can be understood as the length of time for analyzing control information and the length of time for preparing to send uplink data. After the minimum. N2 can also be expressed by the number of OFDM symbols, and the value is related to the subcarrier spacing of the control information.
  • the terminal can report N2 and N3 to the network device together or separately, and N2 and/or N3 can also report to the network device together with other capability information of the terminal.
  • the terminal reports N3 to the network device so that the network device can flexibly configure the search space location for the terminal, for example, configure the search space location scheduled by the slot.
  • the PDCCH and the PDSCH scheduled by the PDCCH are in the same slot.
  • the 2 n first OFDM symbols that carry control information may be continuous in the time domain or discontinuous in the time domain within a slot.
  • the search space indicates which downlink resources may carry control information, and the search space position is the starting time domain position for receiving the control information.
  • Step 202 The network device sends second configuration information to the terminal.
  • the terminal receives the second configuration information from the network device.
  • the second configuration information is used to indicate the start time domain position of the received control information, and may be specifically used to indicate the start time domain position of the received control information in the slot.
  • the start time domain position of the control information, the sum of the time domain length of CORESET and the analysis time is less than the second threshold.
  • the second threshold is the length of the time unit.
  • the time unit can be a time slot, mini-slot, sub-frame, half-frame or Frames etc.
  • the time unit in the embodiment of the present application takes a time slot as an example.
  • the time domain length of CORESET is The resolution time is N3, and the starting time domain position of the control information is the starting time domain symbol position of the search space, which can be represented by a symbol index.
  • the second configuration information further includes one or more of CORESET ID, period and offset within period, search space ID, or search space type.
  • CORESET ID indicates the CORESET bound to the search space.
  • the period and the offset within the period indicate the period of the search space and the period offset.
  • the search space ID indicates the search space.
  • the search space type indicates the type of search space and the type of blind detection control information (ie, DCI type).
  • the type of search space is divided into a UE-specific search space (for a single UE) and a common search space (for a group of UEs).
  • the terminal does not expect the start time domain position, the sum of the CORESET time domain length and the resolution time to be greater than or equal to the time length of a slot, so the start time domain position, the sum of the CORESET time domain length and the resolution time Less than the second threshold, the second threshold is the time length of a slot. If the sum of the starting time domain position, the time domain length of CORESET, and the analysis time is greater than or equal to the second threshold, the terminal does not expect to receive the control information of this slot.
  • the terminal may determine the time-frequency resource of the control information according to the second configuration information and the CORESET configuration information.
  • the terminal receives the second configuration information and the CORESET configuration information, the terminal receives the control information according to the second configuration information and the CORESET configuration information in combination with the embodiment shown in FIG. 9.
  • the start time domain position of receiving control information indicated by the second configuration information is the ninth or tenth OFDM symbol in FIG. 6(B), and the ninth or tenth OFDM symbol in FIG. 6(B)
  • Each OFDM symbol is the time domain symbol corresponding to the LTE CRS on the fifth OFDM symbol in Fig. 6(A).
  • the network device can be in the ninth or The control information is transmitted on all subcarriers of the tenth OFDM symbol, which can not only avoid transmission interference, but also make the capacity of control information large enough to schedule more terminals to transmit PDSCH.
  • step 201 and step 202 can be performed separately from the embodiment shown in FIG. 9 or in combination with the embodiment shown in FIG. 9.
  • the embodiments of the present application also provide corresponding devices, and the devices include corresponding modules for executing the foregoing embodiments.
  • the module can be software, hardware, or a combination of software and hardware.
  • Figure 17 shows a schematic diagram of a device.
  • the apparatus 1700 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the foregoing method, or a chip, a chip system, or a chip that supports the terminal device to implement the foregoing method. Or processor, etc.
  • the device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the apparatus 1700 may include one or more processors 1701, and the processor 1701 may also be referred to as a processing unit, which may implement certain control functions.
  • the processor 1701 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process Software program data.
  • the processor 1701 may also store instructions and/or data 1703, and the instructions and/or data 1703 may be executed by the processor, so that the apparatus 1700 executes the above method embodiments. Described method.
  • the processor 1701 may include a transceiver unit for implementing receiving and sending functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces, or interface circuits used to implement the receiving and sending functions can be separate or integrated.
  • the foregoing transceiver circuit, interface, or interface circuit can be used for code/data reading and writing, or the foregoing transceiver circuit, interface, or interface circuit can be used for signal transmission or transmission.
  • the apparatus 1700 may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the device 1700 may include one or more memories 1702, on which instructions 1704 may be stored, and the instructions may be executed on the processor, so that the device 1700 can execute the foregoing method embodiments. Described method.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be provided separately or integrated together. For example, the corresponding relationship described in the foregoing method embodiment may be stored in a memory or in a processor.
  • the apparatus 1700 may further include a transceiver 1705 and/or an antenna 1706.
  • the processor 1701 may be referred to as a processing unit, and controls the device 1700.
  • the transceiver 1705 may be referred to as a transceiver unit, a transceiver, a transceiver circuit or a transceiver, etc., for implementing the transceiver function.
  • an apparatus 1700 may include: receiving control information on a first CCE; and on one or more second CCEs Receive control information; where the first CCE and one or more second CCEs are included in CORESET, CORESET includes N CCEs, N is an integer greater than 1, and the numbering of N CCEs meets the numbering rule of time domain and frequency domain . Therefore, when two communication systems share spectrum resources but use different SCS, the transmission interference between the two communication systems can be reduced.
  • CORESET includes M resource unit groups REG, the numbering of the M REGs meets the numbering rule of the frequency domain first and then the time domain, and M is an integer greater than 1.
  • REG numbering rules and CCE numbering rules is the basis for realizing repeated transmission in the time domain to reduce interference.
  • the control information is carried by resources other than the rate matching resources in the CORESET resource. This allows more resources to carry control information and fewer resources occupied by rate matching resources.
  • the first configuration information is received, and the rate matching resource is determined according to the first configuration information, and the subcarrier interval SCS corresponding to the rate matching resource is different from the SCS corresponding to the resource indicated by the first configuration information.
  • the capability information is sent, and the capability information indicates the resolution time required to resolve the control information.
  • the resolution time is less than or equal to a first threshold, and the first threshold is the minimum time interval between starting to analyze the control information and sending the uplink data.
  • Send the capability information so that the network device can flexibly configure the search space location according to the capability information.
  • the second configuration information is received, and the second configuration information configures the start time domain position of the received control information, and the sum of the start time domain position of the control information, the time domain length of CORESET and the resolution time is less than the second threshold, and
  • the second threshold is the length of the time domain of the time unit, and the time unit is a time slot, mini-slot, subframe, half frame, or frame.
  • the apparatus 1700 may also execute the method executed by the network device in the embodiment shown in FIG. 9.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), and P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the device described in the above embodiment may be a network device or a terminal device, but the scope of the device described in this application is not limited to this, and the structure of the device may not be limited by FIG. 17.
  • the device can be a standalone device or can be part of a larger device.
  • the device may be:
  • the IC collection may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • Figure 18 provides a schematic structural diagram of a terminal device.
  • the terminal device can be applied to the architecture shown in FIG. 8.
  • FIG. 18 only shows the main components of the terminal device.
  • the terminal device 1800 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal out in the form of electromagnetic waves through the antenna. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 18 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 18 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with the transceiving function can be regarded as the transceiving unit 1811 of the terminal device 1800
  • the processor with the processing function can be regarded as the processing unit 1812 of the terminal device 1800.
  • the terminal device 1800 includes a transceiver unit 1811 and a processing unit 1812.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 1811 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1811 as the sending unit, that is, the transceiver unit 1811 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the foregoing receiving unit and sending unit may be an integrated unit or multiple independent units.
  • the above-mentioned receiving unit and sending unit may be in one geographic location, or may be scattered in multiple geographic locations.
  • the device can be a terminal or a component of the terminal (for example, an integrated circuit, a chip, etc.).
  • the device may also be a network device, or a component of a network device (for example, an integrated circuit, a chip, etc.).
  • the device may also be another communication module, which is used to implement the method in the method embodiment of the present application.
  • the apparatus 1900 may include: a processing module 1902 (processing unit).
  • it may also include a transceiver module 1901 (transceiver unit) and a storage module 1903 (storage unit).
  • one or more modules in Figure 19 may be implemented by one or more processors, or by one or more processors and memories; or by one or more processors It can be implemented with a transceiver; or implemented by one or more processors, memories, and transceivers, which is not limited in the embodiment of the present application.
  • the processor, memory, and transceiver can be set separately or integrated.
  • the device has the function of realizing the terminal device described in the embodiment of this application.
  • the device includes a terminal device to execute the module or unit or means corresponding to the step related to the terminal device described in the embodiment of this application.
  • the function Or a unit or means (means) can be implemented by software, or by hardware, or by hardware executing corresponding software, or by a combination of software and hardware.
  • a unit or means can be implemented by software, or by hardware, or by hardware executing corresponding software, or by a combination of software and hardware.
  • the device has the function of implementing the network device described in the embodiment of this application.
  • the device includes the module or unit or means corresponding to the network device executing the steps involved in the network device described in the embodiment of this application.
  • the functions or units or means (means) can be realized by software, or by hardware, or by hardware executing corresponding software, or by a combination of software and hardware.
  • each module in the apparatus 1900 in the embodiment of the present application may be used to execute the method described in FIG. 9 in the embodiment of the present application.
  • an apparatus 1900 may include a transceiver module 1901 and a processing module 1902.
  • the transceiver module 1901 is configured to receive control information on a first CCE; and receive the control information on one or more second CCEs.
  • Control information wherein the first CCE and the one or more second CCEs are included in CORESET, the CORESET includes N CCEs, N is an integer greater than 1, and the number of the N CCEs meets the prior The numbering rule of the frequency domain after the domain. Therefore, when two communication systems share spectrum resources but use different SCSs, transmission interference between the two communication systems can be reduced.
  • the combination of REG numbering rules and CCE numbering rules is the basis for realizing repeated transmission in the time domain to reduce interference.
  • the CORESET includes M REGs, the numbering of the M REGs meets the numbering rule of the frequency domain first and then the time domain, and M is an integer greater than 1.
  • the combination of REG numbering rules and CCE numbering rules is the basis for realizing repeated transmission in the time domain to reduce interference.
  • the control information is determined by the resource of the CORESET Resource bearers other than the rate-matching resource. This allows more resources to carry control information and fewer resources occupied by rate matching resources.
  • the transceiver module 1901 is further configured to receive first configuration information; the processing module 1902 is further configured to determine the rate matching resource according to the first configuration information, and the SCS corresponding to the rate matching resource The SCS corresponding to the resource indicated by the first configuration information is different.
  • the transceiver module 1901 is further configured to send capability information, where the capability information indicates the resolution time required to resolve the control information, the resolution time is less than or equal to a first threshold, and the first threshold is Start parsing the minimum time interval between the control information and sending uplink data. Send the capability information so that the network device can flexibly configure the search space location according to the capability information.
  • the transceiver module 1901 is further configured to receive second configuration information that configures the start time domain position of receiving the control information, the start time domain position of the control information, and the The sum of the time domain length of the CORESET and the analysis time is less than a second threshold, and the second threshold is the time domain length of a time unit, and the time unit is a time slot, mini-slot, sub-frame, half-frame, or frame.
  • the apparatus 1900 may also execute the method executed by the network device in the embodiment shown in FIG. 9.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • processing units used to execute these technologies at communication devices can be implemented in one or more general-purpose processors, DSPs, digital signal processing devices, ASICs, Programmable logic device, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware component, or any combination of the foregoing.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example and can be configured to other values, which is not limited in this application.
  • it is not necessarily required to configure all the correspondences indicated in the tables.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles in the above tables may also be other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种控制信息传输方法及装置,其中方法包括:网络设备在第一CCE上发送控制信息,在一个或多个第二CCE上发送该控制信息;相应的,终端设备在第一CCE上接收该控制信息,在一个或多个第二CCE上接收该控制信息。其中,上述第一CCE和上述一个或多个第二CCE包括在CORESET中,该CORESET包括N个CCE,N为大于1的整数,这N个CCE的编号满足先时域后频域的编号规则。采用本申请实施例,在两个通信系统共享频谱资源但使用不同的SCS的情况下,可以降低两个通信系统之间的传输干扰。

Description

控制信息传输方法及装置
本申请要求于2019年07月30日提交中国专利局、申请号为201910697063.X、申请名称为“控制信息传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种控制信息传输方法及装置。
背景技术
随着通信技术的发展,新空口(new radio,NR)(或称第五代移动通信(5 th-generation,5G))系统应运而生。NR系统产生之后,并不会立即完全替代长期演进(long term evolution,LTE)系统,在较长时间内两者并存,两者可以共享相同的时域资源、频域资源、空域资源等空口资源。例如,为了提升小区覆盖并充分利用LTE系统中载波未使用的频谱资源,NR系统中的载波与LTE系统中载波可以部署在相同的频域资源上。
LTE系统可以支持15千赫兹(kHz)的子载波间隔(subcarrier spacing,SCS)。为了支持各种业务类型和/或应用场景,NR系统可以支持多种类型的子载波间隔,例如15kHz、30kHz、60kHz、120kHz等。若在共享的频谱资源上,LTE系统使用的SCS与NR系统使用的SCS不一致,将导致LTE系统与NR系统间的相互干扰。
发明内容
本申请实施例提供一种控制信息传输方法及装置,在两个通信系统共享频谱资源但使用不同的SCS的情况下,可以降低两个通信系统之间的传输干扰。
本申请实施例第一方面提供一种控制信息传输方法,该方法可以由终端执行,也可以由终端的部件(例如处理器、芯片、或芯片系统等)执行,包括:
在第一控制信道单元(control channel element,CCE)上接收控制信息;
在一个或多个第二CCE上接收该控制信息;
其中,上述第一CCE和上述一个或多个第二CCE包括在控制资源集(control resource set,CORESET)中,该CORESET包括N个CCE,N为大于1的整数,这N个CCE的编号满足先时域后频域的编号规则。
本申请实施例第一方面,在上述第一CCE上接收控制信息,在上述一个或多个第二CCE上接收该控制信息可以实现时域重复传输控制信息,进而可以降低共享频谱资源但使用不同SCS的两个通信系统之间的传输干扰,CCE编号满足先时域后频域的编号规则是实现时域重复传输降干扰的基础。
在一种可能的实现方式中,该CORESET包括M个资源单元组(resource element group,REG),这M个REG的编号满足先频域后时域的编号规则,M为大于1的整数。REG的编号规则与CCE的编号规则结合,是实现时域重复传输降干扰的基础。
在一种可能的实现方式中,上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,上述控制信息由该CORESET的资源中除该速率匹配 资源之外的资源承载,即在该CORESET的资源中除该速率匹配资源之外的资源可以承载控制信息。这样使得可以承载控制信息的资源更多,速率匹配资源占用的资源更少。
在一种可能的实现方式中,接收第一配置信息,根据第一配置信息确定速率匹配资源,该速率匹配资源对应的子载波间隔SCS与所述第一配置信息指示的资源对应的SCS不同。假设速率匹配资源对应的SCS为第一SCS,第一配置信息指示的资源对应的SCS为第二SCS,第一SCS为第二SCS的2 n倍,n为正整数。
其中,第一配置信息用于指示第二SCS对应的参考信号的资源,根据第二SCS对应的参考信号的资源以及第一SCS与第二SCS之间的关系,可确定速率匹配资源,该速率匹配资源即为第一SCS的带宽部分(bandwidth part,BWP)上的速率匹配资源,第二SCS对应的参考信号的资源即为第二SCS的速率匹配资源。
确定速率匹配资源,以便上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,可以确定在哪些资源上承载控制信息,在哪些资源上不承载控制信息。
在一种可能的实现方式中,发送能力信息,该能力信息指示解析该控制信息所需的解析时间,该解析时间小于或等于第一阈值,该第一阈值为开始解析所述控制信息与发送上行数据之间的最小时间间隔。发送能力信息,以便网络设备根据该能力信息可以灵活地为终端配置搜索空间位置。
在一种可能的实现方式中,接收第二配置信息,该第二配置信息配置接收该控制信息的起始时域位置,该控制信息的起始时域位置、CORESET的时域长度与该解析时间之和小于第二阈值,该第二阈值为时间单元的时域长度,时间单元为时隙、微时隙、子帧、半帧、或帧。
在一种可能的实现方式中,根据CORESET配置信息和第二配置信息可以确定CORESET的资源,即控制信息的资源。
在控制信息的资源中接收控制信息时,在上述第一CCE上接收该控制信息,在上述一个或多个第二CCE上接收该控制信息,CCE的编号规则为先时域后频域,既能避免传输干扰,又能使得控制信息的容量足够大以调度更多的终端传输下行数据。
本申请实施例第二方面提供一种通信装置,该通信装置可以是终端,也可以是终端中的装置,或者是能够与终端匹配使用的装置。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括收发模块。示例性的,
收发模块,用于在第一控制信道单元CCE上接收控制信息;在一个或多个第二CCE上接收该控制信息;
其中,上述第一CCE和上述一个或多个第二CCE包括在控制资源集CORESET中,该CORESET包括N个CCE,N为大于1的整数,这N个CCE的编号满足先时域后频域的编号规则。
在一种可能的实现方式中,该CORESET包括M个资源单元组REG,这M个REG的编号满足先频域后时域的编号规则,M为大于1的整数。REG的编号规则与CCE的编号规则结合,是实现时域重复传输避干扰的基础。
在一种可能的实现方式中,该装置还包括处理模块,处理模块用于确定上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,上述控制信息由该CORESET的资源中除该速率匹配资源之外的资源承载,即在该CORESET的资源中除该速率匹配资源之外的资源可以承载控制信息。这样使得可以承载控制信息的资源更多,速率匹配资源占用的资源更少。
在一种可能的实现方式中,收发模块,还用于接收第一配置信息;处理模块,还用于根据第一配置信息确定速率匹配资源,该速率匹配资源对应的子载波间隔SCS与所述第一配置信息指示的资源对应的SCS不同。假设速率匹配资源对应的SCS为第一SCS,第一配置信息指示的资源对应的SCS为第二SCS,第一SCS为第二SCS的2 n倍,n为正整数。
其中,第一配置信息用于指示第二SCS对应的参考信号的资源,处理模块根据第二SCS对应的参考信号的资源以及第一SCS与第二SCS之间的关系,可确定速率匹配资源,该速率匹配资源即为第一SCS的BWP上的速率匹配资源,第二SCS对应的参考信号的资源即为第二SCS的速率匹配资源。
处理模块确定速率匹配资源,以便上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,可以确定在哪些资源上承载控制信息,在哪些资源上不承载控制信息。
在一种可能的实现方式中,收发模块,还用于发送能力信息,该能力信息指示解析该控制信息所需的解析时间,该解析时间小于或等于第一阈值,该第一阈值为开始解析所述控制信息与发送上行数据之间的最小时间间隔。发送能力信息,以便网络设备根据该能力信息可以灵活地为终端配置搜索空间位置。
在一种可能的实现方式中,收发模块,还用于接收第二配置信息,该第二配置信息配置接收该控制信息的起始时域位置,该控制信息的起始时域位置、CORESET的时域长度与该解析时间之和小于第二阈值,该第二阈值为时间单元的时域长度,时间单元为时隙、微时隙、子帧、半帧、或帧。
在一种可能的实现方式中,处理模块,还用于根据CORESET配置信息和第二配置信息可以确定CORESET的资源,即控制信息的资源。
在控制信息的资源中接收控制信息时,在上述第一CCE上接收该控制信息,在上述一个或多个第二CCE上接收该控制信息,CCE的编号规则为先时域后频域,既能避免传输干扰,又能使得控制信息的容量足够大以调度更多的终端传输下行数据。
本申请实施例第三方面提供一种通信装置,该装置包括处理器,用于实现上述第一方面描述的方法。该装置还可以包括存储器,用于存储指令和数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的指令时,可以使该装置实现上述第一方面描述的方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备等。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于控制通信接口在第一控制信道单元CCE上接收控制信息;在一个或多个第二CCE上接收该控制信息;
其中,上述第一CCE和上述一个或多个第二CCE包括在控制资源集CORESET中,该CORESET包括N个CCE,N为大于1的整数,这N个CCE的编号满足先时域后频域的编号规则。
在一种可能的实现方式中,该CORESET包括M个资源单元组REG,这M个REG的编号满足先频域后时域的编号规则,M为大于1的整数。REG的编号规则与CCE的编号规则结合,是实现时域重复传输避干扰的基础。
在一种可能的实现方式中,处理器还用于确定上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,上述控制信息由该CORESET的资源中除该速率匹配资源之外的资源承载,即在该CORESET的资源中除该速率匹配资源之外的资源可以承载控制信息。这样使得可以承载控制信息的资源更多,速率匹配资源占用的资源更少。
在一种可能的实现方式中,处理器,还用于控制通信接口接收第一配置信息,根据第一配置信息确定速率匹配资源,该速率匹配资源对应的子载波间隔SCS与所述第一配置信息指示的资源对应的SCS不同。假设速率匹配资源对应的SCS为第一SCS,第一配置信息指示的资源对应的SCS为第二SCS,第一SCS为第二SCS的2 n倍,n为正整数。
其中,第一配置信息用于指示第二SCS对应的参考信号的资源,处理器具体可根据第二SCS对应的参考信号的资源以及第一SCS与第二SCS之间的关系,可确定速率匹配资源,该速率匹配资源即为第一SCS的BWP上的速率匹配资源,第二SCS对应的参考信号的资源即为第二SCS的速率匹配资源。
处理器确定速率匹配资源,以便上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,可以确定在哪些资源上承载控制信息,在哪些资源上不承载控制信息。
在一种可能的实现方式中,处理器,还用于控制通信接口发送能力信息,该能力信息指示解析该控制信息所需的解析时间,该解析时间小于或等于第一阈值,该第一阈值为开始解析所述控制信息与发送上行数据之间的最小时间间隔。发送能力信息,以便网络设备根据该能力信息可以灵活地为终端配置搜索空间位置。
在一种可能的实现方式中,处理器,还用于控制通信接口接收第二配置信息,该第二配置信息配置接收该控制信息的起始时域位置,该控制信息的起始时域位置、CORESET的时域长度与该解析时间之和小于第二阈值,该第二阈值为时间单元的时域长度,时间单元为时隙、微时隙、子帧、半帧、或帧。
在一种可能的实现方式中,处理器,还用于根据CORESET配置信息和第二配置信息可以确定CORESET的资源,即控制信息的资源。
在控制信息的资源中接收控制信息时,在上述第一CCE上接收该控制信息,在上述一个或多个第二CCE上接收该控制信息,CCE的编号规则为先时域后频域,既能避免传输干扰,又能使得控制信息的容量足够大以调度更多的终端传输下行数据。
本申请实施例第四方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第一方面提供的方法。
本申请实施例第五方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储 器,用于实现上述第一方面提供的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第六方面提供一种控制信息传输方法,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、或芯片系统等)执行,包括:
在第一控制信道单元CCE上发送控制信息;
在一个或多个第二CCE上发送所述控制信息;
其中,上述第一CCE和上述一个或多个第二CCE包括在控制资源集CORESET中,该CORESET包括N个CCE,N为大于1的整数,这N个CCE的编号满足先时域后频域的编号规则。
本申请实施例第六方面,在上述第一CCE上发送控制信息,在上述一个或多个第二CCE上发送该控制信息可以实现时域重复传输控制信息,进而可以降低共享频谱资源但使用不同SCS的两个通信系统之间的传输干扰,CCE编号满足先时域后频域的编号规则是实现时域重复传输避干扰的基础。
在一种可能的实现方式中,该CORESET包括M个资源单元组REG,这M个REG的编号满足先频域后时域的编号规则,M为大于1的整数。REG的编号规则与CCE的编号规则结合,是实现时域重复传输避干扰的基础。
在一种可能的实现方式中,上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,上述控制信息由该CORESET的资源中除该速率匹配资源之外的资源承载,即在该CORESET的资源中除该速率匹配资源之外的资源可以承载控制信息。这样使得可以承载控制信息的资源更多,速率匹配资源占用的资源更少。
在一种可能的实现方式中,发送第一配置信息,该第一配置信息用于确定速率匹配资源,该速率匹配资源对应的子载波间隔SCS与该第一配置信息指示的资源对应的SCS不同。假设速率匹配资源对应的SCS为第一SCS,第一配置信息指示的资源对应的SCS为第二SCS,第一SCS为第二SCS的2 n倍,n为正整数。
确定速率匹配资源,以便上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,可以确定在哪些资源上承载控制信息,在哪些资源上不承载控制信息。
在一种可能的实现方式中,接收能力信息,该能力信息指示解析该控制信息所需的解析时间。在接收到该能力信息的情况下,可根据该能力信息可以灵活地配置的搜索空间位置,即接收该控制信息的起始时域位置。
在一种可能的实现方式中,发送第二配置信息,该第二配置信息配置该控制信息的起始时域位置,该控制信息的起始时域位置、CORESET的时域长度与该解析时间之和小于第二阈值,该第二阈值为时间单元的时域长度,时间单元为时隙、微时隙、子帧、半帧、或帧。
本申请实施例第七方面提供一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置,或者是能够与网络设备匹配使用的装置。一种设计中,该装置可以包括执行第六方面中所描述的方法/操作/步骤/动作所对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括收发模块。示 例性的,
收发模块,用于在一个或多个第二CCE上发送所述控制信息;
其中,上述第一CCE和上述一个或多个第二CCE包括在控制资源集CORESET中,该CORESET包括N个CCE,N为大于1的整数,这N个CCE的编号满足先时域后频域的编号规则。
在一种可能的实现方式中,该CORESET包括M个资源单元组REG,这M个REG的编号满足先频域后时域的编号规则,M为大于1的整数。REG的编号规则与CCE的编号规则结合,是实现时域重复传输避干扰的基础。
在一种可能的实现方式中,该装置还包括处理模块,处理模块用于确定上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,上述控制信息由该CORESET的资源中除该速率匹配资源之外的资源承载,即在该CORESET的资源中除该速率匹配资源之外的资源可以承载控制信息。这样使得可以承载控制信息的资源更多,速率匹配资源占用的资源更少。
在一种可能的实现方式中,收发模块,还用于发送第一配置信息,该第一配置信息用于确定速率匹配资源,该速率匹配资源对应的子载波间隔SCS与该第一配置信息指示的资源对应的SCS不同。假设速率匹配资源对应的SCS为第一SCS,第一配置信息指示的资源对应的SCS为第二SCS,第一SCS为第二SCS的2 n倍,n为正整数。
确定速率匹配资源,以便上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,可以确定在哪些资源上承载控制信息,在哪些资源上不承载控制信息。
在一种可能的实现方式中,收发模块,还用于接收能力信息,该能力信息指示解析该控制信息所需的解析时间。在接收到该能力信息的情况下,处理模块可根据该能力信息可以灵活地配置搜索空间位置,即接收该控制信息的起始时域位置。
在一种可能的实现方式中,收发模块,还用于发送第二配置信息,该第二配置信息配置该控制信息的起始时域位置,该控制信息的起始时域位置、CORESET的时域长度与该解析时间之和小于第二阈值,该第二阈值为时间单元的时域长度,时间单元为时隙、微时隙、子帧、半帧、或帧。
本申请实施例第八方面提供一种通信装置,该装置包括处理器,用于实现上述第六方面描述的方法。该装置还可以包括存储器,用于存储指令和数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的指令时,可以使该装置实现上述第六方面描述的方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为终端等。在一种可能的设计中,该装置包括:
存储器,用于存储程序指令;
处理器,用于控制通信接口在一个或多个第二CCE上发送所述控制信息;
其中,上述第一CCE和上述一个或多个第二CCE包括在控制资源集CORESET中,该CORESET包括N个CCE,N为大于1的整数,这N个CCE的编号满足先时域后频域的编号规则。
在一种可能的实现方式中,该CORESET包括M个资源单元组REG,这M个REG的编号满足先频域后时域的编号规则,M为大于1的整数。REG的编号规则与CCE的编号规则结合,是实现时域重复传输避干扰的基础。
在一种可能的实现方式中,处理器还用于确定上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,上述控制信息由该CORESET的资源中除该速率匹配资源之外的资源承载,即在该CORESET的资源中除该速率匹配资源之外的资源可以承载控制信息。这样使得可以承载控制信息的资源更多,速率匹配资源占用的资源更少。
在一种可能的实现方式中,处理器,还用于控制通信接口发送第一配置信息,该第一配置信息用于确定速率匹配资源,该速率匹配资源对应的子载波间隔SCS与该第一配置信息指示的资源对应的SCS不同。假设速率匹配资源对应的SCS为第一SCS,第一配置信息指示的资源对应的SCS为第二SCS,第一SCS为第二SCS的2 n倍,n为正整数。
确定速率匹配资源,以便上述第一CCE和上述一个或多个第二CCE中的任意一个CCE的资源与速率匹配资源重合时,可以确定在哪些资源上承载控制信息,在哪些资源上不承载控制信息。
在一种可能的实现方式中,处理器,还用于控制通信接口接收能力信息,该能力信息指示解析该控制信息所需的解析时间。在接收到该能力信息的情况下,处理器可根据该能力信息可以灵活地配置搜索空间位置,即接收该控制信息的起始时域位置。
在一种可能的实现方式中,处理器,还用于控制通信接口发送第二配置信息,该第二配置信息配置该控制信息的起始时域位置,该控制信息的起始时域位置、CORESET的时域长度与该解析时间之和小于第二阈值,该第二阈值为时间单元的时域长度,时间单元为时隙、微时隙、子帧、半帧、或帧。
本申请实施例第九方面提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行第六方面提供的方法。
本申请实施例第十方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第六方面提供的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第十一方面提供一种通信系统,该系统包括第三方面提供的终端和第七方面提供的网络设备;或包括第四方面提供的终端和第八方面提供的网络设备。
附图说明
图1为参考信号占用的时频资源的示例图;
图2为循环前缀的一种示例图;
图3为循环前缀的另一种示例图;
图4为循环后缀的一种示例图;
图5a为一种非交织映射的示例图;
图5b为一种交织映射的示例图;
图6(A)为一种资源栅格的示例图;
图6(B)为另一种资源栅格的示例图;
图7(A)为对应于图6(A)的频谱示意图;
图7(B)为对应于图6(B)的频谱示意图;
图8为应用本申请实施例的网络架构示意图;
图9为本申请实施例提供的控制信息传输方法的流程示意图;
图10a为本申请实施例提供的非交织映射的示例图;
图10b为本申请实施例提供的交织映射的示例图;
图11为本申请实施例提供的循环前缀和循环后缀的示例图;
图12为本申请实施例提供的重复传输控制信息的一种示例图;
图13a为本申请实施例提供的循环前缀的一种示例图;
图13b为本申请实施例提供的循环前缀的另一种示例图;
图14为本申请实施例提供的重复传输控制信息的另一种示例图;
图15(A)为本申请实施例提供的一种频谱示意图;
图15(B)为本申请实施例提供的另一种频谱示意图;
图15(C)为本申请实施例提供的又一种频谱示意图;
图15(D)为本申请实施例提供的又一种频谱示意图;
图16(A)为本申请实施例提供的一种资源栅格的示例图;
图16(B)为本申请实施例提供的另一种资源栅格的示例图
图17为本申请实施例提供的通信装置的结构示意图;
图18为本申请实施例提供的一种终端设备的结构示意图;
图19为本申请实施例提供的通信装置的另一种结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同或相似的技术特征进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
为了便于理解,下面对本申请实施例涉及的术语或技术进行介绍。
1、资源栅格、资源元素(resource element,RE)、时隙、资源块(resource block,RB)
资源栅格,用于表示进行数据传输的时频资源。
RE是用于进行数据传输的资源单位,或者用于对待发送数据进行资源映射的资源单位。一个RE可以用于映射一个复数符号,例如经过调制得到的复数符号,或者经过预编码得到的复数符号。例如,一个RE在时域对应于1个符号,在频域对应于1个子载波。符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、离散傅里叶变换扩频的正交频分复用(discrete fourier transform spread spectrum orthogonal frequency division multiplexing,DFT-S-OFDM)符号等。本申请实施例中以OFDM符号为例。
在资源栅格或时频资源的时域可以定义时隙(slot),一个时隙可以包括正整数个符号,例如7个、14个、6个或12个。一个子帧可以包括正整数个时隙。示例性地,对于支持多种子载波间隔的系统,当子载波间隔为15千赫兹(kHz)时,一个子帧中包括1个时隙;当子载波间隔为30kHz时,一个子帧中包括2个时隙;当子载波间隔为60kHz时,一个子帧中包括4个时隙。
在频域,在资源栅格中可以定义RB。在频域一个RB中可以包括正整数个子载波,例如6个或12个。RB的定义还可以扩展到时域,例如一个RB在频域包括正整数个子载波且时域包括正整数个符号,例如一个RB是频域包括12个子载波且时域包括7个或14个符号的时频资源块。
在本申请实施例中,子载波编号或子载波索引可以从“0”开始,OFDM符号的编号或索引也可以从“0”开始。在带宽部分(bandwidth part,BWP)中,RE的子载波编号可以为0~12*K-1,K为该BWP在频域上包含的RB的数目。
在本申请实施例中,RE的索引包括子载波编号以及OFDM符号的编号。RE的索引可以表示为(k,l)。其中,k表示子载波编号,l表示OFDM符号的编号。结合图1进行举例说明,图1所示的资源栅格中每一行表示一个子载波,每一列表示一个OFDM符号,每一个方块代表一个RE。示例性地,图1所示的资源栅格中左下角的第一个RE的索引为(0,0)。
为了便于描述,本申请实施例可以使用(k,l)代表对应的RE,在此统一说明,以下不再赘述。
2、子载波间隔、OFDM符号、循环前缀、循环后缀
通信系统可以支持多种参数集(numerologies)。numerology可以通过以下参数信息中的一个或多个定义:子载波间隔,循环前缀(cyclic prefix,CP),时间单位,带宽等。例如,numerology可以由子载波间隔和CP来定义。
子载波间隔用于描述子载波的带宽或者描述相邻子载波之间的间隔,可以为大于“0”的整数,例如15kHz、30kHz、60KHz、120KHz、240KHz、480KHz等。不同子载波间隔可以为2的整数倍,也可以设计为其他的值。
CP信息可以包括CP长度和/或CP类型。例如,CP可以为普通CP(normal CP,NCP),或者扩展CP(extended CP,ECP)。
时间单位用于表示时域内的时间单元,例如可以为采样点,符号,微时隙,时隙,子帧,或者无线帧等等。时间单位的信息可以包括时间单位的类型,长度,或者结构等。时间单位长度例如可以是:时隙中包括的符号个数、和/或子帧中包括的符号或时隙个数、和 /或无线帧中包括的子帧或时隙个数。
OFDM符号是时域资源的基本单位。OFDM符号中可以包括有用信号和循环前缀,或者OFDM符号中可以包括有用信号和循环后缀,或者OFDM符号中包括有用信号(即不包括循环前缀和循环后缀)。有用信号也可以称为时域信号。OFDM符号的有效长度即为有用信号的长度。OFDM符号的长度等于OFDM符号的有效长度与循环前缀的长度之和。一个时隙中可以包括正整数个OFDM符号。例如,对于普通(normal)CP,一个时隙可以包括14个OFDM符号。对于扩展(extended)CP,1个时隙可以包含12个OFDM符号。本申请实施例以1个时隙包含14个OFDM符号为例。在1个时隙中,14个OFDM符号按照从小到大的顺序依次编号,也就是说,一个时隙包含OFDM符号#0~OFDM符号#13。其中,OFDM符号#X,表示该OFDM符号的编号为X。
需要说明的是,OFDM符号的长度反比于子载波间隔。换句话说,随着子载波间隔的增大,OFDM符号的长度减小。
与OFDM符号的长度相似,时隙的长度也反比于子载波间隔。换句话说,随着子载波间隔的增大,时隙的长度减少。
示例性的,表1示出子载波间隔与OFDM符号的长度、时隙的长度之间的对应关系。
表1
Figure PCTCN2020103749-appb-000001
循环前缀是将OFDM符号中有用信号的最后一部分复制到OFDM符号的头部。从而,OFDM符号包括循环前缀和有用信号,循环前缀用于使得OFDM符号的传输可以抵抗符号间干扰(inter-symbol interference,ISI)和信道间干扰(inter-channel interference,ICI)。
如图2所示,以15kHz的SCS的OFDM符号为例,OFDM符号中有用信号包括2048个采样点,循环前缀包括有用信号的最后144个采样点(也即1905~2048号采样点)。
如图3所示,以30kHz的SCS的OFDM符号为例,OFDM符号中有用信号包括1024个采样点,循环前缀包括有用信号的最后72个采样点(也即953~1024号采样点)。
对于同一SCS的不同的OFDM符号来说,不同OFDM符号的循环前缀的长度可以相同,也可以不同。从表1可以看出,以15kHz的SCS的OFDM符号为例,由于一个采样点的绝对时间长度为1/(2048*15*1000)秒,为了使得1个时隙所包含的14个OFDM符号的绝对时间长度为1ms,对于每0.5ms中的7个OFDM符号来说,第一个OFDM符号的循环前缀的长度为160个采样点,其他6个OFDM符号的循环前缀的长度为144个采样点。
循环后缀是将OFDM符号中有用信号的前面一部分复制到OFDM符号的尾部。从而,OFDM符号包括有用信号和循环后缀,循环后缀用于使得OFDM符号能够抵抗ISI和ICI。
如图4所示,以30kHz的SCS的OFDM符号为例,OFDM符号中有用信号包括1024个采样点,循环后缀包括有用信号的前面72个采样点(也即1~72号采样点)。
在本申请实施例中,为了便于描述,采样点可以均是基于15kHz的SCS的采样点,也即上述15kHz信号采样点的时域长度或相邻采样点之间的时间间隔均为Ts,以下不再赘述。
可以理解的是,若30kHz SCS对应的信号的快速傅立叶变换(fast Fourier transformation,FFT)的点数(size)为2048,30kHz SCS的OFDM符号中有用信号也包括2048个采样点。此时,30kHz信号的采样点的时域长度为实际上为1/(2048*30000)秒,等于Ts/2,即可认为30kHz SCS的OFDM符号的有用信号包括1024个15kHz SCS的采样点。
3、参考信号(reference signal,RS)
参考信号是用于信道估计、信道探测、数据解调、或信道测量的一种已知信号。在本申请实施例中,LTE系统中的参考信号可以包括LTE的小区特定参考信号(cell-specific reference signal,CRS)、LTE的信道状态信息参考信号(channel state information-reference signal,CSI-RS)或LTE的解调参考信号(demodulation reference signal,DMRS)中的一种或多种;NR系统中的参考信号可以包括NR的CSI-RS和/或NR的DMRS。本申请实施例中的参考信号以LTE CRS为例。
LTE系统中,基站可以向终端发送CRS,终端利用CRS进行信道估计,并根据信道估计结果解调基站向终端发送的数据信道或控制信道,从而获得基站为终端发送的数据信息或控制信息。为了支持多输入多输出(multi-input multi-output,MIMO),基站可以通过一个或多个天线端口向终端发送CRS,例如通过一个或2个或4个天线端口向终端发送CRS。
示例性的,可参见图1所示的LTE的参考信号占用的时频资源的示例图,该示例图可以表示LTE CRS通过一个天线端口发送时占用的时频资源,图1中黑色方块表示LTE CRS占用的时频资源。
LTE CRS实际占用的RE资源与LTE CRS的偏移值(shift)有关,LTE CRS的shift为LTE载波的物理小区标识(identity,ID)模(mod)6。其中,LTE CRS的shift表示LTE CRS的时频资源在频域的移位。例如,LTE CRS的shift为“0”时,通过一个天线端口发送LTE CRS时占用的时频资源如图1所示,例如第1个符号占用第1个子载波、第6个子载波;LTE CRS的shift为“1”时,通过一个天线端口发送LTE CRS时占用的时频资源在图1的基础上移位1个子载波,例如第1个符号占用第2个子载波、第7个子载波,第5个符号占用第5个子载波、第11个子载波。可以理解的是,LTE CRS的shift为“K”时,在图1的基础上循环移位K个子载波。
4、物理下行控制信道(physical downlink control channel,PDCCH)、聚合等级
PDCCH的传输以控制信道单元(control channel element,CCE)的形式,即CCE是PDCCH传输的最小资源单位。一个PDCCH可以包括一个或多个CCE,一个PDCCH包括的CCE的数量由聚合等级(aggregation level,AL)确定,具体可参见表2。
表2
聚合等级 CCE的数量
1 1
2 2
4 4
8 8
16 16
1个CCE可以传输1个下行控制信息(downlink control information,DCI)。如果终端在远处,信号较差,无法解调PDCCH,因此需要采用提高聚合等级的方式以提高PDCCH的接收性能,使得远端终端也能顺利解调PDCCH。
一个CCE包括6个资源单元组(resource element group,REG),一个REG在时域上占用1个OFDM符号,在频域上占用1个RB。一个CCE包括72个RE,一个RE承载2比特(bits),除去PDCCH DMRS占用一个REG内的3个RE,一个CCE可以承载108比特。
REG可以以时间优先(time-first)的方式先组成REG束(bundle),再以REG bundle为粒度交织或非交织地映射到控制资源上。1个REG bundle由一组在时域和/或频域上连续的REG组成,1个REG bundle的大小等于频域上REG的大小乘以时域上OFDM符号的大小,可通过高层参数CORESET-REG-bundle-size指示。
NR系统中引入控制资源集(control resource set,CORESET)的概念,一个CORESET表示一个用于承载PDCCH的时频资源集合。1个CORESET在频域上包括一个或多个RB,可表示为
Figure PCTCN2020103749-appb-000002
可由高层参数control resource set信息单元(information element,IE)中的frequency domain resources指示。1个CORESET在时域上包括1个、2个或3个OFDM符号,可表示为
Figure PCTCN2020103749-appb-000003
Figure PCTCN2020103749-appb-000004
可由高层参数control resource set IE中的duration指示,当高层参数duration=3,即duration所指示的CORESET的符号数量为3时,
Figure PCTCN2020103749-appb-000005
1个CORESET包括的REG的个数可表示为
Figure PCTCN2020103749-appb-000006
1个CORESET的CCE-REG的映射方式包括交织(interleaved)映射和非交织(non-interleaved)映射,实际采用哪种映射可通过高层参数CORESET-CCE-REG-mapping-type指示。高层参数可配置多个CORESET,一个CORESET对应1种CCE-REG的映射方式。
REG bundle的大小可表示为L,第i个REG bundle可表示为1个REG集合
Figure PCTCN2020103749-appb-000007
第j个CCE由1个REG bundle集合{f(6j/L),f(6j/L+1),...,f(6j/L+6/L-1)}组成,其中f(j)表示映射关系,该映射关系可通过交织器实现。
对于非交织映射,映射关系可表示为f(j)=j。示例性的,可参见图5a为一种非交织 映射的示例图。图5a中,L=2,
Figure PCTCN2020103749-appb-000008
那么
Figure PCTCN2020103749-appb-000009
Figure PCTCN2020103749-appb-000010
可得i∈{0,1,..,23},即包括24个REG bundle,编号为0,1,…,23,1个REG bundle包括2个REG,1个CCE由6个REG组成,该CORESET包括8个CCE,编号为0,1…,7。图5a中,CCE 0在时域上包括2个OFDM符号,在频域上包括3个RB,即REG0~REG5。图5a以及图5b中,REG的编号规则为先时域后频域,CCE的编号体现在频域上的增长。
对于交织映射,当CORESET持续时间长度为1时,即CORESET的时域符号为1个时,REG bundle的大小为{2,6};当CORESET持续时间长度为{2,3}时,REG bundle的大小为{2/3,6}。映射关系可表示为
Figure PCTCN2020103749-appb-000011
其中j=c×R+r;r=0,1,...,R-1;c=0,1,...,C-1;
Figure PCTCN2020103749-appb-000012
mod表示求余运算。R表示交织器大小,取值为{2,3,6},由高层参数CORESET-interleaver-size指示。n shift表示移位值,当CORESET由物理广播信道(physical broadcast channel,PBCH)或系统消息块(system information block,SIB)1配置时,n shift大于等于物理小区ID;n shift由高层参数CORESET-shift-index指示时,其取值范围为0~274。C为整数。
示例性的,可参见图5b,为一种交织映射的示例图。图5b中,L=2,
Figure PCTCN2020103749-appb-000013
n shift=0,R=3,那么
Figure PCTCN2020103749-appb-000014
C=8,由
Figure PCTCN2020103749-appb-000015
可得i∈{0,1,..,23},即该CORESET包括24个REG bundle,编号为0,1,…,23,1个REG bundle包括2个REG,1个CCE由6个REG组成,该CORESET包括8个CCE,编号为0,1…,7。根据交织映射的交织器表达式可得表3。
表3
r c j=c×R+r f(j)
0 0 0 f(0)=0
1 0 1 f(1)=(8)mod 24=8
2 0 2 f(2)=(2×8)mod 24=16
0 1 3 f(3)=(1)mod 24=1
1 1 4 f(4)=(1×8+1)mod 24=9
2 1 5 f(5)=(2×8+1)mod 24=17
根据表3可得图5b中的交织映射和REG bundle行存列取的交织表达,例如CCE 0由REG bundle集合{f(0),f(1),f(2)}组成,取值分别为0,8,16;1个REG bundle在时域包括两个OFDM符号在频域包括一个RB,因此f(0)映射至REG 0和REG1,f(1)映射至REG 16和REG 17,f(2)映射至REG 32和REG 33,那么CCE 0由REG 0、REG 1、REG 16、REG 17、REG 32和REG 33组成。再例如,CCE 1由REG 2、REG 3、REG 18、REG 19、REG 34和REG 35组成。
slot调度(也可以称为类型(Type)A),指的是PDCCH调度的物理下行共享信道(physical downlink shared channel,PDSCH)的起始符号位置可以是{0,1,2,3},PDCCH可以位于一个slot的前3个OFDM符号中的一个或多个OFDM符号。本slot调度指的是PDCCH和该PDCCH调度的PDSCH位于同一个slot内。跨slot调度指的是PDCCH可以跨slot调度PDSCH,PDCCH与该PDCCH调度的PDSCH位于不同的slot,且传输该PDCCH的slot早于传输该PDSCH的slot。mini-slot调度(也可以称为类型(Type)B),指的是PDCCH调度的PDSCH的起始符号位置可以是{0,…,12},PDCCH可以位于slot内的任意符号,不过PDCCH占用的符号在该PDCCH调度的PDSCH占用的符号之前。
对于15kHz、30kHz、60kHz或120kHz SCS对应的PDCCH,本slot调度下的PDCCH可以位于一个slot的前3个OFDM符号,即在一个slot的前3个OFDM符号上映射PDCCH,所映射的PDCCH可以调度PDSCH,所调度的PDSCH和PDCCH在同一个slot内。对于15kHz SCS对应的PDCCH,非前3个OFDM符号的PDCCH可以跨slot调度PDSCH,所调度的PDSCH和PDCCH在不同的slot,且PDCCH传输的slot早于PDSCH传输的slot。位于任意OFDM符号的PDCCH可以微时隙(mini-slot)调度PDSCH。
其中,mini-slot包括两个或两个以上的OFDM符号,不过mini-slot所包括的OFDM符号数量小于slot所包括的OFDM符号数量,例如slot包括14个OFDM符号,mini-slot包括7个OFDM符号。其中,PDCCH调度PDSCH也可以描述为DCI调度PDSCH,或控制信息调度PDSCH等。
slot调度、mini-slot调度的PDSCH的起始符号位置和时域长度可参见表4。
表4
Figure PCTCN2020103749-appb-000016
表4中备注1:仅当DL-DMRS-typeA-pos=3时,S=3,指的是只有DMRS的位置在符 号3时,slot调度(TypeA)的起始符号位置才可以等于3。由表4可知,对于slot调度和mini-slot调度,起始符号位置与时域长度之和均不会超过一个slot所包括的符号数目。
随着通信技术的发展,不同通信系统之间可以共享资源,例如LTE系统与NR系统可以共享频谱资源。在LTE系统与NR系统共享频谱资源中,为了支持LTE系统的正常通信,NR系统在使用LTE系统未使用的资源时,不能使用LTE系统的特定信号或者特定信道使用的资源。例如NR系统在共享频谱资源中不能使用LTE的CRS和/或LTE的PDCCH要映射至的资源。即,在共享频谱资源中,NR需要在LTE的特定信号要映射至的资源上进行速率匹配。本申请实施例以NR PDCCH在LTE的CRS要映射至的资源上进行速率匹配为例进行描述。
LTE系统支持15kHz的SCS。为了支持各种业务需求和/或应用场景,NR系统可以支持多种类型的子载波间隔,例如15kHz、30kHz、60kHZ、120kHz等。当LTE系统和NR系统共享频谱资源时,LTE系统和NR系统既可以使用相同的子载波间隔,也可以使用不同的子载波间隔。
NR系统在LTE的CRS要映射至的资源上进行速率匹配时,如果LTE系统和NR系统均使用15kHz的时频资源,在共享频谱资源中,NR系统在用于映射LTE的CRS的RE上不映射PDSCH。例如,在共享频谱资源中,15kHz的SCS对应的NR PDSCH不映射到用于承载LTE的CRS的RE上,可以使得15kHz的SCS对应的NR PDSCH与LTE的CRS之间互不干扰,同时15kHz的SCS对应的NR PDSCH能够充分利用LTE的CRS未使用的时频资源,从而可以提高共享资源的利用率。其中,LTE的CRS要映射至的资源还可以描述为:用于映射LTE的CRS的资源、LTE的CRS将要占用的资源、LTE的CRS的候选资源或LTE的CRS对应的资源等。
然而,若NR系统采用的SCS与LTE系统采用的SCS不同,NR系统在LTE的CRS对应的资源上做速率匹配时,可能无法避免NR PDSCH与LTE的CRS之间的互相干扰。示例性的,以NR系统采用的SCS为30kHz,LTE系统采用的SCS为15kHz为例,结合图6(A)和图6(B)进行说明。图6(A)所示的资源栅格对应LTE系统采用15kHz的SCS,图6(B)所示的资源栅格对应NR系统采用30kHz的SCS。图6(A)所示资源栅格的带宽为15kHz×24=360kHz,时间长度为一个slot,即为1ms。图6(B)所示资源栅格的带宽为30kHz×12=360kHz,时间长度为2个slot,即为1ms。那么,图6(A)所示的资源栅格和图6(B)所示的资源栅格是针对相同的时频资源,该时频资源的带宽为360kHz,时间长度为1ms。在图6(A)中,黑色方块表示承载LTE的CRS的RE的位置。在图6(B)中,黑色方块表示不映射NR PDSCH的RE的位置。可见,当NR PDSCH在图6(B)所示的资源栅格上传输时,NR PDSCH在LTE CRS对应的RE上进行速率匹配。在相同的时频资源中,NR PDSCH进行速率匹配的RE中和LTE CRS对应的RE中存在重叠部分。
图6(A)所示的资源栅格中共包括第1个至第14个共14个OFDM符号。图7(A)为LTE的CRS在图6(A)所示的资源栅格中的第5个OFDM符号上的频谱示意图,图7(A)中加粗的黑色箭头表示用于承载LTE CRS的子载波,虚线表示不用于承载LTE CRS的子载波,相邻子载波之间的间隔为15kHz。图6(B)所示的资源栅格中共包括第1个至第28个共28个OFDM符号。图7(B)为图6(B)所示的资源栅格中第9或第10个OFDM 符号上的频谱示意图。图7(B)中实线的单向箭头表示可以承载NR PDSCH的子载波,虚线的单向箭头表示不可以承载NR PDSCH的子载波(用于进行速率匹配),相邻子载波之间的间隔为30kHz。图7(B)中加粗的双向箭头用于描述在图6(A)所示的第5个时域符号上或者在图6(B)所示的第9或第10个时域符号上,在用于承载LTE CRS的子载波位置上,NR PDSCH的信号可能会对LTE CRS造成的干扰。
图7(B)中包括子载波#0至子载波#11共12个30kHz子载波。从图7(B)中可以看出,30kHz的子载波#2的信号能量在15kHz的子载波#3的位置处(LTE CRS位置处)是非零的,30kHz的子载波#3的信号能量在15kHz的子载波#3的位置处是非零的,那么30kHz的子载波#2与15kHz的子载波#3不正交,30kHz的子载波#3与15kHz的子载波#3不正交。即,15kHz的子载波#3上的LTE CRS可能会受到NR PDSCH的干扰;15kHz的子载波#3上的LTE CRS同样可能会干扰NR PDSCH。
可见,在LTE系统和NR系统共享频谱资源但使用不同SCS的场景下,由于一个SCS的部分子载波与另一个SCS的部分子载波不正交,NR PDSCH与LTE CRS会互相干扰。进一步的,NR PDCCH与LTE CRS也会互相干扰。
当LTE CRS通过4个天线端口传输时,LTE CRS在15kHz SCS的时频资源上占用的OFDM符号的索引(从0开始编号)为#0、#1、#4、#7、#8和#11,将其映射至30kHz SCS的时频资源上占用的OFDM符号的索引(从0开始编号)可能为#0、#1、#2、#3、#8和#9,由于DCI不支持速率匹配,导致在30kHz SCS的时频资源上无法传输NR系统slot调度的PDCCH。
鉴于在LTE系统和NR系统共享频谱资源但使用不同SCS的场景下,NR PDCCH与LTE CRS之间会相互干扰,本申请实施例提供一种控制信息传输方法及装置,可以降低NR PDCCH与LTE CRS之间的传输干扰。进一步的,在两个支持不同SCS的通信系统共频段部署的场景下,本申请实施例可以降低两个通信系统之间的传输干扰。其中,两个支持不同SCS的通信系统共频段部署的场景,包括但不限于:NR系统与LTE系统共频段部署的场景,两个NR网络共频段部署的场景,LTE系统或NR系统与未来通信系统共频段部署的场景等。
请参见图8,为应用本申请实施例的网络架构示意图,该网络架构包括网络设备和终端,图8所示的网络设备和终端的数量和形态并不构成对本申请实施例的限定,例如实际应用中该网络架构包括多个网络设备和多个终端。
本申请中,网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(evolutional Node B,NodeB或eNB或e-NodeB),NR中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),3GPP后续演进的基站,无线保真(wireless fidelity,WiFi)系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或,分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备 等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端进行通信,也可以通过中继站与终端进行通信。终端可以与不同技术的多个基站进行通信,例如,终端可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面将基于图8所示的网络架构,结合附图对本申请实施例提供的控制信息传输方法进行介绍。需要说明的是,介绍过程中,终端与网络设备之间交互的信息或数据的名称用于举例,并不构成对本申请实施例的限定。
请参见图9,为本申请实施例提供的控制信息传输方法的流程示意图,该流程可以包括但不限于如下步骤:
步骤101a,网络设备在第一CCE上向终端发送控制信息。相应的,步骤101b,终端在第一CCE上从网络设备接收该控制信息。
步骤102a,网络设备在一个或多个第二CCE上向终端发送该控制信息。相应的,步骤102b,终端在一个或多个第二CCE上从网络设备接收该控制信息。
本申请实施例不限定各端的步骤执行先后顺序,例如对于网络设备,步骤101a和步骤102a可同时执行,也可以先执行步骤101a再执行步骤102a,或先执行步骤102a再执行步骤101a。再例如,对于终端,步骤101b和步骤102b可同时执行,也可以先执行步骤101b再执行步骤102b,或先执行步骤102b再执行步骤101b。对于交互流程,终端可以在网络设备执行完步骤101a和步骤102a之后,执行步骤101b和步骤102b;终端也可以在网络设备执行步骤101a之后执行步骤101b,在网络设备执行步骤102a之后执行步骤102b。
其中,控制信息可以是网络设备向终端发送的各种类型的控制信息,例如可以是DCI等信息。该控制信息可以是NR系统中的控制信息,或未来通信系统中的控制信息。控制 信息通过PDCCH或CCE传输,CCE是PDCCH传输的最小资源单位。PDCCH与参考信号对应不同的SCS,例如PDCCH为NR系统中30kHz SCS对应的NR PDCCH,参考信号为LTE系统中15kHz SCS对应的LTE CRS;再例如PDCCH为NR系统中30kHz SCS对应的NR PDCCH,参考信号为NR系统中15kHz SCS对应的NR CRS。本申请实施例中,PDCCH以NR系统中30kHz SCS对应的NR PDCCH,参考信号以LTE系统中15kHz SCS对应的LTE CRS为例进行描述。PDCCH与参考信号对应不同的SCS,也可以描述为控制信息占用的时频资源对应的SCS与参考信号占用的时频资源对应的SCS不同。
一个PDCCH包括的CCE的数量与聚合等级有关。在一种可能的实施方式下,一个PDCCH包括的CCE数量等于聚合等级。对于大于1的聚合等级,其聚合的CCE包括一个第一CCE和一个或多个第二CCE,其中该一个或多个第二CCE的数量等于聚合等级减1。默认第一CCE的数量为一个,一个或多个第二CCE的数量与聚合等级有关。聚合等级为2,则包括一个第二CCE,这一个第二CCE与第一CCE传输相同的控制信息。聚合等级为4,则包括三个第二CCE,这三个第二CCE与第一CCE传输相同的控制信息。以此类推其他聚合等级下第二CCE的数量。
第一CCE和一个或多个第二CCE包括在CORESET中,该CORESET包括N个CCE,N的具体数值可以由CORESET配置信息确定。这N个CCE的编号满足先时域后频域的编号规则。与图5a和图5b中CCE的编号规则不同,图5a和图5b中CCE的编号规则为频域编号,若按照图5a和图5b中CCE的编号规则,无论采取何种手段都无法避免30kHz SCS对应的NR PDCCH与15kHz SCS对应的LTE CRS之间的子载波间干扰。而本申请实施例中CCE的编号采用先时域后频域的编号规则,同时第一CCE与一个或多个第二CCE上传输相同的控制信息,可以使得30kHz SCS对应的NR PDCCH与15kHz SCS对应的LTE CRS之间无子载波干扰。
进一步的,该CORESET包括M个REG,M的具体数值可以由CORESET配置信息确定。这M个REG的编号满足先频域后时域的编号规则。与图5a和图5b中REG的编号规则不同,图5a和图5b中REG的编号规则为先时域后频域。本申请实施例中CCE的编号采用先时域后频域的编号规则,REG的编号采用先频域后时域的编号规则,同时第一CCE与一个或多个第二CCE上传输相同的控制信息,可以降低30kHz SCS对应的NR PDCCH与15kHz SCS对应的LTE CRS之间的子载波干扰。例如,若一个CCE包括6个REG,那么M与N的关系为M=6×N。
可以理解的是,本申请实施例采用的CCE编号规则和REG编号规则是实现时域重复传输避免干扰的基础。
CCE的编号为先时域后频域的编号规则,或CCE的编号为先时域后频域的编号规则以及REG的编号为先频域后时域的编号规则,可以是预定义的,也可以是通过信令(例如无线资源控制(radio resource control,RRC)信令)配置给终端。先时域后频域的编号规则,也可以描述为时域优先的编号规则或时域-频域编号规则等。先频域后时域的编号规则,也可以描述为频域优先的编号规则或频域-时域编号规则等。
网络设备可以在第一CCE的资源上向终端发送控制信息,在一个或多个第二CCE的资源上向终端发送该控制信息。终端可以在第一CCE的资源上从网络设备接收该控制信息, 在一个或多个第二CCE的资源上从网络设备接收该控制信息。其中,第一CCE的资源可以包括时频资源、码域资源或空域资源等资源中的一个或多个,第二CCE的资源可以包括时频资源、码域资源或空域资源等资源中的一个或多个。本申请实施例以第一CCE的资源包含时频资源,第二CCE的资源包含时频资源为例进行描述。
终端在接收控制信息之前,根据CORESET配置信息和上述两个编号规则(CCE的编号采用先时域后频域的编号规则,以及REG的编号采用先频域后时域的编号规则),确定CORESET所包括的N个CCE的时频资源。网络设备将CORESET配置信息发送至终端,以便终端可以确定CORESET包括的CCE的时频资源,具体如何发送以及何时发送在本申请实施例中不作限定。
例如,CORESET配置信息可以如下:
Figure PCTCN2020103749-appb-000017
在CORESET配置信息中,controlResourceSetId用于配置CORESET标识(identity,ID),即用于配置PDCCH资源集合的ID。frequencyDomainResources用于配置CORESET的频域大小
Figure PCTCN2020103749-appb-000018
和位置,配置的粒度为6个RB,即以6个RB为CORESET频域的配置单位。duration用于配置CORESET的时域大小
Figure PCTCN2020103749-appb-000019
cce-REG-MappingType用于配置CCE-REG的映射类型:非交织映射(nonInterleaved)还是交织映射(interleaved)。若为交织映射,reg-BundleSize用于配置REG的交织粒度,即REG bundle的大小(L);interleaverSize用于配置交织器的行数(R);shiftIndex用于配置交织器的REG bundle偏移(n shift)。非交织映射也可以称为集中式映射。
其中,
Figure PCTCN2020103749-appb-000020
表示在时域配置的符号数量,具体可为在时频配置的OFDM符号数量, 可配置为1、2或4,即
Figure PCTCN2020103749-appb-000021
REG bundle的大小可配置为1、2、3或6,即L∈{1,2,3,6}。
若cce-REG-MappingType配置的映射类型为非交织映射,交织器可表示为f(j)=j,交织器用于表示映射关系。示例性的,可参见图10a,为本申请实施例提供的一种非交织映射的示例图。图10a中,L=2,
Figure PCTCN2020103749-appb-000022
那么
Figure PCTCN2020103749-appb-000023
Figure PCTCN2020103749-appb-000024
可得i∈{0,1,..,23},即包括24个REG bundle,编号为0,1,…,23,1个REG bundle包括2个REG,这24个REG bundle以及这48个REG的编号均采用先频域后时域的编号规则。1个CCE包括6个REG,该CORESET包括8个CCE,编号为0,1…,7,这8个CCE的编号采用先时域后频域的编号规则。图10a中,行表示频域,列表示时域。CCE 0在时域上包括1个OFDM符号,在频域上包括6个RB,即REG 0、REG1、REG 2、REG 3、REG 4以及REG 5这6个REG。CCE 1在时域上包括1个OFDM符号,在频域上包括6个RB,即REG 24、REG 25、REG 26、REG 27、REG 28以及REG 29这6个REG。可以理解的是,图10a中一个CCE在时域上包括1个OFDM符号,在频域上包括6个RB,而图5a中一个CCE在时域上包括两个OFDM符号,在频域上包括3个RB。
若cce-REG-MappingType配置的映射类型为交织映射,交织器可通过如下公式表示。
Figure PCTCN2020103749-appb-000025
Figure PCTCN2020103749-appb-000026
Figure PCTCN2020103749-appb-000027
j=c×R+r+n×C×R
r=0,1,...,R-1
c=0,1,...,C-1
示例性的,可参见图10b,为本申请实施例提供的一种交织映射的示例图。图10b中,L=2,
Figure PCTCN2020103749-appb-000028
n shift=0,R=3,那么
Figure PCTCN2020103749-appb-000029
C=48/(2×3×2)=4。由
Figure PCTCN2020103749-appb-000030
可得i∈{0,1,..,23},即包括24个REG bundle,编号为0,1,…,23,1个REG bundle包括2个REG,这24个REG bundle以及这48个REG的编号均采用先频域后时域的编号规则。1个CCE包括6个REG,那么该CORESET包括8个CCE,这8个CCE的编号为0,1…,7。这8个CCE的编号采用先时域后频域的编号规则。图10b中,行表示频域,列表示时域。根据交织映射的交织器表达式可得表5。
表5
r c j=c×R+r+n×C×R n f(j)
0 0 0 0 f(0)=0
1 0 1 0 f(1)=1*4=4
2 0 2 0 f(2)=2*4=8
0 1 3 0 f(3)=1
1 1 4 0 f(4)=1*4+1=5
2 1 5 0 f(5)=2*4+1=9
0 0 12 1 f(12)=0+12=12
1 0 13 1 f(13)=1*4+12=16
2 0 14 1 f(14)=2*4+12=20
0 1 15 1 f(15)=1+12=13
1 1 16 1 f(16)=1*4+1+12=17
2 1 17 1 f(17)=2*4+1+12=21
根据表5可得图10b中的交织映射和REG bundle行存列取的交织表达,例如CCE 0由REG bundle集合{f(0),f(1),f(2)}组成,取值分别为0,4,8;1个REG bundle在时域包括一个OFDM符号在频域包括两个RB,因此f(0)映射至REG 0和REG 1,f(1)映射至REG 8和REG 9,f(2)映射至REG 16和REG 17,那么CCE 0由REG 0、REG 1、REG 8、REG 9、REG 16和REG 17组成。再例如,CCE 1由REG bundle集合{f(12),f(13),f(14)}组成,取值分别为12,16,17;1个REG bundle在时域包括一个OFDM符号在频域包括两个RB,因此f(12)映射至REG 24和REG 25,f(13)映射至REG 32和REG 33,f(14)映射至REG 40和REG 41,那么CCE 1由REG 24、REG 25、REG 32、REG 33、REG 40和REG 41组成。
图10b中,CCE编号的规则为先时域后频域,那么符号0的交织子阵表示CCE 0、CCE 2、CCE 4以及CCE 6对应的交织子阵,符号1的交织子阵表示CCE 1、CCE 3、CCE 5以及CCE 7对应的交织子阵。符号0和符号1可以是OFDM符号或DFT-S-OFDM符号等。
由图10a和图10b可知,CCE 0与CCE 1在时域上对应不同的OFDM符号,在频域上对应相同的RB。
在确定出该CORESET的时频资源的情况下,网络设备可根据聚合等级在该CORESET所包括的CCE的时频资源上发送控制信息。相应的,终端可根据聚合等级在该CORESET所包括的CCE的时频资源上盲检PDCCH,以接收控制信息。
网络设备可根据终端的信噪比在该CORESET所包括的CCE的时频资源上选择合适的聚合等级AL,在该AL个CCE上发送控制信息。相应的,终端可在该CORESET所包括的CCE的时频资源上盲检PDCCH,以接收控制信息。
在一种可能的实现方式中,网络设备在AL个CCE上发送AL个控制信息(每个CCE 上发送一个控制信息),终端在AL/2个CCE上接收AL/2个控制信息(每个CCE上接收一个控制信息)。例如,AL=2,网络设备在CCE 0发送一个控制信息,在CCE 1上发送该控制信息,即在CCE 0和CCE 1上重复传输该控制信息,终端在CCE 0或CCE 1上盲检PDCCH,以接收该控制信息。若终端在CCE 0上盲检PDCCH,CCE 1上承载的信息对终端而言可以认为是透明的。若终端在CCE 1上盲检PDCCH,CCE 0上承载的信息对终端而言可以认为是透明的。该示例中,终端盲检AL=1的PDCCH,但是网络设备发送AL=2的PDCCH,可以避免NR PDCCH对LTE CRS的干扰。
图10a和图10b中,AL=2,网络设备在两个CCE上发送两个控制信息,终端在1个CCE上接收一个控制信息。网络设备在CCE 0和CCE 1上分别发送控制信息1,终端1在CCE 0或CCE 1上接收控制信息1;网络设备在CCE 2和CCE 3上分别发送控制信息2,终端2在CCE 2或CCE 3上接收控制信息2;网络设备在CCE 4和CCE 5上分别发送控制信息2,终端3在CCE 4或CCE 5上接收控制信息3;网络设备在CCE 6和CCE 7上分别发送控制信息4,终端4在CCE 6或CCE 7上接收控制信息4。
在另一种可能的实现方式中,网络设备在AL个CCE上发送AL个控制信息,终端在AL个CCE上接收AL个控制信息。例如,AL=2,网络设备在CCE 0和CCE 1上重复传输控制信息,终端在CCE 0和CCE 1上盲检PDCCH,以接收两个相同的控制信息。
图10a和图10b中,AL=2,网络设备在两个CCE上发送两个控制信息,终端在两个CCE上接收两个控制信息。网络设备在CCE 0和CCE 1上分别发送控制信息1,终端1在CCE 0和CCE 1上分别接收控制信息1;网络设备在CCE 2和CCE 3上分别发送控制信息2,终端2在CCE 2和CCE 3上分别接收控制信息2;网络设备在CCE 4和CCE 5上分别发送控制信息2,终端3在CCE 4和CCE 5上分别接收控制信息3;网络设备在CCE 6和CCE 7上分别发送控制信息4,终端4在CCE 6和CCE 7上分别接收控制信息4。
由上述两种方式可得,本申请实施例中,网络设备发送控制信息的CCE的数量大于或等于2,终端接收控制信息的CCE的数量大于或等于1。
基于CCE编号采用先时域后频域的编号规则,REG编号采用先频域后时域的编号规则,聚合的CCE上承载相同的控制信息。例如,AL=2,CCE 0上承载控制信息1,CCE 1上承载控制信息1;再例如,AL=4,CCE 0上承载控制信息1,CCE 1上承载控制信息1,CCE 2上承载控制信息1,CCE 3上承载控制信息1。结合图10a和10b,CCE 0在时域上对应于符号0,CCE 1在时域上对应于符号1,CCE 0和CCE 1承载相同的控制信息,那么符号0与符号1上承载相同的控制信息。可以理解的是,符号0与符号1上传输的控制信息是重复的,或描述为控制信息在符号0和符号1上是重复传输的,该重复传输为时域上的重复传输。进一步的,控制信息可在4个符号上重复传输。进一步的,控制信息可在2 n个OFDM符号上重复传输,n为正整数。
在图9所示的实施例中,CCE编号采用先时域后频域的编号规则,REG编号采用先频域后时域的编号规则,使得在第一CCE和一个或多个第二CCE上传输相同的控制信息,从而实现控制信息在2 n个符号上重复传输。控制信息在2 n个符号上重复传输,即控制信息在时域上重复,相当于对控制信息在频域上进行插0。由于控制信息在2 n个符号上重复传输,这2 n个符号与另一符号在时域内对齐,从而在共享频谱资源但使用不同SCS的场景下, 可降低控制信息与另一符号承载的信号之间的传输干扰,例如可降低NR PDCCH与LTE CRS之间的传输干扰。
本申请实施例将控制信息进行重复传输的2 n个符号称为2 n个第一OFDM符号,这2 n个第一OFDM符号与第二OFDM符号在时域内对齐,该第二OFDM符号为用于承载另一信号的OFDM符号,该另一信号对应的SCS与控制信息对应的SCS不同。例如控制信息为NR DCI,第二OFDM符号为用于承载LTE CRS的OFDM符号。2 n个第一OFDM符号与第二OFDM符号在时域内对齐,指的是2 n个第一OFDM符号与第二OFDM符号共享相同的时域资源。
其中,2 n为第一SCS与第二SCS之间的倍数,即第一SCS是第二SCS的2 n倍。其中,第一SCS为控制信息的时频资源对应的子载波间隔,或理解为PDCCH的子载波间隔;第二SCS为另一信号的时频资源对应的子载波间隔。例如第一SCS为30kHz,第二SCS为15kHz,那么控制信息可在2个第一OFDM符号上重复传输,这2个第一OFDM符号与一个第二OFDM符号在时域内对齐,这一个第二OFDM符号用于承载LTE CRS;再例如第一SCS为60kHz,第二SCS为15kz,那么控制信息可在4个第一OFDM符号上重复传输,这4个第一OFDM符号与一个第二OFDM符号在时域内对齐,这一个第二OFDM符号用于承载LTE CRS。
结合图6(A)和图6(B)进行举例说明,图6(A)所示的资源栅格中子载波间隔为15kHz;图6(B)中子载波间隔为30kHz。图6(A)和图6(B)所示的资源栅格针对同一时频资源,该时频资源的带宽为360kHz(即15kHz×24或30kHz×12),时间长度为1ms。从图6(A)和图6(B)可以看出,图6(A)所示资源栅格中第一个OFDM符号在时域内对齐图6(B)所示资源栅格中第一个OFDM符号和第二个OFDM符号,以此类推,图6(A)所示资源栅格中第十四个OFDM符号在时域内对齐图6(B)所示资源栅格中第二十七个OFDM符号和第二十八个OFDM符号,即图6(A)中一个第二OFDM符号与图6(B)中两个第一OFDM符号在时域内对齐。
控制信息在2 n个第一OFDM符号上重复传输的实现方式可以包括但不限于如下两种方式:
方式一,n=1时,控制信息在两个第一OFDM符号上重复传输,第一个第一OFDM符号包括循环前缀,第二个第一OFDM符号包括循环后缀。
示例性的,n=1时,控制信息在两个第一OFDM符号上重复传输,第一个第一OFDM符号包括循环前缀,第二个第一OFDM符号包括循环后缀。也可以理解为,第一个第一OFDM符号包括有用信号和循环前缀,第二个第一OFDM符号包括有用信号和循环后缀,有用信号即为控制信息的时域信号。
可参见图11,为本申请实施例提供的循环前缀和循环后缀的示例图,以第一SCS为30kHz,第二SCS为15kHz为例。图11中,第一个第一OFDM符号中循环前缀包括953~1024号采样点,第一个第一OFDM符号中有用信号包括1~1024号采样点;第二个第一OFDM符号中循环后缀包括1~72号采样点,第二个第一OFDM符号中有用信号包括1~1024号采样点;第二OFDM符号中循环前缀包括1905~2048号采样点,第二OFDM符号中有用信号包括1~2048号采样点。从图11中可以看出,两个第一OFDM符号的最后2048个采样 点包括2个相同的1~1024号采样点,这两个第一OFDM符号的最后2048个采样点与第二OFDM符号去循环前缀(1905~2048号共144个采样点)之后的有用信号(1~2048号共2048个采样点)在时域上是对齐的。即两个30kHz的第一OFDM符号以15kHz做快速傅里叶变换(fast fourier transform,FFT)时,去144个采样点的循环前缀之后,2048采样点采样窗口下,1~1024号采样点在时域上重复了2次。这样便可以避免30kHz的控制信息与15kHz的LTE CRS之间的传输干扰。
若两个第一OFDM符号均包括循环前缀(953~1024号共72个采样点)和有用信号(1~1024号共1024个采样点),那么这两个第一OFDM符号以15kHz做FFT时,去144个采样点的循环前缀之后,2048采样点采样窗口下,由于第二个第一OFDM符号的循环前缀使得1~1024号采样点在时域上无法重复2次。这样便会导致30kHz的控制信息与15kHz的LTE CRS之间存在传输干扰。
方式一适用于n=1的场景,网络设备在两个第一OFDM符号上重复发送控制信息,终端在两个第一OFDM符号上重复接收控制信息。对于n>1的场景,采用方式二。
方式二,在2 n个第一OFDM符号中,第i个第一OFDM符号上传输的控制信息是对应的频域信号经过相位旋转处理后得到的,i为大于1且小于或等于2 n的整数。第i个第一OFDM符号上的逆快速傅里叶变换(inverse fast Fourier transform,IFFT)的输入信号为a 1,k*e j*ω,a 1,k表示第1个第一OFDM符号上第k个子载波间隔上的频域信号;ω表示需要频域信号相位旋转处理时需要旋转的相位大小。可以理解的是,在2 n个第一OFDM符号中,除第一个第一OFDM符号之外的每个第一OFDM符号上传输的控制信息是对应的频域信号经过相位旋转处理后得到的。
请参见图12,为本申请实施例提供的重复传输控制信息的一种示例图,为2个第一OFDM符号上重复发送控制信息的示例。例如,以第一SCS是30kHz,第一OFDM符号上用于发送控制信息的频域资源包括共享带宽为例。在共享带宽中,在相同的子载波上,第一个第一OFDM符号上和第二个第一OFDM符号上映射的数据相同,分别为a 1,n至a 1,n+k。其中,a 1,n至a 1,n+k为复数信号,不同数据的值可以相同,也可以不同,本申请实施例不做限制。对于第二个第一OFDM符号上的a 1,n至a 1,n+k,可以分别进行相应的相位旋转。可选地,如图12所示,当第一OFDM符号上用于发送控制信息的频域资源包括非共享带宽时,在非共享带宽中,在相同的子载波,第一个第一OFDM符号上和第二个第一OFDM符号上映射各自的数据。
可以理解的是,在共享带宽中,在相同的子载波上,所述2 n个第一OFDM符号对应的频域信号是相同的。
可选的,相位旋转处理的具体实现方式为:频域信号乘以相位旋转因子。相位旋转因子用于指示频域信号旋转的相位。
可选地,在相位旋转处理过程中,第i个第一OFDM符号对应的频域信号旋转的相位正比于i-1。
可以理解的是,对第一OFDM符号上的频域信号进行相位旋转处理后,第一OFDM符 号的时域信号(也即有用信号)会发生循环移位。
在数字域,对于索引或编号为k 1的子载波,第i个第一OFDM符号对应的相位旋转因子为:
Figure PCTCN2020103749-appb-000031
其中,第i个第一OFDM符号上的CP长度
Figure PCTCN2020103749-appb-000032
第i个第一OFDM符号对应的旋转相位为:
Figure PCTCN2020103749-appb-000033
例如第二个第一OFDM符号(即i=2)对应的相位旋转因子为:
Figure PCTCN2020103749-appb-000034
该相位旋转因子中的k 1为子载波索引,对应于图12中的第二个第一OFDM符号的相位旋转因子中的n至n+k。
在模拟域,对于索引或编号为k的子载波,第i个第一OFDM符号对应的相位旋转因子为:
Figure PCTCN2020103749-appb-000035
即第i个第一OFDM符号对应的旋转相位
Figure PCTCN2020103749-appb-000036
其中
Figure PCTCN2020103749-appb-000037
其中N是FFT点数,
Figure PCTCN2020103749-appb-000038
为一个RB包含的子载波数目。
Figure PCTCN2020103749-appb-000039
为子载波间隔μ的符号i的CP长度,单位是采样点个数。Δf为子载波间隔μ的大小。T c=1/(480×1000×4096)。j为虚数单位,j的平方等于-1。π是圆周率。
Figure PCTCN2020103749-appb-000040
表示无线资源控制(radio resource control,RRC)信令配置的子载波间隔为μ的载波包含的RB数目,x表示上行或下行。
Figure PCTCN2020103749-appb-000041
表示RRC信令配置的子载波间隔为μ的载波最小的RB编号相对于一个参考点偏移的RB数目。μ 0表示RRC信令配置的一个或多个子载波间隔中的最大子载波间隔。
需要说明的是,子载波间隔为μ表示子载波间隔为15kHz乘以2的μ次方。例如μ=0,对应15kHz的SCS;μ=1,对应30kHz的SCS;μ=2,对应60kHz的SCS;μ=3,对应120kHz的SCS;μ=4,对应240kHz的SCS。
示例性的,可参见图13a,为本申请实施例提供的循环前缀的一种示例图。假设第一SCS为30kHz,第二SCS为15kHz。(1)第一个第一OFDM符号中有用信号包括1~1024号采样点;第一个第一OFDM符号的循环前缀包括953~1024号采样点。(2)对于第二个第一OFDM符号来说,由于对应的频域信号经过相位旋转处理,因此有用信号发生了循环移位,循环移位后的有用信号依次包括73~1024号采样点,以及1~72号采样点。在这种情况下,第二个第一OFDM符号的循环前缀包括循环移位后的有用信号的最后72个采样点 (也即1~72号采样点)。从图13a中可以看出,两个第一OFDM符号各自的最后1024个采样点包括2个相同的1~1024号采样点,共2048个采样点。也即,在2048采样点的采样窗口下,1~1024号采样点在时域上重复了2次。
结合图10a和图10b,AL=2,假设CCE 0在时域上对应于第一个第一OFDM,CCE 1在时域上对应于第二个第一OFDM符号。对于终端在AL/2个CCE上接收控制信息的情况,若终端在CCE 1上接收控制信息,则终端去除第二个第一OFDM符号上的循环前缀,得到第二个第一OFDM符号的时域信号,对第二个第一OFDM符号的时域信号进行相位旋转处理,以得到原始的频域信号。即对于第二个第一OFDM符号而言,去除循环前缀1~72号采样点,然后将有用信号的最后72个采样点(也即1~72号采样点)通过循环移位移动至有用信号的73~1024号采样点之前,以得到完整的包括1~1024号采样点的有用信号。在数字域,相位旋转处理的相位旋转因子为:
Figure PCTCN2020103749-appb-000042
在模拟域,相位旋转处理的相位旋转因子为:
Figure PCTCN2020103749-appb-000043
若终端在CCE 0上接收控制信息,则终端去除第一个第一OFDM符号上的循环前缀,便能得到原始的频域信号。
示例性的,可参见图13b,为本申请实施例提供的循环前缀的另一种示例图。假设第一SCS为60kHz,第二SCS为15kHz。(1)第一个第一OFDM符号中有用信号包括1~512号采样点;第一个第一OFDM符号的循环前缀包括477~512号采样点。(2)对于第二个第一OFDM符号来说,由于对应的频域信号经过相位旋转处理,因此有用信号发生了循环移位,循环移位后的有用信号依次包括37~512号采样点,以及1~36号采样点;第二个第一OFDM符号的循环前缀包括循环移位后的有用信号的最后36个采样点(也即1~36号采样点)。(3)对于第三个第一OFDM符号来说,由于对应的频域信号经过相位旋转处理,因此有用信号发生了循环移位,循环移位后的有用信号依次包括73~512号采样点,及1~72号采样点;第三个第一OFDM符号的循环前缀包括循环移位后的有用信号的最后36个采样点(也即37~72号采样点)。(4)对于第四个第一OFDM符号来说,由于对应的频域信号经过相位旋转处理,因此有用信号发生了循环移位,循环移位后的有用信号依次包括109~512号采样点,以及1~108号样点;第四个第一OFDM符号的循环前缀包括循环移位后的有用信号的最后36个采样点(也即73~108采样点)。从图13b中可以看出,四个第一OFDM符号的最后2048个采样点包括4个相同的1~512号采样点。也即,在2048采样点的采样窗口下,1~512号采样点在时域上重复了4次。
针对方式二,对于终端在AL个CCE上接收控制信息的情况,请参见图14,为本申请实施例提供的重复传输控制信息的另一种示例图。图14中,对于2 n个第一OFDM符号中的第i个第一OFDM符号,终端可以通过去除第i个第一OFDM符号中的循环前缀,以获取第i个第一OFDM符号的时域信号;并对第i个第一OFDM符号的时域信号进行第一SCS对应的快速傅里叶变化,以获取经过相位旋转处理后的频域信号;之后,将该经过相位处理后的频域信号除以所述相位旋转因子,确定原始的频域信号。
针对方式二,对于终端在AL/2个CCE上接收控制信息的情况,终端可对2 n个第一OFDM符号中的部分第一OFDM符号进行去循环前缀、快速傅里叶变换、除以所述相位旋 转因子处理,以得到这部分第一OFDM符号的原始的频域信号。其中,部分第一OFDM符号可以是编号为奇数的第一OFDM符号,也可以是编号为偶数的第一OFDM符号,还可以是其他方式选择,这部分第一OFDM符号的数量为2 n/2。例如,AL=8,网络设备在8个第一OFDM符号(编号为0~7)上重复发送控制信息1,终端在4个第一OFDM符号上接收4个控制信息1,这4个第一OFDM符号可以是编号0,2,4,6;编号1,3,5,7;编号0,1,2,3;编号4,5,6,7;或编号0,2,5,7等。例如,终端对编号0,1,2,3的第一OFDM符号进行去循环前缀、快速傅里叶变换、除以所述相位旋转因子处理,以得到各自对应的原始的频域信号。
下面为了便于说明,将第一SCS对应的子载波简称为第一子载波,第二SCS对应的子载波简称为第二子载波。对于一个信号,将该信号在时域上重复,相当于对该信号在频域上进行插0。因此,若控制信息在2 n个第一OFDM符号上重复传输,则在2 n个第一OFDM符号中任一个第一OFDM符号上,相邻的两个第一子载波之间,在对应于第二SCS的位置处,第一SCS的控制信息的信号值是等于0的。也就是说,在该2 n个第一OFDM符号中,若资源栅格中第一子载波的编号从0开始,则第一SCS的控制信息的信号值在编号不是2 n整数倍的第二子载波处是等于0的。
以图16(B)所示资源栅格的SCS为第一SCS,图16(A)所示资源栅格的SCS的第二SCS,第一SCS为30kHz,第二SCS为15kHz为例。若控制信息在图16(B)所示的资源栅格中第九个OFDM符号和第十个OFDM符号上重复传输,则控制信息在第九个OFDM符号上的频谱可参考图15(D)。在图15(D)中,实线的单向箭头表示用于承载控制信息的子载波。和图7(B)进行对比,图15(D)中,由于控制信息在15kHz的子载波#3的位置处的信号能量等于0,因此,15kHz的子载波#3上的LTE CRS不会受到控制信息的干扰,15kHz的子载波#3上的LTE CRS也不会干扰控制信息。
从图15(B)或者图15(D)中可以看出,当子载波间隔在频域中从1(也可以是其它奇数)开始编号时,通过本申请实施例提供的方法,由于30kHz子载波间隔的信号在对应的编号为奇数的15kHz的子载波所处位置是置0的,因此,30kHz子载波间隔的信号不会影响到编号为奇数的15kHz的子载波所承载的参考信号(例如编号为3的15kHz的子载波所承载的LTE CRS)。根据上述方法,当子载波间隔在频域中从1(也可以是其它奇数)开始编号时,在图15(B)或者图15(D)中,30kHz子载波间隔的信号在对应的编号为偶数的15kHz的子载波所处位置是置0的。
从上述分析可以获知,由于第一SCS的信号在对应于编号不是2 n整数倍的第二子载波所处的位置是置0的。因此,在共享频谱中,第一SCS的信号不会影响到对应的编号不是2 n整数倍的第二子载波的信号。换言之,在共享频谱中,在子载波编号不是2 n整数倍的第二SCS对应的RE上,第一SCS的信号(例如控制信息)不会影响到对应的第二SCS的参考信号(例如LTE CRS)。例如,在共享频谱中,第一SCS是60kHz,第二SCS是15kHz,则在编号为1、2、3或其它编号不等于4的整数倍的第二子载波对应的位置处,第一SCS的信号值等于0。
可选的,图9所示的实施例还包括网络设备通过高层信令(例如RRC信令)向终端发送第一配置信息。或第一配置信息是预定义的。
高层信令也可以称为半静态信令,可以是RRC信令、广播消息、系统消息、或媒体接 入控制(medium access control,MAC)控制元素(control element,CE)。其中,广播消息可以包括剩余最小系统消息(remaining minimum system information,RMSI)。
网络设备可在第一SCS的BWP上为终端配置第二SCS的第一配置信息。相应的,终端可在第一SCS的BWP上接收第二SCS的第一配置信息。
在一种可能的实现方式中,终端根据第一配置信息确定第二SCS的速率匹配资源,然后根据第一SCS和第二SCS之间的关系获得第一SCS的BWP上的速率匹配资源。
第一配置信息用于指示第二SCS对应的参考信号的资源,该资源可以包括时域资源、频域资源、空域资源或码域资源中的一种或多种,本申请实施例以时频资源为例进行描述。第一配置信息可以直接或间接地指示第二SCS对应的参考信号的时频资源,具体指示方式在本申请实施例中不作限定。
第一配置信息可以配置带宽、天线端口的数目、偏移值、载波的中心位置和资源图样(pattern)等。天线端口的数目与资源图样存在对应关系,例如图1为一个天线端口对应的资源图样。
示例性的,第一配置信息用于指示15kHz SCS对应的LTE CRS的时频资源,即第一配置信息为LTE CRS的配置信息,用于指示LTE CRS的时频资源。LTE CRS的配置信息包括LTE载波的带宽(例如1.4M、3M或5M等)、CRS的天线端口数目(例如1/2/4)、CRS映射RE的偏移值(例如0/1/2/3/4/5)和LTE载波的中心位置等信息中的一项或多项。
终端在接收到第一配置信息的情况下,通过带宽和载波的中心位置,确定频域资源的带宽大小和位置;根据天线端口的数目,确定对应的资源图样;之后,根据偏移值和资源图样,确定资源栅格中承载参考信号的RE的位置,即确定第二SCS对应的资源栅格中用于承载参考信号的时频资源,即确定第二SCS的速率匹配资源。
进一步的,终端可根据第一SCS和第二SCS之间的关系确定出第一SCS的BWP上速率匹配资源的时频资源位置,该速率匹配资源对应的SCS为第一SCS;其中,第一配置信息所指示的资源对应的SCS为第二SCS,第一SCS是第二SCS的2 n倍。具体的,终端根据第一配置信息确定第二SCS对应的参考信号的资源(即第二SCS的速率匹配资源),然后根据第二SCS的速率匹配资源的时频资源位置以及第一SCS与第二SCS之间的关系,确定第一SCS的BWP上的速率匹配资源的时频资源位置。第一SCS的BWP上的速率匹配资源即为根据第一配置信息确定的速率匹配资源,下面所涉及的速率匹配资源在无其他解释的情况下,指的即为第一SCS的BWP上的速率匹配资源。
结合图16(A)和图16(B)进行举例说明,以图16(B)所示资源栅格的SCS为第一SCS,图16(A)所示资源栅格的SCS为第二SCS,第一SCS为30kHz,第二SCS为15kHz为例。终端根据第一配置信息获得第二SCS的速率匹配资源,即图16(A)中黑色的RE。之后,终端根据第一SCS与第二SCS之间的关系,以及第二SCS的速率匹配资源,确定第一SCS的速率匹配资源,即图16(B)中黑色的RE。
在另一种可能的实现方式中,终端可以直接根据第一配置信息获得第一SCS的速率匹配资源。例如,第一配置信息可以包括一个或多个RE级速率匹配资源指示信息,RE级速率匹配资源指示信息包括符号索引的指示信息和该符号索引对应的符号上需要进行速率匹配的RE位置指示信息。符号索引的指示信息可以是14比特的位图(bitmap),14比特的 bitmap用于指示一个或多个符号的符号索引;或可以是4bit索引指示,4bit索引指示用于指示一个符号的符号索引。RE位置指示信息可以是12比特的位图(bitmap),12比特的bitmap用于指示1个或多个RE为速率匹配资源,其中,bitmap中的“1”表示该符号上对应的RE为速率匹配资源。终端根据一个或多个RE级速率匹配资源指示信息,可以确定第一SCS的速率匹配资源。
第一CCE与一个或多个第二CCE的一个CCE的资源与速率匹配资源重合时,控制信息由CORESET的资源中除速率匹配资源之外的资源承载。即控制信息在2 n个第一OFDM符号上重复传输时,若某个第一OFDM符号上的资源与速率匹配资源重合时,该第一OFDM符号的资源不承载控制信息,在这2 n个第一OFDM符号的资源中除该第一OFDM符号的资源之外的资源可以承载控制信息。
示例1,若LTE CRS在图16(A)所示资源栅格中第一个OFDM符号上传输,则LTE CRS在第一个OFDM符号上的频谱可参见图15(A)。图15(A)中,加粗的黑色箭头表示用于承载LTE CRS的子载波,虚线表示不用于承载LTE CRS的子载波,相邻子载波之间的间隔为15kHz。对图16(A)中第一个OFDM符号上的LTE CRS而言,其速率匹配资源为图16(B)中的RE{(0,1),(0,2),(3,1),(3,2),(6,1),(6,2),(9,1),(9,2})。控制信息在图16(B)所示资源栅格中第一个OFDM符号和第二个OFDM符号上重复传输时,由于速率匹配资源与第一个OFDM符号和第二个OFDM符号的资源存在重合,重合部分即为图16(B)中的RE{(0,1),(0,2),(3,1),(3,2),(6,1),(6,2),(9,1),(9,2)},那么在第一个OFDM符号和第二个OFDM符号的子载波#0、子载波#3、子载波#6以及子载波#9上不承载控制信息,可参见图15(B)所示的频谱。图15(B)中,虚线表示不用于承载控制信息的子载波,实线的单向箭头表示可以承载控制信息的子载波,相邻子载波之间的间隔为30kHz。
示例2,若LTE CRS在图16(A)所示资源栅格中第五个OFDM符号上传输,则LTE CRS在第一个OFDM符号上的频谱可参见图15(C)。图15(C)中,加粗的黑色箭头表示用于承载LTE CRS的子载波,虚线表示不用于承载LTE CRS的子载波,相邻子载波之间的间隔为15kHz。对图16(A)中第五个OFDM符号上的LTE CRS而言,其速率匹配资源的子载波与30kHz资源栅格对应的子载波不重合,即其速率匹配资源与30kHz资源栅格中第九个OFDM符号和第十个OFDM符号的资源不重合。因此控制信息在30kHz资源栅格中第九个OFDM符号和第十个OFDM符号上重复传输时,第九个OFDM符号和第十个OFDM符号的所有子载波上可以承载控制信息,可参见图15(D)所示的频谱。图15(D)中,实线的单向箭头表示可以承载控制信息的子载波,相邻子载波之间的间隔为30kHz。
从示例1和示例2可以看出,控制信息在2 n个第一OFDM符号上重复传输时,若某个第一OFDM符号上的资源与速率匹配资源重合时,在该第一OFDM符号的资源不承载控制信息,在这2 n个第一OFDM符号的资源中除该第一OFDM符号的资源之外的资源上承载控制信息。基于此,可得到图16(A)和图16(B)所示的资源栅格,图16(A)与图6(A)相同,图16(B)中黑色方块表示不承载控制信息的RE,即表示控制信息需要基于LTE CRS进行速率匹配的RE。图16(B)相比于图6(B)而言,可用的RE资源更多,需要进行速率匹配的RE资源更少。
在本申请实施例中,在2 n个第一OFDM符号上,每一个第一OFDM符号对应的第一RE集合中的任意一个第一RE不承载控制信息,第一RE集合和第二RE集合在频域内存在重叠部分。第一RE集合即上述第一SCS的BWP上的速率匹配资源。其中,第二RE集合中的第二RE用于承载第二SCS对应的参考信号,例如承载LTE CRS。
可以理解的是,第一RE集合和第二RE集合在频域内存在重叠部分,指的是第一RE集合中的一个第一RE与第二RE集合中的至少一个第二RE在频域内存在重叠部分。或者说,第二RE集合中的一个第一RE与第二RE集合中的至少一个第二RE在频域内存在重叠部分。
对于一个RE与另一个RE在频域内存在重叠部分的情形,可以结合图6(A)和图6(B)进行说明。从图6(A)和图6(B)中可以看出,图6(A)中第一个OFDM符号上的第一个RE与图6(B)中第一个OFDM符号上的第一个RE在频域内存在重叠部分。
可以理解的是,第一RE集合所包含的第一RE可以根据第二RE集合所包含的第二RE来确定。或者说,第一RE集合中的第一RE的位置可以根据第二RE集合中第二RE的位置来确定。
可选的,对于一个第二OFDM符号来说,第二RE集合是第三RE集合的子集。第二OFDM符号对应的第三RE集合包括第二OFDM符号上所有用于承载参考信号的RE。结合图6(A)为例,OFDM符号#0对应的第三RE集合可以为{(0,0),(6,0),(12,0),(18,0)}。
一种实现方式,对于一个第二OFDM符号来说,第三RE集合中的任意一个RE均属于第二RE集合。也就是说,第二RE集合等于第三RE集合。
示例性的,结合图6(A)和图6(B)进行说明,图6(A)中的第二OFDM符号#0在时域内对齐图6(B)中的第一OFDM符号#0和第一OFDM符号#1,图6(A)中的第二OFDM符号#4在时域内对齐图6(B)中的第一OFDM符号#8和第一OFDM符号#9。第三RE集合包括第二OFDM符号#4对应的RE{(3,4),(9,4),(15,4),(21,4)},以及第二OFDM符号#0对应的RE{(0,0),(6,0),(12,0),(18,0)}。第二RE集合等于第三RE集合。从而,第一RE集合包括第一OFDM符号#8和第一OFDM符号#9对应的RE{(1,8),(4,8),(7,8),(10,8),(1,9),(4,9),(7,9),(10,9)},以及第一OFDM符号#0和第一OFDM符号#1对应的RE{(0,0),(3,0),(6,0),(9,0),(0,1),(3,1),(6,1),(9,1)}。作为另一种实现方式,对于一个第二OFDM符号来说,第三RE集合中的部分RE属于第二RE集合。
根据本申请实施例提供的方法,由于控制信息在2 n个第一OFDM符号上重复传输,因此控制信息与第二OFDM符号上子载波编号不是2 n的整数倍的RE上承载的参考信号之间互不干扰。因此,控制信息仅需对第二OFDM符号上子载波编号为2 n的整数倍且用于承载参考信号的RE进行速率匹配。基于这种考虑,第三RE集合中子载波编号为2 n的整数倍的RE属于第二RE集合。这样一来,第二RE集合中的第二RE的子载波编号为2 n的整数倍。可以理解的是,在这种情况下,第一RE集合中第一RE的子载波编号的2 n倍等于第二RE集合中的一个第二RE的编号。
示例性的,结合图16(A)和图16(B)进行说,图16(A)中的第二OFDM符号#0在时域内对齐图16(B)中的第一OFDM符号#0和第一OFDM符号#1,图16(A)中的第二OFDM符号#4在时域内对齐图16(B)中的第一OFDM符号#8和第一OFDM符号#9。 第三RE集合包括第二OFDM符号#4对应的RE{(3,4),(9,4),(15,4),(21,4)},以及第二OFDM符号#0对应的RE{(0,0),(6,0),(12,0),(18,0)}。假设第三RE集合中子载波编号为2 n的整数倍的RE属于第二RE集合,由于第二OFDM符号#4对应的{(3,4),(9,4),(15,4),(21,4)}中不存在任何一个RE的子载波编号为2 n的整数倍,其中n等于1,因此,第二OFDM符号#4对应的RE{(4,3),(4,9),(4,15),(4,21)}不包括于第二RE集合中,即第二OFDM符号#4对应的第二RE集合为空集。从而,第一RE集合包括第一OFDM符号#0和第一OFDM符号#1对应的RE{(0,0),(3,0),(6,0),(9,0),(0,1),(3,1),(6,1),(9,1)}。第一OFDM符号#8或第一OFDM符号#9对应的频谱示意图可参考图15(B)。在本申请实施例中,第一RE集合、第二RE集合、和第三RE集合可以在一个第二SCS时隙范围中定义,也可以在一个第二SCS符号范围中定义,本申请实施例不做限制。在本申请实施例中,第一OFDM符号和第二OFDM符号分别用于描述一类信号。在一块时频资源的时域中,可以包括一组或多组2 n个第一OFDM符号,本申请实施例不做限制。
在本申请实施例中,CCE编号采用先时域后频域的编号规则,REG编号采用先频域后时域的编号规则,使得控制信息可以在2 n个第一OFDM符号可以重复传输,第一SCS的控制信息可以围绕第二SCS的参考信号进行速率匹配,使得控制信息与参考信号在共享资源但使用不同SCS的情况下,可以降低两者之间的传输干扰。即使第二SCS的参考信号为4端口的LTE CRS,也能降低控制信息与LTE CRS之间的传输干扰。
作为一种可选的实施例,在网络设备按照图9所示实施例发送控制信息之后,可根据该控制信息向终端发送下行数据。相应的,终端在按照图9所示实施例接收到该控制信息之后,可根据该控制信息接收下行数据。
其中,下行数据可以是PDSCH数据,或描述为PDSCH信息、通过PDSCH传输的数据等。本申请实施例中下行数据以PDSCH数据为例。
控制信息可以指示以下信息中一种或多种:PDSCH数据的时频资源、PDSCH数据的调制机制、编码速率等。其中,PDSCH数据的时频资源即网络设备发送PDSCH数据占用的时频资源或终端接收PDSCH数据的时域资源。PDSCH数据的调制机制可以是PDSCH数据的调制方式或调制与编码策略(modulation and coding scheme,MCS),MCS可以指示调制方式和/或编码速率。
在两个通信系统共享资源但使用不同SCS的情况下,一个通信系统的PDSCH数据与另一个通信系统的参考信号需要降低传输干扰,例如NR PDSCH数据与LTE CRS需要降低传输干扰。可通过在2 n个第一OFDM符号上重复传输NR PDSCH数据,这2 n个第一OFDM符号与参考信号在时域内对齐的方式实现降低传输干扰,也即时域重复、频域插零的方式。
作为一种可选的实施例,在执行图9所示实施例之前,还执行如下步骤:
步骤201,终端向网络设备发送能力信息。相应的,网络设备从终端接收能力信息。
其中,能力信息用于指示终端解析控制信息所需的解析时间,该解析时间小于第一阈值,该第一阈值为开始解析控制信息与发送上行数据之间的最小时间间隔。下行数据可以是物理上行共享信道(physical uplink shared channel,PUSCH),或描述为PUSCH数据、PUSCH信息、通过PUSCH传输的数据等。
本申请实施例中可将能力信息用N3表示,N3即为解析时间,解析时间可通过OFDM符号的数量表示,即需要多少个OFDM符号才能实现对控制信息的解析,例如N3=3,表示解析控制信息需要3个OFDM符号。该能力信息可以理解为解析控制信息最多需要多少个OFDM符号。N3的数值与控制信息的子载波间隔有关。
本申请实施例中可将第一阈值用N2表示,N2为终端从开始解析控制信息至发送上行数据之间的最小时间间隔,可以理解为解析控制信息的时间长度与准备发送上行数据的时间长度之后最小值。N2也可以通过OFDM符号的数量表示,数值与控制信息的子载波间隔有关。
终端可以将N2与N3一同上报至网络设备,也可以分开上报,N2和/或N3也可以同终端的其他能力信息一同上报至网络设备。
终端向网络设备上报N3,以便网络设备可以灵活地为终端配置搜索空间位置,例如配置本slot调度的搜索空间位置。本slot调度,PDCCH和该PDCCH调度的PDSCH在同一个slot内。承载控制信息的2 n个第一OFDM符号在一个slot内可以时域连续,也可以时域不连续。搜索空间指示哪些下行资源可能承载控制信息,搜索空间位置即接收控制信息的起始时域位置。
步骤202,网络设备向终端发送第二配置信息。相应的,终端接收来自网络设备的第二配置信息。
其中,第二配置信息用于指示接收控制信息的起始时域位置,具体可用于指示接收控制信息在slot内的起始时域位置。控制信息的起始时域位置、CORESET的时域长度与解析时间之和小于第二阈值,第二阈值为时间单元的长度,时间单元可以是时隙、微时隙、子帧、半帧或帧等。本申请实施例中时间单元以时隙为例。CORESET的时域长度即
Figure PCTCN2020103749-appb-000044
解析时间即N3,控制信息的起始时域位置即搜索空间的起始时域符号位置,可通过符号索引表示。
可选的,第二配置信息还包括CORESET ID、周期和周期内偏移、搜索空间ID或搜索空间类型中的一种或多种。CORESET ID指示与该搜索空间绑定的CORESET。周期和周期内偏移指示该搜索空间的周期以及周期偏移。搜索空间ID指示该搜索空间。搜索空间类型指示搜索空间的类型以及盲检控制信息的类型(即DCI类型),搜索空间的类型分为UE特定搜索空间(针对单个UE)和公共搜索空间(针对一组UE)。
对于本slot调度,终端不期望起始时域位置、CORESET的时域长度与解析时间之和大于或等于一个slot的时间长度,因此起始时域位置、CORESET的时域长度与解析时间之和小于第二阈值,第二阈值即为一个slot的时间长度。若起始时域位置、CORESET的时域长度与解析时间之和大于或等于第二阈值,则终端不期望接收到本slot的控制信息。
终端在接收到第二配置信息和CORESET配置信息的情况下,可根据第二配置信息和CORESET配置信息确定控制信息的时频资源。应用在本申请实施例中,终端在接收到第二配置信息和CORESET配置信息的情况下,根据第二配置信息和CORESET配置信息,结合图9所示的实施例,接收控制信息。
示例性的,第二配置信息指示的接收控制信息的起始时域位置为图6(B)中的第九个 或第十个OFDM符号,图6(B)中的第九个或第十个OFDM符号为图6(A)中第五个OFDM符号上的LTE CRS对应的时域符号,按照图15(D)所示的频谱,网络设备可以在图6(B)中第九个或第十个OFDM符号的所有子载波上传输控制信息,既可以避免传输干扰,又能使得控制信息的容量足够大以调度更多的终端传输PDSCH。
可以理解的是,步骤201和步骤202与图9所示实施例可单独执行,也可结合图9所示实施例执行。
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,所述装置包括用于执行上述实施例相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。图17给出了一种装置的结构示意图。所述装置1700可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
所述装置1700可以包括一个或多个处理器1701,所述处理器1701也可以称为处理单元,可以实现一定的控制功能。所述处理器1701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1701也可以存有指令和/或数据1703,所述指令和/或数据1703可以被所述处理器运行,使得所述装置1700执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1701中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置1700可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述装置1700中可以包括一个或多个存储器1702,其上可以存有指令1704,所述指令可在所述处理器上被运行,使得所述装置1700执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,所述装置1700还可以包括收发器1705和/或天线1706。所述处理器1701可以称为处理单元,对所述装置1700进行控制。所述收发器1705可以称为收发单元、收发机、收发电路或者收发器等,用于实现收发功能。
在一种可能的设计中,一种装置1700(例如,集成电路、无线设备、电路模块,或终端设备等)可包括:在第一CCE上接收控制信息;在一个或多个第二CCE上接收控制信息;其中,第一CCE和一个或多个第二CCE包括在CORESET中,CORESET包括N个CCE,N为大于1的整数,N个CCE的编号满足先时域后频域的编号规则。从而在两个通 信系统共享频谱资源但使用不同的SCS的情况下,可以降低两个通信系统之间的传输干扰。
可选的,CORESET包括M个资源单元组REG,M个REG的编号满足先频域后时域的编号规则,M为大于1的整数。REG的编号规则与CCE的编号规则结合,是实现时域重复传输降干扰的基础。
可选的,第一CCE和一个或多个第二CCE中的一个CCE的资源与速率匹配资源重合时,控制信息由CORESET的资源中除速率匹配资源之外的资源承载。这样使得承载控制信息的资源更多,速率匹配资源占用的资源更少。
可选的,接收第一配置信息,根据第一配置信息确定速率匹配资源,速率匹配资源对应的子载波间隔SCS与第一配置信息指示的资源对应的SCS不同。
可选的,发送能力信息,能力信息指示解析控制信息所需的解析时间,解析时间小于或等于第一阈值,第一阈值为开始解析控制信息与发送上行数据之间的最小时间间隔。发送能力信息,以便网络设备根据该能力信息可以灵活地配置搜索空间位置。
可选的,接收第二配置信息,第二配置信息配置接收控制信息的起始时域位置,控制信息的起始时域位置、CORESET的时域长度与解析时间之和小于第二阈值,第二阈值为时间单元的时域长度,时间单元为时隙、微时隙、子帧、半帧、或帧。
所述装置1700还可以执行图9所示实施例中网络设备执行的方法。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图17的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
图18提供了一种终端设备的结构示意图。该终端设备可适用于图8所示出的架构中。为了便于说明,图18仅示出了终端设备的主要部件。如图18所示,终端设备1800包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信 数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图18仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图18中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1800的收发单元1811,将具有处理功能的处理器视为终端设备1800的处理单元1812。如图18所示,终端设备1800包括收发单元1811和处理单元1812。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1811中用于实现接收功能的器件视为接收单元,将收发单元1811中用于实现发送功能的器件视为发送单元,即收发单元1811包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
如图19所示,本申请又一实施例提供了一种装置1900。该装置可以是终端,也可以是终端的部件(例如,集成电路,芯片等等)。该装置还可以是网络设备,也可以是网络设备的部件(例如,集成电路,芯片等等)。该装置也可以是其他通信模块,用于实现本申请方法实施例中的方法。该装置1900可以包括:处理模块1902(处理单元)。可选的,还可以包括收发模块1901(收发单元)和存储模块1903(存储单元)。
在一种可能的设计中,如图19中的一个或者多个模块可能由一个或者多个处理器来实 现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
所述装置具备实现本申请实施例描述的终端设备的功能,比如,所述装置包括终端设备执行本申请实施例描述的终端设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
或者所述装置具备实现本申请实施例描述的网络设备的功能,比如,所述装置包括所述网络设备执行本申请实施例描述的网络设备涉及步骤所对应的模块或单元或手段(means),所述功能或单元或手段(means)可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现,还可以通过软件和硬件结合的方式实现。详细可进一步参考前述对应方法实施例中的相应描述。
可选的,本申请实施例中的装置1900中各个模块可以用于执行本申请实施例中图9描述的方法。
在一种可能的实施方式中,一种装置1900可包括收发模块1901和处理模块1902,收发模块1901,用于在第一CCE上接收控制信息;在一个或多个第二CCE上接收所述控制信息;其中,所述第一CCE和所述一个或多个第二CCE包括在CORESET中,所述CORESET包括N个CCE,N为大于1的整数,所述N个CCE的编号满足先时域后频域的编号规则。从而在两个通信系统共享频谱资源但使用不同的SCS的情况下,可以降低两个通信系统之间的传输干扰。REG的编号规则与CCE的编号规则结合,是实现时域重复传输降干扰的基础。
可选的,所述CORESET包括M个REG,所述M个REG的编号满足先频域后时域的编号规则,M为大于1的整数。REG的编号规则与CCE的编号规则结合,是实现时域重复传输降干扰的基础。
可选的,所述处理模块1902用于确定所述第一CCE和所述一个或多个第二CCE中的一个CCE的资源与速率匹配资源重合时,所述控制信息由所述CORESET的资源中除所述速率匹配资源之外的资源承载。这样使得承载控制信息的资源更多,速率匹配资源占用的资源更少。
可选的,所述收发模块1901,还用于接收第一配置信息;所述处理模块1902,还用于根据所述第一配置信息确定所述速率匹配资源,所述速率匹配资源对应的SCS与所述第一配置信息指示的资源对应的SCS不同。
可选的,所述收发模块1901,还用于发送能力信息,所述能力信息指示解析所述控制信息所需的解析时间,所述解析时间小于或等于第一阈值,所述第一阈值为开始解析所述控制信息与发送上行数据之间的最小时间间隔。发送能力信息,以便网络设备根据该能力信息可以灵活地配置搜索空间位置。
可选的,所述收发模块1901,还用于接收第二配置信息,所述第二配置信息配置接收所述控制信息的起始时域位置,所述控制信息的起始时域位置、所述CORESET的时域长 度与所述解析时间之和小于第二阈值,所述第二阈值为时间单元的时域长度,所述时间单元为时隙、微时隙、子帧、半帧、或帧。
在一种可能的实现方式中,该装置1900还可以执行图9所示实施例中网络设备执行的方法。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
应理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请所描述的技术可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、DSP、数字信号处理器件、ASIC、可编程逻辑器件、FPGA、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本 文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆 分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种控制信息传输方法,其特征在于,包括:
    在第一控制信道单元CCE上接收控制信息;
    在一个或多个第二CCE上接收所述控制信息;
    其中,所述第一CCE和所述一个或多个第二CCE包括在控制资源集CORESET中,所述CORESET包括N个CCE,N为大于1的整数,所述N个CCE的编号满足先时域后频域的编号规则。
  2. 根据权利要求1所述的方法,其特征在于,所述CORESET包括M个资源单元组REG,所述M个REG的编号满足先频域后时域的编号规则,M为大于1的整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一CCE和所述一个或多个第二CCE中的一个CCE的资源与速率匹配资源重合时,所述控制信息由所述CORESET的资源中除所述速率匹配资源之外的资源承载。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收第一配置信息,根据所述第一配置信息确定所述速率匹配资源,所述速率匹配资源对应的子载波间隔SCS与所述第一配置信息指示的资源对应的SCS不同。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    发送能力信息,所述能力信息指示解析所述控制信息所需的解析时间,所述解析时间小于或等于第一阈值,所述第一阈值为开始解析所述控制信息与发送上行数据之间的最小时间间隔。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    接收第二配置信息,所述第二配置信息配置接收所述控制信息的起始时域位置,所述控制信息的起始时域位置、所述CORESET的时域长度与所述解析时间之和小于第二阈值,所述第二阈值为时间单元的时域长度,所述时间单元为时隙、微时隙、子帧、半帧、或帧。
  7. 一种控制信息传输方法,其特征在于,包括:
    在第一控制信道单元CCE上发送控制信息;
    在一个或多个第二CCE上发送所述控制信息;
    其中,所述第一CCE和所述一个或多个第二CCE包括在控制资源集CORESET中,所述CORESET包括N个CCE,N为大于1的整数,所述N个CCE的编号满足先时域后频域的编号规则。
  8. 根据权利要求7所述的方法,其特征在于,所述CORESET包括M个资源单元组REG,所述M个REG的编号满足先频域后时域的编号规则,M为大于1的整数。
  9. 根据权利要求7或8所述的方法,其特征在于,
    所述第一CCE和所述一个或多个第二CCE中的一个CCE的资源与速率匹配资源重合时,所述控制信息由所述CORESET的资源中除所述速率匹配资源之外的资源承载。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    发送第一配置信息,所述第一配置信息用于确定所述速率匹配资源,所述速率匹配资源对应的子载波间隔SCS与所述第一配置信息指示的资源对应的SCS不同。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述方法还包括:
    接收能力信息,所述能力信息指示解析所述控制信息所需的解析时间。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    发送第二配置信息,所述第二配置信息配置所述控制信息的起始时域位置,所述控制信息的起始时域位置、所述CORESET的时域长度与所述解析时间之和小于第二阈值,所述第二阈值为时间单元的时域长度,所述时间单元为时隙、微时隙、子帧、半帧、或帧。
  13. 一种通信装置,其特征在于,所述装置用于实现如权利要求1至6中任一项所述的方法。
  14. 一种通信装置,其特征在于,所述装置用于实现如权利要求7至12中任一项所述的方法。
  15. 一种通信装置,其特征在于,包括:处理器,所述处理器和存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至6中任一项所述的方法。
  16. 一种通信装置,其特征在于,包括:处理器,所述处理器和存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求7至12中任一项所述的方法。
  17. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至6中任一项所述的方法。
  18. 一种计算机可读存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求7至12中任一项所述的方法。
  19. 一种通信系统,其特征在于,包括:如权利要求13中所述的装置,和/或,权利要求14中所述的装置。
  20. 一种通信系统,其特征在于,包括:如权利要求15中所述的装置,和/或,权利要求16中所述的装置。
  21. 一种通信装置,其特征在于,所述装置包括用于实现如权利要求1至6中任一项所述方法的模块。
  22. 一种通信装置,其特征在于,所述装置包括用于实现如权利要求7至12中任一项所述方法的模块。
  23. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现权利要求1至6中任一项所述的方法或者实现权利要求7至12中任一项所述的方法。
PCT/CN2020/103749 2019-07-30 2020-07-23 控制信息传输方法及装置 WO2021017995A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910697063.XA CN112311514B (zh) 2019-07-30 2019-07-30 控制信息传输方法及装置
CN201910697063.X 2019-07-30

Publications (1)

Publication Number Publication Date
WO2021017995A1 true WO2021017995A1 (zh) 2021-02-04

Family

ID=74229372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103749 WO2021017995A1 (zh) 2019-07-30 2020-07-23 控制信息传输方法及装置

Country Status (2)

Country Link
CN (1) CN112311514B (zh)
WO (1) WO2021017995A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115190469B (zh) * 2021-04-02 2024-01-09 大唐移动通信设备有限公司 干扰协调处理方法、装置、电子设备及存储介质
WO2023123097A1 (zh) * 2021-12-29 2023-07-06 北京小米移动软件有限公司 资源元素群组捆确定、映射方法和装置
WO2023197336A1 (zh) * 2022-04-15 2023-10-19 Oppo广东移动通信有限公司 Pdcch的接收方法、发送方法、装置、设备及介质
WO2023206562A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 控制信道接收、发送方法和装置、通信装置和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420685A (zh) * 2011-11-07 2012-04-18 电信科学技术研究院 一种传输控制信息的方法及装置
CN103580838A (zh) * 2012-08-03 2014-02-12 电信科学技术研究院 增强的物理下行控制信道的发送及检测方法和设备
WO2018196534A1 (zh) * 2017-04-24 2018-11-01 中国移动通信有限公司研究院 控制资源集合配置的发送方法、控制信息的接收方法、网络侧设备及终端
CN109906581A (zh) * 2016-11-08 2019-06-18 高通股份有限公司 搜索空间设计和使用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478967B (zh) * 2016-08-08 2022-02-25 苹果公司 用于移动通信系统的信道状态信息配置
CN108633021B (zh) * 2017-03-23 2024-01-19 华为技术有限公司 一种上行控制信道的资源映射方法及装置
CN117856996A (zh) * 2017-05-04 2024-04-09 华为技术有限公司 通信方法和通信装置
WO2019028770A1 (zh) * 2017-08-10 2019-02-14 华为技术有限公司 通信方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102420685A (zh) * 2011-11-07 2012-04-18 电信科学技术研究院 一种传输控制信息的方法及装置
CN103580838A (zh) * 2012-08-03 2014-02-12 电信科学技术研究院 增强的物理下行控制信道的发送及检测方法和设备
CN109906581A (zh) * 2016-11-08 2019-06-18 高通股份有限公司 搜索空间设计和使用
WO2018196534A1 (zh) * 2017-04-24 2018-11-01 中国移动通信有限公司研究院 控制资源集合配置的发送方法、控制信息的接收方法、网络侧设备及终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Work plan for Rel-15 NR WI", 3GPP DRAFT; R1-1718177 RAN1 WORK PLAN FOR NR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051341359 *
OPPO: "Discussion of search space design", 3GPP DRAFT; R1-1718043, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051341225 *

Also Published As

Publication number Publication date
CN112311514B (zh) 2022-04-12
CN112311514A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
CN109995497B (zh) 下行控制信息传输方法
WO2021017995A1 (zh) 控制信息传输方法及装置
CN108347776B (zh) 一种通信系统中资源分配的方法及设备
JP5273886B2 (ja) Lte−advanceシステムにおけるcsi−rsリソース割り当てのための方法とシステム
US11363499B2 (en) Resource configuration method, apparatus, and system
WO2018202167A1 (zh) 通信方法和通信装置
WO2022002206A1 (zh) 一种ppdu的传输方法及相关装置
JP2013533674A (ja) Lte−advanceシステムにおけるcsi−rsリソース配分のための方法およびシステム
WO2019029470A1 (zh) 用于数据传输的方法、网络设备和终端设备
WO2022022579A1 (zh) 一种通信方法及装置
WO2020187132A1 (zh) 数据信道的传输方法及装置
TW201826747A (zh) 資源映射的方法和通訊設備
CN109219968A (zh) 一种csi-rs传输方法及网络设备
WO2018205990A1 (zh) 一种数据处理方法及其装置
WO2020114317A1 (zh) 一种参考信号的传输方法及装置
US20220239424A1 (en) Single carrier pdcch transmission and reception
WO2018201830A1 (zh) 资源配置方法、装置、存储介质及处理器
US20220159680A1 (en) Control channel transmission method and apparatus
WO2024032200A1 (zh) 一种参考信号端口指示的方法及装置
WO2022252954A1 (zh) 资源配置的方法及装置
WO2023236027A1 (en) Data and energy partial symbol design
WO2021261199A1 (ja) 通信装置
US20220393842A1 (en) Scheduling and signalling communication resources
WO2021097818A1 (zh) 通信方法及装置
WO2021081902A1 (zh) 一种信号发送方法、信号接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20848000

Country of ref document: EP

Kind code of ref document: A1