WO2019028770A1 - 通信方法、终端设备和网络设备 - Google Patents

通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2019028770A1
WO2019028770A1 PCT/CN2017/096905 CN2017096905W WO2019028770A1 WO 2019028770 A1 WO2019028770 A1 WO 2019028770A1 CN 2017096905 W CN2017096905 W CN 2017096905W WO 2019028770 A1 WO2019028770 A1 WO 2019028770A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource set
control resource
cce
mapping
regs
Prior art date
Application number
PCT/CN2017/096905
Other languages
English (en)
French (fr)
Inventor
李超君
成艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/096905 priority Critical patent/WO2019028770A1/zh
Priority to PCT/CN2017/107869 priority patent/WO2019029014A1/zh
Priority to CN202110831778.7A priority patent/CN113708904A/zh
Priority to CN201780046650.1A priority patent/CN109661846B/zh
Priority to BR112020002685-9A priority patent/BR112020002685A2/pt
Priority to EP17921211.3A priority patent/EP3661287B1/en
Publication of WO2019028770A1 publication Critical patent/WO2019028770A1/zh
Priority to US16/786,646 priority patent/US11356992B2/en
Priority to US17/751,015 priority patent/US11871428B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource

Definitions

  • the present application relates to the field of communications, and more particularly to communication methods, terminal devices, and network devices.
  • the Physical Downlink Control Channel (PDCCH) carries downlink control information (DCI), and the DCI may include resource allocation information and other control information of one or more terminal devices.
  • DCI downlink control information
  • multiple PDCCHs can be transmitted in one subframe, and the terminal device needs to demodulate the DCI from its own PDCCH before demodulating its own physical downlink shared channel at the corresponding resource location (Physical).
  • Downlink Shared Channel, PDSCH For example, broadcast messages, paging, data, and the like.
  • LTE Long Term Evolution
  • CCE Control Channel Element
  • the PDCCH is transmitted on one or more consecutive CCEs, and each CCE is composed of 9 REGs, and each REG is composed of 4 or 6 adjacent resource elements (Resource Elements, REs) located on the same OFDM symbol. .
  • the network device Before the PDCCH is transmitted, the network device needs to determine the CCE that transmits the PDCCH, and then the mapping between the CCE and the REG, and the RE included in the REG, to finally determine the mapping relationship between the PDCCH and the RE.
  • the REG defined in the prior art is composed of 4 or 6 REs, the REG has a small RE granularity. If the resources required for transmitting the PDCCH are large, multiple CCEs need to be determined, and the multiple The REG included in each CCE in the CCE increases the delay generated when determining the mapping relationship between the CCE and the REG transmitting the PDCCH.
  • the present application provides a communication method, a terminal device, and a network device, which are advantageous for reducing a delay generated when determining a mapping relationship between a CCE and a REG that transmits a PDCCH.
  • a communication method comprising:
  • the terminal device receives configuration information of the first control resource set, where the configuration information of the first control resource set includes mapping mode information of the first control resource set;
  • the REG in the first control resource set occupies one symbol in the time domain and one resource block RB in the frequency domain.
  • the mapping manner between the CCE and the REG is determined based on a granularity larger than the RE granularity of the REG defined in the prior art, which is advantageous for reducing the CCE and the REG in determining the transmission PDCCH.
  • the mapping manner of the CCE in the first control resource set is a centralized mapping, and each of the CCEs of the first control resource set The plurality of REGs included in the CCEs are consecutive in the frequency domain, and the plurality of REGs included in each CCE are located in the same symbol.
  • the number sequence of the CCEs in the first control resource set is ordered, and the number of CCEs in the first control resource set is prioritized
  • the fields are consecutive, and the numbered adjacent CCEs in the first control resource set are located in different symbols.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a centralized mapping
  • Each CCE in the first set of control resources includes multiple REGs and is continuous in the frequency domain, and the multiple REGs included in each CCE are located in the same one symbol.
  • the number of the REG included in the CCE numbered n in the first control resource set is or
  • the number of the REG included in the CCE number n in the first control resource set is or
  • the CCE numbered n in the first control resource set is located at the number nmod Numbered on the symbol REG,
  • Representing the number of symbols included in the first control resource set Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the number of the CCEs in the first control resource set is sequentially ordered, and the number of the CCEs in the first control resource set is prioritized
  • the fields are consecutive, and the numbers of the CCEs in the first set of control resources are ordered in the same manner in each symbol.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a time domain priority centralized mapping
  • the REGs in the first control resource set are numbered in the order of time domain priority, and the number of REGs included in the CCE number n in the first control resource set is among them, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the mapping manner of the CCE in the first control resource set is a centralized mapping, and each of the CCEs of the first control resource set
  • the plurality of REGs included in the CCEs are preferentially consecutive in the time domain, and the REGs adjacent to each of the CCEs are located in different symbols.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a frequency domain priority centralized mapping
  • the REGs in the first control resource set are numbered in the order of frequency domain priority, and the number of REGs included in the CCE numbered n in the first control resource set is among them, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the mapping manner of the CCE in the first control resource set is a distributed mapping, and each of the CCEs of the first control resource set
  • the CCEs comprise a plurality of REG sets, the plurality of REG sets are discretely distributed in the frequency domain, and the REGs in the multiple sets of REG sets are consecutive in the time domain.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a time domain-first distributed mapping
  • the REGs in the first control resource set are numbered in the order of time domain priority, and the number of REGs included in the CCE number n in the first control resource set is And Representing the number of symbols included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the number of the REG included in the CCE numbered n in the first control resource set is or
  • the number of the REG included in the CCE number n in the first control resource set is n. or,
  • the CCE numbered n in the first control resource set is located at the number of Numbered on the symbol n REG,
  • Representing the number of symbols included in the first control resource set Representing the number of CCEs included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a time-frequency interleaved distributed mapping.
  • the REGs in the first control resource set are numbered in the order of time domain priority, and the number of REGs included in the CCE number n in the first control resource set is or,
  • the number of the REG included in the CCE number n in the first control resource set is
  • Representing the number of symbols included in the first control resource set Representing the number of CCEs included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set.
  • the first search space is located in the first control resource set, and the first search space includes a candidate physical downlink control channel PDCCH with an aggregation level of L, and the candidate PDCCH with the number m is the One of the candidate PDCCHs with an aggregation level of L,
  • the method further includes:
  • the terminal device determines, according to the mapping manner information of the first control resource set, L CCEs included in the candidate PDCCH with the number m in the first search space.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a distributed mapping
  • the L is equal to 2, and the candidate PDCCH with the number m includes two consecutive consecutive CCEs; or
  • the L is greater than 2, and the candidate PDCCH with the number m includes L CCEs, and the numbers of at least 2 CCEs of the L CCEs are discontinuous.
  • the application provides a communication method, including:
  • the network device determines a mapping manner between the control channel unit CCE in the first control resource set and the resource unit group REG in the first control resource set, where the REG in the first control resource set occupies one time domain Symbol and occupy one resource block RB in the frequency domain;
  • the network device sends the configuration information of the first control resource set, where the configuration information of the first control resource set includes mapping mode information of the first control resource set, and mapping mode information of the first control resource set And indicating a mapping manner between a CCE in the first control resource set and a REG in the first control resource set.
  • the mapping manner between the CCE and the REG is determined based on a granularity larger than the RE granularity of the REG defined in the prior art, which is advantageous for reducing the CCE and the REG between determining the PDCCH for transmission.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a centralized mapping, where the first Each CCE in the control resource set includes a plurality of REGs consecutive in the frequency domain, and the plurality of REGs included in each CCE are located in the same symbol.
  • the number of the REG included in the CCE numbered n in the first control resource set is or
  • the number of the REG included in the CCE number n in the first control resource set is or
  • the CCE numbered n in the first control resource set is located at the number nmod Numbered on the symbol REG,
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a time domain-first centralized mapping
  • the REGs in the first control resource set are numbered in the order in which the time domain is prioritized over the frequency domain, and the number of the REGs included in the CCE number n in the first control resource set is among them, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a frequency domain priority centralized mapping
  • the REGs in the first control resource set are numbered in the order in which the frequency domain is prioritized over the time domain, and the number of the REGs included in the CCE numbered n in the first control resource set is among them, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a time domain-first distributed mapping
  • the REGs in the first control resource set are numbered in the order in which the time domain is prioritized over the frequency domain, and the number of the REGs included in the CCE number n in the first control resource set is And Representing the number of symbols included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the number of the REG included in the CCE numbered n in the first control resource set is or
  • the number of the REG included in the CCE number n in the first control resource set is or,
  • the CCE numbered n in the first control resource set is located at the number of Numbered on the symbol n REG,
  • Representing the number of symbols included in the first control resource set Representing the number of CCEs included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a time-frequency interleaved distributed mapping
  • the REGs in the first control resource set are numbered in the order of time domain priority, and the number of REGs included in the CCE number n in the first control resource set is or
  • the number of the REG included in the CCE number n in the first control resource set is
  • Representing the number of symbols included in the first control resource set Representing the number of CCEs included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set.
  • the first search space is located in the first control resource set, and the first search space includes a candidate PDCCH with an aggregation level of L, and the candidate PDCCH with the number m is the One of the candidate PDCCHs whose aggregation level is L, and the mapping mode information of the first control resource set indicates L CCEs included in the candidate PDCCH with the number m in the first search space.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a distributed mapping
  • the L is equal to 2, and the candidate PDCCH with the number m includes two consecutive consecutive CCEs; or
  • the L is greater than 2, and the candidate PDCCH with the number m includes L CCEs, and the numbers of at least 2 CCEs of the L CCEs are discontinuous.
  • a terminal device having the function of implementing the terminal device in the method design of the above first aspect.
  • These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a network device having the function of implementing the network device in the method design of the second aspect above.
  • These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a terminal device including a transceiver, a processor, and a memory.
  • the processor is for controlling transceiver transceiver signals for storing a computer program for calling and running the computer program from the memory such that the terminal device performs the method of the first aspect above.
  • a network device including a transceiver, a processor, and a memory.
  • the processor is for controlling transceiver transceiver signals for storing a computer program for calling and running the computer program from memory such that the network device performs the method of the second aspect.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, a communication interface, and a processor coupled to the memory and the communication interface.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the first aspect or the first aspect described above.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, a communication interface, and a processor coupled to the memory and the communication interface.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the network device in any of the possible aspects of the second aspect or the second aspect above.
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to perform the method of the above aspects.
  • a computer readable medium storing program code for causing a computer to perform the method of the above aspects when the computer program code is run on a computer.
  • a chip comprising a processor and a memory for storing a computer program for calling and running the computer program from a memory, the computer program for implementing the method of the above aspects .
  • FIG. 1 is a wireless communication system 100 to which an embodiment of the present application is applied.
  • FIG. 2 is a schematic diagram showing the numbering of REGs in a control resource region in the order of time domain priority in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of numbering REGs in a control resource region according to a frequency domain priority order in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of numbering REGs in a control resource region in the order of time domain priority in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of numbering in a continuous manner in the frequency domain in the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a mapping method 1 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a mapping method 1 established according to the REG numbering method 2 in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a mapping method 1 established by the REG-based numbering method 3 in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a mapping mode 2 established by the REG-based numbering method 2 in the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a mapping method 3 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 12 is a schematic diagram of a mapping method 3 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 13 is a schematic diagram of a mapping method 4 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 14 is a schematic diagram of a mapping method 4 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 15 is a schematic diagram of a mapping method 5 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 16 is a schematic diagram of a mapping method 5 established according to the REG numbering method 2 in the embodiment of the present application.
  • FIG. 17 is a schematic diagram of a mapping method 5 established by the REG-based numbering method 3 in the embodiment of the present application.
  • FIG. 18 is a schematic diagram of a mapping manner 6 established by the REG-based numbering method 1 in the embodiment of the present application.
  • FIG. 19 is a schematic diagram of a mapping method 6 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 20 is a schematic diagram of distributed mapping between two CCEs and REGs according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of distributed mapping between two CCEs and REGs according to an embodiment of the present application.
  • FIG. 22 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 23 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • FIG. 24 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 25 is a schematic block diagram of a network device according to another embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 110 may be a device that communicates with a terminal device.
  • Network device 110 may provide communication coverage for a particular geographic area and may communicate with terminal devices located within the coverage area.
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and may include other numbers of terminals within the coverage of each network device. This example does not limit this.
  • the wireless communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like. This embodiment of the present application does not limit this.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • 5G 5G
  • the terminal device may include, but is not limited to, a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a user equipment (User Equipment, UE), a mobile device (handset) and portable devices, etc.
  • the terminal device can communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal device can be a mobile phone (or For "cellular" phones, computers with wireless communication capabilities, etc., the terminal devices can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices.
  • RAN Radio Access Network
  • the network device may be an access network device, for example, may be a base station, a Transmit and Receive Point (TRP) or an access point, and the base station may be a base station in GSM or CDMA (Base Transceiver Station).
  • BTS may also be a base station (NodeB) in WCDMA
  • NodeB may also be an evolved base station (evolved Node B, eNB or e-NodeB) in LTE, or may be an NR or 5G base station (gNB), this application
  • gNB 5G base station
  • Resource element The smallest resource unit, which can correspond to one symbol in the time domain and one subcarrier in the frequency domain. It can be uniquely identified by an index pair (k, l), where k is the subcarrier index and l is the symbol index.
  • Resource block an RB is occupied in the frequency domain. Continuous subcarriers. among them, Is a positive integer. Equal to 12.
  • the RB may be defined only from the frequency domain resource, that is, the number of time domain resources occupied by the RB in the time domain is not limited.
  • the embodiment of the present application does not limit the length of time of one symbol.
  • the length of one symbol can vary for different subcarrier spacing.
  • the symbol may include an uplink symbol and a downlink symbol, where the uplink symbol may be referred to as Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol or Orthogonal Frequency Division Multiplexing (OFDM). ) symbol; the downlink symbol can be referred to as an OFDM symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • a transmission period includes N symbols, where N is a positive integer.
  • the embodiment of the present application does not limit the length of time during the transmission, that is, the value of N is not limited.
  • one transmission period may be one subframe, one slot, and one mini-slot. , or a short transmission duration (STD) (also known as short transmission time interval (sTTI)).
  • STD short transmission duration
  • sTTI short transmission time interval
  • one of the above slots includes 7 or 6 symbols, and one subframe consists of 2 slots.
  • the number of symbols included in one slot can be determined according to the type of Cyclic prefix (CP) and the value of ⁇ .
  • CP Cyclic prefix
  • is equal to 0, 1, 2, 3, 4 or 5 and is a normal CP (Normal CP)
  • one time slot may include 7 or 14 symbols
  • is equal to 2 and is an extended cyclic prefix (Extended cyclic prefix, When extending CP), one time slot can include 12 or 6 symbols.
  • one subframe may include 2 ⁇ time slots, ⁇ is equal to 0, 1, 2, 3, 4 or 5, for example, ⁇ is equal to 0, and one subframe includes 14 symbols;
  • One slot includes 7 or 6 symbols one subframe may include 2 ⁇ +1 slots, ⁇ is equal to 0, 1 or 2, for example, ⁇ is equal to 0, and one subframe includes 2 slots, ie 14 symbols .
  • a mini-slot includes a number of symbols smaller than the number of symbols included in one slot.
  • An STD or sTTI includes a number of symbols of less than or equal to 7, for example, 2, 3 or 7.
  • Downlink control channel A channel used to carry downlink control information.
  • the downlink control channel in this embodiment may be sPDCCH, NR-PDCCH, and other channels defined in the future communication protocol that are similar to the downlink control channel.
  • the PDCCH short PDCCH, or shortened PDCCH refers to a downlink control channel whose occupied time domain resource is less than or equal to 0.5 ms.
  • NR-PDCCH new radio PDCCH refers to a downlink control channel defined in the NR system.
  • the embodiment of the present application does not limit the type and name of the downlink control channel, and is collectively referred to as a PDCCH.
  • the PDCCH in the embodiment of the present application may be a PDCCH based on a Cell-specific Reference Signal (CRS), or a PDCCH based on a Demodulation Reference Signal (DMRS).
  • CRS-based PDCCH may be a PDCCH demodulated according to a CRS
  • DMRS-based PDCCH may be a PDCCH demodulated according to a DMRS.
  • the CRS is a reference signal (Reference Signal, RS) that the network device configures to all the terminal devices in the cell
  • the DMRS is an RS that is configured by the network device to a specific terminal device, and may also be referred to as a terminal device specific reference signal (UE-specific Reference Signal). , URS).
  • the PDCCH defined in the NR system may be the PDCCH of the foregoing DMRS.
  • A Aggregation Level
  • the aggregation level can represent the number of consecutive CCEs occupied by one PDCCH. That is, one downlink control channel consists of L downlink control channel elements (CCEs).
  • CCEs downlink control channel elements
  • L is a positive integer, it can be said that the aggregation level of the PDCCH is L.
  • the value of L may be 1, 2, 4 or 8. It should be noted that, in order to improve the reliability of the PDCCH, the value of L may also be 16 or 32.
  • Resource-Element Group occupies one symbol in the time domain and occupies one resource block RB in the frequency domain. That is to say, the frequency range occupied by one REG in the frequency domain is equal to the frequency range occupied by one RB in the frequency domain.
  • one REG may contain 12 consecutive subcarriers in the frequency domain. It should be noted that when the 12 consecutive subcarriers include REs transmitting CRS or DMRS, the number of REs that can actually transmit the downlink control channel may be less than 12.
  • CCE a CCE can be Composition of REG, Is a positive integer. E.g, The value can be 3, 4 or 6.
  • a set of candidate downlink control channels can be understood as a set composed of one or more candidate downlink control channels. Each candidate downlink control channel can be used to carry downlink control information.
  • the terminal device needs to listen to the candidate downlink control channel, so the search space is the candidate downlink control channel set monitored by the terminal device.
  • Control-resource Set used to transmit downlink control information.
  • the source set may also be referred to as a control resource region, or a PDCCH resource set.
  • one terminal device may be configured with one or more control resource sets.
  • the following describes the first control resource region in the at least one control resource set configured by the terminal device as an example.
  • the first set of control resources occupies in the frequency domain Resource blocks, the first set of control resources is included in the time domain Symbols, among them, Is a positive integer, Is a positive integer. E.g, The value can be 1, 2 or 3.
  • the first set of control resources includes REG, Is a positive integer.
  • the first set of control resources includes CCE, Is a positive integer, or
  • REG bundle For the PDCCH based on DMRS, the terminal device can consider the same precoding in a REG bundle, that is, joint channel estimation can be performed in a REG bundle.
  • a REG bundle includes REG, Is a positive integer, for example, Equal to 2, 3 or 6.
  • a REG bundle includes consecutive numbers.
  • a CCE includes REG bundles, Is a positive integer, where The first set of control resources includes REG bundles, Is a positive integer, or
  • first control resource set may also be recorded as a set X p . Accordingly, "CORESET” in the mathematical expression can be interchanged with "X p ".
  • CORESET Equivalent Equivalent Equivalent Equivalent Equivalent Equivalent Equivalent Equivalent Equivalent Equivalent
  • a method of numbering a REG in a control resource set will be described in detail below with reference to FIG. 2 to FIG. 5. It should be noted that the method for describing the REG number is described by using only two REGs included in one control resource set (for example, the first control resource set) as an example, but the present application includes a specific control resource set. The number of symbols is not specifically limited.
  • Time domain priority that is, ascending number in time domain priority mode. That is to say, the REGs in the first control resource set are numbered in ascending order in the order in which the time domain takes precedence over the frequency domain.
  • the number of REGs located in the first symbol in the time domain and located in the lowest RB number in the frequency domain is 0, and the numbers of two adjacent REGs in the frequency domain are discontinuous.
  • the increment direction of the number of the REG in each symbol in the first control resource set is the same as the increment direction of the number of the RB in the first control resource set, or the increment direction of the REG number in each symbol in the first control resource set is the same .
  • FIG. 2 is a schematic diagram showing the numbering of REGs in a control resource region in the order of time domain priority in the embodiment of the present application.
  • the numbering method of the foregoing time-domain-preferred REG may also be applied to a case where the REG in the first control resource set occupies only one symbol in the time domain, that is, If it is equal to 1, the number of REGs in the first control resource set may be numbered in ascending order according to the RB number from small to large.
  • FIG. 4 is a schematic diagram of numbering REGs in a control resource region in the order of time domain priority in the embodiment of the present application.
  • Frequency domain priority that is, ascending number in the frequency domain priority mode. That is to say, the REGs in the first control resource set are numbered in ascending order according to the frequency domain priority time domain.
  • the number of REGs located in the first symbol in the time domain and located in the lowest RB number in the frequency domain is 0, and the numbers of two adjacent REGs in the time domain are discontinuous.
  • FIG. 3 is a REG in a control resource region according to a frequency domain priority order in the embodiment of the present application. A schematic diagram of the numbering.
  • the numbering method of the frequency domain-preferred REG may also be applied to the case where the REG in the first control resource set occupies only one symbol in the time domain, that is, If the value is equal to 1, the number of the REGs in the first control resource set may be numbered in ascending order according to the RB number, that is, the increment direction of the REG number in the first control resource set is in the first control resource set. The number of RBs is incremented in the same direction.
  • FIG. 4 is a schematic diagram of numbering REGs in a control resource region in the order of time domain priority in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of numbering in a continuous manner in the frequency domain in the embodiment of the present application.
  • determining one REG requires two parameters: the number of the symbol in which the REG is located in the time domain, And the number of the REG on the symbol.
  • the foregoing numbering method 3 may also be applied to a case where the REG in the first control resource set occupies only one symbol in the time domain, that is, If it is equal to 1, the number of REGs in the first control resource set may be numbered in ascending order according to the RB number from small to large.
  • FIG. 4 is a schematic diagram of numbering REGs in a control resource region in the order of time domain priority in the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication method according to an embodiment of the present application, where the method shown in FIG. 6 includes:
  • the terminal device receives configuration information of the first control resource set, where the configuration information of the first control resource set includes mapping mode information of the first control resource set.
  • the mapping mode information of the first control resource set may also be referred to as the transmission type information of the first control resource set.
  • the mapping mode information of the first control resource set may be used to indicate at least one of the following mapping manners: a mapping manner between a CCE in the first control resource set and a REG in the first control resource set, and the first control resource a mapping manner between the candidate PDCCH included in the set search space and the CCE in the first control resource set, and a mapping relationship between the search space in the first control resource set and the candidate PDCCH.
  • the mapping mode information indicates a distributed mapping manner or a centralized mapping manner
  • the transmission type information indicates a distributed transmission type or a centralized transmission type.
  • distributed may also be referred to as interleaved
  • localized may also be referred to as non-interleaved. Therefore, the distributed and interleaved types mentioned in the embodiments of the present application are interchangeable, and the centralized and non-interleaved types are interchangeable.
  • the foregoing mapping mode information indicates a time domain priority distributed mapping mode, a frequency domain priority distributed mapping mode, a time domain priority centralized mapping mode, or a frequency domain priority centralized mapping mode.
  • mapping mode information may directly indicate the mapping mode, for example, the mapping mode information directly indicates that the mapping mode is a time domain-first distributed mapping; or the mapping mode information may also indicate a mapping manner by using two parts of information, for example, Part of the information indicates time domain priority or frequency domain priority, and another part of information indicates centralized mapping mode. Or distributed mapping.
  • the foregoing mapping mode information indicates one of a distributed mapping manner and a centralized mapping manner.
  • the foregoing mapping mode information indicates one of a time domain priority distributed mapping mode, a frequency domain priority distributed mapping mode, a time domain priority centralized mapping mode, and a frequency domain prioritized centralized mapping mode.
  • mapping mode information is further used to indicate one of the following six mapping modes.
  • the network device sends the configuration information of the first control resource set, where the configuration information of the first control resource set includes mapping mode information of the first control resource set, and the first control resource set
  • the mapping mode information indicates a mapping manner between the CCE in the first control resource set and the REG in the first control resource set.
  • the sending, by the network device, the configuration information of the first control resource set may include the network device sending the configuration information of the first control resource set to the terminal device.
  • the sender of the configuration information of the first control resource set may be another terminal device or a network device, which is not specifically limited in this embodiment of the present application.
  • the terminal device determines, according to mapping manner information of the first control resource set, a mapping between a control channel unit CCE in the first control resource set and a resource unit group REG in the first control resource set.
  • the REG in the first control resource set occupies one symbol in the time domain and one resource block RB in the frequency domain.
  • the mapping manner between the CCE and the REG is determined based on a granularity larger than the RE granularity of the REG defined in the prior art, which is advantageous for reducing the CCE and the REG between determining the PDCCH for transmission.
  • the method further includes:
  • the network device determines a mapping manner between a control channel unit CCE in the first control resource set and a resource unit group REG in the first control resource set, where the REG in the first control resource set is in a time domain. One symbol is occupied and one resource block RB is occupied in the frequency domain.
  • the mapping manner between the CCE in the first control resource set and the REG in the first control resource set is a localized CCE-to-REG mapping between CCE and REG, and is also called CCE and
  • the non-interleaved CCE-to-REG mapping between the REGs or the mapping between the CCEs in the first control resource set and the REGs in the first control resource set is between CCE and REG.
  • Distributed CCE-to-REG mapping also known as interleaved CCE-to-REG mapping.
  • the distributed mapping between the CCE and the REG may be understood as that multiple REGs in each CCE are consecutively distributed in the time domain and discretely distributed in the frequency domain, or discretely distributed in the frequency domain and occupy only one time domain. Symbolically, or staggered discrete distributions in the time and frequency domains.
  • the mapping method 4 described below, the mapping method 5 and the mapping method 6 are all distributed mappings.
  • the mapping manner between the CCE in the first control resource set and the REG in the first control resource set may be understood as the number of the REG included in the CCE numbered n.
  • the mapping manner between the CCE in the first control resource set and the REG in the first control resource set is described in detail below with reference to FIGS. 2 through 4. It should be understood that the mapping between the CCE in the first control resource set and the REG in the first control resource set may be any of the following mapping modes. For the combination of the following mapping modes, the specific combination of the following mapping modes is not specifically limited.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a centralized mapping, that is, a non-interleaved mapping.
  • the mapping manner of the foregoing first resource set is a centralized mapping, and may include a mapping manner between a CCE in the first control resource set and a REG in the first control resource set as a centralized mapping, and/or The mapping manner between the candidate PDCCH included in the search space of the first control resource set and the CCE in the first control resource set is a centralized mapping.
  • the centralized mapping between the CCE and the REG may be understood as that multiple REGs in each CCE are consecutive in the time domain and/or the frequency domain. For example, multiple REGs in each CCE are consecutive in the time domain and the frequency domain. For example, multiple REGs in each CCE occupy the same symbol and are contiguous in the frequency domain.
  • the mapping methods one, two, and three described below are all centralized mappings.
  • Each CCE in the first control resource set includes multiple REGs consecutive in the frequency domain, and the multiple REGs included in each CCE are located in the same symbol.
  • the CCEs in the first control resource set are numbered in the frequency domain in ascending order according to the RB number from small to large.
  • the numbers of the CCEs in the first control resource set are numbered in the order of time domain priority, that is, the numbers of the CCEs in the first control resource set are preferentially consecutive in the time domain.
  • the mapping mode one may be called a semi-time domain priority centralized mapping or a semi time domain first non-interleaving mapping.
  • the numbers of the CCEs in the first control resource set are numbered in the order of time domain priority, and the numbers of the two CCEs occupying the same symbol and adjacent in the frequency domain are discontinuous.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a centralized/non-interleaved mapping, or a semi-time domain preferential centralized/non-interleaved mapping.
  • the number of the REG included in the CCE number n in the foregoing first control resource set is Or (Formula 1)
  • the number of the REG included in the CCE number n in the first control resource set is Or (Formula 2)
  • the CCE numbered n in the first control resource set is located at the number nmod Numbered on the symbol REG, (Formula 3)
  • Representing the number of symbols included in the first control resource set Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • Equation 1 Equation 2 and Equation 3 Can be replaced with That is, the REG of the numbered CCE and the REG of the numbered n are the same as the REG, and the numbered CCE includes only one REG bundle numbered n. Representing the number of REGs included in each REG bundle in the first set of control resources. At this time, it is only applicable to the PDCCH based on DMRS demodulation.
  • the first control resource set includes Symbols, according to the symbol 0, ..., the symbol The order is numbered in ascending order.
  • the number of the REG in the first control resource set is sorted by using the numbering method of the REG, and the mapping between the CCE and the REG is established by using the formula 1 above, so that the mapping between the CCE and the REG is the mapping mode. .
  • the number of the REGs in the first control resource set is sorted by the numbering method 2 of the REG.
  • the mapping between the CCE and the REG is established by using the formula 2, and the mapping between the CCE and the REG is the mapping mode 1.
  • the number of the REGs in the first control resource set is sorted by the numbering method 3 of the REG.
  • the mapping between the CCE and the REG is established by using the formula 3, and the mapping between the CCE and the REG is the mapping mode 1.
  • FIG. 7 is a schematic diagram of a mapping method 1 established by the REG-based numbering method in the embodiment of the present application.
  • FIG. 7 illustrates a mapping relationship between a CCE and a REG in a first control resource set by using a first control resource set to occupy two symbols in a time domain, and each CCE in the first control resource set includes three REGs as an example.
  • Equation 1 shows that a CCE numbered 0 (denoted as CCE0) contains a REG numbered 0, a REG numbered 2, and a REG number 4; a CCE number 1 (denoted CCE1) contains the number 1 REG, REG number 3, and REG number 5; CCE number 3 (denoted CCE3) contains REG number 7, REG number 9, and REG number 11.
  • FIG. 8 is a schematic diagram of a mapping method 1 established by the REG-based numbering method 2 in the embodiment of the present application.
  • FIG. 8 illustrates the mapping between CCE and REG in the first control resource set by using the first control resource set to occupy two symbols in the time domain, and each CCE in the first control resource set includes three REGs as an example.
  • Equation 2 shows that a CCE numbered 0 (denoted as CCE0) contains a REG numbered 0, a REG numbered 1, and a REG number 2; a CCE number 1 (denoted as CCE1) contains the number 24 REG, REG number 25, and REG number 26; CCE number 3 (denoted CCE3) contains REG number 27, REG number 28, and REG number 29.
  • FIG. 9 is a schematic diagram of a mapping method 1 established by the REG-based numbering method 3 in the embodiment of the present application.
  • FIG. 9 illustrates a mapping relationship between a CCE and a REG in a first control resource set by using a first control resource set to occupy two symbols in a time domain, and each CCE in the first control resource set includes three REGs as an example.
  • Equation 3 shows that the CCE numbered 0 (denoted as CCE0) contains REGs occupying the symbol 0 in the time domain and numbered 0, 1, 2 respectively; the CCE numbered 1 (denoted as CCE1) is included in the time domain.
  • the CCE number 3 includes the REGs occupying the symbol 1 in the time domain and having the numbers 3, 4, and 5, respectively.
  • mapping mode three when the number of REGs included in one CCE is not an integral multiple of the number of symbols occupied by the first control resource set, Cannot be divisible
  • mapping mode three the number of REGs per CCE on each symbol is not balanced, which is not conducive to resource reuse.
  • the mapping between the CCE and the REG is relatively regular, which facilitates resource multiplexing.
  • the PDSCH resource can be multiplexed with the PDSCH.
  • mapping mode 1 can be applied to a CRS-based sPDCCH, a DMRS-based NR-PDCCH, or a DMRS-based sPDCCH.
  • Each CCE in the first set of control resources includes multiple REGs consecutive in the frequency domain, and multiple REGs included in each CCE are located in the same symbol or preferentially located in the same symbol.
  • the CCEs in the first control resource set are numbered in the frequency domain in ascending order according to the RB number from small to large.
  • the numbers of the CCEs in the first control resource set are numbered in the order of the frequency domain priority, that is, the numbers of the CCEs in the first control resource set are preferentially consecutive in the frequency domain.
  • the mapping mode 2 may be referred to as a frequency domain priority centralized mapping or a frequency domain first non-interleaving mapping.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a centralized/non-interlaced mapping, or a frequency domain prioritized centralized/non-interleaved mapping.
  • the REGs in the first control resource set are numbered in the order of frequency domain priority, that is, numbered according to the numbering method 2 of the REG, and the number of the REGs included in the CCE number n in the first control resource set is
  • Equation 4 can be equivalent to among them, That is, the REG of the C number numbered n and the REG bundle numbered n include the same REG, and the CCE numbered n includes only one REG bundle numbered n. Representing the number of REGs included in each REG bundle in the first set of control resources. At this time, it is only applicable to the PDCCH based on DMRS demodulation.
  • the REG ordering and the CCE mapping mode all adopt the frequency domain priority manner, which can simplify the calculation formula of the mapping manner between the CCE and the REG, and is beneficial to reducing the computational complexity of the terminal device. .
  • FIG. 10 is a schematic diagram of a mapping mode 2 established by the REG-based numbering method 2 in the embodiment of the present application.
  • FIG. 10 illustrates a mapping relationship between a CCE and a REG in a first control resource set by using a first control resource set to occupy two symbols in a time domain, and each CCE in the first control resource set includes four REGs as an example.
  • Equation 4 shows that the CCE numbered 0 (denoted as CCE0) contains REGs with numbers 0, 1, 2, and 3; the CCE number 1 (denoted as CCE1) contains numbers 4, 5, and 6, respectively.
  • CCE number 2 (denoted as CCE2) contains REGs numbered 8, 9, 10, 11 respectively;
  • CCE number 3 (denoted as CCE3) contains numbers 12, 13, 14, and 15, respectively REG.
  • the REGs in the first control resource set are numbered in the order of time domain priority, that is, numbered according to the numbering method of the REG, and the number of the REGs included in the CCE number n in the first control resource set is
  • the REG of the C number numbered n and the REG bundle numbered n include the same REG, and the CCE numbered n includes only one REG bundle numbered n. Representing the number of REGs included in each REG bundle in the first set of control resources. At this time, it is only applicable to the PDCCH based on DMRS demodulation.
  • Equation 15 is more complicated. However, it is possible to enable only the sequence number of the time domain priority in the system, that is, according to the REG numbering method one.
  • the REG included in one CCE is preferentially located in one symbol, which is beneficial to reducing the time required for decoding of the terminal device and reducing the delay.
  • the mapping mode 2 is applicable to the CRS-based PDCCH.
  • the CCE in the first control resource set when When the value is equal to 1, the CCE in the first control resource set includes a plurality of consecutive REGs in the frequency domain, and the CCEs in the first control resource set are numbered in the frequency domain in ascending order according to the number of the RBs.
  • each CCE in the first control resource set when When it is greater than 1, each CCE in the first control resource set includes a plurality of consecutive REGs in the time domain and the frequency domain.
  • the numbers of the CCEs in the first control resource set are numbered in the order of time domain priority, and the numbers of the CCEs in the first control resource set are preferentially consecutive in the time domain.
  • the mapping mode 3 may be referred to as a time domain priority centralized mapping or a time domain first non-interleaving mapping.
  • the CCEs in the first control resource set may occupy the same at least one symbol.
  • mapping mode 3 when When the value is greater than 1, compared with the mapping mode 2, the first control resource set in the mapping mode 3 occupies less resources in the frequency domain, which is beneficial to resource multiplexing. For example, more frequency domain resources may be released for use by the PDSCH. .
  • the mapping mode 3 may be applied to a CRS-based sPDCCH, a DMRS-based NR-PDCCH, or a DMRS-based sPDCCH.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a centralized/non-interlaced mapping, or a time domain preferential centralized/non-interleaved mapping.
  • the REGs in the first control resource set are numbered in the order of the time domain priority, that is, numbered according to the numbering method 1 of the REG, and the number of the REGs included in the CCE number n in the first control resource set is
  • formula 4 can be equivalent to among them, That is, the REG bundle numbered n includes the REG of the CCE numbered n, and the CCE numbered n includes only one REG bundle numbered n. Representing the number of REGs included in each REG bundle in the first set of control resources. At this time, it is only applicable to a PDCCH based on DMRS demodulation, for example, a DMRS-based NR-PDCCH or a DMRS-based sPDCCH.
  • the numbering method of the REG and the mapping manner between the CCE and the REG adopt a time domain priority manner, which is advantageous for simplifying the calculation formula for determining the mapping manner between the CCE and the REG. Reduce the computational complexity of the terminal device.
  • FIG. 11 is a schematic diagram of a mapping method 3 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 11 illustrates a mapping relationship between a CCE and a REG in a first control resource set by using a first control resource set to occupy two symbols in a time domain, and each CCE in the first control resource set includes four REGs as an example.
  • Equation 4 shows that the CCE numbered 0 (denoted as CCE0) contains REGs numbered 0, 1, 2, and 3;
  • CCE numbered 1 (remembered) For CCE1) include REGs numbered 4, 5, 6, and 7;
  • CCE number 1 (denoted as CCE1) contains REGs numbered 4, 5, 6, and 7;
  • CCEs numbered 3 (denoted as CCE3) contain REGs numbered 12, 13, 14, and 15, respectively.
  • FIG. 12 is a schematic diagram of a mapping method 3 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 12 illustrates the mapping relationship between the CCE and the REG in the first control resource set by using the first control resource set to occupy two symbols in the time domain, and each CCE in the first control resource set includes three REGs as an example.
  • Equation 4 shows that a CCE numbered 0 (denoted as CCE0) contains REGs numbered 0, 1, 2; a CCE numbered 1 (denoted as CCE1) contains REGs numbered 3, 4, and 5; The CCE numbered 2 (denoted as CCE2) contains REGs numbered 6, 7, and 8, and the CCE numbered 3 (denoted as CCE3) contains REGs numbered 9, 10, and 11, respectively.
  • the REGs in the first control resource set are numbered in the order of time domain priority, that is, numbered according to the numbering method of the REG, and the CCE included in the CCE number n in the first control resource set is included.
  • Representing the number of REG bundles included in each CCE in the first control resource set Representing the number of REGs included in each REG bundle in the first control resource set, Representing the number of REGs included in each CCE in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • Equation 5 can be described in two steps: the first step determines the REG included in one REG bundle, and the second step determines the REG bundle included in a CCE. Specifically, the number of the REG included in the REG bundle numbered j in the first control resource set is among them, The number of the REG bundle included in the CCE numbered n in the first control resource set is among them, If When the value is equal to 1, the number of the REG bundle included in the CCE numbered n in the first control resource set is n.
  • the mapping manner between the CCE and the REG determined by the foregoing formula 5 is applicable only to the PDCCH based on the DMRS demodulation, for example, the DMRS-based NR-PDCCH or the DMRS-based sPDCCH.
  • the CCE in the first set of control resources when When equal to 1, includes a plurality of REGs that are discretely distributed (or non-contiguous) in the frequency domain.
  • each CCE in the first set of control resources when When greater than 1, includes a plurality of REGs that are consecutively distributed in the time domain and discretely distributed in the frequency domain.
  • the mapping method 4 may be referred to as a time domain-first distributed mapping or a time domain-first interleaved mapping.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a distributed/interleaved mapping, or a time domain-first distributed/interleaved mapping.
  • the REGs in the first control resource set are numbered in the order of time domain priority, that is, numbered according to the numbering method of the REG, and the CCE included in the CCE number n in the first control resource set is included.
  • Representing the number of symbols included in the first control resource set Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Representing the number of CCEs included in the first set of control resources;
  • the REGs in the first control resource set are numbered in the order of the time domain priority, that is, numbered according to the numbering method 1 of the REG, and the number of the REGs included in the CCE number n in the first control resource set is
  • Representing the number of symbols included in the first control resource set Representing the number of RBs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Representing the number of CCEs included in the first set of control resources;
  • the REGs in the first control resource set are numbered in the order of the time domain priority, that is, numbered according to the numbering method 1 of the REG, and the number of the REGs included in the CCE number n in the first control resource set is
  • the REGs in the first control resource set are numbered in the order of the time domain priority, that is, according to the numbering method 1 of the REG, and each REG bundle in the first control resource set occupies one RB in the frequency domain.
  • the number of the REG included in the CCE number n in the first control resource set is
  • Representing the number of REGs included in each REG bundle in the first control resource set Representing the number of REG bundles included in the CCE in the first control resource set, Representing the number of REGs included in the first control resource set, Representing the number of CCEs included in the first control resource set, Indicates the number of RBs included in the first control resource set.
  • the number of the REG in the first control resource set is sorted by the numbering method 1 of the REG, and the mapping relationship between the CCE and the REG is established by using the above formula 6, the formula 7, the formula 8 or the formula 9, so that the CCE and the REG can be made.
  • the mapping between the two is mapping mode four.
  • Equation 8 and Equation 9 are only applicable to PDCCH based on DMRS demodulation, for example, DMRS-based NR-PDCCH or DMRS-based sPDCCH.
  • FIG. 13 is a schematic diagram of a mapping method 4 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 13 illustrates a mapping relationship between a CCE and a REG in a first control resource set by using a first control resource set to occupy two symbols in a time domain, and each CCE in the first control resource set includes four REGs as an example.
  • the REGs contained in the CCEs numbered 0 and 3, by Equation 6 or Equation 7, can be used to obtain a CCE numbered 0 (denoted as CCE0) containing REGs numbered 0, 1, 24, 25; CCE number 3 ( Recorded as CCE3) contains REGs numbered 6, 7, 30, and 31, respectively.
  • FIG. 14 is a schematic diagram of a mapping method 4 established according to the REG numbering method in the embodiment of the present application.
  • Figure 14 occupies two symbols in the time domain with the first set of control resources, and The mapping relationship between CCE and REG in the first control resource set is illustrated as an example.
  • the mapping between CCE and REG can be obtained by Equation 8.
  • the CCE numbered 0 includes the REG numbers of 0. 1, 16, 17, 32, and 33
  • the CCE numbered 3 includes REG numbers of 6, 7, 22, 23, 38, and 39, respectively.
  • the REGs in the first control resource set are numbered in the order of time domain priority, that is, numbered according to the numbering method of the REG, and the REG included in one CCE can be obtained in two steps: the first step determines one The REG bundle includes the REG, and the second step determines the REG bundle included in the CCE.
  • the number of the REG included in the REG bundle numbered j in the first control resource set is among them, or The number of the REG bundle included in the CCE numbered n in the first control resource set is or among them, This formula is especially suitable Less than Scene.
  • the first control resource set occupies two symbols in the time domain, a total of 24 REGs, one REG bundle includes 2 REGs, then there are 12 REG bundles, and the REG bundles 0 to REG bundles 11 include REG numbers in order. 0,1 ⁇ , ⁇ 2,3 ⁇ , ⁇ 4,5 ⁇ , ⁇ 6,7 ⁇ , ⁇ 8,9 ⁇ , ⁇ 10,11 ⁇ , ⁇ 12,13 ⁇ , ⁇ 14,15 ⁇ , ⁇ 16, 17 ⁇ , ⁇ 18, 19 ⁇ , ⁇ 20, 21 ⁇ and ⁇ 22, 23 ⁇ .
  • each CCE includes 3 REG bundles, that is, 6 REGs, then CCE0 includes REG bundles 0, 4, and 8, CCE1 includes REG bundles 1, 5, and 9, CCE2 includes REG bundles 2, 6 and 10, and CCE3 includes REG bundle 3. , 7 and 11.
  • the number of the REG included in the REG bundle numbered j in the first control resource set is among them, or
  • the number of the REG bundles of the CCE numbered n in the first control resource set is f(x, n, c), and f( ⁇ ) represents an interleaver (interleaver), where c is a positive integer greater than 1, for example, c is equal to 2, 3, 4, 6, 8.
  • the value of c represents a PDCCH aggregation level greater than 1, for example, 2, 4, or 8.
  • the mapping method 4 of the embodiment of the present application may be applied to a CRS-based sPDCCH, a DMRS-based NR-PDCCH, or a DMRS-based sPDCCH.
  • the mapping mode between the CCE and the REG described in the mapping mode 4 is less in the frequency domain resource occupied by the first control resource set, which is beneficial to resource multiplexing. For example, more frequency domain resources may be released for use by a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a distributed/interleaved mapping, or a frequency domain-first distributed/interleaved mapping.
  • the CCE number n in the foregoing first control resource set includes the number
  • the CCE number n in the first control resource set includes the number
  • Representing the number of symbols included in the first control resource set Indicates the number of REGs included in the CCE numbered n in the first control resource set, Representing the number of CCEs included in the first control resource set, Representing the number of resource blocks included in the first control resource set.
  • the number of the REGs in the first control resource set is sorted by using the numbering method of the REG, and the mapping between the CCE and the REG is established by using the above formula 10, so that the mapping between the CCE and the REG is the mapping mode. .
  • the number of the REGs in the first control resource set is sorted by the numbering method 2 of the REG.
  • the mapping between the CCE and the REG is established by using the above formula 11.
  • the number of the REGs in the first control resource set is sorted by the numbering method 3 of the REG.
  • the mapping between the CCE and the REG is established by the above formula 12, and the mapping between the CCE and the REG is the mapping mode 5.
  • FIG. 15 is a schematic diagram of a mapping method 5 established according to the REG numbering method in the embodiment of the present application.
  • FIG. 15 illustrates the mapping between CCE and REG in the first control resource set by using the first control resource set to occupy two symbols in the time domain, and each CCE in the first control resource set includes four REGs as an example.
  • Equation 10 can be used to obtain a CCE numbered 0 (denoted as CCE0) containing REGs numbered 0, 12, 24, and 36, respectively.
  • the CCE of 3 (denoted as CCE3) contains REGs numbered 6, 18, 30, and 42, and the CCE numbered 6 (denoted as CCE6) contains REGs numbered 1, 13, 25, and 37, respectively.
  • FIG. 16 is a schematic diagram of a mapping method 5 established according to the REG numbering method 2 in the embodiment of the present application.
  • Figure 16 illustrates the mapping between CCE and REG in the first control resource set by using the first control resource set to occupy two symbols in the time domain, and each CCE in the first control resource set includes four REGs as an example.
  • Equation 11 can be used to obtain a CCE numbered 0 (denoted as CCE0) containing REGs numbered 0, 6, 12, and 18, respectively.
  • the CCE of 3 (denoted as CCE0) contains REGs numbered 3, 9, 15, and 21, and the CCE numbered 6 (denoted as CCE6) contains REGs numbered 24, 30, 36, and 42, respectively.
  • FIG. 17 is a schematic diagram of a mapping method 5 established by the REG-based numbering method 3 in the embodiment of the present application.
  • the mapping between the CCE and the REG in the first control resource set is illustrated by using the first control resource set to occupy two symbols in the time domain, and each CCE in the first control resource set includes four REGs as an example.
  • each CCE in the first control resource set includes four REGs as an example.
  • the REG numbers contained in the CCEs numbered 0, 3, and 6 are described.
  • the CCE numbered 0 (denoted as CCE0) is included in the time domain, and the number 0 is 0 and 6 respectively.
  • CCE numbered 3 contains REGs occupying the symbol 0 in the time domain and numbered 3, 9, 15, and 21 respectively
  • CCE number 6 contains REGs occupying symbol 1 and numbered 0, 6, 12, and 18, respectively, in the time domain.
  • the REGs in the first control resource set are numbered in the order of frequency domain priority, that is, numbered according to the numbering method 2 of the REG, and the number of the REG included in one CCE can be obtained in two steps: Determine the REG included in a REG bundle. The second step determines the REG bundle included in a CCE.
  • the number of the REG included in the REG bundle numbered j in the first control resource set is among them, or The number of the REG bundle included in the CCE numbered n in the first control resource set is among them, Representing the number of symbols included in the first control resource set, Representing the number of CCEs included in the first control resource set, Representing the number of resource blocks included in the first control resource set, Representing the number of REGs included in each REG bundle in the first control resource set, Representing the number of REG bundles included in each CCE in the first control resource set, Indicates the number of REG bundles included in the first control resource set.
  • the mapping method 5 of the embodiment of the present application is particularly applicable to a CRS-based sPDCCH and a DMRS-based NR-PDCCH.
  • each CCE in the first set of control resources when When equal to 1, each CCE in the first set of control resources includes a plurality of REGs that are discretely distributed (or non-contiguous) in the frequency domain. when When greater than 1, each CCE in the first set of control resources includes a plurality of REGs that are staggeredly distributed (or non-contiguous) in the time domain and the frequency domain.
  • the mapping mode 6 can be called a distributed/interleaved mapping of time-frequency interleaving.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a distributed/interleaved mapping, or a time-frequency interleaved distributed/interleaved mapping.
  • the REGs in the first control resource set are numbered in the order of time domain priority, that is, numbered according to the numbering method of the REG, and the CCE included in the CCE number n in the first control resource set is included.
  • Representing the number of symbols included in the first control resource set Representing the number of CCEs included in the first control resource set, Representing the number of REGs included in the first control resource set, Representing the number of REGs included in the CCE number n in the first set of control resources;
  • the REGs in the first control resource set are numbered in the order of the time domain priority, that is, numbered according to the numbering method 1 of the REG, and the number of the REGs included in the CCE number n in the first control resource set is
  • Representing the number of symbols included in the first control resource set Representing the number of CCEs included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set.
  • the mapping mode 6 of the embodiment of the present application is particularly applicable to a CRS-based sPDCCH and a DMRS-based NR-PDCCH.
  • FIG. 18 is a schematic diagram of a mapping manner 6 established by the REG-based numbering method 1 in the embodiment of the present application.
  • FIG. 18 illustrates a mapping relationship between a CCE and a REG in a first control resource set by using a first control resource set to occupy two symbols in a time domain, and each CCE in the first control resource set includes four REGs as an example.
  • each CCE in the first control resource set includes four REGs as an example.
  • REG numbers contained in the CCEs numbered 0, 3, and 6 are described.
  • the CCE (CCE0) numbered 0 includes REGs numbered 0, 13, 24, and 37, numbered 3
  • the CCE (CCE3) contains REGs numbered 3, 14, 27, and 38
  • the CCE number 6 (CCE6) contains REGs numbered 6, 19, 30, and 43, respectively.
  • FIG. 19 is a schematic diagram of a mapping manner 6 established by the REG-based numbering method 1 in the embodiment of the present application.
  • FIG. 19 illustrates a mapping relationship between a CCE and a REG in a first control resource set by using a first control resource set to occupy two symbols in a time domain, and each CCE in the first control resource set includes four REGs as an example.
  • each CCE in the first control resource set includes four REGs as an example.
  • the REG numbers included in the CCEs numbered 0, 3, and 6 will be described.
  • the REG numbered 0, 13, 24, and 37 of the CCE (CCE0) numbered 0 can be obtained.
  • CCE (CCE3) of 3 contains REGs of numbers 6, 19, 30, and 43
  • CCEs of number 6 (CCE6) contain REGs of numbers 1, 12, 25, and 36, respectively.
  • LTE Long Term Evolution
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Physical Downlink Control Channel
  • the PDCCH is demodulated according to the CRS, and only one resource mapping mode exists, and only occurs once in 1 ms, which is disadvantageous for a low-latency scenario, and cannot be used for a PDCCH based on DMRS demodulation; the EPDCCH is performed according to the DMRS.
  • Demodulated which occurs only once in 1 ms and includes more than 7 symbols in the time domain, is not conducive to low latency scenarios.
  • the multiple mapping modes in the embodiments of the present application can be combined to form a mapping mode set, and an appropriate mapping mode can be selected based on the transmission requirements of different services. Therefore, the target mapping mode is determined by using the mapping mode set in the embodiment of the present application.
  • the communication method can more flexibly configure the control resource set and its mapping mode, which is beneficial to improve the transmission efficiency.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a distributed/interleaved mapping, and the REG bundle information indication in the configuration information of the first control resource set indicates equal For example, the indication Equal to 6.
  • each CCE in the first control resource set includes a time domain and/or a frequency domain continuous Two REGs, and consecutively 2 CCEs are located in non-contiguous frequency domain resources.
  • the REGs in the first control resource set are numbered in the order of the time domain priority, that is, numbered according to the numbering method 2 of the REG, and the number of the REG included in one CCE can be obtained in two steps: Determine the REG included in a REG bundle. The second step determines the REG bundle included in a CCE.
  • the number of the REG included in the REG bundle numbered j in the first control resource set is among them, or
  • the second step is to determine the method of a REG bundle included in a CCE as method one or method two:
  • Method 1 The REG bundle included in the CCE numbered n in the first control resource set is determined according to the interleaving manner listed in the REG bundle travel, that is, the REG bundle is written in rows, and then the column is taken out and corresponding to the CCE.
  • the input to the interleaver is the REG bundle, and the output is the CCE corresponding REG bundle.
  • Method 2 The number of the REG bundle included in the CCE numbered n in the first control resource set is f(n, c), and f( ⁇ ) is an interleaver (interleaver), where c is a positive integer greater than 1, for example, c is equal to 2, 3, 4, 6, 8.
  • the value of c is a value of a PDCCH aggregation level greater than 1, for example, 2, 4, or 8.
  • the number of the REG bundle included in the CCE numbered n in the first control resource set is among them,
  • the first control resource set includes 8 REG bundles, c is equal to 2, and CCE0 to CCE8 correspond to REG bundle 0, REG bundle 4, REG bundle 1, REG bundle 5, REG bundle 2, REG bundle 6, REG bundle 3, and REG, respectively.
  • CCE0 to CCE8 correspond to REG bundle 0, REG bundle 2, REG bundle 4, REG bundle 6, REG bundle 1, REG bundle 3, REG bundle 5, and REG bundle 7, respectively.
  • mapping mode 7 and the centralized mapping mode are compatible, that is, the PDCCH blocking probability between the two mapping modes is low.
  • the candidate PDCCH (described below) numbered m is used in the mapping mode VII, and includes L consecutive CCEs.
  • the first search space is located in the first control resource set, and the first search space includes a candidate PDCCH with an aggregation level of L, and the candidate PDCCH with the number m is the One of the candidate PDCCHs with an aggregation level of L, the terminal device determines, according to the mapping manner information of the first control resource set, L CCEs included in the candidate PDCCH with the number m in the first search space.
  • the mapping mode information of the first control resource set indicates that the mapping mode of the first control resource set is a centralized/non-interleaved mapping, and the L PDCCHs included in the candidate PDCCH numbered m are in the time domain and/or The frequency domain is continuous, or L CCEs are consecutive in number.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a distributed/interleaved mapping, the L is equal to 2, and the number is m.
  • the candidate PDCCH includes 2 consecutive consecutive CCEs; or, the L is greater than 2, and the candidate PDCCH numbered m includes L The number of at least two CCEs in the L CCEs is discontinuous.
  • the mapping manner of the first control resource set is a time domain-first distributed/interleaved mapping
  • the mapping manner between the CCE and the REG is the mapping mode four
  • the aggregation level is L during the transmission period k.
  • the number of the initial CCE in the first search space during the transmission period k It can be configured by the network device and notified to the terminal device through high-level signaling.
  • the mapping manner of the first control resource set is a frequency domain-first distributed mapping (also referred to as an interleaved mapping), and the mapping manner between the CCE and the REG is a mapping manner 5.
  • the first search space with an aggregation level of L during the transmission period k The number of CCEs included in the candidate PDCCH numbered m is:
  • the number of the initial CCE in the first search space during the transmission period k It can be configured by the network device and notified to the terminal device through high-level signaling.
  • the first PDCCH is transmitted on the first CCE and the second CCE in the first control resource set, where the first CCE and the second CCE are in the first control resource
  • the mapping mode in the set is a distributed mapping, and the first REG in the first CCE and the second REG in the second CCE are consecutive in the frequency domain, and the number of the first REG is the same as the number The number of the two REGs is adjacent to each other, and the first CCE and the second CCE belong to the first search space
  • the method further includes: the terminal device blindly detecting the first PDCCH in the first search space.
  • FIG. 20 is a schematic diagram of distributed mapping between two CCEs and REGs in the embodiment of the present application.
  • FIG. 20 illustrates two kinds of distributed mappings only by taking the aggregation level of the PDCCH as 2 as an example.
  • the CCE numbered 0 (denoted as CCE0) includes the number 0.
  • the REG of 6, 12, 18, the CCE numbered 1 contains the REGs numbered 3, 9, 15, 21, wherein the other PDCCHs cannot be transmitted on the unoccupied REG, but in the second In the distributed mapping mode, CCE0 can include REGs numbered 0, 6, 12, and 18, and CCE1 contains the number. REGs of 1, 7, 13, and 19, wherein it can be seen that the unoccupied REGs of numbers 2, 3, 4, and 5 can constitute one CCE for transmitting other PDCCHs. Therefore, the second distributed mapping can improve resource utilization relative to the first distributed mapping.
  • the mapping manner of the CCE in the first control resource set is a distributed mapping
  • the second PDCCH is transmitted on the L CCEs in the first control resource set.
  • the L-CCEs include at least one REG set, where the REG set includes a third REG and a fourth REG that are adjacent to each other, and the third REG and the fourth REG are consecutive in the frequency domain, and The third REG and the fourth REG belong to two CCEs adjacent to each other, and the L CCEs include at least two REG sets that are discontinuous in the frequency domain, and the L CCEs belong to the second search space.
  • the method further includes: the terminal device blindly detecting the second PDCCH in the second search space.
  • FIG. 21 is a schematic diagram of distributed mapping between two CCEs and REGs according to an embodiment of the present application.
  • FIG. 21 illustrates two kinds of distributed mappings only by taking the aggregation level of the PDCCH as 4. It can be seen from FIG. 21 that if the number of REGs included in each CCE in the first control resource set is 4, in the first distributed mapping mode, the REGs in the four CCEs transmitting the PDCCH are occupied in the frequency domain. The frequency distribution is dense, and in the second distributed mapping mode, it can be seen that the frequency distribution of the REGs in the four CCEs transmitting the PDCCH in the frequency domain is relatively dispersed. Therefore, the second distributed mapping is advantageous for improving the transmission quality of the signal relative to the first distributed mapping.
  • a network device can configure one or more search spaces for one terminal device.
  • the network device can also configure one or more different search spaces for multiple terminal devices it serves.
  • the CCEs included in multiple search spaces configured may adopt different mapping modes.
  • the CCEs included in multiple search spaces configured may also adopt different mapping modes.
  • the network device may configure the time-frequency resources of the multiple search spaces to partially overlap or completely overlap, whether it is multiple search spaces of one terminal device or multiple search spaces of multiple terminal devices. Then, the coexistence problem between multiple search spaces using different CCE mapping methods needs to be considered. For example, how to reduce the probability of PDCCH blocking needs to be considered.
  • the collision between the centralized mapping mode and the distributed mapping mode can be reduced.
  • the aggregation level greater than 2 in order to improve the PDCCH reception performance, a larger frequency domain diversity gain is needed, and this solution can be achieved by using this scheme.
  • the impact is not significant.
  • FIG. 22 to FIG. 25 can implement the various steps in FIG. 6 , that is, the apparatus can perform all the methods in the foregoing embodiments. Therefore, specific details can be referred to the description in the above embodiments, in order to avoid Repeat, no longer detailed here.
  • FIG. 22 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 2200 illustrated in FIG. 22 includes: a receiving unit 2210 and a determining unit 2220.
  • the receiving unit 2210 is configured to receive configuration information of the first control resource set, where the configuration information of the first control resource set includes mapping mode information of the first control resource set.
  • a determining unit 2220 configured to determine, according to mapping manner information of the first control resource set received by the receiving unit, a control channel unit CCE in the first control resource set and a resource unit in the first control resource set
  • the mapping mode between the group REGs, the REG in the first control resource set occupies one symbol in the time domain and occupies one resource block RB in the frequency domain.
  • the mapping mode information of the first control resource set indicates the first control resource
  • the mapping mode of the source set is a centralized mapping, and each CCE in the first control resource set includes multiple REGs consecutive in the frequency domain, and multiple REGs included in each CCE are located in the same symbol.
  • the number of the REG included in the CCE numbered n in the first control resource set is or
  • the number of the REG included in the CCE number n in the first control resource set is or
  • the CCE numbered n in the first control resource set is located at the number nmod Numbered on the symbol REG,
  • Representing the number of symbols included in the first control resource set Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a time domain priority centralized mapping, and the REG in the first control resource set Numbered in the order of time domain priority, the number of REGs included in the CCE numbered n in the first control resource set is among them, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a centralized mapping of frequency domain priority, and the REG in the first control resource set
  • the numbers of the REGs of the CCE numbered n in the first control resource set are numbered in the order of the frequency domain priority. among them, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a time domain-first distributed mapping, and the REG in the first control resource set is Numbered in the order of time domain priority, the number of REGs included in the CCE numbered n in the first control resource set is And Representing the number of symbols included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the number of the REG included in the CCE numbered n in the first control resource set is or,
  • the number of the REG included in the CCE number n in the first control resource set is n. or,
  • the CCE numbered n in the first control resource set is located at the number of Numbered on the symbol n REG,
  • Representing the number of symbols included in the first control resource set Representing the number of CCEs included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a time-frequency interleaved distributed mapping, and the REG in the first control resource set Numbered in the order of time domain priority, the number of REGs included in the CCE numbered n in the first control resource set is or,
  • the number of the REG included in the CCE number n in the first control resource set is
  • Representing the number of symbols included in the first control resource set Representing the number of CCEs included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set.
  • the first search space is located in the first control resource set, and the first search space includes a candidate physical downlink control channel PDCCH with an aggregation level of L, and the candidate PDCCH with the number m is the One of the candidate PDCCHs with an aggregation level of L,
  • the determining unit is further configured to determine the first search according to mapping manner information of the first control resource set The L CCEs included in the candidate PDCCH numbered m in space.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a distributed mapping.
  • the L is equal to 2, and the candidate PDCCH with the number m includes two consecutive consecutive CCEs; or
  • the L is greater than 2, and the candidate PDCCH with the number m includes L CCEs, and the numbers of at least 2 CCEs of the L CCEs are discontinuous.
  • the receiving unit 2210 may be a transceiver 2340, and the determining unit 2220 may be a processor 2320.
  • the terminal device may further include an input/output interface 2330 and a memory 2310, as shown in FIG. 23. Shown.
  • FIG. 23 is a schematic block diagram of a terminal device according to another embodiment of the present application.
  • the terminal device can perform all the methods in the foregoing embodiments. For details, refer to the description in the foregoing embodiments. To avoid repetition, details are not described herein again.
  • the terminal device 2300 shown in FIG. 23 may include a memory 2310, a processor 2320, an input/output interface 2330, and a transceiver 2340.
  • the memory 2310, the processor 2320, the input/output interface 2330 and the transceiver 2340 are connected by an internal connection path for storing instructions for executing the instructions stored by the memory 2320 to control the input/
  • the output interface 2330 receives the input data and information, outputs data such as the operation result, and controls the transceiver 2340 to transmit a signal.
  • the transceiver 2340 is configured to receive configuration information of a first control resource set, where configuration information of the first control resource set includes mapping mode information of the first control resource set;
  • the processor 2320 is configured to determine, according to mapping manner information of the first control resource set received by the transceiver, a control channel unit CCE in the first control resource set and the first control resource set.
  • the mapping between the resource unit groups REG, the REG in the first control resource set occupies one symbol in the time domain and occupies one resource block RB in the frequency domain.
  • the processor 2320 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • transceiver 2340 also known as a communication interface, utilizes transceivers such as, but not limited to, transceivers to enable communication between terminal 2300 and other devices or communication networks.
  • the memory 2310 can include read only memory and random access memory and provides instructions and data to the processor 2320.
  • a portion of processor 2320 may also include a non-volatile random access memory.
  • the processor 2320 can also store information of the device type.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 2320 or an instruction in a form of software.
  • the communication method disclosed in the embodiment of the present application may be directly implemented as a hardware processor execution completion, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 2310, and the processor 2320 reads the information in the memory 2310 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor may be a central processing unit (CPU), and the processor may also be another general-purpose processor, a digital signal processor (digital signal processor, DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • FIG. 24 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device can perform all the methods in the foregoing embodiments. For details, refer to the description in the foregoing embodiments. To avoid repetition, details are not described herein again.
  • the network device 2400 shown in FIG. 24 includes a determining unit 2410, and a transmitting unit 2420.
  • a determining unit configured to determine a mapping manner between a control channel unit CCE in the first control resource set and a resource unit group REG in the first control resource set, where the REG in the first control resource set is in a time domain One symbol is occupied and one resource block RB is occupied in the frequency domain;
  • a sending unit configured to send configuration information of the first control resource set, where configuration information of the first control resource set includes mapping mode information of the first control resource set, and mapping manner of the first control resource set The information indicates a mapping manner between the CCE in the first control resource set and the REG in the first control resource set.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a centralized mapping, and each CCE in the first control resource set is included in A plurality of REGs consecutive in the frequency domain, and the plurality of REGs included in each CCE are located in the same symbol.
  • the number of the REG included in the CCE numbered n in the first control resource set is or
  • the number of the REG included in the CCE number n in the first control resource set is or
  • the CCE numbered n in the first control resource set is located at the number nmod Numbered on the symbol REG,
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a time domain-first centralized mapping, and the REG in the first control resource set is The number of the REGs of the CCE numbered n in the first control resource set is numbered according to the order in which the time domain is prioritized over the frequency domain. among them, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a centralized mapping of frequency domain priority, and the REG in the first control resource set
  • the number of the REGs of the CCE numbered n in the first control resource set is numbered according to the order in which the frequency domain is prioritized over the time domain. among them, Representing the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a time domain-first distributed mapping
  • the REG in the first control resource set is The number of the REGs of the CCE numbered n in the first control resource set is numbered according to the order in which the time domain is prioritized over the frequency domain.
  • Representing the number of symbols included in the first control resource set Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set, Indicates the number of CCEs included in the first set of control resources.
  • the number of the REG included in the CCE numbered n in the first control resource set is or,
  • the number of the REG included in the CCE number n in the first control resource set is n. or,
  • the CCE numbered n in the first control resource set is located at the number of Numbered on the symbol n REG,
  • Representing the number of symbols included in the first control resource set Representing the number of CCEs included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set.
  • the mapping mode information of the first control resource set indicates that the mapping manner of the first control resource set is a time-frequency interleaved distributed mapping, and the REG in the first control resource set Numbered in the order of time domain priority, the number of REGs included in the CCE numbered n in the first control resource set is or,
  • the number of the REG included in the CCE number n in the first control resource set is
  • Representing the number of symbols included in the first control resource set Representing the number of CCEs included in the first control resource set, Representing the number of REGs included in the first control resource set, Indicates the number of REGs included in the CCE numbered n in the first control resource set.
  • the first search space is located in the first control resource set, and the first search space includes a candidate PDCCH with an aggregation level of L, and the candidate PDCCH with the number m is the One of the candidate PDCCHs whose aggregation level is L, and the mapping mode information of the first control resource set indicates L CCEs included in the candidate PDCCH with the number m in the first search space.
  • the mapping manner information of the first control resource set indicates that the mapping manner of the first control resource set is a distributed mapping.
  • the L is equal to 2, and the candidate PDCCH with the number m includes two consecutive consecutive CCEs; or
  • the L is greater than 2, and the candidate PDCCH with the number m includes L CCEs, and the numbers of at least 2 CCEs of the L CCEs are discontinuous.
  • the determining unit 2410 may be a processor 2520, the sending unit 2420 may be a transceiver 2540, and the network device may further include an input/output interface 2530 and a memory 2510, as shown in FIG. 25. Shown.
  • FIG. 25 is a schematic block diagram of a network device according to another embodiment of the present application.
  • the network device 2500 shown in FIG. 25 may include a memory 2510, a processor 2520, an input/output interface 2530, and a transceiver 2540.
  • the memory 2510, the processor 2520, the input/output interface 2530, and the transceiver 2540 are connected by an internal connection path for storing instructions for executing the instructions stored by the memory 2520 to control the input/
  • the output interface 2530 receives the input data and information, outputs data such as the operation result, and controls the transceiver 2540 to transmit a signal.
  • the processor 2520 is configured to determine a mapping manner between a control channel unit CCE in the first control resource set and a resource unit group REG in the first control resource set, where the REG in the first control resource set Occupy one symbol in the time domain and occupy one resource block RB in the frequency domain
  • the transceiver 2540 is configured to determine a mapping manner between a control channel unit CCE in the first control resource set and a resource unit group REG in the first control resource set, where the REG in the first control resource set One symbol is occupied in the time domain and one resource block RB is occupied in the frequency domain.
  • the processor 2520 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • transceiver 2540 also known as a communication interface, enables communication between network device 2500 and other devices or communication networks using transceivers such as, but not limited to, transceivers.
  • the memory 2510 can include read only memory and random access memory and provides instructions and data to the processor 2520.
  • a portion of the processor 2520 can also include a non-volatile random access memory.
  • the processor 2520 can also store information of the device type.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 2520 or an instruction in the form of software.
  • the communication method disclosed in the embodiment of the present application may be directly implemented as a hardware processor execution completion, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 2510, and the processor 2520 reads the information in the memory 2510 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded or executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, Use a computer, computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.

Abstract

本申请提供了一种通信方法、终端设备和网络设备,该方法包括终端设备接收第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息;所述终端设备根据所述第一控制资源集合的映射方式信息确定所述第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB。本申请实施例的通信方法,基于比现有技术中定义的REG的RE粒度更大的粒度,确定CCE与REG之间的映射方式,有利于减少在确定传输PDCCH的CCE与REG之间的映射关系时所产生的时延。

Description

通信方法、终端设备和网络设备 技术领域
本申请涉及通信领域,并且更具体地,涉及通信方法、终端设备和网络设备。
背景技术
物理下行控制信道(Physical Downlink Control Channel,PDCCH)承载的是下行控制信息(Downlink Control Information,DCI),DCI中可以包含一个或多个终端设备的资源分配信息和其他控制信息。通常而言,在一个子帧内,可以传输多个PDCCH,终端设备需要先从自己的PDCCH中解调出DCI,然后才能够在相应的资源位置上解调属于自己的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)例如,广播消息,寻呼,数据等。
长期演进(Long Term Evolution,LTE)系统中,为了更有效地配置PDCCH,定义了两种专用的控制信道资源单位:资源单元组(Resource Element Group,REG)和控制信道单元(Control Channel Element,CCE)。其中,PDCCH在一个或多个连续的CCE上传输,每个CCE由9个REG构成,每个REG由位于同一OFDM符号上的4个或6个相邻的资源元素(Resource Element,RE)组成。
在传输PDCCH之前,网络设备需要先确定传输该PDCCH的CCE,再通过CCE与REG之间的映射关系,以及REG包含的RE,最终确定PDCCH与RE之间的映射关系。然而,由于现有技术中定义REG是由粒度为4个或6个RE构成的,REG的RE粒度较小,若传输PDCCH所需的资源较多时,需要确定多个CCE,并确定该多个CCE中的每个CCE包含的REG,增加了在确定传输PDCCH的CCE与REG之间的映射关系时所产生的时延。
发明内容
本申请提供一种通信方法、终端设备和网络设备,有利于减少在确定传输PDCCH的CCE与REG之间的映射关系时所产生的时延。
第一方面,提供了一种通信方法,包括:
终端设备接收第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息;
所述终端设备根据所述第一控制资源集合的映射方式信息确定所述第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB。
在本申请实施例的通信方法中,基于比现有技术中定义的REG的RE粒度更大的粒度,确定CCE与REG之间的映射方式,有利于减少在确定传输PDCCH的CCE与REG 之间映射关系时所产生的时延。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合中的CCE的映射方式为集中式映射,且所述第一控制资源集合的CCE中的每个CCE包含的多个REG在频域上连续,且所述每个CCE包含的多个REG位于相同的符号内。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合中的CCE的编号顺序排序,且所述第一控制资源集合中的CCE的编号优先在时域上连续,且所述第一控制资源集合中的编号相邻的CCE位于不同的符号内。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式映射;
所述第一控制资源集合中的每个CCE包含多个REG且在频域上连续,且所述每个CCE包含的多个REG位于相同的一个符号内。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000001
或者
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000002
或者
所述第一控制资源集合中的编号为n的CCE包括位于编号为nmod
Figure PCTCN2017096905-appb-000003
的符号上编号为
Figure PCTCN2017096905-appb-000004
的REG,
其中,
Figure PCTCN2017096905-appb-000005
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000006
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000007
表示所述第一控制资源集合中包含的CCE的数量。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合中的CCE的编号顺序排序,且所述第一控制资源集合中的CCE的编号优先在频域上连续,且所述第一控制资源集合中的CCE的编号在每个符号内的排序方式相同。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的集中式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000008
其中,
Figure PCTCN2017096905-appb-000009
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000010
表示所述第一控制资源集合中包含的CCE的数量。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合中的CCE的映射方式为集中式映射,且所述第一控制资源集合的CCE中的每个CCE包含的多个REG优先在时域上上连续,且所述每个CCE中编号相邻的REG位于不同的符号内。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的集中式映射,所述第一控制资源集合中的REG按照频域优先的顺序编号,所述第一控制资源集合中的编号为n的 CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000011
其中,
Figure PCTCN2017096905-appb-000012
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000013
表示所述第一控制资源集合中包含的CCE的数量。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合中的CCE的映射方式为分布式映射,且所述第一控制资源集合的CCE中的每个CCE包含的多个REG集合,所述多个REG集合在频域上离散分布,且所述多组REG集合中的REG在时域上连续。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000014
Figure PCTCN2017096905-appb-000015
Figure PCTCN2017096905-appb-000016
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000017
表示所述第一控制资源集合包含的REG的数量,
Figure PCTCN2017096905-appb-000018
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000019
表示所述第一控制资源集合中包含的CCE的数量。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000020
或者,
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为n
Figure PCTCN2017096905-appb-000021
或者,
所述第一控制资源集合中的编号为n的CCE包括位于编号为
Figure PCTCN2017096905-appb-000022
的符号上编号为n
Figure PCTCN2017096905-appb-000023
的REG,
其中,
Figure PCTCN2017096905-appb-000024
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000025
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000026
表示所述第一控制资源集合中包含的REG的数量,
Figure PCTCN2017096905-appb-000027
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时频交错的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000028
或者,
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000029
其中,
Figure PCTCN2017096905-appb-000030
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000031
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000032
表示所述第一控制资源集合中包含的REG的数量,
Figure PCTCN2017096905-appb-000033
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一搜索空间位于所述第一控制资源集合,所述第一搜索空间包括
Figure PCTCN2017096905-appb-000034
个聚合级别为L的候选物理下行控制信道PDCCH,所述编号为m的候选PDCCH为所述
Figure PCTCN2017096905-appb-000035
个聚合级别为L的候选PDCCH中的一个,
所述方法还包括:
所述终端设备根据所述第一控制资源集合的映射方式信息确定所述第一搜索空间中的编号为m的候选PDCCH包括的L个CCE。
结合第一方面,在第一方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式映射,
所述L等于2,所述编号为m的候选PDCCH包括2个编号连续的CCE;或者,
所述L大于2,所述编号为m的候选PDCCH包括L个CCE,所述L个CCE中的至少2个CCE的编号不连续。
第二方面,本申请提供一种通信方法,包括:
网络设备确定第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB;
所述网络设备发送所述第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合中的CCE与所述第一控制资源集合中的REG之间的映射方式。
在本申请实施例的通信方法中,基于比现有技术中定义的REG的RE粒度更大的粒度,确定CCE与REG之间的映射方式,有利于减少在确定传输PDCCH的CCE与REG之间映射关系时所产生的时延。
结合第二方面,在第二方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式映射,所述第一控制资源集合中的每个CCE包含在频域上连续的多个REG,且所述每个CCE包含的多个REG位于同一个符号内。
结合第二方面,在第二方面中的一种可能的实现方式中,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000036
或者
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000037
或者
所述第一控制资源集合中的编号为n的CCE包括位于编号为nmod
Figure PCTCN2017096905-appb-000038
的符号上编号为
Figure PCTCN2017096905-appb-000039
的REG,
其中,且
Figure PCTCN2017096905-appb-000040
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000041
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000042
表示所述第一控制资源集合中包含的CCE的数量。
结合第二方面,在第二方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的集中式映射,所述第一控制资源集合中的REG按照时域优先于频域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000043
其中,
Figure PCTCN2017096905-appb-000044
Figure PCTCN2017096905-appb-000045
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000046
表示所述第一控制资源集合中包含的CCE的数量。
结合第二方面,在第二方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的集中式映射,所述第一控制资源集合中的REG按照频域优先于时域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000047
其中,
Figure PCTCN2017096905-appb-000048
Figure PCTCN2017096905-appb-000049
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000050
表示所述第一控制资源集合中包含的CCE的数量。
结合第二方面,在第二方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的分布式映射,所述第一控制资源集合中的REG按照时域优先于频域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000051
Figure PCTCN2017096905-appb-000052
Figure PCTCN2017096905-appb-000053
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000054
表示所述第一控制资源集合包含的REG的数量,
Figure PCTCN2017096905-appb-000055
表示所述 第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000056
表示所述第一控制资源集合中包含的CCE的数量。
结合第二方面,在第二方面中的一种可能的实现方式中,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000057
或者,
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000058
或者,
所述第一控制资源集合中的编号为n的CCE包括位于编号为
Figure PCTCN2017096905-appb-000059
的符号上编号为n
Figure PCTCN2017096905-appb-000060
的REG,
其中,
Figure PCTCN2017096905-appb-000061
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000062
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000063
表示所述第一控制资源集合中包含的REG的数量,
Figure PCTCN2017096905-appb-000064
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
结合第二方面,在第二方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时频交错的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000065
或者,
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000066
其中,
Figure PCTCN2017096905-appb-000067
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000068
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000069
表示所述第一控制资源集合中包含的REG的数量,
Figure PCTCN2017096905-appb-000070
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
结合第二方面,在第二方面中的一种可能的实现方式中,所述第一搜索空间位于所述 第一控制资源集合,所述第一搜索空间包括
Figure PCTCN2017096905-appb-000071
个聚合级别为L的候选PDCCH,所述编号为m的候选PDCCH为所述
Figure PCTCN2017096905-appb-000072
个聚合级别为L的候选PDCCH中的一个,所述第一控制资源集合的映射方式信息指示所述第一搜索空间中的编号为m的候选PDCCH包括的L个CCE。
结合第二方面,在第二方面中的一种可能的实现方式中,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式映射,
所述L等于2,所述编号为m的候选PDCCH包括2个编号连续的CCE;或者,
所述L大于2,所述编号为m的候选PDCCH包括L个CCE,所述L个CCE中的至少2个CCE的编号不连续。
第三方面,提供了一种终端设备,所述终端设备具有实现上述第一方面的方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,提供了一种网络设备,所述网络设备具有实现上述第二方面的方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,提供了一种终端设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行上述第一方面中的方法。
第六方面,提供了一种网络设备,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第二方面中的方法。
第七方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;通信接口,以及处理器,处理器与存储器、通信接口耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第一方面或第一方面的任意一种可能的设计中终端设备所执行的方法。
第八方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;通信接口,以及处理器,处理器与存储器、通信接口耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第二方面或第二方面的任意一种可能的设计中网络设备所执行的方法。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第十方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面中的方法。
第十一方面,提供一种芯片,包括处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,该计算机程序用于实现上述各方面中的方法。
附图说明
图1是本申请实施例应用的无线通信系统100。
图2示出了本申请实施例中按照时域优先的顺序对控制资源区域中的REG进行编号的示意图。
图3是本申请实施例中按照频域优先的顺序对控制资源区域中的REG进行编号的示意图。
图4是本申请实施例中按照时域优先的顺序对控制资源区域中的REG进行编号的示意图。
图5是本申请实施例中仅在频域上连续的方式进行编号的示意图。
图6是本申请实施例的通信方法的示意性流程图。
图7是本申请实施例基于REG的编号方法一建立的映射方式一的示意图。
图8是本申请实施例基于REG的编号方法二建立的映射方式一的示意图。
图9是本申请实施例基于REG的编号方法三建立的映射方式一的示意图。
图10是本申请实施例基于REG的编号方法二建立的映射方式二的示意图。
图11是本申请实施例基于REG的编号方法一建立的映射方式三的示意图。
图12是本申请实施例基于REG的编号方法一建立的映射方式三的示意图。
图13是本申请实施例基于REG的编号方法一建立的映射方式四的示意图。
图14是本申请实施例基于REG的编号方法一建立的映射方式四的示意图。
图15是本申请实施例基于REG的编号方法一建立的映射方式五的示意图。
图16是本申请实施例基于REG的编号方法二建立的映射方式五的示意图。
图17是本申请实施例基于REG的编号方法三建立的映射方式五的示意图。
图18是本申请实施例基于REG的编号方法一建立的映射方式六的示意图。
图19是本申请实施例基于REG的编号方法一建立的映射方式六的示意图。
图20是本申请实施例的两种CCE与REG之间分布式映射的示意图。
图21是本申请实施例的两种CCE与REG之间分布式映射的示意图。
图22是本申请实施例的终端设备的示意性框图。
图23是本申请另一实施例的终端设备的示意性框图。
图24是本申请实施例的网络设备的示意性结构图。
图25是本申请另一实施例的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备110可以是与终端设备通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其它网络实体, 本申请实施例对此不作限定。
应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、新空口(New Radio Access Technology,NR)、5G等。
还应理解,在本申请实施例中,终端设备可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本申请实施例中,网络设备可以是接入网设备,例如可以是基站、发射和接收点(Transmit and Receive Point,TRP)或接入点,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolved Node B,eNB或e-NodeB),还可以是NR或5G的基站(gNB),本申请实施例对此不作具体限定。
为了便于理解,先简单介绍本申请实施例涉及的相关概念。
一、资源单元(resource element,RE):最小的资源单元,在时域上可以对应一个符号,在频域上可以对应一个子载波。可以由索引对(k,l)唯一标识,其中,k为子载波索引,l为符号索引。
二、资源块(resource block,RB):一个RB在频域占用
Figure PCTCN2017096905-appb-000073
个连续的子载波。其中,
Figure PCTCN2017096905-appb-000074
为正整数。
Figure PCTCN2017096905-appb-000075
等于12。本申请实施例中,可以仅从频域资源上来定义RB,也就是说,不限制RB在时域上占用的时域资源数量。
三、符号(symbol):本申请实施例对一个符号的时间长度不做限制。针对不同的子载波间隔,一个符号的长度可以有所不同。符号可以包括上行符号和下行符号,其中,上行符号可以称为单载波频分多址(Single Carrier-Frequency Division Multiple Access,SC-FDMA)符号或正交频分多址(Orthogonal Frequency Division Multiplexing,OFDM)符号;下行符号可以称为OFDM符号。
需要说明的是,上述符号的还可以与其他上行多址方式或下行多址方式对应,本申请实施例对此不做具体限定。
四、传输期间(Transmission Duration):一个传输期间包括N个符号,其中,N为正整数。本申请实施例不限定传输期间的时间长度,即不限定N的取值,例如:一个传输期间可以是一个子帧(subframe),一个时隙(slot),一个迷你时隙(mini-slot),或者一个短传输期间(short Transmission Duration,STD)(又称,短传输时间间隔(short Transmission Time Interval,sTTI))。现有LTE系统中,上述一个时隙包括7或6个符号,一个子帧由2个时隙组成。
在NR系统中,一个时隙中包含的符号数量可以根据循环前缀(Cyclic prefix,CP)的类型和μ的取值确定。μ等于0,1,2,3,4或5且为普通CP(Normal cyclic prefix,normal CP)时,一个时隙可以包括7或14个符号;μ等于2且为扩展CP(Extended cyclic prefix,extended CP)时,一个时隙可以包括12或6个符号。若一个时隙包括14个符号,则一个子帧可以包括2μ个时隙,μ等于0,1,2,3,4或5,例如,μ等于0,一个子帧包括14个符号;若一个时隙包括7或6个符号,一个子帧可以包括2μ+1个时隙,μ等于0,1或2,例如,μ等于0,一个子帧包括2个时隙,即14个符号。一个迷你时隙(mini-slot)包括的符号数小于1个时隙包括的符号的数量。一个STD或sTTI包括的符号数小于等于7,例如,2,3或7。
五、下行控制信道:用于承载下行控制信息的信道。本申请实施例中的下行控制信道可以是sPDCCH,NR-PDCCH以及未来通信协议中新定义的作用与下行控制信道相近的其他信道。其中,sPDCCH(short PDCCH,或者,shortened PDCCH)是指占用的时域资源小于或等于0.5ms的下行控制信道。NR-PDCCH(new radio PDCCH)是指NR系统里定义的下行控制信道。本申请实施例不限制下行控制信道的类型和名称,都统称为PDCCH。
具体地,本申请实施例中的PDCCH还可以是基于小区特定参考信号(Cell-specific Reference Signal,CRS)的PDCCH,或者基于解调参考信号(Demodulation Reference Signal,DMRS)的PDCCH。基于CRS的PDCCH可以是根据CRS进行解调的PDCCH,基于DMRS的PDCCH可以是根据DMRS进行解调的PDCCH。CRS是网络设备配置给小区内的所有终端设备的参考信号(Reference Signal,RS),DMRS是网络设备配置给一个特定终端设备的RS,也可以称为终端设备特定参考信号(UE-specific Reference Signal,URS)。
需要说明的是,NR系统中定义的PDCCH可以是上述DMRS的PDCCH。
六、聚合级别(Aggregation Level,AL):又称聚合等级,可以表示一个PDCCH占用的连续的CCE的数量,也就是说,一个下行控制信道由L个下行控制信道单元(control channel element,CCE)聚合而成,L为正整数,则可以说该PDCCH的集合等级为L,具体地,L的取值可以是1、2、4或8。需要说明的是,为了提高PDCCH的可靠性,L的取值还可以是16或32。
七、资源单元组(REG,Resource-Element Group):在时域上占用一个符号,在频域上占用一个资源块RB。也就是说,一个REG在频域上占用的频率范围等于一个RB在频域上占用的频率范围。例如,一个REG在频域上可以包含12个连续的子载波。需要说明的是,当该12个连续的子载波里面包括传输CRS或DMRS的RE时,实际可以传输下行控制信道的RE的数量会少于12个。
八、CCE:一个CCE可以由
Figure PCTCN2017096905-appb-000076
个REG组成,
Figure PCTCN2017096905-appb-000077
为正整数。例如,
Figure PCTCN2017096905-appb-000078
的取值可以为3,4或6。
九、搜索空间:候选下行控制信道的集合,可以理解为由一个或多个候选下行控制信道组合而成的集合。其中,每个候选下行控制信道均能够用于承载下行控制信息。终端设备需要监听候选下行控制信道,所以搜索空间也就是终端设备监听的候选下行控制信道集合。
十、控制资源集合(Control-resource Set,CORESET):用于传输下行控制信息的资 源集合,也可以称为控制资源区域,或PDCCH资源集合。
需要说明的是,一个终端设备可以被配置一个或多个控制资源集合。不失一般性,下文中以该终端设备被配置的至少一个控制资源集合中的第一控制资源区域为例进行说明。第一控制资源集合在频域上占用
Figure PCTCN2017096905-appb-000079
个资源块,第一控制资源集合在时域上包括
Figure PCTCN2017096905-appb-000080
个符号,其中,
Figure PCTCN2017096905-appb-000081
为正整数,
Figure PCTCN2017096905-appb-000082
为正整数。例如,
Figure PCTCN2017096905-appb-000083
的取值可以为1,2或3。第一控制资源集合包括
Figure PCTCN2017096905-appb-000084
个REG,
Figure PCTCN2017096905-appb-000085
为正整数。第一控制资源集合包括
Figure PCTCN2017096905-appb-000086
个CCE,
Figure PCTCN2017096905-appb-000087
为正整数,
Figure PCTCN2017096905-appb-000088
或者
Figure PCTCN2017096905-appb-000089
十一、REG捆绑(REG bundle):对于基于DMRS的PDCCH,终端设备可以认为一个REG捆绑(REG bundle)内采用相同的预编码(precoding),即可以在一个REG bundle内做联合信道估计。一个REG bundle包括
Figure PCTCN2017096905-appb-000090
个REG,
Figure PCTCN2017096905-appb-000091
为正整数,例如,
Figure PCTCN2017096905-appb-000092
等于2,3或6。可选的,一个REG bundle包括编号连续的
Figure PCTCN2017096905-appb-000093
个REG。一个CCE包括
Figure PCTCN2017096905-appb-000094
个REG bundle,
Figure PCTCN2017096905-appb-000095
为正整数,其中,
Figure PCTCN2017096905-appb-000096
第一控制资源集合包括
Figure PCTCN2017096905-appb-000097
个REG bundle,
Figure PCTCN2017096905-appb-000098
为正整数,
Figure PCTCN2017096905-appb-000099
或者
Figure PCTCN2017096905-appb-000100
需要说明的是,第一控制资源集合也可以记为集合Xp。相应地,数学表达式中的“CORESET”可以和“Xp”互换。例如,
Figure PCTCN2017096905-appb-000101
相当于
Figure PCTCN2017096905-appb-000102
相当于
Figure PCTCN2017096905-appb-000103
相当于
Figure PCTCN2017096905-appb-000104
相当于
Figure PCTCN2017096905-appb-000105
相当于
Figure PCTCN2017096905-appb-000106
下面结合图2至图5,详细描述一个控制资源集合中REG的编号方法。需要说明的是,下面仅以一个控制资源集合(例如,第一控制资源集合)包括的多个REG占用两个符号为例,描述REG编号的方法,但是本申请对于一个控制资源集合中包含具体的符号数量不做具体限定。
REG的编号方法一:
时域优先,即按照时域优先方式进行升序编号。也就是说,第一控制资源集合中的REG按照时域优先于频域的顺序进行升序编号。第一控制资源集合中,在时域上位于第一个符号且在频域上位于最低RB编号的REG的编号为0,且在频域上相邻的两个REG的编号不连续。第一控制资源集合中每个符号内REG的编号的递增方向与第一控制资源集合中RB的编号的递增方向相同,或者说第一控制资源集合中每个符号内REG的编号的递增方向相同。例如,图2示出了本申请实施例中按照时域优先的顺序对控制资源区域中的REG进行编号的示意图。
另外,上述时域优先的REG的编号方法还可以应用于第一控制资源集合中的REG在时域上仅占用一个符号的情况,即
Figure PCTCN2017096905-appb-000107
等于1,第一控制资源集合中的REG的编号可以按照RB编号从小到大的顺序进行升序编号。例如,图4是本申请实施例中按照时域优先的顺序对控制资源区域中的REG进行编号的示意图。
REG的编号方法二:
频域优先,即按照频域优先方式进行升序编号。也就是说,第一控制资源集合中的REG按照频域优先时域的顺序进行升序编号。第一控制资源集合中,在时域上位于第一个符号且在频域上位于最低RB编号的REG的编号为0,且在时域上相邻的两个REG的编号不连续。例如,图3是本申请实施例中按照频域优先的顺序对控制资源区域中的REG 进行编号的示意图。
另外,上述频域优先的REG的编号方法还可以应用于第一控制资源集合中的REG在时域上仅占用一个符号的情况,即
Figure PCTCN2017096905-appb-000108
等于1,第一控制资源集合中的REG的编号可以按照RB编号从小到大的顺序进行升序编号,也就是说,第一控制资源集合中的REG的编号的递增方向与第一控制资源集合中RB的编号的递增方向相同。例如,图4是本申请实施例中按照时域优先的顺序对控制资源区域中的REG进行编号的示意图。
REG的编号方法三:
仅在频域上编号,即每个符号上的REG按照RB编号从小到大的顺序进行升序编号。也就是说,第一控制资源集合中的REG的编号仅仅在频域方向上递增,且不同符号中占用相同频率的REG的编号相同,或者说在时域上占用不同符号且在频域上占用相同RB的REG的编号相同。例如,图5是本申请实施例中仅在频域上连续的方式进行编号的示意图。
也就是说,REG的编号方法三中,若第一控制资源区域中的REG在时域上占用多个符号时,确定一个REG需要两个参数:该REG在时域上位于的符号的编号,以及该REG在该符号上的编号。
另外,上述编号方法三还可以应用于第一控制资源集合中的REG在时域上仅占用一个符号的情况,即
Figure PCTCN2017096905-appb-000109
等于1,第一控制资源集合中的REG的编号可以按照RB编号从小到大的顺序进行升序编号。例如,图4是本申请实施例中按照时域优先的顺序对控制资源区域中的REG进行编号的示意图。
下面结合图6以及上述第一控制资源集合中REG的编号的方法,详细介绍本申请实施例的通信方法。
图6是本申请实施例的通信方法的示意性流程图,图6所示的方法包括:
610,终端设备接收第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息。
具体地,上述第一控制资源集合的映射方式信息也可以称为第一控制资源集合的传输类型(transmission Type)信息。该第一控制资源集合的映射方式信息可以用于指示下列映射方式中的至少一种:第一控制资源集合中的CCE与第一控制资源集合中的REG之间的映射方式,第一控制资源集合的搜索空间中包含的候选PDCCH与第一控制资源集合中的CCE之间的映射方式,第一控制资源集合中的搜索空间与候选PDCCH之间的映射关系。
可选地,上述映射方式信息指示分布式映射方式或集中式映射方式,或者说,该传输类型信息指示分布式传输类型或集中式传输类型。需要说明的是,分布式(distributed)还可以称为交织式(interleaved),集中式(localized)还可以称为非交织式(non-interleaved)。因此,本申请实施例中提到的分布式和交织式可以互换,集中式和非交织式可以互换。
可选的,上述映射方式信息指示时域优先的分布式映射方式,频域优先的分布式映射方式,时域优先的集中式映射方式,或频域优先的集中式映射方式。
应理解,上述映射方式信息可以直接指示映射方式,例如,该映射方式信息直接指示映射方式为时域优先的分布式映射;或者,该映射方式信息还可以通过2部分信息指示映射方式,例如,一部分信息指示时域优先或频域优先,另一部分信息指示集中式映射方式 或分布式映射方式。
可选的,上述映射方式信息指示分布式映射方式和集中式映射方式中的一种。
可选的,上述映射方式信息指示时域优先的分布式映射方式,频域优先的分布式映射方式,时域优先的集中式映射方式和频域优先的集中式映射方式中的一种。
可选的,上述映射方式信息还用于指示下述六种映射方式中的一种。
可选地,所述网络设备发送所述第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合中的CCE与所述第一控制资源集合中的REG之间的映射方式。
具体地,上述所述网络设备发送所述第一控制资源集合的配置信息,可以包括网络设备可以向上述终端设备发送第一控制资源集合的配置信息。
需要说明的是,上述第一控制资源集合的配置信息的发送方还可以是其他终端设备还可以是网络设备,本申请实施例对此不作具体限定。
620,所述终端设备根据所述第一控制资源集合的映射方式信息确定所述第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB。
在本申请实施例的通信方法中,基于比现有技术中定义的REG的RE粒度更大的粒度,确定CCE与REG之间的映射方式,有利于减少在确定传输PDCCH的CCE与REG之间的映射关系时所产生的时延。
可选地,若上述通信方法为在网络设备和终端设备之间的通信方法,在步骤610之前,所述方法还包括:
630,网络设备确定第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB。
具体地,上述第一控制资源集合中的CCE与第一控制资源集合中的REG之间的映射方式为CCE与REG之间的集中式映射(localized CCE-to-REG mapping),又称CCE与REG之间的非交织映射(non-interleaved CCE-to-REG mapping)或者,上述第一控制资源集合中的CCE与第一控制资源集合中的REG之间的映射方式为CCE与REG之间的分布式映射(distributed CCE-to-REG mapping),又称CCE与REG之间的交织映射(interleaved CCE-to-REG mapping)。
应理解,上述CCE与REG之间的分布式映射可以理解为每个CCE中的多个REG在时域上连续且在频域上离散分布,或在频域上离散分布且仅占用一个时域符号上,或在时域和频域上交错离散分布。下述的映射方式四,映射方式五和映射方式六都属于分布式映射。
上述第一控制资源集合中的CCE与第一控制资源集合中的REG之间的映射方式可以理解为编号为n的CCE中包括的REG的编号。下文结合图2至图4详细描述第一控制资源集合中的CCE与第一控制资源集合中的REG之间的映射方式。应理解,第一控制资源集合中的CCE与第一控制资源集合中的REG之间的映射可以为下列映射方式中的任一 种,或者下列映射方式中多种映射方式的组合,本申请实施例对于下列映射方式的具体组合方式不做具体限定。
可选地,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式映射,即非交织式映射。需要说明的是,上述第一资源集合的映射方式为集中式映射,可以包括第一控制资源集合中的CCE与第一控制资源集合中的REG之间的映射方式为集中式映射,和/或第一控制资源集合的搜索空间中包含的候选PDCCH与第一控制资源集合中的CCE之间的映射方式为集中式映射。
需要说明的是,上述CCE与REG之间的集中式映射可以理解为每个CCE中的多个REG在时域和/或频域上连续。例如,每个CCE中的多个REG在时域和频域上连续。例如,每个CCE中的多个REG占用同一个符号且在频域上连续。下述的映射方式一,二和三都属于集中式映射。
映射方式一:
上述第一控制资源集合中的每个CCE包含在频域上连续的多个REG,且所述每个CCE包含的多个REG位于同一个符号内。当
Figure PCTCN2017096905-appb-000110
等于1时,第一控制资源集合中的CCE在频域上按照RB的编号从小到大的顺序进行升序编号。当
Figure PCTCN2017096905-appb-000111
大于1时,所述第一控制资源集合中的CCE的编号按照时域优先的顺序编号,即所述第一控制资源集合中的CCE的编号优先在时域上连续。映射方式一可以称为半时域优先的集中式映射或半时域优先的非交织式映射。
需要说明的是,上述第一控制资源集合中的CCE的编号按照时域优先的顺序编号,并且占用相同符号且在频域上相邻的两个CCE的编号不连续。
可选地,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式/非交织式映射,或者,半时域优先的集中式/非交织式映射。
可选地,上述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000112
或者(公式1)
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000113
或者(公式2)
所述第一控制资源集合中的编号为n的CCE包括位于编号为nmod
Figure PCTCN2017096905-appb-000114
的符号上编号为
Figure PCTCN2017096905-appb-000115
的REG,(公式3)
其中,
Figure PCTCN2017096905-appb-000116
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000117
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000118
表示所述第一控制资源集合中包含的CCE的数量。
可选的,
Figure PCTCN2017096905-appb-000119
等于
Figure PCTCN2017096905-appb-000120
那么,公式1,公式2和公式3中的
Figure PCTCN2017096905-appb-000121
可以替换成
Figure PCTCN2017096905-appb-000122
也就是说,编号为n的CCE包括的REG和编号为n的REG bundle包括的REG相同,编号为n的CCE仅包括一个编号为n的REG bundle。
Figure PCTCN2017096905-appb-000123
表示所述第一控制资源集合中每个REG捆绑包含的REG的数量。此时,仅适用于基于DMRS解调的PDCCH。
需要说明的是,第一控制资源集合包括的
Figure PCTCN2017096905-appb-000124
个符号,按照符号0,……,符号
Figure PCTCN2017096905-appb-000125
的顺序进行升序编号。
具体地,第一控制资源集合中REG的编号使用REG的编号方法一进行排序,通过上述公式1,建立CCE和REG之间的映射关系,可以使得CCE和REG之间的映射方式为映射方式一。
第一控制资源集合中REG的编号使用REG的编号方法二进行排序,通过上述公式2,建立CCE和REG之间的映射关系,可以使得CCE和REG之间的映射方式为映射方式一。
第一控制资源集合中REG的编号使用REG的编号方法三进行排序,通过上述公式3,建立CCE和REG之间的映射关系,可以使得CCE和REG之间的映射方式为映射方式一。
例如,图7是本申请实施例基于REG的编号方法一建立的映射方式一的示意图。图7以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含3个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。通过公式1可以得出编号为0的CCE(记为CCE0)包含编号为0的REG,编号为2的REG,以及编号为4的REG;编号为1的CCE(记为CCE1)包含编号为1的REG,编号为3的REG,以及编号为5的REG;编号为3的CCE(记为CCE3)包含编号为7的REG,编号为9的REG,以及编号为11的REG。
又例如,图8是本申请实施例基于REG的编号方法二建立的映射方式一的示意图。图8以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含3个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。通过公式2可以得出编号为0的CCE(记为CCE0)包含编号为0的REG,编号为1的REG,以及编号为2的REG;编号为1的CCE(记为CCE1)包含编号为24的REG,编号为25的REG,以及编号为26的REG;编号为3的CCE(记为CCE3)包含编号为27的REG,编号为28的REG,以及编号为29的REG。
又例如,图9是本申请实施例基于REG的编号方法三建立的映射方式一的示意图。图9以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含3个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。通过公式3可以得出编号为0的CCE(记为CCE0)包含在时域上占用符号0且编号分别为0、1、2的REG;编号为1的CCE(记为CCE1)包含在时域上占用符号1且编号分别为0、1、2的REG;编号为3的CCE(记为CCE3)包含在时域上占用符号1且编号分别为3、4、5的REG。
需要说明的是,上述公式还可以结合不同的REG的编号方法,实现不同的CCE到REG之间的映射方式,本申请实施例对于与上述公式结合的REG的编号方法不做具体限定。
在本申请实施例中,当一个CCE包括的REG数量不是第一控制资源集合占用的符号数的整倍数时,即
Figure PCTCN2017096905-appb-000126
不能整除
Figure PCTCN2017096905-appb-000127
时,若采用映射方式三,一个CCE在每个符号上的REG数不均衡,不利于资源复用。而映射方式一中CCE与REG之间的映射方式比较规整,利于资源复用,例如,可以与进行PDSCH资源复用。
另外,映射方式一可以应用于基于CRS的sPDCCH,基于DMRS的NR-PDCCH或者基于DMRS的sPDCCH。
映射方式二:
上述第一控制资源集合中的每个CCE包含在频域上连续的多个REG,且所述每个 CCE包含的多个REG位于同一个符号内或者优先位于同一个符号内。当
Figure PCTCN2017096905-appb-000128
等于1时,第一控制资源集合中的CCE在频域上按照RB的编号从小到大的顺序进行升序编号。当
Figure PCTCN2017096905-appb-000129
大于1时,所述第一控制资源集合中的CCE的编号按照频域优先的顺序编号,即所述第一控制资源集合中的CCE的编号优先在频域上连续。映射方式二可以称为频域优先的集中式映射或频域优先的非交织式映射。
需要说明的是,第一控制资源集合中每个符号上的CCE的编号的递增方向相同。
可选地,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式/非交织式映射,或者,频域优先的集中式/非交织式映射。
所述第一控制资源集合中的REG按照频域优先的顺序编号,即按照REG的编号方法二进行编号,第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000130
其中,
Figure PCTCN2017096905-appb-000131
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000132
表示所述第一控制资源集合中包含的CCE的数量。
可选的,
Figure PCTCN2017096905-appb-000133
等于
Figure PCTCN2017096905-appb-000134
那么,公式4可以等效于
Figure PCTCN2017096905-appb-000135
其中,
Figure PCTCN2017096905-appb-000136
也就是,编号为n的CCE包括的REG和编号为n的REG bundle包括的REG相同,编号为n的CCE仅包括一个编号为n的REG bundle。
Figure PCTCN2017096905-appb-000137
表示所述第一控制资源集合中每个REG捆绑包含的REG的数量。此时,仅适用于基于DMRS解调的PDCCH。
在本申请实施例中的映射方式二中,REG排序和CCE映射方式都是采用频域优先的方式,可以简化CCE与REG之间映射方式的计算公式,有利于减小终端设备的计算复杂度。
例如,图10是本申请实施例基于REG的编号方法二建立的映射方式二的示意图。图10以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含4个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。通过公式4可以得出编号为0的CCE(记为CCE0)包含编号分别为0、1、2、3的REG;编号为1的CCE(记为CCE1)包含编号分别为4、5、6、7的REG;编号为2的CCE(记为CCE2)包含编号分别为8、9、10、11的REG;编号为3的CCE(记为CCE3)包含编号分别为12、13、14、15的REG。
可选的,所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法一进行编号,第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000138
其中,
Figure PCTCN2017096905-appb-000139
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000140
表示所述第一控制资源集合中包含的CCE的数量。可选的,
Figure PCTCN2017096905-appb-000141
可以替换为
Figure PCTCN2017096905-appb-000142
可选的,
Figure PCTCN2017096905-appb-000143
等于
Figure PCTCN2017096905-appb-000144
那么,公式15中的
Figure PCTCN2017096905-appb-000145
可以替换为
Figure PCTCN2017096905-appb-000146
也就 是,编号为n的CCE包括的REG和编号为n的REG bundle包括的REG相同,编号为n的CCE仅包括一个编号为n的REG bundle。
Figure PCTCN2017096905-appb-000147
表示所述第一控制资源集合中每个REG捆绑包含的REG的数量。此时,仅适用于基于DMRS解调的PDCCH。
和公式4相比,公式15较为复杂。但是可以使能系统中只存在时域优先的顺序编号,即按照REG的编号方法一。
在本申请实施例的映射方式二中,一个CCE包含的REG优先位于一个符号内,有利于降低终端设备解码所需的时间,降低时延。优选地,映射方式二适用于基于CRS的PDCCH。
映射方式三:
Figure PCTCN2017096905-appb-000148
等于1时,第一控制资源集合中的CCE包括在频域上连续的多个REG,第一控制资源集合中的CCE在频域上按照RB的编号从小到大的顺序进行升序编号。当
Figure PCTCN2017096905-appb-000149
大于1时,上述第一控制资源集合中的每个CCE包含在时域和频域上连续的多个REG。所述第一控制资源集合中的CCE的编号按照时域优先的顺序编号,所述第一控制资源集合中的CCE的编号优先在时域上连续。映射方式三可以称为时域优先的集中式映射或时域优先的非交织式映射。
需要说明的是,第一控制资源集合中的CCE可以占用相同的至少一个符号。
在本申请实施例的映射方式三中,当
Figure PCTCN2017096905-appb-000150
大于1时,和映射方式二相比,映射方式三中的第一控制资源集合在频域上占用的资源较少,有利于资源复用,例如,可以释放更多的频域资源供PDSCH使用。映射方式三可以应用于基于CRS的sPDCCH,基于DMRS的NR-PDCCH或者基于DMRS的sPDCCH。
可选地,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式/非交织式映射,或者,时域优先的集中式/非交织式映射。
所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法一进行编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000151
其中,
Figure PCTCN2017096905-appb-000152
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000153
表示所述第一控制资源集合中包含的CCE的数量。
可选的,
Figure PCTCN2017096905-appb-000154
等于
Figure PCTCN2017096905-appb-000155
则公式4可以等效于
Figure PCTCN2017096905-appb-000156
其中,
Figure PCTCN2017096905-appb-000157
也就是,编号为n的REG bundle包括的REG等于编号为n的CCE包括的REG,编号为n的CCE仅包括一个编号为n的REG bundle。
Figure PCTCN2017096905-appb-000158
表示所述第一控制资源集合中每个REG捆绑包含的REG的数量。此时,仅适用于基于DMRS解调的PDCCH,例如,基于DMRS的NR-PDCCH或者基于DMRS的sPDCCH。
在本申请实施例的映射方式三中,REG的编号方法和CCE与REG之间的映射方式都是采用时域优先的方式,有利于简化用于确定CCE与REG之间映射方式的计算公式,降低终端设备的计算复杂度。
例如,图11是本申请实施例基于REG的编号方法一建立的映射方式三的示意图。图11以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含4个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。通过公式4可以得出编号为0的CCE(记为CCE0)包含编号分别为0、1、2、3的REG;编号为1的CCE(记 为CCE1)包含编号分别为4、5、6、7的REG;编号为1的CCE(记为CCE1)包含编号分别为4、5、6、7的REG;编号为2的CCE(记为CCE2)包含编号分别为8、9、10、11的REG;编号为3的CCE(记为CCE3)包含编号分别为12、13、14、15的REG。
又例如,图12是本申请实施例基于REG的编号方法一建立的映射方式三的示意图。图12以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含3个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。通过公式4可以得出编号为0的CCE(记为CCE0)包含编号分别为0、1、2的REG;编号为1的CCE(记为CCE1)包含编号分别为3、4、5的REG;编号为2的CCE(记为CCE2)包含编号分别6、7、8的REG;编号为3的CCE(记为CCE3)包含编号分别为9、10、11的REG。
可选地,所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法一进行编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000159
其中,
Figure PCTCN2017096905-appb-000160
表示所述第一控制资源集合中的每个CCE包含的REG捆绑的数量,
Figure PCTCN2017096905-appb-000161
表示所述第一控制资源集合中每个REG捆绑包含的REG的数量,
Figure PCTCN2017096905-appb-000162
表示所述第一控制资源集合中每个CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000163
表示所述第一控制资源集合中包含的CCE的数量。
可选的,公式5可以分成2个步骤来描述:第一步确定一个REG bundle包括的REG,第二步确定一个CCE包括的REG bundle。具体地,所述第一控制资源集合中的编号为j的REG bundle包括的REG的编号为
Figure PCTCN2017096905-appb-000164
其中,
Figure PCTCN2017096905-appb-000165
Figure PCTCN2017096905-appb-000166
所述第一控制资源集合中的编号为n的CCE包括的REG bundle的编号为
Figure PCTCN2017096905-appb-000167
其中,
Figure PCTCN2017096905-appb-000168
Figure PCTCN2017096905-appb-000169
等于1时,所述第一控制资源集合中的编号为n的CCE包括的REG bundle的编号为n。
在本申请实施例中,通过上述公式5确定的CCE与REG之间的映射方式仅适用于基于DMRS解调的PDCCH,例如,基于DMRS的NR-PDCCH或者基于DMRS的sPDCCH。
映射方式四:
Figure PCTCN2017096905-appb-000170
等于1时,第一控制资源集合中的CCE包括在频域上离散分布(或者说,非连续)的多个REG。当
Figure PCTCN2017096905-appb-000171
大于1时,第一控制资源集合中的每个CCE包含在时域上连续且在频域上离散分布的多个REG。映射方式四可以称为时域优先的分布式映射或时域优先的交织式映射。
可选地,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式/交织式映射,或者,时域优先的分布式/交织式映射。
可选地,所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法一进行编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000172
其中,
Figure PCTCN2017096905-appb-000173
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000174
表示所述第一控制资源集合包含的REG的数量,
Figure PCTCN2017096905-appb-000175
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000176
表示所述第一控制资源集合中包含的CCE的数量;或
所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法一进行编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000177
其中,
Figure PCTCN2017096905-appb-000178
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000179
表示所述第一控制资源集合包含的RB的数量,
Figure PCTCN2017096905-appb-000180
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000181
表示所述第一控制资源集合中包含的CCE的数量;或
所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法一进行编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000182
所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法一进行编号,且所述第一控制资源集合中每个REG捆绑在频域上占用一个RB时,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000183
其中,
Figure PCTCN2017096905-appb-000184
表示所述第一控制资源集合中每个REG捆绑包含的REG的数量,
Figure PCTCN2017096905-appb-000185
表示所述第一控制资源集合中的CCE包含的REG捆绑的数量,
Figure PCTCN2017096905-appb-000186
表示所述第一控制资源集合包含的REG的数量,
Figure PCTCN2017096905-appb-000187
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000188
表示所述第一控制资源集合中包含的RB的数量。
具体地,第一控制资源集合中REG的编号使用REG的编号方法一进行排序,通过上述公式6、公式7,公式8或公式9,建立CCE和REG之间的映射关系,可以使得CCE和REG之间的映射方式为映射方式四。其中,公式8和公式9仅适用于基于DMRS解调的PDCCH,例如,基于DMRS的NR-PDCCH或者基于DMRS的sPDCCH。
例如,图13是本申请实施例基于REG的编号方法一建立的映射方式四的示意图。图13以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含4个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。为了描述简洁,仅列出 编号为0和3的CCE包含的REG,通过公式6或公式7可以得出编号为0的CCE(记为CCE0)包含编号分别为0、1、24、25的REG;编号为3的CCE(记为CCE3)包含编号分别为6、7、30、31的REG。
又例如,图14是本申请实施例基于REG的编号方法一建立的映射方式四的示意图。图14以第一控制资源集合在时域上占用两个符号,且
Figure PCTCN2017096905-appb-000189
为例说明第一控制资源集合中CCE与REG之间的映射关系。为了描述简洁,仅列出编号为0和3的CCE包含的REG,通过公式8可以得出CCE和REG之间的映射关系,编号为0的CCE(记为CCE0)包括的REG编号分别为0、1、16、17、32和33,编号为3的CCE(记为CCE3)包括的REG编号分别为6、7、22、23、38和39。
可选的,所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法一进行编号,一个CCE包括的REG可以分成2个步骤来获取:第一步确定一个REG bundle包括的REG,第二步确定一个CCE包括的REG bundle。
可选的,所述第一控制资源集合中的编号为j的REG bundle包括的REG的编号为
Figure PCTCN2017096905-appb-000190
其中,
Figure PCTCN2017096905-appb-000191
或者
Figure PCTCN2017096905-appb-000192
Figure PCTCN2017096905-appb-000193
所述第一控制资源集合中的编号为n的CCE包括的REG bundle的编号为
Figure PCTCN2017096905-appb-000194
或者
Figure PCTCN2017096905-appb-000195
其中,
Figure PCTCN2017096905-appb-000196
Figure PCTCN2017096905-appb-000197
该公式尤其适合
Figure PCTCN2017096905-appb-000198
小于
Figure PCTCN2017096905-appb-000199
的场景。
例如,第一控制资源集合在时域上占用两个符号,总共24个REG,一个REG bundle包括2个REG,那么存在12个REG bundle,REG bundle 0至REG bundle 11包括的REG编号依次为{0,1},{2,3},{4,5},{6,7},{8,9},{10,11},{12,13},{14,15},{16,17},{18,19},{20,21}和{22,23}。假设每个CCE包括3个REG bundle,即6个REG,那么CCE0包括REG bundle 0,4和8,CCE1包括REG bundle 1,5和9,CCE2包括REG bundle2,6和10,CCE3包括REG bundle 3,7和11。
可选的,所述第一控制资源集合中的编号为j的REG bundle包括的REG的编号为
Figure PCTCN2017096905-appb-000200
其中,
Figure PCTCN2017096905-appb-000201
或者
Figure PCTCN2017096905-appb-000202
Figure PCTCN2017096905-appb-000203
所述第一控制资源集合中的编号为n的CCE包括的REG bundle的编号为f(x,n,c),f(·)表示一个交织器(interleaver),其中,
Figure PCTCN2017096905-appb-000204
Figure PCTCN2017096905-appb-000205
c为大于1的正整数,例如,c等于2,3,4,6,8。
可选的,c的取值表示大于1的PDCCH聚合级别,例如,2,4或8。可选的,
Figure PCTCN2017096905-appb-000206
则c=3;或者,
Figure PCTCN2017096905-appb-000207
则c=2。
本申请实施例的映射方式四可以应用于基于CRS的sPDCCH,基于DMRS的NR-PDCCH或者基于DMRS的sPDCCH。当
Figure PCTCN2017096905-appb-000208
大于1时,和映射方式五或映射方式六相比,映射方式四中描述的CCE与REG之间的映射方式在第一控制资源集合中占用的频域资源较少,有利于资源复用,例如,可以释放更多的频域资源给物理下行共享信道(Physical Downlink Shared Channel,PDSCH)使用。
映射方式五:
第一控制资源集合中的每个CCE包含在频域上离散分布(或者说,非连续)的多个REG,且所述每个CCE包含的多个REG位于同一个符号内。当
Figure PCTCN2017096905-appb-000209
大于1时,所述第一控制资源集合中的CCE的编号按照频域优先的顺序编号,即所述第一控制资源集合中的CCE的编号优先在频域上进行编号。映射方式五可以称为频域优先的分布式映射或频域优先的交织式映射。
可选地,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式/交织式映射,或者,频域优先的分布式/交织式映射。
可选地,上述第一控制资源集合中的编号为n的CCE包括编号为
Figure PCTCN2017096905-appb-000210
或者,所述第一控制资源集合中的编号为n的CCE包括编号为
Figure PCTCN2017096905-appb-000211
或者,所述第一控制资源集合中的编号为n的CCE包括位于编号为
Figure PCTCN2017096905-appb-000212
的符号上的编号为
Figure PCTCN2017096905-appb-000213
其中,
Figure PCTCN2017096905-appb-000214
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000215
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000216
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000217
表示所述第一控制资源集合中包含的资源块的数量。
具体地,第一控制资源集合中REG的编号使用REG的编号方法一进行排序,通过上述公式10,建立CCE和REG之间的映射关系,可以使得CCE和REG之间的映射方式为映射方式五。
第一控制资源集合中REG的编号使用REG的编号方法二进行排序,通过上述公式11,建立CCE和REG之间的映射关系,可以使得CCE和REG之间的映射方式为映射方式五。
第一控制资源集合中REG的编号使用REG的编号方法三进行排序,通过上述公式12,建立CCE和REG之间的映射关系,可以使得CCE和REG之间的映射方式为映射方式五。
例如,图15是本申请实施例基于REG的编号方法一建立的映射方式五的示意图。图15以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含4个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。为了简洁,仅说明编号为0、3和6的CCE包含的REG编号,通过公式10可以得出编号为0的CCE(记为CCE0)包含编号分别为0、12、24和36的REG,编号为3的CCE(记为CCE3)包含编号分别为6、18、30和42的REG,编号为6的CCE(记为CCE6)包含编号分别为1、13、25和37的REG。
又例如,图16是本申请实施例基于REG的编号方法二建立的映射方式五的示意图。图16以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含4个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。为了简洁,仅说明编号为0、3和6的CCE包含的REG编号,通过公式11可以得出编号为0的CCE(记为CCE0)包含编号分别为0、6、12和18的REG,编号为3的CCE(记为CCE0)包含编号分别为3、9、15和21的REG,编号为6的CCE(记为CCE6)包含编号分别为24、30、36和42的REG。
又例如,图17是本申请实施例基于REG的编号方法三建立的映射方式五的示意图。图17以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含4个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。为了简洁,仅说明编号为0、3和6的CCE包含的REG编号,通过公式12可以得出编号为0的CCE(记为CCE0)包含在时域上占用符号0且编号分别为0、6、12和18的REG;编号为3的CCE(记为CCE3)包含在时域上占用符号0且编号分别为3、9、15和21的REG;编号为6的CCE(记为CCE6)包含在时域上占用符号1且编号分别为0、6、12和18的REG。
可选的,所述第一控制资源集合中的REG按照频域优先的顺序编号,即按照REG的编号方法二进行编号,一个CCE包括的REG的编号可以分成2个步骤来获取:第一步确定一个REG bundle包括的REG,第二步确定一个CCE包括的REG bundle。
具体地,所述第一控制资源集合中的编号为j的REG bundle包括的REG的编号为
Figure PCTCN2017096905-appb-000218
其中,
Figure PCTCN2017096905-appb-000219
或者
Figure PCTCN2017096905-appb-000220
Figure PCTCN2017096905-appb-000221
所述第一控制资源集合中的编号为n的CCE包括的REG bundle的编号为
Figure PCTCN2017096905-appb-000222
Figure PCTCN2017096905-appb-000223
其中,
Figure PCTCN2017096905-appb-000224
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000225
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000226
表示所述第一控制资源集合中包含的资源块的数量,
Figure PCTCN2017096905-appb-000227
表示所述第一控制资源集合中每个REG捆绑包含的REG的数量,
Figure PCTCN2017096905-appb-000228
表示所述第一控制资源集合中的每个CCE包含的REG捆绑的数量,
Figure PCTCN2017096905-appb-000229
表示所述第一控制资源集合中包含的REG捆绑的数量。
本申请实施例的映射方式五尤其适用于基于CRS的sPDCCH和基于DMRS的NR-PDCCH。
映射方式六:
Figure PCTCN2017096905-appb-000230
等于1时,第一控制资源集合中的每个CCE包含在频域上离散分布(或者说,非连续)的多个REG。当
Figure PCTCN2017096905-appb-000231
大于1时,第一控制资源集合中的每个CCE包含在时域和频域上交错离散分布(或者说,非连续)的多个REG。映射方式六可以称为时频交错的分布式/交织式映射。
可选地,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式/交织式映射,或者,时频交错的分布式/交织式映射。
可选地,所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法一进行编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000232
其中,
Figure PCTCN2017096905-appb-000233
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000234
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000235
表示所述第一控制资源集合中包含的REG的数量,
Figure PCTCN2017096905-appb-000236
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量;或
所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法一进行编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000237
其中
Figure PCTCN2017096905-appb-000238
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000239
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000240
表示所述第一控制资源集合中包含的REG的数量,
Figure PCTCN2017096905-appb-000241
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
本申请实施例的映射方式六尤其适用于基于CRS的sPDCCH和基于DMRS的NR-PDCCH。
例如,图18是本申请实施例基于REG的编号方法一建立的映射方式六的示意图。图18以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含4个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。为了简洁,仅说明编号为0、3和6的CCE包含的REG编号,通过公式13可以得出编号为0的CCE(CCE0)包含编号分别为0、13、24和37的REG,编号为3的CCE(CCE3)包含编号分别为3、14、27和38的REG,编号为6的CCE(CCE6)包含编号分别为6、19、30和43的REG。
又例如,图19是本申请实施例基于REG的编号方法一建立的映射方式六的示意图。图19以第一控制资源集合在时域上占用两个符号,第一控制资源集合中每个CCE包含4个REG为例说明第一控制资源集合中CCE与REG之间的映射关系。为了简洁,仅说明编号为0、3和6的CCE包含的REG编号,通过公式14可以得出编号为0的CCE(CCE0)包含的编号分别为0、13、24和37的REG,编号为3的CCE(CCE3)包含的编号分别为6、19、30和43的REG,编号为6的CCE(CCE6)包含的编号分别为1、12、25和36的REG。
长期演进(Long Term Evolution,LTE)系统中,存在PDCCH和EPDCCH。其中,PDCCH是根据CRS进行解调的,只存在一种资源映射方式,且1ms才出现一次,不利于低时延场景,另外,也不能用于基于DMRS解调的PDCCH;EPDCCH是根据DMRS进行解调的,也是1ms才出现一次且在时域包括多于7个符号,不利于低时延场景。而本申请实施例中的多种映射方式可以自由组合形成映射方式集合时,可以基于不同的业务的传输需求选择合适的映射方式,因此,在本申请实施例的通过映射方式集合确定目标映射方式的通信方法,可以更加灵活地配置控制资源集合及其映射方式,有利于提高传输效率。
映射方式七:
所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式/交织式映射,并且第一控制资源集合的配置信息里面的REG bundle信息指示
Figure PCTCN2017096905-appb-000242
等于
Figure PCTCN2017096905-appb-000243
例如,指示
Figure PCTCN2017096905-appb-000244
等于6。
此时,第一控制资源集合内的每个CCE内包括时域和/或频域连续的
Figure PCTCN2017096905-appb-000245
个REG,并且编号连续的2个CCE位于非连续的频域资源。
可选的,所述第一控制资源集合中的REG按照时域优先的顺序编号,即按照REG的编号方法二进行编号,一个CCE包括的REG的编号可以分成2个步骤来获取:第一步确定一个REG bundle包括的REG,第二步确定一个CCE包括的REG bundle。
具体地,所述第一控制资源集合中的编号为j的REG bundle包括的REG的编号为
Figure PCTCN2017096905-appb-000246
其中,
Figure PCTCN2017096905-appb-000247
或者
Figure PCTCN2017096905-appb-000248
Figure PCTCN2017096905-appb-000249
第二步确定一个CCE包括的REG bundle的方法为方法一或方法二:
方法一:所述第一控制资源集合中的编号为n的CCE包括的REG bundle根据REG bundle行进列出的交织方式确定,即REG bundle按行写入,然后按列取出和CCE对应。输入到交织器的是REG bundle,输出的是CCE对应REG bundle。
方法二:所述第一控制资源集合中的编号为n的CCE包括的REG bundle的编号为f(n,c),f(·)是一个交织器(interleaver),其中,
Figure PCTCN2017096905-appb-000250
c为大于1的正整数,例如,c等于2,3,4,6,8。可选的,c的取值为大于1的PDCCH聚合级别的取值,例如,2,4或8。例如,
Figure PCTCN2017096905-appb-000251
那么所述第一控制资源集合中的编号为n的CCE包括的REG bundle的编号为
Figure PCTCN2017096905-appb-000252
其中,
Figure PCTCN2017096905-appb-000253
例如,第一控制资源集合包括8个REG bundle,c等于2,CCE0到CCE8分别对应REG bundle 0,REG bundle 4,REG bundle 1,REG bundle 5,REG bundle2,REG bundle 6,REG bundle 3和REG bundle 7;c等于4,CCE0到CCE8分别对应REG bundle 0,REG bundle 2,REG bundle 4,REG bundle 6,REG bundle 1,REG bundle 3,REG bundle 5和REG bundle 7。
映射方式七和集中式的映射方式兼容性较好,即两种映射方式之间的PDCCH blocking概率低。可选的,采用映射方式七,编号为m的候选PDCCH(下述所提)包括L个编号连续的CCE。
可选地,作为一个实施例,所述第一搜索空间位于所述第一控制资源集合,所述第一搜索空间包括
Figure PCTCN2017096905-appb-000254
个聚合级别为L的候选PDCCH,所述编号为m的候选PDCCH为所述
Figure PCTCN2017096905-appb-000255
个聚合级别为L的候选PDCCH中的一个,所述终端设备根据所述第一控制资源集合的映射方式信息确定所述第一搜索空间中的编号为m的候选PDCCH包括的L个CCE。
所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式/非交织式映射,所述编号为m的候选PDCCH包括的L个CCE在时域和/或频域上是连续的,或者说,L个CCE在编号上是连续的。
可选地,作为一个实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式/交织式映射,所述L等于2,所述编号为m的候选PDCCH包括2个编号连续的CCE;或者,所述L大于2,所述编号为m的候选PDCCH包括L 个CCE,所述L个CCE中的至少2个CCE的编号不连续。
可选的,所述第一控制资源集合的映射方式为时域优先的分布式/交织式映射,CCE与REG之间的映射方式为映射方式四,则在传输期间k上,聚合级别为L的第一搜索空间Sk(L)中的编号为m的候选PDCCH包括的CCE的编号为
Figure PCTCN2017096905-appb-000256
其中,i=0,…,L-1,NCCE,p,k表示所述第一控制资源集合(可以用p表示)在传输期间k上包括的CCE总数,
Figure PCTCN2017096905-appb-000257
表示第一搜索空间在传输期间k上的起始CCE的编号,m′=m+M(L)·nCI,nCI表示载波标识,
Figure PCTCN2017096905-appb-000258
表示第一搜索空间内聚合级别为L的候选PDCCH的数量。
需要说明的是,上述第一搜索空间在传输期间k上的起始CCE的编号
Figure PCTCN2017096905-appb-000259
可以由网络设备配置后,并通过高层信令通知给终端设备。
可选的,作为一个实施例,所述第一控制资源集合的映射方式为频域优先的分布式映射(又称交织式映射),CCE与REG之间的映射方式为映射方式五。在传输期间k上,聚合级别为L的第一搜索空间
Figure PCTCN2017096905-appb-000260
中的编号为m的候选PDCCH包括的CCE的编号为:若
Figure PCTCN2017096905-appb-000261
Figure PCTCN2017096905-appb-000262
Figure PCTCN2017096905-appb-000263
其中,i=0,…,L-1,NCCE,p,k为第一控制资源集合(可以用p表示)在传输期间k上包括的CCE数量,
Figure PCTCN2017096905-appb-000264
为第一搜索空间在传输期间k上的起始CCE的编号,
Figure PCTCN2017096905-appb-000265
表示所述第一控制资源集合中包含的符号的数量。
需要说明的是,上述第一搜索空间在传输期间k上的起始CCE的编号
Figure PCTCN2017096905-appb-000266
可以由网络设备配置后,并通过高层信令通知给终端设备。
可选地,作为一个实施例,在所述第一控制资源集合中的第一CCE和第二CCE上传输第一PDCCH,所述第一CCE与所述第二CCE在所述第一控制资源集合中的映射方式为分布式映射,且所述第一CCE中的第一REG与所述第二CCE中的第二REG在频域上连续,且所述第一REG的编号与所述第二REG的编号相邻,所述第一CCE和所述第二CCE属于第一搜索空间,所述方法还包括:所述终端设备在所述第一搜索空间中盲检所述第一PDCCH。
例如,图20是本申请实施例的两种CCE与REG之间分布式映射的示意图。图20仅以PDCCH的聚合级别为2为例说明两种分布式映射。从图20中可以看出,若第一控制资源集合中每个CCE包含的REG数量为4,则第一种分布式映射方式中,编号为0的CCE(记为CCE0)包括编号为0、6、12、18的REG,编号为1的CCE(记为CCE1)包含编号为3、9、15、21的REG,其中,未被占用的REG上无法再传输其他PDCCH,而在第二种分布式映射方式中,CCE0可以包括编号为0、6、12、18的REG,CCE1包含编号 为1、7、13、19的REG,其中,可以看出未被占用的编号为2、3、4、5的REG可以构成一个CCE用于传输其他PDCCH。因此,第二种分布式映射相对于第一种分布式映射而言可以提高资源利用率。
可选地,作为一个实施例,所述第一控制资源集合中CCE的映射方式为分布式映射,在所述第一控制资源集合中的L个CCE上传输第二PDCCH,
Figure PCTCN2017096905-appb-000267
且所述L个CCE中包括至少一个REG集合,所述REG集合中包含编号相邻的第三REG和第四REG,且所述第三REG和所述第四REG在频域上连续,且所述第三REG和第四REG分别属于编号相邻的两个CCE,且所述L个CCE上包括至少两个在频域上不连续的REG集合,所述L个CCE属于第二搜索空间,所述方法还包括:所述终端设备在所述第二搜索空间中盲检所述第二PDCCH。
例如,图21是本申请实施例的两种CCE与REG之间分布式映射的示意图。图21仅以PDCCH的聚合级别为4为例说明两种分布式映射。从图21中可以看出,若第一控制资源集合中每个CCE包含的REG数量为4,则第一种分布式映射方式中,传输PDCCH的4个CCE中的REG在频域上占用的频率分布较密集,而第二种分布式映射方式中,可以看出传输PDCCH的4个CCE中的REG在频域上占用的频率分布较分散。因此,第二种分布式映射相对于第一种分布式映射而言,有利于提高信号的传输质量。
网络设备可以为一个终端设备配置一个或多个搜索空间。当然,网络设备还可以为其服务的多个终端设备配置一个相同的或多个不同的搜索空间。对于一个终端设备,被配置的多个搜索空间包含的CCE可以采用不同的映射方式。对于多个终端设备,被配置的多个搜索空间包含的CCE也可以采用不同的映射方式。另外,不论是一个终端设备的多个搜索空间,还是多个终端设备的多个搜索空间,网络设备可能配置该多个搜索空间的时频资源部分重叠或完全重叠。那么,采用不同CCE映射方式的多个搜索空间之间的共存问题需要考虑,例如,如何降低PDCCH碰撞(blocking)概率需要考虑。本申请实施例中,L等于2的时候,可以降低集中式映射方式和分布式映射方式之间的碰撞。而对于大于2的聚合级别,为了提高PDCCH接收性能,需要更大的频域分集增益,才用本方案可以达到该目的。另外考虑到大聚合级别的PDCCH出现概率较低,所以影响不大。
上文结合图1至图21详细的说明了描述了本申请实施例的通信方法,下面结合图22至图25,详细描述本申请实施例的装置。应理解,图22至图25所示的装置能够实现图6中的各个步骤,即该设备能够执行上述实施例中的所有方法,因此,其具体细节可以参照上述实施例中的描述,为避免重复,在此不再详细赘述。
图22是本申请实施例的终端设备的示意性框图,图22所示的终端设备2200包括:接收单元2210和确定单元2220。
接收单元2210,用于接收第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息;
确定单元2220,用于根据所述接收单元接收的所述第一控制资源集合的映射方式信息确定所述第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB。
可选地,作为一实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资 源集合的映射方式为集中式映射,所述第一控制资源集合中的每个CCE包含在频域上连续的多个REG,且所述每个CCE包含的多个REG位于同一个符号内。
可选地,作为一实施例,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000268
或者
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000269
或者
所述第一控制资源集合中的编号为n的CCE包括位于编号为nmod
Figure PCTCN2017096905-appb-000270
的符号上编号为
Figure PCTCN2017096905-appb-000271
的REG,
其中,
Figure PCTCN2017096905-appb-000272
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000273
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000274
表示所述第一控制资源集合中包含的CCE的数量。
可选地,作为一实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的集中式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000275
其中,
Figure PCTCN2017096905-appb-000276
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000277
表示所述第一控制资源集合中包含的CCE的数量。
可选地,作为一实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的集中式映射,所述第一控制资源集合中的REG按照频域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000278
其中,
Figure PCTCN2017096905-appb-000279
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000280
表示所述第一控制资源集合中包含的CCE的数量。
可选地,作为一实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000281
Figure PCTCN2017096905-appb-000282
Figure PCTCN2017096905-appb-000283
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000284
表示所述第一控制资源集合包含的REG的数量,
Figure PCTCN2017096905-appb-000285
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000286
表示所述第一控制资源集合中包含的CCE的数量。
可选地,作为一实施例,所述第一控制资源集合中的编号为n的CCE包括的REG的 编号为
Figure PCTCN2017096905-appb-000287
或者,
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为n
Figure PCTCN2017096905-appb-000288
或者,
所述第一控制资源集合中的编号为n的CCE包括位于编号为
Figure PCTCN2017096905-appb-000289
的符号上编号为n
Figure PCTCN2017096905-appb-000290
的REG,
其中,
Figure PCTCN2017096905-appb-000291
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000292
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000293
表示所述第一控制资源集合中包含的REG的数量,
Figure PCTCN2017096905-appb-000294
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
可选地,作为一实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时频交错的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000295
或者,
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000296
其中,
Figure PCTCN2017096905-appb-000297
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000298
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000299
表示所述第一控制资源集合中包含的REG的数量,
Figure PCTCN2017096905-appb-000300
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
可选地,作为一实施例,所述第一搜索空间位于所述第一控制资源集合,所述第一搜索空间包括
Figure PCTCN2017096905-appb-000301
个聚合级别为L的候选物理下行控制信道PDCCH,所述编号为m的候选PDCCH为所述
Figure PCTCN2017096905-appb-000302
个聚合级别为L的候选PDCCH中的一个,
所述确定单元,还用于根据所述第一控制资源集合的映射方式信息确定所述第一搜索 空间中的编号为m的候选PDCCH包括的L个CCE。
可选地,作为一实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式映射,
所述L等于2,所述编号为m的候选PDCCH包括2个编号连续的CCE;或者,
所述L大于2,所述编号为m的候选PDCCH包括L个CCE,所述L个CCE中的至少2个CCE的编号不连续。
在可选的实施例中,所述接收单元2210可以为收发机2340,所述确定单元2220可以为处理器2320,所述终端设备还可以包括输入/输出接口2330和存储器2310,具体如图23所示。
图23是本申请另一实施例的终端设备的示意性框图。该终端设备能够执行上述实施例中的所有方法,因此,其具体细节可以参照上述实施例中的描述,为避免重复,在此不再详细赘述。图23所示的终端设备2300可以包括:存储器2310、处理器2320、输入/输出接口2330、收发机2340。其中,存储器2310、处理器2320、输入/输出接口2330和收发机2340通过内部连接通路相连,该存储器2310用于存储指令,该处理器2320用于执行该存储器2320存储的指令,以控制输入/输出接口2330接收输入的数据和信息,输出操作结果等数据,并控制收发机2340发送信号。
所述收发机2340,用于接收第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息;
所述处理器2320,用于根据所述收发机接收的所述第一控制资源集合的映射方式信息确定所述第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB。
应理解,在本申请实施例中,该处理器2320可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
还应理解,收发机2340又称通信接口,使用例如但不限于收发器一类的收发装置,来实现终端2300与其它设备或通信网络之间的通信。
该存储器2310可以包括只读存储器和随机存取存储器,并向处理器2320提供指令和数据。处理器2320的一部分还可以包括非易失性随机存取存储器。例如,处理器2320还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器2320中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的通信方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2310,处理器2320读取存储器2310中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其它通用处理器、数字信号处理器(digital signal processor, DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
图24是本申请实施例的网络设备的示意性结构图。该网络设备能够执行上述实施例中的所有方法,因此,其具体细节可以参照上述实施例中的描述,为避免重复,在此不再详细赘述。图24所示的网络设备2400包括:确定单元2410,和发送单元2420。
确定单元,用于确定第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB;
发送单元,用于发送所述第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合中的CCE与所述第一控制资源集合中的REG之间的映射方式。
可选地,作为一个实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式映射,所述第一控制资源集合中的每个CCE包含在频域上连续的多个REG,且所述每个CCE包含的多个REG位于同一个符号内。
可选地,作为一个实施例,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000303
或者
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000304
或者
所述第一控制资源集合中的编号为n的CCE包括位于编号为nmod
Figure PCTCN2017096905-appb-000305
的符号上编号为
Figure PCTCN2017096905-appb-000306
的REG,
其中,且
Figure PCTCN2017096905-appb-000307
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000308
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000309
表示所述第一控制资源集合中包含的CCE的数量。
可选地,作为一个实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的集中式映射,所述第一控制资源集合中的REG按照时域优先于频域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000310
其中,
Figure PCTCN2017096905-appb-000311
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000312
表示所述第一控制资源集合中包含的CCE的数量。
可选地,作为一个实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的集中式映射,所述第一控制资源集合中的REG按照频域优先于时域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000313
其中,
Figure PCTCN2017096905-appb-000314
表示所述第一控制 资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000315
表示所述第一控制资源集合中包含的CCE的数量。
可选地,作为一个实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的分布式映射,所述第一控制资源集合中的REG按照时域优先于频域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000316
Figure PCTCN2017096905-appb-000317
Figure PCTCN2017096905-appb-000318
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000319
表示所述第一控制资源集合包含的REG的数量,
Figure PCTCN2017096905-appb-000320
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
Figure PCTCN2017096905-appb-000321
表示所述第一控制资源集合中包含的CCE的数量。
可选地,作为一个实施例,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000322
或者,
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为n
Figure PCTCN2017096905-appb-000323
或者,
所述第一控制资源集合中的编号为n的CCE包括位于编号为
Figure PCTCN2017096905-appb-000324
的符号上编号为n
Figure PCTCN2017096905-appb-000325
的REG,
其中,
Figure PCTCN2017096905-appb-000326
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000327
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000328
表示所述第一控制资源集合中包含的REG的数量,
Figure PCTCN2017096905-appb-000329
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
可选地,作为一个实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时频交错的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000330
或者,
所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
Figure PCTCN2017096905-appb-000331
其中,
Figure PCTCN2017096905-appb-000332
表示所述第一控制资源集合中包含的符号的数量,
Figure PCTCN2017096905-appb-000333
表示所述第一控制资源集合中包含的CCE的数量,
Figure PCTCN2017096905-appb-000334
表示所述第一控制资源集合中包含的REG的数量,
Figure PCTCN2017096905-appb-000335
表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
可选地,作为一个实施例,所述第一搜索空间位于所述第一控制资源集合,所述第一搜索空间包括
Figure PCTCN2017096905-appb-000336
个聚合级别为L的候选PDCCH,所述编号为m的候选PDCCH为所述
Figure PCTCN2017096905-appb-000337
个聚合级别为L的候选PDCCH中的一个,所述第一控制资源集合的映射方式信息指示所述第一搜索空间中的编号为m的候选PDCCH包括的L个CCE。
可选地,作为一个实施例,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式映射,
所述L等于2,所述编号为m的候选PDCCH包括2个编号连续的CCE;或者,
所述L大于2,所述编号为m的候选PDCCH包括L个CCE,所述L个CCE中的至少2个CCE的编号不连续。
在可选的实施例中,所述确定单元2410可以为处理器2520,所述发送单元2420可以为收发机2540,所述网络设备还可以包括输入/输出接口2530和存储器2510,具体如图25所示。
图25是本申请另一实施例的网络设备的示意性框图。图25所示的网络设备2500可以包括:存储器2510、处理器2520、输入/输出接口2530、收发机2540。其中,存储器2510、处理器2520、输入/输出接口2530和收发机2540通过内部连接通路相连,该存储器2510用于存储指令,该处理器2520用于执行该存储器2520存储的指令,以控制输入/输出接口2530接收输入的数据和信息,输出操作结果等数据,并控制收发机2540发送信号。
所述处理器2520,用于确定第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB
所述收发机2540,用于确定第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB。
应理解,在本申请实施例中,该处理器2520可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
还应理解,收发机2540又称通信接口,使用例如但不限于收发器一类的收发装置,来实现网络设备2500与其它设备或通信网络之间的通信。
该存储器2510可以包括只读存储器和随机存取存储器,并向处理器2520提供指令和数据。处理器2520的一部分还可以包括非易失性随机存取存储器。例如,处理器2520还可以存储设备类型的信息。
在实现过程中,上述方法的各步骤可以通过处理器2520中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的通信方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2510,处理器2520读取存储器2510中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其它任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专 用计算机、计算机网络、或者其它可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息;
    所述终端设备根据所述第一控制资源集合的映射方式信息确定所述第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB。
  2. 如权利要求1所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式映射,所述第一控制资源集合中的每个CCE包含在频域上连续的多个REG,且所述每个CCE包含的多个REG位于同一个符号内。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100001
    或者
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100002
    或者
    所述第一控制资源集合中的编号为n的CCE包括位于编号为
    Figure PCTCN2017096905-appb-100003
    的符号上编号为
    Figure PCTCN2017096905-appb-100004
    的REG,
    其中,
    Figure PCTCN2017096905-appb-100005
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100006
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100007
    表示所述第一控制资源集合中包含的CCE的数量。
  4. 如权利要求1所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的集中式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100008
    其中,
    Figure PCTCN2017096905-appb-100009
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100010
    表示所述第一控制资源集合中包含的CCE的数量。
  5. 如权利要求1所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的集中式映射,所述第一控制资源集合中的REG按照频域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100011
    其中,
    Figure PCTCN2017096905-appb-100012
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100013
    表示所述第一控制资源集合中包含的CCE的数量。
  6. 如权利要求1所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100014
    Figure PCTCN2017096905-appb-100015
    Figure PCTCN2017096905-appb-100016
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100017
    表示所述第一控制资源集合包含的REG的数量,
    Figure PCTCN2017096905-appb-100018
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100019
    表示所述第一控制资源集合中包含的CCE的数量。
  7. 如权利要求1所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的分布式映射,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100020
    或者,
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100021
    或者,
    所述第一控制资源集合中的编号为n的CCE包括位于编号为
    Figure PCTCN2017096905-appb-100022
    的符号上编号为
    Figure PCTCN2017096905-appb-100023
    的REG,
    其中,
    Figure PCTCN2017096905-appb-100024
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100025
    表示所述第一控制资源集合中包含的CCE的数量,
    Figure PCTCN2017096905-appb-100026
    表示所述第一控制资源集合中包含的REG的数量,
    Figure PCTCN2017096905-appb-100027
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
  8. 如权利要求1所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时频交错的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的 REG的编号为
    Figure PCTCN2017096905-appb-100028
    或者,
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100029
    其中,
    Figure PCTCN2017096905-appb-100030
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100031
    表示所述第一控制资源集合中包含的CCE的数量,
    Figure PCTCN2017096905-appb-100032
    表示所述第一控制资源集合中包含的REG的数量,
    Figure PCTCN2017096905-appb-100033
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述第一搜索空间位于所述第一控制资源集合,所述第一搜索空间包括
    Figure PCTCN2017096905-appb-100034
    个聚合级别为L的候选物理下行控制信道PDCCH,所述编号为m的候选PDCCH为所述
    Figure PCTCN2017096905-appb-100035
    个聚合级别为L的候选PDCCH中的一个,
    所述方法还包括:
    所述终端设备根据所述第一控制资源集合的映射方式信息确定所述第一搜索空间中的编号为m的候选PDCCH包括的L个CCE。
  10. 如权利要求9所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式映射,
    所述L等于2,所述编号为m的候选PDCCH包括2个编号连续的CCE;或者,
    所述L大于2,所述编号为m的候选PDCCH包括L个CCE,所述L个CCE中的至少2个CCE的编号不连续。
  11. 一种通信方法,其特征在于,包括:
    网络设备确定第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB;
    所述网络设备发送所述第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合中的CCE与所述第一控制资源集合中的REG之间的映射方式。
  12. 如权利要求11所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式映射,所述第一控制资源集合中的每个CCE包含在频域上连续的多个REG,且所述每个CCE包含的多个REG位于同一个符号内。
  13. 如权利要求11或12所述的方法,其特征在于,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100036
    或者
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100037
    或者
    所述第一控制资源集合中的编号为n的CCE包括位于编号为
    Figure PCTCN2017096905-appb-100038
    的符号上编号为
    Figure PCTCN2017096905-appb-100039
    的REG,
    其中,且
    Figure PCTCN2017096905-appb-100040
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100041
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100042
    表示所述第一控制资源集合中包含的CCE的数量。
  14. 如权利要求11所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的集中式映射,所述第一控制资源集合中的REG按照时域优先于频域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100043
    其中,
    Figure PCTCN2017096905-appb-100044
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100045
    表示所述第一控制资源集合中包含的CCE的数量。
  15. 如权利要求11所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的集中式映射,所述第一控制资源集合中的REG按照频域优先于时域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100046
    其中,
    Figure PCTCN2017096905-appb-100047
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100048
    表示所述第一控制资源集合中包含的CCE的数量。
  16. 如权利要求11所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的分布式映射,所述第一控制资源集合中的REG按照时域优先于频域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100049
    Figure PCTCN2017096905-appb-100050
    Figure PCTCN2017096905-appb-100051
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100052
    表示所述第一控制资源集合包含的REG的数量,
    Figure PCTCN2017096905-appb-100053
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100054
    表示所述第一控制资源集合中包含的CCE的数量。
  17. 如权利要求11所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的分布式映射,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100055
    或者,
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100056
    或者,
    所述第一控制资源集合中的编号为n的CCE包括位于编号为
    Figure PCTCN2017096905-appb-100057
    的符号上编号为
    Figure PCTCN2017096905-appb-100058
    的REG,
    其中,
    Figure PCTCN2017096905-appb-100059
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100060
    表示所述第一控制资源集合中包含的CCE的数量,
    Figure PCTCN2017096905-appb-100061
    表示所述第一控制资源集合中包含的REG的数量,
    Figure PCTCN2017096905-appb-100062
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
  18. 如权利要求11所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时频交错的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100063
    或者,
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100064
    其中,
    Figure PCTCN2017096905-appb-100065
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100066
    表示所述第一控制资源集合中包含的CCE的数量,
    Figure PCTCN2017096905-appb-100067
    表示所述第一控制资源集合中包含的REG的数量,
    Figure PCTCN2017096905-appb-100068
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
  19. 如权利要求11-18中任一项所述的方法,其特征在于,所述第一搜索空间位于所述第一控制资源集合,所述第一搜索空间包括
    Figure PCTCN2017096905-appb-100069
    个聚合级别为L的候选PDCCH,所述编号为m的候选PDCCH为所述
    Figure PCTCN2017096905-appb-100070
    个聚合级别为L的候选PDCCH中的一个,所述第一控制资源集合的映射方式信息指示所述第一搜索空间中的编号为m的候选PDCCH包括的 L个CCE。
  20. 如权利要求19所述的方法,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式映射,
    所述L等于2,所述编号为m的候选PDCCH包括2个编号连续的CCE;或者,
    所述L大于2,所述编号为m的候选PDCCH包括L个CCE,所述L个CCE中的至少2个CCE的编号不连续。
  21. 一种终端设备,其特征在于,包括:
    接收单元,用于接收第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息;
    确定单元,用于根据所述接收单元接收的所述第一控制资源集合的映射方式信息确定所述第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB。
  22. 如权利要求21所述的终端设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式映射,所述第一控制资源集合中的每个CCE包含在频域上连续的多个REG,且所述每个CCE包含的多个REG位于同一个符号内。
  23. 如权利要求21或22所述的终端设备,其特征在于,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100071
    或者
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100072
    或者
    所述第一控制资源集合中的编号为n的CCE包括位于编号为
    Figure PCTCN2017096905-appb-100073
    的符号上编号为
    Figure PCTCN2017096905-appb-100074
    的REG,
    其中,
    Figure PCTCN2017096905-appb-100075
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100076
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100077
    表示所述第一控制资源集合中包含的CCE的数量。
  24. 如权利要求21所述的终端设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的集中式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100078
    其中,
    Figure PCTCN2017096905-appb-100079
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100080
    表示所述第一控制资源集合中包含的CCE的数量。
  25. 如权利要求21所述的终端设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的集中式映射,所述第一控制资源集合中的REG按照频域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE 包括的REG的编号为
    Figure PCTCN2017096905-appb-100081
    其中,
    Figure PCTCN2017096905-appb-100082
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100083
    表示所述第一控制资源集合中包含的CCE的数量。
  26. 如权利要求21所述的终端设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100084
    Figure PCTCN2017096905-appb-100085
    Figure PCTCN2017096905-appb-100086
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100087
    表示所述第一控制资源集合包含的REG的数量,
    Figure PCTCN2017096905-appb-100088
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100089
    表示所述第一控制资源集合中包含的CCE的数量。
  27. 如权利要求21所述的终端设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的分布式映射,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100090
    或者,
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100091
    或者,
    所述第一控制资源集合中的编号为n的CCE包括位于编号为
    Figure PCTCN2017096905-appb-100092
    的符号上编号为
    Figure PCTCN2017096905-appb-100093
    的REG,
    其中,
    Figure PCTCN2017096905-appb-100094
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100095
    表示所述第一控制资源集合中包含的CCE的数量,
    Figure PCTCN2017096905-appb-100096
    表示所述第一控制资源集合中包含的REG的数量,
    Figure PCTCN2017096905-appb-100097
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
  28. 如权利要求21所述的终端设备,其特征在于,所述第一控制资源集合的映射方 式信息指示所述第一控制资源集合的映射方式为时频交错的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100098
    或者,
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100099
    其中,
    Figure PCTCN2017096905-appb-100100
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100101
    表示所述第一控制资源集合中包含的CCE的数量,
    Figure PCTCN2017096905-appb-100102
    表示所述第一控制资源集合中包含的REG的数量,
    Figure PCTCN2017096905-appb-100103
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
  29. 如权利要求21-28中任一项所述的终端设备,其特征在于,所述第一搜索空间位于所述第一控制资源集合,所述第一搜索空间包括
    Figure PCTCN2017096905-appb-100104
    个聚合级别为L的候选物理下行控制信道PDCCH,所述编号为m的候选PDCCH为所述
    Figure PCTCN2017096905-appb-100105
    个聚合级别为L的候选PDCCH中的一个,
    所述确定单元,还用于根据所述第一控制资源集合的映射方式信息确定所述第一搜索空间中的编号为m的候选PDCCH包括的L个CCE。
  30. 如权利要求29所述的终端设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式映射,
    所述L等于2,所述编号为m的候选PDCCH包括2个编号连续的CCE;或者,
    所述L大于2,所述编号为m的候选PDCCH包括L个CCE,所述L个CCE中的至少2个CCE的编号不连续。
  31. 一种网络设备,其特征在于,包括:
    确定单元,用于确定第一控制资源集合中的控制信道单元CCE与所述第一控制资源集合中的资源单元组REG之间的映射方式,所述第一控制资源集合中的REG在时域上占用一个符号且在频域上占用一个资源块RB;
    发送单元,用于发送所述第一控制资源集合的配置信息,所述第一控制资源集合的配置信息包括所述第一控制资源集合的映射方式信息,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合中的CCE与所述第一控制资源集合中的REG之间的映射方式。
  32. 如权利要求31所述的网络设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为集中式映射,所述第一控制资源集合中的每个CCE包含在频域上连续的多个REG,且所述每个CCE包含的多个REG位于同一个符号内。
  33. 如权利要求31或32所述的网络设备,其特征在于,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100106
    或者
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100107
    或者
    所述第一控制资源集合中的编号为n的CCE包括位于编号为
    Figure PCTCN2017096905-appb-100108
    的符号上编号为
    Figure PCTCN2017096905-appb-100109
    的REG,
    其中,且
    Figure PCTCN2017096905-appb-100110
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100111
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100112
    表示所述第一控制资源集合中包含的CCE的数量。
  34. 如权利要求31所述的网络设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的集中式映射,所述第一控制资源集合中的REG按照时域优先于频域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100113
    其中,
    Figure PCTCN2017096905-appb-100114
    Figure PCTCN2017096905-appb-100115
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100116
    表示所述第一控制资源集合中包含的CCE的数量。
  35. 如权利要求31所述的网络设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的集中式映射,所述第一控制资源集合中的REG按照频域优先于时域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100117
    其中,
    Figure PCTCN2017096905-appb-100118
    Figure PCTCN2017096905-appb-100119
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100120
    表示所述第一控制资源集合中包含的CCE的数量。
  36. 如权利要求31所述的网络设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时域优先的分布式映射,所述第一控制资源集合中的REG按照时域优先于频域的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100121
    Figure PCTCN2017096905-appb-100122
    Figure PCTCN2017096905-appb-100123
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100124
    表示所述第一控制资源集合包含的REG的数量,
    Figure PCTCN2017096905-appb-100125
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量,
    Figure PCTCN2017096905-appb-100126
    表示所述第一控制资源集合中包含的CCE的数量。
  37. 如权利要求31所述的网络设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为频域优先的分布式映射,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100127
    或者,
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100128
    或者,
    所述第一控制资源集合中的编号为n的CCE包括位于编号为
    Figure PCTCN2017096905-appb-100129
    的符号上编号为
    Figure PCTCN2017096905-appb-100130
    的REG,
    其中,
    Figure PCTCN2017096905-appb-100131
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100132
    表示所述第一控制资源集合中包含的CCE的数量,
    Figure PCTCN2017096905-appb-100133
    表示所述第一控制资源集合中包含的REG的数量,
    Figure PCTCN2017096905-appb-100134
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
  38. 如权利要求31所述的网络设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为时频交错的分布式映射,所述第一控制资源集合中的REG按照时域优先的顺序编号,所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100135
    或者,
    所述第一控制资源集合中的编号为n的CCE包括的REG的编号为
    Figure PCTCN2017096905-appb-100136
    其中,
    Figure PCTCN2017096905-appb-100137
    表示所述第一控制资源集合中包含的符号的数量,
    Figure PCTCN2017096905-appb-100138
    表示所述第一控制资源集合中包含的CCE的数量,
    Figure PCTCN2017096905-appb-100139
    表示所述第一控制资源集合中包含的REG的数量,
    Figure PCTCN2017096905-appb-100140
    表示所述第一控制资源集合中编号为n的CCE包含的REG的数量。
  39. 如权利要求31-38中任一项所述的网络设备,其特征在于,所述第一搜索空间位于所述第一控制资源集合,所述第一搜索空间包括
    Figure PCTCN2017096905-appb-100141
    个聚合级别为L的候选PDCCH,所述编号为m的候选PDCCH为所述
    Figure PCTCN2017096905-appb-100142
    个聚合级别为L的候选PDCCH中的一个,所述第一控制资源集合的映射方式信息指示所述第一搜索空间中的编号为m的候选PDCCH包 括的L个CCE。
  40. 如权利要求39所述的网络设备,其特征在于,所述第一控制资源集合的映射方式信息指示所述第一控制资源集合的映射方式为分布式映射,
    所述L等于2,所述编号为m的候选PDCCH包括2个编号连续的CCE;或者,
    所述L大于2,所述编号为m的候选PDCCH包括L个CCE,所述L个CCE中的至少2个CCE的编号不连续。
PCT/CN2017/096905 2017-08-10 2017-08-10 通信方法、终端设备和网络设备 WO2019028770A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/CN2017/096905 WO2019028770A1 (zh) 2017-08-10 2017-08-10 通信方法、终端设备和网络设备
PCT/CN2017/107869 WO2019029014A1 (zh) 2017-08-10 2017-10-26 通信方法、终端设备和网络设备
CN202110831778.7A CN113708904A (zh) 2017-08-10 2017-10-26 通信方法、终端设备和网络设备
CN201780046650.1A CN109661846B (zh) 2017-08-10 2017-10-26 通信方法、终端设备和网络设备
BR112020002685-9A BR112020002685A2 (pt) 2017-08-10 2017-10-26 método de comunicação, dispositivo terminal e dispositivo de rede
EP17921211.3A EP3661287B1 (en) 2017-08-10 2017-10-26 Communication method, terminal device and network device
US16/786,646 US11356992B2 (en) 2017-08-10 2020-02-10 Communication method, terminal device, and network device
US17/751,015 US11871428B2 (en) 2017-08-10 2022-05-23 Communication method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096905 WO2019028770A1 (zh) 2017-08-10 2017-08-10 通信方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2019028770A1 true WO2019028770A1 (zh) 2019-02-14

Family

ID=65272836

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/096905 WO2019028770A1 (zh) 2017-08-10 2017-08-10 通信方法、终端设备和网络设备
PCT/CN2017/107869 WO2019029014A1 (zh) 2017-08-10 2017-10-26 通信方法、终端设备和网络设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107869 WO2019029014A1 (zh) 2017-08-10 2017-10-26 通信方法、终端设备和网络设备

Country Status (5)

Country Link
US (2) US11356992B2 (zh)
EP (1) EP3661287B1 (zh)
CN (2) CN113708904A (zh)
BR (1) BR112020002685A2 (zh)
WO (2) WO2019028770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022057524A1 (zh) * 2020-09-21 2022-03-24 华为技术有限公司 资源确定方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3706485A4 (en) * 2017-10-31 2021-10-20 ZTE Corporation METHOD AND DEVICE FOR DETERMINING A REFERENCE SIGNAL, METHOD AND DEVICE FOR DETERMINING A CONTROL CHANNEL UNIT, AND STORAGE MEDIA
US11330577B2 (en) * 2019-01-08 2022-05-10 Qualcomm Incorporated Search space activation for channel monitoring
CN112311514B (zh) * 2019-07-30 2022-04-12 华为技术有限公司 控制信息传输方法及装置
EP3996440A4 (en) * 2019-08-15 2022-10-26 Huawei Technologies Co., Ltd. CONTROL CHANNEL TRANSMISSION METHOD AND APPARATUS
US20220346099A1 (en) * 2021-04-21 2022-10-27 Qualcomm Incorporated Configuring a time domain control resource set for single carrier waveforms
CN117528795A (zh) * 2022-07-28 2024-02-06 北京紫光展锐通信技术有限公司 信道估计方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038645A1 (zh) * 2009-09-29 2011-04-07 中兴通讯股份有限公司 Lte-a系统及其中继链路的物理下行控制信道的资源分配方法
CN102420685A (zh) * 2011-11-07 2012-04-18 电信科学技术研究院 一种传输控制信息的方法及装置
CN103944692A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 ePHICH的发送方法及装置、接收方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869049B (zh) * 2011-07-04 2015-07-08 华为技术有限公司 传输控制信道指示信息的方法、基站和用户设备
CN102711253B (zh) * 2012-03-21 2015-02-18 电信科学技术研究院 E-pdcch的资源映射方法及装置
CN103582135B (zh) * 2012-07-27 2018-05-25 上海诺基亚贝尔股份有限公司 一种配置用于ePDCCH的eCCE的方法
CN103580834B (zh) * 2012-07-31 2018-06-22 中兴通讯股份有限公司 ePDCCH发送、接收方法及装置、基站、用户设备
US20140071935A1 (en) * 2012-09-07 2014-03-13 Samsung Electronics Co., Ltd. Multiplexing resource element groups for control channel elements of control channels
CN106160923B (zh) * 2015-04-03 2019-05-24 上海诺基亚贝尔股份有限公司 用于配置ecce-ereg的映射关系的方法以及相应的盲检方法
US20170135127A1 (en) * 2015-11-05 2017-05-11 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
CN111083793B (zh) * 2017-05-02 2021-01-26 Oppo广东移动通信有限公司 用于在无线通信系统中控制资源绑定和映射的方法和装置
CN109152013B (zh) * 2017-06-16 2022-11-15 大唐移动通信设备有限公司 一种公共下行控制信道信号传输方法和相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011038645A1 (zh) * 2009-09-29 2011-04-07 中兴通讯股份有限公司 Lte-a系统及其中继链路的物理下行控制信道的资源分配方法
CN102420685A (zh) * 2011-11-07 2012-04-18 电信科学技术研究院 一种传输控制信息的方法及装置
CN103944692A (zh) * 2013-01-18 2014-07-23 中兴通讯股份有限公司 ePHICH的发送方法及装置、接收方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022057524A1 (zh) * 2020-09-21 2022-03-24 华为技术有限公司 资源确定方法及装置

Also Published As

Publication number Publication date
EP3661287B1 (en) 2023-06-14
US11356992B2 (en) 2022-06-07
CN113708904A (zh) 2021-11-26
US11871428B2 (en) 2024-01-09
WO2019029014A1 (zh) 2019-02-14
CN109661846A (zh) 2019-04-19
CN109661846B (zh) 2021-07-16
US20200178232A1 (en) 2020-06-04
BR112020002685A2 (pt) 2020-07-28
US20220377713A1 (en) 2022-11-24
EP3661287A1 (en) 2020-06-03
EP3661287A4 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
US11246142B2 (en) Control channel transmission method, network device, network controller, and terminal device
WO2019028770A1 (zh) 通信方法、终端设备和网络设备
US9699783B2 (en) Method and apparatus for determining control channel search space
WO2018171667A1 (zh) 一种信道传输方法及网络设备
US11601958B2 (en) Data transmission method and apparatus
WO2019047719A1 (zh) 通信方法、终端设备和网络设备
US10952207B2 (en) Method for transmitting data, terminal device and network device
US11632207B2 (en) Method and apparatus for transmitting uplink signal
BR112019012790B1 (pt) Método de transmissão de dados, e dispositivo de transmissão de dados
WO2018205874A1 (zh) 传输方法、终端和网络设备
WO2018228188A1 (zh) 发送信息以及确定信息的方法和装置
WO2020073991A1 (zh) 数据传输方法和通信装置
TW201826747A (zh) 資源映射的方法和通訊設備
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
WO2019028842A1 (zh) 通信方法、终端设备及网络设备
WO2018196657A1 (zh) 一种干扰消除方法、用户设备及网络设备
WO2023206306A1 (zh) 数据接收方法、数据发送方法以及装置
WO2023050429A1 (zh) 数据调度方法、信息发送方法以及装置
WO2023206307A1 (zh) 数据接收和发送方法、数据发送和接收方法以及装置
WO2018137234A1 (zh) 下行控制信息的传输方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920700

Country of ref document: EP

Kind code of ref document: A1