WO2022057524A1 - 资源确定方法及装置 - Google Patents

资源确定方法及装置 Download PDF

Info

Publication number
WO2022057524A1
WO2022057524A1 PCT/CN2021/111904 CN2021111904W WO2022057524A1 WO 2022057524 A1 WO2022057524 A1 WO 2022057524A1 CN 2021111904 W CN2021111904 W CN 2021111904W WO 2022057524 A1 WO2022057524 A1 WO 2022057524A1
Authority
WO
WIPO (PCT)
Prior art keywords
cce
cces
index value
coreset
pdcch candidate
Prior art date
Application number
PCT/CN2021/111904
Other languages
English (en)
French (fr)
Inventor
薛祎凡
薛丽霞
张健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011113021.6A external-priority patent/CN114258136A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/246,002 priority Critical patent/US20230354366A1/en
Priority to EP21868352.2A priority patent/EP4203584A4/en
Publication of WO2022057524A1 publication Critical patent/WO2022057524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a resource determination method and apparatus.
  • NR terminal equipment In order to support the high data rate, low latency and high reliability of the 5G NR system, NR terminal equipment has strong capabilities. For example, in common commercial frequency bands, NR terminal equipment must support 4-antenna reception and 100MHz system bandwidth. And these requirements lead to high hardware cost of NR terminal equipment. In order to further expand the NR market and reduce the hardware cost of terminal equipment, 3GPP has established a reduced capability (REDCAP) project, hoping to reduce the complexity and cost of terminal equipment by reducing the number of antennas.
  • REDCAP reduced capability
  • REDCAP terminal equipment For REDCAP terminal equipment, as the number of receiving antennas of the terminal equipment decreases, the coverage of downlink signals will become smaller.
  • PDCCH physical downlink control channel
  • CORESET control resource set
  • the present application provides a resource determination method and apparatus, which are used to improve the diversity gain that can be obtained by a PDCCH candidate.
  • a first aspect provides a resource determination method, comprising: determining index values of n first CCEs occupied by a PDCCH candidate position (candidate) in a CORESET in a first control channel element (control channel element, CCE) set, and Index values of m second CCEs occupied in the second CCE set; the CORESET is divided into a first physical time-frequency resource region and a second physical time-frequency resource region, and the first physical time-frequency resource region is Different from the second physical time-frequency resource region in the domain and/or frequency domain, the number of CCEs included in the first CCE set is based on the resource element group (resource element group) included in the first physical time-frequency resource region.
  • the number of REGs the number of REGs
  • the number of CCEs included in the second CCE set is determined according to the number of REGs included in the second physical time-frequency resource region, m and n are both positive Integer, and the sum of m and n is equal to the aggregation level of the PDCCH candidate; according to the n first CCEs and the m second CCEs, determine the physical time-frequency resources occupied by the PDCCH candidate.
  • the CORESET is divided into a first physical time-frequency resource region and a second physical time-frequency resource region, and the number of REGs included in the first physical time-frequency resource region is used to determine the number of REGs included in the first CCE set.
  • the number of CCEs, and the number of the second CCE set is determined according to the number of REGs included in the second physical time-frequency resource region.
  • the implementation divides N cce,p CCEs into two CCE sets.
  • the communication device determines the index values of n first CCEs occupied by the PDCCH candidate in the first CCE set, and the index values of m second CCEs occupied in the second CCE set.
  • the index values of the n first CCEs and the index values of the m second CCEs determined in the embodiment of the present application are more discretized, thereby There is a high probability that the dispersion degree of the physical time-frequency resources occupied by the PDCCH candidates can be increased, and thus the diversity gain of the PDCCH candidates can be improved with a high probability.
  • the index values of the n first CCEs are consecutive, and the index values of the m second CCEs are consecutive.
  • the communication device determines the index value of the first first CCE among the n first CCEs, and can determine the index values of other first CCEs.
  • the communication device determines the index value of the first second CCE among the m second CCEs, and can determine the index values of other second CCEs.
  • n m
  • the number of CCEs included in the first CCE set is the same as the number of CCEs included in the second CCE set.
  • the difference between the first index value and the second index value is a preset value
  • the first index value is the index of the first CCE with the smallest index value among the n first CCEs value
  • the second index value is the index value of the second CCE with the smallest index value among the m second CCEs.
  • the difference between the first index value and the second index value is determined according to a preset value and an offset value, and the first index value is the smallest index value among the n first CCEs.
  • the index value of the first CCE, the second index value is the index value of the second CCE with the smallest index value among the m second CCEs.
  • the preset value is equal to N cce, p, first , N cce , p, first is the number of CCEs included in the first CCE set; or, when the CCEs included in the first CCE set are numbered from 0, the CCEs included in the first CCE set start from 0 When numbering, the preset value is equal to 0.
  • the index value of the n first CCEs occupied by the PDCCH candidate in the CORESET is determined in the first CCE set, and the index values of the m second CCEs occupied in the second CCE set,
  • the method includes: determining an index value of each of the n first CCEs according to a first formula; and determining an index value of each of the n second CCEs according to a second formula.
  • the first formula can adopt any one of the following formulas (2) to (5).
  • the second formula may adopt any one of formulas (6) to (11) below.
  • the specific introduction of formula (2) to formula (6) can be found in the following, which will not be repeated here.
  • a resource determination method comprising: determining index values of L CCEs occupied by a PDCCH candidate, where L is equal to the aggregation level of the PDCCH candidate; for each of the L CCEs, according to the The index value of the CCE is used to determine the p input sequence numbers corresponding to the CCE, where p is a positive integer; according to the p input sequence numbers corresponding to the CCE and the first interleaver, determine the p control element groups to which the CCE is mapped The index value of the bundle REG bundle; the first interleaver is configured to output the two input sequence numbers spaced as interleaving depths as the index value of two non-adjacent REG bundles in the frequency domain.
  • a REDCAP terminal device since a REDCAP terminal device generally adopts a larger aggregation level, there are likely to be two input sequence numbers spaced apart by the interleaving depth among several input sequence numbers corresponding to the L CCEs occupied by its PDCCH candidate.
  • the first interleaver provided in this embodiment of the present application is used to output two input sequence numbers spaced at an interleaving depth as index values corresponding to two non-adjacent REG bundles in the frequency domain, among the several REG bundles occupied by the PDCCH candidate There can be at least two non-adjacent REG bundles in the frequency domain, thereby reducing the probability that the REG bundles occupied by the PDCCH candidate are aggregated together, thereby improving the frequency diversity gain obtained by the PDCCH candidate.
  • determining the index values of p REG bundles to which the CCE is mapped according to the p input sequence numbers corresponding to the CCE and the first interleaver including: for the P corresponding to the CCE Any one of the input serial numbers is input, and the three-dimensional number corresponding to the input serial number is determined, and the three-dimensional number includes a group number, a row number, and a column number; according to the three-dimensional number corresponding to the input serial number, determine the corresponding The index value of the REG bundle.
  • the input sequence number is generally mapped to a two-dimensional number (that is, the row number and the column number), the first interleaver provided by the embodiment of the present application That is, group number), to make the result of mapping the input sequence number to the index value of the REG bundle more discrete, so that the result of mapping the CCE to the REG bundle is more discrete.
  • the above-mentioned first interleaver may satisfy the following formula (20), formula (21), formula (22) or formula (23).
  • formula (20), formula (21), formula (22), and formula (23) can be found in the following, which is not repeated here.
  • a communication apparatus including a determining unit and a mapping unit.
  • the determining unit is used to determine the index values of the n first CCEs occupied in the first CCE set by the PDCCH candidate position candidate in the CORESET, and the index values of the m second CCEs occupied in the second CCE set;
  • the CORESET is divided into a first physical time-frequency resource region and a second physical time-frequency resource region, and the first physical time-frequency resource region is different from the second physical time-frequency resource in the time domain and/or frequency domain region, the number of CCEs included in the first CCE set is determined according to the number of REGs included in the first physical time-frequency resource region, and the number of CCEs included in the second CCE set is determined according to the number of REGs included in the first physical time-frequency resource region.
  • the number of REGs included in the second physical time-frequency resource region is determined, m and n are both positive integers, and the sum of m and n is equal to the aggregation level of the PDCCH candidate.
  • a mapping unit configured to determine the physical time-frequency resources occupied by the PDCCH candidate according to the n first CCEs and the m second CCEs.
  • the index values of the n first CCEs are consecutive, and the index values of the m second CCEs are consecutive.
  • n m
  • the number of CCEs included in the first CCE set is the same as the number of CCEs included in the second CCE set.
  • the difference between the first index value and the second index value is a preset value
  • the first index value is the index of the first CCE with the smallest index value among the n first CCEs value
  • the second index value is the index value of the second CCE with the smallest index value among the m second CCEs.
  • the difference between the first index value and the second index value is determined according to a preset value and an offset value, and the first index value is the smallest index value among the n first CCEs.
  • the index value of the first CCE, the second index value is the index value of the second CCE with the smallest index value among the m second CCEs.
  • the preset value is equal to N cce, p, first , N cce , p, first is the number of CCEs included in the first CCE set; or, when the CCEs included in the first CCE set are numbered from 0, the CCEs included in the first CCE set start from 0 When numbering, the preset value is equal to 0.
  • the determining unit is specifically configured to determine, according to the first formula, an index value of each of the n first CCEs; The index value of each second CCE.
  • the first formula can adopt any one of the following formulas (2) to (5).
  • the second formula may adopt any one of formulas (6) to (11) below.
  • the specific introduction of formula (2) to formula (6) can be found in the following, which will not be repeated here.
  • a communication apparatus including a determining unit and a mapping unit.
  • the determining unit is used to determine the index value of the L CCEs occupied by the PDCCH candidate, where L is equal to the aggregation level of the PDCCH candidate.
  • a mapping unit configured to, for each of the L CCEs, determine the p input sequence numbers corresponding to the CCE according to the index value of the CCE, where p is a positive integer; according to the p input sequence numbers corresponding to the CCE
  • the sequence number and the first interleaver determine the index value of the p control element bundles REG bundle to which the CCE is mapped; the first interleaver is used for outputting two input sequence numbers spaced as interleaving depths as unphased in the frequency domain.
  • the index value of two adjacent REG bundles configured to, for each of the L CCEs, determine the p input sequence numbers corresponding to the CCE according to the index value of the CCE, where p is a positive integer; according to the p input sequence numbers corresponding to the CCE
  • the sequence number and the first interleaver determine the index value of the p control element bundles REG bundle to which the CCE is mapped; the first interleaver is used for outputting two input sequence numbers spaced
  • the mapping unit is specifically configured to determine a three-dimensional number corresponding to the input serial number for any one of the P input serial numbers corresponding to the CCE, and the three-dimensional number includes a group number, a row number and the column number;
  • the index value of the REG bundle corresponding to the input sequence number is determined.
  • the above-mentioned first interleaver may satisfy the following formula (20), formula (21), formula (22) or formula (23).
  • formula (20), formula (21), formula (22), and formula (23) can be found in the following, which is not repeated here.
  • a communication device in a fifth aspect, includes a processor and a transceiver, and the processor and the transceiver are used to implement the method provided by any one of the first aspect or the second aspect.
  • the processor is configured to perform processing actions in the corresponding method
  • the transceiver is configured to perform the actions of receiving/transmitting in the corresponding method.
  • a chip including: a processing circuit and a transceiver pin, where the processing circuit and the transceiver pin are used to implement the method provided by any one of the first aspect or the second aspect.
  • the processing circuit is used for executing the processing actions in the corresponding method
  • the transceiver pins are used for executing the actions of receiving/transmitting in the corresponding method.
  • a computer-readable storage medium stores computer instructions that, when the computer instructions are executed on a computer, cause the computer to execute the design provided by any one of the first aspect or the second aspect.
  • a computer program product that, when the computer instructions are executed on a computer, causes the computer to perform the method provided by any one of the designs of the first aspect or the second aspect.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a network device and a terminal device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a non-interleaving mapping provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an interleaving mapping provided by an embodiment of the present application.
  • Fig. 5 is the schematic diagram that the CORESET of traditional NR terminal equipment and the CORESET of REDCAP terminal equipment overlap;
  • FIG. 6(a) is a schematic diagram of CORESET of a REDCAP terminal device according to an embodiment of the present application
  • FIG. 6(b) is a schematic diagram of CORESET of another REDCAP terminal device provided by an embodiment of the present application.
  • Figure 7(a) is a schematic diagram of a PDCCH candidate of a REDCAP terminal device in the related art
  • Figure 7(b) is a schematic diagram of the PDCCH candidate of another REDCAP terminal device in the related art.
  • Figure 8 (a) is a schematic diagram of the PDCCH candidate of another REDCAP terminal device in the related art
  • Figure 8(b) is a schematic diagram of the PDCCH candidate of another REDCAP terminal device in the related art
  • Figure 9(a) is a schematic diagram of a PDCCH candidate of another REDCAP terminal device in the related art.
  • Figure 9(b) is a schematic diagram of the PDCCH candidate of another REDCAP terminal device in the related art.
  • FIG. 10 is a flowchart of a method for determining a resource provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a CORESET provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of another CORESET provided by an embodiment of the present application.
  • FIG. 13 is a flowchart of a method for determining a resource provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a PDCCH candidate provided by an embodiment of the application.
  • FIG. 15 is a schematic diagram of a PDCCH candidate provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of a PDCCH candidate provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of a PDCCH candidate provided by an embodiment of the application.
  • FIG. 18 is a schematic diagram of a PDCCH candidate provided by an embodiment of the application.
  • FIG. 19 is a schematic diagram of a PDCCH candidate provided by an embodiment of the application.
  • FIG. 20 is a schematic diagram of a CORESET provided by an embodiment of the present application.
  • 21 is a flowchart of another resource determination method provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of a PDCCH candidate of a REDCAP terminal device in the related art
  • FIG. 23 is a schematic diagram of a PDCCH candidate of another REDCAP terminal device in the related art.
  • FIG. 24 is a flowchart of a resource determination method provided by an embodiment of the present application.
  • 25 is a schematic diagram of a correspondence between an input sequence number and a REG bundle index value provided by an embodiment of the application;
  • 26 is a schematic diagram of a correspondence between an input sequence number and a REG bundle index value provided by an embodiment of the application;
  • FIG. 27 is a schematic diagram of a correspondence between an input sequence number and a REG bundle index value provided by an embodiment of the application;
  • FIG. 29 is a flowchart of a resource determination method provided by an embodiment of the present application.
  • FIG. 30 is a schematic diagram of a correspondence between an input sequence number and a REG bundle index value provided by an embodiment of the present application.
  • FIG. 31 is a schematic diagram of a correspondence between an input sequence number and a REG bundle index value provided by an embodiment of the present application.
  • FIG. 32 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the technical solutions provided in the embodiments of the present application can be applied to various communication systems, for example, a new radio (NR) communication system using the fifth generation (5th generation, 5G) communication technology, a future evolution system, or a variety of communication fusions system, etc.
  • the technical solutions provided in this application can be applied to various application scenarios, such as machine to machine (M2M), macro-micro communication, enhanced mobile broadband (eMBB), ultra-reliable and ultra-low latency Communication (ultra-reliable & low latency communication, uRLLC) and massive IoT communication (massive machine type communication, mMTC) and other scenarios.
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • uRLLC ultra-reliable and ultra-low latency Communication
  • massive IoT communication massive machine type communication
  • the communication system architecture may include one or more network devices (only one is shown in FIG. 1 ) and one or more network devices connected to each network device. multiple end devices.
  • the network device may be a base station or a base station controller for wireless communication.
  • the base station may include various types of base stations, such as a micro base station (also referred to as a small cell), a macro base station, a relay station, an access point, etc., which are not specifically limited in this embodiment of the present application.
  • the base station may be an evolutional node B (evolutional node B, eNB or e-NodeB) in long term evolution (long term evolution, LTE), an internet of things (internet of things, IoT) or a narrowband thing
  • the eNB in the Internet of Things (narrow band-internet of things, NB-IoT), the base station in the future 5G mobile communication network or the future evolution of the public land mobile network (public land mobile network, PLMN), the embodiment of this application does not make any limit.
  • the apparatus for implementing the function of the network device may be the network device, or may be an apparatus capable of supporting the network device to implement the function, such as a chip system.
  • the technical solutions provided by the embodiments of the present application are described by taking the apparatus for implementing the functions of the network equipment as the network equipment as an example.
  • the network equipment mentioned in this application such as a base station, generally includes a baseband unit (baseband unit, BBU), a remote radio unit (remote radio unit, RRU), an antenna, and a feeder for connecting the RRU and the antenna.
  • BBU baseband unit
  • RRU remote radio unit
  • the BBU is used for signal modulation.
  • the RRU is responsible for radio frequency processing.
  • the antenna is responsible for the conversion between the guided traveling waves on the cable and the space waves in the air.
  • the distributed base station greatly shortens the length of the feeder between the RRU and the antenna, which can reduce the signal loss and the cost of the feeder.
  • the RRU plus antenna is relatively small and can be installed anywhere, making network planning more flexible.
  • all BBUs can also be centralized and placed in the central office (CO). Through this centralized method, the number of base station computer rooms can be greatly reduced, and supporting equipment, especially air conditioners, can be reduced. Energy consumption can reduce a lot of carbon emissions.
  • the scattered BBUs after the scattered BBUs are integrated into a BBU baseband pool, they can be managed and scheduled in a unified manner, and resource allocation is more flexible. In this mode, all physical base stations have evolved into virtual base stations. All virtual base stations share the user's data transmission and reception, channel quality and other information in the BBU baseband pool, and cooperate with each other to realize joint scheduling.
  • a base station may include a centralized unit (CU) and a distributed unit (DU).
  • the base station may also include an active antenna unit (AAU).
  • the CU implements some functions of the base station, and the DU implements some functions of the base station.
  • the CU is responsible for processing non-real-time protocols and services, and implementing functions of radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing functions of the radio link control (RLC), media access control (MAC), and physical (PHY) layers.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in the RAN, and the CU can also be divided into network devices in the core network (core network, CN), which is not limited here.
  • a terminal device is a device with wireless transceiver function.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal equipment may be user equipment (user equipment, UE).
  • the UE includes a handheld device, a vehicle-mounted device, a wearable device or a computing device with a wireless communication function.
  • the UE may be a mobile phone, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal device in industrial control, a wireless terminal device in unmanned driving, and a wireless terminal in telemedicine. equipment, wireless terminal equipment in smart grid, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the apparatus for implementing the function of the terminal device may be the terminal device, or may be an apparatus capable of supporting the terminal device to implement the function, such as a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the technical solutions provided by the embodiments of the present application are described by taking the device for realizing the function of the terminal device as the terminal device as an example.
  • the network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application.
  • the evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • FIG. 2 is a schematic diagram of a hardware structure of a network device and a terminal device according to an embodiment of the present application.
  • the terminal device includes at least one processor 101 and at least one transceiver 103 .
  • the terminal device may further include an output device 104 , an input device 105 and at least one memory 102 .
  • the processor 101, the memory 102 and the transceiver 103 are connected by a bus.
  • the processor 101 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more modules for controlling the execution of the programs of the present application. integrated circuit.
  • the processor 101 may also include multiple CPUs, and the processor 101 may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data (eg, computer program instructions).
  • the memory 102 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM), or other type of static storage device that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Any other medium accessed is not limited in this embodiment of the present application.
  • the memory 102 may exist independently and be connected to the processor 101 through a bus.
  • the memory 102 may also be integrated with the processor 101 .
  • the memory 102 is used for storing the application program code for executing the solution of the present application, and the execution is controlled by the processor 101 .
  • the processor 101 is configured to execute the computer program codes stored in the memory 102, so as to implement the methods provided by the embodiments of the present application.
  • the transceiver 103 can use any transceiver-like device for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc. .
  • the transceiver 103 includes a transmitter Tx and a receiver Rx.
  • the output device 104 communicates with the processor 101 and can display information in a variety of ways.
  • the output device 104 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 105 is in communication with the processor 101 and can receive user input in a variety of ways.
  • the input device 105 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the network device includes at least one processor 201 , at least one memory 202 , at least one transceiver 203 and at least one network interface 204 .
  • the processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected by a bus.
  • the network interface 204 is used to connect with the core network device through a link (such as the S1 interface), or connect with the network interface of other network devices through a wired or wireless link (such as the X2 interface) (not shown in the figure), This embodiment of the present application does not specifically limit this.
  • the processor 201, the memory 202, and the transceiver 203 reference may be made to the description of the processor 101, the memory 102, and the transceiver 103 in the terminal device, and details are not repeated here.
  • the terminal device will blindly detect the PDCCH within the CORESET.
  • a CORESET can be understood as a piece of physical time-frequency resource, occupying several physical resource blocks (PRBs) in the frequency domain, and occupying several symbols (symbols) when encountered.
  • PRBs physical resource blocks
  • symbols symbols
  • an RB on each symbol is called a REG.
  • REG bundle (bundle).
  • the number of REGs that make up a REG bundle can be called the REG bundle size.
  • the REG bundle size is generally 2, 3 or 6.
  • the above REGs or REG bundles are all physical time-frequency resources.
  • Several REG bundles can form a CCE, but a CCE contains 6 REGs.
  • the terminal device blindly detects the PDCCH in the CORESET, and actually performs detection on several PDCCH candidate positions (candidates) in the CORESET. That is, the terminal device detects whether there is a PDCCH sent to itself on each of the several PDCCH candidates.
  • a PDCCH candidate occupies L consecutive CCEs.
  • L is the aggregation level (aggregation level, AL) of the PDCCH candidate. For example, if a PDCCH candidate occupies 4 consecutive CCEs, it means that the aggregation level of this PDCCH candidate is 4.
  • the aggregation level of a PDCCH candidate can be 1, 2, 4, 8 or 16.
  • the CCE index value (index) of the L CCEs occupied by the PDCCH candidate is calculated using the following formula (1):
  • i 0, 1, ..., L-1.
  • N CCE N CCE
  • n CI is the value of the carrier indication field, which is only valid in the USS of cross-carrier scheduling, and is equal to 0 by default in other cases.
  • the terminal device After the terminal device determines several CCEs occupied by the PPDCH candidate, the terminal device can determine the physical time-frequency resources actually occupied by the PPDCH candidate according to the mapping from the CCEs to the REGs.
  • 1 CCE may correspond to 3, 2 or 1 REG bundle.
  • the CCE of the index value j includes the index value of REG bundle.
  • K is the REG bundle size.
  • the CCE with the index value of 3 includes the REG bundle with the index value of f(9), the REG bundle with the index value of f(10), and the REG bundle with the index value of f(11).
  • REG bundle the CCE with the index value of 3 includes the REG bundle with the index value of f(9), the REG bundle with the index value of f(10), and the REG bundle with the index value of f(11).
  • mapping modes for CCE-to-REG mapping There are two mapping modes for CCE-to-REG mapping: non-interleaving mapping and interleaving mapping. It should be understood that a CORESET can only be associated with one of these mappings.
  • FIG. 3 shows a schematic diagram of a non-interleaving mapping.
  • each rectangular box represents a REG bundle
  • the first row of numbers in the rectangular box represents the index of the REG bundle
  • the second row of numbers in the rectangular box represents the index of the CCE to which the REG bundle is mapped.
  • the CCE with the index value of 0 is mapped to the REG bundle with the index value of 0
  • the CCE with the index value of 1 is mapped to the REG bundle with the index value of 1
  • the index value is A CCE of 2 maps to a REG bundle with an index of 2, etc. That is, CCEs are mapped to REG bundles with the same index value.
  • C represents the number of columns in the interleaving matrix
  • R represents the number of rows in the interleaving matrix.
  • R can also denote the interleaving depth, R ⁇ ⁇ 2, 3, 6 ⁇ .
  • FIG. 4 shows a schematic diagram of an interleaving mapping.
  • each rectangular box represents a REG bundle
  • the first row of numbers in the rectangular box represents the index of the REG bundle
  • the second row of numbers in the rectangular box represents the index of the CCE to which the REG bundle is mapped.
  • the REG bundle size is 6
  • the CORESET includes 6 REG bundles
  • the interleaving depth is set to 2
  • the CCE with an index value of 0 is mapped to the REG bundle with an index value of 0, and the CCE with an index value of 1 is mapped.
  • CCE with index value 2 maps to REG bundle with index value 1
  • CCE with index value 3 maps to REG bundle with index value 4
  • CCE with index value 4 maps to REG bundle with index value 4
  • a REG bundle with a value of 2 a CCE with an index value of 5 is mapped to a REG bundle with an index value of 5.
  • NR terminal equipment In order to support the high data rate, low latency and high reliability of the 5G NR system, NR terminal equipment has strong capabilities. For example, in common commercial frequency bands, NR terminal equipment must support 4-antenna reception and 100MHz system bandwidth. And these requirements lead to high hardware cost of NR terminal equipment. In order to further expand the NR market and reduce the hardware cost of terminal equipment, 3GPP has established a reduced capability (REDCAP) project, hoping to reduce the complexity and cost of terminal equipment by reducing the number of antennas.
  • REDCAP reduced capability
  • REDCAP terminal equipment the terminal equipment involved in the REDCAP subject
  • traditional NR terminal equipment the terminal equipment that does not support the various capabilities studied by the REDCAP subject
  • REDCAP terminal equipment For REDCAP terminal equipment, as the number of receiving antennas of the terminal equipment decreases, the coverage of downlink signals will become smaller. In order to improve the coverage of the PDCCH channel, one way is to expand the number of symbols occupied by CORESET, for example, the number of symbols supported by a REDCAP terminal device can be extended to more than 3 symbols.
  • the CORESET of the traditional NR terminal device and the CORESET of the REDCAP terminal device may overlap.
  • the physical time-frequency resources occupied by the CORESET of the conventional NR terminal equipment are the rectangles filled with shadows in FIG. 5 .
  • the physical time-frequency resources occupied by the CORESET of the REDCAP terminal device include the rectangles filled with shadows in FIG. 5 and the blank rectangles in FIG. 5 .
  • the CORESET of the REDCAP terminal equipment and the CORESET of the traditional NR terminal equipment should have the same frequency domain width.
  • the ordering of the REG bundles needs to be as consistent as possible with the prior art.
  • the REG bundles in the CORESET of the REDCAP terminal device are numbered in the frequency domain and then the time domain, so that the REG with an index value of 0 REG bundles bundled to an index value of 23 can be arranged as shown in Figure 6(a).
  • the REG bundles in the CORESET of the REDCAP terminal device are numbered in the frequency domain and then the time domain, so that the REG with the index value of 0 REG bundles bundled to index 47 can be arranged as shown in Figure 6(b).
  • the CORESET of the REDCAP terminal equipment is hereinafter divided into area one and area two, where area one is the part that overlaps with the CORESET of the traditional NR terminal equipment, and area two is the part that does not overlap with the CORESET of the traditional NR terminal equipment.
  • the PDCCH candidate determination method in the prior art is not suitable for REDCAP terminal equipment, and the reasons are as follows:
  • the non-interleaving mapping method is used for CCE-to-REG mapping, and the REDCAP terminal equipment uses the same method of determining the PDCCH candidate as the traditional NR terminal equipment, then when the PDCCH candidate of the REDCAP terminal equipment and the PDCCH of the traditional NR terminal equipment When the candidates overlap, a large piece of physical time-frequency resources will be blocked; and the PDCCH candidate of the REDCAP terminal device does not obtain the time diversity gain.
  • the REG bundle size in CORESET is 6.
  • the CORESET of REDCAP terminal equipment includes REG bundles with index values 0 to 23, and the CORESET of traditional NR terminal equipment includes REG bundles with index values of 0 to 11.
  • the PDCCH candidate of the REDCAP terminal device occupies CCE0 to CCE7
  • the PDCCH candidate occupies the REG bundle with index values 0 to 7.
  • 8 REG bundles in the CORESET of the traditional NR terminal equipment are blocked, which affects the traditional NR terminal equipment to use the physical time-frequency resources in the CORESET configured by the traditional NR terminal equipment.
  • the REG bundles with index values 0 to 7 are concentrated in the first three symbols, so the PDCCH candidate of the REDCAP terminal device cannot obtain the time diversity gain.
  • the REG bundle size in CORESET is 3.
  • the CORESET of REDCAP terminal equipment includes REG bundles with index values 0 to 47
  • the CORESET of traditional NR terminal equipment includes REG bundles with index values of 0 to 23.
  • the PDCCH candidate of the REDCAP terminal device occupies CCE0 to CCE7
  • the PDCCH candidate occupies the REG bundle with index values 0 to 15.
  • 16 REG bundles in the CORESET of the traditional NR terminal equipment are blocked, which affects the traditional NR terminal equipment to use the physical time-frequency resources in the CORESET configured by the traditional NR terminal equipment.
  • the REG bundles with index values of 0 to 15 are concentrated in the first three symbols, so the PDCCH candidate of the REDCAP terminal device cannot obtain the time diversity gain.
  • the REDCAP terminal equipment uses the above formula (1) to determine the L consecutive occupied by the PDCCH candidate CCE, the PDCCH candidate of the REDCAP terminal equipment cannot obtain the expected frequency diversity gain.
  • the REG bundle size in CORESET is 6.
  • the CORESET of REDCAP terminal equipment includes REG bundles with index values of 0 to 23, of which area 1 includes REG bundles with index values of 0 to 11, and area 2 includes REG bundles with index values of 12 to 23;
  • the CORESET of traditional NR terminal equipment includes index value of 0 REG bundle of ⁇ 11. It is assumed that the PDCCH candidate of the REDCAP terminal device occupies CCE0 to CCE7.
  • CCE0 is mapped to the REG bundle with index value 0
  • CCE1 is mapped to the REG bundle with index value of 12
  • CCE2 is mapped to the REG bundle with the index value of 12.
  • CCE3 maps to REG bundle with index value 13
  • CCE4 maps to REG bundle with index value 2
  • CCE5 maps to REG bundle with index value 14
  • CCE6 maps to REG bundle with index value 3 REG bundle
  • CCE7 maps to REG bundle with index value 15.
  • the PDCCH candidate occupies REG bundles with index values of 0 to 3, and REG bundles with index values of 12 to 15. Since REG bundles with index values of 0 to 3 occupy the same frequency domain resources as REG bundles with index values of 12 to 15, the PDCCH candidate cannot obtain the expected frequency diversity gain.
  • the REG bundle size in CORESET is 3.
  • the CORESET of a REDCAP terminal device includes REG bundles with index values 0 to 47, of which area 1 includes REG bundles with index values of 0 to 23, and area 2 includes REG bundles with index values of 24 to 47; the CORESET of traditional NR terminal equipment includes index value 0 REG bundle of ⁇ 23. It is assumed that the PDCCH candidate of the REDCAP terminal device occupies CCE0 to CCE7.
  • CCE0 is mapped to the REG bundles with index values 0 and 24, and CCE1 is mapped to the REGs with index values of 1 and 25.
  • CCE2 maps to REG bundles with index values 2 and 26
  • CCE3 maps to REG bundles with index values 3 and 27
  • CCE4 maps to REG bundles with index values 4 and 28
  • CCE5 maps to REG bundles with index values 5 and 29 REG bundles
  • CCE6 maps to REG bundles with index values 6 and 30, and CCE7 maps to REG bundles with index values 7 and 31.
  • the PDCCH candidate occupies REG bundles with index values of 0 to 7, and REG bundles with index values of 24 to 31. Since REG bundles with index values of 0 to 7 occupy the same frequency domain resources as REG bundles with index values of 24 to 31, the PDCCH candidate cannot obtain the expected frequency diversity gain.
  • the REDCAP terminal equipment uses the above formula (1) to determine the L consecutive occupied by the PDCCH candidate CCE, the PDCCH candidate of the REDCAP terminal equipment cannot obtain the time diversity gain, and the PDCCH candidate of the REDCAP terminal equipment will cause a large blocking area to the CORESET of the traditional NR terminal equipment.
  • the REG bundle size in CORESET is 6.
  • the CORESET of REDCAP terminal equipment includes REG bundles with index values of 0 to 23, of which area 1 includes REG bundles with index values of 0 to 11, and area 2 includes REG bundles with index values of 12 to 23;
  • the CORESET of traditional NR terminal equipment includes index value of 0 REG bundle of ⁇ 11. It is assumed that the PDCCH candidate of the REDCAP terminal device occupies CCE0 to CCE7.
  • CCE0 is mapped to the REG bundle with an index value of 0
  • CCE1 is mapped to the REG bundle with an index value of 6
  • CCE2 is mapped to the REG bundle with the index value of 6.
  • CCE7 maps to REG bundle with index value 9.
  • the REG bundles with index values of 0 to 3 and the REG bundles with index values of 6 to 9 are located in the first three symbols, so the PDCCH candidate of the REDCAP terminal device cannot obtain time diversity gain.
  • the REG bundle size in CORESET is 3.
  • the CORESET of a REDCAP terminal device includes REG bundles with index values 0 to 47, of which area 1 includes REG bundles with index values of 0 to 23, and area 2 includes REG bundles with index values of 24 to 47; the CORESET of traditional NR terminal equipment includes index value 0 REG bundle of ⁇ 23. It is assumed that the PDCCH candidate of the REDCAP terminal device occupies CCE0 to CCE7.
  • CCE0 is mapped to the REG bundles with index values of 0 and 12
  • CCE1 is mapped to the REGs with index values of 1 and 13.
  • bundle CCE2 maps to REG bundles with indices 2 and 14, CCE3 maps to REG bundles with indices 3 and 15, CCE4 maps to REG bundles with indices 4 and 16, and CCE5 maps to REG bundles with indices 5 and 17 REG bundles
  • CCE6 maps to REG bundles with index values 6 and 18, and CCE7 maps to REG bundles with index values 7 and 19.
  • the REG bunlde with index values of 0 to 7 and the REG bundle with index values of 12 to 19 are located in the first three symbols, so the PDCCH candidate of REDCAP terminal equipment cannot obtain time diversity gain.
  • an embodiment of the present application provides a resource determination method. As shown in Figure 10, the method includes the following steps:
  • the communication device determines the index values of n first CCEs occupied in the first CCE set by the PDCCH candidate in the CORESET, and the index values of m second CCEs occupied in the second CCE set.
  • the above communication device may be a network device or a terminal device, which is not limited.
  • the CORESET may be divided into a first physical time-frequency resource region and a second physical time-frequency resource region.
  • the first physical time-frequency resource region and the second physical time-frequency resource region have at least one difference in the time domain or the frequency domain.
  • the foregoing physical time-frequency resources may refer to REGs or REG bundles.
  • CORESET may divide the first physical time-frequency resource region and the second physical time-frequency resource region according to the time domain, so that the first physical time-frequency resource region may include an index value of For REG bundles of 0 to 11, the second physical time-frequency resource region may include REG bundles with index values of 12 to 23.
  • CORESET may arrange the frequency domain to divide the first physical time-frequency resource area and the second physical time-frequency resource area, so that the first physical time-frequency resource area may include an index value of REG bundles of 0 to 5 and 12 to 17, the second physical time-frequency resource region may include REG bundles with index values of 6 to 11 and 18 to 23.
  • the REG bundles in CORESET can be numbered in the following ways:
  • the REG bundles in the first physical time-frequency resource region are numbered from 0, and the second physical time-frequency resource region is numbered from Start numbering. in, is the number of REGs included in the first physical time-frequency resource region. K is equal to the REG bundle size.
  • the index values of the REG bundles included in the first physical time-frequency resource region are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 in sequence.
  • the index values of the REG bundles included in the second physical time-frequency resource region are 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23 in sequence.
  • the REG bundles in the first physical time-frequency resource region are numbered from 0, and the second physical time-frequency resource region is numbered from 0.
  • the index values of the REG bundles included in the first physical time-frequency resource region are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 in sequence.
  • the index values of the REG bundles included in the second physical time-frequency resource region are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 in sequence.
  • the number of CCEs included in the first CCE set is determined according to the number of REGs included in the first physical time-frequency resource region.
  • the number of CCEs included in the second CCE set is determined according to the number of REGs included in the second physical time-frequency resource region.
  • the first physical time-frequency resource region includes 36 REGs
  • the first CCE set includes 6 CCEs.
  • the number of CCEs included in the first CCE set is different from the number of CCEs included in the first CCE set. 2 The number of CCEs included in the CCE set.
  • the number of CCEs included in the first CCE set is the same as the number of REGs included in the first CCE set. 2 The number of CCEs included in the CCE set.
  • the first CCE set includes NCCEs, p /2 CCEs
  • the second CCE set includes NCCEs, p /2 CCEs, NCCEs
  • p is a positive integer multiple of 2.
  • N CCE, p is the number of CCEs included in CORESET.
  • the numbering method of CCEs may adopt any one of the following:
  • N cce, p, first is the number of CCEs included in the first CCE set.
  • the numbering method 2-1 is equivalent to the joint numbering of the first CCE set and the second CCE set.
  • the first set of CCEs includes 6 CCEs
  • the second set of CCEs includes 6 CCEs.
  • the numbers of the respective CCEs in the first CCE set are: 0, 1, 2, 3, 4, and 5 in sequence.
  • the numbers of the respective CCEs in the second CCE set are: 6, 7, 8, 9, 10, and 11 in sequence.
  • the CCEs in the first CCE set are numbered from 0, and the CCEs in the second CCE set are numbered from 0.
  • Numbering mode 2-2 is equivalent to numbering the first CCE set and the second CCE set independently.
  • the first set of CCEs includes 6 CCEs
  • the second set of CCEs includes 6 CCEs.
  • the numbers of the respective CCEs in the first CCE set are: 0, 1, 2, 3, 4, and 5 in sequence.
  • the numbers of the respective CCEs in the second CCE set are: 0, 1, 2, 3, 4, and 5 in sequence.
  • the communication device adopts may be determined according to the factory configuration, or determined according to the instructions of other devices, or determined according to the configuration of the communication device itself.
  • the factory configuration of the communication device is defined by the communication standard.
  • the communication device may determine, according to a preset formula, the index values of the n first CCEs occupied by the PDCCH candidate in the first CCE set, and the m occupied CCEs in the second CCE set The index value of the second CCE.
  • the specific introduction of the preset formula may refer to the following, which will not be repeated here.
  • both n and m are positive integers.
  • n+m L
  • L is the aggregation level of the above-mentioned PDCCH candidate.
  • n and m may be determined by the factory configuration of the communication device, or determined according to the instructions of other devices, or determined according to the configuration of the communication device itself.
  • the factory configuration of the communication device is defined by the communication standard.
  • the communication device determines the index value of the first first CCE in the n first CCEs, and can further determine the index values of the other first CCEs in the n first CCEs.
  • the communication device determines the index value of the first second CCE among the m second CCEs, and can further determine the index values of the other second CCEs among the m second CCEs.
  • the first CCE among the n first CCEs is the first CCE with the smallest index value among the n first CCEs.
  • the first second CCE among the m second CCEs is the second CCE with the smallest index value among the m second CCEs.
  • the CCE numbers in the first CCE set are 0, 1, 2, 3, 4, and 5 in sequence.
  • the numbers of the respective CCEs in the second CCE set are: 6, 7, 8, 9, 10, and 11.
  • the communication device may determine that the PDCCH candidate occupies the index values of the four second CCEs in the second CCE set, respectively as 7,8,9,10.
  • the index value of the first first CCE among the n first CCEs is abbreviated as the first index value
  • the index value of the first second CCE among the m second CCEs is abbreviated as the second index value.
  • the first index value and the second index value may satisfy any one of the following rules:
  • the difference between the first index value and the second index value is a preset value.
  • the second index value can be determined according to the first index value and the preset value. For example, assuming that the preset value is 6, when the communication device determines that the first index value is 1, the communication device may determine that the second index value is 7.
  • Rule 2 The difference between the first index value and the second index value is determined according to a preset value and an offset value.
  • the second index value can be determined according to the first index value, the preset value and the offset value.
  • the above-mentioned preset value is the number of CCEs included in the first CCE set.
  • the above-mentioned preset value is 0.
  • the above offset value may be a fixed value or a random value.
  • the above-mentioned offset value may be determined as a function of time as a variable.
  • the function whose time is a variable may be a function whose variable is a slot index value (slot index) or a symbol index value (symbol index).
  • rule 2 can make the relationship between the index values of n first CCEs and the index values of m second CCEs more random, so that there is a certain probability to increase the number of n first CCEs.
  • the degree of dispersion between the mapped physical time-frequency resources and the physical time-frequency resources mapped by the m second CCEs enables the PDCCH candidate to obtain a higher diversity gain with a certain probability.
  • the communication device determines the physical time-frequency resources occupied by the PDCCH candidate according to the index values of the n first CCEs and the index values of the m second CCEs.
  • the communication device determines the index values of the n*K first REG bundles according to the index values of the n first CCEs and the preset mapping manner.
  • the communication device determines the index values of m*K second REG bundles according to the index values of the m second CCEs and the preset mapping manner.
  • the communication device determines the physical time-frequency resources occupied by the PDCCH candidate according to the index values of the n*K first REG bundles and the index values of the m*K second REG bundles.
  • K is the REG bundle size configured by CORESET.
  • the preset mapping manner is determined by the configuration information of CORESET. It should be understood that a CORESET will only be associated with one mapping.
  • the preset mapping mode may be: non-interleaving mapping mode, first interleaving mapping mode or second interleaving mapping mode.
  • the preset mapping mode may be: a non-interleaving mapping mode or a second interleaving mapping mode.
  • the non-interleaving mapping method is used to map the CCEs in the first CCE set to the first physical time-frequency resource region in a non-interleaving manner, and map the CCEs in the second CCE set to the second physical time-frequency resource region in a non-interleaving manner in the time-frequency resource area.
  • CCEs with adjacent numbers are mapped to adjacent REG bundles
  • CCEs with adjacent numbers are mapped to adjacent REG bundles superior.
  • the first interleaving and mapping manner is used to map the CCEs included in the first CCE set and the CCEs included in the second CCE set onto the physical time-frequency resources occupied by the CORESET in an interleaving manner.
  • the CCEs in the first CCE set are mapped to both the first physical time-frequency resource region and the second physical time-frequency resource region; the CCEs in the second CCE set are both mapped to the first physical time-frequency resource region. In the time-frequency resource region, it is also mapped to the second physical time-frequency resource region.
  • the second interleaving mapping manner is used to map the CCEs included in the first CCE set to the first physical time-frequency resource region, and map the second CCEs to the second physical time-frequency resource region in an interleaving manner. Therefore, in the first physical time-frequency resource region, CCEs with adjacent numbers are mapped to non-adjacent REG bundles; in the second physical time-frequency resource region, CCEs with adjacent numbers are mapped to non-adjacent REG bundles. REG bundle.
  • the preset mapping mode adopted by the communication device is the non-interleaving mapping mode or the second interleaving mapping mode
  • the physical time-frequency resources to which the CCEs in the first CCE set are mapped are located in the first physical time-frequency resource area
  • the The physical time-frequency resources to which the CCE sets in the two CCE sets are mapped are located in the second physical time-frequency resource region.
  • the PDCCH candidate occupies L consecutive CCEs, and the mapped physical time-frequency resources of the L consecutive CCEs have a high probability to gather together, such as the REG Bundle0 mapped by CCE0 to CCE7 in Figure 7(a).
  • the ⁇ REG bundle7 is located in the same time domain position, so that the PDCCH candidate cannot obtain a good diversity gain, and may also cause greater blocking of the CORESET of the traditional NR terminal equipment.
  • the CORESET is divided into a first physical time-frequency resource region and a second physical time-frequency resource region, and the first CCE is determined according to the number of REGs included in the first physical time-frequency resource region
  • the number of CCEs included in the set, and the number of the second CCE set is determined according to the number of REGs included in the second physical time-frequency resource region.
  • the implementation divides N cce,p CCEs into two CCE sets.
  • the communication device determines the index values of n first CCEs occupied by the PDCCH candidate in the first CCE set, and the index values of m second CCEs occupied in the second CCE set.
  • the index values of the n first CCEs and the index values of the m second CCEs determined in the embodiment of the present application are more discretized, thereby There is a high probability that the dispersion degree of the physical time-frequency resources occupied by the PDCCH candidates can be increased, and thus the diversity gain of the PDCCH candidates can be improved with a high probability.
  • the communication device adopts the non-interleaving mapping mode or the second interleaving mapping mode
  • the physical time-frequency resources mapped by the n first CCEs are located in the first physical time-frequency resource region
  • the physical time-frequency resources mapped by the m CCEs are is located in a second physical time-frequency resource region
  • the first physical time-frequency resource region is different from the second physical time-frequency resource region in time and/or frequency domain.
  • the physical time-frequency resources occupied by the PDCCH candidate will not be gathered in the same time domain location or frequency domain location, so as to achieve the purpose of improving the diversity gain of the PDCCH candidate.
  • step S101 may be specifically implemented as steps S1011-S1012.
  • the communication device determines, according to the first formula, an index value of each of the n first CCEs occupied by the PDCCH candidate.
  • the first formula can use the above formula (2), or The first formula can be shown in the following formula (4):
  • O symbol is the offset value.
  • O symbol is determined according to a function whose symbol index is a variable.
  • O symbol may be determined according to the symbol occupied by the first physical time-frequency resource region in CORESET.
  • the first formula can use the above formula (3), or The first formula can be shown in the following formula (5):
  • the communication device determines, according to the second formula, an index value of each of the m second CCEs occupied by the PDCCH candidate.
  • the formula (6) can be transformed into the following formula (7).
  • O can be a preset fixed value.
  • O can be replaced with O symbol .
  • O symbol is determined according to a function whose symbol index is a variable.
  • Equation (10) can be as follows:
  • the communication device can accurately determine the index values of the n first CCEs and the index values of the m second CCEs occupied by the PDCCH candidate.
  • mapping method adopted by the communication device in combination with the numbering method of the REG bundle and the numbering method of the CCE.
  • the non-interleaving mapping method is applicable to the following three situations:
  • the REG bundle adopts the numbering method 1-1, and the CCE numbering adopts the numbering method 2-1.
  • the REG bundle adopts the numbering method 1-2
  • the CCE numbering adopts the numbering method 2-2.
  • the REG bundle adopts the numbering method 1-1, and the CCE numbering adopts the numbering method 2-2.
  • formula (12) can be as follows:
  • x represents the input sequence number corresponding to the CCE
  • f(x) represents the index value of the REG bundle.
  • the input sequence number corresponding to the CCE is the index value of the CCE.
  • the first interleaving and mapping method is applicable to the case where the REG bundle adopts the numbering method 1-1, and the CCE numbering adopts the numbering method 2-1.
  • the first interleaving and mapping method can be implemented as: according to the index value of the CCE, determine one or more corresponding input sequence numbers; for each input sequence number, according to formula (13), determine the index value of the corresponding REG bundle.
  • the second interleaving and mapping mode is applicable to the following three situations:
  • the REG bundle adopts the numbering method 1-1, and the CCE numbering adopts the numbering method 2-1.
  • the REG bundle adopts the numbering method 1-2
  • the CCE numbering adopts the numbering method 2-2.
  • the REG bundle adopts the numbering method 1-1, and the CCE numbering adopts the numbering method 2-2.
  • the second interleaving and mapping manner may be implemented as: determining one or more corresponding input sequence numbers according to the index value of the CCEs in the first CCE set; according to each input corresponding to the CCEs in the first CCE set Serial number, according to formula (14), to determine the index value of the corresponding REG bundle. And, according to the index value of CCE in the second CCE set, determine the corresponding one or more input sequence numbers; According to each input sequence number corresponding to the CCE in the second CCE set, according to formula (15), determine the index of the corresponding REG bundle value.
  • Equation (15) is as follows:
  • the second interleaving and mapping manner may be implemented as: determining one or more corresponding input sequence numbers according to the index value of the CCEs in the first CCE set; according to each input corresponding to the CCEs in the first CCE set Serial number, according to formula (14), to determine the index value of the corresponding REG bundle. And, according to the index value of the CCE in the second CCE set, determine the corresponding one or more input sequence numbers; According to each input sequence number corresponding to the CCE in the second CCE set, according to formula (16), determine the index of the corresponding REG bundle value.
  • the second interleaving and mapping manner may be implemented as: determining one or more corresponding input sequence numbers according to the index value of the CCEs in the first CCE set; according to each input corresponding to the CCEs in the first CCE set Serial number, according to formula (14), to determine the index value of the corresponding REG bundle. And, according to the index value of CCE in the second CCE set, determine the corresponding one or more input sequence numbers; According to each input sequence number corresponding to the CCE in the second CCE set, according to formula (17), determine the index of the corresponding REG bundle value.
  • the resource determination method shown in FIG. 10 is described below by way of example, so as to facilitate understanding by those skilled in the art.
  • the CORESET shown in Figure 6(a) includes REG bundles with index values of 0 to 23. It is assumed that the first physical time-frequency resource region includes index values of 0 to 11.
  • the second physical time-frequency resource region includes REG bundles with index values of 12 to 23, so the first CCE set includes 12 CCEs, and the second CCE set includes 12 CCEs.
  • the CCE numbers in the first CCE set are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 in sequence.
  • the CCE numbers in the second CCE set are 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23 in sequence.
  • the communication device can determine that the PDCCH candidate occupies the first CCE0 to CCE3 in one CCE set occupy CCE12 to CCE15 in the second CCE set.
  • CCE0 in the first CCE set is mapped to the REG bundle with an index value of 0
  • CCE1 in the first CCE set is mapped to a REG bundle with an index value of 1
  • the first CCE2 in the CCE set is mapped to a REG bundle with an index value of 2
  • CCE3 in the first CCE set is mapped to a REG bundle with an index value of 3.
  • CCE12 in the second CCE set is mapped to the REG bundle with the index value of 12
  • CCE13 in the second CCE set is mapped to the REG bundle with the index value of 13
  • CCE14 in the second CCE set is mapped to the index value of 14.
  • REG bundle, CCE15 in the second CCE set is mapped to the REG bundle with an index value of 15.
  • the PDCCH candidate determined in the prior art occupies REG bundles with index values 0-7.
  • REG bundles with index values of 0 to 3 and REG bundles with index values of 12 to 15 are used for PDCCH candidate occupation.
  • CCE0 in the first CCE set is mapped to the REG bundle with an index value of 0
  • CCE1 in the first CCE set is mapped to the REG bundle with an index value of 12
  • the first CCE2 in a CCE set is mapped to a REG bundle with an index value of 1
  • CCE3 in the first CCE set is mapped to a REG bundle with an index value of 13.
  • CCE12 in the second CCE set is mapped to the REG bundle with an index value of 6
  • CCE13 in the second CCE set is mapped to the REG bundle with an index value of 18, and CCE14 in the second CCE set is mapped to the index value of 7.
  • bundle REG bundle, CCE15 in the second CCE set is mapped to the REG bundle with an index value of 19.
  • the PDCCH candidate determined in the prior art occupies REG bundles with index values of 0-3 and 12-15.
  • the PDCCH candidate determined based on the embodiment shown in FIG. 10 occupies REG bundles with index values of 0, 1, 6, 7, 12, 13, 18 and 19.
  • FIG. 15 the PDCCH candidate determined based on the embodiment shown in FIG. 10 occupies REG bundles with index values of 0, 1, 6, 7, 12, 13, 18 and 19.
  • Figure 8(a) and Figure 15 it can be seen that compared to the REG bundles with index values 0-3 and 12-15, the REG bundles with index values 0, 1, 6, 7, 12, 13, 18 and 19 The distribution is more discrete in the frequency domain, so a higher frequency domain diversity gain can be obtained based on the PDCCH candidate determined in the embodiment shown in FIG. 10 .
  • CCE0 in the first CCE set is mapped to the REG bundle with an index value of 0, and CCE1 in the first CCE set is mapped to the REG bundle with an index value of 6.
  • CCE2 in a CCE set is mapped to a REG bundle with an index value of 1
  • CCE3 in the first CCE set is mapped to a REG bundle with an index value of 7.
  • CCE12 in the second CCE set is mapped to the REG bundle with the index value of 12
  • CCE13 in the second CCE set is mapped to the REG bundle with the index value of 18, and CCE14 in the second CCE set is mapped to the index value of 13.
  • REG bundle, CCE15 in the second CCE set is mapped to the REG bundle with an index value of 19.
  • the PDCCH candidate determined by the prior art occupies REG bundles with index values 0-3 and 6-9.
  • the PDCCH candidate determined based on the embodiment shown in FIG. 10 occupies REG bundles with index values of 0, 1, 6, 7, 12, 13, 18 and 19.
  • FIG. 10 shows that compared with the REG bundles with index values 0-3 and 6-9, the REGs with index values 0, 1, 6, 7, 12, 13, 18 and 19 The bundles are distributed more discretely in the time domain, so a higher time domain diversity gain can be obtained based on the PDCCH candidate determined based on the embodiment shown in FIG. 10 .
  • the CORESET shown in FIG. 6(a) includes REG bundles with index values of 0 to 23, and it is assumed that the first physical time-frequency resource region includes index values of 0 to 11.
  • the second physical time-frequency resource region includes REG bundles with index values of 12 to 23, so the first CCE set includes 12 CCEs, and the second CCE set includes 12 CCEs.
  • the CCE numbers in the first CCE set are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 in sequence.
  • the CCE numbers in the second CCE set are 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23 in sequence.
  • the communication device can determine that the PDCCH candidates occupy CCE0-CCE3 in the first CCE set, and occupy CCE16-CCE19 in the second CCE set.
  • CCE0 in the first CCE set is mapped to the REG bundle with an index value of 0
  • CCE1 in the first CCE set is mapped to the REG bundle with an index value of 1
  • the first CCE2 in the CCE set is mapped to a REG bundle with an index value of 2
  • CCE3 in the first CCE set is mapped to a REG bundle with an index value of 3.
  • CCE16 in the second CCE set is mapped to the REG bundle with an index value of 16
  • CCE17 in the second CCE set is mapped to the REG bundle with an index value of 17
  • CCE18 in the second CCE set is mapped to the index value of 18.
  • REG bundle, CCE19 in the second CCE set is mapped to the REG bundle with an index value of 19.
  • the PDCCH candidate determined in the prior art occupies REG bundles with index values 0-7.
  • the determined PDCCH candidate occupies REG bundles with index values of 0 to 3 and 16 to 19.
  • CCE0 in the first CCE set is mapped to the REG bundle with an index value of 0
  • CCE1 in the first CCE set is mapped to a REG bundle with an index value of 12.
  • CCE2 in a CCE set is mapped to a REG bundle with an index value of 1
  • CCE3 in the first CCE set is mapped to a REG bundle with an index value of 13.
  • CCE16 in the second CCE set is mapped to the REG bundle with an index value of 8
  • CCE17 in the second CCE set is mapped to the REG bundle with an index value of 20
  • CCE18 in the second CCE set is mapped to the index value of 9.
  • bundle REG bundle, CCE19 in the second CCE set is mapped to the REG bundle with an index value of 21.
  • the PDCCH candidates determined in the prior art occupy REG bundles with index values of 0-3 and 12-15.
  • the PDCCH candidate determined based on the embodiment shown in FIG. 10 occupies REG bundles with index values of 0, 1, 8, 9, 12, 13, 20 and 21. It can be seen in combination with Figure 8(a) and Figure 18 that, compared to the REG bundles with index values 0 to 3 and 12 to 15, the REG bundles with index values of 0, 1, 8, 9, 12, 13, 20 and 21 The distribution is more discrete in the frequency domain, so a higher frequency domain diversity gain can be obtained based on the PDCCH candidate determined in the embodiment shown in FIG.
  • CCE0 in the first CCE set is mapped to the REG bundle with index value 0
  • CCE1 in the first CCE set is mapped to the REG bundle with index value 6
  • CCE2 in a CCE set is mapped to a REG bundle with an index value of 1
  • CCE3 in the first CCE set is mapped to a REG bundle with an index value of 7.
  • CCE16 in the second CCE set is mapped to the REG bundle with an index value of 14
  • CCE17 in the second CCE set is mapped to a REG bundle with an index value of 20
  • CCE18 in the second CCE set is mapped to an index value of 15.
  • REG bundle, CCE19 in the second CCE set is mapped to the REG bundle with an index value of 21.
  • the PDCCH candidate determined by the prior art occupies REG bundles with index values 0-3 and 6-9.
  • the PDCCH candidate determined based on the embodiment shown in FIG. 10 occupies REG bundles with index values of 0, 1, 6, 7, 14, 15, 20 and 21.
  • Figure 9(a) and Figure 19 it can be seen that compared with the REG bundles with index values 0-3 and 6-9, the REGs with index values 0, 1, 6, 7, 14, 15, 20 and 21 The bundles are distributed more discretely in the time domain, so a higher time domain diversity gain can be obtained based on the PDCCH candidate determined based on the embodiment shown in FIG. 10 .
  • the number of REGs included in the first physical time-frequency resource region is greater than the number of REGs included in the second physical time-frequency resource region.
  • CORESET includes 20 REG bundles
  • the first physical time-frequency resource region includes REG bundles with index values of 0 to 11
  • the second physical time-frequency resource region includes REG bundles with index values of 12 to 19.
  • REG bundle the number of CCEs included in the first CCE set is greater than the number of CCEs included in the second CCE set.
  • the resource determination method further includes step S201 before step S101 .
  • the communication device determines whether the second CCE set can be numbered as The aggregation level of L provides m second CCEs for the PDCCH candidates.
  • the communication device determines that the second CCE set can be numbered as The aggregation level of L provides m second CCEs for the PDCCH candidates.
  • the communication device determines that the second CCE set cannot be numbered as The aggregation level of L provides m second CCEs for the PDCCH candidates.
  • the communication device performs the following steps S101-S102.
  • the communication device determines the number of CCE according to the above formula (1).
  • the aggregation level of L is L consecutive CCEs occupied by the PDCCH candidates; further, the communication device determines the physical time-frequency resources occupied by the PDCCH candidates according to the L consecutive CCEs.
  • the interleaving method in the prior art cannot enable the PDCCH candidate to obtain a better frequency diversity gain.
  • the REG bundle size in the CORESET is 6, and the CORESET includes REG bundles whose index values are 0 to 23.
  • the PDCCH candidate occupies CCE0 to CCE3
  • CCE0 is mapped to the REG bundle with an index value of 0
  • CCE1 is mapped to the REG with an index value of 12.
  • CCE2 is mapped to the REG bundle with an index value of 2
  • CCE3 is mapped to a REG bundle with an index value of 13.
  • the PDCCH candidate occupies REG bundles with index values of 0, 1, 12 and 13. Since the REG bundle with the index value of 0,12 is adjacent to the REG bundle with the index value of 1,13, the PDCCH candidate cannot obtain an effective frequency diversity gain.
  • the REG bundle size in the CORESET is 3, and the CORESET includes REG bundles with index values from 0 to 47.
  • the aggregation level of 4 assuming that the PDCCH candidate occupies CCE0 to CCE3, when the current interleaving method is adopted and the interleaving depth is 2, CCE0 is mapped to the REG bundles with index values of 0 and 24, and CCE1 is mapped to the index value of 1. and 25 REG bundles, CCE2 maps to REG bundles with index values 2 and 26, and CCE3 maps to REG bundles with index values 3 and 27.
  • the PDCCH candidate occupies REG bundles with index values of 0, 1, 2, 3, 24, 25, 26 and 27. Since the REG bundles with index values of 0, 1, 2, 3, 24, 25, 26 and 27 are clustered together in the frequency domain, the PDCCH candidate cannot obtain an effective frequency diversity gain.
  • the present application provides a resource determination method, the idea of which is to improve the interleaving mode of the prior art, so that the L CCEs occupied by the PDCCH candidate can be mapped to relatively discrete several REG bundles, Thus, the PDCCH candidate can obtain higher diversity gain.
  • a method for determining a resource includes the following steps:
  • the communication device determines the index values of the L CCEs occupied by the PDCCH candidate.
  • the communication device determines the index values of the L CCEs occupied by the PDCCH candidate according to the above formula (1).
  • the communication device determines p input sequence numbers corresponding to the CCE according to the index value of the CCE.
  • the communication device determines the index values of the p REG bundles to which the CCE is mapped according to the p input sequence numbers corresponding to the CCE and the first interleaver.
  • the above-mentioned first interleaver is used for outputting two input sequence numbers spaced as interleaving depths as index values corresponding to two REG bundles that are not adjacent in the frequency domain.
  • the REDCAP terminal device since the REDCAP terminal device generally adopts a larger aggregation level, there may be two input sequence numbers separated by the interleaving depth among several input sequence numbers corresponding to the L CCEs occupied by its PDCCH candidate.
  • the first interleaver provided in this embodiment of the present application is used to output two input sequence numbers spaced at an interleaving depth as index values corresponding to two non-adjacent REG bundles in the frequency domain, among the several REG bundles occupied by the PDCCH candidate There can be at least two non-adjacent REG bundles in the frequency domain, thereby reducing the probability that the REG bundles occupied by the PDCCH candidate are aggregated together, thereby improving the frequency diversity gain obtained by the PDCCH candidate.
  • the REG bundle size configured by CORESET in FIG. 25 is 6, and the CORESET includes REG bundles with index values of 0 to 23.
  • the index value of the CCE is the input sequence number corresponding to the CCE.
  • the first row of numbers in the rectangular block represents the index value of the REG bundle, and the second row of numbers represents the corresponding input sequence number.
  • the first interleaver provided by the embodiment of the present application can be used to output the input sequence number 0 as the index value of REG bundle 0, and output the input sequence number 4 as the index value of REG bundle 1.
  • the index value is 5, the input sequence number 2 is output as the index value 6 of the REG bundle, the input sequence number 6 is output as the index value 7 of the REG bundle, the input sequence number 10 is output as the index value 8 of the REG bundle, and the input sequence number 14 is output as the REG value
  • the index value of bundle is 9, the input sequence number 18 is output as the index value of REG bundle 10, the input sequence number 22 is output as the index value of REG bundle 11, the input sequence number 1 is output as the index value of REG bundle 12, the input sequence number 5 is output is the index value 13 of the REG bundle, output the input sequence number 9 as the index value 14 of the REG bundle, output the input sequence number 13 as the index value 15 of the REG bundle, output the input sequence number 17 as the index value 16 of the REG bundle, and output the input sequence number as the index value 16 of the REG bundle.
  • the input sequence number 21 is output as the index value of REG bundle 17
  • the input sequence number 3 is output as the index value of REG bundle 18
  • the input sequence number 7 is output as the index value of REG bundle 19
  • the input sequence number 11 is output as the index value of REG bundle 20
  • the The input sequence number 15 is output as the index value 21 of the REG bundle
  • the input sequence number 19 is output as the index value 22 of the REG bundle
  • the input sequence number 23 is output as the index value 23 of the REG bundle.
  • the communication device can determine that the PDCCH candidate occupies REG bundles with index values of 0, 6, 12, and 18. It can be seen that since CCE0 is mapped to the REG bundle with an index value of 0, and CCE2 is mapped to a REG bundle with an index value of 6, and the REG bundle with an index value of 0 is not adjacent to the REG bundle with an index value of 6, the PDCCH candidate A better frequency diversity gain can be obtained.
  • first interleaver The design idea of the first interleaver is briefly introduced below. It should be understood that the first interleaver may also have other design manners, which are not limited to the following contents.
  • the design idea of the first interleaver is as follows: determine the three-dimensional number corresponding to the input serial number; then, determine the index value of the REG bundle corresponding to the input serial number according to the three-dimensional number corresponding to the input serial number.
  • the three-dimensional number includes group number, row number and column number.
  • the input sequence number is generally mapped to a two-dimensional number (that is, the row number and the column number), the first interleaver provided by the embodiment of the present application That is, group number), to make the result of mapping the input sequence number to the index value of the REG bundle more discrete, so that the result of mapping the CCE to the REG bundle is more discrete.
  • x represents the input sequence number
  • r 2 represents the group number in the three-dimensional numbering
  • r 1 represents the row number in the three-dimensional numbering
  • c represents the column number in the three-dimensional numbering.
  • R represents the interleaving depth
  • K represents the REG bundle size
  • Indicates the number of REGs contained in CORESET Indicates the number of REGs included in the first physical time-frequency resource region in CORESET, Indicates the number of REGs included in the second physical time-frequency resource region in CORESET.
  • the corresponding relationship between the index value of the CCE and the index value of the REG bundle can be as shown in FIG. 25 . .
  • n shift in formula (20) is replaced by
  • n shift is a semi-statically configured parameter, which can be configured through RRC signaling, MAC CE, etc.; is a value that changes over time. Therefore, compared with the formula (20), the formula (22) can make the mapping result of the input sequence number mapped to the index value of the REG bundle more random in the frequency domain, so as to improve the probability that the PDCCH candidate obtains a better frequency diversity gain .
  • It can be determined according to a time-varying function of the symbol index value.
  • n shift in formula (21) is replaced by It should be understood that n shift is a semi-statically configured parameter, is a random value. Therefore, compared with the formula (21), the formula (23) can make the mapping result of the input sequence number mapped to the index value of the REG bundle more random in the frequency domain, so as to improve the probability that the PDCCH candidate obtains a better frequency diversity gain .
  • the embodiment of the present application also provides a resource determination method, so that the number of REG bundles included in the first physical time-frequency resource region in CORESET is more than the number of REG bundles included in the second physical time-frequency resource region. number of scenarios.
  • the resource determination method includes the following steps:
  • the communication device determines the index values of the L CCEs occupied by the PDCCH candidate.
  • the communication device determines the index values of the L CCEs occupied by the PDCCH candidate according to the above formula (1).
  • the communication device For each of the L CCEs, the communication device should perform the following step S302.
  • the communication device determines p input sequence numbers corresponding to the CCEs according to the index values of the CCEs.
  • p is determined according to the number of REGs occupied by the CCE and the REG bundle size configured by CORESET.
  • p is determined according to the number of REGs occupied by the CCE and the REG bundle size configured by CORESET.
  • p is determined according to the number of REGs occupied by the CCE and the REG bundle size configured by CORESET.
  • p is determined according to the number of REGs occupied by the CCE and the REG bundle size configured by CORESET.
  • p 6/K.
  • K represents the REG bundle size.
  • the communication device should perform the following step S303.
  • the communication device determines whether the input serial number satisfies a preset condition.
  • the preset condition is whether the input sequence number is less than twice the number of REG bundles included in the second physical time-frequency resource region.
  • the preset condition can be represented by formula (24).
  • the purpose of determining whether the input sequence number meets the preset condition by the communication device is to determine whether the second physical time-frequency resource region has enough REG bundles for mapping.
  • the communication device executes the following step S304; otherwise, the communication device executes the following step S305.
  • the communication device determines the index value of the REG bundle corresponding to the input sequence number according to the first interleaver and the input sequence number.
  • the communication device determines the index value of the REG bundle corresponding to the input sequence number according to the second interleaver and the input sequence number.
  • the second interleaver satisfies the following formula (25):
  • FIG. 20 shows a schematic diagram of a CORESET.
  • the CORESET includes 20 REG bundles, and the REG bundle size is 6.
  • the first physical time-frequency resource region includes REG bundles with index values of 0 to 11, and the second physical time-frequency resource region includes REG bundles with index values of 12 to 19.
  • FIG. 29 The embodiment shown in FIG. 29 is exemplified below based on the CORESET shown in FIG. 20 .
  • Example 1 Taking the first interleaver satisfying the above formula (20) as an example, when the interleaving depth is 2, the first interleaver is responsible for the mapping of input sequence numbers 1 to 15, and the second interleaver is responsible for input sequence numbers 16 to 19. map. Thus, the correspondence between the input sequence number and the index value of the REG bundle can be as shown in FIG. 26 .
  • Example 2 taking the first interleaver satisfying the above formula (21) as an example, when the interleaving depth is 2, the first interleaver is responsible for the mapping of input sequence numbers 1 to 15, and the second interleaver is responsible for input sequence numbers 16 to 19. map.
  • the correspondence between the input sequence number and the index value of the REG bundle can be as shown in FIG. 31 .
  • the device can accurately determine the index value of the REG bundle corresponding to each input sequence number, and make the mapping result between the input sequence number and the index value of the REG bundle more discretized, so that the PDCCH candidate can obtain better diversity gain.
  • the communication device includes corresponding hardware structures and/or software modules to perform each function.
  • the present application can be implemented in hardware, or in a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
  • the communication device may be divided into functional modules according to the foregoing method examples.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation. The following is an example of dividing each function module corresponding to each function to illustrate:
  • the communication device includes a determination unit 301 and a mapping unit 302 .
  • the determining unit 301 is configured to support the communication device to perform step S101 in FIG. 10 , steps S1011 and S1012 in FIG. 13 , step S201 in FIG. 20 , and step S301 in FIG. 24 .
  • the mapping unit 302 is configured to support the communication device to perform step S102 in FIG. 10 and steps S302 and S303 in FIG. 24 . All relevant contents of the steps involved in the foregoing method embodiments can be cited in the functional descriptions of the corresponding functional modules, which will not be repeated here.
  • both the determining unit 301 and the mapping unit 302 in FIG. 32 can be implemented by the processor 101 in FIG. 2 .
  • both the determining unit 301 and the mapping unit 302 in FIG. 32 can be implemented by the processor 201 in FIG. 2 .
  • Embodiments of the present application further provide a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium; when the computer-readable storage medium runs on a computer, the computer is made to execute the provided method.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media, or semiconductor media (eg, solid state disks (SSDs)), and the like.
  • Embodiments of the present application further provide a chip, which includes a processing circuit and a communication interface, where the communication interface is used to receive an input signal and provide it to a processing module, and/or to process and output a signal generated by the processing circuit.
  • the processing circuit is used to support the chip to execute the method provided by the embodiments of the present application.
  • the processing circuit may execute code instructions to execute the methods provided by the embodiments of the present application.
  • the code instruction can come from the internal memory of the chip or from the external memory of the chip.
  • the processing circuit is a processor, a microprocessor or an integrated circuit integrated on the chip.
  • the communication interface can be an input-output circuit or a transceiver pin.
  • the embodiments of the present application also provide a computer program product including computer instructions, which, when run on a computer, enables the computer to execute the method provided by the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源确定方法及装置,涉及通信技术领域,用于提高PDCCH candidate所能获取到的分集增益。该方法包括以下步骤:通信设备确定CORESET中的PDCCH candidate在第一CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值;CORESET被划分为第一物理时频资源区域和第二物理时频资源区域,第一物理时频资源区域在时域和/或频域上不同于第二物理时频资源区域,第一CCE集合所包含的CCE的个数根据第一物理时频资源所包含的REG的个数来确定,第二CCE集合所包含的CCE的个数根据第二物理时频资源所包含的REG的个数来确定,m与n之和等于PDCCH candidate的聚合等级;之后,通信设备根据n个第一CCE的索引值和m个第二CCE的索引值,确定PDCCH candidate所占用的物理时频资源。

Description

资源确定方法及装置
本申请要求于2020年09月21日提交国家知识产权局、申请号为202010998233.0、申请名称为“一种确定PDCCH资源方法”的中国专利申请的优先权,以及于2020年10月16日提交国家知识产权局、申请号为202011113021.6、申请名称为“资源确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及资源确定方法及装置。
背景技术
为了支持5G NR系统的高数据率、低时延高可靠等特点,NR终端设备的能力较强。例如,在常见的商用频段上,NR终端设备要必选支持4天线接收,支持100MHz系统带宽等。而这些要求导致了NR终端设备的硬件成本很高。为了进一步扩展NR市场,降低终端设备硬件成本,3GPP已立项能力降低(reduced capability,REDCAP)课题,希望通过降低天线数量等方法降低终端设备的复杂度以及成本。
对于REDCAP终端设备来说,伴随着终端设备接收天线数量降低,下行信号的覆盖范围会随之变小。为了提升物理下行控制信道(physical downlink control channel,PDCCH)信道的覆盖范围,一种方式是扩展控制资源集合(control resource set,CORESET)占用的symbol数量,例如可以将REDCAP终端设备支持的符号数扩展到3个符号以上。
由于REDCAP终端设备的CORESET配置不同于传统的终端设备,因此REDCAP终端设备若沿用现有的PDCCH候选位置(candidate)的确定方法,则不能获取到预期的分集增益。因此,如何提高PDCCH candidate能够获取到的分集增益,是亟待解决的技术问题。
发明内容
本申请提供一种资源确定方法及装置,用于提高PDCCH candidate能够获取到的分集增益。
第一方面,提供一种资源确定方法,包括:确定CORESET中的PDCCH候选位置(candidate)在第一控制信道元素(control channel element,CCE)集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值;所述CORESET被划分为第一物理时频资源区域和第二物理时频资源区域,所述第一物理时频资源区域在时域和/或频域上不同于所述第二物理时频资源区域,所述第一CCE集合所包含的CCE的个数根据所述第一物理时频资源区域所包含的资源元素组(resource element group,REG)的个数来确定,所述第二CCE集合所包含的CCE的个数根据所述第二物理时频资源区域所包含的REG的个数来确定,m和n均为正整数,并且m与n之和等于所述PDCCH candidate的聚合等级;根据所述n个第一CCE和所述m个第二CCE,确定所述PDCCH candidate所占用的物理时频资源。
基于上述技术方案,CORESET被划分为第一物理时频资源区域和第二物理时频资源区域,并根据第一物理时频资源区域所包含的REG的个数来确定第一CCE集合所包含的CCE的个数,以及根据第二物理时频资源区域所包含的REG的个数来确定第二CCE集合的个数。这样一来,实现将N cce,p个CCE划分为两个CCE集合。从而,通信设备确定PDCCH candidate在第一CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值。相比于现有技术中确定PDCCH candidate对应的L个连续的CCE的索引值,本申请实施例所确定的n个第一CCE的索引值和m个第二CCE的索引值更加离散化,从而有较大概率能够增大PDCCH candidate所占用的物理时频资源的离散程度,进而有较大概率可以提高PDCCH candidate的分集增益。
一种可能的设计中,所述n个第一CCE的索引值是连续的,所述m个第二CCE的索引值是连续的。这样一来,通信设备确定n个第一CCE中的第一个第一CCE的索引值,能够确定其他第一CCE的索引值。通信设备确定m个第二CCE中的第一个第二CCE的索引值,能确定其他第二CCE的索引值。
一种可能的设计中,n等于m。
一种可能的设计中,所述第一CCE集合包含的CCE个数与所述第二CCE集合包含的CCE个数相同。
一种可能的设计中,第一索引值与第二索引值之间的差值是预设值,所述第一索引值为所述n个第一CCE中索引值最小的第一CCE的索引值,所述第二索引值为所述m个第二CCE中索引值最小的第二CCE的索引值。
一种可能的设计中,第一索引值与第二索引值之间的差值根据预设值以及偏移值来确定,所述第一索引值为所述n个第一CCE中索引值最小的第一CCE的索引值,所述第二索引值为所述m个第二CCE中索引值最小的第二CCE的索引值。这样一来,使得n个第一CCE的索引值和m个第二CCE的索引值更加随机化,从而有较大概率能够使得PDCCH candidate获取到较大的分集增益。
一种可能的设计中,当所述第一CCE集合从0开始编号,所述第二CCE集合从N cce,p,first开始编号,所述预设值等于N cce,p,first,N cce,p,first为所述第一CCE集合所包括的CCE的个数;或者,当所述第一CCE集合所包括的CCE从0开始编号,所述第一CCE集合所包括的CCE从0开始编号时,所述预设值等于0。
一种可能的设计中,所述确定CORESET中的PDCCH candidate在第一CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值,包括:根据第一公式,确定所述n个第一CCE中每一个第一CCE的索引值;根据第二公式,确定所述n个第二CCE中每一个第二CCE的索引值。
其中,第一公式可以采用下文中的公式(2)至公式(5)中的任意一个。第二公式可以采用下文中的公式(6)至公式(11)中的任意一个。公式(2)至公式(6)的具体介绍可以参见下文,在此不予赘述。
第二方面,提供一种资源确定方法,包括:确定PDCCH candidate所占用的L个CCE的索引值,L等于所述PDCCH candidate的聚合等级;对于所述L个CCE中的每 一个CCE,根据所述CCE的索引值,确定所述CCE对应的p个输入序号,p为正整数;根据所述CCE对应的p个输入序号以及第一交织器,确定所述CCE映射到的p个控制元素组束REG bundle的索引值;所述第一交织器用于将间隔为交织深度的两个输入序号输出为频域上不相邻的两个REG bundle的索引值。
基于上述技术方案,由于REDCAP终端设备一般采用较大的聚合等级,因此其PDCCH candidate占用的L个CCE对应的若干个输入序号中很可能存在间隔为交织深度的两个输入序号。由于本申请实施例提供的第一交织器用于将间隔为交织深度的两个输入序号输出为频域上不相邻的两个REG bundle对应的索引值,因此PDCCH candidate占用的若干个REG bundle中可以存在至少两个频域上不相邻的REG bundle,从而减少PDCCH candidate所占用的REG bundle聚集到一块的概率,从而提高PDCCH candidate获取到的频率分集增益。
一种可能的设计中,所述根据所述CCE对应的p个输入序号以及第一交织器,确定所述CCE映射到的p个REG bundle的索引值,包括:对于所述CCE对应的P个输入序号中的任意一个输入序号,确定所述输入序号对应的三维编号,所述三维编号包括组号、行号以及列号;根据所述输入序号对应的三维编号,确定所述输入序号对应的REG bundle的索引值。这样一来,相比于现有技术中的交织方法中输入序号一般映射为两维编号(也即行号和列号),本申请实施例提供的第一交织器通过增加一个维度的编号(也即组号),来使得输入序号映射到REG bundle的索引值的结果更加离散,从而使得CCE映射到REG bundle的结果更加离散。
一种可能的设计中,上述第一交织器可以满足下文中的公式(20)、公式(21)、公式(22)或公式(23)。公式(20)、公式(21)、公式(22)以及公式(23)的具体介绍可参见下文,在此不再赘述。
第三方面,提供一种通信装置,包括确定单元和映射单元。其中,确定单元,用于确定CORESET中的PDCCH候选位置candidate在第一CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值;所述CORESET被划分为第一物理时频资源区域和第二物理时频资源区域,所述第一物理时频资源区域在时域和/或频域上不同于所述第二物理时频资源区域,所述第一CCE集合所包含的CCE的个数根据所述第一物理时频资源区域所包含的REG的个数来确定,所述第二CCE集合所包含的CCE的个数根据所述第二物理时频资源区域所包含的REG的个数来确定,m和n均为正整数,并且m与n之和等于所述PDCCH candidate的聚合等级。映射单元,用于根据所述n个第一CCE和所述m个第二CCE,确定所述PDCCH candidate所占用的物理时频资源。
一种可能的设计中,所述n个第一CCE的索引值是连续的,所述m个第二CCE的索引值是连续的。
一种可能的设计中,n等于m。
一种可能的设计中,所述第一CCE集合包含的CCE个数与所述第二CCE集合包含的CCE个数相同。
一种可能的设计中,第一索引值与第二索引值之间的差值是预设值,所述第一索引值为所述n个第一CCE中索引值最小的第一CCE的索引值,所述第二索引值为所 述m个第二CCE中索引值最小的第二CCE的索引值。
一种可能的设计中,第一索引值与第二索引值之间的差值根据预设值以及偏移值来确定,所述第一索引值为所述n个第一CCE中索引值最小的第一CCE的索引值,所述第二索引值为所述m个第二CCE中索引值最小的第二CCE的索引值。
一种可能的设计中,当所述第一CCE集合从0开始编号,所述第二CCE集合从N cce,p,first开始编号,所述预设值等于N cce,p,first,N cce,p,first为所述第一CCE集合所包括的CCE的个数;或者,当所述第一CCE集合所包括的CCE从0开始编号,所述第一CCE集合所包括的CCE从0开始编号时,所述预设值等于0。
一种可能的设计中,确定单元,具体用于根据第一公式,确定所述n个第一CCE中每一个第一CCE的索引值;根据第二公式,确定所述n个第二CCE中每一个第二CCE的索引值。
其中,第一公式可以采用下文中的公式(2)至公式(5)中的任意一个。第二公式可以采用下文中的公式(6)至公式(11)中的任意一个。公式(2)至公式(6)的具体介绍可以参见下文,在此不予赘述。
第四方面,提供一种通信装置,包括确定单元和映射单元。其中,确定单元,用于确定PDCCH candidate所占用的L个CCE的索引值,L等于所述PDCCH candidate的聚合等级。映射单元,用于对于所述L个CCE中的每一个CCE,根据所述CCE的索引值,确定所述CCE对应的p个输入序号,p为正整数;根据所述CCE对应的p个输入序号以及第一交织器,确定所述CCE映射到的p个控制元素组束REG bundle的索引值;所述第一交织器用于将间隔为交织深度的两个输入序号输出为频域上不相邻的两个REG bundle的索引值。
一种可能的设计中,映射单元,具体用于对于所述CCE对应的P个输入序号中的任意一个输入序号,确定所述输入序号对应的三维编号,所述三维编号包括组号、行号以及列号;
根据所述输入序号对应的三维编号,确定所述输入序号对应的REG bundle的索引值。
一种可能的设计中,上述第一交织器可以满足下文中的公式(20)、公式(21)、公式(22)或公式(23)。公式(20)、公式(21)、公式(22)以及公式(23)的具体介绍可参见下文,在此不再赘述。
第五方面,提供一种通信装置,所述通信装置包括处理器和收发器,处理器和收发器用于实现上述第一方面或第二方面中任一设计所提供的方法。其中,处理器用于执行相应方法中的处理动作,收发器用于执行相应方法中的接收/发送的动作。
第六方面,提供一种芯片,包括:处理电路和收发管脚,处理电路和收发管脚用于实现上述第一方面或第二方面中任一设计所提供的方法。其中,处理电路用于执行相应方法中的处理动作,收发管脚用于执行相应方法中的接收/发送的动作。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储计算机指令,当该计算机指令在计算机上运行时,使得计算机执行第一方面或第二方面中任一设计所提供的方法。
第八方面,提供一种计算机程序产品,当该计算机指令在计算机上运行时,使得 计算机执行第一方面或第二方面中任一设计所提供的方法。
需要说明的是,上述第三方面至第八方面中任一种设计所带来的技术效果可以参见第一方面或第二方面中对应设计所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种网络设备和终端设备的结构示意图;
图3为本申请实施例提供的一种非交织映射的示意图;
图4为本申请实施例提供的一种交织映射的示意图;
图5为传统NR终端设备的CORESET与REDCAP终端设备的CORESET存在重叠的示意图;
图6(a)为本申请实施例提供的一种REDCAP终端设备的CORESET的示意图;
图6(b)为本申请实施例提供的另一种REDCAP终端设备的CORESET的示意图;
图7(a)为相关技术中一种REDCAP终端设备的PDCCH candidate的示意图;
图7(b)为相关技术中另一种REDCAP终端设备的PDCCH candidate的示意图;
图8(a)为相关技术中另一种REDCAP终端设备的PDCCH candidate的示意图;
图8(b)为相关技术中另一种REDCAP终端设备的PDCCH candidate的示意图;
图9(a)为相关技术中另一种REDCAP终端设备的PDCCH candidate的示意图;
图9(b)为相关技术中另一种REDCAP终端设备的PDCCH candidate的示意图;
图10为本申请实施例提供的一种资源确定方法的流程图;
图11为本申请实施例提供的一种CORESET的示意图;
图12为本申请实施例提供的另一种CORESET的示意图;
图13为本申请实施例提供的一种资源确定方法的流程图;
图14为本申请实施例提供的一种PDCCH candidate的示意图;
图15为本申请实施例提供的一种PDCCH candidate的示意图;
图16为本申请实施例提供的一种PDCCH candidate的示意图;
图17为本申请实施例提供的一种PDCCH candidate的示意图;
图18为本申请实施例提供的一种PDCCH candidate的示意图;
图19为本申请实施例提供的一种PDCCH candidate的示意图;
图20为本申请实施例提供的一种CORESET的示意图;
图21为本申请实施例提供的另一种资源确定方法的流程图;
图22为相关技术中一种REDCAP终端设备的PDCCH candidate的示意图;
图23为相关技术中另一种REDCAP终端设备的PDCCH candidate的示意图;
图24为本申请实施例提供的一种资源确定方法的流程图;
图25为本申请实施例提供的一种输入序号与REG bundle索引值之间对应关系的示意图;
图26为本申请实施例提供的一种输入序号与REG bundle索引值之间对应关系的示意图;
图27为本申请实施例提供的一种输入序号与REG bundle索引值之间对应关系的示意图;
图28为本申请实施例提供的一种输入序号与REG bundle索引值之间对应关系的示意图;
图29为本申请实施例提供的一种资源确定方法的流程图;
图30为本申请实施例提供的一种输入序号与REG bundle索引值之间对应关系的示意图;
图31为本申请实施例提供的一种输入序号与REG bundle索引值之间对应关系的示意图;
图32为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,采用第五代(5th generation,5G)通信技术的新空口(new radio,NR)通信系统,未来演进系统或者多种通信融合系统等等。本申请提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动互联网(enhanced mobile broadband,eMBB)、超高可靠超低时延通信(ultra-reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。
如图1所示,为本申请实施例提供的一种通信系统架构图,该通信系统架构可以包括一个或多个网络设备(图1中仅出示一个)以及与每一个网络设备连接的一个或多个终端设备。
网络设备可以是无线通信的基站或基站控制器等。例如,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站可以是长期演进(long term evolution,LTE)中的演进型基站(evolutional node B,eNB或e-NodeB),物联网(internet of things,IoT)或者窄带物联网(narrow band-internet of things,NB-IoT)中的eNB,未来5G移动通信网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,本申请实施例对此不作任何限制。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统。在本申请实施例中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请所说的网络设备,例如基站,通常包括基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、天线、以及用于连接RRU和天线的馈线。其中,BBU用于负责信号调制。RRU用于负责射频处理。天线用于负责线缆上导行波 和空气中空间波之间的转换。一方面,分布式基站大大缩短了RRU和天线之间馈线的长度,可以减少信号损耗,也可以降低馈线的成本。另一方面,RRU加天线比较小,可以随地安装,让网络规划更加灵活。除了RRU拉远之外,还可以把BBU全部都集中起来放置在中心机房(Central Office,CO),通过这种集中化的方式,可以极大减少基站机房数量,减少配套设备,特别是空调的能耗,可以减少大量的碳排放。此外,分散的BBU集中起来变成BBU基带池之后,可以统一管理和调度,资源调配更加灵活。这种模式下,所有的实体基站演变成了虚拟基站。所有的虚拟基站在BBU基带池中共享用户的数据收发、信道质量等信息,相互协作,使得联合调度得以实现。
在一些部署中,基站可以包括集中式单元(centralized unit,CU)和分布式单元(Distributed Unit,DU)。基站还可以包括有源天线单元(active antenna unit,AAU)。CU实现基站的部分功能,DU实现基站的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,CU可以划分为RAN中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,在此不做限制。
终端设备是一种具有无线收发功能的设备。终端设备可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端设备、无人驾驶中的无线终端设备、远程医疗中的无线终端设备、智能电网中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图2为本申请实施例提供的网络设备和终端设备的硬件结构示意图。
终端设备包括至少一个处理器101和至少一个收发器103。可选的,终端设备还可以包括输出设备104、输入设备105和至少一个存储器102。
处理器101、存储器102和收发器103通过总线相连接。处理器101可以是一个通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。处理器101也可以包括多个CPU,并且处理器101可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本申请实施例对此不作任何限制。存储器102可以是独立存在,通过总线与处理器101相连接。存储器102也可以和处理器101集成在一起。其中,存储器102用于存储执行本申请方案的应用程序代码,并由处理器101来控制执行。处理器101用于执行存储器102中存储的计算机程序代码,从而实现本申请实施例提供的方法。
收发器103可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、无线局域网(wireless local area networks,WLAN)等。收发器103包括发射机Tx和接收机Rx。
输出设备104和处理器101通信,可以以多种方式来显示信息。例如,输出设备104可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备105和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备105可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备包括至少一个处理器201、至少一个存储器202、至少一个收发器203和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204通过总线相连接。其中,网络接口204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图中未示出),本申请实施例对此不作具体限定。另外,处理器201、存储器202和收发器203的相关描述可参考终端设备中处理器101、存储器102和收发器103的描述,在此不再赘述。
下面先对当前标准中的PDCCH盲检进行简单介绍。
在当前标准中,终端设备会在CORESET内盲检测PDCCH。
其中,一个CORESET可以理解成一块物理时间频率资源,频域上占据若干个物理资源块(physical resource block,PRB),时遇上占据若干个符号(symbol)。在现 有技术中,一个CORESET在时域上占用的symbol数为1~3个。
在一个CORESET内,每个symbol上的一个RB被称为一个REG。若干个REG会组成1个REG束(bundle)。组成REG bundle的REG个数可以称为REG bundle size。现有技术中,REG bundle size一般为2、3或6。上述REG或者REG bundle均为物理时频资源。
若干个REG bundle可以组成一个CCE,但是一个CCE固定包含6个REG。
终端设备在CORESET内盲检PDCCH,实际上是在CORESET内的若干个PDCCH候选位置(candidate)上进行检测。也即,终端设备在若干个PDCCH candidate中的每一个PDCCH candidate上检测是否有发送给自己的PDCCH。
一个PDCCH candidate占用L个连续的CCE。其中,L为该PDCCH candidate的聚合等级(aggregation level,AL)。例如,如果一个PDCCH candidate占用4个连续的CCE,则意味着该PDCCH candidate的聚合等级为4。
目前,PDCCH candidate的聚合等级可以为1、2、4、8或16。
在当前标准中,编号为
Figure PCTCN2021111904-appb-000001
的PDCCH candidate占用的L个CCE的CCE索引值(index)使用以下公式(1)计算:
Figure PCTCN2021111904-appb-000002
其中,i=0,1,…,L-1。
公式(1)中各个参数的具体含义如下:
1)对公共搜索空间(common search space set,CSS)来说,
Figure PCTCN2021111904-appb-000003
当PDCCH candidate属于用户设备特定搜索空间(UE specific search space set,USS)时,
Figure PCTCN2021111904-appb-000004
n RNTI为终端设备的C-RNTI;当p mod 3=0,则A p=39827;当p mod 3=1,则A p=39829;当p mod 3=2,则A p=39839;D=65537;p为所述CORESET的编号。
2)
Figure PCTCN2021111904-appb-000005
为大于等于0小于等于
Figure PCTCN2021111904-appb-000006
的整数;
Figure PCTCN2021111904-appb-000007
为搜索空间s中对应载波n CI的聚合等级为L的候选PPDCH的总个数。
3)N CCE,p是CORESET所包含的REG的个数。
4)对公共搜索空间来说,
Figure PCTCN2021111904-appb-000008
对用户设备特定搜索空间来说,
Figure PCTCN2021111904-appb-000009
等于所有n CI对应的
Figure PCTCN2021111904-appb-000010
中的最大值。
5)n CI是载波指示域的取值,仅在跨载波调度的USS内有效,其他情况默认等于0。
在终端设备确定PPDCH candidate占用的若干个CCE之后,终端设备可以根据CCE到REG的映射来确定PPDCH candidate实际占用的物理时频资源。
由于一个REG bundle包含2个或3个或6个REG,因此1个CCE可能对应3个或2个或1个REG bundle。具体的,索引值j的CCE包括索引值为
Figure PCTCN2021111904-appb-000011
Figure PCTCN2021111904-appb-000012
的REG bundle。其中,K为REG bundle size。
举例来说,以REG bundle size等于2为例,索引值为3的CCE包括索引值为f(9)的REG bundle、索引值为f(10)的REG bundle以及索引值为f(11)的REG bundle。
CCE-to-REG映射存在两种映射方式:非交织映射和交织映射。应理解,一个CORESET仅能关联其中一种映射方式。
1、非交织映射
对于非交织映射来说,REG bundle size等于6,并且f(x)=x。
示例性的,图3示出一种非交织映射的示意图。在图3中,每一个矩形方块表示一个REG bundle,矩形方块中的第一行数字表示REG bundle的索引,矩形方块中的第二行数字表示REG bundle所映射的CCE的索引。如图3所示,在采用非交织映射方式的情况下,索引值为0的CCE映射到索引值为0的REG bundle,索引值为1的CCE映射到索引值为1的REG bundle,索引值为2的CCE映射到索引值为2的REG bundle,等。也即,CCE会映射到相同索引值的REG bundle上。
2、交织映射
对于交织映射来说,
Figure PCTCN2021111904-appb-000013
其中,x=cR+r
r=0,1,...,R-1
c=0,1,...,C-1
Figure PCTCN2021111904-appb-000014
应理解,C表示交织矩阵中的列数,R表示交织矩阵中的行数。R也可以表示交织深度,R∈{2,3,6}。
示例性的,图4示出一种交织映射的示意图。在图4中,每一个矩形方块表示一个REG bundle,矩形方块中的第一行数字表示REG bundle的索引,矩形方块中的第二行数字表示REG bundle所映射的CCE的索引。假设REG bundle size为6,CORESET包括6个REG bundle,交织深度设置为2,则如图4所示,索引值为0的CCE映射到索引值为0的REG bundle,索引值为1的CCE映射到索引值为3的REG bundle,索引值为2的CCE映射到索引值为1的REG bundle,索引值为3的CCE映射到索引值为4的REG bundle,索引值为4的CCE映射到索引值为2的REG bundle,索引值为5的CCE映射到索引值为5的REG bundle。
以上是现有标准对PDCCH盲检的简单介绍,其具体细节可以参考3GPP相关标准。
为了支持5G NR系统的高数据率、低时延高可靠等特点,NR终端设备的能力较强。例如,在常见的商用频段上,NR终端设备要必选支持4天线接收,支持100MHz系统带宽等。而这些要求导致了NR终端设备的硬件成本很高。为了进一步扩展NR市场,降低终端设备硬件成本,3GPP已立项能力降低(reduced capability,REDCAP) 课题,希望通过降低天线数量等方法降低终端设备的复杂度以及成本。
下文中将REDCAP课题所涉及的终端设备称为REDCAP终端设备,将不支持REDCAP课题所研究的各种能力的终端称为传统NR终端设备。
对于REDCAP终端设备来说,伴随着终端设备接收天线数量降低,下行信号的覆盖范围会随之变小。为了提升PDCCH信道的覆盖范围,一种方式是扩展CORESET占用的symbol数量,例如可以将REDCAP终端设备支持的符号数扩展到3个符号以上。
当一个通信系统同时存在传统NR终端设备(例如eMBB终端设备)和REDCAP终端设备时,传统NR终端设备的CORESET和REDCAP终端设备的CORESET可能存在重叠。示例性的,如图5所示,传统NR终端设备的CORESET占用的物理时频资源为图5中以阴影填充的矩形方块。REDCAP终端设备的CORESET占用的物理时频资源包括图5中以阴影填充的矩形方块,以及图5中的空白矩形方块。
当传统NR终端设备的CORESET和REDCAP终端设备的CORESET存在重叠时,对于重叠部分的物理时频资源来说,若其中一部分物理时频资源被用于向REDCAP终端设备发送PDCCH,则这一部分物理时频资源就无法提供给传统NR终端设备使用。或者,若其中一部分物理时频资源被用于向传统NR终端设备发送PDCCH,则这一部分物理时频资源就无法提供给REDCAP终端设备使用。这种现象可以称为阻塞(blocking)。
为了能够让REDCAP终端设备与传统NR终端设备更好的兼容,尽可能降低二者之间的阻塞概率,REDCAP终端设备的CORESET与传统NR终端设备的CORESET的频域宽度应当相同,并且在REDCAP终端设备的CORESET与传统NR终端设备的CORESET重叠的部分,REG bundle的排序需要尽可能与现有技术的方式一致。
举例来说,如图6(a)所示,以REG bundle size为6为例,REDCAP终端设备的CORESET中的REG bundle按照先频域后时域的方式进行编号,从而索引值为0的REG bundle至索引值为23的REG bundle可以按照图6(a)中的方式排列。
举例来说,如图6(b)所示,以REG bundle size为3为例,REDCAP终端设备的CORESET中的REG bundle按照先频域后时域的方式进行编号,从而索引值为0的REG bundle至索引值为47的REG bundle可以按照图6(b)中的方式排列。
为了便于描述,下文中将REDCAP终端设备的CORESET分为区域一和区域二,其中区域一为与传统NR终端设备的CORESET重叠的部分,区域二为与传统NR终端设备的CORESET不重叠的部分。
现有技术中的PDCCH candidate确定方法并不适用于REDCAP终端设备,其原因如下:
(1)若采用非交织映射方式进行CCE-to-REG mapping,并且REDCAP终端设备使用和传统NR终端设备相同的确定PDCCH candidate的方法,则当REDCAP终端设备的PDCCH candidate和传统NR终端设备的PDCCH candidate出现重叠(overlap)时,会阻塞一大块物理时频资源;并且,REDCAP终端设备的PDCCH candidate未获取到时间分集增益。
举例来说,如图7(a)所示,CORESET中的REG bundle size为6。REDCAP终 端设备的CORESET包括索引值0~23的REG bundle,传统NR终端设备的CORESET包括索引值0~11的REG bundle。假设REDCAP终端设备的PDCCH candidate占用CCE0~CCE7,则在采用非交织映射方式的情况下,该PDCCH candidate占用索引值0~7的REG bundle。这样一来,导致传统NR终端设备的CORESET中的8个REG bundle被阻塞,影响传统NR终端设备使用其配置的CORESET中的物理时频资源。另外,索引值0~7的REG bundle集中在前3个符号上,因此REDCAP终端设备的PDCCH candidate无法获得时间分集增益。
举例来说,如图7(b)所示,CORESET中的REG bundle size为3。REDCAP终端设备的CORESET包括索引值0~47的REG bundle,传统NR终端设备的CORESET包括索引值0~23的REG bundle。假设REDCAP终端设备的PDCCH candidate占用CCE0~CCE7,则在采用非交织映射方式的情况下,该PDCCH candidate占用索引值0~15的REG bundle。这样一来,导致传统NR终端设备的CORESET中的16个REG bundle被阻塞,影响传统NR终端设备使用其配置的CORESET中的物理时频资源。另外,索引值0~15的REG bundle集中在前3个符号上,因此REDCAP终端设备的PDCCH candidate无法获得时间分集增益。
(2)若采用交织映射方式进行CCE-to-REG mapping,REDCAP终端设备的CORESET中的区域一和区域二联合映射,并且REDCAP终端设备使用上述公式(1)来确定PDCCH candidate占用的L个连续的CCE,则REDCAP终端设备的PDCCH candidate无法获取到预期的频率分集增益。
举例来说,如图8(a)所示,CORESET中的REG bundle size为6。REDCAP终端设备的CORESET包括索引值0~23的REG bundle,其中区域一包括索引值0~11的REG bundle,区域二包括索引值12~23的REG bundle;传统NR终端设备的CORESET包括索引值0~11的REG bundle。假设REDCAP终端设备的PDCCH candidate占用CCE0~CCE7。在REDCAP终端设备的CORESET的区域一和区域二采用联合交织映射,并且交织深度为2的情况下,CCE0映射到索引值为0的REG bundle,CCE1映射到索引值为12的REG bundle,CCE2映射到索引值为1的REG bundle,CCE3映射到索引值为13的REG bundle,CCE4映射到索引值为2的REG bundle,CCE5映射到索引值为14的REG bundle,CCE6映射到索引值为3的REG bundle,CCE7映射到索引值为15的REG bundle。从图8(a)可见,PDCCH candidate占用索引值为0~3的REG bundle,和索引值为12~15的REG bundle。由于索引值为0~3的REG bundle与索引值为12~15的REG bundle占用相同的频域资源,因此PDCCH candidate无法获取预期的频率分集增益。
举例来说,如图8(b)所示,CORESET中的REG bundle size为3。REDCAP终端设备的CORESET包括索引值0~47的REG bundle,其中区域一包括索引值0~23的REG bundle,区域二包括索引值24~47的REG bundle;传统NR终端设备的CORESET包括索引值0~23的REG bundle。假设REDCAP终端设备的PDCCH candidate占用CCE0~CCE7。在REDCAP终端设备的CORESET的区域一和区域二采用联合交织映射,并且交织深度为2的情况下,CCE0映射到索引值为0和24的REG bundle,CCE1映射到索引值为1和25的REG bundle,CCE2映射到索引值为2和26的REG bundle, CCE3映射到索引值为3和27的REG bundle,CCE4映射到索引值为4和28的REG bundle,CCE5映射到索引值为5和29的REG bundle,CCE6映射到索引值为6和30的REG bundle,CCE7映射到索引值为7和31的REG bundle。从图8(b)可见,PDCCH candidate占用索引值为0~7的REG bundle,和索引值为24~31的REG bundle。由于索引值为0~7的REG bundle与索引值为24~31的REG bundle占用相同的频域资源,因此PDCCH candidate无法获取预期的频率分集增益。
(3)若采用交织映射方式进行CCE-to-REG mapping,REDCAP终端设备的CORESET中的区域一和区域二分别映射,并且REDCAP终端设备使用上述公式(1)来确定PDCCH candidate占用的L个连续的CCE,则REDCAP终端设备的PDCCH candidate无法获取到时间分集增益,并且REDCAP终端设备的PDCCH candidate会对传统NR终端设备的CORESET造成较大的阻塞区域。
举例来说,如图9(a)所示,CORESET中的REG bundle size为6。REDCAP终端设备的CORESET包括索引值0~23的REG bundle,其中区域一包括索引值0~11的REG bundle,区域二包括索引值12~23的REG bundle;传统NR终端设备的CORESET包括索引值0~11的REG bundle。假设REDCAP终端设备的PDCCH candidate占用CCE0~CCE7。在REDCAP终端设备的CORESET的区域一和区域二分别采用交织映射,并且交织深度为2的情况下,CCE0映射到索引值为0的REG bundle,CCE1映射到索引值为6的REG bundle,CCE2映射到索引值为1的REG bundle,CCE3映射到索引值为7的REG bundle,CCE4映射到索引值为2的REG bundle,CCE5映射到索引值为8的REG bundle,CCE6映射到索引值为3的REG bundle,CCE7映射到索引值为9的REG bundle。这样一来,导致传统NR终端设备的CORESET中的8个REG bundle被阻塞,影响传统NR终端设备使用其配置的CORESET中的物理时频资源。另外,索引值为0~3的REG bundle和索引值为6~9的REG bundle均位于前3个符号上,因此REDCAP终端设备的PDCCH candidate无法获得时间分集增益。
举例来说,如图9(b)所示,CORESET中的REG bundle size为3。REDCAP终端设备的CORESET包括索引值0~47的REG bundle,其中区域一包括索引值0~23的REG bundle,区域二包括索引值24~47的REG bundle;传统NR终端设备的CORESET包括索引值0~23的REG bundle。假设REDCAP终端设备的PDCCH candidate占用CCE0~CCE7。在REDCAP终端设备的CORESET的区域一和区域二分别采用交织映射,并且交织深度为2的情况下,CCE0映射到索引值为0和12的REG bundle,CCE1映射到索引值为1和13的REG bundle,CCE2映射到索引值为2和14的REG bundle,CCE3映射到索引值为3和15的REG bundle,CCE4映射到索引值为4和16的REG bundle,CCE5映射到索引值为5和17的REG bundle,CCE6映射到索引值为6和18的REG bundle,CCE7映射到索引值为7和19的REG bundle。这样一来,导致传统NR终端设备的CORESET中的16个REG bundle被阻塞,影响传统NR终端设备使用其配置的CORESET中的物理时频资源。另外,索引值为0~7的REG bunlde和索引值为12~19的REG bundle均位于前3个符号上,因此REDCAP终端设备的PDCCH candidate无法获得时间分集增益。
可见,对于REDCAP终端设备来说,通信系统如果沿用现有技术中的PDCCH  candidate确定方法,将导致确定出来的PDCCH candidate无法获取到预期的分集增益。
为了解决上述技术问题,本申请实施例提供一种资源确定方法。如图10所示,该方法包括以下步骤:
S101、通信设备确定CORESET中的PDCCH candidate在第一CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值。
其中,上述通信设备可以为网络设备,也可以为终端设备,对此不作限定。
在本申请实施例中,CORESET可以划分为第一物理时频资源区域和第二物理时频资源区域。第一物理时频资源区域和第二物理时频资源区域在时域或者频域上至少有一个不同。可选的,上述物理时频资源可以是指REG或者REG bundle。
示例性的,结合图6(a)进行举例说明,CORESET可以按照时域来划分第一物理时频资源区域和第二物理时频资源区域,从而第一物理时频资源区域可以包括索引值为0~11的REG bundle,第二物理时频资源区域可以包括索引值为12~23的REG bundle。
示例性的,结合图6(a)进行举例说明,CORESET可以安排频域来划分第一物理时频资源区域和第二物理时频资源区域,从而第一物理时频资源区域可以包括索引值为0~5、12~17的REG bundle,第二物理时频资源区域可以包括索引值为6~11、18~23的REG bundle。
其中,CORESET中的REG bundle可以采用以下编号方式:
编号方式1-1、第一物理时频资源区域中的REG bundle从0开始编号,第二物理时频资源区域从
Figure PCTCN2021111904-appb-000015
开始编号。其中,
Figure PCTCN2021111904-appb-000016
为第一物理时频资源区域所包含的REG的个数。K等于REG bundle size。
以图11为例,第一物理时频资源区域包含的REG bundle的索引值依次为0,1,2,3,4,5,6,7,8,9,10,11。第二物理时频资源区域包含的REG bundle的索引值依次为12,13,14,15,16,17,18,19,20,21,22,23。
编号方式1-2、第一物理时频资源区域中的REG bundle从0开始编号,第二物理时频资源区域从0开始编号。
以图12为例,第一物理时频资源区域包含的REG bundle的索引值依次为0,1,2,3,4,5,6,7,8,9,10,11。第二物理时频资源区域包含的REG bundle的索引值依次为0,1,2,3,4,5,6,7,8,9,10,11。
在本申请实施例中,第一CCE集合包含的CCE的个数根据第一物理时频资源区域所包含的REG个数来确定。第二CCE集合包含的CCE的个数根据第二物理时频资源区域所包含的REG个数来确定。
举例来说,假设第一物理时频资源区域包含36个REG,若一个CCE占用6个REG,因此可以确定第一CCE集合包括6个CCE。
可选的,若第一物理时频资源区域所包含的REG的个数不同于第二物理时频资源区域所包含的REG的个数,则第一CCE集合包含的CCE的个数不同于第二CCE集合包含的CCE的个数。
可选的,若第一物理时频资源区域所包含的REG的个数相同于第二物理时频资源 区域所包含的REG的个数,则第一CCE集合包含的CCE的个数相同于第二CCE集合包含的CCE的个数。这种情况下,第一CCE集合包括N CCE,p/2个CCE,第二CCE集合包含N CCE,p/2个CCE,N CCE,p为2的正整数倍。N CCE,p为CORESET包含的CCE的个数。
在本申请实施例中,CCE的编号方式可以采用以下任意一种:
编号方式2-1、第一CCE集合中的CCE从0开始编号,第二CCE集合中的CCE从N cce,p,first开始编号。其中,N cce,p,first即为第一CCE集合所包含的CCE的个数。
编号方式2-1相当于第一CCE集合和第二CCE集合联合编号。
举例来说,第一CCE集合包括6个CCE,第二CCE集合包括6个CCE。基于上述编号方式2-1,第一CCE集合中各个CCE的编号依次为:0,1,2,3,4,5。并且,第二CCE集合中各个CCE的编号依次为:6,7,8,9,10,11。
编号方式2-2、第一CCE集合中的CCE从0开始编号,第二CCE集合中的CCE从0开始编号。
编号方式2-2相当于第一CCE集合和第二CCE集合分别独立编号。
举例来说,第一CCE集合包括6个CCE,第二CCE集合包括6个CCE。基于上述编号方式2-2,第一CCE集合中各个CCE的编号依次为:0,1,2,3,4,5。并且,第二CCE集合中各个CCE的编号依次为:0,1,2,3,4,5。
应理解,通信设备具体采用哪一种编号方式,可以是根据出厂配置确定,或者根据其他设备的指示确定,又或者根据通信设备自身配置来确定。其中,通信设备的出厂配置由通信标准来定义。
作为步骤S101的一种可能的实现方式,通信设备可以根据预设公式,确定PDCCH candidate在第一CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值。其中,预设公式的具体介绍可参见下文,在此不予赘述。
在本申请实施例中,n、m均为正整数。并且,n+m=L,L即为上述PDCCH candidate的聚合等级。本申请实施例不限制n与m之间的大小关系,例如,n=m=L/2;或者n不等于m。
需要说明的是,对于每一个聚合等级,n与m的具体取值可以是通信设备出厂配置确定,或者根据其他设备的指示确定,又或者根据通信设备自身配置来确定。其中,通信设备的出厂配置由通信标准来定义。
应理解,上述n个第一CCE的索引值是连续的,m个第二CCE的索引值是连续的。这种情况下,通信设备确定n个第一CCE中第一个第一CCE的索引值,进而可以确定n个第一CCE中其他第一CCE的索引值。通信设备确定m个第二CCE中第一个第二CCE的索引值,进而可以确定m个第二CCE中其他第二CCE的索引值。
上述n个第一CCE中第一个第一CCE即为n个第一CCE中索引值最小的第一CCE。m个第二CCE中第一个第二CCE即为m个第二CCE中索引值最小的第二CCE。
举例来说,假设PDCCH candidate的聚合等级为8,n=4,m=4。第一CCE集合中的CCE编号依次为0,1,2,3,4,5。第二CCE集合中各个CCE的编号依次为:6,7,8,9,10,11。当通信设备确定PDCCH candidate占用第一CCE集合中的第一个第一CCE的索引值 为1的情况下,通信设备可以确定PDCCH candidate占用第一CCE集合中的4个第一CCE的索引值分别为1,2,3,4。当通信设备确定PDCCH candidate占用第二CCE集合中的第一个第二CCE的索引值为7的情况下,通信设备可以确定PDCCH candidate占用第二CCE集合中的4个第二CCE的索引值分别为7,8,9,10。
下面为了便于描述将n个第一CCE中第一个第一CCE的索引值简称为第一索引值,m个第二CCE中第一个第二CCE的索引值简称为第二索引值。
可选的,第一索引值和第二索引值可以满足以下规则中的任意一个:
规则1、第一索引值与第二索引值之间的差值是预设值。
这样一来,第二索引值可以根据第一索引值和预设值来确定。例如,假设预设值为6,当通信设备确定第一索引值为1时,通信设备可以确定第二索引值为7。
规则2、第一索引值与第二索引值之间的差值根据预设值和偏移值确定。
这样一来,第二索引值可以根据第一索引值、预设值以及偏移值来确定。
在本申请实施例中,当CORESET中的CCE的编号方式采用编号方式2-1时,上述预设值为第一CCE集合所包括的CCE的数目。或者,当CORESET中的CCE的编号方式采用编号方式2-2时,上述预设值为0。
可选的,上述偏移值可以是固定值或者随机值。例如,上述偏移值可以根据时间为变量的函数来确定。其中,时间为变量的函数可以是以时隙索引值(slot index)或符号索引值(symbol index)为变量的函数。
应理解,相比于规则1,规则2可以使得n个第一CCE的索引值和m个第二CCE的索引值之间的关系更加随机化,从而有一定概率增大n个第一CCE所映射的物理时频资源与m个第二CCE所映射的物理时频资源之间的离散程度,使得PDCCH candidate有一定概率获取到更高的分集增益。
S102、通信设备根据n个第一CCE的索引值以及m个第二CCE的索引值,确定PDCCH candidate所占用的物理时频资源。
作为一种可能的实现方式,通信设备根据n个第一CCE的索引值以及预设映射方式,确定n*K个第一REG bundle的索引值。通信设备根据m个第二CCE的索引值以及预设映射方式,确定m*K个第二REG bundle的索引值。进而,通信设备根据n*K个第一REG bundle的索引值,以及m*K个第二REG bundle的索引值,确定PDCCH candidate所占用的物理时频资源。上述K即为CORESET所配置的REG bundle size。
应理解,一个CCE可以映射为K个REG bundle。
在本申请实施例中,预设映射方式由CORESET的配置信息来确定。应理解,一个CORESET仅会关联一种映射方式。
可选的,当CCE编号方式采用上述编号方式2-1时,预设映射方式可以为:非交织映射方式、第一交织映射方式或第二交织映射方式。
可选的,当CCE编号方式采用上述编号方式2-2时,预设映射方式可以为:非交织映射方式或第二交织映射方式。
其中,非交织映射方式用于将第一CCE集合中的CCE以非交织的方式映射到第一物理时频资源区域上,将第二CCE集合中的CCE以非交织的方式映射到第二物理时频资源区域上。从而,在第一物理时频资源区域内,编号相邻的CCE会映射到相邻 的REG bundle上;在第二物理时频资源区域内,编号相邻的CCE会映射到相邻的REG bundle上。
第一交织映射方式用于将第一CCE集合所包含的CCE和第二CCE集合所包含的CCE以交织的方式映射到CORESET所占用的物理时频资源上。此时,第一CCE集合中的CCE既会映射到第一物理时频资源区域内,也会映射到第二物理时频资源区域内;第二CCE集合中的CCE既会映射到第一物理时频资源区域内,也会映射到第二物理时频资源区域内。
第二交织映射方式用于将第一CCE集合所包含的CCE映射到第一物理时频资源区域上,将第二CCE以交织的方式映射到第二物理时频资源区域上。从而,在第一物理时频资源区域内,编号相邻的CCE会映射到不相邻的REG bundle上;在第二物理时频资源区域内,编号相邻的CCE会映射到不相邻的REG bundle上。
应理解,当通信设备所采用的预设映射方式为非交织映射方式或第二交织映射方式时,第一CCE集合中的CCE映射到的物理时频资源位于第一物理时频资源区域,第二CCE集合中的CCE集合映射到的物理时频资源位于第二物理时频资源区域。
现有技术中PDCCH candidate占用L个连续的CCE,而L个连续的CCE经过映射后的物理时频资源有很大概率聚集在一块,例如图7(a)中CCE0~CCE7映射后的REG Bundle0~REG bundle7位于同一时域位置,从而导致PDCCH candidate不能获取到较好的分集增益,还可能会对传统NR终端设备的CORESET造成较大的阻塞。
基于图10所示的实施例,CORESET被划分为第一物理时频资源区域和第二物理时频资源区域,并根据第一物理时频资源区域所包含的REG的个数来确定第一CCE集合所包含的CCE的个数,以及根据第二物理时频资源区域所包含的REG的个数来确定第二CCE集合的个数。这样一来,实现将N cce,p个CCE划分为两个CCE集合。从而,通信设备确定PDCCH candidate在第一CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值。相比于现有技术中确定PDCCH candidate对应的L个连续的CCE的索引值,本申请实施例所确定的n个第一CCE的索引值和m个第二CCE的索引值更加离散化,从而有较大概率能够增大PDCCH candidate所占用的物理时频资源的离散程度,进而有较大概率可以提高PDCCH candidate的分集增益。
进一步的,当通信设备采用非交织映射方式或者第二交织映射方式时,由于n个第一CCE映射的物理时频资源位于第一物理时频资源区域中,m个CCE映射的物理时频资源位于第二物理时频资源区域中,而第一物理时频资源区域在时域和/或频域上不同于第二物理时频资源区域。这也意味着,PDCCH candidate所占用的物理时频资源不会聚集在同一时域位置或者频域位置,从而达到提高PDCCH candidate的分集增益的目的。
可选的,如图13所示,步骤S101可以具体实现为步骤S1011-S1012。
S1011、通信设备根据第一公式,确定PDCCH candidate所占用的n个第一CCE中每一个第一CCE的索引值。
一种可能的设计中,若第一索引值与第二索引值之间的关系满足规则一,并且CCE编号采用编号方式2-1时,则第一公式可以如下公式(2)所示:
Figure PCTCN2021111904-appb-000017
应理解,将i=0代入第一公式可以确定n个第一CCE中第一个第一CCE的索引值,将i=1代入第一公式可以确定n个第一CCE中第二个第一CCE的索引值,以此类推,不再赘述。
另一种可能的设计中,若第一索引值与第二索引值之间的关系满足规则一,并且CCE编号采用编号方式2-2时,则第一公式可以如下公式(3)所示:
Figure PCTCN2021111904-appb-000018
另一种可能的设计中,若第一索引值与第二索引值之间的关系满足规则二,并且CCE编号采用编号方式2-1时,则第一公式可以采用上述公式(2),或者第一公式可以如下公式(4)所示:
Figure PCTCN2021111904-appb-000019
其中,O symbol是偏移值。可选的,O symbol根据符号索引值(symbol index)为变量的函数来确定。在此统一说明,以下不再赘述。
可选的,对于第一公式来说,O symbol可以根据CORESET中第一物理时频资源区域所占用的符号来确定。
另一种可能的设计中,若第一索引值与第二索引值之间的关系满足规则二,并且CCE编号采用编号方式2-2时,则第一公式可以采用上述公式(3),或者第一公式可以如下公式(5)所示:
Figure PCTCN2021111904-appb-000020
S1012、通信设备根据第二公式,确定PDCCH candidate所占用的m个第二CCE中每一个第二CCE的索引值。
一种可能的设计中,若第一索引值与第二索引值之间的关系满足规则一,并且CCE编号采用编号方式2-1时,则第二公式可以如下公式(6)所示:
Figure PCTCN2021111904-appb-000021
可选的,公式(6)可以变形为如下公式(7)。
Figure PCTCN2021111904-appb-000022
另一种可能的设计中,若第一索引值与第二索引值之间的关系满足规则一,并且CCE编号采用编号方式2-2时,则第二公式可以如下公式(8)所示:
Figure PCTCN2021111904-appb-000023
另一种可能的设计中,若第一索引值与第二索引值之间的关系满足规则二,并且CCE编号采用编号方式2-1时,则第二公式可以如下公式(9)所示:
Figure PCTCN2021111904-appb-000024
其中,O可以为预设的固定值。或者,O可以替换为O symbol。可选的,O symbol根据符号索引值(symbol index)为变量的函数来确定。在此统一说明,以下不再赘述。
可选的,上述公式(9)可以变形为公式(10)。公式(10)可以如下所示:
Figure PCTCN2021111904-appb-000025
另一种可能的设计中,若第一索引值与第二索引值之间的关系满足规则二,并且CCE编号采用编号方式2-2时,则第二公式可以如下公式(11)所示:
Figure PCTCN2021111904-appb-000026
基于图13所示实施例,通信设备可以准确确定PDCCH candidate所占用的n个第一CCE的索引值以及m个第二CCE的索引值。
下面结合REG bundle的编号方式以及CCE的编号方式,对通信设备所采用的映射方式进行简单介绍。
1、非交织映射方式
其中,非交织映射方式适用于以下三种情形:
情形1、REG bundle采用编号方式1-1,CCE编号采用编号方式2-1。
情形2、REG bundle采用编号方式1-2,CCE编号采用编号方式2-2。
情形3、REG bundle采用编号方式1-1,CCE编号采用编号方式2-2。
可选的,针对情形1和情形2,非交织映射方式可以实现为:根据公式f(x)=x来确定第一CCE集合中的CCE所映射的REG bundle的索引值;以及,根据公式f(x)=x来确定第二CCE集合中的CCE所映射的REG bundle的索引值。
可选的,针对情形3,非交织映射方式可以实现为:根据公式f(x)=x来确定第一CCE集合中的CCE所映射的REG bundle的索引值;以及,根据公式(12)来确定第二CCE集合中的CCE所映射的REG bundle的索引值。
其中,公式(12)可以如下所示:
f(x)=x+N CCE,p,first        (12)
其中,x表示CCE对应的输入序号,f(x)表示REG bundle的索引值。
应理解,在非交织映射方式下,CCE对应的输入序号即为CCE的索引值。
2、第一交织映射方式
其中,第一交织映射方式适用于REG bundle采用编号方式1-1,CCE编号采用编号方式2-1的情形。
可选的,第一交织映射方式可以实现为:根据CCE的索引值,确定对应的一个或多个输入序号;对于每一个输入序号,根据公式(13),确定对应的REG bundle的索引值。
其中,索引值为j的CCE对应的若干个输入序号分别为:
Figure PCTCN2021111904-appb-000027
其中,公式(13)如下所示:
Figure PCTCN2021111904-appb-000028
3、第二交织映射方式
其中,第二交织映射方式适用于以下三种情形:
情形1、REG bundle采用编号方式1-1,CCE编号采用编号方式2-1。
情形2、REG bundle采用编号方式1-2,CCE编号采用编号方式2-2。
情形3、REG bundle采用编号方式1-1,CCE编号采用编号方式2-2。
可选的,针对情形1,第二交织映射方式可以实现为:根据第一CCE集合中CCE的索引值,确定对应的一个或多个输入序号;根据第一CCE集合中CCE对应的每一个输入序号,根据公式(14),确定对应的REG bundle的索引值。以及,根据第二CCE集合中CCE的索引值,确定对应的一个或多个输入序号;根据第二CCE集合中 CCE对应的每一个输入序号,根据公式(15),确定对应的REG bundle的索引值。
其中,公式(14)如下所示:
Figure PCTCN2021111904-appb-000029
其中,
Figure PCTCN2021111904-appb-000030
表示第一物理时频资源区域中包含的REG的个数。
公式(15)如下所示:
Figure PCTCN2021111904-appb-000031
其中,
Figure PCTCN2021111904-appb-000032
表示第一物理时频资源区域中包含的REG的个数,
Figure PCTCN2021111904-appb-000033
表示第二物理时频资源区域中包含的REG的个数。
可选的,针对情形2,第二交织映射方式可以实现为:根据第一CCE集合中CCE的索引值,确定对应的一个或多个输入序号;根据第一CCE集合中CCE对应的每一个输入序号,根据公式(14),确定对应的REG bundle的索引值。以及,根据第二CCE集合中CCE的索引值,确定对应的一个或多个输入序号;根据第二CCE集合中CCE对应的每一个输入序号,根据公式(16),确定对应的REG bundle的索引值。
其中,公式(16)如下所示:
Figure PCTCN2021111904-appb-000034
其中,
Figure PCTCN2021111904-appb-000035
表示第一物理时频资源区域中包含的REG的个数,
Figure PCTCN2021111904-appb-000036
表示第二物理时频资源区域中包含的REG的个数。
可选的,针对情形3,第二交织映射方式可以实现为:根据第一CCE集合中CCE的索引值,确定对应的一个或多个输入序号;根据第一CCE集合中CCE对应的每一个输入序号,根据公式(14),确定对应的REG bundle的索引值。以及,根据第二CCE集合中CCE的索引值,确定对应的一个或多个输入序号;根据第二CCE集合中CCE对应的每一个输入序号,根据公式(17),确定对应的REG bundle的索引值。
其中,公式(17)如下所示:
Figure PCTCN2021111904-appb-000037
其中,
Figure PCTCN2021111904-appb-000038
表示第二物理时频资源区域中包含的REG的个数。
下面以举例的方式来说明图10所示的资源确定方法,以便于本领域技术人员理解。以下示例中CORESET中的REG bundle采用编号方式1-1。并且,以下示例中n=m=L/2。
示例一
在图6(a)所示的CORESET基础上进行举例说明,图6(a)所示的CORESET包括索引值0~23的REG bundle,假设第一物理时频资源区域包括索引值为0~11的REG bundle,第二物理时频资源区域包括索引值为12~23的REG bundle,从而第一CCE集合包括12个CCE,第二CCE集合包括12个CCE。
当CCE采用编号方式2-1时,第一CCE集合中的CCE编号依次为0,1,2,3,4,5,6,7,8,9,10,11。第二CCE集合中的CCE编号依次为12,13,14,15,16,17,18,19,20,21,22,23。
对于聚合等级为8的PDCCH candidate来说,假设通信设备计算出
Figure PCTCN2021111904-appb-000039
Figure PCTCN2021111904-appb-000040
等于0,则按照现有技术,该PDCCH candidate占用CCE0~CCE7。
但是,当
Figure PCTCN2021111904-appb-000041
等于0时,基于图10所示的资源确定方法,若第一索引值和第二索引值之间的关系满足规则1,且CCE采用编号方式2-1,则通信设备能够确定PDCCH candidate占用第一CCE集合中的CCE0~CCE3,占用第二CCE集合中的CCE12~CCE15。
如图14所示,当采用非交织映射方式时,第一CCE集合中的CCE0映射到索引值为0的REG bundle,第一CCE集合中的CCE1映射到索引值为1的REG bundle,第一CCE集合中的CCE2映射到索引值为2的REG bundle,第一CCE集合中的CCE3 映射到索引值为3的REG bundle。并且,第二CCE集合中的CCE12映射到索引值为12的REG bundle,第二CCE集合中的CCE13映射到索引值为13的REG bundle,第二CCE集合中的CCE14映射到索引值为14的REG bundle,第二CCE集合中的CCE15映射到索引值为15的REG bundle。
也即,当采用非交织映射方式时,如图7(a)所示,现有技术确定的PDCCH candidate占用索引值0~7的REG bundle。如图14所示,基于图10所示实施例所确定的PDCCH candidate占用用索引值为0~3的REG bundle以及索引值为12~15的REG bundle。结合图7(a)和图14能够看出,相较于索引值0~7的REG bundle,索引值为0~3的REG bundle以及索引值为12~15的REG bundle位于不同的时域位置,因此基于图10所示实施例所确定的PDCCH candidate能够获取到更高的时域分集增益。
如图15所示,当采用第一交织映射方式时,第一CCE集合中的CCE0映射到索引值为0的REG bundle,第一CCE集合中的CCE1映射到索引值为12的REG bundle,第一CCE集合中的CCE2映射到索引值为1的REG bundle,第一CCE集合中的CCE3映射到索引值为13的REG bundle。并且,第二CCE集合中的CCE12映射到索引值为6的REG bundle,第二CCE集合中的CCE13映射到索引值为18的REG bundle,第二CCE集合中的CCE14映射到索引值为7的REG bundle,第二CCE集合中的CCE15映射到索引值为19的REG bundle。
也即,当采用第一交织映射方式时,如图8(a)所示,现有技术确定的PDCCH candidate占用索引值为0~3以及12~15的REG bundle。如图15所示,基于图10所示实施例所确定的PDCCH candidate占用索引值为0、1、6、7、12、13、18和19的REG bundle。结合图8(a)和图15能够看出,相比较于索引值0~3以及12~15的REG bundle,索引值为0、1、6、7、12、13、18和19的REG bundle在频域上分布得更加离散,因此基于图10所示实施例所确定的PDCCH candidate能够获取到更高的频域分集增益。
如图16所示,当采用第二交织映射方式时,第一CCE集合中的CCE0映射到索引值为0的REG bundle,第一CCE集合中的CCE1映射到索引值为6的REG bundle,第一CCE集合中的CCE2映射到索引值为1的REG bundle,第一CCE集合中的CCE3映射到索引值为7的REG bundle。并且,第二CCE集合中的CCE12映射到索引值为12的REG bundle,第二CCE集合中的CCE13映射到索引值为18的REG bundle,第二CCE集合中的CCE14映射到索引值为13的REG bundle,第二CCE集合中的CCE15映射到索引值为19的REG bundle。
也即,当采用第二交织映射方式时,如图9(a)所示,现有技术所确定的现有技术确定的PDCCH candidate占用索引值为0~3以及6~9的REG bundle。如图16所示,基于图10所示实施例所确定的PDCCH candidate占用索引值为0、1、6、7、12、13、18和19的REG bundle。结合图9(a)和图16可以看出,相比较于索引值为0~3以及6~9的REG bundle,索引值为0、1、6、7、12、13、18和19的REG bundle在时域上分布得更加离散,因此基于图10所示实施例所确定的PDCCH candidate能够获取到更高的时域分集增益。
示例二
在图6(a)所示的CORESET基础上进行举例说明,图6(a)所示的CORESET 包括索引值0~23的REG bundle,假设第一物理时频资源区域包括索引值为0~11的REG bundle,第二物理时频资源区域包括索引值为12~23的REG bundle,从而第一CCE集合包括12个CCE,第二CCE集合包括12个CCE。
当CCE采用编号方式2-1时,第一CCE集合中的CCE编号依次为0,1,2,3,4,5,6,7,8,9,10,11。第二CCE集合中的CCE编号依次为12,13,14,15,16,17,18,19,20,21,22,23。
对于聚合等级为8的PDCCH candidate来说,假设通信设备计算出
Figure PCTCN2021111904-appb-000042
Figure PCTCN2021111904-appb-000043
等于0,则按照现有技术,该PDCCH candidate占用CCE0~CCE7。
但是,当
Figure PCTCN2021111904-appb-000044
等于0时,基于图10所示的资源确定方法,若第一索引值和第二索引值之间的差值根据预设值和偏移值来确定,并且偏移值为4,且CCE采用编号方式2-1,则通信设备能够确定PDCCH candidate占用第一CCE集合中的CCE0~CCE3,占用第二CCE集合中的CCE16~CCE19。
如图17所示,当采用非交织映射方式时,第一CCE集合中的CCE0映射到索引值为0的REG bundle,第一CCE集合中的CCE1映射到索引值为1的REG bundle,第一CCE集合中的CCE2映射到索引值为2的REG bundle,第一CCE集合中的CCE3映射到索引值为3的REG bundle。并且,第二CCE集合中的CCE16映射到索引值为16的REG bundle,第二CCE集合中的CCE17映射到索引值为17的REG bundle,第二CCE集合中的CCE18映射到索引值为18的REG bundle,第二CCE集合中的CCE19映射到索引值为19的REG bundle。
也即,当采用非交织映射方式时,如图7(a)所示,现有技术确定的PDCCH candidate占用索引值0~7的REG bundle。如图17所示,基于图10所示实施例所确定的PDCCH candidate占用用索引值为0~3以16~19的REG bundle。结合图7(a)和图17能够看出,相较于索引值0~7的REG bundle,索引值为0~3以及16~19的REG bundle位于不同的时域位置,因此基于图10所示实施例所确定的PDCCH candidate能够获取到更高的时域分集增益。并且,结合图14和图17可以看出,相比较满足规则1的PDCCH candidate,满足规则2的PDCCH candidate所占用的物理时频资源在频域上更加分散,从而其能够获取到更高的频率分集只能用。
如图18所示,当采用第一交织映射方式时,第一CCE集合中的CCE0映射到索引值为0的REG bundle,第一CCE集合中的CCE1映射到索引值为12的REG bundle,第一CCE集合中的CCE2映射到索引值为1的REG bundle,第一CCE集合中的CCE3映射到索引值为13的REG bundle。并且,第二CCE集合中的CCE16映射到索引值为8的REG bundle,第二CCE集合中的CCE17映射到索引值为20的REG bundle,第二CCE集合中的CCE18映射到索引值为9的REG bundle,第二CCE集合中的CCE19映射到索引值为21的REG bundle。
也即,当采用第一交织映射方式时,如图8(a)所示,现有技术确定的PDCCH  candidate占用索引值为0~3以及12~15的REG bundle。如图18所示,基于图10所示实施例所确定的PDCCH candidate占用索引值为0、1、8、9、12、13、20和21的REG bundle。结合图8(a)和图18能够看出,相比较于索引值0~3以及12~15的REG bundle,索引值为0、1、8、9、12、13、20和21的REG bundle在频域上分布得更加离散,因此基于图10所示实施例所确定的PDCCH candidate能够获取到更高的频域分集增益。并且,结合图15和图18可以看出,相比较满足规则1的PDCCH candidate,满足规则2的PDCCH candidate所占用的物理时频资源在频域上更加分散,从而其能够获取到更高的频率分集只能用。
如图19所示,当采用第二交织映射方式时,第一CCE集合中的CCE0映射到索引值为0的REG bundle,第一CCE集合中的CCE1映射到索引值为6的REG bundle,第一CCE集合中的CCE2映射到索引值为1的REG bundle,第一CCE集合中的CCE3映射到索引值为7的REG bundle。并且,第二CCE集合中的CCE16映射到索引值为14的REG bundle,第二CCE集合中的CCE17映射到索引值为20的REG bundle,第二CCE集合中的CCE18映射到索引值为15的REG bundle,第二CCE集合中的CCE19映射到索引值为21的REG bundle。
也即,当采用第二交织映射方式时,如图9(a)所示,现有技术所确定的现有技术确定的PDCCH candidate占用索引值为0~3以及6~9的REG bundle。如图19所示,基于图10所示实施例所确定的PDCCH candidate占用索引值为0、1、6、7、14、15、20和21的REG bundle。结合图9(a)和图19可以看出,相比较于索引值为0~3以及6~9的REG bundle,索引值为0、1、6、7、14、15、20和21的REG bundle在时域上分布得更加离散,因此基于图10所示实施例所确定的PDCCH candidate能够获取到更高的时域分集增益。并且,结合图16和图19可以看出,相比较满足规则1的PDCCH candidate,满足规则2的PDCCH candidate所占用的物理时频资源在频域上更加分散,从而其能够获取到更高的频率分集只能用。
目前,在一些场景下,第一物理时频资源区域包含的REG个数多个第二物理时频资源区域包含的REG个数。示例性的,如图20所示,CORESET包括20个REG bundle,第一物理时频资源区域包含索引值为0~11的REG bundle,第二物理时频资源区域包含索引值为12~19的REG bundle。这种情况下,第一CCE集合所包含的CCE的个数多于第二CCE集合所包含的CCE的个数。
可选的,针对这种情况,基于图10所示的实施例基础上,如图21所示,该资源确定方法在步骤S101之前还包括步骤S201。
S201、通信设备确定第二CCE集合是否能够为编号为
Figure PCTCN2021111904-appb-000045
的聚合等级为L的PDCCH candidate提供m个第二CCE。
作为一种可能的实现方式,当满足第三公式时,通信设备确定第二CCE集合能够为编号为
Figure PCTCN2021111904-appb-000046
的聚合等级为L的PDCCH candidate提供m个第二CCE。当不满足第七公式时,通信设备确定第二CCE集合不能够为编号为
Figure PCTCN2021111904-appb-000047
的聚合等级为L的PDCCH candidate提供m个第二CCE。
一种可能的设计中,当CORESET中的CCE的编号方式采用编号方式2-1时,第 三公式可以如下公式(18)所示:
Figure PCTCN2021111904-appb-000048
另一种可能的设计中,当CORESET中的CCE的编号方式采用编号方式2-2时,第三公式可以如下公式(19)所示:
Figure PCTCN2021111904-appb-000049
应理解,当第二CCE集合能够为编号为
Figure PCTCN2021111904-appb-000050
的聚合等级为L的PDCCH candidate提供m个CCE时,通信设备执行下述步骤S101-S102。
当第二CCE集合不能够为编号为
Figure PCTCN2021111904-appb-000051
的聚合等级为L的PDCCH candidate提供m个CCE时,通信设备根据上述公式(1),确定编号为
Figure PCTCN2021111904-appb-000052
的聚合等级为L的PDCCH candidate所占用的L个连续的CCE;进而,通信设备根据L个连续的CCE,确定PDCCH candidate所占用的物理时频资源。
当前,对于REDCAP终端设备来说,现有技术中的交织方式并不能使PDCCH candidate获取较好的频率分集增益。
结合图22进行举例说明,假设CORESET中的REG bundle size为6,CORESET包括索引值为0~23的REG bundle。以聚合等级为4为例,假设PDCCH candidate占用CCE0~CCE3,在采用当前交织方式并且交织深度为2的情况下,CCE0映射到索引值为0的REG bundle,CCE1映射到索引值为12的REG bundle,CCE2映射到索引值为2的REG bundle,CCE3映射到索引值为13的REG bundle。可见,PDCCH candidate占用索引值为0,1,12和13的REG bundle。由于索引值为0,12的REG bundle和索引值为1,13的REG bundle相邻,因此PDCCH candidate无法获取有效的频率分集增益。
结合图23进行举例说明,假设CORESET中的REG bundle size为3,CORESET包括索引值为0~47的REG bundle。以聚合等级为4为例,假设PDCCH candidate占用CCE0~CCE3,在采用当前交织方式并且交织深度为2的情况下,CCE0映射到索引值为0和24的REG bundle,CCE1映射到索引值为1和25的REG bundle,CCE2映射到索引值为2和26的REG bundle,CCE3映射到索引值为3和27的REG bundle。可见,PDCCH candidate占用索引值为0,1,2,3,24,25,26和27的REG bundle。由于索引值为0,1,2,3,24,25,26和27的REG bundle在频域上是聚集在一起的,因此PDCCH candidate无法获取到有效的频率分集增益。
为了解决上述技术问题,本申请提供一种资源确定方法,其思路在于:改进现有技术的交织方式,以便于将PDCCH candidate所占用的L个CCE可以映射到相对离散的若干个REG bundle上,从而使得PDCCH candidate能够获取更高的分集增益。
如图24所示,为本申请实施例提供的一种资源确定方法,该方法包括以下步骤:
S301、通信设备确定PDCCH candidate所占用的L个CCE的索引值。
作为一种实现方式,通信设备根据上述公式(1),确定PDCCH candidate所占用的L个CCE的索引值。
S302、对于L个CCE中的每一个CCE,通信设备根据CCE的索引值,确定CCE 对应的p个输入序号。
其中,p为正整数。应理解,p根据CCE占用的REG数目和CORESET所配置的REG bundle size来确定。示例性的,在一个CCE占用6个REG的情况下,p=6/K。其中,K表示REG bundle size。
假设CCE的索引值为i,则CCE的p个输入序号分别为:
Figure PCTCN2021111904-appb-000053
S303、对于L个CCE中的每一个CCE,通信设备根据CCE对应的p个输入序号以及第一交织器,确定CCE映射到的p个REG bundle的索引值。
其中,上述第一交织器用于将间隔为交织深度的两个输入序号输出为频域上不相邻的两个REG bundle对应的索引值。
应理解,两个REG bundle在频域上不相邻是指,一个REG bundle占用的RB与另一个REG bundle占用的RB在频域上不连续。
基于图24所示实施例,由于REDCAP终端设备一般采用较大的聚合等级,因此其PDCCH candidate占用的L个CCE对应的若干个输入序号中很可能存在间隔为交织深度的两个输入序号。由于本申请实施例提供的第一交织器用于将间隔为交织深度的两个输入序号输出为频域上不相邻的两个REG bundle对应的索引值,因此PDCCH candidate占用的若干个REG bundle中可以存在至少两个频域上不相邻的REG bundle,从而减少PDCCH candidate所占用的REG bundle聚集到一块的概率,从而提高PDCCH candidate获取到的频率分集增益。
示例性的,结合图25进行举例说明,图25中CORESET所配置的REG bundle size为6,CORESET包括索引值0~23的REG bundle。应理解,由于REG bundle为6,因此CCE的索引值即为CCE对应的输入序号。在图25中,矩形方块中的第一行数字表示REG bundle的索引值,第二行数字表示对应的输入序号。参见图25,在交织深度为2的情况下,本申请实施例提供的第一交织器可以用于将输入序号0输出为REG bundle的索引值0,将输入序号4输出为REG bundle的索引值1,将输入序号8输出为REG bundle的索引值2,将输入序号12输出为REG bundle的索引值3,将输入序号16输出为REG bundle的索引值4,将输入序号20输出为REG bundle的索引值5,将输入序号2输出为REG bundle的索引值6,将输入序号6输出为REG bundle的索引值7,将输入序号10输出为REG bundle的索引值8,将输入序号14输出为REG bundle的索引值9,将输入序号18输出为REG bundle的索引值10,将输入序号22输出为REG bundle的索引值11,将输入序号1输出为REG bundle的索引值12,将输入序号5输出为REG bundle的索引值13,将输入序号9输出为REG bundle的索引值14,将输入序号13输出为REG bundle的索引值15,将输入序号17输出为REG bundle的索引值16,将输入序号21输出为REG bundle的索引值17,将输入序号3输出为REG bundle的索引值18,将输入序号7输出为REG bundle的索引值19,将输入序号11输出为REG bundle的索引值20,将输入序号15输出为REG bundle的索引值21,将输入序号19输出为REG bundle的索引值22,将输入序号23输出为REG bundle的索引值23。
基于图25,假设PDCCH candidate占用CCE0~CCE3。基于第一交织器,通信设备能够确定PDCCH candidate占用索引值为0,6,12,18的REG bundle。可见,由于CCE0 映射到索引值为0的REG bundle,和CCE2映射到索引值为6的REG bundle,而索引值为0的REG bundle和索引值为6的REG bundle不相邻,从而该PDCCH candidate能够获取到较好的频率分集增益。
下面对第一交织器的设计思路进行简单介绍。应理解,第一交织器还可以有其他设计方式,并不局限于以下内容。
可选的,第一交织器的设计思路为:确定输入序号对应的三维编号;之后,根据输入序号对应的三维编号,确定输入序号对应的REG bundle的索引值。其中,三维编号包括组号、行号以及列号。
这样一来,相比于现有技术中的交织方法中输入序号一般映射为两维编号(也即行号和列号),本申请实施例提供的第一交织器通过增加一个维度的编号(也即组号),来使得输入序号映射到REG bundle的索引值的结果更加离散,从而使得CCE映射到REG bundle的结果更加离散。
设计1,第一交织器满足以下公式(20):
Figure PCTCN2021111904-appb-000054
其中,x表示输入序号,r 2表示三维编号中的组号,r 1表示三维编号中的行号,c表示三维编号中的列号。
在本申请实施例中,R表示交织深度,K表示REG bundle size,
Figure PCTCN2021111904-appb-000055
表示CORESET所包含的REG的个数,
Figure PCTCN2021111904-appb-000056
表示CORESET中第一物理时频资源区域所包含的REG的个数,
Figure PCTCN2021111904-appb-000057
表示CORESET中第二物理时频资源区域所包含的REG的个数。
应理解,上述公式(20)中x=2cR+r,r=r 2R+r 1,用于确定输入序号对应的三维编号。上述公式(20)中
Figure PCTCN2021111904-appb-000058
用于确定三维编号对应的REG bundle的索引值。
示例性的,以图6(a)所示的CORESET为例,基于满足公式(20)的第一交织 器,CCE的索引值与REG bundle的索引值之间的对应关系可以如图25所示。
应理解,上述公式(20)中,r=r 2R+r 1相当于一重交织,因此公式(20)相当于对输入序号作了两重交织而得到输入序号对应的REG bundle的索引值。
设计2、第一交织器满足以下公式(21)
Figure PCTCN2021111904-appb-000059
示例性的,以图6(a)所示的CORESET为例,基于满足公式(21)的第一交织器,在交织深度为2的情况下,CCE的索引值与REG bundle的索引值之间的对应关系可以如图26所示。参见图26,CCE0映射到索引值为0的REG bundle,CCE1映射到索引值为18的REG bundle。这样一来,聚合等级L=2的PDCCH candidate(例如占用CCE0和CCE1的PDCCH candidate),也可以获得较好的频率分集增益。
设计3、第一交织器满足以下公式(22):
Figure PCTCN2021111904-appb-000060
其中,公式(22)与公式(20)的区别在于,公式(20)中的n shift替换为
Figure PCTCN2021111904-appb-000061
应理解,n shift是一个半静态配置的参数,可以通过RRC信令、MAC CE等配置;
Figure PCTCN2021111904-appb-000062
是随时间变化而变化的值。从而,相较于公式(20),公式(22)能够使输入序号映射到REG bundle的索引值的映射结果在频域上更加随机化,以提高PDCCH candidate获取到较好的频率分集增益的概率。
可选的,
Figure PCTCN2021111904-appb-000063
可以是根据符号索引值时变的函数来确定。
示例性的,以图6(a)所示的CORESET为例,基于满足公式(22)的第一交织器,在交织深度为2的情况下,假设第一个区域内得到的
Figure PCTCN2021111904-appb-000064
第二个区域内得到的
Figure PCTCN2021111904-appb-000065
输入序号和REG bundle的索引值可以如图27所示。应理解,在REG bundle size为6的情况下,CCE的索引值即为输入序号。
参见图27,以占用CCE0~CCE4的PDCCH candidate为例,由于CCE0映射到索引值为2的REG bundle,CCE1映射到索引值为16的REG bundle,CCE2映射到索引值为8的REG bundle,CCE3映射到索引值为22的REG bundle。可见,该PDCCH candidate占用的REG bundle在频域上更加离散化,从而该PDCCH candidate能够获取较好的频率分集增益。
设计4、第一交织器满足以下公式(23)
Figure PCTCN2021111904-appb-000066
Figure PCTCN2021111904-appb-000067
其中,公式(23)与公式(21)的区别在于,公式(21)中的n shift替换为
Figure PCTCN2021111904-appb-000068
应理解,n shift是一个半静态配置的参数,
Figure PCTCN2021111904-appb-000069
是随机值。从而,相较于公式(21),公式(23)能够使输入序号映射到REG bundle的索引值的映射结果在频域上更加随机化,以提高PDCCH candidate获取到较好的频率分集增益的概率。
示例性的,以图6(a)所示的CORESET为例,基于满足公式(23)的第一交织器,在交织深度为2的情况下,假设第一个区域内得到的
Figure PCTCN2021111904-appb-000070
第二个区域内得到的
Figure PCTCN2021111904-appb-000071
输入序号和REG bundle的索引值可以如图28所示。应理解,在REG bundle size为6的情况下,CCE的索引值即为输入序号。
参见图28,以占用CCE0~CCE4的PDCCH candidate为例,由于CCE0映射到索引值为2的REG bundle,CCE1映射到索引值为22的REG bundle,CCE2映射到索引值为8的REG bundle,CCE3映射到索引值为16的REG bundle。可见,该PDCCH candidate占用的REG bundle在频域上更加离散化,从而该PDCCH candidate能够获取较好的频率分集增益。
可选的,本申请实施例还提供一种资源确定方法,以应用于CORESET中第一物理时频资源区域所包含的REG bundle的个数多于第二物理时频资源区域所包含的REG bundle的个数的场景下。如图29所示,该资源确定方法包括以下步骤:
S401、通信设备确定PDCCH candidate所占用的L个CCE的索引值。
作为一种实现方式,通信设备根据上述公式(1),确定PDCCH candidate所占用的L个CCE的索引值。
对于L个CCE中的每一个CCE,通信设备均应执行下述步骤S302。
S402、通信设备根据CCE的索引值,确定CCE对应的p个输入序号。
可选的,p根据CCE占用的REG数目和CORESET所配置的REG bundle size来确定。示例性的,在一个CCE占用6个REG的情况下,p=6/K。其中,K表示REG bundle size。
假设CCE的索引值为i,则CCE的p个输入序号分别为:
Figure PCTCN2021111904-appb-000072
对于CCE对应的P个输入序号中的任意一个输入序号,通信设备均应执行以下步骤S303。
S403、通信设备判断输入序号是否满足预设条件。
一种可能的设计中,预设条件为输入序号是否小于第二物理时频资源区域所包含的REG bundle的数目的两倍。
示例性的,预设条件可以以公式(24)来表示。
Figure PCTCN2021111904-appb-000073
应理解,通信设备判断输入序号是否满足预设条件,其目的在于:确定第二物理时频资源区域是否足够的REG bundle以供映射。
当满足预设条件时,通信设备执行下述步骤S304;否则,通信设备执行下述步骤S305。
S404、通信设备根据第一交织器和输入序号,确定输入序号对应的REG bundle的索引值。
其中,第一交织器的相关介绍可以参考上文,在此不再赘述。
S405、通信设备根据第二交织器和输入序号,确定输入序号对应的REG bundle的索引值。
示例性的,第二交织器满足以下公式(25):
Figure PCTCN2021111904-appb-000074
示例性的,图20示出一种CORESET的示意图。该CORESET包括20个REG bundle,REG bundle size为6。其中,第一物理时频资源区域包括索引值为0~11的REG bundle,第二物理时频资源区域包括索引值为12~19的REG bundle。
下面基于图20所示的CORESET来举例说明图29所示的实施例。
示例一、以第一交织器满足上述公式(20)为例,在交织深度为2的情况下,第一交织器负责输入序号1~15的映射,第二交织器负责输入序号16~19的映射。从而,输入序号与REG bundle的索引值之间的对应关系可以如图26所示。
参见图30,以占用CCE0~CCE4的PDCCH candidate为例,由于CCE0映射到索引值为0的REG bundle,CCE1映射到索引值为12的REG bundle,CCE2映射到索引值为6的REG bundle,CCE3映射到索引值为16的REG bundle。可见,该PDCCH candidate占用的REG bundle在频域上更加离散化,从而该PDCCH candidate能够获取较好的频率分集增益。
示例二,以第一交织器满足上述公式(21)为例,在交织深度为2的情况下,第一交织器负责输入序号1~15的映射,第二交织器负责输入序号16~19的映射。从而,输入序号与REG bundle的索引值之间的对应关系可以如图31所示。
参见图31,以占用CCE0~CCE4的PDCCH candidate为例,由于CCE0映射到索引值为0的REG bundle,CCE1映射到索引值为16的REG bundle,CCE2映射到索引值为6的REG bundle,CCE3映射到索引值为12的REG bundle。可见,该PDCCH candidate占用的REG bundle在频域上更加离散化,从而该PDCCH candidate能够获取较好的频率分集增益。
基于图29所示的实施例,在CORESET中第一物理时频资源区域所包含的REG  bundle的个数多于第二物理时频资源区域所包含的REG bundle的个数的场景下,保证通信设备能够准确确定每一个输入序号对应的REG bundle的索引值,并且使得输入序号与REG bundle的索引值之间的映射结果更加离散化,以便于使得PDCCH candidate能够获取较好的分集增益。
可以理解的是,为了实现上述功能,通信设备包含了执行每一个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件来实现,或者以硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对通信设备进行功能模块的划分,例如,可以对应每一个功能划分每一个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应每一个功能划分每一个功能模块为例进行说明:
如图32所示,为本申请实施例提供的一种通信装置的结构示意图。该通信装置包括确定单元301和映射单元302。其中,确定单元301用于支持通信装置执行图10中的步骤S101,图13中的步骤S1011和S1012,图20中的步骤S201,图24中的步骤S301。映射单元302用于支持通信装置执行图10中的步骤S102,图24中的步骤S302和S303。上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
当通信装置作为终端设备时,图32中的确定单元301和映射单元302均可以由图2中的处理器101来实现。当通信装置作为网络设备时,图32中的确定单元301和映射单元302均可以由图2中的处理器201来实现。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在计算机上运行时,使得该计算机执行本申请实施例所提供的方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种芯片,该芯片包括处理电路和通信接口,所述通信接口用于接收输入的信号并提供给处理模块,和/或用于处理将处理电路生成的信号输出。所述处理电路用于支持芯片执行本申请实施例所提供的的方法。在一实施方式中,处理电路可以运行代码指令以执行本申请实施例所提供的的方法。该代码指令可以来自 芯片内部的存储器,也可以来自芯片外部的存储器。其中,处理电路为该芯片上集成的处理器或者微处理器或者集成电路。通信接口可以为输入输出电路或者收发管脚。
本申请实施例还提供一种包含计算机指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行本申请实施例所提供的方法。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种资源确定方法,其特征在于,所述方法包括:
    确定控制资源集合CORESET中的PDCCH候选位置candidate在第一控制信道元素CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值;所述CORESET被划分为第一物理时频资源区域和第二物理时频资源区域,所述第一物理时频资源区域在时域和/或频域上不同于所述第二物理时频资源区域,所述第一CCE集合所包含的CCE的个数根据所述第一物理时频资源区域所包含的资源元素组REG的个数来确定,所述第二CCE集合所包含的CCE的个数根据所述第二物理时频资源区域所包含的REG的个数来确定,m和n均为正整数,并且m与n之和等于所述PDCCH candidate的聚合等级;
    根据所述n个第一CCE和所述m个第二CCE,确定所述PDCCH candidate所占用的物理时频资源。
  2. 根据权利要求1所述的方法,其特征在于,所述n个第一CCE的索引值是连续的,所述m个第二CCE的索引值是连续的。
  3. 根据权利要求1或2所述的方法,其特征在于,n等于m。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一CCE集合包含的CCE个数与所述第二CCE集合包含的CCE个数相同。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,第一索引值与第二索引值之间的差值是预设值,所述第一索引值为所述n个第一CCE中索引值最小的第一CCE的索引值,所述第二索引值为所述m个第二CCE中索引值最小的第二CCE的索引值。
  6. 根据权利要求5所述的方法,其特征在于,当所述第一CCE集合从0开始编号,所述第二CCE集合从N cce,p,first开始编号,所述预设值等于N cce,p,first,N cce,p,first为所述第一CCE集合所包括的CCE的个数。
  7. 根据权利要求6所述的方法,其特征在于,所述确定CORESET中的PDCCH candidate在第一CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值,包括:
    根据第一公式,确定所述n个第一CCE中每一个第一CCE的索引值;
    根据第二公式,确定所述n个第二CCE中每一个第二CCE的索引值;
    其中,所述第一公式如下所示:
    Figure PCTCN2021111904-appb-100001
    所述第二公式如下所示:
    Figure PCTCN2021111904-appb-100002
    其中,L为所述PDCCH candidate的聚合等级;
    当所述PDCCH candidate属于公共搜索空间时,
    Figure PCTCN2021111904-appb-100003
    当所述PDCCH candidate属于用户设备特定搜索空间时,
    Figure PCTCN2021111904-appb-100004
    Figure PCTCN2021111904-appb-100005
    n RNTI为终端设备的C-RNTI;当pmod3=0,则A p=39827;当pmod3=1,则A p=39829;当pmod3=2,则A p=39839;D=65537;p为所述CORESET的编号;
    Figure PCTCN2021111904-appb-100006
    为所述PDCCH candidate的编号;
    Figure PCTCN2021111904-appb-100007
    为大于等于0小于等于
    Figure PCTCN2021111904-appb-100008
    的整数;
    Figure PCTCN2021111904-appb-100009
    为搜索空间s中对应载波n CI的聚合等级为L的候选PPDCH的总个数;
    n CI是载波指示域的取值;
    对公共搜索空间来说,
    Figure PCTCN2021111904-appb-100010
    对用户设备特定搜索空间来说,
    Figure PCTCN2021111904-appb-100011
    等于所有n CI对应的
    Figure PCTCN2021111904-appb-100012
    中的最大值;
    N CCE,p,first为第一CCE集合所包括的CCE的个数。
  8. 根据权利要求5所述的方法,其特征在于,当所述第一CCE集合所包括的CCE从0开始编号,所述第一CCE集合所包括的CCE从0开始编号时,所述预设值等于0。
  9. 根据权利要求8所述的方法,其特征在于,所述确定CORESET中的PDCCH candidate在第一CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值,包括:
    根据第一公式,确定所述n个第一CCE中每一个第一CCE的索引值;
    根据第二公式,确定所述n个第二CCE中每一个第二CCE的索引值;
    其中,所述第一公式如下所示:
    Figure PCTCN2021111904-appb-100013
    所述第二公式如下所示:
    Figure PCTCN2021111904-appb-100014
    其中,L为所述PDCCH candidate的聚合等级;
    当所述PDCCH candidate属于公共搜索空间时,
    Figure PCTCN2021111904-appb-100015
    当所述PDCCH candidate属于用户设备特定搜索空间时,
    Figure PCTCN2021111904-appb-100016
    Figure PCTCN2021111904-appb-100017
    n RNTI为终端设备的C-RNTI;当pmod3=0,则A p=39827;当pmod3=1,则A p=39829;当pmod3=2,则A p=39839;D=65537;p为所述CORESET的编号;
    Figure PCTCN2021111904-appb-100018
    为所述PDCCH candidate的编号;
    Figure PCTCN2021111904-appb-100019
    为大于等于0小于等于
    Figure PCTCN2021111904-appb-100020
    的整数;
    Figure PCTCN2021111904-appb-100021
    为搜索空间s中对应载波n CI的聚合等级为L的候选PPDCH的总个数;
    n CI是载波指示域的取值;
    对公共搜索空间来说,
    Figure PCTCN2021111904-appb-100022
    对用户设备特定搜索空间来说,
    Figure PCTCN2021111904-appb-100023
    等于所有n CI对应的
    Figure PCTCN2021111904-appb-100024
    中的最大值;
    N CCE,p,first为所述第一CCE集合所包括的CCE的个数;
    N cce,p,second为所述第二CCE集合所包括的CCE的个数。
  10. 根据权利要求1至4任一项所述的方法,其特征在于,第一索引值与第二索引值之间的差值根据预设值以及偏移值来确定,所述第一索引值为所述n个第一CCE中索引值最小的第一CCE的索引值,所述第二索引值为所述m个第二CCE中索引值最小的第二CCE的索引值。
  11. 根据权利要求10所述的方法,其特征在于,
    当所述第一CCE集合从0开始编号,所述第二CCE集合从N cce,p,first开始编号,所述预设值等于N cce,p,first,N cce,p,first为所述第一CCE集合所包括的CCE的个数;或者,
    当所述第一CCE集合所包括的CCE从0开始编号,所述第一CCE集合所包括的CCE从0开始编号时,所述预设值等于0。
  12. 根据权利要求10或11所述的方法,其特征在于,所述确定CORESET中的PDCCH candidate在第一CCE集合中占用的n个第一CCE的索引值,以及在第二CCE集合中占用的m个第二CCE的索引值,包括:
    根据第一公式,确定所述n个第一CCE中每一个第一CCE的索引值;
    根据第二公式,确定所述n个第二CCE中每一个第二CCE的索引值。
  13. 根据权利要求12所述的方法,其特征在于,当所述CORESET所包括的N CCE,p个CCE从0开始编号时,所述第一公式如下所示:
    Figure PCTCN2021111904-appb-100025
    所述第二公式如下所示:
    Figure PCTCN2021111904-appb-100026
    其中,L为所述PDCCH candidate的聚合等级;
    当所述PDCCH candidate属于公共搜索空间时,
    Figure PCTCN2021111904-appb-100027
    当所述PDCCH candidate属于用户设备特定搜索空间时,
    Figure PCTCN2021111904-appb-100028
    Figure PCTCN2021111904-appb-100029
    n RNTI为终端设备的C-RNTI;当pmod3=0,则A p=39827;当pmod3=1, 则A p=39829;当pmod3=2,则A p=39839;D=65537;p为所述CORESET的编号;
    Figure PCTCN2021111904-appb-100030
    为所述PDCCH candidate的编号;
    Figure PCTCN2021111904-appb-100031
    为大于等于0小于等于
    Figure PCTCN2021111904-appb-100032
    的整数;
    Figure PCTCN2021111904-appb-100033
    为搜索空间s中对应载波n CI的聚合等级为L的候选PPDCH的总个数;
    n CI是载波指示域的取值;
    对公共搜索空间来说,
    Figure PCTCN2021111904-appb-100034
    对用户设备特定搜索空间来说,
    Figure PCTCN2021111904-appb-100035
    等于所有n CI对应的
    Figure PCTCN2021111904-appb-100036
    中的最大值;
    N CCE,p,first为所述第一CCE集合所包括的CCE的个数;
    N cce,p,second为所述第二CCE集合所包括的CCE的个数;
    O symbol是偏移值。
  14. 根据权利要求12所述的方法,其特征在于,当所述第一CCE集合所包括的CCE从0开始编号,所述第一CCE集合所包括的CCE从0开始编号时,所述第一公式如下所示:
    Figure PCTCN2021111904-appb-100037
    所述第二公式如下所示:
    Figure PCTCN2021111904-appb-100038
    其中,L为所述PDCCH candidate的聚合等级;
    当所述PDCCH candidate属于公共搜索空间时,
    Figure PCTCN2021111904-appb-100039
    当所述PDCCH candidate属于用户设备特定搜索空间时,
    Figure PCTCN2021111904-appb-100040
    Figure PCTCN2021111904-appb-100041
    n RNTI为终端设备的C-RNTI;当pmod3=0,则A p=39827;当pmod3=1,则A p=39829;当pmod3=2,则A p=39839;D=65537;p为所述CORESET的编号;
    Figure PCTCN2021111904-appb-100042
    为所述PDCCH candidate的编号;
    Figure PCTCN2021111904-appb-100043
    为大于等于0小于等于
    Figure PCTCN2021111904-appb-100044
    的整数;
    Figure PCTCN2021111904-appb-100045
    为搜索空间s中对应载波n CI的聚合等级为L的候选PPDCH的总个数;
    n CI是载波指示域的取值;
    对公共搜索空间来说,
    Figure PCTCN2021111904-appb-100046
    对用户设备特定搜索空间来说,
    Figure PCTCN2021111904-appb-100047
    等于所有n CI对应的
    Figure PCTCN2021111904-appb-100048
    中的最大值;
    N CCE,p,first为所述第一CCE集合所包括的CCE的个数;
    N cce,p,second为所述第二CCE集合所包括的CCE的个数;
    O symbol是偏移值。
  15. 一种资源确定方法,其特征在于,所述方法包括:
    确定PDCCH candidate所占用的L个CCE的索引值,L等于所述PDCCH candidate的聚合等级;
    对于所述L个CCE中的每一个CCE,根据所述CCE的索引值,确定所述CCE对应的p个输入序号,p为正整数;
    根据所述CCE对应的p个输入序号以及第一交织器,确定所述CCE映射到的p个控制元素组束REG bundle的索引值;所述第一交织器用于将间隔为交织深度的两个输入序号输出为频域上不相邻的两个REG bundle的索引值。
  16. 根据权利要求15所述的方法,其特征在于,所述根据所述CCE对应的p个输入序号以及第一交织器,确定所述CCE映射到的p个REG bundle的索引值,包括:
    对于所述CCE对应的P个输入序号中的任意一个输入序号,确定所述输入序号对应的三维编号,所述三维编号包括组号、行号以及列号;
    根据所述输入序号对应的三维编号,确定所述输入序号对应的REG bundle的索引值。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一交织器满足以下公式:
    Figure PCTCN2021111904-appb-100049
    x=2cR+r
    r=r 2R+r 1
    r 1=0,1,...R-1
    r 2=0,1
    Figure PCTCN2021111904-appb-100050
    Figure PCTCN2021111904-appb-100051
    Figure PCTCN2021111904-appb-100052
    Figure PCTCN2021111904-appb-100053
    其中,f(x)用于表示REG bundle的索引值,x用于表示输入序号,R表示交织深度,K表示REG bundle size,
    Figure PCTCN2021111904-appb-100054
    表示CORESET所包含的REG的个数,
    Figure PCTCN2021111904-appb-100055
    表示所述CORESET中第一物理时频资源区域所包含的REG的个数,
    Figure PCTCN2021111904-appb-100056
    表示所述CORESET中第二物理时频资源区域所包含的REG的个数,n shift为偏移值。
  18. 根据权利要求15或16所述的方法,其特征在于,所述第一交织器满足以下公式:
    Figure PCTCN2021111904-appb-100057
    x=2cR+r
    r=r 2R+r 1
    r 1=0,1,...R-1
    r 2=0,1
    Figure PCTCN2021111904-appb-100058
    Figure PCTCN2021111904-appb-100059
    Figure PCTCN2021111904-appb-100060
    Figure PCTCN2021111904-appb-100061
    其中,f(x)用于表示REG bundle的索引值,x用于表示输入序号,R表示交织深度,K表示REG bundle size,
    Figure PCTCN2021111904-appb-100062
    表示CORESET所包含的REG的个数,
    Figure PCTCN2021111904-appb-100063
    表示所述CORESET中第一物理时频资源区域所包含的REG的个数,
    Figure PCTCN2021111904-appb-100064
    表示所述CORESET中第二物理时频资源区域所包含的REG的个数,n shift为偏移值。
  19. 根据权利要求15或16所述的方法,其特征在于,所述第一交织器满足以下公式:
    Figure PCTCN2021111904-appb-100065
    x=2cR+r
    r=r 2R+r 1
    r 1=0,1,...R-1
    r 2=0,1
    Figure PCTCN2021111904-appb-100066
    Figure PCTCN2021111904-appb-100067
    Figure PCTCN2021111904-appb-100068
    Figure PCTCN2021111904-appb-100069
    其中,f(x)用于表示REG bundle的索引值,x用于表示输入序号,R表示交织深度,K表示REG bundle size,
    Figure PCTCN2021111904-appb-100070
    表示CORESET所包含的REG的个数,
    Figure PCTCN2021111904-appb-100071
    表示所述CORESET中第一物理时频资源区域所包含的REG的个数,
    Figure PCTCN2021111904-appb-100072
    表示所述CORESET中第二物理时频资源区域所包含的REG的个数,
    Figure PCTCN2021111904-appb-100073
    是随时间变化而变化的数值。
  20. 根据权利要求15或16所述的方法,其特征在于,所述第一交织器满足以下 公式:
    Figure PCTCN2021111904-appb-100074
    x=2cR+r
    r=r 2R+r 1
    r 1=0,1,...R-1
    r2=0,1
    Figure PCTCN2021111904-appb-100075
    Figure PCTCN2021111904-appb-100076
    Figure PCTCN2021111904-appb-100077
    Figure PCTCN2021111904-appb-100078
    其中,f(x)用于表示REG bundle的索引值,x用于表示输入序号,R表示交织深度,K表示REG bundle size,
    Figure PCTCN2021111904-appb-100079
    表示CORESET所包含的REG的个数,
    Figure PCTCN2021111904-appb-100080
    表示所述CORESET中第一物理时频资源区域所包含的REG的个数,
    Figure PCTCN2021111904-appb-100081
    表示所述CORESET中第二物理时频资源区域所包含的REG的个数,
    Figure PCTCN2021111904-appb-100082
    是随时间变化而变化的数值。
  21. 一种通信装置,其特征在于,所述通信装置包括用于执行权利要求1至20中任一项所涉及的方法中的各个步骤的单元。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行权利要求1至20任一项所述的方法。
  23. 一种芯片,其特征在于,所述芯片包括处理单元和收发管脚;所述处理单元用于执行权利要求1至20中任一项所涉及的方法中的处理操作,所述收发管脚用于执行权利要求1至20中任一项所涉及的方法中的通信操作。
PCT/CN2021/111904 2020-09-21 2021-08-10 资源确定方法及装置 WO2022057524A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/246,002 US20230354366A1 (en) 2020-09-21 2021-08-10 Resource determining method and apparatus
EP21868352.2A EP4203584A4 (en) 2020-09-21 2021-08-10 METHOD AND DEVICE FOR RESOURCE DETERMINATION

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010998233.0 2020-09-21
CN202010998233 2020-09-21
CN202011113021.6 2020-10-16
CN202011113021.6A CN114258136A (zh) 2020-09-21 2020-10-16 资源确定方法及装置

Publications (1)

Publication Number Publication Date
WO2022057524A1 true WO2022057524A1 (zh) 2022-03-24

Family

ID=80777558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111904 WO2022057524A1 (zh) 2020-09-21 2021-08-10 资源确定方法及装置

Country Status (3)

Country Link
US (1) US20230354366A1 (zh)
EP (1) EP4203584A4 (zh)
WO (1) WO2022057524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116436587A (zh) * 2023-06-14 2023-07-14 芯迈微半导体(上海)有限公司 控制信道的资源映射方法及装置和资源解映射方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028770A1 (zh) * 2017-08-10 2019-02-14 华为技术有限公司 通信方法、终端设备和网络设备
US20190268889A1 (en) * 2017-09-08 2019-08-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control and data channels in wireless communication system
CN110574459A (zh) * 2017-04-26 2019-12-13 夏普株式会社 终端装置、基站装置以及通信方法
CN110958094A (zh) * 2018-09-27 2020-04-03 中国移动通信有限公司研究院 一种物理下行控制信道的配置方法、检测方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110741594B (zh) * 2017-06-13 2022-05-17 Lg电子株式会社 接收下行链路控制信道的方法和用于该方法的设备
CN111182627A (zh) * 2018-11-09 2020-05-19 华为技术有限公司 接收信号的方法、发送信号的方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110574459A (zh) * 2017-04-26 2019-12-13 夏普株式会社 终端装置、基站装置以及通信方法
WO2019028770A1 (zh) * 2017-08-10 2019-02-14 华为技术有限公司 通信方法、终端设备和网络设备
US20190268889A1 (en) * 2017-09-08 2019-08-29 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control and data channels in wireless communication system
CN110958094A (zh) * 2018-09-27 2020-04-03 中国移动通信有限公司研究院 一种物理下行控制信道的配置方法、检测方法和设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Remaining issues and TP on interleaved CCE-to-REG mapping", "3GPP TSG RAN WG1 AD HOC MEETING R1-1800817", 26 January 2018 (2018-01-26), XP051385089 *
HUAWEI ET AL.: "Remaining issues on search space", "3GPP TSG RAN WG1 MEETING #92BIS R1-1803642", 20 April 2018 (2018-04-20), XP051412940 *
See also references of EP4203584A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116436587A (zh) * 2023-06-14 2023-07-14 芯迈微半导体(上海)有限公司 控制信道的资源映射方法及装置和资源解映射方法及装置
CN116436587B (zh) * 2023-06-14 2023-09-05 芯迈微半导体(上海)有限公司 控制信道的资源映射方法及装置和资源解映射方法及装置

Also Published As

Publication number Publication date
EP4203584A4 (en) 2024-03-20
EP4203584A1 (en) 2023-06-28
US20230354366A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US11363499B2 (en) Resource configuration method, apparatus, and system
WO2020259341A1 (zh) 资源确定方法及装置
US11044724B2 (en) Communication method, network side device, and terminal device
JP7319363B2 (ja) データ伝送方法及び通信装置
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
US20230199740A1 (en) Communication method and apparatus
CN114258136A (zh) 资源确定方法及装置
WO2022057524A1 (zh) 资源确定方法及装置
WO2022116014A1 (zh) 一种tbs确定方法
WO2021031948A1 (zh) 处理数据的方法和通信装置
WO2021212286A1 (zh) 物理下行控制信道传输方法、装置及存储介质
US20230180203A1 (en) Information Transmission Method and Communication Apparatus
KR20220030996A (ko) 통신 시스템에서 업링크 신호를 송신하는 방법 및 장치
WO2021077305A1 (zh) 测量方法、装置及系统
WO2021062687A1 (zh) 一种通信方法及装置
WO2022062838A1 (zh) 资源配置方法及装置
WO2019157903A1 (zh) 一种资源配置方法及装置
WO2021036763A1 (zh) 监测周期的调整方法及装置
US20230027281A1 (en) Control messaging for multi-beam communications
WO2022151380A1 (zh) 传输pucch的方法及装置
WO2023025301A1 (zh) 一种通信方法及通信装置
WO2024067617A1 (zh) 资源配置的方法及装置
WO2023051173A1 (zh) 数据传输方法及相关装置
WO2021032167A1 (zh) 传输块大小确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21868352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021868352

Country of ref document: EP

Effective date: 20230322

NENP Non-entry into the national phase

Ref country code: DE