WO2021077305A1 - 测量方法、装置及系统 - Google Patents

测量方法、装置及系统 Download PDF

Info

Publication number
WO2021077305A1
WO2021077305A1 PCT/CN2019/112605 CN2019112605W WO2021077305A1 WO 2021077305 A1 WO2021077305 A1 WO 2021077305A1 CN 2019112605 W CN2019112605 W CN 2019112605W WO 2021077305 A1 WO2021077305 A1 WO 2021077305A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
time domain
overlapping
information
measurement
Prior art date
Application number
PCT/CN2019/112605
Other languages
English (en)
French (fr)
Inventor
花梦
龙毅
焦淑蓉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19950190.9A priority Critical patent/EP4044720A4/en
Priority to CN201980100821.3A priority patent/CN114424654A/zh
Priority to PCT/CN2019/112605 priority patent/WO2021077305A1/zh
Publication of WO2021077305A1 publication Critical patent/WO2021077305A1/zh
Priority to US17/725,049 priority patent/US20220248245A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • This application relates to the field of wireless communication technology, and in particular to measurement methods, devices, and systems.
  • Rate matching resources In the new radio (NR) system in the fifth generation (5G) mobile communication system, some resources that cannot be used to transmit the physical downlink shared channel (PDSCH) are defined, called Rate matching resources. This part of the resources can be used for forward and backward compatibility of the NR system. For example, some resources are periodically allocated in the NR resource for use by a certain system or a certain function in the future.
  • ITU International Telecommunication Union
  • eMBB enhanced mobile broadband
  • URLLC ultra -reliable and low latency communications
  • mMTC massive machine type communications
  • the main characteristics of the URLLC service are that it requires ultra-high reliability, low latency, less data transmission, and burstiness.
  • the measurement resource can be, for example, non-zero power (NZP) channel state information (channel state information, CSI)-reference signal (RS) resource or CSI-interference measurement (interference measurement, IM). ) Resources.
  • NZP non-zero power
  • CSI channel state information
  • RS reference signal
  • IM CSI-interference measurement
  • the NZP CSI-RS resource of a terminal device overlaps with the PDSCH resource carrying the URLLC service data of other terminal devices
  • the NZP CSI-RS on the NZP CSI-RS resource and the URLLC service data on the PDSCH resource will be mutually exclusive.
  • interference If the CSI-IM resource of a terminal device overlaps with the PDSCH resource carrying URLLC service data of other terminal devices, the interference measurement on the CSI-IM resource will be interfered by the URLLC service data on the PDSCH resource, thereby affecting the terminal device’s performance. Interference measurement accuracy.
  • the overlap of two resources can be partial overlap or complete overlap.
  • the NZP CSI-RS resource of a terminal device overlaps with the rate matching resource
  • the NZP CSI-RS on the NZP CSI-RS resource and the signal for forward or backward compatibility on the rate matching resource will be Mutual interference
  • the CSI-IM resource of a terminal device overlaps the rate matching resource
  • the interference measurement on the CSI-IM resource will be interfered by the signal used for forward or backward compatibility on the rate matching resource, thereby affecting the terminal The accuracy of the interference measurement of the device.
  • NZP CSI-RS resources/CSI-IM resources and rate matching resources/PDSCH resources carrying URLLC service data do not overlap during base station scheduling.
  • NZP CSI-RS resources and CSI-IM resources may be periodic or semi-persistent (SP)
  • URLLC service data scheduling is relatively random
  • rate matching resources need to be based on forward and backward compatible applications
  • the scene is flexibly configured. Therefore, it is necessary to ensure that NZP CSI-RS resources/CSI-IM resources and rate matching resources/PDSCH resources carrying URLLC service data do not overlap, which may increase scheduling complexity and reduce scheduling flexibility.
  • the embodiments of the present application provide measurement methods, devices, and systems, which can avoid interference from other signals on measurement resources and improve measurement performance.
  • a measurement method is provided.
  • the communication device that executes the method may be a terminal device or a module, such as a chip, applied to the terminal device.
  • the execution subject is the terminal device as an example.
  • the terminal device receives the first information and the second information from the network device, and determines the first resource according to the first information, and determines the second resource according to the second information. Further, the terminal device determines a third resource according to the first resource and the second resource, the third resource includes some or all of the first resources except the first overlapping resource, and the first overlapping resource is the first resource and the second resource. 2. Overlapping resources of resources. Finally, the terminal device performs measurement on the third resource.
  • measurement can be performed on some or all of the first resources except the first overlapping resources. That is to say, on the overlapping resources of the first resource and the second resource, or on the overlapping resources of the first resource and the second resource and related resources of the overlapping resources, no measurement is performed, so other signals due to measurement resources can be avoided.
  • the interference caused by the measurement performance degradation problem.
  • the second information is configuration information of a rate matching resource, and the second resource is a rate matching resource; or, the second information is a preemption indication PI, and the second resource is a preemption resource indicated by the PI.
  • the third resource is a resource that does not overlap with the fourth resource in the first resource
  • the fourth resource includes a resource in the first frequency domain on the first time domain symbol in the first resource
  • the first resource A time domain symbol is a time domain symbol in the time domain resource corresponding to the first overlapping resource
  • the first frequency domain range includes the frequency domain range where the second overlapping resource is located
  • the second overlapping resource is the first time domain in the first overlapping resource.
  • the fourth resource further includes resources in the first frequency domain on the second time domain symbol in the first resource, and the second time domain symbol overlaps with the second resource in the time domain code division.
  • the time domain symbol of the CDM relationship if the measurement signal transmitted on each of the N REs is the signal superposition of the measurement signals of the N antenna ports after orthogonal code processing, then at the receiving end, it must Only when the measurement signals on the N REs are completely received can the measurement signals corresponding to the N antenna ports be processed. Therefore, if the fourth resource includes the resource in the first frequency domain on the first time domain symbol in the first resource, the fourth resource may also include the first frequency domain on the second time domain symbol in the first resource.
  • the second time domain symbol is a time domain symbol in a CDM relationship with the second overlapping resource in time domain code division multiple access. Since the second time domain symbol is a time domain symbol in a time-domain code division multiple access CDM relationship with the second overlapping resource, that is, the resource in the first frequency domain on the second time domain symbol in the first resource and the resource in the first resource.
  • the resources in the first frequency domain on the first time domain symbol have a time-domain CDM relationship, so the resources in the first frequency domain on the first time domain symbol in the first resource and the second time domain symbol in the first resource
  • the measurement signal carried on the resource in the first frequency domain on the above is mapped to multiple antenna ports through CDM.
  • the measurement signal carried on the resource in the first frequency domain on the first time domain symbol in the first resource is If the puncturing is removed, the measurement signal carried on the resource in the first frequency domain on the second time domain symbol in the first resource cannot be demodulated correctly.
  • the fourth resource since the fourth resource also includes resources in the first frequency domain on the second time domain symbol in the first resource, the problem that the receiving side cannot demodulate the complete measurement signal correctly can be avoided, thereby improving the measurement performance.
  • the first frequency domain range is the frequency domain range corresponding to the first resource; or, when the measurement performed is a subband measurement, the first frequency domain range is the first frequency domain.
  • the time domain resource of the first resource is no later than the time domain position of the CSI reference resource corresponding to the channel state information CSI report.
  • the CSI reference resource The time domain position of is the downlink time slot nNK, ⁇ DL and ⁇ UL are the index of the downlink sub-carrier spacing SCS and the index of the uplink SCS respectively, N is determined according to the parameters in the first information, N and K are both non-negative integers, and n'is the time when the CSI report is sent Slot index.
  • the preempted resource indicated by the PI can be known through the DCI carrying the PI, and a CSI report corresponds to a CSI reference resource, and the measurement resource used by the CSI report No later than this CSI reference resource.
  • the time domain position of the CSI reference resource is defined as the downlink time slot nNK.
  • the downlink time slot nN is advanced by K time slots, so that The CSI report obtained based on the resource no later than the time domain position of the existing CSI reference resource can be sent in the corresponding uplink time slot n'in time.
  • the terminal device receives the third information from the network device, the third information indicates the value of K; or, the terminal device according to the processing time of the physical downlink control channel and/or the time domain period of the PI , Determine the value of K. That is to say, in the embodiment of the present application, the value of K may be determined by the terminal device according to related parameters and predetermined rules, or may be determined by the network device and sent to the terminal device.
  • a measurement method is provided.
  • the communication device that executes the method may be a network device or a module applied to the network device, such as a chip.
  • the following description will be given by taking the execution subject as the network device as an example.
  • the network device sends first information and second information, where the first information indicates the first resource, and the second information indicates the second resource.
  • the network device determines a third resource according to the first resource and the second resource.
  • the third resource includes some or all of the first resources except the first overlapping resource, where the first overlapping resource is the first resource and the second resource. 2. Overlapping resources of resources.
  • the network device sends the measurement signal on the third resource, or the network device determines not to send the signal on the third resource. Since this method is a network-side method corresponding to the measurement method provided in the first aspect, it can also achieve the beneficial effects that can be achieved by the measurement method provided in the first aspect.
  • the second information is configuration information of a rate matching resource, and the second resource is a rate matching resource; or, the second information is a preemption indication PI, and the second resource is a preemption resource indicated by the PI.
  • the third resource is a resource that does not overlap with the fourth resource in the first resource
  • the fourth resource includes a resource in the first frequency domain on the first time domain symbol in the first resource
  • the first resource A time domain symbol is a time domain symbol in the time domain resource corresponding to the first overlapping resource
  • the first frequency domain range includes the frequency domain range where the second overlapping resource is located
  • the second overlapping resource is the first time domain in the first overlapping resource.
  • the fourth resource further includes resources in the first frequency domain on the second time domain symbol in the first resource, and the second time domain symbol overlaps with the second resource in the time domain code division.
  • the time domain symbol of the CDM relationship is not limited to:
  • the first frequency domain range is the frequency domain range corresponding to the first resource; or, when the measurement performed is a subband measurement, the first frequency domain range is the first frequency domain.
  • the time domain resource of the first resource is no later than the time domain position of the CSI reference resource corresponding to the channel state information CSI report.
  • the CSI reference resource The time domain position of is the downlink time slot nNK, ⁇ DL and ⁇ UL are the index of the downlink sub-carrier spacing SCS and the index of the uplink SCS respectively, N is determined according to the parameters in the first information, N and K are both non-negative integers, and n'is the time when the CSI report is sent Slot index.
  • the network device sends third information to the terminal device, and the third information indicates the value of K.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send the signals from the processor to the communication device.
  • the processor is used to implement the method of any one of the above aspects through logic circuits or execution code instructions.
  • the communication device further includes a memory.
  • the memory is used to store computer instructions.
  • the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium stores an instruction, and when the instruction is executed by a communication device, the communication device realizes the method described in any one of the above aspects.
  • a computer program product containing instructions when the instructions are executed by a communication device, the communication device realizes the method described in any of the above aspects.
  • the technical effects brought about by any one of the design methods of the third aspect to the seventh aspect can be referred to the technical effects brought about by the different design methods of the first aspect or the second aspect, which will not be repeated here.
  • a communication system in an eighth aspect, includes a communication device for implementing the method described in the first aspect and a communication device for implementing the method described in the second aspect.
  • Figure 1 is a schematic diagram of existing URLLC service data preemption
  • FIG. 2 is a schematic diagram 1 of the position of the time-frequency resource indicated by the existing PI;
  • FIG. 3 is a second schematic diagram of the position of the time-frequency resource indicated by the existing PI
  • Figure 4 is a schematic diagram of an existing rate matching pattern
  • FIG. 5 is a schematic diagram 1 of existing CSI-RS resource mapping
  • FIG. 6 is a second schematic diagram of resource mapping of the existing CSI-RS
  • FIG. 7 is a third schematic diagram of resource mapping of the existing CSI-RS.
  • FIG. 8 is a fourth schematic diagram of resource mapping of the existing CSI-RS.
  • FIG. 9 is a fifth schematic diagram of existing CSI-RS resource mapping
  • FIG. 10 is a schematic diagram of the location of reference resources of the existing CSI
  • FIG. 11 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a terminal device and a network device provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of another structure of a terminal device provided by an embodiment of this application.
  • FIG. 14 is a schematic flowchart of a measurement method provided by an embodiment of the application.
  • 15 is a schematic diagram 1 of the location of a second overlapping resource provided by an embodiment of this application.
  • 16 is a second schematic diagram of the location of the second overlapping resource provided by an embodiment of this application.
  • FIG. 17 is a third schematic diagram of the location of the second overlapping resource provided by an embodiment of this application.
  • FIG. 19 is a first structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 20 is a second structural diagram of a communication device provided by an embodiment of this application.
  • Typical eMBB services include: ultra-high-definition video, augmented reality (AR), virtual reality (virtual reality, VR), etc.
  • the main characteristics of these services are large data transmission volume and high transmission rate.
  • Typical URLLC businesses include wireless control in industrial manufacturing or production processes, motion control of unmanned vehicles and drones, and tactile interaction applications such as remote repairs and remote surgery.
  • the main feature of these services is that they require ultra-high reliability. With high performance, low latency, less data transmission and bursty.
  • Typical mMTC services include: smart grid distribution automation, smart cities, etc.
  • the main features are the huge number of networked devices, the small amount of transmitted data, and the data insensitive to transmission delay. These services need to meet low cost and very long standby time. Demand.
  • the resources include, but are not limited to: time-domain symbols, frequency-domain resources, time-frequency resources, codeword resources, beam resources, and so on.
  • the resource allocation of the communication system is completed by the base station, and the base station is taken as an example for description below. If the base station allocates resources for URLLC service data by reserving resources, system resources are wasted when there is no URLLC service data.
  • the short delay characteristic of the URLLC service requires that the data packet be transmitted in a very short time, so the base station needs to reserve a large enough bandwidth for the URLLC service data, which leads to a serious decline in system resource utilization.
  • a longer time scheduling unit is usually used for data transmission to improve transmission efficiency.
  • a time slot with a 15kHz subcarrier interval corresponds to 14 time domains.
  • the corresponding time length is 1 millisecond (millisecond, ms).
  • URLLC service data usually uses a shorter time scheduling unit to meet the needs of ultra-short delay. For example, using 2 time domain symbols with 15 kilohertz (kilohertz, kHz) subcarrier spacing, the corresponding time length is 0.14 ms, Or one time slot with a 60kHz subcarrier interval is used, corresponding to 14 time domain symbols, and the corresponding time length is 0.25ms.
  • the base station Due to the burstiness of URLLC service data, in order to improve the utilization of system resources, the base station usually does not reserve resources for the downlink data transmission of the URLLC service.
  • URLLC service data arrives at the base station, if there is no free time-frequency resource at this time, in order to meet the ultra-short delay requirement of the URLLC service, the base station cannot wait for the completion of this scheduled eMBB service data transmission before scheduling the URLLC service data. .
  • the base station can adopt a preemptive way to allocate resources for URLLC service data. As shown in Figure 1, the preemption here means that the base station selects part or all of the time-frequency resources for transmitting URLLC service data from the time-frequency resources that have been allocated for transmitting eMBB service data. Of course, the base station does not send eMBB service data on the time-frequency resources used to transmit URLLC service data.
  • time-domain symbols in the embodiments of the present application may also be referred to as symbols for short.
  • the symbols may be, for example, a long term evolution (LTE) system or an orthogonal frequency division multiplexing in an NR system.
  • OFDM orthogonal frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform-spread-OFDM
  • the symbols in the embodiments of the present application refer to time-domain symbols.
  • the eMBB service data resource may be preempted by the burst URLLC service data resource. If the terminal device receiving the eMBB service data does not know that its data resource is preempted, it may use the URLLC service data as its own data for demodulation and decoding. , Resulting in decoding failure. What's more serious is that, for the transmission block that fails to decode, the terminal device will store the soft value interfered by URLLC, and perform the soft-value combination decoding with the retransmitted data, resulting in decoding errors during retransmission. To solve this problem, the NR system introduced PI.
  • the PI is carried in public downlink control information (downlink control information, DCI), and is characterized by a 14-bit bitmap.
  • the transmission period of the DCI carrying PI is configured by high-level parameters, with a slot as a unit. Assuming that the transmission period of the DCI carrying PI is T INT time slots, the time-frequency range indicated by each 14-bit PI is:
  • Time domain recorded as N INT time domain symbols.
  • the N INT time domain symbols are the ones before the first time domain symbol of the physical downlink control channel (physical downlink control channel, PDCCH) corresponding to the DCI carrying PI Time domain symbols.
  • T INT is the cycle of detecting PI configured by the upper layer, Is the number of symbols per time slot, ⁇ INT is the subcarrier interval index corresponding to the BWP of the terminal device receiving DCI, and ⁇ is the subcarrier interval index corresponding to the activated BWP on the serving cell to which this PI is applied.
  • the value of N INT is equal to Subtract the number of UL time domain symbols indicated in the high-level signaling TDD-UL-DL-configuration common or TDD-UL-DL-configuration common.
  • the frequency domain range indicated by PI is the entire BWP
  • the N INT time domain symbols indicated by PI are 28 time domain symbols.
  • the frequency domain range indicated by PI is the entire BWP
  • the N INT time domain symbols indicated by PI are 18 time domain symbols.
  • the time-frequency resources corresponding to the PI can be divided in two ways, and the time-frequency sub-resources corresponding to each bit in the 14 bits are also different.
  • the time-frequency block is divided into 14 parts in time, and no division in frequency, corresponding to ⁇ 14, 1 ⁇ .
  • 14-bit PI each bit corresponds to a time-frequency sub-resource.
  • the time-frequency block is divided into 7 parts in time and 2 parts in frequency, corresponding to ⁇ 7, 2 ⁇ .
  • the 14-bit PI is divided into one group for every 2bit, a total of seven groups.
  • a bit of 0 in the bitmap indicates that the user's transmission may be available on the time-frequency resource (it can also be understood as not being preempted by the URLLC data resource); a bit of 1 indicates that there is no transmission of the user on the time-frequency resource.
  • rate matching resources some resources that cannot be used to transmit PDSCH are defined, called rate matching resources. This part of the resources can be used for forward or backward compatibility of the NR system. For example, some resources are periodically allocated in the NR resource for use by a certain system or a certain function in the future. If these resources have an intersection with the PDSCH time-frequency resource blocks confirmed according to the DCI, the intersection resources are not used to transmit the PDSCH.
  • the resources defined by the NR system that cannot be used to transmit PDSCH are divided into three categories, including: RB symbol-level resources, resource element (resource element, RE)-level resources, and synchronization signal (SS)/physical broadcast channels (physical broadcast channel, PBCH) block (SS/PBCH block, SSB) resource.
  • resource element resource element
  • SS synchronization signal
  • PBCH physical broadcast channel
  • SSB synchronization signal
  • each BWP of a terminal device can be configured with up to 4 BWP-level rate matching patterns, and each serving cell can be configured with up to 4 cell-level rates Match the pattern.
  • a rate matching pattern can include:
  • the pair of reserved resources includes an RB-level bitmap and a symbol-level bitmap with a length of 2 slots. Among them, if the bit value of the RB-level bitmap and the symbol-level bitmap is 1, it means that the corresponding resource cannot be used to transmit the PDSCH.
  • a period and pattern (periodicity and pattern) can be configured, and each bit in the periodicality and pattern corresponds to a symbol-level bitmap. Among them, if the bit value in the periodicity and pattern is 1, it means that there is a reserved resource pair for this unit.
  • the RB-level bitmap is 00110...11
  • the symbol-level bitmap is 10...11 01...10
  • a time unit containing 12 OFDM symbols or 14 OFDM symbols is called a subframe in the LTE system, and corresponds to 2 slots; in the NR system, it corresponds to 1 slot.
  • the slots in the following embodiments of the present application are described by taking the slots of the NR system as an example.
  • CSI-RS will be configured in the NR system.
  • CSI-RS is divided into zero power (ZP) CSI-RS and NZP CSI-RS.
  • ZP zero power
  • NZP CSI-RS will be sent at the resource location of NZP CSI-RS for CSI measurement, layer 1 (layer 1, L1)-reference signal received power (RSRP) measurement, time-frequency tracking, and mobile Performance measurement, wireless link detection, etc.
  • the ZP CSI-RS resource location does not send CSI-RS, which is mainly used for PDSCH rate matching.
  • PDSCH avoids the ZP CSI-RS location for mapping to avoid interference from other terminal equipment or other cells, and avoid interference with others Signals from terminal equipment or other cells.
  • CSI-RS resources including: periodic, semi-persistent and aperiodic.
  • the periodic resource is configured by radio resource control (Radio Resource Control, RRC) signaling, and is sent periodically after configuration.
  • Semi-persistent resources are configured with RRC signaling, activated and deactivated with medium access control-control element (MAC-CE) signaling, and sent periodically in the activated state.
  • Aperiodic resources are configured by RRC signaling and triggered by DCI at the physical layer.
  • the upper layer parameters will configure the period and offset in units of slots. Among them, after the periodic CSI-RS is configured, or after the semi-persistent CSI-RS is activated, the terminal device determines the slot where the CSI-RS is located according to the period and the offset. For aperiodic CSI-RS, the terminal device can determine the slot where the CSI-RS is located according to the triggered DCI. Furthermore, in a slot where CSI-RS resources exist:
  • each group contains 1 OFDM symbol or 2 consecutive OFDM symbols.
  • the two sets of CSI-RS resources may be adjacent or separated by several OFDM symbols.
  • the high-level signaling will configure the frequency domain of the CSI-RS as multiple consecutive physical resource blocks (PRBs).
  • CSI-RS resources are included in each PRB or in PRBs with 1 PRB interval.
  • the RE where the CSI-RS resource is located is determined according to the number of antenna ports (port) configured by the higher layer and the code division multiplexing (CDM) type.
  • CDM code division multiplexing
  • noCDM means that CSI-RS does not have CDM.
  • fd-CDM2 indicates that the CSI-RS performs code division on two consecutive subcarriers in the frequency domain, and the code length is 2.
  • cdm4-FD2-TD2 indicates that the CSI-RS performs code division on two consecutive subcarriers in the frequency domain and two consecutive time domain symbols in the time domain.
  • the code length in the frequency domain is 2 and the code length in the time domain is 2.
  • cdm8-FD2-TD4 indicates that the CSI-RS performs code division on two consecutive subcarriers in the frequency domain and four consecutive time domain symbols in the time domain.
  • the code length in the frequency domain is 2 and the code length in the time domain is 4.
  • N antenna ports will perform CDM transmission on N REs. Each antenna port corresponds to one CDM N orthogonal code. After the corresponding CSI-RS signal is multiplied by the orthogonal code, N signals are obtained and transmitted on N REs. In other words, the signal transmitted on each RE is a signal superposition of the CSI-RS signals of N antenna ports after orthogonal code processing. At the receiving end, the signals on the N REs must be completely received to process the N CSI-RSs corresponding to the N antenna ports.
  • the horizontal axis in the figure is the time axis, which contains 14 OFDM symbols in one slot
  • the vertical axis is the frequency domain axis, which contains 12 subcarriers in one PRB.
  • Example 1 as shown in Fig. 5, the time domain includes a group of CSI-RS resources, the group of CSI-RS resources includes 1 OFDM symbol, the number of antenna ports is 1, and the CDM type is noCDM.
  • Example 2 as shown in Figure 6, the number of antenna ports is 4, and the CDM type is fd-CDM2.
  • Example 3 as shown in Figure 7, the number of antenna ports is 8, and the CDM type is fd-CDM2.
  • Example 4 as shown in Figure 8, the number of antenna ports is 8, and the CDM type is cdm4-FD2-TD2.
  • Example 5 as shown in Figure 9, the number of antenna ports is 24, and the CDM type is cdm8-FD2-TD4.
  • CSI-IM resources are configured for terminal equipment. For a terminal device, there is no useful signal sent to itself on the CSI-IM resources, and the terminal device can measure interference on these resources.
  • CSI-IM resources including: periodic, semi-persistent and aperiodic.
  • the periodic resource is configured by RRC signaling, and is sent periodically after configuration.
  • Semi-persistent resources are configured with RRC signaling, activated and deactivated with MAC-CE signaling, and periodically sent in the activated state.
  • Aperiodic resources are configured by RRC signaling and triggered by DCI at the physical layer.
  • the upper layer parameters will configure the period and offset in units of slots.
  • the terminal device determines the slot where the CSI-IM is located according to the period and the offset.
  • the terminal device can determine the slot where the CSI-IM is located according to the triggering DCI. Furthermore, in a slot where CSI-IM resources exist:
  • high-level signaling will configure the frequency domain of CSI-IM to be multiple consecutive PRBs, and each PRB contains CSI-IM resources.
  • a CSI-IM resource contains 4 REs in a slot, which can be 4 REs corresponding to a certain OFDM symbol and 4 consecutive subcarriers, or 2 consecutive subcarriers and 2 consecutive OFDM symbols.
  • the UE can determine the positions of the 4 REs in the PRB containing the CSI-IM according to the high-level signaling configuration.
  • the terminal equipment will perform channel measurement and/or interference measurement according to NZP CSI-RS, use CSI-IM for interference measurement, and generate different types of CSI according to high-level instructions for reporting.
  • CSI reports can be of the following types: periodic reports, semi-continuous reports, and non-periodic reports.
  • the CSI report can be carried on the physical uplink control channel (PUCCH) or on the physical uplink shared channel (PUSCH).
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • broadband and subband When the terminal device performs certain measurements and reports, there are two modes: broadband and subband.
  • the nominal subband size is related to the BWP bandwidth.
  • Each BWP bandwidth can correspond to 2 subband sizes (as shown in Table 1), and the high-level configuration will indicate one of them.
  • BWP(PRBs) Subband size (PRBs) ⁇ 24 N/A 24–72 4, 8 73–144 8, 16 145–275 16, 32
  • the CSI reference resource of a serving cell is defined as:
  • the CSI reference resource is defined as a set of downlink PRBs, corresponding to the bandwidth related to generating CSI.
  • a CSI reference resource for a CSI report on uplink slot n' is defined as a downlink slot nN.
  • ⁇ DL and ⁇ UL are the index of the downlink subcarrier spacing (SCS) and the index of the uplink SCS, respectively.
  • N is determined by high-level parameters such as CSI report type, and N is a non-negative integer.
  • a schematic diagram of the location of the CSI reference resource of a serving cell may be as shown in FIG. 10.
  • the terminal device performs channel measurement according to the NZP CSI-RS that is not later than the CSI reference resource in the CSI resource configuration to obtain the uplink slot CSI reported on n'; if a terminal device has configured the high-level parameter "time restriction for channel measurements", the terminal device performs channel measurement according to the latest NZP CSI-RS that is no later than the CSI reference resource in the CSI resource configuration to obtain CSI reported on uplink slot n'.
  • a terminal device If a terminal device is not configured with high-level parameters "time restriction for channel measurements", the terminal device performs interference measurement according to the CSI-IM and/or NZP CSI-RS that is no later than the CSI reference resource in the CSI resource configuration to obtain the uplink slot CSI reported on n'; if a terminal device has configured the high-level parameter "time restriction for channel measurements", the terminal device will configure the CSI resource according to the latest CSI-IM and/or NZP CSI-RS no later than the CSI reference resource Perform channel measurement to obtain the CSI reported on the uplink slot n'.
  • a cyclic redundancy check (CRC) of the PDCCH used to schedule the PDSCH uses the cell radio network temporary identifier (C-RNTI), modulation and coding method (C-RNTI), coding scheme, MCS)-C-RNTI and configured scheduling radio network temporary identifier (CS-RNTI) scrambled, or the PDSCH is a semi-persistent scheduling (SPS) PDSCH,
  • CRC cell radio network temporary identifier
  • C-RNTI modulation and coding method
  • MCS-C-RNTI configured scheduling radio network temporary identifier
  • SPS semi-persistent scheduling
  • PDSCH does not perform rate matching on overlapping resources
  • PDSCH does not perform rate matching on overlapping resources
  • the PDSCH will perform rate matching on the NZP CSI-RS.
  • the PDSCH will not perform rate matching on overlapping resources; otherwise, in other scenarios, the PDSCH will perform rate matching on the ZP CSI-RS.
  • the NZP CSI-RS and ZP CSI-RS discussed above are the configured period NZP CSI-RS and ZP CSI-RS, or the activated SP NZP CSI-RS and SP ZP CSI-RS, or triggered Aperiodic NZP CSI-RS and aperiodic ZP CSI-RS, not including SP NZP CSI-RS and SP ZP CSI-RS that are not activated, or aperiodic NZP CSI-RS and aperiodic ZP CSI-RS that are not triggered, in This unified description will not be repeated in the following.
  • PDCCH, PDSCH, PUCCH, and PUSCH are only examples of downlink control channels, downlink data channels, uplink control channels, and uplink data channels.
  • the downlink control channel, the downlink data channel, the uplink control channel, and the uplink data channel may have different names in different communication systems, which are not limited in the embodiment of the present application.
  • the embodiments of the present application may be applicable to the LTE system or the NR system, and may also be applicable to other new future-oriented systems, etc., which are not specifically limited in the embodiments of the present application.
  • system and “network” can be replaced with each other.
  • the communication system 110 includes a network device 120 and one or more terminal devices 130 connected to the network device 120.
  • the terminal device 130 is connected to the network device 120 in a wireless manner.
  • different terminal devices 130 can communicate with each other.
  • the terminal device 130 may be a fixed location, or it may be movable.
  • FIG. 11 is only a schematic diagram.
  • the communication system 110 may also include other network equipment.
  • the communication system 110 may also include core network equipment, wireless relay equipment, and wireless backhaul equipment.
  • the network device can be connected to the core network device in a wireless or wired manner.
  • the core network device and the network device 120 can be separate and different physical devices, or they can integrate the functions of the core network device and the logical functions of the network device 120 on the same physical device, or they can integrate parts on one physical device.
  • the functions of the core network equipment and the functions of part of the network equipment 120 are not specifically limited in the embodiment of the present application.
  • the network device 120 may send the first information to the terminal device 130, and the terminal device 130 receives the first information from the network device 120. Information, and determine the first resource based on the first information.
  • the network device 120 may also send second information to the terminal device 130, and the terminal device 130 receives the second information from the network device 120, and determines the second resource according to the second information. Further, the terminal device 130 determines the foregoing third resource according to the first resource and the second resource, and performs measurement on the third resource.
  • the specific implementation of the solution will be described in detail in the subsequent method embodiments, and will not be repeated here.
  • the terminal device performs measurement on some or all of the first resources except the first overlapping resource. That is to say, on the overlapping resources of the first resource and the second resource, or on the overlapping resources of the first resource and the second resource and the related resources of the overlapping resources, the terminal device does not perform measurement, so it can be avoided that the measurement resources are The interference of other signals causes the problem of degraded measurement performance.
  • the network device 120 in the embodiment of the present application is a device that connects the terminal device 130 to a wireless network, and may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmitting and receiving point (transmission reception point, TRP), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system, or the access in the wireless-fidelity (Wi-Fi) system Node, etc.; it may also be a module or unit that completes part of the functions of the base station, for example, it may be a centralized unit (CU) or a distributed unit (DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • network equipment refers to wireless access network equipment.
  • the terminal device 130 in the embodiment of the present application may be a device for implementing wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal may also be called user equipment (UE), mobile station, mobile terminal, and so on.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and smart grids Wireless terminals in the world, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the network device 120 and the terminal device 130 in the embodiments of the present application can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons, and man-made aircraft. On the satellite.
  • the embodiment of the present application does not limit the application scenarios of the network device 120 and the terminal device 130.
  • the network device 120 and the terminal device 130 in the embodiment of the present application may communicate through a licensed spectrum, or communicate through an unlicensed spectrum, or communicate through a licensed spectrum and an unlicensed spectrum at the same time.
  • the network equipment 120 and the terminal equipment 130 can communicate through the frequency spectrum below 6 gigahertz (gigahertz, GHz), communicate through the frequency spectrum above 6 GHz, and communicate using the frequency spectrum below 6 GHz and the frequency spectrum above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resources used between the network device 120 and the terminal device 130.
  • the network device 120 and the terminal device 130 in the embodiment of the present application may also be referred to as a communication device, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • FIG. 12 it is a schematic structural diagram of the network device 120 and the terminal device 130 provided in this embodiment of the application.
  • the terminal device 130 includes at least one processor 1301 and at least one transceiver 1303. Optionally, the terminal device 130 may further include at least one memory 1302, at least one output device 1304, or at least one input device 1305.
  • the processor 1301, the memory 1302, and the transceiver 1303 are connected through a communication line.
  • the communication line may include a path to transmit information between the above-mentioned components.
  • the processor 1301 may be a general-purpose central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), on-site Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the processor 1301 may also include multiple CPUs, and the processor 1301 may be a single-core processor or a multi-core processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data.
  • the memory 1302 may be a device having a storage function. For example, it can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions.
  • the dynamic storage device can also be programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory) , EEPROM), compact disc (read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other Magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the memory 1302 may exist independently, and is connected
  • the memory 1302 is used to store computer-executable instructions for executing the solution of the present application, and the processor 1301 controls the execution.
  • the processor 1301 is configured to execute computer-executable instructions stored in the memory 1302, so as to implement the measurement method described in the embodiment of the present application.
  • the processor 1301 may also perform processing-related functions in the measurement method provided in the following embodiments of the present application, and the transceiver 1303 is responsible for communicating with other devices or communication networks.
  • the embodiment does not specifically limit this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes or computer program codes, which are not specifically limited in the embodiments of the present application.
  • the transceiver 1303 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), or wireless local area networks (WLAN) Wait.
  • the transceiver 1303 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 1304 communicates with the processor 1301 and can display information in a variety of ways.
  • the output device 1304 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • the input device 1305 communicates with the processor 1301 and can accept user input in a variety of ways.
  • the input device 1305 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the network device 120 includes at least one processor 1201, at least one transceiver 1203, and at least one network interface 1204.
  • the network device 120 may further include at least one memory 1202.
  • the processor 1201, the memory 1202, the transceiver 1203, and the network interface 1204 are connected through a communication line.
  • the network interface 1204 is used to connect to the core network device through a link (for example, the S1 interface), or to connect with the network interface of other network devices (not shown in FIG. 12) through a wired or wireless link (for example, the X2 interface).
  • the application embodiment does not specifically limit this.
  • FIG. 13 is a specific structural form of the terminal device 130 provided in an embodiment of the application.
  • the functions of the processor 1301 in FIG. 12 may be implemented by the processor 110 in FIG. 13.
  • the function of the transceiver 1303 in FIG. 12 may be implemented by the antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, etc. in FIG. 13.
  • the mobile communication module 150 may provide solutions for wireless communication technologies such as LTE, NR, or future mobile communication that are applied to the terminal device 130.
  • the wireless communication module 160 can provide applications on the terminal device 130, including WLAN (such as Wi-Fi network), Bluetooth (bluetooth, BT), global navigation satellite system (GNSS), frequency modulation (frequency modulation, FM). ), near field communication (NFC), infrared and other wireless communication technology solutions.
  • the antenna 1 of the terminal device 130 is coupled with the mobile communication module 150
  • the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 130 can communicate with the network and other devices through wireless communication technology.
  • the function of the memory 1302 in FIG. 12 may be implemented by an external memory connected to the internal memory 121 or the external memory interface 120 in FIG. 13.
  • the function of the output device 1304 in FIG. 12 may be implemented by the display screen 194 in FIG. 13.
  • the functions of the input device 1305 in FIG. 12 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 13.
  • the terminal device 130 may also include an audio module 170, a camera 193, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, a power management module 141, and a battery 142.
  • an audio module 170 may also include a microphone 172, a microphone 172, a microphone 172, a microphone 172, a speaker 172, a microphone 172, a microphone 172, and a battery 142.
  • a camera 193 may also include a camera 193, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, a power management module 141, and a battery 142.
  • the structure shown in FIG. 13 does not constitute a specific limitation on the terminal device 130.
  • the terminal device 130 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the measurement method includes steps S1401 to S1407.
  • the network device sends the first information to the terminal device.
  • the terminal device receives the first information from the network device.
  • the first information in the embodiment of the present application may be carried in high-level signaling sent by the network device to the terminal device.
  • the first information may be CSI measurement configuration information, including measurement report configuration, measurement resource configuration, measurement report and measurement resource association configuration, etc.
  • CSI measurement configuration information including measurement report configuration, measurement resource configuration, measurement report and measurement resource association configuration, etc.
  • TS technical standard
  • the terminal device determines the first resource according to the first information.
  • the first resource in the embodiment of the present application is a resource configured for measurement.
  • the network device sends the second information to the terminal device.
  • the terminal device receives the second information from the network device.
  • the second information in the embodiment of the present application is the configuration information of the rate matching resource.
  • the configuration information of the rate matching resource may be carried in the high-level signaling sent by the network device to the terminal device.
  • the second information in the embodiment of the present application is PI.
  • the PI may be carried in the DCI sent by the network device to the terminal device.
  • the terminal device determines the second resource according to the second information.
  • the second resource in the embodiment of the present application is the rate matching resource; when the second information is PI, the second resource in the embodiment of the present application is indicated by the PI To seize resources.
  • the network device may also send configuration information of the PI to the terminal device.
  • the terminal device receives the configuration information of the PI from the network device, and the configuration information of the PI is used to determine the resource location where the PI is located.
  • Step S1401 may be executed first, and then step S1403; or step S1403 may be executed first, and then step S1401 may be executed.
  • Step S1401 and step S1403 may be executed at the same time, which is not specifically limited in the embodiment of the present application.
  • the terminal device determines a third resource according to the first resource and the second resource.
  • the third resource includes some or all of the first resources except the first overlapping resource, and the first overlapping resource is the first resource and the second resource. Overlapping resources.
  • the third resource includes some or all of the resources in the first resource except the first overlapping resource, which may specifically refer to: the third resource is the first resource that does not overlap with the fourth resource
  • the fourth resource includes a resource in the first frequency domain on the first time domain symbol in the first resource, the first time domain symbol is a time domain symbol in the time domain resource corresponding to the first overlapping resource, and the first time domain symbol is a time domain symbol in the time domain resource corresponding to the first overlapping resource.
  • a frequency domain range includes a frequency domain range in which a second overlapping resource is located, and the second overlapping resource is an overlapping resource on a first time domain symbol in the first overlapping resource.
  • the first frequency domain range includes the location where the 4 REs in the second overlapping resource are located. Frequency domain range.
  • the first frequency domain range is the frequency domain range corresponding to the first resource.
  • the broadband measurement in the embodiment of the present application may include broadband CSI measurement or broadband non-CSI measurement.
  • the broadband non-CSI measurement may include, for example, L1-RSRP measurement and the like.
  • the first resource is a CSI-RS measurement resource
  • the number of CSI-RS antenna ports configured by the upper layer is 4, the CDM type is fd-CDM2, and the corresponding antenna port location distribution is shown in Figure 6, when the terminal equipment performs The measurement is a wideband measurement.
  • the frequency domain range of the CSI-RS measurement resource configured by high-level signaling is a number of consecutive PRBs.
  • the overlapping resource on the first time domain symbol in the first overlapping resource ie, the second overlapping resource
  • the first frequency domain range is the frequency domain range corresponding to these consecutive multiple PRBs on the first time domain symbol. That is, the first frequency domain range is the frequency domain range of the first resource configured by high-layer signaling.
  • the first frequency domain range is a frequency domain range corresponding to the subband where the second overlapping resource is located.
  • the sub-band measurement in the embodiment of the present application may include sub-band CSI measurement.
  • the first resource is a CSI-RS measurement resource
  • the number of CSI-RS antenna ports configured by the upper layer is 4,
  • the CDM type is fd-CDM2
  • the corresponding antenna port location distribution is shown in Figure 6, when the terminal equipment performs The measurement is a subband measurement.
  • the second overlapping resource is shown in Figure 16 (that is, 4 REs in one PRB belong to subband 2, and 4 REs in the other PRB belong to subband 3)
  • the first frequency domain range It is the frequency domain range corresponding to subband 2 and the frequency domain range corresponding to subband 3. That is, the first frequency domain range is the PRB included in the subband where the second overlapping resource is located.
  • the above three examples are all taking an overlapping resource on a first time domain symbol as an example. If the first resource and the second resource overlap on multiple first time domain symbols, the fourth resource It includes resources in the first frequency domain on the multiple first time domain symbols in the first resource, and the method for determining the first frequency domain on each first time domain symbol can refer to the first time domain in the above example. The method for determining the first frequency domain range on the symbol will not be repeated here.
  • the fourth resource may also include resources in the first frequency domain on the second time domain symbol in the first resource, and the second time domain symbol is a time domain symbol in a time domain CDM relationship with the second overlapping resource.
  • the fourth resource includes not only the 4 REs in the second overlapping resource, but also related resources of the second overlapping resource, such as the 4 REs on the second time domain symbol. Because the 4 REs on the second time domain symbol have a time-domain CDM relationship with the 4 REs on the first time domain symbol, the CSI-RS carried on these 8 REs are mapped to 8 antenna ports through CDM.
  • the CSI-RS carried on the 4 REs on a time domain symbol is punctured and the CSI-RS carried on the 4 REs on the second time domain symbol cannot be demodulated correctly.
  • the first frequency domain range may also be the frequency domain range corresponding to the first resource, or the first frequency domain range may also be the frequency domain range corresponding to the subband where the second overlapping resource is located, and details are not described herein again.
  • the network device determines the first resource and the second resource.
  • the related description of the first resource can refer to the above step S1402
  • the related description of the second resource can refer to the above step S1404, which will not be repeated here.
  • the network device may determine the first resource according to the measured demand.
  • the network device may determine the second resource according to the forward or backward compatibility requirements; when the second resource is a preempt resource, the network device may determine the second resource according to the scheduling of URLLC service data The second resource.
  • step S1406 may be executed first, and then step S1401 or step S1403 may be executed; or step S1401 may be executed first. Or step S1403, and then step S1406, or step S1406 and step S1401 or step S1403 can be performed simultaneously, which is not specifically limited in the embodiment of the present application.
  • the network device determines the foregoing third resource according to the first resource and the second resource.
  • the manner in which the network device determines the third resource based on the first resource and the second resource may refer to the manner in which the terminal device determines the third resource based on the first resource and the second resource in step S1405, which will not be repeated here.
  • step S1401 or step S1403 is executed after step S1406, there is no necessary order of execution between step S1407 and step S1401 or step S1403 in the embodiment of the present application, and step S1407 may be executed first, and then Step S1401 or Step S1403 is executed; Step S1401 or Step S1403 may be executed first, and then Step S1407 may be executed, or Step S1407 and Step S1401 or Step S1403 may be executed simultaneously, which is not specifically limited in the embodiment of the present application.
  • the measurement method provided in the embodiment of the present application further includes the following step S1408:
  • the network device sends a measurement signal to the terminal device on the third resource.
  • the terminal device receives the measurement signal from the network device on the third resource.
  • the measurement signal here may be a CSI-RS.
  • the measurement signal here may be CSI-IM.
  • the measurement method provided in the embodiment of the present application further includes the following step S1409:
  • the network device determines not to send a signal on the third resource.
  • the signal not to be transmitted on the third resource may be, for example, a useful signal such as PDSCH of the cell.
  • the measurement method provided in the embodiment of the present application further includes the following step S1410:
  • the terminal device performs measurement on the third resource.
  • the terminal device may perform channel measurement and/or interference measurement based on the NZP CSI-RS received on the third resource; or, when the first resource is a CSI-IM, the terminal device Interference measurement can be performed on the third resource.
  • the terminal device performs measurement on some or all of the first resources except the first overlapping resource. That is to say, on the overlapping resources of the first resource and the second resource, or on the overlapping resources of the first resource and the second resource and the related resources of the overlapping resources, the terminal device does not perform measurement, so it can be avoided that the measurement resources are The interference of other signals causes the problem of degraded measurement performance.
  • the actions of the network device in the above steps S1401 to S1410 can be executed by the processor 1201 in the network device 120 shown in FIG. 12 calling the application code stored in the memory 1202, and the operation of the terminal device in the above steps S1401 to S1410 The action may be executed by the processor 1301 in the terminal device 130 shown in FIG. 12 calling the application program code stored in the memory 1302.
  • the preempted resource indicated by PI can be obtained through DCI based on the bearer PI; combined with the above description of CSI measurement and reporting, it can be known that One CSI report corresponds to one CSI reference resource, and the measurement resource used by this CSI report is no later than this CSI reference resource.
  • the downlink slot corresponding to the time when the CSI report is sent is slot n
  • the downlink slot corresponding to the CSI reference resource is slot n-4.
  • the sent CSI report is measured based on the measurement resources before the deadline 1. Assuming that the processing time of the second PI in FIG.
  • the terminal device knows the preemption information in the corresponding time domain, and then it can judge the overlapping information.
  • the terminal device could originally perform CSI measurement based on the measurement resources in the offset 2 area, but because it has to wait for the PI analysis to be completed, it will not start CSI measurement until the cut-off time 2, which may cause the offset based on the 2 area
  • the CSI report obtained by the measurement resource is too late to be sent in time slot n.
  • the time domain resource of the first resource can be designed to be no later than the time domain position of the CSI reference resource corresponding to the CSI report.
  • the CSI reference The time domain position of the resource is the downlink time slot nNK, ⁇ DL and ⁇ UL are the index of the downlink subcarrier and the index of the uplink subcarrier, respectively, and N is determined according to the parameters in the first information, such as the number of CSI resources corresponding to the measurement in the measurement report configuration in the first information Confirmed, the relevant description can refer to the existing 3GPP TS38.331 V15.7.0 and TS38.214 V15.7.0, which will not be repeated here.
  • N and K are both non-negative integers
  • n' is the index of the time slot for sending the CSI report (also referred to as the time slot number).
  • the network device determines the value of K, and then the network device sends the third information to the terminal device.
  • the terminal device receives the third information from the network device, where the third information indicates the value of K.
  • the network device may determine the value of K according to the processing time of the terminal device on the PDCCH and/or the time domain period of the PI.
  • the network device may also determine the value of K in other ways. The embodiment of the present application does not specifically limit this.
  • the terminal device determines the value of K. For example, the terminal device determines the value of K according to the processing time of the PDCCH and/or the time domain period of the PI. This embodiment of the application does not do this. Specific restrictions.
  • the sent CSI report is measured based on the measurement resources before the cut-off time 3.
  • the first PI in Figure 18 can be parsed at the cut-off time of 4.
  • the overlapping information can be judged, and then the CSI measurement can be performed. Since the cut-off time 4 is earlier than the cut-off time 1, the signal on the measurement resource before the cut-off time 3 is measured at the cut-off time 4, and the obtained CSI report can be sent in time slot n.
  • the methods and/or steps implemented by the terminal device can also be implemented by a chip or chip system that implements the functions of the above terminal device
  • the methods and/or steps implemented by a network device can also be implemented by a network device. It is realized by a chip or a chip system that realizes the functions of the above-mentioned network equipment.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment or a chip system that implements the foregoing terminal device function; or, the communication device may be the network device in the foregoing method embodiment or a chip system that implements the foregoing network device function.
  • the communication device includes hardware structures and/or software modules corresponding to various functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 19 and FIG. 20 are schematic structural diagrams of possible communication devices provided by embodiments of this application. These communication devices can be used to implement the functions of the terminal device or the network device in the foregoing method embodiment, and therefore can also achieve the beneficial effects of the foregoing method embodiment.
  • the communication device may be the terminal device 130 shown in FIG. 11, or the network device 120 shown in FIG. 11, or may be a module applied to a terminal device or a network device (such as chip).
  • the communication device 1900 includes a processing unit 1910 and a transceiving unit 1920.
  • the communication device 1900 is configured to implement the functions of the terminal device or the network device in the method embodiment shown in FIG. 14.
  • the transceiver unit 1920 is used to receive the first information and the second information from the network device.
  • the processing unit 1910 is configured to determine the first resource according to the first information, and after the second resource is determined according to the second information, determine the third resource according to the first resource and the second resource.
  • the third resource includes the first resource except the first resource. Part or all of the resources other than the overlapping resources, and the first overlapping resource is an overlapping resource of the first resource and the second resource.
  • the processing unit 1910 is further configured to perform measurement on the third resource.
  • the time domain resource of the first resource is no later than the time domain position of the CSI reference resource corresponding to the CSI report
  • the time domain position of the CSI reference resource is a downlink time slot nNK
  • ⁇ DL and ⁇ UL are the index of the downlink SCS and the index of the uplink SCS respectively
  • N is determined according to the parameters in the first information
  • N and K are both non-negative integers
  • n' is the index of the time slot for sending the CSI report.
  • the transceiver unit 1920 is further configured to receive third information from the network device, and the third information indicates the value of K.
  • the processing unit 1910 is further configured to determine the value of K according to the processing time of the PDCCH and/or the time domain period of the PI.
  • the transceiver unit 1920 is used to send first information and second information, the first information indicates the first resource, and the second information indicates the second information.
  • the processing unit 1910 is configured to determine a third resource according to the first resource and the second resource, the third resource includes some or all of the first resources except the first overlapping resource, where the first overlapping resource is the first resource Overlapping resources with the second resource.
  • the transceiver unit 1920 is further configured to send a measurement signal on the third resource, or the processing unit 1910 is further configured to determine not to send a signal on the third resource.
  • the time domain resource of the first resource is no later than the time domain position of the CSI reference resource corresponding to the CSI report
  • the time domain position of the CSI reference resource is a downlink time slot nNK
  • ⁇ DL and ⁇ UL are the index of the downlink SCS and the index of the uplink SCS respectively
  • N is determined according to the parameters in the first information
  • N and K are both non-negative integers
  • n' is the index of the time slot for sending the CSI report.
  • the transceiver unit 1920 is further configured to send third information, and the third information indicates the value of K.
  • processing unit 1910 and the transceiver unit 1920 can be obtained directly with reference to the relevant description in the method embodiment shown in FIG. 14, and will not be repeated here.
  • the communication device 1900 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module" here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 1900 can use the terminal device shown in FIG. 130; or, when the communication device 1900 is used to implement the function of the network device in the method embodiment shown in FIG. 14, those skilled in the art can imagine that the communication device 1900 may adopt the network device 120 shown in FIG. 12 or form.
  • the processor 1201 in the network device 120 shown in FIG. 12 may invoke the computer execution instructions stored in the memory 1202 to make the network device 120 execute the measurement method in the foregoing method embodiment.
  • the functions/implementation process of the processing unit 1910 and the transceiving unit 1920 in FIG. 19 may be implemented by the processor 1201 in the network device 120 shown in FIG. 12 calling the computer execution instructions stored in the memory 1202.
  • the function/implementation process of the processing unit 1910 in FIG. 19 can be implemented by the processor 1201 in the network device 120 shown in FIG. 12 calling a computer execution instruction stored in the memory 1202, and the function of the transceiver unit 1920 in FIG. 19 /The implementation process can be implemented by the transceiver 1203 in the network device 120 shown in FIG. 12.
  • the processor 1301 in the terminal device 130 shown in FIG. 12 may invoke a computer execution instruction stored in the memory 1302 to make the terminal device 130 execute the measurement method in the foregoing method embodiment.
  • the functions/implementation process of the processing unit 1910 and the transceiving unit 1920 in FIG. 19 may be implemented by the processor 1301 in the terminal device 130 shown in FIG. 13 calling a computer execution instruction stored in the memory 1302.
  • the function/implementation process of the processing unit 1910 in FIG. 19 can be implemented by the processor 1301 in the terminal device 130 shown in FIG. 13 calling a computer execution instruction stored in the memory 1302, and the function of the transceiver unit 1920 in FIG. 19 /The implementation process can be implemented by the transceiver 1303 in the terminal device 130 shown in FIG. 13.
  • the communication device 2000 includes a processor 2010 and an interface circuit 2020.
  • the processor 2010 and the interface circuit 2020 are coupled with each other.
  • the interface circuit 2020 can be a transceiver or an input/output interface.
  • the processor 2010 type reference may be made to the embodiment shown in FIG. 12, which is not repeated here.
  • the communication device 2000 may further include a memory 2030 for storing instructions executed by the processor 2010 or storing input data required by the processor 2010 to run the instructions or storing data generated after the processor 2010 runs the instructions.
  • a memory 2030 for storing instructions executed by the processor 2010 or storing input data required by the processor 2010 to run the instructions or storing data generated after the processor 2010 runs the instructions.
  • the processor 2010 is used to perform the function of the above-mentioned processing unit 1910
  • the interface circuit 2020 is used to perform the function of the above-mentioned transceiving unit 1920.
  • the terminal device chip When the foregoing communication device is a chip applied to a terminal device, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or antenna), and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules in the terminal device (such as a radio frequency module or antenna).
  • the antenna sends information, which is sent from the terminal device to the network device.
  • the network device chip implements the function of the network device in the foregoing method embodiment.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antennas).
  • the antenna sends information, which is sent by the network device to the terminal device.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, which can be stored in RAM, flash memory, ROM, PROM, EPROM, EEPROM, registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art .
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the network device or the terminal device.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction may be transmitted from a website, a computer, or The server or data center transmits to another website site, computer, server or data center through wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that integrates one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a digital video disc (digital video disc, DVD); and it may also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated object before and after is an “or” relationship; in the formula of this application, the character “/” indicates that the associated object before and after is a kind of "division" Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测量方法,包括:终端设备(130)接收来自网络设备的第一信息(S1401)和第二信息(S1403),并根据第一信息确定第一资源(S1402),根据第二信息确定第二资源(S1404),其中,第一资源为网络设备配置的用于测量的资源,第二资源为优先级高于第一资源的资源,如第二资源可以为速率匹配资源或者PI指示的抢占资源。进而,终端设备(130)根据第一资源和第二资源确定第三资源(S1405),并在第三资源上进行测量(S1410),第三资源包括第一资源中除第一重叠资源之外的部分或全部资源,第一重叠资源为第一资源和第二资源的重叠资源。即,终端设备(130)至少不在第一资源和第二资源的重叠资源上进行测量。测量方法可以避免测量资源上其他信号干扰,提升测量性能。

Description

测量方法、装置及系统 技术领域
本申请涉及无线通信技术领域,尤其涉及测量方法、装置及系统。
背景技术
第五代(the fifth generation,5G)移动通信系统中的新无线(new radio,NR)系统中,定义了一些不能用来发送物理下行共享信道(physical downlink shared channel,PDSCH)的资源,称为速率匹配资源。这部分资源可以用来进行NR系统的前向和后向兼容,例如在NR资源中周期的划出部分资源给未来的某个系统或某个功能使用。此外,国际电信联盟(international telecommunication union,ITU)为NR系统以及未来的移动通信系统定义了三大类应用场景,包括:增强移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra-reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。其中,URLLC业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。
由于速率匹配资源是为了前向和后向兼容,URLLC业务要求超高可靠性、低延时,因此他们的优先级可能比较高,进而若速率匹配资源或者承载URLLC业务数据的PDSCH资源与测量资源重叠,则测量资源受到干扰的影响会比较大。在本申请中,测量资源例如可以是非零功率(non-zero power,NZP)信道状态信息(channel state information,CSI)-参考信号(reference signal,RS)资源或者CSI-干扰测量(interference measurement,IM)资源。
比如,若一个终端设备的NZP CSI-RS资源与承载其他终端设备的URLLC业务数据的PDSCH资源重叠,则该NZP CSI-RS资源上的NZP CSI-RS和该PDSCH资源上的URLLC业务数据会互相干扰。若一个终端设备的CSI-IM资源与承载其他终端设备的URLLC业务数据的PDSCH资源重叠,则在CSI-IM资源上进行干扰测量会受到该PDSCH资源上URLLC业务数据的干扰,从而影响终端设备的干扰测量的准确性。在本申请中,两个资源重叠可以为部分重叠或完全重叠。
或者,比如,若一个终端设备的NZP CSI-RS资源与速率匹配资源重叠,则该NZP CSI-RS资源上的NZP CSI-RS和速率匹配资源上的用于前向或后向兼容的信号会互相干扰;若一个终端设备的CSI-IM资源与速率匹配资源重叠,则在CSI-IM资源上进行干扰测量会受到速率匹配资源上用于前向或后向兼容的信号的干扰,从而影响终端设备的干扰测量的准确性。
为解决上述问题,可以在基站调度时保证NZP CSI-RS资源/CSI-IM资源和速率匹配资源/承载URLLC业务数据的PDSCH资源不重叠。然而,NZP CSI-RS资源和CSI-IM资源可能是周期或者半持续(semi-persistent,SP)的,URLLC业务数据的调度是相对随机的,速率匹配资源需要基于前向和后向兼容的应用场景进行灵活配置。因此要保证NZP CSI-RS资源/CSI-IM资源和速率匹配资源/承载URLLC业务数据的PDSCH资源不重叠,可能会增大调度复杂度,降低调度灵活性。
发明内容
本申请实施例提供测量方法、装置及系统,可以避免测量资源上其他信号干扰,提升测量性能。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种测量方法,执行该方法的通信装置可以为终端设备也可以为应用于终端设备中的模块,例如芯片。下面以执行主体为终端设备为例进行描述。终端设备接收来自网络设备的第一信息和第二信息,并根据第一信息确定第一资源,根据第二信息确定第二资源。进一步的,终端设备根据第一资源和第二资源确定第三资源,该第三资源包括第一资源中除第一重叠资源之外的部分或全部资源,第一重叠资源为第一资源和第二资源的重叠资源。最后,终端设备在第三资源上进行测量。基于本申请实施例提供的测量方法,可以在第一资源中除第一重叠资源之外的部分或全部资源上进行测量。也就是说,在第一资源和第二资源的重叠资源上,或者在第一资源和第二资源的重叠资源以及重叠资源的相关资源上,不进行测量,因此可以避免因为测量资源上其他信号的干扰,造成的测量性能下降的问题。
在一种可能的设计中,第二信息为速率匹配资源的配置信息,第二资源为速率匹配资源;或者,第二信息为抢占指示PI,该第二资源为该PI所指示的抢占资源。
在一种可能的设计中,第三资源为第一资源中与第四资源不重叠的资源,第四资源包括第一资源中第一时域符号上的第一频域范围内的资源,第一时域符号为第一重叠资源对应的时域资源中的一个时域符号,第一频域范围包括第二重叠资源所在的频域范围,第二重叠资源为第一重叠资源中第一时域符号上的重叠资源。
在一种可能的设计中,第四资源还包括第一资源中第二时域符号上的第一频域范围内的资源,该第二时域符号为与第二重叠资源有时域码分多址CDM关系的时域符号。也就是说,考虑到码分复用资源,若N个RE中的每个RE上传输的测量信号是N个天线端口的测量信号经过正交码处理后的信号叠加,则在接收端,必须完整的收到这N个RE上的测量信号,才能处理得到N个天线端口对应的测量信号。因此,若第四资源包括第一资源中第一时域符号上的第一频域范围内的资源,则第四资源还可以包括第一资源中第二时域符号上的第一频域范围内的资源,该第二时域符号为与第二重叠资源有时域码分多址CDM关系的时域符号。由于第二时域符号为与第二重叠资源有时域码分多址CDM关系的时域符号,即第一资源中第二时域符号上的第一频域范围内的资源与第一资源中第一时域符号上的第一频域范围内的资源有时域CDM关系,因此第一资源中第一时域符号上的第一频域范围内的资源和第一资源中第二时域符号上的第一频域范围内的资源上承载的测量信号通过CDM映射到多个天线端口,当第一资源中第一时域符号上的第一频域范围内的资源上承载的测量信号被打孔打掉了,那么第一资源中第二时域符号上的第一频域范围内的资源上承载的测量信号也无法正确解调。基于该方案,由于第四资源还包括第一资源中第二时域符号上的第一频域范围内的资源,因此可以避免接收侧无法正确解调完整的测量信号的问题,从而可以提升测量性能。
在一种可能的设计中,当该测量为宽带测量时,第一频域范围为第一资源对应的频域范围;或者,当进行的测量为子带测量时,第一频域范围为第二重叠资源所在的子 带对应的频域范围。
在一种可能的设计中,第一资源的时域资源不晚于信道状态信息CSI报告对应的CSI参考资源的时域位置,当第二资源为PI所指示的抢占资源时,该CSI参考资源的时域位置为下行时隙n-N-K,
Figure PCTCN2019112605-appb-000001
μ DL和μ UL分别是下行子载波间隔SCS的索引和上行SCS的索引,N是根据第一信息中的参数确定的,N和K均为非负整数,n'为发送该CSI报告的时隙索引。也就是说,考虑到当第二资源为PI所指示的抢占资源时,PI所指示的抢占资源可以通过承载PI的DCI获知,而一个CSI报告对应一个CSI参考资源,这个CSI报告使用的测量资源不晚于这个CSI参考资源。这样可能造成在时域位置不晚于现有的CSI参考资源的时域位置的资源上,本来应该开始进行测量,但是需要等PI解析完毕,获知第一资源和第二资源的重叠资源的情况下,才开始真正的测量,从而导致基于不晚于现有的CSI参考资源的时域位置的资源获得的CSI报告来不及在相应的上行时隙n'上发送的问题。基于此,本申请实施例中,定义CSI参考资源的时域位置为下行时隙n-N-K,相对于现有的CSI参考资源的时域位置下行时隙n-N,提前了K个时隙,因此可以使得基于不晚于现有的CSI参考资源的时域位置的资源获得的CSI报告能够及时在相应的上行时隙n'上发送。
在一种可能的设计中,终端设备接收来自网络设备的第三信息,该第三信息指示K的取值;或者,终端设备根据物理下行控制信道的处理时间和/或该PI的时域周期,确定K的取值。也就是说,本申请实施例中,K的取值可以是由终端设备根据相关参数和预定的规则确定的,也可以是由网络设备确定后发送给终端设备的。
第二方面,提供了一种测量方法,执行该方法的通信装置可以为网络设备也可以为应用于网络设备中的模块,例如芯片。下面以执行主体为网络设备为例进行描述。网络设备发送第一信息和第二信息,该第一信息指示第一资源,该第二信息指示第二资源。网络设备根据第一资源和第二资源确定第三资源,该第三资源包括第一资源中除第一重叠资源之外的部分或全部资源,其中,该第一重叠资源为第一资源和第二资源的重叠资源。最后,网络设备在第三资源上发送测量信号,或者,网络设备确定不在第三资源发送信号。由于该方法是与第一方面提供的测量方法相对应的网络侧的方法,因此也能实现第一方面提供的测量方法所能实现的有益效果。
在一种可能的设计中,第二信息为速率匹配资源的配置信息,第二资源为速率匹配资源;或者,第二信息为抢占指示PI,该第二资源为该PI所指示的抢占资源。
在一种可能的设计中,第三资源为第一资源中与第四资源不重叠的资源,第四资源包括第一资源中第一时域符号上的第一频域范围内的资源,第一时域符号为第一重叠资源对应的时域资源中的一个时域符号,第一频域范围包括第二重叠资源所在的频域范围,第二重叠资源为第一重叠资源中第一时域符号上的重叠资源。
在一种可能的设计中,第四资源还包括第一资源中第二时域符号上的第一频域范围内的资源,该第二时域符号为与第二重叠资源有时域码分多址CDM关系的时域符号。
在一种可能的设计中,当该测量为宽带测量时,第一频域范围为第一资源对应的频域范围;或者,当进行的测量为子带测量时,第一频域范围为第二重叠资源所在的子带对应的频域范围。
在一种可能的设计中,第一资源的时域资源不晚于信道状态信息CSI报告对应的 CSI参考资源的时域位置,当第二资源为PI所指示的抢占资源时,该CSI参考资源的时域位置为下行时隙n-N-K,
Figure PCTCN2019112605-appb-000002
μ DL和μ UL分别是下行子载波间隔SCS的索引和上行SCS的索引,N是根据第一信息中的参数确定的,N和K均为非负整数,n'为发送该CSI报告的时隙索引。
在一种可能的设计中,网络设备向终端设备发送第三信息,该第三信息指示K的取值。
第三方面,提供了一种通信装置用于实现上述各种方法。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供了一种通信装置,包括:处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现上述任一方面的方法。
在一种可能的设计中,该通信装置还包括存储器。该存储器用于存储计算机指令,当处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。
第五方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。
在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令被通信装置执行时,使得该通信装置实现上述任一方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当该指令被通信装置执行时,使得该通信装置实现上述任一方面所述的方法。
其中,第三方面至第七方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第八方面,提供一种通信系统,该通信系统包括用于实现上述第一方面所述的方法的通信装置和用于执行上述第二方面所述的方法的通信装置。
附图说明
图1为现有的URLLC业务数据的抢占示意图;
图2为现有的PI指示的时频资源的位置示意图一;
图3为现有的PI指示的时频资源的位置示意图二;
图4为现有的速率匹配图案示意图;
图5为现有的CSI-RS的资源映射示意图一;
图6为现有的CSI-RS的资源映射示意图二;
图7为现有的CSI-RS的资源映射示意图三;
图8为现有的CSI-RS的资源映射示意图四;
图9为现有的CSI-RS的资源映射示意图五;
图10为现有的CSI的参考资源的位置示意图;
图11为本申请实施例提供的一种通信系统的架构示意图;
图12为本申请实施例提供的终端设备和网络设备的结构示意图;
图13为本申请实施例提供的终端设备的另一种结构示意图;
图14为本申请实施例提供的测量方法流程示意图;
图15为本申请实施例提供的第二重叠资源的位置示意图一;
图16为本申请实施例提供的第二重叠资源的位置示意图二;
图17为本申请实施例提供的第二重叠资源的位置示意图三;
图18为本申请实施例提供的第一资源和第二资源的位置分布示意图;
图19为本申请实施例提供的通信装置的结构示意图一;
图20为本申请实施例提供的通信装置的结构示意图二。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一,NR系统的三大应用场景
典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些业务需要满足低成本和非常长的待机时间的需求。
第二,URLLC业务与eMBB业务共存
由于URLLC业务数据的产生具有突发性和随机性,可能在很长一段时间内都不会产生数据包,也可能在很短时间内产生多个数据包。因此,URLLC业务数据的特性会影响通信系统的资源分配方式。这里的资源包括但不限于:时域符号、频域资源、时频资源、码字资源以及波束资源等。通常,通信系统的资源分配由基站来完成,下面以基站为例进行说明。如果基站采用预留资源的方式为URLLC业务数据分配资源,则在无URLLC业务数据时系统资源是浪费的。而且URLLC业务的短时延特性要求数据包在极短的时间内传输完成,所以基站需要预留足够大的带宽给URLLC业务数据,从而导致系统资源利用率严重下降。
由于eMBB业务数据的数据量比较大,而且传输速率比较高,因此通常采用较长的时间调度单元进行数据传输以提高传输效率,例如,采用15kHz子载波间隔的一个时隙,对应14个时域符号,对应的时间长度为1毫秒(millisecond,ms)。URLLC业务数据通常采用较短的时间调度单元,以满足超短时延的需求,例如,采用15千赫兹(kilohertz,kHz)子载波间隔的2个时域符号,对应的时间长度为0.14ms,或者采用60kHz子载波间隔的一个时隙,对应14个时域符号,对应的时间长度为0.25ms。
由于URLLC业务数据的突发性,为了提高系统资源利用率,基站通常不会为 URLLC业务的下行数据传输预留资源。当URLLC业务数据到达基站时,如果此时没有空闲的时频资源,基站为了满足URLLC业务的超短时延需求,无法等待将本次调度的eMBB业务数据传输完成之后再对URLLC业务数据进行调度。基站可以采用抢占的方式,为URLLC业务数据分配资源。如图1所示,这里的抢占是指基站在已经分配的、用于传输eMBB业务数据的时频资源上选择部分或全部的时频资源用于传输URLLC业务数据。当然,基站在用于传输URLLC业务数据的时频资源上不发送eMBB业务的数据。
需要说明的是,本申请实施例中的时域符号也可以简称为符号(symbol),该符号例如可以为长期演进(long term evolution,LTE)系统或者NR系统中的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、离散傅里叶变换扩频OFDM(discrete fourier transform-spread-OFDM,DFT-s-OFDM)符号或者未来移动通信系统中的其他符号等。如果没有特别说明,本申请实施例中的符号均指时域符号。
第三,抢占指示(pre-emption indication,PI)
eMBB业务数据资源有可能被突发的URLLC业务数据资源抢占,如果接收eMBB业务数据的终端设备不知道自己的数据资源被抢占,就可能将URLLC业务数据当成自己的数据来进行解调和译码,从而导致译码失败。更严重的是,对于译码失败的传输块,终端设备会将受到URLLC干扰的软值存储下来,和重传的数据进行软值合并译码,从而导致重传时的译码错误。为解决该问题,NR系统引入了PI。该PI承载在公共下行控制信息(downlink control information,DCI)中,用14比特(bit)的位图(bitmap)的方式进行表征。其中,bitmap指示一个或多个频域部分(N>=1)和/或一个或多个时域部分(M>=1),{M,N}可以取值为{14,1}或{7,2}。也就是说,首先将时频资源进行分块,这个分块是基站和终端设备都已知的,然后基站会发送bitmap形式的PI,通知终端设备各块资源是否被URLLC业务数据抢占。
目前,承载PI的DCI的发送周期由高层参数配置,以时隙(slot)为单位。假设承载PI的DCI的发送周期为T INT个时隙,则每个14比特PI指示的时频范围是:
频域:整个激活带宽部分(bandwidth part,BWP)的所有资源块(resource block,RB),记做B INT个RB。
时域:记做N INT个时域符号。该N INT个时域符号为承载PI的DCI对应的物理下行控制信道(physical downlink control channel,PDCCH)的第一个时域符号之前的
Figure PCTCN2019112605-appb-000003
个时域符号。其中,T INT为高层配置的检测PI的周期,
Figure PCTCN2019112605-appb-000004
为每时隙的符号数,μ INT为终端设备接收DCI的BWP对应的子载波间隔索引,μ为应用这个PI的服务小区上的激活BWP对应的子载波间隔索引。此外,若是时分复用(time division duplex,TDD)配置,则N INT的取值等于
Figure PCTCN2019112605-appb-000005
减去高层信令TDD-UL-DL-configuration common或TDD-UL-DL-configuration common中指示的UL时域符号个数。示例性的,如图2所示,PI指示的频域范围为整个BWP,PI指示的N INT个时域符号为28个时域符号。或者,示例性的,对于TDD配置,如图3所示,PI指示的频域范围为整个BWP,PI指示的N INT个时域符号为18个时域符号。
目前,根据高层参数配置,PI对应的时频资源有两种划分方式,14bit中每个bit对应的时频子资源也不同。一种可能的方式中,时频块从时间上被分为14份,频率上 不进行划分,对应{14,1}。其中,14bit的PI,每个bit对应一份时频子资源。另一种可能的方式中,时频块从时间上被分为7份,频率上被等分成2份,对应{7,2}。其中,14bit的PI,每2bit分为一组,共七组。比特位图中的比特取0表示该时频资源上可以有该用户的传输(也可以理解为没有被URLLC数据资源抢占);比特取1表示该时频资源上没有该用户的传输。
第四,不能用来发送PDSCH的资源
NR系统中,定义了一些不能用来发送PDSCH的资源,称为速率匹配资源。这部分资源可以用来进行NR系统的前向或后向兼容,例如在NR资源中周期的划出部分资源给未来的某个系统或某个功能使用。如果这些资源和根据DCI确认的PDSCH时频资源块有交集,那么交集的资源不用来传输PDSCH。目前,NR系统定义的不能用来发送PDSCH的资源分为三类,包括:RB符号级的资源、资源单元(resource element,RE)级的资源和同步信号(synchronization signal,SS)/物理广播信道(physical broadcast channel,PBCH)块(SS/PBCH block,SSB)资源。其中,本申请下述实施例中主要结合RB symbol级的资源进行描述,在此统一说明,以下不再赘述。
对于RB symbol级的不能用来发送PDSCH的资源,一个终端设备的每个BWP可以配置至多4个BWP级的速率匹配图案(rate matching pattern),每个服务小区可以配置至多4个小区级的速率匹配图案。目前,一个速率匹配图案可以包括:
网络设备配置的一对预留资源,该对预留资源包含一个RB级bitmap,和一个长度为2个slot的symbol级bitmap。其中,RB级bitmap和symbol级bitmap的bit值如果为1,表示对应的资源不能用于发送PDSCH。而对于每对RB级bitmap和symbol级bitmap,可配置一个周期和图案(periodicity and pattern),该periodicity and pattern中的每个bit对应一个symbol级bitmap。其中,若periodicity and pattern中的bit值为1,代表这个单元存在预留资源对。示例性的,假设periodicity and pattern为10,RB级bitmap为00110……11,symbol级bitmap为10……11 01……10,则对应的不能用来发送PDSCH的资源位置可以如图4所示。
需要说明的是,本申请实施例中,包含12个OFDM符号或14个OFDM符号的时间单元在LTE系统中称为子帧,对应2个slot;在NR系统中对应1个slot。本申请下述实施例中的slot均是以NR系统的slot为例进行描述。
第五,CSI-RS
NR系统中会配置CSI-RS。目前,CSI-RS分为零功率(zero power,ZP)CSI-RS和NZP CSI-RS。其中,NZP CSI-RS的资源位置上会发送NZP CSI-RS,用来进行CSI测量、层1(layer1,L1)-参考信号接收功率(reference signal received power,RSRP)测量、时频跟踪、移动性测量、无线链路检测等。ZP CSI-RS资源位置上不发送CSI-RS,主要是用来进行PDSCH的速率匹配,PDSCH避开ZP CSI-RS的位置进行映射,避免受到其他终端设备或者其他小区的干扰,也避免干扰其他终端设备或者其他小区的信号。
目前,CSI-RS资源有3种类型,包括:周期,半持续和非周期。其中,周期资源由无线资源控制(radio resource control,RRC)信令配置,配置后周期发送。半持续资源用RRC信令进行配置,用媒体接入控制控制单元(medium access control-control  element,MAC-CE)信令进行激活和去激活,激活状态下进行周期发送。非周期资源由RRC信令配置,由物理层的DCI触发。
下面对CSI-RS的资源映射进行相关说明。
对于周期或者半持续的CSI-RS,高层参数会配置以slot为单位的周期和偏置(offset)。其中,周期CSI-RS配置后,或者半持续CSI-RS激活后,终端设备根据周期和offset确定CSI-RS所在的slot。对于非周期的CSI-RS,终端设备可以根据触发DCI确定CSI-RS所在的slot。进而,在某个存在CSI-RS资源的slot内:
在时域上,根据高层配置,时域上可能会有1组或者2组CSI-RS资源,每组包含1个OFDM符号或2个连续的OFDM符号。2组CSI-RS资源之间可以相邻或者间隔若干个OFDM符号。
在频域上,高层信令会配置CSI-RS的频域范围为连续的多个物理资源块(physical resource block,PRB)。每个PRB内或者每间隔1个PRB的PRB内会包含CSI-RS资源。在一个PRB上,CSI-RS资源所在的OFDM符号上,根据高层配置的天线端口(port)数,码分多址(code division multiplexing,CDM)类型等确定CSI-RS资源所在的RE。目前,高层配置的CSI-RS的CDM类型有4种,分别为:noCDM,fd-CDM2,cdm4-FD2-TD2和cdm8-FD2-TD4。其中,noCDM表示CSI-RS没有CDM。fd-CDM2表示CSI-RS在频域的连续两个子载波上进行码分,码长为2。cdm4-FD2-TD2表示CSI-RS在频域的连续两个子载波和时域的连续两个时域符号上进行码分,频域上的码长为2,时域上的码长为2。cdm8-FD2-TD4表示CSI-RS在频域的连续两个子载波和时域的连续四个时域符号上进行码分,频域上的码长为2,时域上的码长为4。
在CSI-RS资源映射中,N个天线端口会在N个RE上做CDM传输。每个天线端口对应1个CDM N的正交码,其对应的CSI-RS信号乘以该正交码后,得到N个信号,在N个RE上传输。也就是说,每个RE上传输的信号是N个天线端口的CSI-RS信号经过正交码处理后的信号叠加。在接收端,必须完整的收到这N个RE上的信号,才能处理得到N个天线端口对应的N个CSI-RS。
下面图示几个例子。其中,图中横轴为时间轴,包含1个slot内的14个OFDM符号,纵轴为频域轴,包含一个PRB内的12个子载波。
示例1,如图5所示,时域包含1组CSI-RS资源,该组CSI-RS资源包含1个OFDM符号,天线端口数为1,CDM类型为noCDM。
示例2,如图6所示,天线端口数为4,CDM类型为fd-CDM2。
示例3,如图7所示,天线端口数为8,CDM类型为fd-CDM2。
示例4,如图8所示,天线端口数为8,CDM类型为cdm4-FD2-TD2。
示例5,如图9所示,天线端口数为24,CDM类型为cdm8-FD2-TD4。
第六,CSI-IM
NR系统中会给终端设备配置CSI-IM资源。对于一个终端设备来说,在CSI-IM资源上没有发送给自己的有用信号,终端设备可以在这些资源上测量干扰。
目前,CSI-IM资源有3种类型,包括:周期,半持续和非周期。其中,周期资源由RRC信令配置,配置后周期发送。半持续资源用RRC信令进行配置,用MAC-CE信令进行激活和去激活,激活状态下进行周期发送。非周期资源由RRC信令配置,由 物理层的DCI触发。
下面对CSI-IM的资源映射进行相关说明。
对于周期或者半持续的CSI-IM,高层参数会配置以slot为单位的周期和offset。其中,周期CSI-IM配置后,或者半持续CSI-IM激活后,终端设备根据周期和offset确定CSI-IM所在的slot。对于非周期的CSI-IM,终端设备可以根据触发DCI确定CSI-IM所在的slot。进而,在某个存在CSI-IM资源的slot内:
在频域上,高层信令会配置CSI-IM的频域范围为连续的多个PRB,每个PRB内包含CSI-IM资源。
在时域上,一个CSI-IM资源在一个slot包含4个RE,可以是某个OFDM符号和4个连续子载波对应的4个RE,也可以是2个连续子载波和2个连续OFDM符号对应的4个RE。UE根据高层信令配置可以确定包含CSI-IM的PRB中这4个RE的位置。
第七,CSI测量和CSI报告
首先,给出CSI报告类型和测量资源类型的关系的描述如下。
根据基站的测量配置,终端设备会根据NZP CSI-RS来进行信道测量和/或干扰测量,用CSI-IM来进行干扰测量,并根据高层指示,生成不同类型的CSI,进行报告。
目前,CSI报告可以有以下几种类型:周期报告、半持续报告和非周期报告。CSI报告可以承载在物理上行控制信道(physical uplink control channel,PUCCH)上,也可以承载在物理上行共享信道(physical uplink shared channel,PUSCH)上。下面给出宽带和子带测量的相关描述如下。
在终端设备进行某些测量和报告时,有宽带和子带两种模式。
在进行子带测量时,标称(nominal)子带大小和BWP带宽有关。每种BWP带宽可以对应2种子带大小(如表一所示),高层配置会指示出其中一个。
表一
BWP(PRBs) 子带大小(PRBs)
<24 N/A
24–72 4,8
73–144 8,16
145–275 16,32
下面给出CSI参考资源的相关描述如下。
一个服务小区的CSI参考资源定义为:
在频域上,CSI参考资源定义为一组下行PRB,对应于生成CSI相关的带宽。
在时域上,一个在上行slot n'上的CSI报告的CSI参考资源定义为一个下行slot n-N。这里,
Figure PCTCN2019112605-appb-000006
μ DL和μ UL分别是下行子载波间隔(subcarrier spacing,SCS)的索引和上行SCS的索引。N由CSI报告类型等高层参数确定,N为非负整数。
示例性的,假设N为4个slot,则一个服务小区的CSI参考资源的位置示意图可以如图10所示。
如果一个终端设备没有配置高层参数“信道测量时间限制(time restriction for channel measurements)”,则终端设备根据CSI资源配置中不晚于CSI参考资源的 NZP CSI-RS进行信道测量,来获取在上行slot n'上报告的CSI;如果一个终端设备已经配置高层参数“time restriction for channel measurements”,则终端设备根据CSI资源配置中不晚于CSI参考资源的最近的NZP CSI-RS进行信道测量,来获取在上行slot n'上报告的CSI。
如果一个终端设备没有配置高层参数“time restriction for channel measurements”,则终端设备根据CSI资源配置中不晚于CSI参考资源的CSI-IM和/或NZP CSI-RS进行干扰测量,来获取在上行slot n'上报告的CSI;如果一个终端设备已经配置高层参数“time restriction for channel measurements”,则终端设备根据CSI资源配置中不晚于CSI参考资源的最近的CSI-IM和/或NZP CSI-RS进行信道测量,来获取在上行slot n'上报告的CSI。
第八,PDSCH和NZP CSI-RS
NR系统中,如果一个用于调度PDSCH的PDCCH的循环冗余校验(cyclic redundancy check,CRC)是用小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)、调制编码方式(modulation and coding scheme,MCS)-C-RNTI和配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)加扰的,或者PDSCH是一个半持续调度(semi-persistent scheduling,SPS)的PDSCH,则一种可能的实现方式中,在PDSCH资源和NZP CSI-RS有重叠的情况下:
如果是一个非周期NZP CSI-RS,则PDSCH在重叠资源上不做速率匹配;
如果是一个配置了高层参数CSI-RS-Resource-Mobility的NZP CSI-RS,则PDSCH在重叠资源上不做速率匹配;
其他场景下,PDSCH会对NZP CSI-RS做速率匹配。
另一种可能的实现方式中,在PDSCH资源和ZP CSI-RS有重叠的情况下:
如果是一个非本PDSCH的调度PDCCH触发的非周期ZP CSI-RS,则PDSCH在重叠资源上不做速率匹配;否则,在其他场景下,PDSCH会对ZP CSI-RS做速率匹配。
需要注意的是,上面讨论的NZP CSI-RS和ZP CSI-RS是配置的周期NZP CSI-RS和ZP CSI-RS,或者激活的SP NZP CSI-RS和SP ZP CSI-RS,或者触发了的非周期NZP CSI-RS和非周期ZP CSI-RS,不包含没有激活的SP NZP CSI-RS和SP ZP CSI-RS,或者没有触发的非周期NZP CSI-RS和非周期ZP CSI-RS,在此统一说明,以下不再赘述。
可以理解的是,在本申请实施例中,PDCCH、PDSCH、PUCCH和PUSCH仅仅是下行控制信道、下行数据信道、上行控制信道和上行数据信道的举例。下行控制信道、下行数据信道、上行控制信道和上行数据信道在不同的通信系统中可能有不同的名称,本申请实施例对此不作限定。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例可以适用于LTE系统或NR系统,也可以适用于其他面向未来的新系统等,本申请实施例对此不作具体限定。此外,术语“系统”可以和“网络”相互替换。
如图11所示,为本申请实施例提供的一种通信系统110。该通信系统110包括网络设备120,以及与该网络设备120连接的一个或多个终端设备130。其中,终端设备130通过无线的方式与网络设备120相连。可选的,不同的终端设备130之间可以相 互通信。终端设备130可以是固定位置的,也可以是可移动的。
需要说明的是,图11仅是示意图,虽然未示出,但是该通信系统110中还可以包括其它网络设备,如该通信系统110还可以包括核心网设备、无线中继设备和无线回传设备中的一个或多个,在此不做具体限定。其中,网络设备可以通过无线或有线方式与核心网设备连接。核心网设备与网络设备120可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备120的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备120的功能,本申请实施例对此不做具体限定。
以图11所示的网络设备120与任一终端设备130进行交互为例,本申请实施例中,网络设备120可以向终端设备130发送第一信息,终端设备130接收来自网络设备120的第一信息,并根据第一信息确定第一资源。网络设备120还可以向终端设备130发送第二信息,终端设备130接收来自网络设备120的第二信息,并根据第二信息确定第二资源。进一步的,终端设备130根据第一资源和第二资源确定上述第三资源,并在第三资源上进行测量。其中,该方案的具体实现将在后续方法实施例中详细描述,在此不予赘述。基于该方案,由于本申请实施例中,终端设备在第一资源中除第一重叠资源之外的部分或全部资源上进行测量。也就是说,在第一资源和第二资源的重叠资源上,或者在第一资源和第二资源的重叠资源以及重叠资源的相关资源上,终端设备不进行测量,因此可以避免因为测量资源上其他信号的干扰,造成的测量性能下降的问题。
可选的,本申请实施例中的网络设备120,是一种将终端设备130接入到无线网络的设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,如果无特殊说明,网络设备均指无线接入网设备。
可选的,本申请实施例中的终端设备130,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。终端也可以称为用户设备(user equipment,UE)、移动台、移动终端等。终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可选的,本申请实施例中的网络设备120和终端设备130可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备120和终端设备130的应用场景不做限定。
可选的,本申请实施例中的网络设备120和终端设备130之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱 进行通信。网络设备120和终端设备130之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备120和终端设备130之间所使用的频谱资源不做限定。
可选的,本申请实施例中的网络设备120与终端设备130也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图12所示,为本申请实施例提供的网络设备120和终端设备130的结构示意图。
其中,终端设备130包括至少一个处理器1301和至少一个收发器1303。可选的,终端设备130还可以包括至少一个存储器1302、至少一个输出设备1304或至少一个输入设备1305。
处理器1301、存储器1302和收发器1303通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器1301可以是通用中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。在具体实现中,作为一种实施例,处理器1301也可以包括多个CPU,并且处理器1301可以是单核处理器或多核处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据的处理核。
存储器1302可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1302可以是独立存在,通过通信线路与处理器1301相连接。存储器1302也可以和处理器1301集成在一起。
其中,存储器1302用于存储执行本申请方案的计算机执行指令,并由处理器1301来控制执行。具体的,处理器1301用于执行存储器1302中存储的计算机执行指令,从而实现本申请实施例中所述的测量方法。
或者,可选的,本申请实施例中,也可以是处理器1301执行本申请下述实施例提供的测量方法中的处理相关的功能,收发器1303负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算 机程序代码,本申请实施例对此不作具体限定。
收发器1303可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器1303包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备1304和处理器1301通信,可以以多种方式来显示信息。例如,输出设备1304可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备1305和处理器1301通信,可以以多种方式接受用户的输入。例如,输入设备1305可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备120包括至少一个处理器1201、至少一个收发器1203和至少一个网络接口1204。可选的,网络设备120还可以包括至少一个存储器1202。其中,处理器1201、存储器1202、收发器1203和网络接口1204通过通信线路相连接。网络接口1204用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图12中未示出),本申请实施例对此不作具体限定。另外,处理器1201、存储器1202和收发器1203的相关描述可参考终端设备130中处理器1301、存储器1302和收发器1303的描述,在此不再赘述。
结合图12所示的终端设备130的结构示意图,示例性的,图13为本申请实施例提供的终端设备130的一种具体结构形式。
其中,在一些实施例中,图12中的处理器1301的功能可以通过图13中的处理器110实现。
在一些实施例中,图12中的收发器1303的功能可以通过图13中的天线1,天线2,移动通信模块150,无线通信模块160等实现。移动通信模块150可以提供应用在终端设备130上的包括LTE、NR或者未来移动通信等无线通信技术的解决方案。无线通信模块160可以提供应用在终端设备130上的包括WLAN(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外等无线通信技术的解决方案。在一些实施例中,终端设备130的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备130可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,图12中的存储器1302的功能可以通过图13中的内部存储器121或者外部存储器接口120连接的外部存储器等实现。
在一些实施例中,图12中的输出设备1304的功能可以通过图13中的显示屏194实现。
在一些实施例中,图12中的输入设备1305的功能可以通过鼠标、键盘、触摸屏设备或图13中的传感器模块180来实现。
在一些实施例中,如图13所示,该终端设备130还可以包括音频模块170、摄像头193、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模 块141和电池142中的一个或多个。
可以理解的是,图13所示的结构并不构成对终端设备130的具体限定。比如,在本申请另一些实施例中,终端设备130可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图13,以图11所示的网络设备120与任一终端设备130进行交互为例,对本申请实施例提供的测量方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图14所示,为本申请实施例提供的一种测量方法,该测量方法包括步骤S1401至S1407。
S1401、网络设备向终端设备发送第一信息。相应的,终端设备接收来自网络设备的第一信息。
可选的,本申请实施例中的第一信息可以是承载在网络设备发送给终端设备的高层信令中。一种可能的实现中,该第一信息可以为CSI测量的配置信息,包括测量报告配置,测量资源配置,测量报告和测量资源的关联配置等,相关描述可参考现有第三代合作伙伴项目(3rd generation partnership project,3GPP)技术标准(technical standard,TS)38.331 V15.7.0和TS38.214 V15.7.0,在此不予赘述。
S1402、终端设备根据第一信息确定第一资源。
其中,本申请实施例中的第一资源为配置的用于测量的资源。
S1403、网络设备向终端设备发送第二信息。相应的,终端设备接收来自网络设备的第二信息。
一种可能的实现方式中,本申请实施例中的第二信息为速率匹配资源的配置信息。该实现方式中,速率匹配资源的配置信息可以是承载在网络设备发送给终端设备的高层信令中。
另一种可能的实现方式中,本申请实施例中的第二信息为PI。该实现方式中,PI可以是承载在网络设备发送给终端设备的DCI中。
S1404、终端设备根据第二信息确定第二资源。
其中,当第二信息为速率匹配资源的配置信息时,本申请实施例中的第二资源为速率匹配资源;当第二信息为PI时,本申请实施例中的第二资源为PI所指示的抢占资源。
需要说明的是,本申请实施例中,当第二资源为PI所指示的抢占资源时,网络设备还可以向终端设备发送PI的配置信息。相应的,终端设备接收来自网络设备的PI的配置信息,PI的配置信息用于确定PI所在的资源位置。
可选的,本申请实施例中的步骤S1403与步骤S1401之间没有必然的执行先后顺序,可以是先执行步骤S1401,再执行步骤S1403;也可以是先执行步骤S1403,再执行步骤S1401,还可以是同时执行步骤S1401和步骤S1403,本申请实施例对此不作具体限定。
S1405、终端设备根据第一资源和第二资源确定第三资源,第三资源包括第一资源中除第一重叠资源之外的部分或全部资源,第一重叠资源为第一资源和第二资源的重叠资源。
可选的,本申请实施例中,第三资源包括第一资源中除第一重叠资源之外的部分或全部资源,具体可以是指:第三资源为第一资源中与第四资源不重叠的资源,第四资源包括第一资源中第一时域符号上的第一频域范围内的资源,第一时域符号为第一重叠资源对应的时域资源中的一个时域符号,第一频域范围包括第二重叠资源所在的频域范围,所述第二重叠资源为第一重叠资源中第一时域符号上的重叠资源。
示例性的,假设第一重叠资源中第一时域符号上的重叠资源(即第二重叠资源)如图15所示,则第一频域范围包括第二重叠资源中的4个RE所在的频域范围。
一种可能的实现方式中,当终端设备进行的测量为宽带测量时,第一频域范围为第一资源对应的频域范围。
例如,本申请实施例中的宽带测量可以包括宽带的CSI测量或者宽带的非CSI测量。宽带的非CSI测量例如可以包括L1-RSRP测量等。
假设第一资源为CSI-RS测量资源,高层配置的CSI-RS的天线端口数为4,CDM类型为fd-CDM2,对应的天线端口的位置分布如图6所示,则当终端设备进行的测量为宽带测量,高层信令配置的CSI-RS测量资源的频域范围为连续的多个PRB,第一重叠资源中第一时域符号上的重叠资源(即第二重叠资源)如图16所示时,第一频域范围为第一时域符号上的这些连续的多个PRB对应的频域范围。即第一频域范围为高层信令配置的第一资源的频域范围。
另一种可能的实现方式中,当终端设备进行的测量为子带测量时,第一频域范围为第二重叠资源所在的子带对应的频域范围。
例如,本申请实施例中的子带测量可以包括子带的CSI测量。
假设第一资源为CSI-RS测量资源,高层配置的CSI-RS的天线端口数为4,CDM类型为fd-CDM2,对应的天线端口的位置分布如图6所示,则当终端设备进行的测量为子带测量,第二重叠资源如图16所示(即其中一个PRB中的4个RE属于子带2,另外一个PRB中的4个RE属于子带3)时,第一频域范围为子带2对应的频域范围和子带3对应的频域范围。即第一频域范围为第二重叠资源所在的子带所包括的PRB。
需要说明的是,上述3个示例均是以一个第一时域符号上的重叠资源为例进行说明,若第一资源和第二资源在多个第一时域符号上重叠,则第四资源包括第一资源中多个第一时域符号上的第一频域范围内的资源,每个第一时域符号上的第一频域范围的确定方式均可以参考上述示例中第一时域符号上的第一频域范围的确定方式,在此不再赘述。
进一步的,第四资源还可以包括第一资源中第二时域符号上的第一频域范围内的资源,第二时域符号为与第二重叠资源有时域CDM关系的时域符号。
假设第一资源为CSI-RS测量资源,高层配置的CSI-RS的天线端口数为8,CDM类型为cdm4-FD2-TD2,对应的天线端口的位置分布如图8所示,第二重叠资源如图17所示,则第四资源不仅包括第二重叠资源中的4个RE,还包括第二重叠资源的相关资源,如第二时域符号上的4个RE。因为第二时域符号上的这4个RE与第一时域 符号上的这4个RE有时域CDM关系,这8个RE上承载的CSI-RS通过CDM映射到8个天线端口,当第一时域符号上的这4个RE上承载的CSI-RS被打孔打掉了,那么第二时域符号上的这4个RE上承载的CSI-RS也无法正确解调。
需要说明的是,上述示例以第一频域范围为第二重叠资源所在的频域范围为例进行说明。当然,第一频域范围也可以是第一资源对应的频域范围,或者,第一频域范围也可以是第二重叠资源所在的子带对应的频域范围,在此不再赘述。
S1406、网络设备确定第一资源和第二资源。
其中,第一资源的相关描述可参考上述步骤S1402,第二资源的相关描述可参考上述步骤S1404,在此不再赘述。
具体的,网络设备可以根据测量的需求确定第一资源。
具体的,当第二资源为速率匹配资源时,网络设备可以根据前向或后向兼容的需求确定第二资源;当第二资源为抢占资源时,网络设备可以根据对URLLC业务数据的调度确定第二资源。
需要说明的是,本申请实施例中的步骤S1406与步骤S1401或步骤S1403之间没有必然的执行先后顺序,可以是先执行步骤S1406,再执行步骤S1401或步骤S1403;也可以是先执行步骤S1401或步骤S1403,再执行步骤S1406,还可以是同时执行步骤S1406与步骤S1401或步骤S1403,本申请实施例对此不作具体限定。
S1407、网络设备根据第一资源和第二资源确定上述第三资源。
其中,网络设备根据第一资源和第二资源确定第三资源的方式可参考步骤S1405中终端设备根据第一资源和第二资源确定上述第三资源的方式,在此不再赘述。
需要说明的是,若上述步骤S1401或步骤S1403在步骤S1406之后执行,则本申请实施例中的步骤S1407与步骤S1401或步骤S1403之间没有必然的执行先后顺序,可以是先执行步骤S1407,再执行步骤S1401或步骤S1403;也可以是先执行步骤S1401或步骤S1403,再执行步骤S1407,还可以是同时执行步骤S1407与步骤S1401或步骤S1403,本申请实施例对此不作具体限定。
进一步的,一种可能的实现方式一中,本申请实施例提供的测量方法还包括如下步骤S1408:
S1408、网络设备在第三资源上向终端设备发送测量信号。相应的,终端设备在第三资源上接收来自网络设备的测量信号。
当第一资源为CSI-RS资源时,这里的测量信号可以为CSI-RS。当第一资源为CSI-IM资源时,这里的测量信号可以为CSI-IM。
或者,另一种可能的实现方式二中,本申请实施例提供的测量方法还包括如下步骤S1409:
S1409、网络设备确定不在第三资源发送信号。
当第一资源为CSI-IM资源时,则不在第三资源上发送的信号例如可以是本小区的PDSCH等有用信号。
进一步的,本申请实施例提供的测量方法还包括如下步骤S1410:
S1410、终端设备在第三资源上进行测量。
当第一资源为CSI-RS资源时,终端设备可以基于在第三资源上接收到的NZP  CSI-RS进行信道测量和/或干扰测量;或者,当第一资源为CSI-IM时,终端设备可以在第三资源上进行干扰测量。
基于本申请实施例提供的测量方法,由于本申请实施例中,终端设备在第一资源中除第一重叠资源之外的部分或全部资源上进行测量。也就是说,在第一资源和第二资源的重叠资源上,或者在第一资源和第二资源的重叠资源以及重叠资源的相关资源上,终端设备不进行测量,因此可以避免因为测量资源上其他信号的干扰,造成的测量性能下降的问题。
其中,上述步骤S1401至S1410中的网络设备的动作可以由图12所示的网络设备120中的处理器1201调用存储器1202中存储的应用程序代码来执行,上述步骤S1401至S1410中的终端设备的动作可以由图12所示的终端设备130中的处理器1301调用存储器1302中存储的应用程序代码来执行。
进一步的,结合上述对于PI的描述可知,当第二资源为PI所指示的抢占资源时,PI所指示的抢占资源可以通过基于承载PI的DCI获知;结合上述对于CSI测量和报告的描述可知,一个CSI报告对应一个CSI参考资源,这个CSI报告使用的测量资源不晚于这个CSI参考资源。如图18所示,发送CSI报告的时间对应的下行slot是slot n,CSI参考资源对应的下行slot为slot n-4。也就是说,发送的CSI报告是基于截止时间1之前的测量资源进行测量得到的。假设图18中第二个PI的处理时间是偏置1,则在截止时间2的位置,终端设备知道了其对应的时域范围内的抢占信息,此时才能进行重叠信息的判断。而终端设备本来可以根据偏置2区域内的测量资源进行CSI测量,但是因为要等PI解析完毕,则要到截止时间2处,才能开始CSI测量,这就可能会造成基于偏置2区域内的测量资源获得的CSI报告来不及在时隙n发送。为解决该问题,本申请实施例中,可以设计第一资源的时域资源不晚于CSI报告对应的CSI参考资源的时域位置,当第二资源为PI所指示的抢占资源时,CSI参考资源的时域位置为下行时隙n-N-K,
Figure PCTCN2019112605-appb-000007
μ DL和μ UL分别是下行子载波的索引和上行子载波的索引,N是根据第一信息中的参数确定的,如根据第一信息中的测量报告配置中该测量对应的CSI资源个数确定,相关描述可参考现有3GPP TS38.331 V15.7.0和TS38.214 V15.7.0,在此不予赘述。其中,N和K均为非负整数,n'为发送CSI报告的时隙索引(也可以称之为时隙号)。
对于K的取值:
一种可能的实现方式中,由网络设备确定K的取值,进而网络设备向终端设备发送第三信息。相应的,终端设备接收来自网络设备的第三信息,其中,第三信息指示K的取值。可选的,本申请实施例中,网络设备可以根据终端设备对PDCCH的处理时间和/或PI的时域周期确定K的取值,当然,网络设备也可以通过其他方式确定K的取值,本申请实施例对此不作具体限定。
另一种可能的实现方式中,由终端设备确定K的取值,比如,终端设备根据对PDCCH的处理时间和/或PI的时域周期,确定K的取值,本申请实施例对此不作具体限定。
示例性的,如图18所示,假设N=4,K=2,则意味着发送的CSI报告是基于截止时间3之前的测量资源进行测量得到的。假设每个PI的解析时间相同,则在截止时间4即可解析得到图18中的第一个PI,此时可以进行重叠信息的判断,进而可以进行 CSI测量。由于截止时间4早于截止时间1,因此在截止时间4开始对截止时间3之前的测量资源上的信号进行测量,得到的CSI报告能来得及在时隙n发送。
可以理解的是,以上各个实施例中,由终端设备实现的方法和/或步骤,也可以由实现上述终端设备功能的芯片或芯片系统实现,由网络设备实现的方法和/或步骤,也可以由实现上述网络设备功能的芯片或芯片系统实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备或者实现上述终端设备功能的芯片系统;或者,该通信装置可以为上述方法实施例中的网络设备或者实现上述网络设备功能的芯片系统。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图19和图20为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图11所示的终端设备130,也可以是如图11所示的网络设备120,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图19所示,通信装置1900包括处理单元1910和收发单元1920。通信装置1900用于实现上述图14中所示的方法实施例中终端设备或网络设备的功能。
当通信装置1900用于实现图14所示的方法实施例中终端设备的功能时:收发单元1920,用于接收来自网络设备的第一信息和第二信息。处理单元1910,用于根据第一信息确定第一资源,并根据第二信息确定第二资源之后,根据第一资源和第二资源确定第三资源,第三资源包括第一资源中除第一重叠资源之外的部分或全部资源,第一重叠资源为第一资源和第二资源的重叠资源。处理单元1910,还用于在第三资源上进行测量。
可选的,第一资源的时域资源不晚于CSI报告对应的CSI参考资源的时域位置,当第二资源为PI所指示的抢占资源时,CSI参考资源的时域位置为下行时隙n-N-K,
Figure PCTCN2019112605-appb-000008
μ DL和μ UL分别是下行SCS的索引和上行SCS的索引,N是根据第一信息中的参数确定的,N和K均为非负整数,n'为发送CSI报告的时隙索引。
一种可能的实现方式中,收发单元1920,还用于接收来自网络设备的第三信息,第三信息指示K的取值。
另一种可能的实现方式中,处理单元1910,还用于根据对PDCCH的处理时间和/或PI的时域周期,确定K的取值。
当通信装置1900用于实现图14所示的方法实施例中网络设备的功能时:收发单元1920,用于发送第一信息和第二信息,第一信息指示第一资源,第二信息指示第二 资源。处理单元1910,用于根据第一资源和第二资源确定第三资源,第三资源包括第一资源中除第一重叠资源之外的部分或全部资源,其中,第一重叠资源为第一资源和第二资源的重叠资源。收发单元1920,还用于在第三资源上发送测量信号,或者,处理单元1910,还用于确定不在第三资源发送信号。
可选的,第一资源的时域资源不晚于CSI报告对应的CSI参考资源的时域位置,当第二资源为PI所指示的抢占资源时,CSI参考资源的时域位置为下行时隙n-N-K,
Figure PCTCN2019112605-appb-000009
μ DL和μ UL分别是下行SCS的索引和上行SCS的索引,N是根据第一信息中的参数确定的,N和K均为非负整数,n'为发送CSI报告的时隙索引。
一种可能的实现方式中,收发单元1920,还用于发送第三信息,第三信息指示K的取值。
有关上述处理单元1910和收发单元1920更详细的描述可以直接参考图14所示的方法实施例中相关描述直接得到,这里不加赘述。
在本实施例中,该通信装置1900以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,当通信装置1900用于实现图14所示的方法实施例中终端设备的功能时,本领域的技术人员可以想到该通信装置1900可以采用图12所示的终端设备130的形式;或者,当通信装置1900用于实现图14所示的方法实施例中网络设备的功能时,本领域的技术人员可以想到该通信装置1900可以采用图12所示的网络设备120或者的形式。
比如,图12所示的网络设备120中的处理器1201可以通过调用存储器1202中存储的计算机执行指令,使得网络设备120执行上述方法实施例中的测量方法。
具体的,图19中的处理单元1910和收发单元1920的功能/实现过程可以通过图12所示的网络设备120中的处理器1201调用存储器1202中存储的计算机执行指令来实现。或者,图19中的处理单元1910的功能/实现过程可以通过图12所示的网络设备120中的处理器1201调用存储器1202中存储的计算机执行指令来实现,图19中的收发单元1920的功能/实现过程可以通过图12所示的网络设备120中的收发器1203来实现。
或者,比如,图12所示的终端设备130中的处理器1301可以通过调用存储器1302中存储的计算机执行指令,使得终端设备130执行上述方法实施例中的测量方法。
具体的,图19中的处理单元1910和收发单元1920的功能/实现过程可以通过图13所示的终端设备130中的处理器1301调用存储器1302中存储的计算机执行指令来实现。或者,图19中的处理单元1910的功能/实现过程可以通过图13所示的终端设备130中的处理器1301调用存储器1302中存储的计算机执行指令来实现,图19中的收发单元1920的功能/实现过程可以通过图13所示的终端设备130中的收发器1303来实现。
如图20所示,通信装置2000包括处理器2010和接口电路2020。处理器2010和接口电路2020之间相互耦合。可以理解的是,接口电路2020可以为收发器或输入输 出接口。处理器2010类型的相关描述可参考图12所示的实施例,在此不再赘述。
可选的,通信装置2000还可以包括存储器2030,用于存储处理器2010执行的指令或存储处理器2010运行指令所需要的输入数据或存储处理器2010运行指令后产生的数据。其中,存储器2030的类型的相关描述可参考图12所示的实施例,在此不再赘述。
当通信装置2000用于实现图14所示的方法时,处理器2010用于执行上述处理单元1910的功能,接口电路2020用于执行上述收发单元1920的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、PROM、EPROM、EEPROM、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。此外,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
最后,需要说明的是,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。

Claims (17)

  1. 一种测量方法,其特征在于,所述方法包括:
    接收来自网络设备的第一信息和第二信息;
    根据所述第一信息确定第一资源;
    根据所述第二信息确定第二资源;
    根据所述第一资源和所述第二资源确定第三资源,所述第三资源包括所述第一资源中除第一重叠资源之外的部分或全部资源,所述第一重叠资源为所述第一资源和所述第二资源的重叠资源;
    在所述第三资源上进行测量。
  2. 根据权利要求1所述的方法,其特征在于,所述第二信息为速率匹配资源的配置信息,所述第二资源为所述速率匹配资源;或者,
    所述第二信息为抢占指示PI,所述第二资源为所述PI所指示的抢占资源。
  3. 根据权利要求2所述的方法,其特征在于,所述第三资源包括所述第一资源中除所述第一重叠资源之外的部分或全部资源,包括:
    所述第三资源为所述第一资源中与第四资源不重叠的资源,所述第四资源包括所述第一资源中第一时域符号上的第一频域范围内的资源,所述第一时域符号为所述第一重叠资源对应的时域资源中的一个时域符号,所述第一频域范围包括第二重叠资源所在的频域范围,所述第二重叠资源为所述第一重叠资源中所述第一时域符号上的重叠资源。
  4. 根据权利要求3所述的方法,其特征在于,所述第四资源还包括所述第一资源中第二时域符号上的所述第一频域范围内的资源,所述第二时域符号为与所述第二重叠资源有时域码分多址CDM关系的时域符号。
  5. 根据权利要求3或4所述的方法,其特征在于,当所述测量为宽带测量时,所述第一频域范围为所述第一资源对应的频域范围;
    或者,当进行的测量为子带测量时,所述第一频域范围为所述第二重叠资源所在的子带对应的频域范围。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述第一资源的时域资源不晚于信道状态信息CSI报告对应的CSI参考资源的时域位置,当所述第二资源为所述PI所指示的抢占资源时,所述CSI参考资源的时域位置为下行时隙n-N-K,
    Figure PCTCN2019112605-appb-100001
    μ DL和μ UL分别是下行子载波间隔SCS的索引和上行SCS的索引,N是根据所述第一信息中的参数确定的,N和K均为非负整数,n'为发送所述CSI报告的时隙索引。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第三信息,所述第三信息指示K的取值;或者,
    根据物理下行控制信道的处理时间和/或所述PI的时域周期,确定K的取值。
  8. 一种测量方法,其特征在于,所述方法包括:
    发送第一信息和第二信息,所述第一信息指示第一资源,所述第二信息指示第二资源;
    根据所述第一资源和所述第二资源确定第三资源,所述第三资源包括所述第一资 源中除第一重叠资源之外的部分或全部资源,其中,所述第一重叠资源为所述第一资源和所述第二资源的重叠资源;
    在所述第三资源上发送测量信号,或者,确定不在所述第三资源发送信号。
  9. 根据权利要求8所述的方法,其特征在于,所述第二信息为速率匹配资源的配置信息,所述第二资源为所述速率匹配资源;
    或者,所述第二信息为抢占指示PI,所述第二资源为所述PI所指示的抢占资源。
  10. 根据权利要求9所述的方法,其特征在于,所述第三资源包括所述第一资源中除所述第一重叠资源之外的部分或全部资源,包括:
    所述第三资源为所述第一资源中与第四资源不重叠的资源,所述第四资源包括所述第一资源中第一时域符号上的第一频域范围内的资源,所述第一时域符号为所述第一重叠资源对应的时域资源中的一个时域符号,所述第一频域范围包括第二重叠资源所在的频域范围,所述第二重叠资源为所述第一重叠资源中所述第一时域符号上的重叠资源。
  11. 根据权利要求10所述的方法,其特征在于,所述第四资源还包括所述第一资源中第二时域符号上的所述第一频域范围内的资源,所述第二时域符号为与所述第二重叠资源有时域码分多址CDM关系的时域符号。
  12. 根据权利要求10或11所述的方法,其特征在于,当所述测量为宽带测量时,所述第一频域范围为所述第一资源对应的带宽;
    或者,当所述测量为子带测量时,所述第一频域范围为所述第二重叠资源所在的子带对应的频域范围。
  13. 根据权利要求9-12任一项所述的方法,其特征在于,所述第一资源的时域资源不晚于信道状态信息CSI报告对应的CSI参考资源的时域位置,当所述第二资源为所述PI所指示的抢占资源时,所述CSI参考资源的时域位置为下行时隙n-N-K,
    Figure PCTCN2019112605-appb-100002
    μ DL和μ UL分别是下行子载波间隔SCS的索引和上行SCS的索引,N是根据所述第一信息中的参数确定的,N和K均为非负整数,n'为发送所述CSI报告的时隙索引。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    发送第三信息,所述第三信息指示K的取值。
  15. 一种通信装置,包括用于执行如权利要求1-7中的任一项所述方法的模块或者包括用于执行如权利要求8-14中的任一项所述方法的模块。
  16. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-7中任一项所述的方法;或者,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求8-14中任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-7中任一项所述的方法或者实现如权利要求8-14中任一项所述的方法。
PCT/CN2019/112605 2019-10-22 2019-10-22 测量方法、装置及系统 WO2021077305A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19950190.9A EP4044720A4 (en) 2019-10-22 2019-10-22 TEST METHOD, DEVICE AND SYSTEM
CN201980100821.3A CN114424654A (zh) 2019-10-22 2019-10-22 测量方法、装置及系统
PCT/CN2019/112605 WO2021077305A1 (zh) 2019-10-22 2019-10-22 测量方法、装置及系统
US17/725,049 US20220248245A1 (en) 2019-10-22 2022-04-20 Measurement method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/112605 WO2021077305A1 (zh) 2019-10-22 2019-10-22 测量方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/725,049 Continuation US20220248245A1 (en) 2019-10-22 2022-04-20 Measurement method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2021077305A1 true WO2021077305A1 (zh) 2021-04-29

Family

ID=75619576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112605 WO2021077305A1 (zh) 2019-10-22 2019-10-22 测量方法、装置及系统

Country Status (4)

Country Link
US (1) US20220248245A1 (zh)
EP (1) EP4044720A4 (zh)
CN (1) CN114424654A (zh)
WO (1) WO2021077305A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438672A (zh) * 2021-06-24 2021-09-24 中国联合网络通信集团有限公司 一种干扰处理方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117812736A (zh) * 2022-09-30 2024-04-02 华为技术有限公司 一种通信方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103907298A (zh) * 2011-08-10 2014-07-02 华为技术有限公司 信令通知和发送上行链路参考信号的系统和方法
US20150163823A1 (en) * 2013-12-11 2015-06-11 Qualcomm Incorporated Interference classification-based carrier sense adaptive transmission (csat) in unlicensed spectrum
WO2018082043A1 (zh) * 2016-11-04 2018-05-11 广东欧珀移动通信有限公司 通信方法、终端和网络设备
WO2018148947A1 (zh) * 2017-02-17 2018-08-23 华为技术有限公司 一种资源分配方法、装置
CN109391994A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 通信方法和通信设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102521728B1 (ko) * 2016-08-19 2023-04-14 삼성전자 주식회사 이동 통신 시스템에서의 채널 상태 정보 수신 방법 및 장치
HUE058109T2 (hu) * 2017-11-09 2022-07-28 Beijing Xiaomi Mobile Software Co Ltd Eljárás és berendezés vezeték nélküli eszközök képességein alapuló kommunikációhoz
CA3028778A1 (en) * 2017-12-29 2019-06-29 Comcast Cable Communications, Llc Selection of grant and csi
CN110071788B (zh) * 2018-01-24 2022-03-08 维沃移动通信有限公司 信道状态信息参考信号传输方法、网络设备及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103907298A (zh) * 2011-08-10 2014-07-02 华为技术有限公司 信令通知和发送上行链路参考信号的系统和方法
US20150163823A1 (en) * 2013-12-11 2015-06-11 Qualcomm Incorporated Interference classification-based carrier sense adaptive transmission (csat) in unlicensed spectrum
WO2018082043A1 (zh) * 2016-11-04 2018-05-11 广东欧珀移动通信有限公司 通信方法、终端和网络设备
WO2018148947A1 (zh) * 2017-02-17 2018-08-23 华为技术有限公司 一种资源分配方法、装置
CN109391994A (zh) * 2017-08-11 2019-02-26 华为技术有限公司 通信方法和通信设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.214
3GPP TS 38.331
See also references of EP4044720A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113438672A (zh) * 2021-06-24 2021-09-24 中国联合网络通信集团有限公司 一种干扰处理方法及装置

Also Published As

Publication number Publication date
EP4044720A1 (en) 2022-08-17
EP4044720A4 (en) 2022-10-19
US20220248245A1 (en) 2022-08-04
CN114424654A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
TWI691225B (zh) 衝突處理之方法、及其使用者設備和基地台
WO2019129012A1 (zh) 控制信息的传输方法
WO2019137213A1 (zh) 上行控制信息传输方法和通信装置
CN113475031B (zh) 执行发送和接收操作的用户设备和系统
US20210274494A1 (en) Uplink control information transmission method and apparatus
EP3375213B1 (en) Method and device for performing uplink transmission
US20200145165A1 (en) Communication Method and Device
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2019037695A1 (zh) 一种通信方法及装置
WO2020052573A1 (zh) 通信方法、装置及计算机存储介质
US20230079149A1 (en) Downlink control information communication method, apparatus, and system
US20220248245A1 (en) Measurement method, apparatus, and system
WO2018228537A1 (zh) 信息发送、接收方法及装置
US20200178248A1 (en) Method and device for receiving and sending control information
US20200083933A1 (en) Data Transmission Method, Apparatus, and System
CN114189945A (zh) 一种信息发送、接收方法及装置
WO2021259006A1 (zh) Pucch资源分配方法、uci信息发送方法和装置、基站、移动终端及计算机存储介质
CN112311501A (zh) 通信方法和通信装置
WO2021155604A1 (zh) 信息处理方法及设备
WO2021088026A1 (zh) 一种确定数据传输反馈时延的方法及装置
WO2019192515A1 (zh) 一种反馈信息的传输方法和装置
EP4124136A1 (en) Data transmission method and apparatus
US20200374885A1 (en) Data Transmission Method and Device
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备
US20230362928A1 (en) Pucch transmission method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019950190

Country of ref document: EP

Effective date: 20220428