WO2021088026A1 - 一种确定数据传输反馈时延的方法及装置 - Google Patents

一种确定数据传输反馈时延的方法及装置 Download PDF

Info

Publication number
WO2021088026A1
WO2021088026A1 PCT/CN2019/116813 CN2019116813W WO2021088026A1 WO 2021088026 A1 WO2021088026 A1 WO 2021088026A1 CN 2019116813 W CN2019116813 W CN 2019116813W WO 2021088026 A1 WO2021088026 A1 WO 2021088026A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
data
frequency resource
terminal device
communication device
Prior art date
Application number
PCT/CN2019/116813
Other languages
English (en)
French (fr)
Inventor
温容慧
王俊伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/116813 priority Critical patent/WO2021088026A1/zh
Priority to CN201980102033.8A priority patent/CN114641956A/zh
Publication of WO2021088026A1 publication Critical patent/WO2021088026A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria

Definitions

  • This application relates to the field of wireless communication technologies, and in particular, to a method and device for determining data transmission feedback delay.
  • the International Telecommunication Union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), ultra-reliable and low-latency communications communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine type communications
  • typical eMBB services include: ultra-high-definition video, augmented reality, virtual reality, etc.
  • the main characteristics of these services are the large amount of transmission data and the high transmission rate.
  • Typical URLLC services include: wireless control in industrial manufacturing or production processes, motion control of unmanned vehicles and unmanned aircraft, and tactile interaction applications such as remote repairs and remote surgery.
  • the main feature of these services is that they require ultra-high reliability. With high performance, low latency, less data transmission and bursty.
  • Typical mMTC services include: smart grid distribution automation, smart cities, etc. The main features are the huge number of networked devices, the small amount of transmitted data, and the data insensitive to transmission delay.
  • the present application provides a method and device for determining the feedback delay of data transmission, so as to determine the feedback delay more reasonably and improve the performance of data transmission.
  • an embodiment of the present application provides a method for determining a data transmission feedback delay.
  • the execution body of the method is a communication device, and the communication device may be a network device or a chip applied in the network device. Take the network device as an example.
  • the network device determines to send the first control channel on the first time-frequency resource and the first data channel corresponding to the first control channel (the first data channel) on the second time-frequency resource.
  • the network device After a data channel is used to carry the first data), it can be determined whether the terminal device needs to discard the second data before processing the first data; when the network device determines that the terminal device needs to discard the second data, the network device can determine the first time frequency Whether the end time of the resource is before the start time of the second time-frequency resource; when the end time of the first time-frequency resource is before the start time of the second time-frequency resource, the network device can determine that the terminal device discards the second data Whether the required duration is greater than the first duration; when the duration required for the terminal device to discard the second data is greater than the first duration, the network device may according to the duration required for the terminal device to discard the second data, the first duration and the preset duration , Determining the feedback delay of the first data.
  • the network device sends the first control channel to the terminal device on the first time-frequency resource and sends the first data channel to the terminal device on the second time-frequency resource.
  • the control information carried by the first control channel includes the first information and The second information, the first information indicates the second time-frequency resource, and the second information indicates the feedback delay of the first data; the first time length is between the end time of the first time-frequency resource and the start time of the second time-frequency resource.
  • the duration of the interval, the preset duration is the duration required for the terminal device to process the reception of the first data and other related steps after receiving the first control channel.
  • the network device determines whether the terminal device needs to discard the second data before processing the first data, according to the relative position relationship between the first time-frequency resource and the second time-frequency resource, the time required for the terminal device to discard the second data
  • the feedback delay of the first data is determined in relation to the magnitude of the first duration, so that the determined feedback delay can be avoided to be too long, and the data transmission performance can be improved.
  • the network device when the network device determines that the terminal device needs to discard the second data before processing the first data, the end time of the first time-frequency resource is before the start time of the second time-frequency resource, and the terminal When the time required for the device to discard the second data is less than or equal to the first time length, the network device may determine the feedback time delay of the first data according to the preset time length.
  • the terminal device can complete the operation of discarding the second data before the end of the first duration, that is, the terminal device discarding the second data does not affect The first data is processed, so the network device can determine the feedback delay of the first data according to the preset duration.
  • the network device when the network device determines that the terminal device needs to discard the second data before processing the first data, the end time of the first time-frequency resource is after the start time of the second time-frequency resource or the first time-frequency resource When the end time of the resource overlaps with the start time of the second time-frequency resource, the network device may determine the feedback delay of the first data according to the time required for the terminal device to discard the second data and the preset time.
  • the feedback delay of the first data may be determined according to the preset duration.
  • the network device determines the feedback delay of the first data according to the length of time required for the terminal device to discard the second data, the first time length, and the preset time length, and the feedback delay of the first data conforms to the following formula:
  • T is the feedback delay of the first data
  • T_proc is the preset duration
  • T_drop is the duration required for the terminal device to discard the second data
  • T_dci2pdsch is the first duration.
  • the priority of the first data is higher than the priority of the second data.
  • the network device determines that the terminal device needs to discard the second data before processing the first data; Or, when the third time-frequency resource carrying the second data and the second time-frequency resource do not overlap in the time domain, and it is determined according to the capability of the terminal device that the terminal device cannot complete the pairing before the start time of the second time-frequency resource For processing the second data, the network device determines that the terminal device needs to discard the second data before processing the first data.
  • the present application provides a communication device.
  • the communication device may be a network device or a module or chip set inside the network device.
  • the communication device is capable of implementing the functions involved in the first aspect described above.
  • the communication device includes modules or units or means corresponding to the steps involved in the first aspect described above, and the functions or units or means can be implemented by software, or It is realized by hardware, and it can also be realized by hardware to execute corresponding software.
  • the communication device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the communication device and other devices.
  • the communication unit is used to communicate with the terminal.
  • the device sends data; the processing unit can be used to perform some internal operations of the communication device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in the above-mentioned first aspect.
  • the communication device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or design in the first aspect.
  • the communication device may further include one or more memories, and the memories are coupled with the processor.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may store necessary computer programs or instructions to realize the functions involved in the first aspect described above.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes the method in any possible design or implementation manner of the first aspect described above.
  • the communication device includes a processor and a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the first aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the communication device realizes the method in any possible design or implementation manner of the first aspect described above.
  • the communication device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit, and execute any possible design or implementation of the first aspect above.
  • the method in the way.
  • the present application provides a computer-readable storage medium in which computer-readable instructions are stored.
  • the communication device reads and executes the computer-readable instructions, the communication device executes the above-mentioned first Any one of the possible design methods.
  • the present application provides a computer program product.
  • the computer program product includes a computer program or instruction.
  • the communication device reads and executes the computer program or instruction, the communication device executes any one of the above-mentioned first aspects. A possible design approach.
  • the present application provides a chip that includes a processor, the processor is coupled with a memory, and is configured to read and execute a software program stored in the memory to implement any one of the above-mentioned first aspect.
  • a possible design approach A possible design approach.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applied in an embodiment of this application;
  • Figure 2a is a schematic diagram of a downlink time-frequency resource grid provided by an embodiment of this application.
  • 2b is an example diagram of time-frequency resources occupied by PDCCH provided by an embodiment of this application.
  • FIG. 2c is an example diagram of time-frequency resources occupied by PDSCH provided by an embodiment of the application.
  • FIG. 2d is an example diagram of pilot symbols provided by an embodiment of this application.
  • Figure 2e is a schematic diagram of the feedback delay of data provided by an embodiment of the application.
  • Fig. 3 is a schematic diagram of network equipment scheduling PDSCH-1 and PDSCH-2 according to an embodiment of the application;
  • FIG. 4 is a schematic flowchart corresponding to the method for determining data transmission feedback delay provided by an embodiment of the application
  • FIG. 5 is a schematic diagram of the relative positional relationship between the first time-frequency resource and the second time-frequency resource provided by an embodiment of this application;
  • FIG. 6 is a schematic diagram of the relative positional relationship between the third time-frequency resource and the second time-frequency resource provided by an embodiment of this application;
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 1 is a schematic diagram of the architecture of a mobile communication system applied in an embodiment of the present application.
  • the mobile communication system includes a core network device 110, a wireless access network device 120, and at least one terminal device (the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the wireless access network device in a wireless manner
  • the wireless access network device is connected to the core network device in a wireless or wired manner.
  • the core network device and the wireless access network device can be separate and different physical devices, or it can integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or it can be a physical device. It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
  • the terminal device can be a fixed location, or it can be movable.
  • Fig. 1 is only a schematic diagram.
  • the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
  • the embodiment of the present application does not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • the terminal equipment is connected to the wireless access network equipment in a wireless manner, thereby accessing the mobile communication system.
  • the radio access network equipment can be a base station (base station), evolved base station (evolved NodeB, eNodeB), transmission reception point (TRP), next generation NodeB (gNB) in a 5G mobile communication system ,
  • the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes part of the functions of the base station, for example, it can be a centralized unit (CU) or a distributed unit (distributed unit, DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the radio access network device.
  • wireless access network equipment is referred to as network equipment. Unless otherwise specified, network equipment refers to wireless access network equipment.
  • the terminal device may also be referred to as a terminal, user equipment (UE), mobile station, mobile terminal, and so on.
  • Terminal equipment can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and smart grids Wireless terminals in the Internet, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • Network equipment and terminal equipment can communicate through licensed spectrum, or communicate through unlicensed spectrum, or communicate through licensed spectrum and unlicensed spectrum at the same time.
  • Network equipment and terminal equipment can communicate through a frequency spectrum below 6 GHz (gigahertz, GHz), communicate through a frequency spectrum above 6 GHz, and communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • the architecture shown in Figure 1 above can be applied to various radio access technology (RAT) communication systems, such as long term evolution (LTE) mobile communication systems, or 5G (or RAT) communication systems. It is called a new radio (NR) mobile communication system.
  • RAT radio access technology
  • LTE long term evolution
  • NR new radio
  • Time-frequency resources Taking the 5G mobile communication system as an example, the frequency domain is divided into independent subcarriers.
  • the subcarrier spacing (SCS) can be determined according to the subcarrier spacing parameter u, such as common subcarrier spacing. It is 15 kilohertz (kilohertz, kHz) or 30kHz, etc.
  • the unit of the uplink/downlink frequency domain resources is a resource block (resource block, RB), and each RB is composed of 12 consecutive subcarriers in the frequency domain.
  • RB resource block
  • each RB is composed of 12 consecutive subcarriers in the frequency domain.
  • Figure 2a which is a downlink time-frequency resource grid.
  • Each element on the resource grid is called a resource element (resource element, RE).
  • RE is the smallest physical resource and includes one subcarrier in one time domain symbol.
  • the grid of uplink time-frequency resources is similar to that of downlink.
  • the time domain symbols can also be referred to as symbols for short, can be orthogonal frequency division multiplexing (OFDM) symbols, or single carrier frequency division multiple access (SC-FDMA).
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier frequency division multiple access
  • the symbol can also be a time domain symbol using other waveforms.
  • Control channel The control channel involved in the embodiments of the present application may be a downlink control channel, such as a physical downlink control channel (PDCCH), or other possible downlink control channels, which are not specifically limited.
  • the control channel can be used to carry control information, such as downlink control information (DCI).
  • DCI downlink control information
  • the sending control channel in the embodiment of the present application can also be understood as sending control information through the control channel.
  • the control channel is mainly PDCCH as an example for description.
  • sending a PDCCH by a network device may mean that the network device maps the PDCCH to a time-frequency resource, and then sends the PDCCH on the mapped time-frequency resource.
  • the time-frequency resources mapped by the PDCCH can also be understood as the time-frequency resources occupied by the PDCCH.
  • Figure 2b which is an example diagram of time-frequency resources occupied by PDCCH.
  • the PDCCH occupies 2 symbols in the time domain (symbol 1 and symbol 2 respectively), and can occupy one or more RBs in the frequency domain.
  • the RB occupied by the PDCCH in the frequency domain is The number is not limited.
  • the number of the start symbol of the time slot is 0 as an example for description. In other possible embodiments, the number of the start symbol may also be other values, such as 1. The specifics are not limited.
  • the data channel involved in the embodiments of the present application may be a downlink data channel, such as a physical downlink shared channel (PDSCH).
  • the data channel can be used to carry data.
  • the sending data channel in the embodiment of the present application can also be understood as sending data through the data channel.
  • the data channel will be mainly described as an example where the data channel is PDSCH.
  • the network device sending the PDSCH may mean that the network device maps the PDSCH to the time-frequency resource, and then sends the PDSCH on the mapped time-frequency resource.
  • the time-frequency resources mapped by the PDSCH can also be understood as the time-frequency resources occupied by the PDSCH.
  • the PDSCH has two mapping types: mapping type A (mapping type A) and mapping type B (mapping type B).
  • mapping type A mapping type A
  • mapping type B mapping type B
  • the number S of the start symbol and the number L of the sustained symbols of the two types of PDSCH are different. See Table 1, which shows the difference between the two types of S and L.
  • the start symbol of the mapping type A can be the first 4 symbols ⁇ 0,1,2,3 ⁇ , and the number of continuous symbols can be ⁇ 3, ..., 14 ⁇ ;
  • the start symbol of mapping type B can be the first 13 symbols ⁇ 0,...,12 ⁇ , and the number of continuous symbols can be ⁇ 2,4,7 ⁇ .
  • the extended cyclic prefix (ECP) is similar to the NCP and will not be repeated here.
  • FIG. 2c is an example diagram of time-frequency resources occupied by the PDSCH.
  • This example is an example of mapping type A.
  • the start symbol of the PDSCH is symbol 2
  • the number of continuous symbols is 11, which means that 11 symbols (including symbols 2 to 12) are occupied in the time domain, and one or more symbols are occupied in the frequency domain.
  • RB the embodiment of this application does not limit the number of RBs occupied by the PDSCH in the frequency domain.
  • the PDSCH can be scheduled by the DCI carried in the corresponding PDCCH.
  • the terminal device needs to monitor the PDCCH first, and obtain the DCI carried in the PDCCH by monitoring the PDCCH.
  • the DCI can be used to indicate the PDSCH occupancy The time-frequency resource, and then the PDSCH can be received on the time-frequency resource indicated by the DCI.
  • the data carried on the PDSCH can correspond to one or more pilot symbols.
  • the pilot symbol is the symbol occupied by the pilot frequency, or it can also be described as the symbol used to carry the pilot. It is understandable that for one pilot symbol In other words, the pilot can occupy one or more REs corresponding to the pilot symbol.
  • Pilot also called pilot signal refers to a signal transmitted for the purpose of measurement or monitoring. For example, it may include a signal transmitted for the purpose of channel estimation.
  • the pilot may be a demodulation reference signal. (de-modulation reference signal, DMRS).
  • DMRS demodulation reference signal
  • the pilot symbol refers to the DMRS symbol.
  • Figure 2d is an example diagram of pilot symbols corresponding to data.
  • the PDSCH occupies 11 symbols in the time domain (including symbol 2 to symbol 12), and the two pilot symbols corresponding to the data are symbol 2 and symbol 3, respectively.
  • the terminal device may perform channel estimation according to the DMRS carried on the DMRS symbol corresponding to the data carried by the PDSCH, and process the data carried by the PDSCH (including demodulation and decoding) according to the channel estimation result. Therefore, in an example, the starting time for processing the data carried on the PDSCH may be the starting time of the time-frequency resource occupied by the PDSCH. In another example, because the terminal device first needs to perform channel estimation according to DMRS before the demodulation and decoding of the data, the starting time for processing the data carried on the PDSCH may be the start of the DMRS symbol corresponding to the data.
  • the start time such as the start time of the first DMRS symbol; see Figure 2d, in this case, the start time of the DMRS symbol corresponding to the data carried by the PDSCH is the start time of the time-frequency resources occupied by the PDSCH ;
  • the PDSCH occupies symbols 2 to 12 in the time domain, the data carried by the PDSCH corresponds to two pilot symbols, which are symbol 3 and symbol 4, and the data carried by the PDSCH corresponds to the DMRS symbol
  • the starting moment of is the starting moment of symbol 3.
  • the start time for processing the data carried on the PDSCH may be the end time of the DMRS symbol used for channel estimation. For example, as shown in FIG.
  • the end time of the DMRS symbol used for channel estimation is The end time of symbol 3.
  • the start time of the time-frequency resources occupied by the PDSCH is mainly used as the start time of processing the data carried on the PDSCH as an example.
  • the terminal device After the terminal device receives the PDSCH from the network device, if it decodes the data carried by the PDSCH successfully, it means that the data is received successfully, and then it can send an acknowledgment (ACK) to the network device; if the decoding fails or there is no time to complete the decoding , It means that the data reception fails, and then a negative acknowledgement (NACK) can be sent to the network device.
  • ACK acknowledgment
  • NACK negative acknowledgement
  • the data feedback delay can be understood as the end time of the time-frequency resource occupied by the PDSCH carrying the data and the hybrid automatic repeat request (HARQ) feedback information (such as ACK or NACK) of the bearer
  • HARQ hybrid automatic repeat request
  • the uplink control channel may be a physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • the start time of the first uplink symbol of the PUCCH carrying HARQ feedback information should not be earlier than the end time corresponding to the feedback delay.
  • the feedback delay can be determined by the network device and indicated to the terminal device.
  • the network device may determine the feedback delay according to the preset duration, and the feedback delay determined according to the preset duration may be greater than or equal to the preset duration.
  • the preset duration may be related to one or more of the following parameters: (1) the processing capability of the terminal equipment; (2) the mapping type of the PDSCH; (3) the length of the time domain resources occupied by the PDSCH; (4) the occupation of the PDCCH The relative positional relationship between the time domain resources and the time domain resources occupied by the PDSCH.
  • For the calculation method of the preset duration please refer to the existing scheme, which will not be repeated here.
  • the length of the interval between the start time of processing the data carried on the PDSCH and the end time corresponding to the feedback delay is the length of time that the terminal device can use to process the data carried by the PDSCH (referred to as data processing time length for short) ), see Figure 2e.
  • the terminal device can process the data within the data processing time range. If the terminal device completes the data processing in advance, it can wait until the end time corresponding to the feedback delay to send an ACK; if the terminal device has not yet reached the end time corresponding to the feedback delay After completing the data processing, NACK can be sent at the end time corresponding to the feedback delay.
  • the processing capability of the terminal device may include processing capability 1 (processing capability 1) and processing capability 2.
  • the speed of processing data corresponding to processing capability 2 is greater than the speed of processing data corresponding to processing capability 1, that is, when the processing capability of the terminal device is processing capability 2, the time required to process the data is shorter.
  • terminal device a can report its processing capability to the network device. For example, if the processing capability of terminal device a is processing capability 2, then terminal device a can report its processing capability as processing Ability 2. If the terminal device a does not report its processing capability, the network device can default the processing capability of the terminal device to processing capability 1.
  • the 5G mobile communication system can support multiple services. Therefore, terminal devices may need to process multiple services. For example, terminal devices may need to process URLLC services and eMBB services.
  • the network device (such as the radio access network device 120) may send DCI to the terminal device (such as the terminal device 130) through the PDCCH, and the DCI may be used for scheduling data.
  • the network device schedules eMBB service data first, and then schedules URLLC service data; considering that URLLC service data has low latency requirements, terminal equipment may need to discard eMBB service data and process URLLC service data, which may result in URLLC service data Insufficient processing time to trigger retransmissions, which degrades the performance of URLLC services.
  • the network device sends DCI-1 and DCI-2 to the terminal device in turn.
  • DCI-1 is used to schedule PDSCH-1
  • DCI-2 is used to schedule PDSCH-2.
  • PDSCH-2 The priority of the carried data is higher than the priority of the data carried by PDSCH-1 (in other words, the priority of the terminal equipment for processing the data carried by PDSCH-2 is higher than the priority of the terminal equipment for processing the data carried by PDSCH-1).
  • the terminal device can process the data carried by PDSCH-1 according to DCI-1; and then after receiving DCI-2, it needs to discard the data carried by PDSCH-1, and according to DCI- 2 Process the data carried by PDSCH-2.
  • time t1 is the starting time when the terminal device processes the data carried by PDSCH-1 according to DCI-1
  • the interval between time t2 and time t3 is the time required for the terminal device to discard the data carried by PDSCH-1
  • the length of the interval between time t3 and time t4 is the time length that the terminal device can use to process the data carried by the PDSCH-2.
  • the terminal device after receiving DCI-2, the terminal device needs to discard the data carried by PDSCH-1 and then process the data carried by PDSCH-2, which makes it difficult for the terminal device to process the data carried by PDSCH-2.
  • the start time changes from t2 to t3, that is, the processing time becomes shorter, and the processing time may be insufficient to complete the processing of the unfinished data, and the HARQ information can only be fed back at the time of feeding back NACK, causing the network device to retransmit the data carried on PDSCH-2. Data, resulting in a waste of resources.
  • one possible implementation is to extend the feedback delay, that is, when it is determined that the data carried by PDSCH-1 needs to be discarded, it is determined according to the preset duration and the time required to discard the data carried by PDSCH-1
  • the feedback delay of the data carried by PDSCH-2, the feedback delay determined in this way is greater than or equal to the sum of the preset time length and the time required to discard the data carried by PDSCH-1.
  • the transmission time information of URLLC service data (such as the start symbol position and length of the time-frequency resource carrying URLLC service data, and the carrying DCI The number of time slots between the time-frequency resources, etc.) is pre-configured by the network device through high-level signaling with 16 combination values, and then the terminal device is notified of which configuration to adopt in the scheduled DCI through an index.
  • URLLC service data arrives randomly, it is not always possible to find no time delay between the time-frequency resource that meets the time-delay requirement and the time-frequency resource that bears the DCI and the time-frequency resource that bears the URLLC service data.
  • the delay is also included in the data transmission delay. If the data carried by PDSCH-1 is still discarded according to the preset duration The time required to determine the feedback delay of the data carried by PDSCH-2 may cause the feedback delay to be further prolonged and affect the performance of the URLLC service.
  • the embodiments of the present application provide a method and device for determining the feedback delay of data transmission, which are used to prevent the determined feedback delay from being too long and improve the performance of data transmission.
  • FIG. 4 is a schematic flowchart corresponding to a method for determining a data transmission feedback delay provided by an embodiment of the application.
  • the network device involved in this process may be the wireless access network device 120 in FIG. 1 described above, and the terminal device may be the terminal device 130 or the terminal device 140 in FIG. 1 described above. It is understandable that the functions of the network equipment can also be realized by the chip applied in the network equipment, or realized by other devices; the function of the terminal device can also be realized by the chip applied in the terminal device, or realized by other devices .
  • the process includes:
  • Step 401 The network device determines to send the first PDCCH on the first time-frequency resource.
  • Step 402 The network device determines to send the first PDSCH corresponding to the first PDCCH on the second time-frequency resource, and the first PDSCH is used to carry the first data.
  • the first PDCCH carries control information for scheduling the first PDSCH.
  • the first time-frequency resource and the second time-frequency resource have a certain time interval in the time domain.
  • the first time-frequency resource and the second time-frequency resource are in the time domain. It is adjacent in the domain.
  • the first time-frequency resource and the second time-frequency resource overlap in the time domain.
  • Step 403 The network device determines whether the terminal device needs to discard the second data before processing the first data.
  • the network device executes step 404.
  • the network device executes step 408.
  • the priority of the first data may be higher than the priority of the second data; for example, the first data may be URLLC service data, and the second data may be eMBB service data.
  • the second data may be data that the terminal device has started processing before the end time of the first time-frequency resource, and has not yet completed processing at the end time of the first time-frequency resource.
  • the second data may be scheduled by the second PDCCH, the second data may be carried on the second PDSCH, and the time-frequency resource occupied by the second PDSCH is the third time-frequency resource.
  • the dropping of the second data in the embodiment of the present application can also be understood as canceling the processing of the second data.
  • the terminal device may send a NACK to the network device after the feedback delay of the second data arrives.
  • the network device determines whether the terminal device needs to discard the second data before processing the first data.
  • the network device can determine that the terminal device needs to discard the second data before processing the first data. This is because the third time-frequency resource and the second time-frequency resource overlap in the time domain, indicating that the processing time of the terminal device for the first data conflicts with the processing time for the second data.
  • the terminal device cannot process the first data at the same time
  • the terminal device needs to discard the second data.
  • the overlapping of the third time-frequency resource and the second time-frequency resource in the time domain may include: the third time-frequency resource and the second time-frequency resource partially overlap in the time domain, or the third time-frequency resource and the second time-frequency resource overlap in the time domain.
  • the time-frequency resources completely overlap in the time domain.
  • the network device determines that the terminal device starts with the second time-frequency resource according to the capabilities of the terminal device.
  • the network device may determine that the terminal device needs to discard the second data before processing the first data.
  • the terminal device cannot complete the processing of the second data before the start time of the second time-frequency resource.
  • the processing time of the data conflicts with the processing time of the second data.
  • the terminal device cannot process the first data and the second data at the same time, in order to process the first data preferentially, the terminal device needs to discard the second data.
  • the processing capability of the terminal device may be reported to the network device in advance by the terminal device.
  • the network device can determine that the terminal device does not need to discard the second data.
  • the embodiment of the present application does not limit the relative positional relationship between the HARQ feedback information of the first data (referred to as the first HARQ) and the HARQ feedback information of the second data (referred to as the second HARQ).
  • the first HARQ may be earlier than the second HARQ, as shown in (a) in FIG. 6; or, the first HARQ may also be later than the second HARQ, as shown in (b) in FIG. 6.
  • Step 404 The network device determines whether the end time of the first time-frequency resource is before the start time of the second time-frequency resource. When the end time of the first time-frequency resource is before the start time of the second time-frequency resource, the network device executes step 405. When the end time of the first time-frequency resource is not before the start time of the second time-frequency resource (for example, the end time of the first time-frequency resource is after the start time of the second time-frequency resource, see (c) in Figure 5 ); for another example, the end time of the first time-frequency resource overlaps with the start time of the second time-frequency resource, see (b) shown in FIG. 5), the network device executes step 407.
  • Step 405 The network device determines whether the time period required for the terminal device to discard the second data is greater than the first time period. When the network device determines that the time period required for the terminal device to discard the second data is greater than the first time period, the network device executes step 406. When the network device determines that the time period required for the terminal device to discard the second data is less than or equal to the first time period, the network device executes step 408.
  • the first duration is the duration of the interval between the end moment of the first time-frequency resource and the start moment of the second time-frequency resource, see (a) in FIG. 5.
  • the time length required for the terminal device to discard the second data or the unit of the first time length may be symbols or other possible time units, which are not specifically limited.
  • the first duration When the end time of the first time-frequency resource is before the start time of the second time-frequency resource, the first duration may be a value greater than 0; when the end time of the first time-frequency resource is equal to the start time of the second time-frequency resource When the time overlaps, the first duration may be equal to 0; when the end time of the first time-frequency resource is after the start time of the second time-frequency resource, the first duration may be a value less than 0.
  • Step 406 The network device determines the feedback delay of the first data according to the duration required for the terminal device to discard the second data, the first duration, and the preset duration.
  • the network device determines the feedback delay of the first data according to the length of time required by the terminal device to discard the second data, the first length of time, and the preset time length, which may conform to the following formula:
  • T is the feedback delay of the first data
  • T_proc is the preset duration
  • T_drop is the duration required for the terminal device to discard the second data
  • T_dci2pdsch is the first duration.
  • Step 407 The network device determines the feedback delay of the first data according to the time length required for the terminal device to discard the second data and the preset time length.
  • the network device determines the feedback delay of the first data according to the length of time required by the terminal device to discard the second data and the preset length of time, which may conform to the following formula:
  • Step 408 The network device determines the feedback delay of the first data according to the preset duration. Exemplarily, the network device determines that the feedback delay of the first data is greater than or equal to the preset duration according to the preset duration.
  • Step 409 The network device sends the first PDCCH to the terminal device on the first time-frequency resource and sends the first PDSCH on the second time-frequency resource, where the DCI carried by the first PDCCH includes the first information and the second information, The first information indicates the second time-frequency resource, and the second information indicates the feedback delay of the first data; accordingly, after receiving the DCI, the terminal device can receive the first data on the second time-frequency resource indicated by the first information. PDSCH, and send the HARQ feedback information of the first data according to the feedback delay of the first data indicated by the second information.
  • the network device first determines whether the terminal device needs to discard the second data before processing the first data, and then according to the relative position relationship between the first time-frequency resource and the second time-frequency resource, the terminal device discards the second data.
  • the relationship between the duration and the first duration determines the feedback delay of the first data, thereby avoiding the problem of triggering retransmission due to insufficient data processing duration, effectively reducing the probability of data retransmission, and improving transmission performance.
  • the network equipment fully considers the relative position relationship between the first time-frequency resource and the second time-frequency resource, and the relationship between the length of time required for the terminal device to discard the second data and the first time length, the first time length can be determined more reasonably.
  • the feedback delay of the data avoids the long feedback delay determined and affects the business performance.
  • the start time of processing the first data is the start time of the second time-frequency resource as an example for description. If the start time for processing the first data is the start time of the DMRS symbol corresponding to the first PDSCH, the start time of the second time-frequency resource above can also be replaced with the start time of the DMRS symbol corresponding to the first PDSCH. Start time; if the start time of processing the first data is the end time of the DMRS symbol used for channel estimation, the start time of the second time-frequency resource above can also be replaced with the DMRS symbol used for channel estimation The end of the moment.
  • the method provided by the embodiment of the present application can also be expressed as: the network device determines to send the first PDCCH on the first time-frequency resource and sends the first PDSCH corresponding to the first PDCCH on the second time-frequency resource, and the first PDSCH is used To carry the first data; when it is determined that the terminal device needs to discard the second data before processing the first data, and the end time of the first time-frequency resource is before the start time of the second time-frequency resource or the end of the first time-frequency resource
  • the feedback delay of the first data can be determined based on the following formula:
  • max[x, y] means to take the maximum value of x and y.
  • the feedback delay of the first data can be determined based on the following formula:
  • the method provided in the embodiment of the present application can also be expressed as: the network device determines to send the first PDCCH on the first time-frequency resource and sends the first PDSCH corresponding to the first PDCCH on the second time-frequency resource, and the first PDSCH Used to carry the first data; when it is determined that the terminal device needs to discard the second data before processing the first data, the feedback delay of the first data can be determined based on the following formula:
  • the method provided in the embodiment of the present application can also be expressed as: the network device determines to send the first PDCCH on the first time-frequency resource and sends the first PDSCH corresponding to the first PDCCH on the second time-frequency resource, and the first PDSCH Used to carry the first data; when it is determined that the terminal device needs to discard the second data before processing the first data, the feedback delay of the first data can be determined based on the following formula:
  • the above steps flow mainly describes the determination of the feedback delay of the first data from the perspective of the network device. From the perspective of the terminal device, when the terminal device needs to discard the second data before processing the first data, the first time When the end time of the frequency resource is before the start time of the second time-frequency resource, and the time required for the terminal device to discard the second data is greater than the first time length, the terminal device does not expect the feedback delay of the first data to be less than T_proc+T_drop- T_dci2pdsch; in other words, the terminal does not expect the feedback time of the first data to be earlier than the time corresponding to the last symbol of the second time-frequency resource plus the second duration, which is T_proc+T_drop-T_dci2pdsch.
  • the terminal device When the terminal device needs to discard the second data before processing the first data, the end time of the first time-frequency resource is before the start time of the second time-frequency resource, and the time required for the terminal device to discard the second data is less than or equal to the first time. For a long time, the terminal device does not expect the feedback delay of the first data to be less than T_proc.
  • the terminal device needs to discard the second data before processing the first data, the end time of the first time-frequency resource is before the start time of the second time-frequency resource or the end time of the first time-frequency resource and the second time-frequency resource
  • the terminal device does not expect the feedback delay of the first data to be less than T_proc+T_drop.
  • the terminal device needs to discard the second data before processing the first data, the terminal device does not expect the feedback delay of the first data to be less than T_proc.
  • the method provided in this application can also be applied to the scenario of uplink data transmission.
  • the uplink data transmission delay can be determined based on the idea of determining the feedback delay of the first data provided in the foregoing embodiment.
  • the network device determines to send the third PDCCH on the fourth time-frequency resource, and the third The PDCCH is used to schedule the third data channel.
  • the third data channel can be an uplink data channel, such as a physical uplink shared channel (PUSCH).
  • the third data channel is used to carry third data; further, the network device can determine Does the terminal device need to discard the fourth data before processing the third data? Both the third data and the fourth data are uplink data.
  • the fourth data may be that the terminal device has started processing before the end of the fourth time-frequency resource, and The data that has not yet been processed at the end of the fourth time-frequency resource; when it is determined that the terminal device needs to discard the fourth data, the end of the fourth time-frequency resource can be determined according to the duration required to discard the fourth data and the second preset duration
  • the length of the interval between the time and the start time of the fifth time-frequency resource for example, the length of the interval between the end time of the fourth time-frequency resource and the start time of the fifth time-frequency resource is greater than or equal to that required to discard the fourth data
  • the fifth time-frequency resource is the time-frequency resource occupied by the third data channel, in other words, the fifth time-frequency resource is used to carry the third data; the difference between the second preset duration here and the aforementioned preset duration Assuming the duration, the second preset duration is the duration required for the terminal device to process the transmission of the third data and other related steps (such as encoding, modulation, and mapping of the third data) after receiving the third PDCCH.
  • the network device may include corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the network device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • FIG. 7 and FIG. 8 are schematic structural diagrams of possible communication devices provided by embodiments of this application. These communication devices can be used to implement the functions of the network equipment in the foregoing method embodiments, and therefore can also achieve the beneficial effects of the foregoing method embodiments.
  • the communication device may be the wireless access network device 120 as shown in FIG. 1, and may also be a module (such as a chip) applied to a network device.
  • the communication device 700 includes a processing unit 710 and a transceiving unit 720.
  • the communication device 700 is used to implement the function of the network device in the method embodiment shown in FIG. 4.
  • the processing unit 710 is used to: determine to send the first control channel on the first time-frequency resource and send on the second time-frequency resource
  • the first data channel corresponding to the first control channel, and the first data channel carries the first data; when it is determined that the terminal device needs to discard the second data before processing the first data, the end of the first time-frequency resource is at the second time-frequency resource Before the start time of and when the time required for the terminal device to discard the second data is greater than the first time length, the feedback time of the first data is determined according to the time required for the terminal device to discard the second data, the first time length, and the preset time length Delay; where the first duration is the duration of the interval between the end moment of the first time-frequency resource and the start moment of the second time-frequency resource.
  • the transceiver unit 720 is configured to: send a first control channel on a first time-frequency resource, and send a first data channel on a second time-frequency resource, the control information carried by the first control channel includes first information and second information , The first information indicates the second time-frequency resource, and the second information indicates the feedback delay of the first data.
  • processing unit 710 and the transceiving unit 720 can be obtained directly with reference to the relevant description in the method embodiment shown in FIG. 4, and will not be repeated here.
  • the communication device 800 includes a processor 810 and an interface circuit 820.
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input/output interface.
  • the communication device 800 may further include a memory 830 for storing instructions executed by the processor 810 or storing input data required by the processor 810 to run the instructions or storing data generated after the processor 810 runs the instructions.
  • the processor 810 is used to implement the function of the above-mentioned processing unit 710, and the interface circuit 820 is used to implement the function of the above-mentioned transceiving unit 720.
  • the network device chip implements the function of the network device in the foregoing method embodiment.
  • the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antennas).
  • the antenna sends information, which is sent by the network device to the terminal device.
  • the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or can be implemented by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), and programmable read-only memory (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known Any other form of storage medium.
  • RAM Random Access Memory
  • ROM read-only memory
  • PROM programmable read-only memory
  • PROM Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • Electrically Erasable Programmable Read-Only Memory Electrically Erasable Programmable Read-Only Memory
  • register hard disk
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device.
  • the processor and the storage medium may also exist as discrete components in the network device.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer program or instruction may be downloaded from a website, computer, The server or data center transmits to another website site, computer, server or data center through wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that integrates one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a digital video disc (digital video disc, DVD); and it may also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
  • the various numerical numbers involved in the embodiments of the present application are only for easy distinction for description, and are not used to limit the scope of the embodiments of the present application.
  • the embodiments of the present application refer to "first", Ordinal numbers such as "second" are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • the first time-frequency resource and the second time-frequency resource are only for distinguishing different time-frequency resources, but do not indicate the difference in priority or importance of the two time-frequency resources.
  • the size of the sequence number of the above processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种确定数据传输反馈时延的方法及装置。网络设备确定在第一时频资源上发送调度第一数据信道的第一控制信道以及在第二时频资源上发送承载第一数据的第一数据信道,当确定终端设备在处理第一数据之前需要丢弃第二数据时,网络设备根据第一时频资源和第二时频资源的相对位置关系、终端设备丢弃第二数据所需的时长与第一时长的大小关系确定第一数据的反馈时延;进而,网络设备在第一时频资源上向终端设备发送第一控制信道以及在第二时频资源上向终端设备发送第一数据信道;其中,第一时长为第一时频资源的结束时刻和第二时频资源的起始时刻之间间隔的时长。采用上述方法,可以避免确定的反馈时延过长,从而提升数据传输的性能。

Description

一种确定数据传输反馈时延的方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种确定数据传输反馈时延的方法及装置。
背景技术
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
其中,典型的eMBB业务包括:超高清视频、增强现实、虚拟现实等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务包括:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务包括:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感。
不同业务对移动通信系统的需求不同,如何更好地同时支持多种不同业务的数据传输需求,是当前5G移动通信系统所需要解决的技术问题。例如,如何同时支持URLLC业务和eMBB业务就是当前5G移动通信系统的讨论热点之一。
发明内容
本申请提供了一种确定数据传输反馈时延的方法及装置,用以更合理地确定反馈时延,提升数据传输性能。
第一方面,本申请实施例提供一种确定数据传输反馈时延方法,该方法的执行主体为通信装置,该通信装置可以是网络设备,也可以是应用于网络设备内部的芯片。以执行主体是网络设备为例,在该方法中,网络设备确定在第一时频资源上发送第一控制信道以及在第二时频资源上发送第一控制信道对应的第一数据信道(第一数据信道用于承载第一数据)后,可以确定终端设备在处理第一数据之前是否需要丢弃第二数据;当网络设备确定终端设备需要丢弃第二数据时,网络设备可以确定第一时频资源的结束时刻是否在第二时频资源的起始时刻之前;当第一时频资源的结束时刻在第二时频资源的起始时刻之前时,网络设备可以确定终端设备丢弃第二数据所需的时长是否大于第一时长;当终端设备丢弃第二数据所需的时长大于第一时长时,网络设备可以根据终端设备丢弃所述第二数据所需的时长、第一时长和预设时长,确定所述第一数据的反馈时延。进而,网络设备在第一时频资源上向终端设备发送第一控制信道以及在第二时频资源上向终端设备发送第一数据信道,第一控制信道承载的控制信息中包括第一信息和第二信息,第一信息指示第二时频资源,第二信息指示第一数据的反馈时延;第一时长为第一时频资源的结束时刻和第二时 频资源的起始时刻之间间隔的时长,预设时长为终端设备收到第一控制信道后,处理第一数据的接收等相关步骤所需要的时长。
采用上述方法,网络设备确定终端设备在处理第一数据之前是否需要丢弃第二数据后,根据第一时频资源和第二时频资源的相对位置关系、终端设备丢弃第二数据所需的时长与第一时长的大小关系来确定第一数据的反馈时延,从而可以避免确定的反馈时延过长,提高数据传输性能。
在一种可能的设计中,当网络设备确定终端设备在处理所述第一数据之前需要丢弃第二数据,第一时频资源的结束时刻在第二时频资源的起始时刻之前,且终端设备丢弃第二数据所需的时长小于或等于第一时长时,网络设备可以根据预设时长确定第一数据的反馈时延。
由于终端设备丢弃第二数据所需的时长小于或等于第一时长,说明在第一时长的结束时刻之前,终端设备可以完成丢弃第二数据这一操作,即终端设备丢弃第二数据并不影响处理第一数据,因此网络设备可以根据预设时长确定第一数据的反馈时延。
在一种可能的设计中,当网络设备确定终端设备在处理第一数据之前需要丢弃第二数据,第一时频资源的结束时刻在第二时频资源的起始时刻之后或第一时频资源的结束时刻与第二时频资源的起始时刻重叠时,网络设备可以根据终端设备丢弃第二数据所需的时长和预设时长,确定第一数据的反馈时延。
在一种可能的设计中,当网络设备确定终端设备在处理第一数据之前不需要丢弃第二数据时,可以根据预设时长确定第一数据的反馈时延。
在一种可能的设计中,网络设备根据终端设备丢弃第二数据所需的时长、第一时长和预设时长,确定的第一数据的反馈时延符合以下公式:
T≥T_proc+T_drop-T_dci2pdsch
其中,T为第一数据的反馈时延,T_proc为预设时长,T_drop为终端设备丢弃第二数据所需的时长,T_dci2pdsch为第一时长。
在一种可能的设计中,第一数据的优先级高于第二数据的优先级。
在一种可能的设计中,当承载第二数据的第三时频资源与第二时频资源在时域上存在重叠,则网络设备确定终端设备在处理第一数据之前需要丢弃第二数据;或者,当承载第二数据的第三时频资源与第二时频资源在时域上不存在重叠,且根据终端设备的能力确定终端设备在第二时频资源的起始时刻之前无法完成对第二数据的处理,则网络设备确定终端设备在处理第一数据之前需要丢弃第二数据。
第二方面,本申请提供一种通信装置,所述通信装置可以为网络设备或者设置在网络设备内部的模块或芯片。所述通信装置具备实现上述第一方面涉及的功能,比如,所述通信装置包括执行上述第一方面涉及步骤所对应的模块或单元或手段,所述功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,所述通信装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该通信装置和其它装置之间的通信,比如,通信单元用于向终端设备发送数据;处理单元可以用于执行该通信装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面涉及的步骤相对应。
在一种可能的设计中,所述通信装置包括处理器,还可以包括收发器,所述收发器用于收发信号,所述处理器执行程序指令,以完成上述第一方面中任意可能的设计或实现方 式中的方法。其中,所述通信装置还可以包括一个或多个存储器,所述存储器与处理器耦合。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括处理器和存储器,存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。所述处理器可执行所述存储器存储的计算机程序或指令,当所述计算机程序或指令被执行时,使得所述通信装置实现上述第一方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,所述通信装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面任意可能的设计或实现方式中的方法。
第三方面,本申请提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当通信装置读取并执行所述计算机可读指令时,使得通信装置执行上述第一方面的任一种可能的设计中的方法。
第四方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序或指令,当通信装置读取并执行所述计算机程序或指令时,使得通信装置执行上述第一方面的任一种可能的设计中的方法。
第五方面,本申请提供一种芯片,所述芯片包括处理器,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现上述第一方面的任一种可能的设计中的方法。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例应用的移动通信系统的架构示意图;
图2a为本申请实施例提供的下行时频资源网格示意图;
图2b为本申请实施例提供的PDCCH所占用的时频资源示例图;
图2c为本申请实施例提供的PDSCH所占用的时频资源示例图;
图2d为本申请实施例提供的导频符号示例图;
图2e为本申请实施例提供的数据的反馈时延示意图;
图3为本申请实施例提供的网络设备调度PDSCH-1和PDSCH-2示意图;
图4为本申请实施例提供的确定数据传输反馈时延的方法所对应的流程示意图;
图5为本申请实施例提供的第一时频资源和第二时频资源的相对位置关系示意图;
图6为本申请实施例提供的第三时频资源和第二时频资源的相对位置关系示意图;
图7为本申请实施例提供的一种通信装置的结构示意图;
图8为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然, 所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
图1是本申请实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
终端设备通过无线方式与无线接入网设备相连,从而接入到该移动通信系统中。无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,网络设备均指无线接入网设备。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
上述图1所示意的架构可以适用于各种无线接入技术(radio access technology,RAT)的通信系统中,例如可以是长期演进(long term evolution,LTE)移动通信系统,也可以是5G(或者称为新无线(new radio,NR))移动通信系统。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面对本申请实施例的相关技术特征进行解释说明。需要说明的是,这些解释是为了让本申请实施例更容易被理解,而不应该视为对本申请所要求的保护范围的限定。
(1)时频资源:以5G移动通信系统为例,频域上被划分为独立的子载波,子载波间隔(subcarrier spacing,SCS)可以根据子载波间隔参数u确定,例如常见的子载波间隔为15千赫兹(kilohertz,kHz)或30kHz等。上/下行频域资源的单位是资源块(resource block,RB),每个RB由频域上12个连续的子载波组成。参见图2a所示,为下行时频资源网格。图2a中的
Figure PCTCN2019116813-appb-000001
表示一次下行调度的RB的个数,资源网格上的每个元素称为一个资源元素(resource element,RE),RE为最小的物理资源,包含一个时域符号内的一个子载波。上行时频资源的网格与下行是类似的。其中,时域符号也可以简称为符号,可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号,也可以是采用其它波形的时域符号。
(2)控制信道:本申请实施例中所涉及的控制信道可以为下行控制信道,例如物理下行控制信道(physical downlink control channel,PDCCH),或者是其它可能的下行控制信道,具体不做限制。控制信道可以用于承载控制信息,比如下行控制信息(downlink control information,DCI),本申请实施例中的发送控制信道,也可以理解为通过控制信道发送控制信息。下文中将主要以控制信道为PDCCH为例进行描述。
示例性地,网络设备发送PDCCH,可以是指,网络设备将PDCCH映射到时频资源上,进而在映射的时频资源上发送PDCCH。其中,PDCCH所映射的时频资源,也可以理解为PDCCH所占用的时频资源。参见图2b所示,为PDCCH所占用的时频资源示例图。在图2b中,PDCCH在时域上占用2个符号(分别为符号1和符号2),在频域上可以占用一个或多个RB,本申请实施例对PDCCH在频域上所占用的RB的数量不做限定。
需要说明的是,本申请实施例中是以时隙的起始符号的编号为0为例进行描述的,在其它可能的实施例中,起始符号的编号也可以为其它数值,比如1,具体不做限定。
(3)数据信道:本申请实施例中所涉及的数据信道可以为下行数据信道,例如物理下行共享信道(physical downlink shared channel,PDSCH)。数据信道可以用于承载数据,本申请实施例中的发送数据信道,也可以理解为通过数据信道发送数据。下文中将主要以数据信道为PDSCH为例进行描述。
示例性地,网络设备发送PDSCH,可以是指,网络设备将PDSCH映射到时频资源上,进而在映射的时频资源上发送PDSCH。其中,PDSCH所映射的时频资源,也可以理解为PDSCH所占用的时频资源。在5G移动通信系统中,PDSCH有两种映射类型:映射类型A(mapping type A)和映射类型B(mapping type B)。两种类型的PDSCH的起始符号的编号S和持续符号个数L不同。参见表1,给出了两种类型的S和L的差异。
表1:两种类型的S和L
Figure PCTCN2019116813-appb-000002
由表1可知,在常规循环前缀(normal cyclic prefix,NCP)中:映射类型A的起始符号可以是前4个符号{0,1,2,3},持续符号个数可以是{3,…,14};映射类型B的起始符号可 以是前13个符号{0,…,12},持续符号个数可以是{2,4,7}。拓展循环前缀(extended cyclic prefix,ECP)与NCP类似,不再赘述。
参见图2c所示,为PDSCH所占用的时频资源示例图,该示例为映射类型A的一个示例。在图2c中,PDSCH的起始符号为符号2,持续符号个数为11,即在时域上占用11个符号(包括符号2至和符号12),在频域上可以占用一个或多个RB,本申请实施例对PDSCH在频域上所占用的RB的数量不做限定。
本申请实施例中,PDSCH可以通过对应的PDCCH中承载的DCI来调度,为了正确接收PDSCH,终端设备需要先监听PDCCH,并通过监听PDCCH获取PDCCH中承载的DCI,DCI可以用于指示PDSCH所占用的时频资源,进而可以在DCI所指示的时频资源上接收PDSCH。
(4)数据的处理
PDSCH上承载的数据可以对应一个或多个导频符号,导频符号是指导频所占用的符号,或者也可以描述为用于承载导频的符号,可以理解的是,针对于一个导频符号来说,导频可以占用该导频符号所对应的一个或多个RE上。导频(也可以称为导频信号)是指基于测量或监控的目的而传输的信号,比如可以包括基于信道估计的目的而传输的信号,在一个示例中,导频可以为解调参考信号(de-modulation reference signal,DMRS),当导频为DMRS时,导频符号是指DMRS符号。参见图2d所示,为数据对应的导频符号示例图。在图2d中,PDSCH在时域上占用11个符号(包括符号2至和符号12),其中数据对应的两个导频符号分别为符号2和符号3。
终端设备可以根据PDSCH承载的数据对应的DMRS符号上承载的DMRS进行信道估计、根据信道估计结果对PDSCH承载的数据进行处理(包括解调、译码)等。因此,在一个示例中,对PDSCH上承载的数据进行处理的起始时刻可以为PDSCH所占用的时频资源的起始时刻。在又一个示例中,因为在数据的解调解码处理之前,终端设备先要根据DMRS进行信道估计,所以对PDSCH上承载的数据进行处理的起始时刻可以为所述数据对应的DMRS符号的起始时刻,如第一个DMRS符号的起始时刻;参见图2d所示,此种情形中,PDSCH承载的数据对应的DMRS符号的起始时刻即为PDSCH所占用的时频资源的起始时刻;在其它可能的情形中,比如PDSCH在时域上占用符号2至和符号12,PDSCH承载的数据对应两个导频符号,分别为符号3和符号4,则PDSCH承载的数据对应的DMRS符号的起始时刻为符号3的起始时刻。在又一个示例中,对PDSCH上承载的数据进行处理的起始时刻可以为用于信道估计的DMRS符号的结束时刻,比如,参见图2d所示,用于信道估计的DMRS符号的结束时刻为符号3的结束时刻。下文中将主要以PDSCH所占用的时频资源的起始时刻作为PDSCH上承载的数据进行处理的起始时刻为例进行描述。
(5)数据的反馈时延
终端设备从网络设备接收到PDSCH后,若对PDSCH承载的数据译码成功,则说明数据接收成功,进而可以向网络设备发送肯定应答(acknowledgment,ACK);若译码失败或没有来得及完成译码,则说明数据接收失败,进而可以向网络设备发送否定应答(negative acknowledgement,NACK)。
本申请实施例中,数据的反馈时延可以理解为承载数据的PDSCH所占用的时频资源的结束时刻与承载混合自动重传请求(hybrid automatic repeat request,HARQ)反馈信息(比 如ACK或NACK)的上行控制信道所占用的时频资源的起始时刻之间间隔的时长。其中,上行控制信道可以为物理上行控制信道(physical uplink control channel,PUCCH)。参见图2e所示,承载HARQ反馈信息的PUCCH的第一个上行符号的开始时刻应不早于反馈时延对应的结束时刻。
反馈时延可以由网络设备确定并指示给终端设备。网络设备可以根据预设时长来确定反馈时延,根据预设时长确定的反馈时延可以大于或等于预设时长。预设时长可以与以下一项或多项参数有关:(1)终端设备的处理能力;(2)PDSCH的映射类型;(3)PDSCH所占用的时域资源的长度;(4)PDCCH所占用的时域资源和PDSCH所占用的时域资源的相对位置关系。预设时长的计算方式可以参见现有方案,此处不再赘述。
示例性地,对PDSCH上承载的数据进行处理的起始时刻与反馈时延对应的结束时刻之间间隔的时长即为终端设备可用于对PDSCH承载的数据进行处理的时长(简称为数据处理时长),参见图2e所示。终端设备可以在数据处理时长范围内对数据进行处理,若终端设备提前完成对数据的处理,则可以等到反馈时延对应的结束时刻发送ACK;若终端设备在反馈时延对应的结束时刻仍未完成对数据的处理,则可以在反馈时延对应的结束时刻发送NACK。
(6)终端设备的处理能力
终端设备的处理能力可以包括处理能力1(processing capacity 1)和处理能力2。处理能力2对应的处理数据的速度大于处理能力1对应的处理数据的速度,也就是说,当终端设备的处理能力为处理能力2时,处理数据所需的时长较短。对于某一终端设备(比如终端设备a)来说,终端设备a可以向网络设备上报其处理能力,比如若终端设备a的处理能力为处理能力2,则终端设备a可以上报其处理能力为处理能力2。若终端设备a未上报其处理能力,则网络设备可以默认终端设备的处理能力为处理能力1。
(7)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。
以图1所示意的架构适用于5G移动通信系统为例,5G移动通信系统可以支持多种业务,因此终端设备可能需要处理多种业务,比如终端设备可能需要处理URLLC业务和eMBB业务。网络设备(比如无线接入网设备120)可以通过PDCCH向终端设备(比如终端设备130)发送DCI,DCI可以用于调度数据。若网络设备先调度eMBB业务数据,然后又调度URLLC业务数据;考虑到URLLC业务数据具有低延时的要求,因此,终端设备可能需要丢弃eMBB业务数据,处理URLLC业务数据,从而可能导致URLLC业务数据的处理时间不足而触发重传,使得URLLC业务的性能下降。
举个例子,如图3所示,网络设备向终端设备依次发送DCI-1和DCI-2,DCI-1用于调度PDSCH-1,DCI-2用于调度PDSCH-2,其中,PDSCH-2承载的数据的优先级高于PDSCH-1承载的数据的优先级(或者说终端设备处理PDSCH-2承载的数据的优先级高于 终端设备处理PDSCH-1承载的数据的优先级)。相应地,终端设备在接收到DCI-1后,可以根据DCI-1对PDSCH-1承载的数据进行处理;进而在接收到DCI-2后,需要丢弃PDSCH-1承载的数据,并根据DCI-2对PDSCH-2承载的数据进行处理。其中,时刻t1为终端设备根据DCI-1对PDSCH-1承载的数据进行处理的起始时刻,时刻t2与时刻t3之间间隔的时长为终端设备丢弃PDSCH-1承载的数据所需的时长,时刻t3与时刻t4之间间隔的时长为终端设备可用于对PDSCH-2承载的数据进行处理的时长。此种情形下,由于终端设备在接收到DCI-2后需要先丢弃PDSCH-1承载的数据再对PDSCH-2承载的数据进行处理,从而使得终端设备对PDSCH-2承载的数据进行处理的起始时刻由t2时刻变为t3时刻,即处理时长变短,进而可能由于处理时长不足未完成数据的处理而在反馈HARQ信息的时刻只能反馈NACK,导致网络设备重传PDSCH-2上承载的数据,从而产生资源的浪费。
为解决上述问题,一种可能的实现方式为,将反馈时延延长,即当确定需要丢弃PDSCH-1承载的数据时,根据预设时长和丢弃PDSCH-1承载的数据所需的时长来确定PDSCH-2承载的数据的反馈时延,采用该种方式确定的反馈时延大于或等于预设时长与丢弃PDSCH-1承载的数据所需的时长之和。
然而,在通常情况下,网络设备在调度URLLC业务数据时,会尽可能保证承载DCI的时频资源和承载URLLC业务数据的时频资源之间没有时延(比如图3中的DCI-2和PDSCH-2),或者承载DCI的时频资源和承载URLLC业务数据的时频资源在时域上存在重叠。但是,由于承载DCI的时频资源是由网络设备通过高层信令提前配置的,而URLLC业务数据的发送时间信息(如承载URLLC业务数据的时频资源的起始符号位置、长度、与承载DCI的时频资源之间间隔的时隙个数等)是由网络设备通过高层信令预先配置16个组合值,再在调度的DCI中通过索引(index)的方式通知终端设备采用哪套配置。考虑到URLLC业务数据是随机到达的,因此并不一定在所有时刻均可以找到既满足时延要求又满足承载DCI的时频资源和承载URLLC业务数据的时频资源之间没有时延。当承载DCI的时频资源和承载URLLC业务数据的时频资源之间存在时延时,该时延也是包括在数据传输的时延内,若仍然根据预设时长和丢弃PDSCH-1承载的数据所需的时长来确定PDSCH-2承载的数据的反馈时延,可能会导致反馈时延进一步延长,影响URLLC业务性能。
基于此,本申请实施例提供一种确定数据传输反馈时延的方法及装置,用于避免确定的反馈时延过长,提高数据传输性能。
图4为本申请实施例提供的确定数据传输反馈时延的方法所对应的流程示意图。该流程中所涉及到的网络设备可为上述图1中的无线接入网设备120,终端设备可为上述图1中的终端设备130或终端设备140。可以理解的是,网络设备的功能也可通过应用于网络设备中的芯片实现,或者通过其他装置来实现;终端设备的功能也可通过应用于终端设备中的芯片实现,或者通过其他装置来实现。
如图4所示,该流程包括:
步骤401,网络设备确定在第一时频资源上发送第一PDCCH。
步骤402,网络设备确定在第二时频资源上发送第一PDCCH对应的第一PDSCH,第一PDSCH用于承载第一数据。其中,第一PDCCH中承载有用于调度第一PDSCH的控制信息。
示例性地,从时域上来看,第一时频资源与第二时频资源的相对位置关系有多种可能的情形,参见图5所示。图5的(a)中,第一时频资源和第二时频资源在时域上具有一定的时间间隔,图5的(b)中,第一时频资源和第二时频资源在时域上相邻,图5的(c)中,第一时频资源和第二时频资源在时域上重叠。
步骤403,网络设备确定终端设备在处理第一数据之前是否需要丢弃第二数据。当网络设备确定终端设备在处理第一数据之前需要丢弃第二数据时,网络设备执行步骤404。当网络设备确定终端设备在处理第一数据之前不需要丢弃第二数据时,网络设备执行步骤408。其中,第一数据的优先级可以高于第二数据的优先级;比如,第一数据可以为URLLC业务数据,第二数据可以为eMBB业务数据。
此处,第二数据可以为终端设备在第一时频资源的结束时刻之前已启动处理,且在第一时频资源的结束时刻尚未完成处理的数据。其中,第二数据可以是由第二PDCCH调度的,第二数据可以承载在第二PDSCH,第二PDSCH占用的时频资源为第三时频资源。
本申请实施例中的丢弃(drop)第二数据,也可以理解为取消(cancel)对第二数据的处理。当终端设备丢弃第二数据时,终端设备可以在第二数据的反馈时延到达后向网络设备发送NACK。
示例性地,网络设备确定终端设备在处理第一数据之前是否需要丢弃第二数据的实现方式有多种。如图6中的(a)所示,当第三时频资源与第二时频资源在时域上存在重叠时,网络设备可以确定终端设备在处理第一数据之前需要丢弃第二数据。这是由于第三时频资源与第二时频资源在时域上存在重叠,说明终端设备对第一数据的处理时间与对第二数据的处理时间发生冲突,当终端设备无法同时处理第一数据和第二数据时,为了优先处理第一数据,终端设备需要丢弃第二数据。其中,第三时频资源与第二时频资源在时域上存在重叠可以包括:第三时频资源与第二时频资源在时域上存在部分重叠,或第三时频资源与第二时频资源在时域上完全重叠。
如图6中的(b)所示,当第三时频资源与第二时频资源在时域上不存在重叠,且网络设备根据终端设备的能力确定终端设备在第二时频资源的起始时刻之前无法完成对第二数据的处理时,网络设备可以确定终端设备在处理第一数据之前需要丢弃第二数据。虽然第三时频资源与第二时频资源在时域上不存在重叠,但终端设备在第二时频资源的起始时刻之前无法完成对第二数据的处理,进而导致终端设备对第一数据的处理时间与对第二数据的处理时间发生冲突,当终端设备无法同时处理第一数据和第二数据时,为了优先处理第一数据,终端设备需要丢弃第二数据。其中,终端设备的处理能力可以为终端设备预先上报给网络设备的。
当第三时频资源与第二时频资源在时域上不存在重叠,且根据终端设备的能力确定终端设备在第二时频资源的起始时刻之前能够完成对第二数据的处理时,网络设备可以确定终端设备不需要丢弃第二数据。
本申请实施例对第一数据的HARQ反馈信息(称为第一HARQ)和第二数据的HARQ反馈信息(称为第二HARQ)的相对位置关系不做限定。比如,第一HARQ可以早于第二HARQ,参见图6中的(a)所示;或者,第一HARQ也可以晚于第二HARQ,参见图6中的(b)所示。
步骤404,网络设备确定第一时频资源的结束时刻是否在第二时频资源的起始时刻之前。当第一时频资源的结束时刻在第二时频资源的起始时刻之前时,网络设备执行步骤405。 当第一时频资源的结束时刻不在第二时频资源的起始时刻之前时(比如第一时频资源的结束时刻在第二时频资源的起始时刻之后,参见图5中的(c)所示;又比如,第一时频资源的结束时刻与第二时频资源的起始时刻重叠,参见图5中的(b)所示),则网络设备执行步骤407。
步骤405,网络设备确定终端设备丢弃第二数据所需的时长是否大于第一时长。当网络设备确定终端设备丢弃第二数据所需的时长大于第一时长时,网络设备执行步骤406。当网络设备确定终端设备丢弃第二数据所需的时长小于或等于第一时长时,网络设备执行步骤408。其中,第一时长为第一时频资源的结束时刻与第二时频资源的起始时刻之间间隔的时长,参见图5中的(a)所示。
需要说明的是,终端设备丢弃第二数据所需的时长或第一时长的单位可以为符号,或者其它可能的时间单位,具体不做限定。当第一时频资源的结束时刻在第二时频资源的起始时刻之前时,第一时长可以为大于0的数值;当第一时频资源的结束时刻与第二时频资源的起始时刻重叠时,第一时长可以等于0;当第一时频资源的结束时刻在第二时频资源的起始时刻之后时,第一时长可以为小于0的数值。
步骤406,网络设备根据终端设备丢弃第二数据所需的时长、第一时长和预设时长,确定第一数据的反馈时延。
示例性地,网络设备根据终端设备丢弃第二数据所需的时长、第一时长和预设时长,确定第一数据的反馈时延可以符合以下公式:
T≥T_proc+T_drop-T_dci2pdsch
其中,T为第一数据的反馈时延,T_proc为预设时长,T_drop为终端设备丢弃第二数据所需的时长,T_dci2pdsch为第一时长。
步骤407,网络设备根据终端设备丢弃第二数据所需的时长和预设时长,确定第一数据的反馈时延。
示例性地,网络设备根据终端设备丢弃第二数据所需的时长和预设时长,确定的第一数据的反馈时延可以符合以下公式:
T≥T_proc+T_drop
步骤408,网络设备根据预设时长,确定第一数据的反馈时延。示例性地,网络设备根据预设时长,确定的第一数据的反馈时延大于或等于预设时长。
步骤409,网络设备在第一时频资源上向终端设备发送第一PDCCH以及在第二时频资源上发送第一PDSCH,其中,第一PDCCH承载的DCI中包括第一信息和第二信息,第一信息指示第二时频资源,第二信息指示第一数据的反馈时延;相应地,终端设备在接收到DCI后,可以在第一信息所指示的第二时频资源上接收第一PDSCH,并根据第二信息所指示的第一数据的反馈时延发送第一数据的HARQ反馈信息。
采用上述方法,网络设备先确定终端设备在处理第一数据之前是否需要丢弃第二数据,再根据第一时频资源和第二时频资源的相对位置关系、终端设备丢弃第二数据所需的时长与第一时长的大小关系来确定第一数据的反馈时延,从而可以避免因数据处理时长不足而触发重传的问题,能够有效降低数据的重传概率,提高传输性能。而且,由于网络设备充分考虑了第一时频资源和第二时频资源的相对位置关系、终端设备丢弃第二数据所需的时长与第一时长的大小关系,从而能够更加合理地确定第一数据的反馈时延,避免确定的反馈时延较长,影响业务性能。
需要说明的是:
(1)上述步骤流程中是以对第一数据进行处理的起始时刻为第二时频资源的起始时刻为例进行描述的。若对第一数据进行处理的起始时刻为第一PDSCH对应的DMRS符号的起始时刻,则上文中的第二时频资源的起始时刻也可以替换为第一PDSCH对应的DMRS符号的起始时刻;若对第一数据进行处理的起始时刻为用于信道估计的DMRS符号的结束时刻,则上文中的第二时频资源的起始时刻也可以替换为用于信道估计的DMRS符号的结束时刻。
(2)上述图4所描述的步骤流程也可以有其它可能的表述方式,本领域技术人员可以在上述实施例的基础上进行变形。
比如,本申请实施例提供的方法也可以表述为:网络设备确定在第一时频资源上发送第一PDCCH以及在第二时频资源上发送第一PDCCH对应的第一PDSCH,第一PDSCH用于承载第一数据;当确定终端设备在处理第一数据之前需要丢弃第二数据,且第一时频资源的结束时刻在第二时频资源的起始时刻之前或第一时频资源的结束时刻与第二时频资源的起始时刻重叠(比如T_dci2pdsch>0或T_dci2pdsch≥0)时,可以基于如下公式来确定第一数据的反馈时延:
T≥T_proc+max[T_drop-T_dci2pdsch,0]
其中,max[x,y]表示取x,y中的最大值。
当确定终端设备在处理第一数据之前需要丢弃第二数据,且第一时频资源的结束时刻在第二时频资源的起始时刻之后或第一时频资源的结束时刻与第二时频资源的起始时刻重叠(比如T_dci2pdsch≤0或T_dci2pdsch<0)时,可以基于如下公式来确定第一数据的反馈时延:
T≥T_proc+T_drop
又比如,本申请实施例提供的方法也可以表述为:网络设备确定在第一时频资源上发送第一PDCCH以及在第二时频资源上发送第一PDCCH对应的第一PDSCH,第一PDSCH用于承载第一数据;当确定终端设备在处理第一数据之前需要丢弃第二数据时,可以基于如下公式来确定第一数据的反馈时延:
T≥T_proc+max[T_drop-max(T_dci2pdsch,0),0]
又比如,本申请实施例提供的方法也可以表述为:网络设备确定在第一时频资源上发送第一PDCCH以及在第二时频资源上发送第一PDCCH对应的第一PDSCH,第一PDSCH用于承载第一数据;当确定终端设备在处理第一数据之前需要丢弃第二数据时,可以基于如下公式来确定第一数据的反馈时延:
Figure PCTCN2019116813-appb-000003
(3)上述步骤流程主要是从网络设备的角度来描述确定第一数据的反馈时延,从终端设备的角度来看,当终端设备在处理第一数据之前需要丢弃第二数据,第一时频资源的结束时刻在第二时频资源的起始时刻之前,且终端设备丢弃第二数据所需的时长大于第一时长时,终端设备不期望第一数据的反馈时延小于T_proc+T_drop-T_dci2pdsch;或者说,终端不期望第一数据的反馈时间早于第二时频资源的最后一个符号加上第二时长所对应 的时刻,第二时长为T_proc+T_drop-T_dci2pdsch。当终端设备在处理第一数据之前需要丢弃第二数据,第一时频资源的结束时刻在第二时频资源的起始时刻之前,且终端设备丢弃第二数据所需的时长小于或等于第一时长时,终端设备不期望第一数据的反馈时延小于T_proc。当终端设备在处理第一数据之前需要丢弃第二数据,第一时频资源的结束时刻在第二时频资源的起始时刻之前或第一时频资源的结束时刻与第二时频资源的起始时刻重叠时,终端设备不期望第一数据的反馈时延小于T_proc+T_drop。当终端设备在处理第一数据之前需要丢弃第二数据时,终端设备不期望第一数据的反馈时延小于T_proc。
(4)可以理解地,本申请提供的方法也可以应用于上行数据传输的场景。比如可以基于前述实施例中所提供的确定第一数据的反馈时延的思路来确定上行数据传输的时延,示例性地,网络设备确定在第四时频资源上发送第三PDCCH,第三PDCCH用于调度第三数据信道,第三数据信道可以为上行数据信道,比如物理上行共享信道(physical uplink shared channel,PUSCH),第三数据信道用于承载第三数据;进而,网络设备可以确定终端设备在处理第三数据之前是否需要丢弃第四数据,第三数据和第四数据均为上行数据,第四数据可以为终端设备在第四时频资源的结束时刻之前已启动处理,且在第四时频资源的结束时刻尚未完成处理的数据;当确定终端设备需要丢弃第四数据时,可以根据丢弃第四数据所需的时长和第二预设时长来确定第四时频资源的结束时刻和第五时频资源的起始时刻之间间隔的时长,比如第四时频资源的结束时刻和第五时频资源的起始时刻之间间隔的时长大于或等于丢弃第四数据所需的时长与第二预设时长之和。其中,第五时频资源为第三数据信道占用的时频资源,或者说,第五时频资源用于承载第三数据;此处的第二预设时长区别与前文中所提及的预设时长,第二预设时长为终端设备接收到第三PDCCH后,处理第三数据的发送等相关步骤(比如第三数据的编码、调制、映射)所需要的时长。
可以理解地,为了实现上述功能,网络设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
图7和图8为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的无线接入网设备120,还可以是应用于网络设备的模块(如芯片)。
如图7所示,通信装置700包括处理单元710和收发单元720。通信装置700用于实现上述图4中所示的方法实施例中网络设备的功能。
当通信装置700用于实现图4所示的方法实施例中网络设备的功能时:处理单元710用于:确定在第一时频资源上发送第一控制信道以及在第二时频资源上发送第一控制信道对应的第一数据信道,第一数据信道承载第一数据;当确定终端设备在处理第一数据之前 需要丢弃第二数据,第一时频资源的结束时刻在第二时频资源的起始时刻之前,且终端设备丢弃第二数据所需的时长大于第一时长时,根据终端设备丢弃第二数据所需的时长、第一时长和预设时长,确定第一数据的反馈时延;其中,第一时长为第一时频资源的结束时刻和第二时频资源的起始时刻之间间隔的时长。收发单元720用于:在第一时频资源上发送第一控制信道,以及在第二时频资源上发送第一数据信道,第一控制信道承载的控制信息中包括第一信息和第二信息,第一信息指示第二时频资源,第二信息指示第一数据的反馈时延。
有关上述处理单元710和收发单元720更详细的描述可以直接参考图4所示的方法实施例中相关描述直接得到,这里不加赘述。
如图8所示,通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现图4所示的方法时,处理器810用于实现上述处理单元710的功能,接口电路820用于实现上述收发单元720的功能。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读 存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围,比如本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一时频资源和第二时频资源,只是为了区分不同的时频资源,而并不是表示这两种时频资源的优先级或者重要程度等的不同。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (13)

  1. 一种确定数据传输反馈时延的方法,其特征在于,所述方法包括:
    通信装置确定在第一时频资源上发送第一控制信道;
    所述通信装置确定在第二时频资源上发送所述第一控制信道对应的第一数据信道,所述第一数据信道承载第一数据;
    当所述通信装置确定终端设备在处理所述第一数据之前需要丢弃第二数据,所述第一时频资源的结束时刻在所述第二时频资源的起始时刻之前,且丢弃所述第二数据所需的时长大于第一时长时,所述通信装置根据丢弃所述第二数据所需的时长、所述第一时长和预设时长,确定所述第一数据的反馈时延;其中,所述第一时长为所述第一时频资源的结束时刻和所述第二时频资源的起始时刻之间间隔的时长;
    所述通信装置在所述第一时频资源上向所述终端设备发送所述第一控制信道,所述第一控制信道承载的控制信息中包括第一信息和第二信息,所述第一信息指示所述第二时频资源,所述第二信息指示所述第一数据的反馈时延;
    所述通信装置在所述第二时频资源上向所述终端设备发送所述第一数据信道。
  2. 根据权利要求1所述的方法,其特征在于,当所述通信装置确定所述终端设备在处理所述第一数据之前需要丢弃第二数据,所述第一时频资源的结束时刻在所述第二时频资源的起始时刻之前,且丢弃所述第二数据所需的时长小于或等于所述第一时长时,所述通信装置根据所述预设时长确定所述第一数据的反馈时延。
  3. 根据权利要求1或2所述的方法,其特征在于,当所述通信装置确定所述终端设备在处理所述第一数据之前需要丢弃所述第二数据,所述第一时频资源的结束时刻在所述第二时频资源的起始时刻之后或所述第一时频资源的结束时刻与所述第二时频资源的起始时刻重叠时,所述通信装置根据丢弃所述第二数据所需的时长和预设时长,确定所述第一数据的反馈时延。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,当所述通信装置确定所述终端设备在处理所述第一数据之前不需要丢弃所述第二数据时,所述通信装置根据所述预设时长确定所述第一数据的反馈时延。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述通信装置根据丢弃所述第二数据所需的时长、所述第一时长和所述预设时长,确定的所述第一数据的反馈时延符合以下公式:
    T≥T_proc+T_drop-T_dci2pdsch
    其中,T为所述第一数据的反馈时延,T_proc为所述预设时长,T_drop为所述终端设备丢弃所述第二数据所需的时长,T_dci2pdsch为所述第一时长。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一数据的优先级高于所述第二数据的优先级。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述通信装置确定所述终端设备在处理所述第一数据之前需要丢弃所述第二数据,包括:
    当承载所述第二数据的第三时频资源与所述第二时频资源在时域上存在重叠,则所述通信装置确定所述终端设备在处理所述第一数据之前需要丢弃第二数据;或者,
    当承载所述第二数据的第三时频资源与所述第二时频资源在时域上不存在重叠,且所 述通信装置根据所述终端设备的能力确定所述终端设备在所述第二时频资源的起始时刻之前无法完成对所述第二数据的处理,则所述通信装置确定所述终端设备在处理所述第一数据之前需要丢弃所述第二数据。
  8. 一种通信装置,其特征在于,包括用于执行如权利要求1至7中的任一项所述方法的单元或模块。
  9. 一种通信装置,其特征在于,包括处理器,用于调用存储器中存储的程序,以执行如权利要求1至7中任一项所述的方法。
  10. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至7中任一项所述的方法。
  11. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,所述通信装置实现如权利要求1至7中任一项所述的方法。
  12. 一种计算机程序,其特征在于,当所述计算机程序被通信装置执行时,所述通信装置实现如权利要求1至7中任一项所述的方法。
  13. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令被通信装置执行时,所述通信装置实现如权利要求1至7中任一项所述的方法。
PCT/CN2019/116813 2019-11-08 2019-11-08 一种确定数据传输反馈时延的方法及装置 WO2021088026A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/116813 WO2021088026A1 (zh) 2019-11-08 2019-11-08 一种确定数据传输反馈时延的方法及装置
CN201980102033.8A CN114641956A (zh) 2019-11-08 2019-11-08 一种确定数据传输反馈时延的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116813 WO2021088026A1 (zh) 2019-11-08 2019-11-08 一种确定数据传输反馈时延的方法及装置

Publications (1)

Publication Number Publication Date
WO2021088026A1 true WO2021088026A1 (zh) 2021-05-14

Family

ID=75849509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116813 WO2021088026A1 (zh) 2019-11-08 2019-11-08 一种确定数据传输反馈时延的方法及装置

Country Status (2)

Country Link
CN (1) CN114641956A (zh)
WO (1) WO2021088026A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023221893A1 (zh) * 2022-05-18 2023-11-23 华为技术有限公司 一种传播时延确定方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082111A1 (zh) * 2022-10-17 2024-04-25 北京小米移动软件有限公司 一种上行发送丢弃的处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289015A (zh) * 2017-01-09 2018-07-17 北京三星通信技术研究有限公司 发送harq-ack/nack的方法和设备及下行传输方法和设备
US20180352582A1 (en) * 2015-11-04 2018-12-06 Lg Electronics Inc. Method and apparatus for handling overlap of different channels in wireless communication system
CN109565403A (zh) * 2016-06-21 2019-04-02 三星电子株式会社 通信系统中物理下行链路控制信道的发送
CN109756929A (zh) * 2017-11-02 2019-05-14 华为技术有限公司 应答帧延迟时长设置方法、装置及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188054B (zh) * 2011-12-28 2016-06-22 华为技术有限公司 反馈时延的获取方法、装置及系统
CN109951262B (zh) * 2017-12-21 2021-09-07 华为技术有限公司 一种harq反馈的方法和装置
CN110035550B (zh) * 2018-01-12 2021-08-13 华为技术有限公司 上行控制信息传输方法和通信装置
CN111684835B (zh) * 2018-02-06 2021-10-15 华为技术有限公司 反馈信息的指示方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180352582A1 (en) * 2015-11-04 2018-12-06 Lg Electronics Inc. Method and apparatus for handling overlap of different channels in wireless communication system
CN109565403A (zh) * 2016-06-21 2019-04-02 三星电子株式会社 通信系统中物理下行链路控制信道的发送
CN108289015A (zh) * 2017-01-09 2018-07-17 北京三星通信技术研究有限公司 发送harq-ack/nack的方法和设备及下行传输方法和设备
CN109756929A (zh) * 2017-11-02 2019-05-14 华为技术有限公司 应答帧延迟时长设置方法、装置及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Scheduling/HARQ Enhancements for NR URLLC", 3GPP DRAFT; R1-1910548 SCHEDULING HARQ ENHANCEMENTS FOR NR URLLC, vol. RAN WG1, 8 October 2019 (2019-10-08), Chongqing, China, pages 1 - 13, XP051789349 *
HUAWEI, HISILICON: "Enhancements to scheduling/HARQ", 3GPP DRAFT; R1-1910069, vol. RAN WG1, 8 October 2019 (2019-10-08), Chongqing, China, pages 1 - 9, XP051788876 *
SONY: "Intra-UE multiplexing/prioritisation under Out-of-Order Scheduling", 3GPP DRAFT; R1-1904237, vol. RAN WG1, 12 April 2019 (2019-04-12), Xi'an China, pages 1 - 6, XP051707164 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023221893A1 (zh) * 2022-05-18 2023-11-23 华为技术有限公司 一种传播时延确定方法及装置

Also Published As

Publication number Publication date
CN114641956A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
CN111181693B (zh) 发送数据的方法、发送数据的装置、以及终端设备
US11251930B2 (en) Control information transmission method
JP7001306B2 (ja) 無線通信方法、通信装置およびプログラム
WO2019137213A1 (zh) 上行控制信息传输方法和通信装置
CN110166182B (zh) 一种竞争窗管理的方法及发送设备
US10965416B2 (en) Data transmission method and apparatus
CN110972317B (zh) 通信方法和装置
WO2019037695A1 (zh) 一种通信方法及装置
KR20190128219A (ko) 데이터 전송 방법, 단말기 디바이스 및 네트워크 디바이스
WO2021088075A1 (zh) 信息指示方法及装置
WO2020228542A1 (zh) 一种发送和接收harq-ack消息的方法及装置
WO2019158039A1 (zh) 通信方法和通信装置
US11528714B2 (en) Data transmission method and apparatus
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
WO2021088026A1 (zh) 一种确定数据传输反馈时延的方法及装置
WO2021016968A1 (zh) 上行信道传输方式的确定方法、装置、设备及介质
JP2023519460A (ja) 情報受信方法、送信方法、装置及び設備
WO2019157919A1 (zh) 一种竞争窗管理的方法及发送设备
WO2021031948A1 (zh) 处理数据的方法和通信装置
WO2019137011A1 (zh) 一种通信方法及上行资源确定方法
WO2021077305A1 (zh) 测量方法、装置及系统
WO2021062687A1 (zh) 一种通信方法及装置
WO2022077396A1 (zh) 一种上行控制信息的发送方法、接收方法及通信装置
WO2022077514A1 (zh) 一种通信方法及装置
WO2021087820A1 (zh) 反馈序列的传输方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19951598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19951598

Country of ref document: EP

Kind code of ref document: A1