WO2019137213A1 - 上行控制信息传输方法和通信装置 - Google Patents

上行控制信息传输方法和通信装置 Download PDF

Info

Publication number
WO2019137213A1
WO2019137213A1 PCT/CN2018/123802 CN2018123802W WO2019137213A1 WO 2019137213 A1 WO2019137213 A1 WO 2019137213A1 CN 2018123802 W CN2018123802 W CN 2018123802W WO 2019137213 A1 WO2019137213 A1 WO 2019137213A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
uplink control
control information
value
time domain
Prior art date
Application number
PCT/CN2018/123802
Other languages
English (en)
French (fr)
Inventor
李胜钰
吕永霞
胡丹
马蕊香
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019137213A1 publication Critical patent/WO2019137213A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • the embodiments of the present application relate to communications technologies, and in particular, to an uplink control information transmission method and a communication device.
  • 5G communication systems can support different services, such as enhanced mobile broadband (eMBB) services, mass machine type communication (MTC) services, ultra-reliable and low latency (ultra-reliable and low latency). Communications, URLLC) services, multimedia broadcast multicast (MBMS) services and positioning services.
  • eMBB enhanced mobile broadband
  • MTC mass machine type communication
  • URLLC ultra-reliable and low latency
  • MBMS multimedia broadcast multicast
  • the URLLC service is an important service in the 5G communication system, and requires very high reliability and very short delay in transmission. Therefore, in order to reduce the transmission delay of the downlink data of the URLLC service and improve the transmission reliability of the downlink data, the terminal device needs to promptly feed back the hybrid automatic repeat request acknowledge (HARQ-ACK) information of the downlink data. To increase the number of retransmissions of downlink data within the delay required by the URLLC service. On the other hand, the terminal device needs to quickly feed back the instantaneous channel information, so that the network device can more accurately adjust the transmission parameters of the downlink data, and ensure the transmission reliability of the downlink data.
  • the transmission parameters referred to herein may be, for example, a modulation and coding scheme (MCS) or the like.
  • MCS modulation and coding scheme
  • A-CSI aperiodic channel state information
  • the terminal device can carry the HARQ-ACK information and/or the A-CSI in the UCI, and the bearer is sent to the network device on the physical uplink control channel (PUCCH).
  • the terminal device may transmit the HARQ-ACK and/or the PUCCH to be transmitted.
  • the A-CSI carries the transmission on the PUSCH without transmitting the PUCCH.
  • the PUSCH is transmitted using the frequency hopping method, the transmission delay of the HARQ-ACK information and/or the A-CSI is large.
  • the embodiment of the present invention provides an uplink control information transmission method and a communication device, which are used to solve the technical problem that the transmission delay of the HARQ-ACK information and/or the A-CSI is large when the PUSCH is transmitted in the frequency hopping manner.
  • an embodiment of the present application provides an uplink control information transmission method.
  • the method can be applied to a terminal device and can also be applied to a chip in a terminal device.
  • the method is described as an example applied to a terminal device, and the method includes:
  • the uplink control channel Determining a time domain resource of the uplink control channel, where the uplink control channel is used to carry uplink control information to be transmitted, where the uplink control information includes at least one hybrid automatic repeat request acknowledgement HARQ-ACK information and/or at least one aperiodic channel Status information A-CSI;
  • the uplink data channel When the time domain resource of the uplink data channel overlaps with the time domain resource of the uplink control channel, the uplink data channel is transmitted by using a frequency hopping manner, and the first condition is met, the first hop of the uplink data channel.
  • the uplink control information is sent on the corresponding time-frequency resource, and the uplink control information is sent on the time-frequency resource corresponding to the second hop of the uplink data channel.
  • the terminal device may use the first condition to determine whether the UCI is time when the PUSCH is transmitted in a frequency hopping manner, and the time domain resource of the PUCCH carrying the UCI overlaps with the time domain resource of the PUSCH.
  • the delay-sensitive UCI and the terminal device, can transmit the UCI that is to be carried on the PUCCH to the time-frequency resource corresponding to the first hop of the PUSCH, but not to the PUSCH, when the UCI is delay-sensitive UCI.
  • the time-frequency resource corresponding to the second hop is transmitted, so that the network device can complete the UCI reception on the time-frequency resource corresponding to the first hop of the PUSCH, and the transmission delay of the UCI can be reduced.
  • the method further includes:
  • the first condition includes:
  • the load size of the first DCI is equal to the first value
  • the load size of the first DCI is less than a first threshold
  • the load size of the first DCI is equal to the second value, and the value of the DCI format identification field of the first DCI is equal to the third value;
  • the load size of the first DCI is equal to the second value, and the search space of the first DCI is a user equipment UE specific search space; or
  • the load size of the first DCI is equal to the second value
  • the value of the DCI format identifier field of the first DCI is equal to the third value
  • the search space of the first DCI is the UE-specific search. space.
  • the terminal device can determine whether the UCI is delay-sensitive UCI based on the format of the first DCI sent by the network device, and does not require the network device to pass additional signaling or bit direction.
  • the terminal device indicates whether the UCI is a delay-sensitive UCI. If the existing DCI format is unchanged, the UCI is implicitly indicated to be a delay-sensitive UCI, which expands the usage scenario and reduces system overhead.
  • the method further includes:
  • the feedback delay is an offset value of a sending time unit of the uplink control information with respect to a receiving time unit of the first DCI
  • the first condition includes:
  • the feedback delay is less than or equal to a second threshold.
  • the terminal device can determine whether the UCI is a delay-sensitive UCI based on the feedback delay of the UCI, and does not require the network device to indicate the UCI to the terminal device by using additional signaling or bits. Whether it is delay-sensitive UCI, expands the usage scenario and reduces system overhead.
  • the first condition includes:
  • the start symbol number of the time domain resource of the uplink control channel is less than or equal to the third threshold.
  • the terminal device can determine whether the UCI is delay-sensitive UCI based on the starting symbol number of the time domain resource of the UCI, and does not require the network device to pass additional signaling or bits. It indicates to the terminal device whether the UCI is delay-sensitive UCI, which expands the usage scenario and reduces system overhead.
  • the method further includes:
  • the first condition includes:
  • the ⁇ offset indication field in the second DCI takes a fourth value
  • the beta offset indicated by the beta offset indication field is greater than or equal to a fourth threshold.
  • the terminal device may determine whether the UCI is based on the ⁇ offset indicated by the ⁇ offset indication field or the ⁇ offset indication field of the second DCI transmitted by the network device.
  • the delay-sensitive UCI does not require the network device to indicate to the terminal device whether the UCI is delay-sensitive UCI through additional signaling or bits, which expands the usage scenario and reduces system overhead.
  • the transmitting the uplink control information on the first hop of the uplink data channel includes:
  • mapping by using the first first symbol in the time domain resource used by the first hop, the uplink control information, where the first symbol is a non-bearing resource in a time domain resource used by the first hop a symbol of a reference signal of the uplink data; or,
  • mapping according to the first second symbol in the time domain resource used by the first hop, the uplink control information, where the second symbol is located in a time domain resource used by the first hop The symbol following the sign of the reference signal of the uplink data.
  • the terminal device can make the network device by mapping the UCI from the first first symbol or the first second symbol in the time domain resource used by the first hop.
  • the UCI reception is completed as early as possible, further reducing the UCI transmission delay.
  • an embodiment of the present application provides an uplink control information transmission method.
  • the method can be applied to a network device, and can also be applied to a chip in a network device.
  • the method is described below as an example of application to a network device, and the method includes:
  • the uplink control channel Determining a time domain resource of the uplink control channel, where the uplink control channel is used to carry uplink control information to be transmitted, where the uplink control information includes at least one hybrid automatic repeat request acknowledgement HARQ-ACK information and/or at least one aperiodic channel Status information A-CSI;
  • the uplink data channel When the time domain resource of the uplink data channel overlaps with the time domain resource of the uplink control channel, the uplink data channel is transmitted by using a frequency hopping manner, and the first condition is met, the first hop of the uplink data channel.
  • the uplink control information is received on the corresponding time-frequency resource, and the uplink control information is not received on the time-frequency resource corresponding to the second hop of the uplink data channel.
  • the method further includes:
  • the first condition includes:
  • the load size of the first DCI is equal to the first value
  • the load size of the first DCI is less than a first threshold
  • the load size of the first DCI is equal to the second value, and the value of the DCI format identification field of the first DCI is equal to the third value;
  • the load size of the first DCI is equal to the second value, and the search space of the first DCI is a user equipment UE specific search space; or
  • the load size of the first DCI is equal to the second value
  • the value of the DCI format identifier field of the first DCI is equal to the third value
  • the search space of the first DCI is the UE-specific search. space.
  • the method further includes:
  • the feedback delay is an offset value of a sending time unit of the uplink control information with respect to a receiving time unit of the first DCI
  • the first condition includes:
  • the feedback delay is less than or equal to a second threshold.
  • the first condition includes:
  • the start symbol number of the time domain resource of the uplink control channel is less than or equal to the third threshold.
  • the method further includes:
  • the first condition includes:
  • the ⁇ offset indication field in the second DCI takes a fourth value
  • the beta offset indicated by the beta offset indication field is greater than or equal to a fourth threshold.
  • the receiving the uplink control information on the first hop of the uplink data channel includes:
  • the uplink control information Receiving, by using the first first symbol in the time domain resource used by the first hop, the uplink control information, where the first symbol is a non-bearing resource in a time domain resource used by the first hop a symbol of a reference signal of the uplink data; or,
  • the uplink control information Receiving, by using the first second symbol in the time domain resource used by the first hop, the uplink control information, where the second symbol is located in a time domain resource used by the first hop The symbol following the sign of the reference signal of the uplink data.
  • the embodiment of the present application provides a communication device, which may be a terminal device or a chip applied to a terminal device, where the communication device includes:
  • a processing module configured to determine a time domain resource of the uplink control channel, where the uplink control channel is used to carry uplink control information to be transmitted, and the uplink control information includes at least one hybrid automatic repeat request Confirming HARQ-ACK information and/or at least one aperiodic channel state information A-CSI; the uplink data channel is used to carry uplink data;
  • the processing module is further configured to: when the time domain resource of the uplink data channel overlaps with the time domain resource of the uplink control channel, and the uplink data channel is transmitted by using a frequency hopping manner, and the first condition is met, The module sends the uplink control information on the time-frequency resource corresponding to the first hop of the uplink data channel, and does not send the uplink control information on the time-frequency resource corresponding to the second hop of the uplink data channel.
  • the device further includes:
  • a receiving module configured to receive first downlink control information DCI, where the first DCI is used to trigger the uplink control information
  • the first condition includes:
  • the load size of the first DCI is equal to the first value
  • the load size of the first DCI is less than a first threshold
  • the load size of the first DCI is equal to the second value, and the value of the DCI format identification field of the first DCI is equal to the third value;
  • the load size of the first DCI is equal to the second value, and the search space of the first DCI is a user equipment UE specific search space; or
  • the load size of the first DCI is equal to the second value
  • the value of the DCI format identifier field of the first DCI is equal to the third value
  • the search space of the first DCI is the UE-specific search. space.
  • the device further includes:
  • a receiving module configured to receive first downlink control information DCI, where the first DCI is used to trigger the uplink control information
  • the processing module is further configured to obtain a feedback delay of the uplink control information, where the feedback delay is an offset value of a sending time unit of the uplink control information with respect to a receiving time unit of the first DCI;
  • the first condition includes:
  • the feedback delay is less than or equal to a second threshold.
  • the first condition includes:
  • the start symbol number of the time domain resource of the uplink control channel is less than or equal to the third threshold.
  • the device further includes:
  • a receiving module configured to receive a second DCI, where the second DCI is used to schedule the uplink data channel
  • the first condition includes:
  • the ⁇ offset indication field in the second DCI takes a fourth value
  • the beta offset indicated by the beta offset indication field is greater than or equal to a fourth threshold.
  • the processing module is specifically configured to control, by the sending module, to start, by using a first first symbol in a time domain resource used by the first hop, to map the uplink control information,
  • the first symbol is a symbol of a reference signal that does not carry the uplink data in the time domain resource used by the first hop; or the processing module is specifically configured to control the sending module from the first Starting with the first second symbol in the time domain resource used by the hop, mapping the uplink control information, where the second symbol is a reference in the time domain resource used by the first hop, where the uplink data is carried.
  • the symbol after the symbol of the signal is specifically configured to control, by the sending module, to start, by using a first first symbol in a time domain resource used by the first hop, to map the uplink control information,
  • the first symbol is a symbol of a reference signal that does not carry the uplink data in the time domain resource used by the first hop; or the processing module is specifically configured to control the sending module from the first Starting with the first second symbol in the time domain resource used by
  • the embodiment of the present application provides a communication device, which may be a network device or a chip applied to a network device, where the communication device includes:
  • a processing module configured to determine a time domain resource of the uplink control channel, where the uplink control channel is used to carry uplink control information to be transmitted, and the uplink control information includes at least one hybrid automatic repeat request Confirming HARQ-ACK information and/or at least one aperiodic channel state information A-CSI; the uplink data channel is used to carry uplink data;
  • the processing module is further configured to: when the time domain resource of the uplink data channel overlaps with the time domain resource of the uplink control channel, the uplink data channel is transmitted by using a frequency hopping manner, and the first condition is met, The module receives the uplink control information on a time-frequency resource corresponding to the first hop of the uplink data channel, and does not receive the uplink control information on a time-frequency resource corresponding to the second hop of the uplink data channel.
  • the device further includes:
  • a sending module configured to send a first downlink control information DCI, where the first DCI is used to trigger the uplink control information
  • the first condition includes:
  • the load size of the first DCI is equal to the first value
  • the load size of the first DCI is less than a first threshold
  • the load size of the first DCI is equal to the second value, and the value of the DCI format identification field of the first DCI is equal to the third value;
  • the load size of the first DCI is equal to the second value, and the search space of the first DCI is a user equipment UE specific search space; or
  • the load size of the first DCI is equal to the second value
  • the value of the DCI format identifier field of the first DCI is equal to the third value
  • the search space of the first DCI is the UE-specific search. space.
  • the device further includes:
  • a sending module configured to send a first downlink control information DCI, where the first DCI is used to trigger the uplink control information
  • the processing module is further configured to obtain a feedback delay of the uplink control information, where the feedback delay is an offset value of a sending time unit of the uplink control information with respect to a receiving time unit of the first DCI;
  • the first condition includes:
  • the feedback delay is less than or equal to a second threshold.
  • the first condition includes:
  • the start symbol number of the time domain resource of the uplink control channel is less than or equal to the third threshold.
  • the device further includes:
  • a sending module configured to send a second DCI, where the second DCI is used to schedule the uplink data channel
  • the first condition includes:
  • the ⁇ offset indication field in the second DCI takes a fourth value
  • the beta offset indicated by the beta offset indication field is greater than or equal to a fourth threshold.
  • the processing module is specifically configured to control the receiving module to receive the uplink control information, starting from a first first symbol in a time domain resource used by the first hop,
  • the first symbol is a symbol of a reference signal that does not carry the uplink data in the time domain resource used by the first hop; or the processing module is specifically configured to control the receiving module from the first
  • the first second symbol in the time domain resource used by the hop starts to receive the uplink control information, where the second symbol is a reference in the time domain resource used by the first hop that is located in the uplink data.
  • the symbol after the symbol of the signal is specifically configured to control the receiving module to receive the uplink control information, starting from a first first symbol in a time domain resource used by the first hop,
  • the first symbol is a symbol of a reference signal that does not carry the uplink data in the time domain resource used by the first hop; or the processing module is specifically configured to control the receiving module from the first
  • the first second symbol in the time domain resource used by the hop starts to receive the uplink control information,
  • an embodiment of the present application provides a communications apparatus, where the communications apparatus includes: a processor, a memory, a receiver, and a transmitter; the receiver and the transmitter are both coupled to the processor, The processor controls a receiving action of the receiver, and the processor controls a sending action of the transmitter;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the communication device to perform uplink control information as provided by the first aspect or the possible designs of the first aspect Transmission method.
  • an embodiment of the present application provides a communications apparatus, where the communications apparatus includes: a processor, a memory, a receiver, and a transmitter; the receiver and the transmitter are both coupled to the processor, The processor controls a receiving action of the receiver, and the processor controls a sending action of the transmitter;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the communication device to perform uplink control information as provided by the second aspect or the possible design of the second aspect Transmission method.
  • an embodiment of the present application provides a communication apparatus, including a unit, a module, or a circuit for performing the method provided by the above first aspect or the possible design of the first aspect.
  • the communication device may be a terminal device or a module applied to the terminal device, for example, may be a chip applied to the terminal device.
  • an embodiment of the present application provides a communication apparatus, including a unit, a module, or a circuit for performing the method provided by the foregoing second aspect or the possible design of the second aspect.
  • the communication device may be a network device or a module applied to the network device, for example, may be a chip applied to the network device.
  • an embodiment of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the first aspect or the various possible designs of the first aspect.
  • embodiments of the present application provide a computer program product comprising instructions that, when run on a computer, cause the computer to perform the methods of the second aspect or the various possible designs of the second aspect.
  • an embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, causing the computer to perform the first aspect or the first aspect.
  • the computer readable storage medium stores instructions, when executed on a computer, causing the computer to perform the first aspect or the first aspect.
  • the embodiment of the present application provides a computer readable storage medium, where the computer readable storage medium stores instructions, when executed on a computer, causing the computer to perform the second aspect or the second aspect Various possible methods of design.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied;
  • FIG. 3 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram 1 of resource mapping of UCI according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram 2 of resource mapping of UCI according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication apparatus according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a mobile communication system according to an embodiment of the present application.
  • the mobile communication system may include a core network device 110, a radio access network device 120, and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the radio access network device 120 in a wireless manner, and the radio access network device 120 is connected to the core network device 110 by wireless or wired.
  • the core network device 110 and the radio access network device 120 may be independent physical devices, or may integrate the functions of the core network device 110 and the logical functions of the wireless access network device 120 on the same physical device.
  • the terminal device can be fixed or mobile.
  • FIG. 1 is only a schematic diagram.
  • the mobile communication system may further include other network devices, for example, a wireless relay device and a wireless backhaul device, and the like, which is not shown in FIG.
  • the number of the core network device 110, the radio access network device 120, and the terminal device included in the mobile communication system is not limited in this embodiment of the present application.
  • the radio access network device 120 is an access device that the terminal device accesses to the mobile communication system by using a wireless device, and may be a base station NodeB, an evolved base station eNodeB, a 5G mobile communication system, or a new radio (NR) communication.
  • the specific technology and the specific device configuration adopted by the radio access network device 120 are not limited in the embodiment of the present application.
  • the base station in the system, the base station in the future mobile communication system, and the access node in the WiFi system are not limited.
  • the radio access network device 120 is referred to as a network device. Unless otherwise specified, in the embodiment of the present application, the network device refers to the radio access network device 120.
  • the terms 5G and NR may be equivalent.
  • the terminal device may also be referred to as a terminal terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the radio access network device 120 and the terminal device can be deployed on land, including indoors or outdoors, handheld or on-board; or can be deployed on the surface of the water; and can also be deployed on aircraft, balloons, and satellites in the air.
  • the application scenarios of the radio access network device 120 and the terminal device are not limited in this embodiment.
  • the radio access network device 120 and the terminal device can communicate through a licensed spectrum, or can communicate through an unlicensed spectrum, or can simultaneously communicate through an authorized spectrum and an unlicensed spectrum.
  • the radio access network device 120 and the terminal device can communicate through a spectrum of 6 gigahertz (GHz) or less, or can communicate through a spectrum of 6 GHz or higher, and can simultaneously use a spectrum below 6 GHz and a spectrum above 6 GHz. Communicate.
  • GHz gigahertz
  • the spectrum resources used between the radio access network device 120 and the terminal device are not limited in this embodiment of the present application.
  • the uplink control channel is used to carry uplink control information (UCI).
  • UCI uplink control information
  • PUCCH physical uplink control channel
  • An uplink data channel for carrying uplink data For example, a physical uplink shared channel (PUSCH).
  • PUSCH physical uplink shared channel
  • the downlink data channel is used to carry downlink data.
  • a physical downlink shared channel PDSCH.
  • the downlink control channel is used to carry downlink control information (DCI).
  • DCI downlink control information
  • the DCI mentioned here may include a plurality of formats, and the functions of DCIs of different formats are different.
  • the DCI of the transmission resource of the PDSCH that carries the downlink data transmission may be referred to as a downlink (DL) allocation (Assignment), and the DCI of the transmission resource of the PUSCH that carries the uplink data transmission may be referred to as an uplink ( Uplink, UL) Grant (Grant).
  • the downlink control channel, the downlink data channel, the uplink control channel, and the uplink data channel may still use the terminology of the foregoing communication system in the 5G mobile communication system.
  • the naming of the downlink control channel, the downlink data channel, the uplink control channel, and the uplink data channel in each communication system is not limited in this application.
  • the PDCCH, the PDSCH, the PUCCH, and the PUSCH are taken as an example for description.
  • the URLLC service is an important service in the 5G communication system, and requires very high reliability and very short delay in transmission. For example: reliability 99.999%, delay 1 millisecond (millisecond, ms).
  • Typical use cases for URLLC services include industrial control, industrial production process automation, human-computer interaction, and telemedicine.
  • the terminal device needs to feed back the HARQ-ACK information of the downlink data in time to increase the downlink data in the delay required by the URLLC service.
  • the HARQ-ACK information referred to herein may be, for example, an acknowledgement (ACK) or a negative acknowledgement (NACK) information.
  • ACK is used to indicate that the downlink data is correctly received by the terminal device
  • NACK is used to indicate that the downlink data is not correctly received by the terminal device.
  • the terminal device needs to quickly feed back the instantaneous channel information, so that the network device can more accurately adjust the transmission parameters of the downlink data, and ensure the transmission reliability of the downlink data.
  • the transmission parameters referred to here may be, for example, MCS or the like.
  • the terminal device can feed back the instantaneous channel information through the A-CSI.
  • the network device can trigger the terminal device to feed back the HARQ-ACK information of the downlink data by scheduling the DL Assignment of the downlink data transmission.
  • the terminal device may carry the HARQ-ACK information of the downlink data in the UCI, and the bearer is sent to the network device on the PUCCH.
  • the network device can also trigger the terminal device to report A-CSI through the DL Assignment.
  • the terminal device may send the A-CSI bearer to the network device on the short PUCCH (this technology may also be referred to as A-CSI on short PUCCH).
  • short PUCCH is a format of PUCCH. The following application documents are all described by taking PUCCH as an example, and the PUCCH can be referred to as short PUCCH.
  • the terminal device when the time domain resource of the PUCCH carrying the HARQ-ACK and/or the A-CSI overlaps with the time domain resource of the PUSCH, the terminal device needs to transmit the HARQ-ACK and/or the PUCCH to be transmitted. Or the A-CSI is transmitted on the PUSCH (this technique may also be referred to as UCI piggyback on PUSCH).
  • the terminal device if the PUSCH is transmitted in a frequency hopping manner, the terminal device needs to divide the modulation and coding symbols of the HARQ-ACK and/or the A-CSI into two parts, and respectively map the time-frequency resources corresponding to the first hop of the PUSCH. The second hop corresponds to the time-frequency resource for transmission.
  • FIG. 2 is a schematic diagram of resource mapping of an existing UCI.
  • the time domain resource of the PUCCH is the symbol #2 to the symbol #3 of a certain time slot
  • the time domain resource of the PUSCH is the symbol #2 of the time slot.
  • the PUSCH is transmitted in a frequency hopping manner and is divided into two hops.
  • the time domain corresponding to each hop is 6 symbols, that is, the time domain resources corresponding to the first hop are symbols #2 to #7, and the time domain corresponding to the second hop.
  • the resource is symbol #8 to symbol #13.
  • the terminal device needs to divide the modulation and coding symbol of the HARQ-ACK information carried by the PUCCH into two parts.
  • the time-frequency resources corresponding to the first hop of the PUSCH and the time-frequency resources corresponding to the second hop are respectively mapped.
  • the terminal device may map the modulation coded symbols of the HARQ-ACK information on the symbols following the symbols of each hop mapping demodulation reference signal (DMRS). It is assumed that the terminal device maps the DMRS on the first symbol of each hop, and the modulation coded symbol of the HARQ-ACK information is mapped on the second symbol of each hop.
  • DMRS hop mapping demodulation reference signal
  • the terminal device maps the modulation coded symbols of the HARQ-ACK information on symbol #3 and symbol #9. In this way, the network device needs to wait until the end of the symbol #9 to complete the reception of the HARQ-ACK information, resulting in a large transmission delay of the HARQ-ACK information. Therefore, when the HARQ-ACK information and/or the A-CSI are transmitted in the above manner, the transmission delay of the HARQ-ACK information and/or the A-CSI is large.
  • the embodiment of the present application provides an uplink control information transmission method, for a delay-sensitive UCI (for example, HARQ-ACK and/or A-CSI) in a URLLC service, and a time domain resource of a PUCCH carrying UCI.
  • a delay-sensitive UCI for example, HARQ-ACK and/or A-CSI
  • the terminal device may transmit the modulation coded symbol of the UCI only on the time-frequency resource corresponding to the first hop of the PUSCH, so as to reduce the transmission delay of the UCI.
  • the uplink control information transmission method provided by the embodiment of the present application including but not limited to the application scenario of the URLLC service, may be performed by using the uplink control information provided by the embodiment of the present application. method.
  • the method in this embodiment may be applied to a network device, and may also be applied to a chip device in a network device. Accordingly, the method in this embodiment may be applied to a terminal device, and may also be applied to a terminal device. Chip device.
  • the technical solutions of the present application are described in detail by using some embodiments in the following. The following embodiments may be combined with each other, and the same or similar concepts or processes may not be described in some embodiments.
  • FIG. 3 is a schematic flowchart of a method for transmitting uplink control information according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram 1 of resource mapping of UCI according to an embodiment of the present disclosure. The embodiment relates to a specific process in which the terminal device maps the modulation and coding symbols of the UCI that are to be carried on the PUCCH to the time-frequency resources corresponding to the first hop of the PUSCH. As shown in FIG. 3, the method may include:
  • the terminal device determines a time domain resource of the PUCCH, where the PUCCH is used to carry the UCI to be transmitted, where the UCI includes at least one HARQ-ACK information and/or at least one A-CSI.
  • the terminal device determines a time domain resource of the PUSCH, where the PUSCH is used to carry uplink data.
  • the terminal device sends the UCI on the time-frequency resource corresponding to the first hop of the PUSCH instead of the PUSCH.
  • the UCI is transmitted on the time-frequency resource corresponding to the second hop.
  • the terminal device may use the first condition to determine whether the UCI is a delay-sensitive UCI. If the terminal device determines that the PUSCH is transmitted in a frequency hopping manner, the time domain resource of the PUCCH carrying the UCI overlaps with the time domain resource of the PUSCH, and the UCI is a delay sensitive UCI, the terminal device may perform the UCI that is originally required to be carried on the PUCCH. The transmission is performed on the time-frequency resource corresponding to the first hop of the PUSCH, and is not transmitted on the time-frequency resource corresponding to the second hop of the PUSCH. In this way, the network device can complete the UCI reception on the time-frequency resource corresponding to the first hop of the PUSCH, and can reduce the transmission delay of the UCI.
  • the terminal device may determine the time domain resource of the PUCCH carrying the UCI by using the following manner, specifically:
  • the network device may send a DL Assignment to the terminal device through the PDCCH, schedule downlink data transmission of the terminal device, and trigger the terminal device to feed back the HARQ-ACK information of the downlink data.
  • the DL Assignment may include: a Time-domain Resource Allocation field, a PDSCH-to-HARQ_feedback timing indicator field, a PUCCH resource indicator field, and the like.
  • the time domain resource allocation field is used to indicate an offset K0 of a time unit for transmitting a PDSCH relative to a time unit of transmitting a PDCCH, to indirectly indicate a time domain resource of the PDSCH.
  • the time unit for transmitting the PDSCH may be the same as the time unit for transmitting the PDCCH, or may be a certain time unit after the time unit for transmitting the PDCCH.
  • the time unit referred to here may be, for example, a transmission time interval (TTI), a slot, a mini slot, or the like.
  • TTI transmission time interval
  • 4 is a schematic diagram showing that the time unit for transmitting the PDSCH and the time unit for transmitting the PDCCH are both slot#(n-k1).
  • the HARQ feedback timing indication field corresponding to the PDSCH is used to indicate the offset K1 of the time unit of the PUCCH carrying the HARQ-ACK information with respect to the time unit of the PDSCH.
  • the PUCCH resource indicator is used to indicate a specific symbol location of the PUCCH in the time unit.
  • the sum of K0 and K1 may be referred to as a feedback delay of the HARQ-ACK information, that is, an offset of a time unit of the PUCCH carrying the HARQ-ACK information relative to a time unit of the transmitted PDCCH.
  • a feedback delay of the HARQ-ACK information that is, an offset of a time unit of the PUCCH carrying the HARQ-ACK information relative to a time unit of the transmitted PDCCH.
  • the K1 indicated by the HARQ feedback timing indication field corresponding to the PDSCH is k2, that is, the time unit (ie, slot#(n)) transmitting the PUCCH carrying the HARQ-ACK information and the time unit transmitting the PDSCH (ie, slot#(n-k2))
  • the difference is k2 time units.
  • the feedback delay of the HARQ-ACK information is the sum of 0 and k2, that is, k2.
  • K1 may also be used as the feedback delay of the HARQ-ACK information. That is, the feedback delay of the HARQ-ACK information is the offset of the time unit transmitting the PUCCH carrying the HARQ-ACK information with respect to the time unit transmitting the PDSCH.
  • the K1 indicated by the HARQ feedback timing indication field corresponding to the PDSCH of the DL Assignment is k2, that is, the time unit (ie, slot#(n)) of the PUCCH carrying the HARQ-ACK information is transmitted and the PDSCH is transmitted.
  • the time units (ie, slot#(n-k2)) differ by k2 time units.
  • the feedback delay of the HARQ-ACK information is k2.
  • the terminal device may delay the feedback delay of the HARQ-ACK information and add the time unit of the PDCCH to obtain the time unit of the PUCCH that carries the HARQ-ACK information. Then, the terminal device may determine a time domain resource of the PUCCH for carrying the HARQ-ACK information according to the specific symbol location of the PUCCH in the time unit indicated by the PUCCH resource indicator.
  • the network device may also send a DL Assignment to the terminal device through the PDCCH to trigger the terminal device to feed back A-CSI.
  • the PDCCH may schedule downlink data transmission of the terminal device, and trigger the terminal device to feed back the HARQ-ACK information of the downlink data.
  • the PDCCH may also not schedule downlink data transmission of the terminal device, nor trigger the terminal device to feed back HARQ-ACK information of the downlink data. That is to say, the DL Assignment of the A-CSI is triggered, and the HARQ-ACK information may be triggered at the same time, or the HARQ-ACK information may not be triggered.
  • the network device may trigger the terminal device to feed back the A-CSI through the channel state information request (CSI Request) field of the DL Assignment.
  • CSI Request channel state information request
  • the network device may indicate the feedback delay of the A-CSI by using an original field or a new field of the DL Assignment. Therefore, the terminal device can obtain the feedback delay of the A-CSI through the DL Assignment. It can be understood that the feedback delay of the A-CSI may be an offset of a time unit transmitting a PUCCH with respect to a time unit of transmitting a PDCCH.
  • the terminal device may obtain a preset A-CSI feedback delay or a feedback delay of the A-CSI indicated by the high layer signaling.
  • the feedback delay of the A-CSI may be, for example, a feedback delay of 0 or 1 or HARQ-ACK information. If the DL Assignment further schedules the downlink data transmission of the terminal device, and triggers the terminal device to feed back the HARQ-ACK information of the downlink data, the feedback delay of the HARQ-ACK information mentioned herein is indicated by the DL Assignment. Feedback delay of HARQ-ACK information (for example, K0+K1).
  • the feedback delay of the HARQ-ACK information mentioned herein is the feedback delay of the preset HARQ-ACK information.
  • the high layer signaling mentioned in the embodiment of the present application may be radio resource control (RRC) signaling, medium access control (MAC) control element (CE) signaling, and the like.
  • RRC radio resource control
  • MAC medium access control
  • CE control element
  • the high layer signaling may be broadcast signaling, multicast signaling, or unicast signaling sent to a single terminal device. It should be noted that, in this scenario, the DL Assignment that triggers the A-CSI no longer indicates the feedback delay of the A-CSI.
  • the network device may also indicate, by using an original field or a newly added field of the DL Assignment, a specific symbol location of the PUCCH carrying the A-CSI in the time unit. Therefore, the terminal device can obtain a specific symbol position of the PUCCH in a time unit by using a DL Assignment. Alternatively, the terminal device may obtain a specific symbol position of the PUCCH in the time unit by using a specific symbol position of the PUCCH carrying the A-CSI indicated by the high layer signaling in the time unit.
  • the foregoing terminal device may determine the time domain resource of the PUCCH carrying the A-CSI based on the feedback delay of the A-CSI acquired in the foregoing manner, and the specific symbol position of the PUCCH carrying the A-CSI in the time unit.
  • the implementation manner is the same as the calculation of the time domain resource of the PUCCH carrying the HARQ-ACK information described above, and details are not described herein.
  • the UCI may include: at least one HARQ-ACK information and at least one A-CSI information. Therefore, the information included in UCI and the DCI that triggers UCI can be as shown in Table 1.
  • At least two HARQ-ACK messages and one A-CSI At least two DCIs 7 One HARQ-ACK message and at least two A-CSIs At least two DCIs 8 At least two HARQ-ACK messages and at least two A-CSIs At least two DCIs
  • the UCI when the UCI is UCI represented by the number 3-8, that is, the UCI includes multiple pieces of information, the multiple information bearers are transmitted on the same PUCCH.
  • the DL Assignment that triggers each information may be sent by the network device to the terminal device through different PDCCHs.
  • FIG. 4 shows a schematic diagram of a DL Assignment.
  • the terminal device may determine the PUSCH according to the UL grant.
  • Domain resource Specifically, the UL grant may include a time-domain resource allocation field, a frequency hopping flag (FHG) field, and the like.
  • the time domain resource allocation field is used to indicate the time delay of the PUSCH carrying the uplink data (that is, the time unit of the time unit of transmitting the PUSCH with respect to the time unit of transmitting the PDCCH) to indirectly indicate the time domain resource of the PUSCH. This field may also indicate the specific symbol location of the PUSCH within the time unit.
  • a frequency hopping indication field is used to indicate whether the PUSCH is transmitted by using a frequency hopping method. Therefore, the terminal device can determine the time domain resource of the PUSCH for carrying the uplink data by scheduling the UL grant of the uplink data, and whether the PUSCH is transmitted by using a frequency hopping manner.
  • the terminal device may determine the PUSCH for carrying the uplink data according to the unscheduled uplink transmission resource configured by the upper layer.
  • the terminal device can determine whether the PUSCH is transmitted by using a frequency hopping manner according to a transmission mode corresponding to the unscheduled uplink transmission resource configured by the high layer.
  • the embodiment of the present application does not limit the execution order of the foregoing S101 and S102.
  • the embodiment of the present application does not limit the DL Assignment that the terminal device receives the trigger UCI, and the sequence of the UL Grant for scheduling the uplink data transmission.
  • 4 shows a schematic diagram in which the terminal device first receives the DL Assignment and then receives the UL Grant.
  • the terminal device may determine a time domain resource of the PUCCH for carrying the UCI, and a time domain resource of the PUSCH for carrying the uplink data, and whether the PUSCH is transmitted by using a frequency hopping manner. Then, the terminal device may first determine whether the time domain resource of the PUCCH overlaps with the time domain resource of the PUSCH, and whether the PUSCH is transmitted by using a frequency hopping manner.
  • 4 shows a time domain resource for a PUCCH for carrying UCI, and time domain resources for a PUSCH for carrying uplink data are all located in slot #(n), and there is an overlapping diagram.
  • the terminal device may overlap the time domain resource of the PUCCH and the time domain resource of the PUSCH, and when the PUSCH uses the frequency hopping mode to transmit, may further determine whether the first condition is met, that is, whether the UCI is delay sensitive UCI, to determine whether the terminal device is
  • the UCI needs to be mapped only to the time-frequency resource corresponding to the first hop of the PUSCH, and is not mapped to the time-frequency resource corresponding to the second hop of the PUSCH.
  • the first condition is described and described in detail below.
  • the specific implementation can include the following methods:
  • the network device can implicitly indicate whether the UCI is delay-sensitive UCI by triggering the format of the first DCI of the UCI. That is, the network device may implicitly indicate whether the UCI is a delay-sensitive UCI by transmitting the first DCI to the terminal device, so that the terminal device determines whether the first condition is met by using the format of the received first DCI.
  • the first DCI referred to herein is the DCI that triggers the HARQ-ACK or the A-CSI.
  • the first DCI referred to herein may be any DCI of a plurality of DCIs.
  • the first condition may be, for example, that the load size of the first DCI is equal to the first value.
  • the first value may be the minimum of the payload size of all DCIs used to schedule the PDSCH.
  • the load size of the DCI mentioned here may be preset or may be configured at a high level.
  • the first condition may be, for example, that the load size of the first DCI is less than the first threshold.
  • the first threshold value mentioned herein may be, for example, less than or equal to the load size of the DCI (Fallback DCI).
  • the Fallback DCI referred to herein may be a DCI for scheduling a PUSCH or a PDSCH.
  • the fields included in the Fallback DCI and the meaning of each field are preset, regardless of the high-level configuration. That is, whether each field (or bite field) in the Fallback DCI exists, the width is a few bits, and the meaning of each field is independent of the high-level configuration.
  • the Fallback DCI may be, for example, a DCI corresponding to Format0_0 and 1_0.
  • the first condition may be, for example, that the load size of the first DCI is equal to the second value, and the value of the DCI format identification field of the first DCI is equal to the third value.
  • the second value mentioned herein may be, for example, the load size of the Fallback DCI
  • the third value may be a value for characterizing whether the first DCI is a Fallback DCI.
  • the first condition may be, for example, that the payload size of the first DCI is equal to the second value, and the search space of the first DCI is a UE-specific search space.
  • the first condition may be, for example, that the load size of the first DCI is equal to the second value, the value of the DCI format identification field of the first DCI is equal to the third value, and the search space of the first DCI is the UE-specific search space.
  • the network device may display, by triggering the first field of the first DCI of the UCI, whether the UCI is a delay-sensitive UCI.
  • the first field may be a field existing in the first DCI, and may also be a new field in the first DCI.
  • the terminal device can directly determine, according to the field of the first DCI, whether the UCI is a delay-sensitive UCI.
  • the first condition may be, for example, whether the first field of the first DCI indicates whether the UCI is delay sensitive UCI.
  • the embodiment of the present application does not limit the number of bits occupied by the first field, and the first field indicates whether the UCI is a delay-sensitive UCI.
  • the second mode the network device can implicitly indicate whether the UCI is a delay-sensitive UCI by using an offset value of the transmission time unit of the UCI relative to the reception time unit of the first DCI (ie, the feedback delay of the UCI). That is, the time unit of the PUCCH carrying the UCI is transmitted with respect to the offset value of the time unit transmitting the PDCCH carrying the first DCI.
  • the feedback delay of the UCI may also be a time unit of the PUCCH carrying the UCI.
  • the offset value of the time unit of the PDSCH In this way, after receiving the first DCI sent by the network device, the terminal device can obtain the feedback delay of the UCI, and can determine whether the UCI is a delay-sensitive UCI based on the feedback delay of the UCI.
  • the first condition may be, for example, that the feedback delay of the UCI is less than or equal to the second threshold.
  • the second threshold value may be 0 or 1, for example, or the mapping between the value of the second threshold value and the subcarrier spacing (SCS) used by the PUSCH may be used.
  • SCS subcarrier spacing
  • mapping between the foregoing second threshold, or the second threshold, and the SCS used by the PUSCH may be indicated by the network device by using high-layer signaling or dynamic DCI to the terminal device, or may be pre- Located in the terminal device.
  • the first DCI mentioned here triggers the HARQ-ACK. Or the DCI of the A-CSI.
  • the feedback delay of the UCI is the feedback delay of the HARQ-ACK information or the feedback delay of the A-CSI.
  • the feedback delay of the UCI may be a value (for example, a maximum value or a minimum value) in the feedback delay of all the information. .
  • the feedback delay with UCI can be taken as an example of the minimum of the feedback delays of all the information, assuming that the UCI includes HARQ-ACK1 information, HARQ-ACK2 information, and an A-CSI.
  • the feedback delay of the HARQ-ACK1 information is smaller than the feedback delay of the A-CSI
  • the feedback delay of the HARQ-ACK2 information is smaller than the feedback delay of the HARQ-ACK1.
  • the feedback delay of the UCI may be the feedback delay of the HARQ-ACK2.
  • the first DCI is the DCI that triggers HARQ-ACK2. It should be noted that how to obtain the feedback delay of the HARQ-ACK information or the feedback delay of the A-CSI may be referred to the foregoing embodiment, and details are not described herein.
  • the feedback delay of the UCI when the feedback delay of the UCI is a feedback delay of a certain HARQ-ACK information included in the UCI, the feedback delay of the UCI (the feedback delay of the HARQ-ACK information) may also be: UCI
  • the offset value of the transmission time unit of the (HARQ-ACK information) with respect to the reception time unit of the downlink data that is, the time unit of the PUCCH transmitting the bearer UCI (HARQ-ACK information) with respect to the time unit of the PDSCH transmitting the downlink data of the bearer Offset value, no further description of this.
  • the third mode the network device can implicitly indicate whether the UCI is delay-sensitive UCI by using the starting symbol number of the time domain resource of the PUCCH carrying the UCI. In this way, the terminal device can determine whether the UCI is delay-sensitive UCI by using the starting symbol number of the time domain resource of the PUCCH carrying the UCI.
  • the terminal device obtains the time domain resource of the PUCCH refer to the description of the foregoing embodiment, and details are not described herein.
  • the first condition may be, for example, that the starting symbol number of the time domain resource of the PUCCH is less than or equal to the third threshold.
  • the third threshold value mentioned here may be, for example, 6 or 7, or a mapping relationship between the value of the third threshold value and the subcarrier spacing (SCS) used by the PUSCH.
  • the mapping relationship between the foregoing third threshold value or the third threshold value and the SCS used by the PUSCH may be indicated by the network device by using high-layer signaling or dynamic DCI to the terminal device, or may be pre- Located in the terminal device.
  • the foregoing first condition may further include, for example, whether a type of the PUCCH is a preset type.
  • the preset type mentioned here may be, for example, a short PUCCH or the like.
  • the fourth mode the network device can implicitly indicate whether the UCI is delay-sensitive UCI by scheduling a second DCI (ie, UL Grant) of the uplink data. That is, the network device may implicitly indicate whether the UCI is a delay-sensitive UCI by transmitting a second DCI to the terminal device, so that the terminal device determines whether the first condition is met by using the received second DCI.
  • a second DCI ie, UL Grant
  • the first condition may be, for example, that the ⁇ offset indication field in the second DCI (ie, UL Grant) takes a fourth value; or the ⁇ offset indicated by the ⁇ offset indication field is greater than or equal to Fourth threshold.
  • a ⁇ offset indication field may indicate a set of ⁇ offsets (ie, ⁇ offsets corresponding to all UCI types).
  • the types of UCI include HARQ-ACK, CSI part 1 and CSI part 2, all of which have their own beta offset.
  • the ⁇ offset of the A-CSI may be determined by the ⁇ offset of the CSI part 1 and the ⁇ offset of the CSI part 2, and may be the maximum or minimum of the two.
  • the beta offset involved in the first condition may be some value (e.g., a maximum or a minimum) of the set of beta offsets.
  • the ⁇ offset indicated by the ⁇ offset indication field may be used to calculate the number of Coded Modulation symbols per layer corresponding to the UCI when the UCI is transmitted on the PUSCH, that is, the UCI. The number of REs occupied.
  • the ⁇ offset indicated by the ⁇ offset indication field mentioned above may be a semi-static configuration of the network device to the terminal device by using the high layer signaling.
  • the network device may configure, by using the high layer signaling, a mapping relationship between all the ⁇ offset indication fields and the ⁇ offset to the terminal device, so that the terminal device may indicate the value of the domain based on the ⁇ offset in the UL Grant.
  • the ⁇ offset amount indicated by the ⁇ offset indication field or the like is determined in the mapping relationship.
  • the first condition may also be: each information
  • the time domain resource and the frequency domain resource of the corresponding PUCCH are the same.
  • the terminal device may determine whether the first condition is satisfied, that is, whether the UCI is delay-sensitive UCI. Then, when the time domain resource of the PUCCH overlaps with the time domain resource of the PUSCH, the PUSCH uses the frequency hopping mode, and the first condition is met, the UCI is only mapped to the time-frequency resource corresponding to the first hop of the PUSCH. And not transmitted to the time-frequency resource corresponding to the second hop of the PUSCH. specifically:
  • the terminal device can calculate a Transport Block Size (TBS) of the PUSCH according to the UL Grant. Then, the terminal device can calculate the number of REs occupied by the UCI (ie, the number of modulation coding symbols per layer) according to the beta-offset indicated by the beta-offset indicator in the UCI payload, the PUSCH TBS, and the UL Grant. For example, how the terminal device calculates the number of REs occupied by the UCI can be referred to the prior art, and details are not described herein.
  • TBS Transport Block Size
  • the terminal device may transmit the UCI on the time-frequency resource corresponding to the first hop of the PUSCH. Accordingly, the network device can also determine the time domain resource of the PUCCH, and the time domain resource of the PUSCH. Then, the network device may receive the UCI on the time-frequency resource corresponding to the first hop of the PUSCH instead of the PUSCH when the time domain resource of the PUSCH overlaps with the time domain resource of the PUCCH, the PUSCH uses the frequency hopping mode, and the first condition is met. The second hop corresponds to receiving the UCI on the time-frequency resource.
  • FIG. 5 is a schematic diagram 2 of resource mapping of UCI according to an embodiment of the present disclosure.
  • the terminal device may map the UCI on the time-frequency resource corresponding to the first hop from the first first symbol in the time domain resource used by the first hop until the UCI is mapped.
  • the first symbol mentioned herein is a symbol of a reference signal (for example, DMRS) that does not carry uplink data in a time domain resource used by the first hop.
  • the network device may receive the UCI on the time-frequency resource corresponding to the first hop from the first first symbol in the time domain resource corresponding to the first hop, and may reduce the transmission delay of the UCI.
  • the terminal device may map the UCI on the time-frequency resource corresponding to the first hop from the first second symbol in the time domain resource used by the first hop until the UCI is mapped.
  • the second symbol mentioned herein is a symbol in the time domain resource used by the first hop after the symbol of the reference signal (for example, DMRS) carrying the uplink data.
  • the network device may start with the first second symbol in the time domain resource corresponding to the first hop, and receive the UCI on the time-frequency resource corresponding to the first hop, which may reduce the transmission delay of the UCI.
  • the network device determines whether the time domain resource of the PUSCH overlaps with the time domain resource of the PUCCH, and whether the PUSCH uses the frequency hopping mode to transmit, and whether the first condition is met, refer to the description of the terminal device side, Add a statement.
  • the terminal device may use the first condition to determine whether the UCI is a delay-sensitive UCI, and the terminal device transmits the time-domain resource of the PUCCH that carries the UCI in the frequency-hopping manner on the PUSCH.
  • the terminal device transmits the time-domain resource of the PUCCH that carries the UCI in the frequency-hopping manner on the PUSCH.
  • the UCI that needs to be carried on the PUCCH may be mapped to the time-frequency resource corresponding to the first hop of the PUSCH, but not mapped to the PUSCH.
  • the time-frequency resource corresponding to the second hop is transmitted, so that the network device can complete the UCI reception on the time-frequency resource corresponding to the first hop of the PUSCH, and the transmission delay of the UCI can be reduced.
  • FIG. 6 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device implements some or all of the functions of the terminal device described above by software, hardware, or a combination of both.
  • the communication device may be a terminal device or a chip applied to the terminal device.
  • the communication device may include a processing module 11 and a transmitting module 12. among them,
  • the processing module 11 is configured to determine a time domain resource of the uplink control channel and a time domain resource of the uplink data channel, where the uplink control channel is used to carry uplink control information to be transmitted, and the uplink control information includes at least one hybrid automatic retransmission Requesting to confirm HARQ-ACK information and/or at least one aperiodic channel state information A-CSI; the uplink data channel is used to carry uplink data;
  • the processing module 11 is further configured to: when a time domain resource of the uplink data channel overlaps with a time domain resource of the uplink control channel, and the uplink data channel is transmitted by using a frequency hopping mode, and the first condition is met, The sending module 12 sends the uplink control information on the time-frequency resource corresponding to the first hop of the uplink data channel, and does not send the uplink control information on the time-frequency resource corresponding to the second hop of the uplink data channel.
  • the processing module 11 is specifically configured to control the sending module 12 to start, by using the first first symbol in the time domain resource used by the first hop, to map the uplink control information, where the first symbol is The time domain resource used by the first hop does not carry the symbol of the reference signal of the uplink data; or the processing module 11 is specifically configured to control the time domain resource used by the sending module 12 from the first hop
  • the first second symbol begins to map the uplink control information, where the second symbol is a symbol in a time domain resource used by the first hop that is located after a symbol of a reference signal carrying the uplink data.
  • the foregoing apparatus may further include: a receiving module 13 .
  • the receiving module 13 is configured to receive first downlink control information DCI, where the first DCI is used to trigger the uplink control information.
  • the foregoing first condition may include, for example, that a load size of the first DCI is equal to a first value; or a load size of the first DCI is less than a first threshold; or the first DCI
  • the load size is equal to the second value, and the value of the DCI format identification field of the first DCI is equal to the third value; or the load size of the first DCI is equal to the second value, and the first DCI is
  • the search space is a user equipment UE-specific search space; or the load size of the first DCI is equal to the second value, the value of the DCI format identification field of the first DCI is equal to the third value, and the A search space of a DCI is the UE-specific search space.
  • the receiving module 13 is configured to receive the first downlink control information DCI, where the first DCI is used to trigger the uplink control information, and the processing module 11 is further configured to acquire the uplink control information.
  • the feedback delay is the offset value of the sending time unit of the uplink control information with respect to the receiving time unit of the first DCI.
  • the foregoing first condition may include, for example, the feedback delay is less than or equal to a second threshold.
  • the foregoing first condition may include, for example, that a start symbol number of a time domain resource of the uplink control channel is less than or equal to a third threshold.
  • the receiving module 13 is configured to receive a second DCI, where the second DCI is used to schedule the uplink data channel.
  • the foregoing first condition may include, for example, that the ⁇ offset indication field in the second DCI is a fourth value; or the ⁇ offset indicates a ⁇ offset indicated by the domain. Greater than or equal to the fourth threshold.
  • the communication device provided by the embodiment of the present application can perform the action on the terminal device side in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • the communication device may implement some or all of the functions of the network device described above by software, hardware, or a combination of both.
  • the communication device may be a network device or a chip applied to the network device.
  • the communication device may include a processing module 21 and a receiving module 22. among them,
  • the processing module 21 is configured to determine a time domain resource of the uplink control channel and a time domain resource of the uplink data channel, where the uplink control channel is used to carry uplink control information to be transmitted, and the uplink control information includes at least one hybrid automatic retransmission Requesting to confirm HARQ-ACK information and/or at least one aperiodic channel state information A-CSI; the uplink data channel is used to carry uplink data;
  • the processing module 21 is further configured to: when a time domain resource of the uplink data channel overlaps with a time domain resource of the uplink control channel, and the uplink data channel is transmitted by using a frequency hopping mode, and the first condition is met, The receiving module 22 receives the uplink control information on the time-frequency resource corresponding to the first hop of the uplink data channel, and does not receive the uplink control information on the time-frequency resource corresponding to the second hop of the uplink data channel.
  • the processing module 21 is specifically configured to control the receiving module 22 to receive the uplink control information starting from a first first symbol in a time domain resource used by the first hop, where the first symbol is The time domain resource used by the first hop does not carry the symbol of the reference signal of the uplink data; or the processing module 21 is specifically configured to control the use of the first hop by the receiving module 22
  • the first second symbol in the time domain resource starts to receive the uplink control information, where the second symbol is after the symbol of the reference signal that carries the uplink data in the time domain resource used by the first hop symbol.
  • the foregoing apparatus may further include: a sending module 23 .
  • the sending module 23 is configured to send first downlink control information DCI, where the first DCI is used to trigger the uplink control information.
  • the foregoing first condition may include, for example, that a load size of the first DCI is equal to a first value; or a load size of the first DCI is less than a first threshold; or the first DCI
  • the load size is equal to the second value, and the value of the DCI format identification field of the first DCI is equal to the third value; or the load size of the first DCI is equal to the second value, and the first DCI is
  • the search space is a user equipment UE-specific search space; or the load size of the first DCI is equal to the second value, the value of the DCI format identification field of the first DCI is equal to the third value, and the A search space of a DCI is the UE-specific search space.
  • the sending module 23 is configured to send the first downlink control information DCI, where the first DCI is used to trigger the uplink control information, and the processing module 21 is further configured to acquire the uplink. And a feedback delay of the control information, where the feedback delay is an offset value of a sending time unit of the uplink control information with respect to a receiving time unit of the first DCI.
  • the foregoing first condition may include, for example, the feedback delay is less than or equal to a second threshold.
  • the foregoing first condition may include, for example, that a start symbol number of a time domain resource of the uplink control channel is less than or equal to a third threshold.
  • the sending module 23 is configured to send a second DCI, where the second DCI is used to schedule the uplink data channel.
  • the foregoing first condition may include, for example, that the ⁇ offset indication field in the second DCI is a fourth value; or the ⁇ offset indicates a ⁇ offset indicated by the domain. Greater than or equal to the fourth threshold.
  • the communication device provided by the embodiment of the present application can perform the action on the terminal device side in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the communication device provided in the embodiment of the present application may perform the action on the network device side in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the above implementation module may be a transmitter when the actual implementation is implemented, and may be a receiver when the receiving module is actually implemented.
  • the processing module can be implemented in software in the form of processing component calls; it can also be implemented in hardware.
  • the processing module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above processing module.
  • all or part of these modules can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASICs), or one or more microprocessors (digital) Signal processor, DSP), or one or more field programmable gate arrays (FPGAs).
  • ASICs application specific integrated circuits
  • DSP digital signal processor
  • FPGAs field programmable gate arrays
  • the processing component can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program code.
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 8 is a schematic structural diagram of still another communication apparatus provided by the present application.
  • the communication device may include a processor 31 (for example, a CPU), a memory 32, a receiver 33, and a transmitter 34.
  • the receiver 33 and the transmitter 34 are both coupled to the processor 31, and the processor 31 controls reception.
  • the receiving operation of the processor 33, the processor 31 controls the transmitting operation of the transmitter 34;
  • the memory 32 may include a high-speed random access memory (RAM), and may also include a non-volatile memory (non-volatile memory, NVM), such as at least one disk storage, in which various instructions can be stored for performing various processing functions and implementing the method steps of the present application.
  • RAM high-speed random access memory
  • NVM non-volatile memory
  • the communication device involved in the present application may further include: a power source 35, a communication bus 36, and a communication port 37.
  • the receiver 33 and the transmitter 34 may be integrated in the transceiver of the communication device or may be an independent transceiver antenna on the communication device.
  • Communication bus 36 is used to implement a communication connection between components.
  • the communication port 37 is used to implement connection communication between the communication device and other peripheral devices.
  • the memory 32 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 31 of the communication device to perform processing of the terminal device in the foregoing method embodiment.
  • the action is such that the receiver 33 performs the receiving action of the terminal device in the foregoing method embodiment, so that the transmitter 34 performs the sending action of the terminal device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 9 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • the communication device may include a processor 41 (for example, a CPU), a memory 42, a receiver 43, and a transmitter 44.
  • the receiver 43 and the transmitter 44 are both coupled to the processor 41, and the processor 41 controls reception.
  • the receiving operation of the processor 43, the processor 41 controls the transmitting operation of the transmitter 44;
  • the memory 42 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory, in which various instructions may be stored in the memory 42. , for performing various processing functions and implementing the method steps of the present application.
  • the communication device involved in the present application may further include: a power source 45, a communication bus 46, and a communication port 47.
  • Receiver 43 and transmitter 44 may be integrated into the transceiver of the communication device or may be separate transmit and receive antennas on the communication device.
  • Communication bus 46 is used to implement a communication connection between components.
  • the communication port 47 is used to implement connection communication between the communication device and other peripheral devices.
  • the memory 42 is used to store computer executable program code, and the program code includes instructions.
  • the instruction causes the processor 41 of the communication device to perform the processing action of the network device in the foregoing method embodiment.
  • the receiver 43 is configured to perform the receiving action of the network device in the foregoing method embodiment, so that the transmitter 44 performs the sending operation of the network device in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).
  • plural refers to two or more.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character “/” in this article generally indicates that the contextual object is an “or” relationship; in the formula, the character “/” indicates that the contextual object is a "divide” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种上行控制信息传输方法和通信装置,终端设备可以在PUSCH使用跳频方式传输、且承载UCI的PUCCH的时域资源与PUSCH的时域资源重叠时,使用第一条件来判断UCI是否为时延敏感的UCI,进而终端设备可以在确定UCI为时延敏感的UCI时,将原本需要承载在PUCCH上的UCI,映射到PUSCH的第一跳对应的时频资源上传输,而不映射到PUSCH的第二跳对应的时频资源上传输,以使得网络设备可以在PUSCH的第一跳对应的时频资源上,完成UCI的接收,可以降低UCI的传输时延。

Description

上行控制信息传输方法和通信装置
本申请要求于2018年01月12日提交中国专利局、申请号为201810032615.0、申请名称为“上行控制信息传输方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种上行控制信息传输方法和通信装置。
背景技术
为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,可以支持多种业务的第五代(the fifth generation,5G)通信系统应运而生。5G通信系统可以支持不同的业务,例如,增强的移动宽带(enhanced Mobile Broadband,eMBB)业务、海量机器类型通信(massive machine type communication,MTC)业务、超可靠低延迟通信(ultra-reliable and low latency communications,URLLC)业务、多媒体广播多播(multimedia broadcast multicast service,MBMS)业务和定位业务等。
URLLC业务为5G通信系统中的一个重要的业务,传输时要求非常高的可靠性和非常短的时延。因此,为了降低URLLC业务的下行数据的传输时延、提升下行数据的传输可靠性,一方面需要终端设备及时反馈下行数据的混合自动重传请求确认(hybrid automatic repeat request acknowledge,HARQ-ACK)信息,以在URLLC业务所要求的时延内增加下行数据的重传次数。另一方面,需要终端设备快速反馈瞬时信道信息,以便于网络设备更准确的调整下行数据的传输参数,保障下行数据的传输可靠性。这里所说的传输参数例如可以是调制与编码方案(modulation and coding scheme,MCS)等。目前,终端设备可以通过非周期信道状态信息(aperiodic channel state information,A-CSI),反馈瞬时信道信息。
目前,终端设备可以将HARQ-ACK信息和/或A-CSI携带在UCI中,承载在物理上行控制信道(physical uplink control channel,PUCCH)上发送给网络设备。对于不支持PUCCH和物理上行共享信道(physical uplink shared channel,PUSCH)同时传输场景,当PUCCH的时域资源与PUSCH的时域资源重叠时,终端设备可以把PUCCH待传输的HARQ-ACK和/或A-CSI携带在PUSCH上发送,而不发送PUCCH。但是,当PUSCH使用跳频方式传输时,HARQ-ACK信息和/或A-CSI的传输时延较大。
发明内容
本申请实施例提供一种上行控制信息传输方法和通信装置,用于解决PUSCH使用跳频方式传输时,HARQ-ACK信息和/或A-CSI的传输时延较大的技术问题。
第一方面,本申请实施例提供一种上行控制信息传输方法。该方法可以应用于终端设备、也可以应用于终端设备中的芯片。下面以应用于终端设备为例对该方法进行描述,该 方法包括:包括:
确定上行控制信道的时域资源,所述上行控制信道用于承载待传输的上行控制信息,所述上行控制信息包括至少一个混合自动重传请求确认HARQ-ACK信息和/或至少一个非周期信道状态信息A-CSI;
确定上行数据信道的时域资源,所述上行数据信道用于承载上行数据;
当所述上行数据信道的时域资源与所述上行控制信道的时域资源重叠、所述上行数据信道使用跳频方式传输、且满足第一条件时,在所述上行数据信道的第一跳对应的时频资源上发送所述上行控制信息而不在所述上行数据信道的第二跳对应的时频资源上发送所述上行控制信息。
通过第一方面提供的上行控制信息传输方法,终端设备可以在PUSCH使用跳频方式传输、承载UCI的PUCCH的时域资源与PUSCH的时域资源重叠时,使用第一条件来判断UCI是否为时延敏感的UCI,进而终端设备可以在UCI为时延敏感的UCI时,将原本需要承载在PUCCH上的UCI,映射到PUSCH的第一跳对应的时频资源上传输,而不映射到PUSCH的第二跳对应的时频资源上传输,以使得网络设备可以在PUSCH的第一跳对应的时频资源上,完成UCI的接收,可以降低UCI的传输时延。
在一种可能的设计中,所述方法还包括:
接收第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
所述第一条件包括:
所述第一DCI的载荷大小等于第一数值;或
所述第一DCI的载荷大小小于第一门限值;或
所述第一DCI的载荷大小等于第二数值,且所述第一DCI的DCI格式标识字段的取值等于第三数值;或
所述第一DCI的载荷大小等于所述第二数值,且所述第一DCI的搜索空间为用户设备UE特定搜索空间;或
所述第一DCI的载荷大小等于所述第二数值,所述第一DCI的DCI格式标识字段的取值等于所述第三数值,且所述第一DCI的搜索空间为所述UE特定搜索空间。
通过该可能的设计提供的上行控制信息传输方法,终端设备可以基于网络设备发送的第一DCI的格式,来判断UCI是否为时延敏感的UCI,不需要网络设备通过额外的信令或者比特向终端设备指示UCI是否为时延敏感的UCI,在保证现有DCI格式不变的情况,隐式的指示UCI是否为时延敏感的UCI,扩展了使用场景,降低了系统开销。
在一种可能的设计中,所述方法还包括:
接收第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
获取所述上行控制信息的反馈时延,所述反馈时延为所述上行控制信息的发送时间单元相对于所述第一DCI的接收时间单元的偏移值;
所述第一条件包括:
所述反馈时延小于等于第二门限值。
通过该可能的设计提供的上行控制信息传输方法,终端设备可以基于UCI的反馈时延,来判断UCI是否为时延敏感的UCI,不需要网络设备通过额外的信令或者比特向终端设备指示UCI是否为时延敏感的UCI,扩展了使用场景,降低了系统开销。
在一种可能的设计中,所述第一条件包括:
所述上行控制信道的时域资源的起始符号编号小于或等于第三门限值。
通过该可能的设计提供的上行控制信息传输方法,终端设备可以基于UCI的时域资源的起始符号编号,来判断UCI是否为时延敏感的UCI,不需要网络设备通过额外的信令或者比特向终端设备指示UCI是否为时延敏感的UCI,扩展了使用场景,降低了系统开销。
在一种可能的设计中,所述方法还包括:
接收第二DCI,所述第二DCI用于调度所述上行数据信道;
所述第一条件包括:
所述第二DCI中β偏移量指示域取值为第四数值;或
所述β偏移量指示域所指示的β偏移量大于或等于第四门限值。
通过该可能的设计提供的上行控制信息传输方法,终端设备可以基于网络设备发送的第二DCI的β偏移量指示域或β偏移量指示域所指示的β偏移量,来判断UCI是否为时延敏感的UCI,不需要网络设备通过额外的信令或者比特向终端设备指示UCI是否为时延敏感的UCI,扩展了使用场景,降低了系统开销。
在一种可能的设计中,所述在所述上行数据信道的第一跳上传输所述上行控制信息,包括:
从所述第一跳所使用的时域资源中的第一个第一符号开始,映射所述上行控制信息,所述第一符号为所述第一跳所使用的时域资源中未承载所述上行数据的参考信号的符号;或者,
从所述第一跳所使用的时域资源中的第一个第二符号开始,映射所述上行控制信息,所述第二符号为所述第一跳所使用的时域资源中位于承载所述上行数据的参考信号的符号之后的符号。
通过该可能的设计提供的上行控制信息传输方法,终端设备通过从第一跳所使用的时域资源中的第一个第一符号或者第一个第二符号开始,映射UCI,可以使网络设备尽可能早一些完成UCI的接收,进一步降低了UCI的传输时延。
第二方面,本申请实施例提供一种上行控制信息传输方法。该方法可以应用于网络设备、也可以应用于网络设备中的芯片。下面以应用于网络设备为例对该方法进行描述,该方法包括:
确定上行控制信道的时域资源,所述上行控制信道用于承载待传输的上行控制信息,所述上行控制信息包括至少一个混合自动重传请求确认HARQ-ACK信息和/或至少一个非周期信道状态信息A-CSI;
确定上行数据信道的时域资源,所述上行数据信道用于承载上行数据;
当所述上行数据信道的时域资源与所述上行控制信道的时域资源重叠、所述上行数据信道使用跳频方式传输、且满足第一条件时,在所述上行数据信道的第一跳对应的时频资源上接收所述上行控制信息而不在所述上行数据信道的第二跳对应的时频资源上接收所述上行控制信息。
在一种可能的设计中,所述方法还包括:
发送第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
所述第一条件包括:
所述第一DCI的载荷大小等于第一数值;或
所述第一DCI的载荷大小小于第一门限值;或
所述第一DCI的载荷大小等于第二数值,且所述第一DCI的DCI格式标识字段的取值等于第三数值;或
所述第一DCI的载荷大小等于所述第二数值,且所述第一DCI的搜索空间为用户设备UE特定搜索空间;或
所述第一DCI的载荷大小等于所述第二数值,所述第一DCI的DCI格式标识字段的取值等于所述第三数值,且所述第一DCI的搜索空间为所述UE特定搜索空间。
在一种可能的设计中,所述方法还包括:
发送第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
获取所述上行控制信息的反馈时延,所述反馈时延为所述上行控制信息的发送时间单元相对于所述第一DCI的接收时间单元的偏移值;
所述第一条件包括:
所述反馈时延小于等于第二门限值。
在一种可能的设计中,所述第一条件包括:
所述上行控制信道的时域资源的起始符号编号小于或等于第三门限值。
在一种可能的设计中,所述方法还包括:
发送第二DCI,所述第二DCI用于调度所述上行数据信道;
所述第一条件包括:
所述第二DCI中β偏移量指示域取值为第四数值;或
所述β偏移量指示域所指示的β偏移量大于或等于第四门限值。
在一种可能的设计中,所述在所述上行数据信道的第一跳上接收所述上行控制信息,包括:
从所述第一跳所使用的时域资源中的第一个第一符号开始,接收所述上行控制信息,所述第一符号为所述第一跳所使用的时域资源中未承载所述上行数据的参考信号的符号;或者,
从所述第一跳所使用的时域资源中的第一个第二符号开始,接收所述上行控制信息,所述第二符号为所述第一跳所使用的时域资源中位于承载所述上行数据的参考信号的符号之后的符号。
上述第二方面和第二方面的各可能的设计所提供的上行控制信息传输方法,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不加赘述。
第三方面,本申请实施例提供一种通信装置,该通信装置可以为终端设备,也可以为应用于终端设备的芯片,该通信装置包括:
处理模块,用于确定上行控制信道的时域资源和上行数据信道的时域资源,所述上行控制信道用于承载待传输的上行控制信息,所述上行控制信息包括至少一个混合自动重传请求确认HARQ-ACK信息和/或至少一个非周期信道状态信息A-CSI;所述上行数据信道用于承载上行数据;
所述处理模块,还用于在所述上行数据信道的时域资源与所述上行控制信道的时域资源重叠、所述上行数据信道使用跳频方式传输、且满足第一条件时,控制发送模块在所述 上行数据信道的第一跳对应的时频资源上发送所述上行控制信息而不在所述上行数据信道的第二跳对应的时频资源上发送所述上行控制信息。
在一种可能的设计中,所述装置还包括:
接收模块,用于接收第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
所述第一条件包括:
所述第一DCI的载荷大小等于第一数值;或
所述第一DCI的载荷大小小于第一门限值;或
所述第一DCI的载荷大小等于第二数值,且所述第一DCI的DCI格式标识字段的取值等于第三数值;或
所述第一DCI的载荷大小等于所述第二数值,且所述第一DCI的搜索空间为用户设备UE特定搜索空间;或
所述第一DCI的载荷大小等于所述第二数值,所述第一DCI的DCI格式标识字段的取值等于所述第三数值,且所述第一DCI的搜索空间为所述UE特定搜索空间。
在一种可能的设计中,所述装置还包括:
接收模块,用于接收第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
所述处理模块,还用于获取所述上行控制信息的反馈时延,所述反馈时延为所述上行控制信息的发送时间单元相对于所述第一DCI的接收时间单元的偏移值;
所述第一条件包括:
所述反馈时延小于等于第二门限值。
在一种可能的设计中,所述第一条件包括:
所述上行控制信道的时域资源的起始符号编号小于或等于第三门限值。
在一种可能的设计中,所述装置还包括:
接收模块,用于接收第二DCI,所述第二DCI用于调度所述上行数据信道;
所述第一条件包括:
所述第二DCI中β偏移量指示域取值为第四数值;或
所述β偏移量指示域所指示的β偏移量大于或等于第四门限值。
在一种可能的设计中,所述处理模块,具体用于控制所述发送模块从所述第一跳所使用的时域资源中的第一个第一符号开始,映射所述上行控制信息,所述第一符号为所述第一跳所使用的时域资源中未承载所述上行数据的参考信号的符号;或者,所述处理模块,具体用于控制所述发送模块从所述第一跳所使用的时域资源中的第一个第二符号开始,映射所述上行控制信息,所述第二符号为所述第一跳所使用的时域资源中位于承载所述上行数据的参考信号的符号之后的符号。
上述第三方面和第三方面的各可能的设计所提供的通信装置,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不加赘述。
第四方面,本申请实施例提供一种通信装置,该通信装置可以为网络设备,也可以为应用于网络设备的芯片,该通信装置包括:
处理模块,用于确定上行控制信道的时域资源和上行数据信道的时域资源,所述上行 控制信道用于承载待传输的上行控制信息,所述上行控制信息包括至少一个混合自动重传请求确认HARQ-ACK信息和/或至少一个非周期信道状态信息A-CSI;所述上行数据信道用于承载上行数据;
所述处理模块,还用于在所述上行数据信道的时域资源与所述上行控制信道的时域资源重叠、所述上行数据信道使用跳频方式传输、且满足第一条件时,控制接收模块在所述上行数据信道的第一跳对应的时频资源上接收所述上行控制信息而不在所述上行数据信道的第二跳对应的时频资源上接收所述上行控制信息。
在一种可能的设计中,所述装置还包括:
发送模块,用于发送第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
所述第一条件包括:
所述第一DCI的载荷大小等于第一数值;或
所述第一DCI的载荷大小小于第一门限值;或
所述第一DCI的载荷大小等于第二数值,且所述第一DCI的DCI格式标识字段的取值等于第三数值;或
所述第一DCI的载荷大小等于所述第二数值,且所述第一DCI的搜索空间为用户设备UE特定搜索空间;或
所述第一DCI的载荷大小等于所述第二数值,所述第一DCI的DCI格式标识字段的取值等于所述第三数值,且所述第一DCI的搜索空间为所述UE特定搜索空间。
在一种可能的设计中,所述装置还包括:
发送模块,用于发送第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
所述处理模块,还用于获取所述上行控制信息的反馈时延,所述反馈时延为所述上行控制信息的发送时间单元相对于所述第一DCI的接收时间单元的偏移值;
所述第一条件包括:
所述反馈时延小于等于第二门限值。
在一种可能的设计中,所述第一条件包括:
所述上行控制信道的时域资源的起始符号编号小于或等于第三门限值。
在一种可能的设计中,所述装置还包括:
发送模块,用于发送第二DCI,所述第二DCI用于调度所述上行数据信道;
所述第一条件包括:
所述第二DCI中β偏移量指示域取值为第四数值;或
所述β偏移量指示域所指示的β偏移量大于或等于第四门限值。
在一种可能的设计中,所述处理模块,具体用于控制所述接收模块从所述第一跳所使用的时域资源中的第一个第一符号开始,接收所述上行控制信息,所述第一符号为所述第一跳所使用的时域资源中未承载所述上行数据的参考信号的符号;或者,所述处理模块,具体用于控制所述接收模块从所述第一跳所使用的时域资源中的第一个第二符号开始,接收所述上行控制信息,所述第二符号为所述第一跳所使用的时域资源中位于承载所述上行数据的参考信号的符号之后的符号。
上述第四方面和第四方面的各可能的设计所提供的通信装置,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不加赘述。
第五方面,本申请实施例提供一种通信装置,所述通信装置包括:处理器、存储器、接收器、发送器;所述接收器和所述发送器均耦合至所述处理器,所述处理器控制所述接收器的接收动作,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述通信装置执行如第一方面或第一方面的各可能的设计所提供的上行控制信息传输方法。
第六方面,本申请实施例提供一种通信装置,所述通信装置包括:处理器、存储器、接收器、发送器;所述接收器和所述发送器均耦合至所述处理器,所述处理器控制所述接收器的接收动作,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述通信装置执行如第二方面或第二方面的各可能的设计所提供的上行控制信息传输方法。
第七方面,本申请实施例提供一种通信装置,包括用于执行以上第一方面或第一方面各可能的设计所提供的方法的单元、模块或电路。该通信装置可以为终端设备,也可以为应用于终端设备的一个模块,例如,可以为应用于终端设备的芯片。
第八方面,本申请实施例提供一种通信装置,包括用于执行以上第二方面或第二方面各可能的设计所提供的方法的单元、模块或电路。该通信装置可以为网络设备,也可以为应用于网络设备的一个模块,例如,可以为应用于网络设备的芯片。
第九方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各种可能的设计中的方法。
第十方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的各种可能的设计中的方法。
第十一方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的各种可能的设计中的方法。
第十二方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的各种可能的设计中的方法。
附图说明
图1为本申请实施例应用的移动通信系统的架构示意图;
图2为现有的UCI的资源映射示意图;
图3为本申请实施例提供的一种上行控制信息传输方法的流程示意图;
图4为本申请实施例提供的UCI的资源映射示意图一;
图5为本申请实施例提供的UCI的资源映射示意图二;
图6为本申请实施例提供的一种通信装置的结构示意图;
图7为本申请实施例提供的另一种通信装置的结构示意图;
图8为本申请实施例提供的又一种通信装置的结构示意图;
图9为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
图1为本申请实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统可以包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备120相连,无线接入网设备120通过无线或有线方式与核心网设备110连接。核心网设备110与无线接入网设备120可以是独立的不同的物理设备,也可以是将核心网设备110的功能与无线接入网设备120的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备110的功能和部分的无线接入网设备120的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该移动通信系统中还可以包括其它网络设备,例如还可以包括无线中继设备和无线回传设备等,在图1中未画出。本申请实施例对该移动通信系统中包括的核心网设备110、无线接入网设备120和终端设备的数量不做限定。
无线接入网设备120是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G移动通信系统或新一代无线(new radio,NR)通信系统中的基站、未来移动通信系统中的基站、WiFi系统中的接入节点等,本申请实施例对无线接入网设备120所采用的具体技术和具体设备形态不做限定。在本申请实施例中,无线接入网设备120简称网络设备,如果无特殊说明,在本申请实施例中,网络设备均指无线接入网设备120。另外,在本申请实施例中,术语5G和NR可以等同。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
无线接入网设备120和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请实施例对无线接入网设备120和终端设备的应用场景不做限定。
无线接入网设备120和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备120和终端设备之间可以通过6吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请实施例对无线接入网设备120和终端设备之间所使用的频谱资源不做限定。
为了便于对本申请实施例的理解,先对几个定义进行介绍和说明。具体地:
上行控制信道,用于承载上行控制信息(uplink control information,UCI)。例如,物理上行控制信道(physical uplink control channel,PUCCH)。
上行数据信道,用于承载上行数据。例如,物理上行共享信道(physical uplink shared channel,PUSCH)。
下行数据信道,用于承载下行数据。例如,物理下行共享信道(physical downlink shared channel,PDSCH)。
下行控制信道,用于承载下行控制信息(downlink control information,DCI)。例如,物理下行控制信道(physical downlink control channel,PDCCH)。这里所说的DCI可以包括多种格式(format),不同格式的DCI的功能不同。在本申请实施例中,调度承载下行数据传输的PDSCH的传输资源的DCI可以称为下行(downlink,DL)分配(Assignment),调度承载上行数据传输的PUSCH的传输资源的DCI可以称为上行(uplink,UL)授权(Grant)。
可以理解,下行控制信道、下行数据信道、上行控制信道、上行数据信道在5G移动通信系统可能仍然沿用前述通信系统的术语。本申请对下行控制信道、下行数据信道、上行控制信道、上行数据信道在各个通信系统中的命名不作限定。本申请实施例以PDCCH、PDSCH、PUCCH、PUSCH为例进行说明。
以5G通信系统为例,URLLC业务为5G通信系统中的一个重要的业务,传输时要求非常高的可靠性和非常短的时延。例如:可靠性99.999%、时延1毫秒(millisecond,ms)。URLLC业务典型的用例包括工业控制、工业生产流程自动化、人机交互和远程医疗等。
目前,为了降低URLLC业务的下行数据的传输时延、提升下行数据的传输可靠性,一方面需要终端设备及时反馈下行数据的HARQ-ACK信息,以在URLLC业务所要求的时延内增加下行数据的重传次数。这里所说的HARQ-ACK信息例如可以是肯定应答(acknowledge,ACK)或否定应答(negative acknowledgement,NACK)信息。其中,ACK用于指示下行数据被终端设备正确接收,NACK用于指示下行数据没有被终端设备正确接收。另一方面,需要终端设备快速反馈瞬时信道信息,以便于网络设备更准确的调整下行数据的传输参数,保障下行数据的传输可靠性。这里所说的传输参数例如可以是MCS等。目前,终端设备可以通过A-CSI反馈瞬时信道信息。
现有技术中,网络设备可以通过调度下行数据传输的DL Assignment,触发终端设备反馈该下行数据的HARQ-ACK信息。终端设备在接收到该DL Assignment后,可以将该下行数据的HARQ-ACK信息携带在UCI中,承载在PUCCH上发送给网络设备。另外,网络设备也可以通过DL Assignment触发终端设备上报A-CSI。终端设备在接收到该DL Assignment后,可以将A-CSI承载在短(short)PUCCH上发送给网络设备(该技术也可以称为A-CSI on short PUCCH)。可以理解,触发终端设备上报HARQ-ACK信息的DL Assignment和触发终端设备上报A-CSI的DL Assignment可以是同一个DL Assignment,也可以是不同的DL Assignment。另外,short PUCCH为PUCCH的一种格式。下述申请文件均以PUCCH为例进行说明,该PUCCH可以代指short PUCCH。
对于不支持PUCCH和PUSCH同时传输的场景,当承载HARQ-ACK和/或A-CSI的PUCCH的时域资源与PUSCH的时域资源重叠时,终端设备需要把PUCCH待传输的HARQ-ACK和/或A-CSI放在PUSCH上传输(该技术也可以称为UCI piggyback on PUSCH)。此时,若PUSCH使用跳频方式传输,则终端设备需要把HARQ-ACK和/或A-CSI的调制编码符号等分为2部分,分别映射在PUSCH的第一跳对应的时频资源上和第二跳 对应的时频资源上进行传输。
图2为现有的UCI的资源映射示意图。如图2所示,以用于承载HARQ-ACK的PUCCH为例,假定PUCCH的时域资源为某一时隙的符号#2至符号#3,PUSCH的时域资源为该时隙的符号#2至符号#13。PUSCH使用跳频方式传输,分为2跳,每一跳对应的时域长度为6个符号,即第一跳对应的时域资源为符号#2至符号#7,第二跳对应的时域资源为符号#8至符号#13。
通过上述描述可以看出,PUSCH的时域资源与PUCCH的时域资源在符号#2和符号#3重叠,因此,终端设备需要把PUCCH携带的HARQ-ACK信息的调制编码符号分为2部分,分别映射到PUSCH的第一跳对应的时频资源上和第二跳对应的时频资源上。例如,终端设备可以在每一跳映射解调参考信号(demodulation reference signal,DMRS)的符号之后的符号上映射HARQ-ACK信息的调制编码符号。假定终端设备在每一跳的第一个符号上映射DMRS,在每一跳的第二个符号上映射HARQ-ACK信息的调制编码符号。即,终端设备在符号#3和符号#9上映射HARQ-ACK信息的调制编码符号。这样,网络设备需要等到符号#9结束,才可以完成HARQ-ACK信息的接收,导致HARQ-ACK信息的传输时延较大。因此,在采用上述方式传输HARQ-ACK信息和/或A-CSI时,会导致HARQ-ACK信息和/或A-CSI的传输时延较大。
考虑到上述问题,本申请实施例提供了一种上行控制信息传输方法,针对URLLC业务中时延敏感的UCI(例如HARQ-ACK和/或A-CSI),在承载UCI的PUCCH的时域资源与PUSCH的时域资源重叠、且PUSCH使用跳频方式传输时,终端设备可以把UCI的调制编码符号只映射在PUSCH的第一跳对应的时频资源上进行传输,以降低UCI的传输时延。可以理解,本申请实施例提供的上行控制信息传输方法,包括但不限于URLLC业务的应用场景,只要涉及传输时延敏感的UCI的场景,均可以采用本申请实施例所提供的上行控制信息传输方法。
需要说明的是,本申请实施例的方法可以应用于网络设备,也可以应用于网络设备中的芯片装置,相应地,本申请实施例的方法可以应用于终端设备,也可以应用于终端设备中的芯片装置。下面以应用于网络设备和终端设备为例,通过一些实施例对本申请的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图3为本申请实施例提供的一种上行控制信息传输方法的流程示意图。图4为本申请实施例提供的UCI的资源映射示意图一。本实施例涉及的是终端设备把原本需要承载在PUCCH上的UCI的调制编码符号,映射在PUSCH的第一跳对应的时频资源上进行传输的具体过程。如图3所示,该方法可以包括:
S101、终端设备确定PUCCH的时域资源,该PUCCH用于承载待传输的UCI,UCI包括至少一个HARQ-ACK信息和/或至少一个A-CSI。
S102、终端设备确定PUSCH的时域资源,PUSCH用于承载上行数据。
S103、当PUSCH的时域资源与PUCCH的时域资源重叠、PUSCH使用跳频方式传输、且满足第一条件时,终端设备在PUSCH的第一跳对应的时频资源上发送UCI而不在PUSCH的第二跳对应的时频资源上发送UCI。
具体的,在本申请实施例中,终端设备可以使用第一条件来判断UCI是否为时延敏感 的UCI。若终端设备确定PUSCH使用跳频方式传输、承载UCI的PUCCH的时域资源与PUSCH的时域资源重叠、且UCI为时延敏感的UCI,则终端设备可以将原本需要承载在PUCCH上的UCI,映射到PUSCH的第一跳对应的时频资源上传输,而不映射到PUSCH的第二跳对应的时频资源上传输。通过这种方式,使得网络设备可以在PUSCH的第一跳对应的时频资源上,完成UCI的接收,可以降低UCI的传输时延。
具体实现时,上述终端设备可以通过如下方式确定承载UCI的PUCCH的时域资源,具体地:
如图4所示,网络设备可以通过PDCCH向终端设备发送DL Assignment,调度终端设备的下行数据传输,以及,触发终端设备反馈该下行数据的HARQ-ACK信息。其中,该DL Assignment可以包括:时间域资源分配(Time-domain Resource Allocation)字段、PDSCH对应的HARQ反馈定时指示(PDSCH-to-HARQ_feedback timing indicator)字段、PUCCH资源指示(PUCCH resource indicator)字段等。
上述时间域资源分配字段,用于指示传输PDSCH的时间单元相对于传输PDCCH的时间单元的偏移量K0,以间接指示PDSCH的时域资源。传输PDSCH的时间单元可以与传输PDCCH的时间单元为同一个,也可以为传输PDCCH的时间单元之后的某一时间单元。这里所说的时间单元例如可以为传输时间间隔(transmission time interval,TTI)、时隙(slot)、迷你时隙(mini slot)等。图4是以时间单元为slot,传输PDSCH的时间单元与传输PDCCH的时间单元均为slot#(n-k1)的示意图。
上述PDSCH对应的HARQ反馈定时指示字段,用于指示传输承载HARQ-ACK信息的PUCCH的时间单元相对于传输PDSCH的时间单元的偏移量K1。上述PUCCH资源指示器,用于指示该PUCCH在该时间单元内的具体符号位置。
可选的,上述,K0与K1之和可以称为HARQ-ACK信息的反馈时延,即,传输承载HARQ-ACK信息的PUCCH的时间单元相对于传输PDCCH的时间单元的偏移量。以图4为例,假定DL Assignment的时间域资源分配字段指示的K0为0,即,传输PDSCH的时间单元与传输PDCCH(承载DL Assignment)的时间单元为同一个时间单元(即slot#(n-k2))。PDSCH对应的HARQ反馈定时指示字段指示的K1为k2,即传输承载HARQ-ACK信息的PUCCH的时间单元(即slot#(n))与传输PDSCH的时间单元(即slot#(n-k2))相差k2个时间单元。则HARQ-ACK信息的反馈时延即为0与k2之和,即k2。
在另一种实现方式中,也可以将K1作为HARQ-ACK信息的反馈时延。即,HARQ-ACK信息的反馈时延为传输承载HARQ-ACK信息的PUCCH的时间单元相对于传输PDSCH的时间单元的偏移量。继续参照图4所示的示例,假定DL Assignment的PDSCH对应的HARQ反馈定时指示字段指示的K1为k2,即传输承载HARQ-ACK信息的PUCCH的时间单元(即slot#(n))与传输PDSCH的时间单元(即slot#(n-k2))相差k2个时间单元。则HARQ-ACK信息的反馈时延即为k2。
终端设备在获取HARQ-ACK信息的反馈时延之后,可以将HARQ-ACK信息的反馈时延,与传输PDCCH的时间单元相加,得到传输承载HARQ-ACK信息的PUCCH的时间单元。然后,终端设备可以根据PUCCH资源指示器所指示的该PUCCH在该时间单元内的具体符号位置,从而确定用于承载该HARQ-ACK信息的PUCCH的时域资源。
另外,网络设备也可以通过PDCCH向终端设备发送DL Assignment触发终端设备反 馈A-CSI。此时,该PDCCH可能调度了终端设备的下行数据传输,并触发终端设备反馈该下行数据的HARQ-ACK信息。或者,该PDCCH也可能未调度终端设备的下行数据传输,也未触发终端设备反馈该下行数据的HARQ-ACK信息。也就是说,触发A-CSI的DL Assignment,同时可以触发HARQ-ACK信息,也可以未触发HARQ-ACK信息。具体实现时,网络设备可以通过DL Assignment的信道状态信息请求(channel state information request,CSI Request)字段,触发终端设备反馈A-CSI。
可选的,网络设备可以通过DL Assignment的一个原有的字段或者新增的字段指示A-CSI的反馈时延。因此,上述终端设备可以通过DL Assignment,获取A-CSI的反馈时延。可以理解,该A-CSI的反馈时延可以为传输PUCCH的时间单元相对于传输PDCCH的时间单元的偏移量。
可选的,终端设备可以获取预设的A-CSI的反馈时延,或者,高层信令所指示的A-CSI的反馈时延。例如,A-CSI的反馈时延例如可以为0或1或HARQ-ACK信息的反馈时延。若上述DL Assignment还调度了终端设备的下行数据传输,以及,触发终端设备反馈该下行数据的HARQ-ACK信息,则这里所说的HARQ-ACK信息的反馈时延即为该DL Assignment所指示的HARQ-ACK信息的反馈时延(例如K0+K1)。若上述DL Assignment没有调度终端设备的下行数据传输,则这里所说的HARQ-ACK信息的反馈时延为预设的HARQ-ACK信息的反馈时延。可以理解,本申请实施例所说的高层信令可以是无线资源控制(radio resource control,RRC)信令、媒体访问控制(medium access control,MAC)控制元素(control element,CE)信令等。高层信令可以是广播信令,也可以是组播信令,还可以是发送给单个终端设备的单播信令。需要说明的是,在该场景下,触发A-CSI的DL Assignment不再指示A-CSI的反馈时延。
可选的,网络设备还可以通过DL Assignment的一个原有的字段或者新增的字段指示承载A-CSI的PUCCH在时间单元内的具体符号位置。因此,上述终端设备可以通过DL Assignment,获取该PUCCH在时间单元内的具体符号位置。或者,终端设备可以通过高层信令所指示的承载A-CSI的PUCCH在时间单元内的具体符号位置,获取该PUCCH在时间单元内的具体符号位置。
因此,上述终端设备可以基于上述方式所获取的A-CSI的反馈时延,以及,承载A-CSI的PUCCH在时间单元内的具体符号位置,确定承载A-CSI的PUCCH的时域资源。其实现方式与前述所描述的承载HARQ-ACK信息的PUCCH的时域资源的计算方式相同,对此不加赘述。
如前述所说,本申请实施例中,UCI可以包括:至少一个HARQ-ACK信息和至少一个A-CSI信息。因此,UCI所包括的信息,以及触发UCI的DCI可以如表1所示。
表1
编号 UCI DCI(DL Assignment)触发
1 一个HARQ-ACK信息 一个DCI
2 一个A-CSI 一个DCI
3 一个HARQ-ACK信息和一个A-CSI 一个DCI或两个DCI
4 至少两个HARQ-ACK信息 至少两个DCI
5 至少两个A-CSI 至少两个DCI
6 至少两个HARQ-ACK信息和一个A-CSI 至少两个DCI
7 一个HARQ-ACK信息和至少两个A-CSI 至少两个DCI
8 至少两个HARQ-ACK信息和至少两个A-CSI 至少两个DCI
需要说明的是,在本申请实施例中,当UCI为编号3-8所示的UCI时,即UCI包括多个信息时,该多个信息承载在同一PUCCH上传输。触发每个信息的DL Assignment可以是网络设备通过不同的PDCCH发送给终端设备的。图4示出的是以一个DL Assignment为例的示意图。
继续参照图4,若上述用于承载上行数据的PUSCH的时域资源为:网络设备通过PDCCH向终端设备发送UL grant所调度的时域资源,则终端设备可以根据该UL grant,确定PUSCH的时域资源。具体地,UL grant可以包括:时间域资源分配(time-domain resource allocation)字段、跳频标志(frequency hopping flag,FHG)字段等。其中,时间域资源分配字段用于指示承载上行数据的PUSCH的时延(即传输PUSCH的时间单元相对于传输PDCCH的时间单元的偏移量),以间接指示PUSCH的时域资源。该字段还可以指示该PUSCH在时间单元内的具体符号位置。跳频指示字段,用于指示PUSCH是否使用跳频方式传输。因此,终端设备可以通过调度上行数据的UL grant,可以确定用于承载该上行数据的PUSCH的时域资源,以及,PUSCH是否使用跳频方式传输。
若上述终端设备使用免调度上行传输资源传输用于承载上行数据的PUSCH,则终端设备可以根据高层配置的免调度上行传输资源,确定用于承载上行数据的PUSCH。同时,终端设备可以根据高层配置的免调度上行传输资源所对应的传输方式,确定该PUSCH是否使用跳频的方式传输,其实现方式可以参见现有技术,对此不加赘述。
需要强调的是,本申请实施例不限定上述S101和S102的执行顺序,本申请实施例也不限定上述终端设备接收触发UCI的DL Assignment,以及,调度上行数据传输的UL Grant的先后顺序,图4示出的是以终端设备先接收DL Assignment,后接收UL Grant的示意图。
通过上述方式,终端设备可以确定用于承载UCI的PUCCH的时域资源,以及,用于承载上行数据的PUSCH的时域资源,以及,PUSCH是否使用跳频方式传输。然后,终端设备可以先判断PUCCH的时域资源与PUSCH的时域资源是否重叠,且PUSCH是否使用跳频方式传输。图4示出的是以用于承载UCI的PUCCH的时域资源,以及,用于承载上行数据的PUSCH的时域资源均位于slot#(n)内,且存在重叠的示意图。
终端设备可以在PUCCH的时域资源与PUSCH的时域资源重叠,且PUSCH使用跳频方式传输时,可以进一步判断是否满足第一条件,即UCI是否为时延敏感的UCI,以决策终端设备是否需要将UCI只映射到PUSCH的第一跳对应的时频资源上传输,而不映射到PUSCH的第二跳对应的时频资源上传输。
下面对第一条件进行详细说明和介绍。具体实现时,可以包括如下几种方式:
第一种方式:网络设备可以通过触发UCI的第一DCI的格式,来隐式的指示UCI是否为时延敏感的UCI。即,网络设备可以通过向终端设备发送第一DCI,隐式的指示UCI是否为时延敏感的UCI,以使得终端设备通过接收到的第一DCI的格式,来判断是否满足第一条件。继续参照前述表1,当UCI包括一个信息时,例如一个HARQ-ACK或一个A-CSI时,这里所说的第一DCI即为触发该HARQ-ACK或该A-CSI的DCI。当UCI为编号3-编号8任一所示的UCI时,这里所说的第一DCI可以为多个DCI中的任一DCI。
在该场景下,第一条件例如可以为:第一DCI的载荷大小等于第一数值。例如,第一数值可以是所有用于调度PDSCH的DCI的载荷大小的最小值。这里所说的DCI的载荷大小可以是预设的,也可以是高层配置的。
或者,第一条件例如可以为:第一DCI的载荷大小小于第一门限值。其中,这里所说的第一门限值例如可以小于等于回退DCI(Fallback DCI)的载荷大小。这里所说的Fallback DCI可以是用于调度PUSCH或PDSCH的DCI。在本申请实施例中,该Fallback DCI所包含的字段以及每个字段的含义为预设的,与高层配置无关。即,Fallback DCI里面每一个字段(或者说bite field)是否存在、宽度是几比特、每个字段的含义,都和高层配置无关。在NR Rel-15中,Fallback DCI例如可以是Format0_0和1_0对应的DCI。
或者,第一条件例如可以为:第一DCI的载荷大小等于第二数值,且第一DCI的DCI格式标识字段的取值等于第三数值。其中,这里所说的第二数值例如可以为Fallback DCI的载荷大小,第三数值可以为用于表征第一DCI是否为Fallback DCI的数值。
或者,第一条件例如可以为:第一DCI的载荷大小等于第二数值,且第一DCI的搜索空间为UE特定搜索空间。或者,第一条件例如可以为:第一DCI的载荷大小等于第二数值,第一DCI的DCI格式标识字段的取值等于第三数值,且第一DCI的搜索空间为UE特定搜索空间。
可选的,在一些实施例中,网络设备可以通过触发UCI的第一DCI的第一字段,显示的指示UCI是否为时延敏感的UCI。第一字段可以为第一DCI中本身存在的字段,还可以为第一DCI中新增的字段。这样,终端设备在接收到网络设备发送的第一DCI后,可以直接根据第一DCI的该字段,确定UCI是否为时延敏感的UCI。在该场景下,第一条件例如可以为:第一DCI的第一字段是否指示UCI是否为时延敏感的UCI。其中,本申请实施例不限定上述第一字段所占用的比特数,以及,第一字段指示UCI是否为时延敏感的UCI的方式。
第二种方式:网络设备可以通过UCI的发送时间单元相对于第一DCI的接收时间单元的偏移值(即UCI的反馈时延),隐式的指示UCI是否为时延敏感的UCI。即传输承载UCI的PUCCH的时间单元相对于传输承载第一DCI的PDCCH的时间单元的偏移值。在另一种实现方式中,当UCI仅包括HARQ-ACK时(例如表1中编号1或4所示的UCI),UCI的反馈时延还可以为传输承载UCI的PUCCH的时间单元相对于传输PDSCH的时间单元的偏移值。这样,终端设备在接收到网络设备发送的第一DCI之后,可以获取UCI的反馈时延,进而可以基于UCI的反馈时延判断UCI是否为时延敏感的UCI。
该场景下,第一条件例如可以为:UCI的反馈时延小于等于第二门限值。其中,这里所说的第二门限值例如可以为0或1,或者,第二门限值的取值与PUSCH所使用的子载波间隔(subcarrier spacing,SCS)之间存在映射关系,该映射关系例如可以如表2所示:
表2
编号 第二门限值 PUSCH所使用的SCS
1 0或1 15kHz
2 1或2 30kHz
3 2或3 SCS>30kHz
具体实现时,上述第二门限值、或者,第二门限值与PUSCH所使用的SCS之间的映 射关系可以为网络设备通过高层信令、动态DCI指示给终端设备的,也可以为预设在终端设备中的。
继续参照前述表1,当UCI为编号1-编号2任一所示的UCI时,即UCI包括一个HARQ-ACK或一个A-CSI时,这里所说的第一DCI即为触发该HARQ-ACK或该A-CSI的DCI。此时,UCI的反馈时延即为HARQ-ACK信息的反馈时延或A-CSI的反馈时延。当UCI为编号3-编号8任一所示的UCI时,即UCI包括多个信息时,UCI的反馈时延可以为所有信息的反馈时延中的某一值(例如最大值或最小值)。
以UCI的反馈时延可以为所有信息的反馈时延中的最小值为例,假定UCI包括HARQ-ACK1信息、HARQ-ACK2信息和一个A-CSI。其中,HARQ-ACK1信息的反馈时延小于A-CSI的反馈时延,HARQ-ACK2信息的反馈时延小于HARQ-ACK1的反馈时延。则在该场景下,UCI的反馈时延可以为该HARQ-ACK2的反馈时延。此时,第一DCI即为触发HARQ-ACK2的DCI。需要说明的是,如何获取HARQ-ACK信息的反馈时延或A-CSI的反馈时延可以参见前述实施例,对此不加赘述。
需要说明的是,当上述UCI的反馈时延为UCI所包括的某一HARQ-ACK信息的反馈时延时,该UCI的反馈时延(HARQ-ACK信息的反馈时延)还可以为:UCI(HARQ-ACK信息)的发送时间单元相对于下行数据的接收时间单元的偏移值,即传输承载UCI(HARQ-ACK信息)的PUCCH的时间单元相对于传输承载下行数据的PDSCH的时间单元的偏移值,对此不加赘述。
第三种方式:网络设备可以通过承载UCI的PUCCH的时域资源的起始符号编号,来隐式的指示UCI是否为时延敏感的UCI。这样,终端设备可以通过承载UCI的PUCCH的时域资源的起始符号编号,判断UCI是否为时延敏感的UCI。其中,终端设备获取PUCCH的时域资源的方式可以参见前述实施例的描述,对此不加赘述。
在该场景下,第一条件例如可以为:PUCCH的时域资源的起始符号编号小于或等于第三门限值。其中,这里所说的第三门限值例如可以为6或7,或者,第三门限值的取值与PUSCH所使用的子载波间隔(subcarrier spacing,SCS)之间存在映射关系等。具体实现时,上述第三门限值、或者,第三门限值与PUSCH所使用的SCS之间的映射关系可以为网络设备通过高层信令、动态DCI指示给终端设备的,也可以为预设在终端设备中的。
可选的,在一些实施例中,上述第一条件例如还可以包括PUCCH的类型是否为预设类型。其中,这里所说的预设类型例如可以为short PUCCH等。
第四种方式:网络设备可以通过调度上行数据的第二DCI(即UL Grant),来隐式的指示UCI是否为时延敏感的UCI。即,网络设备可以通过向终端设备发送第二DCI,隐式的指示UCI是否为时延敏感的UCI,以使得终端设备通过接收到的第二DCI,来判断是否满足第一条件。
该场景下,第一条件例如可以为:第二DCI(即UL Grant)中β偏移量指示域取值为第四数值;或β偏移量指示域所指示的β偏移量大于或等于第四门限值。需要说明的是,一个β偏移量指示域可以指示一组β偏移量(即所有UCI类型对应的β偏移量)。UCI的类型包括HARQ-ACK,CSI part 1和CSI part 2,三者都有自己的β偏移量。其中,A-CSI的β偏移量可以通过CSI part 1的β偏移量和CSI part 2的β偏移量确定,可以是二者的最大值或最小值。当β偏移量指示域指示一组β偏移量时,第一条件所涉及的β偏移量可以 为这一组β偏移量中的某一值(例如最大值或最小值)。实际应用时,β偏移量指示域所指示的β偏移量,可以用于计算该UCI在PUSCH上传输时,UCI对应的每层调制编码符号(Coded Modulation symbols per layer)数目,即该UCI占据的RE数目。上述所说的β偏移量指示域所指示的β偏移量可以是网络设备通过高层信令半静态配置给终端设备的。或者,网络设备可以通过高层信令,将所有β偏移量指示域与β偏移量的映射关系配置给终端设备,以使得终端设备可以基于UL Grant中的β偏移量指示域的取值,在映射关系中确定β偏移量指示域所指示的β偏移量等。
继续参照前述表1,可选的,在一些实施例中,当UCI为编号3-编号8任一所示的UCI时,即UCI包括多个信息时,第一条件还可以为:每个信息所对应的PUCCH的时域资源和频域资源相同。
通过上述所列举的任一方式,或者,多个方式的组合,终端设备可以确定是否满足第一条件,即UCI是否为时延敏感的UCI。然后,终端设备可以在PUCCH的时域资源与PUSCH的时域资源重叠、PUSCH使用跳频方式传输、且满足第一条件时,将UCI只映射到PUSCH的第一跳对应的时频资源上传输,而不映射到PUSCH的第二跳对应的时频资源上传输。具体地:
首先,终端设备可以根据UL Grant,计算PUSCH的传输块大小(Transport Block Size,TBS)。然后,终端设备可以根据UCI payload、PUSCH TBS和UL Grant中beta-offset indicator指示的beta-offset,计算UCI占据的RE数目(即每层调制编码符号数目)。其中,终端设备如何计算UCI占据的RE数目可以参见现有技术,对此不加赘述。
在得到UCI占据的RE数目之后,终端设备可以在PUSCH的第一跳对应的时频资源上传输该UCI。相应地,网络设备也可以确定PUCCH的时域资源,以及,PUSCH的时域资源。然后,网络设备可以在PUSCH的时域资源与PUCCH的时域资源重叠、PUSCH使用跳频方式传输、且满足第一条件时,在PUSCH的第一跳对应的时频资源上接收UCI而不在PUSCH的第二跳对应的时频资源上接收UCI。
图5为本申请实施例提供的UCI的资源映射示意图二。如图5所示,终端设备可以从第一跳所使用的时域资源中的第一个第一符号开始,在第一跳对应的时频资源上映射该UCI,直至映射完该UCI。其中,这里所说的第一符号为第一跳所使用的时域资源中未承载上行数据的参考信号(例如DMRS)的符号。相应地,网络设备可以从第一跳对应的时域资源中的第一个第一符号开始,在第一跳对应的时频资源上接收该UCI,可以降低UCI的传输时延。
或者,继续参照图4,终端设备可以从第一跳所使用的时域资源中的第一个第二符号开始,在第一跳对应的时频资源上映射UCI,直至映射完该UCI。其中,这里所说的第二符号为第一跳所使用的时域资源中位于承载所述上行数据的参考信号(例如DMRS)的符号之后的符号。相应地,网络设备可以第一跳对应的时域资源中的第一个第二符号开始,在第一跳对应的时频资源上接收UCI,可以降低UCI的传输时延。
需要说明的是,网络设备如何确定PUSCH的时域资源与PUCCH的时域资源是否重叠,以及,PUSCH是否使用跳频方式传输,以及是否满足第一条件可以参见终端设备侧的描述,对此不加赘述。
本申请实施例提供的上行控制信息传输方法,终端设备可以使用第一条件来判断UCI 是否为时延敏感的UCI,进而终端设备在PUSCH使用跳频方式传输、承载UCI的PUCCH的时域资源与PUSCH的时域资源重叠、且UCI为时延敏感的UCI时,可以将原本需要承载在PUCCH上的UCI,映射到PUSCH的第一跳对应的时频资源上传输,而不映射到PUSCH的第二跳对应的时频资源上传输,以使得网络设备可以在PUSCH的第一跳对应的时频资源上,完成UCI的接收,可以降低UCI的传输时延。
图6为本申请实施例提供的一种通信装置的结构示意图。该通信装置通过软件、硬件或者两者的结合实现上述终端设备的部分或者全部功能。该通信装置可以为终端设备,也可以为应用于终端设备的芯片。如图6所示,该通信装置可以包括:处理模块11和发送模块12。其中,
处理模块11,用于确定上行控制信道的时域资源和上行数据信道的时域资源,所述上行控制信道用于承载待传输的上行控制信息,所述上行控制信息包括至少一个混合自动重传请求确认HARQ-ACK信息和/或至少一个非周期信道状态信息A-CSI;所述上行数据信道用于承载上行数据;
所述处理模块11,还用于在所述上行数据信道的时域资源与所述上行控制信道的时域资源重叠、所述上行数据信道使用跳频方式传输、且满足第一条件时,控制发送模块12在所述上行数据信道的第一跳对应的时频资源上发送所述上行控制信息而不在所述上行数据信道的第二跳对应的时频资源上发送所述上行控制信息。例如,处理模块11,具体用于控制发送模块12从所述第一跳所使用的时域资源中的第一个第一符号开始,映射所述上行控制信息,所述第一符号为所述第一跳所使用的时域资源中未承载所述上行数据的参考信号的符号;或者,处理模块11,具体用于控制所述发送模块12从所述第一跳所使用的时域资源中的第一个第二符号开始,映射所述上行控制信息,所述第二符号为所述第一跳所使用的时域资源中位于承载所述上行数据的参考信号的符号之后的符号。
继续参照图6,可选的,上述装置还可以包括:接收模块13。
在一种实现方式中,上述接收模块13,用于接收第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息。则在该实现方式下,上述第一条件例如可以包括:所述第一DCI的载荷大小等于第一数值;或所述第一DCI的载荷大小小于第一门限值;或所述第一DCI的载荷大小等于第二数值,且所述第一DCI的DCI格式标识字段的取值等于第三数值;或所述第一DCI的载荷大小等于所述第二数值,且所述第一DCI的搜索空间为用户设备UE特定搜索空间;或所述第一DCI的载荷大小等于所述第二数值,所述第一DCI的DCI格式标识字段的取值等于所述第三数值,且所述第一DCI的搜索空间为所述UE特定搜索空间。
在一种实现方式中,上述接收模块13,用于接收第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;处理模块11,还用于获取所述上行控制信息的反馈时延,所述反馈时延为所述上行控制信息的发送时间单元相对于所述第一DCI的接收时间单元的偏移值。则在该实现方式下,上述第一条件例如可以包括:该反馈时延小于等于第二门限值。
在一种实现方式中,上述第一条件例如可以包括:上行控制信道的时域资源的起始符号编号小于或等于第三门限值。
在一种实现方式中,上述接收模块13,用于接收第二DCI,所述第二DCI用于调度所 述上行数据信道。则在该实现方式下,上述第一条件例如可以包括:所述第二DCI中β偏移量指示域取值为第四数值;或所述β偏移量指示域所指示的β偏移量大于或等于第四门限值。
本申请实施例提供的通信装置,可以执行上述方法实施例中终端设备侧的动作,其实现原理和技术效果类似,在此不再赘述。
图7为本申请实施例提供的另一种通信装置的结构示意图。该通信装置可以通过软件、硬件或者两者的结合实现上述网络设备的部分或者全部功能。该通信装置可以为网络设备,也可以为应用于网络设备的芯片。如图7所示,该通信装置可以包括:处理模块21和接收模块22。其中,
处理模块21,用于确定上行控制信道的时域资源和上行数据信道的时域资源,所述上行控制信道用于承载待传输的上行控制信息,所述上行控制信息包括至少一个混合自动重传请求确认HARQ-ACK信息和/或至少一个非周期信道状态信息A-CSI;所述上行数据信道用于承载上行数据;
所述处理模块21,还用于在所述上行数据信道的时域资源与所述上行控制信道的时域资源重叠、所述上行数据信道使用跳频方式传输、且满足第一条件时,控制接收模块22在所述上行数据信道的第一跳对应的时频资源上接收所述上行控制信息而不在所述上行数据信道的第二跳对应的时频资源上接收所述上行控制信息。例如,处理模块21,具体用于控制所述接收模块22从所述第一跳所使用的时域资源中的第一个第一符号开始,接收所述上行控制信息,所述第一符号为所述第一跳所使用的时域资源中未承载所述上行数据的参考信号的符号;或者,所述处理模块21,具体用于控制所述接收模块22从所述第一跳所使用的时域资源中的第一个第二符号开始,接收所述上行控制信息,所述第二符号为所述第一跳所使用的时域资源中位于承载所述上行数据的参考信号的符号之后的符号。
继续参照图7,可选的,上述装置还可以包括:发送模块23。
在一种实现方式中,上述发送模块23,用于发送第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息。则在该实现方式下,上述第一条件例如可以包括:所述第一DCI的载荷大小等于第一数值;或所述第一DCI的载荷大小小于第一门限值;或所述第一DCI的载荷大小等于第二数值,且所述第一DCI的DCI格式标识字段的取值等于第三数值;或所述第一DCI的载荷大小等于所述第二数值,且所述第一DCI的搜索空间为用户设备UE特定搜索空间;或所述第一DCI的载荷大小等于所述第二数值,所述第一DCI的DCI格式标识字段的取值等于所述第三数值,且所述第一DCI的搜索空间为所述UE特定搜索空间。
在一种实现方式中,上述发送模块23,用于发送第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;所述处理模块21,还用于获取所述上行控制信息的反馈时延,所述反馈时延为所述上行控制信息的发送时间单元相对于所述第一DCI的接收时间单元的偏移值。则在该实现方式下,上述第一条件例如可以包括:该反馈时延小于等于第二门限值。
在一种实现方式中,上述第一条件例如可以包括:上行控制信道的时域资源的起始符号编号小于或等于第三门限值。
在一种实现方式中,上述发送模块23,用于发送第二DCI,所述第二DCI用于调度所 述上行数据信道。则在该实现方式下,上述第一条件例如可以包括:所述第二DCI中β偏移量指示域取值为第四数值;或所述β偏移量指示域所指示的β偏移量大于或等于第四门限值。
本申请实施例提供的通信装置,可以执行上述方法实施例中终端设备侧的动作,其实现原理和技术效果类似,在此不再赘述。
本申请实施例提供的通信装置,可以执行上述方法实施例中网络设备侧的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上发送模块实际实现时可以为发送器,接收模块实际实现时可以为接收器。而处理模块可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上处理模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
图8为本申请提供的又一种通信装置的结构示意图。如图8所示,该通信装置可以包括:处理器31(例如CPU)、存储器32、接收器33、发送器34;接收器33和发送器34均耦合至处理器31,处理器31控制接收器33的接收动作、处理器31控制发送器34的发送动作;存储器32可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器32中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的通信装置还可以包括:电源35、通信总线36以及通信端口37。接收器33和发送器34可以集成在通信装置的收发信机中,也可以为通信装置上独立的收发天线。通信总线36用于实现元件之间的通信连接。上述通信端口37用于实现通信装置与其他外设之间进行连接通信。
在本申请实施例中,上述存储器32用于存储计算机可执行程序代码,程序代码包括指令;当处理器31执行指令时,指令使通信装置的处理器31执行上述方法实施例中终端设备的处理动作,使接收器33执行上述方法实施例中终端设备的接收动作,使发送器34执行上述方法实施例中终端设备的发送动作,其实现原理和技术效果类似,在此不再赘述。
图9本申请实施例提供的又一种通信装置的结构示意图。如图9所示,该通信装置可以包括:处理器41(例如CPU)、存储器42、接收器43、发送器44;接收器43和发送器44均耦合至处理器41,处理器41控制接收器43的接收动作、处理器41控制发送器44 的发送动作;存储器42可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器42中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的通信装置还可以包括:电源45、通信总线46以及通信端口47。接收器43和发送器44可以集成在通信装置的收发信机中,也可以为通信装置上独立的收发天线。通信总线46用于实现元件之间的通信连接。上述通信端口47用于实现通信装置与其他外设之间进行连接通信。
在本申请中,上述存储器42用于存储计算机可执行程序代码,程序代码包括指令;当处理器41执行指令时,指令使通信装置的处理器41执行上述方法实施例中网络设备的处理动作,使接收器43执行上述方法实施例中网络设备的接收动作,使发送器44执行上述方法实施例中网络设备的发送动作,其实现原理和技术效果类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (26)

  1. 一种上行控制信息传输方法,其特征在于,包括:
    确定上行控制信道的时域资源,所述上行控制信道用于承载待传输的上行控制信息,所述上行控制信息包括至少一个混合自动重传请求确认HARQ-ACK信息和/或至少一个非周期信道状态信息A-CSI;
    确定上行数据信道的时域资源,所述上行数据信道用于承载上行数据;
    当所述上行数据信道的时域资源与所述上行控制信道的时域资源重叠、所述上行数据信道使用跳频方式传输、且满足第一条件时,在所述上行数据信道的第一跳对应的时频资源上发送所述上行控制信息而不在所述上行数据信道的第二跳对应的时频资源上发送所述上行控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
    所述第一条件包括:
    所述第一DCI的载荷大小等于第一数值;或
    所述第一DCI的载荷大小小于第一门限值;或
    所述第一DCI的载荷大小等于第二数值,且所述第一DCI的DCI格式标识字段的取值等于第三数值;或
    所述第一DCI的载荷大小等于所述第二数值,且所述第一DCI的搜索空间为用户设备UE特定搜索空间;或
    所述第一DCI的载荷大小等于所述第二数值,所述第一DCI的DCI格式标识字段的取值等于所述第三数值,且所述第一DCI的搜索空间为所述UE特定搜索空间。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
    获取所述上行控制信息的反馈时延,所述反馈时延为所述上行控制信息的发送时间单元相对于所述第一DCI的接收时间单元的偏移值;
    所述第一条件包括:
    所述反馈时延小于等于第二门限值。
  4. 根据权利要求1所述的方法,其特征在于,所述第一条件包括:
    所述上行控制信道的时域资源的起始符号编号小于或等于第三门限值。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二DCI,所述第二DCI用于调度所述上行数据信道;
    所述第一条件包括:
    所述第二DCI中β偏移量指示域取值为第四数值;或
    所述β偏移量指示域所指示的β偏移量大于或等于第四门限值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述在所述上行数据信道的第一跳上传输所述上行控制信息,包括:
    从所述第一跳所使用的时域资源中的第一个第一符号开始,映射所述上行控制信息,所述第一符号为所述第一跳所使用的时域资源中未承载所述上行数据的参考信号的符号; 或者,
    从所述第一跳所使用的时域资源中的第一个第二符号开始,映射所述上行控制信息,所述第二符号为所述第一跳所使用的时域资源中位于承载所述上行数据的参考信号的符号之后的符号。
  7. 一种上行控制信息传输方法,其特征在于,包括:
    确定上行控制信道的时域资源,所述上行控制信道用于承载待传输的上行控制信息,所述上行控制信息包括至少一个混合自动重传请求确认HARQ-ACK信息和/或至少一个非周期信道状态信息A-CSI;
    确定上行数据信道的时域资源,所述上行数据信道用于承载上行数据;
    当所述上行数据信道的时域资源与所述上行控制信道的时域资源重叠、所述上行数据信道使用跳频方式传输、且满足第一条件时,在所述上行数据信道的第一跳对应的时频资源上接收所述上行控制信息而不在所述上行数据信道的第二跳对应的时频资源上接收所述上行控制信息。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    发送第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
    所述第一条件包括:
    所述第一DCI的载荷大小等于第一数值;或
    所述第一DCI的载荷大小小于第一门限值;或
    所述第一DCI的载荷大小等于第二数值,且所述第一DCI的DCI格式标识字段的取值等于第三数值;或
    所述第一DCI的载荷大小等于所述第二数值,且所述第一DCI的搜索空间为用户设备UE特定搜索空间;或
    所述第一DCI的载荷大小等于所述第二数值,所述第一DCI的DCI格式标识字段的取值等于所述第三数值,且所述第一DCI的搜索空间为所述UE特定搜索空间。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    发送第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
    获取所述上行控制信息的反馈时延,所述反馈时延为所述上行控制信息的发送时间单元相对于所述第一DCI的接收时间单元的偏移值;
    所述第一条件包括:
    所述反馈时延小于等于第二门限值。
  10. 根据权利要求7所述的方法,其特征在于,所述第一条件包括:
    所述上行控制信道的时域资源的起始符号编号小于或等于第三门限值。
  11. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    发送第二DCI,所述第二DCI用于调度所述上行数据信道;
    所述第一条件包括:
    所述第二DCI中β偏移量指示域取值为第四数值;或
    所述β偏移量指示域所指示的β偏移量大于或等于第四门限值。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,所述在所述上行数据信道的第一跳上接收所述上行控制信息,包括:
    从所述第一跳所使用的时域资源中的第一个第一符号开始,接收所述上行控制信息,所述第一符号为所述第一跳所使用的时域资源中未承载所述上行数据的参考信号的符号;或者,
    从所述第一跳所使用的时域资源中的第一个第二符号开始,接收所述上行控制信息,所述第二符号为所述第一跳所使用的时域资源中位于承载所述上行数据的参考信号的符号之后的符号。
  13. 一种通信装置,其特征在于,包括:
    处理模块,用于确定上行控制信道的时域资源和上行数据信道的时域资源,所述上行控制信道用于承载待传输的上行控制信息,所述上行控制信息包括至少一个混合自动重传请求确认HARQ-ACK信息和/或至少一个非周期信道状态信息A-CSI;所述上行数据信道用于承载上行数据;
    所述处理模块,还用于在所述上行数据信道的时域资源与所述上行控制信道的时域资源重叠、所述上行数据信道使用跳频方式传输、且满足第一条件时,控制发送模块在所述上行数据信道的第一跳对应的时频资源上发送所述上行控制信息而不在所述上行数据信道的第二跳对应的时频资源上发送所述上行控制信息。
  14. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
    所述第一条件包括:
    所述第一DCI的载荷大小等于第一数值;或
    所述第一DCI的载荷大小小于第一门限值;或
    所述第一DCI的载荷大小等于第二数值,且所述第一DCI的DCI格式标识字段的取值等于第三数值;或
    所述第一DCI的载荷大小等于所述第二数值,且所述第一DCI的搜索空间为用户设备UE特定搜索空间;或
    所述第一DCI的载荷大小等于所述第二数值,所述第一DCI的DCI格式标识字段的取值等于所述第三数值,且所述第一DCI的搜索空间为所述UE特定搜索空间。
  15. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
    所述处理模块,还用于获取所述上行控制信息的反馈时延,所述反馈时延为所述上行控制信息的发送时间单元相对于所述第一DCI的接收时间单元的偏移值;
    所述第一条件包括:
    所述反馈时延小于等于第二门限值。
  16. 根据权利要求13所述的装置,其特征在于,所述第一条件包括:
    所述上行控制信道的时域资源的起始符号编号小于或等于第三门限值。
  17. 根据权利要求13所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收第二DCI,所述第二DCI用于调度所述上行数据信道;
    所述第一条件包括:
    所述第二DCI中β偏移量指示域取值为第四数值;或
    所述β偏移量指示域所指示的β偏移量大于或等于第四门限值。
  18. 根据权利要求13-17任一项所述的装置,其特征在于,
    所述处理模块,具体用于控制所述发送模块从所述第一跳所使用的时域资源中的第一个第一符号开始,映射所述上行控制信息,所述第一符号为所述第一跳所使用的时域资源中未承载所述上行数据的参考信号的符号;或者,
    所述处理模块,具体用于控制所述发送模块从所述第一跳所使用的时域资源中的第一个第二符号开始,映射所述上行控制信息,所述第二符号为所述第一跳所使用的时域资源中位于承载所述上行数据的参考信号的符号之后的符号。
  19. 一种通信装置,其特征在于,包括:
    处理模块,用于确定上行控制信道的时域资源和上行数据信道的时域资源,所述上行控制信道用于承载待传输的上行控制信息,所述上行控制信息包括至少一个混合自动重传请求确认HARQ-ACK信息和/或至少一个非周期信道状态信息A-CSI;所述上行数据信道用于承载上行数据;
    所述处理模块,还用于在所述上行数据信道的时域资源与所述上行控制信道的时域资源重叠、所述上行数据信道使用跳频方式传输、且满足第一条件时,控制接收模块在所述上行数据信道的第一跳对应的时频资源上接收所述上行控制信息而不在所述上行数据信道的第二跳对应的时频资源上接收所述上行控制信息。
  20. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
    所述第一条件包括:
    所述第一DCI的载荷大小等于第一数值;或
    所述第一DCI的载荷大小小于第一门限值;或
    所述第一DCI的载荷大小等于第二数值,且所述第一DCI的DCI格式标识字段的取值等于第三数值;或
    所述第一DCI的载荷大小等于所述第二数值,且所述第一DCI的搜索空间为用户设备UE特定搜索空间;或
    所述第一DCI的载荷大小等于所述第二数值,所述第一DCI的DCI格式标识字段的取值等于所述第三数值,且所述第一DCI的搜索空间为所述UE特定搜索空间。
  21. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送第一下行控制信息DCI,所述第一DCI用于触发所述上行控制信息;
    所述处理模块,还用于获取所述上行控制信息的反馈时延,所述反馈时延为所述上行控制信息的发送时间单元相对于所述第一DCI的接收时间单元的偏移值;
    所述第一条件包括:
    所述反馈时延小于等于第二门限值。
  22. 根据权利要求19所述的装置,其特征在于,所述第一条件包括:
    所述上行控制信道的时域资源的起始符号编号小于或等于第三门限值。
  23. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送第二DCI,所述第二DCI用于调度所述上行数据信道;
    所述第一条件包括:
    所述第二DCI中β偏移量指示域取值为第四数值;或
    所述β偏移量指示域所指示的β偏移量大于或等于第四门限值。
  24. 根据权利要求19-23任一项所述的装置,其特征在于,
    所述处理模块,具体用于控制所述接收模块从所述第一跳所使用的时域资源中的第一个第一符号开始,接收所述上行控制信息,所述第一符号为所述第一跳所使用的时域资源中未承载所述上行数据的参考信号的符号;或者,
    所述处理模块,具体用于控制所述接收模块从所述第一跳所使用的时域资源中的第一个第二符号开始,接收所述上行控制信息,所述第二符号为所述第一跳所使用的时域资源中位于承载所述上行数据的参考信号的符号之后的符号。
  25. 一种计算机可读存储介质,其特征在于,用于存储计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1至12中任一项所述的方法。
  26. 一种计算机程序产品,包括计算机程序或指令,其特征在于,当所述计算机程序或指令被运行时,实现如权利要求1至12中任一项所述的方法。
PCT/CN2018/123802 2018-01-12 2018-12-26 上行控制信息传输方法和通信装置 WO2019137213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810032615.0 2018-01-12
CN201810032615.0A CN110035550B (zh) 2018-01-12 2018-01-12 上行控制信息传输方法和通信装置

Publications (1)

Publication Number Publication Date
WO2019137213A1 true WO2019137213A1 (zh) 2019-07-18

Family

ID=67218184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123802 WO2019137213A1 (zh) 2018-01-12 2018-12-26 上行控制信息传输方法和通信装置

Country Status (2)

Country Link
CN (1) CN110035550B (zh)
WO (1) WO2019137213A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112929137A (zh) * 2019-12-06 2021-06-08 大唐移动通信设备有限公司 一种上行信道传输方法、终端及基站
US20210345388A1 (en) * 2020-04-29 2021-11-04 Qualcomm Incorporated Feedback for multiple downlink transmissions
CN113647167A (zh) * 2019-09-30 2021-11-12 Oppo广东移动通信有限公司 一种上行信息传输方法及其装置
CN114041318A (zh) * 2019-08-16 2022-02-11 华为技术有限公司 一种发送物理上行共享信道的方法及装置
CN114175828A (zh) * 2019-08-16 2022-03-11 华为技术有限公司 确定信道的方法和装置
US20220183025A1 (en) * 2019-04-02 2022-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Priority-dependent uci resource determination

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756506A (zh) * 2019-03-29 2020-10-09 华为技术有限公司 传输上行信息的方法和通信装置
CN112398612B (zh) * 2019-08-15 2022-02-22 大唐移动通信设备有限公司 传输资源大小的确定方法、装置、终端及网络侧设备
CN112399594A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种调度方法及装置
WO2021035450A1 (zh) * 2019-08-23 2021-03-04 华为技术有限公司 一种数据传输方法和通信设备
CN112583532B (zh) * 2019-09-27 2022-04-22 华为技术有限公司 一种harq信息传输方法及设备
CN114641956A (zh) * 2019-11-08 2022-06-17 华为技术有限公司 一种确定数据传输反馈时延的方法及装置
CN112994855B (zh) * 2019-12-13 2023-10-24 维沃移动通信有限公司 Pdcch的harq-ack反馈的方法及设备
WO2021146950A1 (zh) * 2020-01-21 2021-07-29 Oppo广东移动通信有限公司 一种确定重传资源的方法及装置、终端设备
WO2022027692A1 (zh) * 2020-08-07 2022-02-10 华为技术有限公司 用于上行传输的方法、设备、通信装置及存储介质
CN114389771A (zh) * 2020-10-19 2022-04-22 大唐移动通信设备有限公司 一种上行信道的传输方法及设备
CN114793152A (zh) * 2021-01-26 2022-07-26 北京紫光展锐通信技术有限公司 一种上行控制信息的传输方法及相关装置
WO2022178689A1 (zh) * 2021-02-23 2022-09-01 北京小米移动软件有限公司 射频重调方法及装置
CN116055018B (zh) * 2021-04-02 2023-09-29 华为技术有限公司 一种物理上行控制信道的发送方法、接收方法及通信装置
EP4322443A1 (en) * 2021-04-07 2024-02-14 Beijing Xiaomi Mobile Software Co., Ltd. Frequency hopping method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685955A (zh) * 2012-09-28 2015-06-03 Lg电子株式会社 上行链路传输方法和上行链路传输装置
WO2017087022A1 (en) * 2015-11-17 2017-05-26 Intel IP Corporation Design and resource allocation of an advanced physical uplink control channel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE047100T2 (hu) * 2013-12-03 2020-04-28 Lg Electronics Inc Eljárások és berendezések felfelé irányuló kapcsolat továbbítására géptípusú kommunikációt támogató vezeték nélküli hozzáférési rendszerben
US9578632B2 (en) * 2014-03-27 2017-02-21 Qualcomm Incorporated Methods and apparatus for UL DM-RS overhead reduction
CN106537996B (zh) * 2014-08-04 2019-12-31 夏普株式会社 终端装置以及方法
CN112187432A (zh) * 2015-05-14 2021-01-05 北京三星通信技术研究有限公司 传输上行控制信息的方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104685955A (zh) * 2012-09-28 2015-06-03 Lg电子株式会社 上行链路传输方法和上行链路传输装置
WO2017087022A1 (en) * 2015-11-17 2017-05-26 Intel IP Corporation Design and resource allocation of an advanced physical uplink control channel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on UCI Feedback for URLLC", 3GPP TSG RAN WGI AD HOC MEETING, R1-1800054, 26 January 2018 (2018-01-26), XP051384557 *
NTT DOCOMO; INC: "UCI on PUSCH", 3GPP TSG RAN WG1 MEETING #90, R1-1713945, 25 August 2017 (2017-08-25), XP051316737 *
QUALCOMM INCORPORATED: "Multiplexing of PUCCH and PUSCH", 3GPP TSG RAN WG1 MEETING 91, R1-1721387, 1 December 2017 (2017-12-01), XP051363831 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220183025A1 (en) * 2019-04-02 2022-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Priority-dependent uci resource determination
CN114041318A (zh) * 2019-08-16 2022-02-11 华为技术有限公司 一种发送物理上行共享信道的方法及装置
CN114175828A (zh) * 2019-08-16 2022-03-11 华为技术有限公司 确定信道的方法和装置
CN113647167A (zh) * 2019-09-30 2021-11-12 Oppo广东移动通信有限公司 一种上行信息传输方法及其装置
CN113647167B (zh) * 2019-09-30 2023-09-26 Oppo广东移动通信有限公司 一种上行信息传输方法及其装置
CN112929137A (zh) * 2019-12-06 2021-06-08 大唐移动通信设备有限公司 一种上行信道传输方法、终端及基站
US20210345388A1 (en) * 2020-04-29 2021-11-04 Qualcomm Incorporated Feedback for multiple downlink transmissions
US11546935B2 (en) * 2020-04-29 2023-01-03 Qualcomm Incorporated Feedback for multiple downlink transmissions

Also Published As

Publication number Publication date
CN110035550A (zh) 2019-07-19
CN110035550B (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2019137213A1 (zh) 上行控制信息传输方法和通信装置
TWI748983B (zh) 業務傳輸的方法和裝置
WO2020199957A1 (zh) 一种重传资源的调度方法及设备
WO2019233398A1 (zh) 数据传输方法、通信装置及存储介质
WO2021032015A1 (zh) 反馈信息传输方法及通信装置
US11101935B2 (en) Apparatus and method for transmitting packet data units
WO2020220359A1 (zh) 确定harq码本的方法和设备
WO2021088075A1 (zh) 信息指示方法及装置
WO2017113405A1 (zh) 一种跨载波调度方法、反馈方法及装置
WO2021244372A1 (zh) 随机接入的方法、装置和系统
WO2021159464A1 (zh) 信息发送和接收的方法及装置
JP2022550411A (ja) 繰返しを伴う設定済みul
WO2019029463A1 (zh) 一种接收控制信息、发送控制信息的方法及设备
US11974287B2 (en) Communication method and apparatus
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
US20220368505A1 (en) Data feedback method and apparatus
WO2021088026A1 (zh) 一种确定数据传输反馈时延的方法及装置
WO2021077305A1 (zh) 测量方法、装置及系统
WO2019192515A1 (zh) 一种反馈信息的传输方法和装置
WO2021026841A1 (zh) 调度请求传输的方法和设备
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
US20220303073A1 (en) Technologies for Reliable Physical Data Channel Reception in Wireless Communications
WO2022061661A1 (zh) 无线通信的方法、终端设备和网络设备
CA3139823A1 (en) Uplink information generation method and device thereof
WO2023134619A1 (zh) Harq-ack信息反馈方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18899347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18899347

Country of ref document: EP

Kind code of ref document: A1