WO2021088075A1 - 信息指示方法及装置 - Google Patents

信息指示方法及装置 Download PDF

Info

Publication number
WO2021088075A1
WO2021088075A1 PCT/CN2019/116875 CN2019116875W WO2021088075A1 WO 2021088075 A1 WO2021088075 A1 WO 2021088075A1 CN 2019116875 W CN2019116875 W CN 2019116875W WO 2021088075 A1 WO2021088075 A1 WO 2021088075A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
rnti
random access
pucch
field
Prior art date
Application number
PCT/CN2019/116875
Other languages
English (en)
French (fr)
Other versions
WO2021088075A8 (zh
Inventor
行双双
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022526172A priority Critical patent/JP7402327B2/ja
Priority to CN201980101838.0A priority patent/CN114616911A/zh
Priority to KR1020227017721A priority patent/KR20220089705A/ko
Priority to PCT/CN2019/116875 priority patent/WO2021088075A1/zh
Priority to BR112022008662A priority patent/BR112022008662A2/pt
Priority to EP19952082.6A priority patent/EP4044747A4/en
Publication of WO2021088075A1 publication Critical patent/WO2021088075A1/zh
Priority to US17/738,213 priority patent/US20220272771A1/en
Publication of WO2021088075A8 publication Critical patent/WO2021088075A8/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • This application relates to the field of communication technology, and in particular to an information indication method and device.
  • the terminal equipment in the idle state or inactive state often needs four information exchanges to enter the radio resource control (Radio Resource Control) before uplink data transmission.
  • RRC Radio Resource Control
  • the terminal device After the terminal device enters the RRC connection state, it can communicate with the network device.
  • the four-time information exchange method between the terminal device and the network device often produces a relatively high delay. Therefore, the industry has proposed a two-step random access process.
  • the first step the terminal device is in the first step. Send the random access preamble and data at the same time.
  • Step 2 The network device sends a random access response to the terminal device. After the terminal device receives the random access response, the terminal device can send the obtained bearer hybrid automatic repeat request (HARQ)-acknowledgement (acknowledgement, ACK) time-frequency resource to the network device HARQ-ACK.
  • HARQ bearer hybrid automatic repeat request
  • ACK bearer hybrid automatic repeat request
  • the embodiments of the present application provide an information indication method and device, which can enable a terminal device to obtain time-frequency resources for carrying HARQ response information, and further, can reduce the load size of a random access response.
  • the random access response includes Information used to indicate the time-frequency resource carrying HARQ response information.
  • this application provides an information indication method, the method includes: a terminal device receives a random access response from a network device; wherein the random access response includes a first radio network temporary identifier (RNTI) ), the first RNTI includes a first field and a second field, the first field is used to indicate a first frequency domain resource, and the second field is used to indicate a first time domain resource; the terminal device is based on The first time domain resource and the first frequency domain resource send hybrid automatic repeat request HARQ response information.
  • RNTI radio network temporary identifier
  • the terminal device not only obtains the time-frequency resource used to carry HARQ response information, but also reduces the signaling overhead by multiplexing the first RNTI, and reduces the load size of the random access response sent by the network device.
  • the value of the first RNTI is obtained according to the N-ary value corresponding to the bit length i of the first field and the N-ary value corresponding to the bit length j of the second field,
  • the N base includes: any one of decimal, octal, and hexadecimal.
  • the value of the first RNTI satisfies the following conditions:
  • the D 1 is the value of the first RNTI
  • the D 2 is the value of the second RNTI
  • the i is the bit length of the first field
  • the j is the bit of the second field Length
  • the A is the decimal value of the i-bit
  • the B is the decimal value of the j-bit
  • the C is the decimal value of the k-bit
  • i+j+k L
  • the L is the The bit length of the first RNTI.
  • the value of the first RNTI also satisfies the following conditions:
  • the value of the first RNTI satisfies the following conditions:
  • the D 1 is the value of the first RNTI
  • the D 2 is the value of the second RNTI
  • the i is the bit length of the first field
  • the j is the bit of the second field Length
  • the A is the decimal value of the i-bit
  • the B is the decimal value of the j-bit
  • the C is the decimal value of the k-bit
  • i+j+k L
  • the L is the The bit length of the first RNTI.
  • the time slot in which the terminal device sends the HARQ response information to the network device satisfies the following conditions:
  • n PUCCH n TA + n B
  • n PUCCH n+k TA +n B
  • n PUCCH max ⁇ n+n B , n+k TA +1 ⁇
  • the n PUCCH is the time slot for the terminal device to send the HARQ response information
  • the n TA is the effective time slot of the timing advance command
  • the n is the physical downlink shared channel (PDSCH)
  • the uplink time slot corresponding to the last symbol of the k TA is a timing advance (time advance, TA) adjustment parameter
  • the PDSCH carries the random access response
  • n B is the index in the pre-configured value set. The specific value of B.
  • this application provides an information indication method, the method includes: a network device receives a random access request from a terminal device; the network device sends a random access response to the terminal device; wherein the random The access response includes the first radio network temporary identifier RNTI, the first RNTI includes a first field and a second field, the first field is used to indicate the first frequency domain resource, and the second field is used to indicate The first time domain resource, and the first frequency domain resource and the first time domain resource are used to indicate the time-frequency resource of the HARQ response information of the hybrid automatic repeat request, and the HARQ response information is used to feed back the random access The incoming response was received correctly.
  • the random The access response includes the first radio network temporary identifier RNTI, the first RNTI includes a first field and a second field, the first field is used to indicate the first frequency domain resource, and the second field is used to indicate The first time domain resource, and the first frequency domain resource and the first time domain resource are used to indicate the time-frequency resource of the HARQ
  • the value of the first RNTI is obtained according to the N-ary value corresponding to the bit length i of the first field and the N-ary value corresponding to the bit length j of the second field,
  • the N base includes: any one of decimal, octal, and hexadecimal.
  • the value of the first RNTI satisfies the following conditions:
  • the D 1 is the value of the first RNTI
  • the D 2 is the value of the second RNTI
  • the i is the bit length of the first field
  • the j is the bit of the second field Length
  • the A is the decimal value of the i-bit
  • the B is the decimal value of the j-bit
  • the C is the decimal value of the k-bit
  • i+j+k L
  • the L is the The bit length of the first RNTI.
  • the value of the first RNTI also satisfies the following conditions:
  • the value of the first RNTI satisfies the following conditions:
  • the D 1 is the value of the first RNTI
  • the D 2 is the value of the second RNTI
  • the i is the bit length of the first field
  • the j is the bit of the second field Length
  • the A is the decimal value of the i-bit
  • the B is the decimal value of the j-bit
  • the C is the decimal value of the k-bit
  • i+j+k L
  • the L is the The bit length of the first RNTI.
  • the time slot in which the terminal device sends the HARQ response information to the network device satisfies the following conditions:
  • n PUCCH n TA + n B
  • n PUCCH n+k TA +n B
  • n PUCCH max ⁇ n+n B , n+k TA +1 ⁇
  • the n PUCCH is the uplink time slot for the terminal device to send the HARQ response information
  • the n TA is the effective time slot of the timing advance command
  • the n is the uplink corresponding to the last symbol of the PDSCH Time slot
  • the PDSCH carries the random access response
  • the k TA is a timing advance (time advance, TA) adjustment parameter
  • the PDSCH is used to transmit the random access response
  • n B is a pre-configured value
  • the index in the set is the specific value of B.
  • the present application provides an information indicating method, the method includes: a terminal device receives a random access response from a network device; wherein the random access response includes indication information, and the indication information is used to indicate A first frequency domain resource and a first time domain resource; the terminal device sends a hybrid automatic repeat request HARQ response information according to the first time domain resource and the first frequency domain resource; wherein the HARQ response information is The transmission time slot is related to the effective time slot of the timing advance command.
  • the transmission time slot of the HARQ response information is associated with the effective time slot of the timing advance command, which can ensure the validity of the terminal equipment sending the physical uplink control channel (PUCCH) carrying the HARQ response information, so that the network equipment It can detect correctly (physical uplink control channel, PUCCH).
  • PUCCH physical uplink control channel
  • the random access response further includes the timing advance command; wherein the indication information and the timing advance command are carried in the same physical downlink shared channel PDSCH; or The timing advance command is carried in the downlink control information DCI, and the indication information is carried in the PDSCH scheduled by the DCI; or, the indication information and the timing advance command are carried in the same DCI.
  • the time slot in which the terminal device sends the HARQ response information to the network device satisfies the following conditions:
  • n PUCCH n TA + n B
  • n PUCCH n+k TA +n B
  • n PUCCH max ⁇ n+n B , n+k TA +1 ⁇
  • the n PUCCH is the time slot for the terminal device to send the HARQ response information
  • the n TA is the effective time slot of the timing advance command
  • the n is the uplink time corresponding to the last symbol of the PDSCH.
  • the PDSCH carries the random access response
  • the k TA is a timing advance adjustment parameter
  • the n B is a specific value whose index in the pre-configured value set is B
  • the B is an indication of the The specific value of the field of the first time domain resource.
  • the effective time slot of the timing advance command satisfies the following conditions:
  • n TA_update n+k TA + ⁇
  • the time slot in which the terminal device sends the HARQ response information to the network device satisfies the following conditions:
  • n PUCCH n TA_update + n B
  • n PUCCH n+k TA +n B
  • n PUCCH max ⁇ n+n B , n TA_update ⁇
  • n PUCCH n+n B
  • the ⁇ is a constant
  • the n PUCCH is the time slot for the terminal device to send the HARQ response information
  • the n TA_update is the effective time slot of the timing advance command
  • the n is the last PDSCH
  • the PDSCH carries the random access response
  • the k TA is the timing advance adjustment parameter
  • the n B is the specific value of the index B in the pre-configured value set, so The B is a specific value indicating the field of the first time domain resource.
  • the present application provides a communication device that includes a receiving unit and a sending unit, and the receiving unit is configured to execute the method as described in the first aspect and/or the third aspect.
  • the present application provides a communication device, the communication device includes a receiving unit and a sending unit, and the receiving unit is configured to execute the method described in the second aspect.
  • the present application provides a communication device that includes a processor, and when the processor executes a computer program or instruction in a memory, the method described in the first aspect and/or the third aspect is carried out.
  • the present application provides a communication device.
  • the communication device includes a processor.
  • the processor invokes a computer program or instruction in a memory, the method described in the second aspect is executed.
  • the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory to enable The communication device executes the method described in the first aspect and/or the third aspect.
  • the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions stored in the memory to enable The communication device executes the method as described in the second aspect.
  • the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive or send a signal;
  • the memory is used to store program code;
  • the processor is configured to execute the program code, so that the communication device executes the method described in the first aspect and/or the third aspect.
  • the present application provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive or send a signal;
  • the memory is used to store program code;
  • the processor is configured to execute the program code, so that the communication device executes the method described in the second aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code Instructions to perform the corresponding method as shown in the first aspect and/or the third aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code Instructions to perform the corresponding method as shown in the second aspect.
  • the present application provides a communication system.
  • the communication system includes a terminal device and a network device.
  • the terminal device is used to perform the method described in the first aspect, and the network device is used to perform the method described in the second aspect.
  • the terminal device may also be used to execute the method described in the third aspect.
  • the present application provides a computer-readable storage medium for storing instructions or computer programs. When the instructions or the computer program are executed, the first aspect and/ Or the described method is implemented.
  • the present application provides a computer-readable storage medium for storing instructions or computer programs. When the instructions or the computer program are executed, the The method is implemented.
  • the present application provides a computer program product, the computer program product includes instructions or computer programs, when the instructions or the computer programs are executed, the first aspect and/or the third aspect The described method is implemented.
  • the present application provides a computer program product, the computer program product comprising instructions or a computer program, when the instructions or the computer program are executed, the method described in the second aspect is realized .
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a four-step random access provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a two-step random access provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the value range of each RNTI provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an information indication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a C-RNTI format provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a C-RNTI format provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of an information indication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • At least one (item) refers to one or more
  • multiple refers to two or more than two
  • at least two (item) refers to two or three and three
  • “and/or” is used to describe the association relationship of associated objects, which means that there can be three kinds of relationships.
  • a and/or B can mean: there is only A, only B, and both A and B. In this case, A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the following at least one item (a) or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, and c can be single or multiple.
  • the communication system used in this application can be understood as a wireless cellular communication system, or as a wireless communication system based on a cellular network architecture, etc.
  • the various methods provided in this application can be applied to various communication systems, for example, the Internet of Things (internet of things, IoT) system, narrowband internet of things (NB-IoT) system, long term evolution (LTE) system, it can also be the fifth generation (5th-generation, 5G) communication
  • the system can also be a LTE and 5G hybrid architecture system, a 5G new radio (NR) system, and a new communication system (such as 6G) that will appear in the future communication development.
  • the method provided in the embodiment of the present application can be used.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application, and the solution in the present application can be applied to the communication system.
  • the communication system may include at least one network device, and only one is shown, such as the next generation Node B (gNB) in FIG. 1; and one or more terminal devices connected to the network device, as shown in FIG. Terminal device 1 and terminal device 2.
  • gNB next generation Node B
  • the network device may be a device that can communicate with a terminal device.
  • the network device can be any device with wireless transceiver functions, including but not limited to a base station.
  • the base station may be a gNB, or the base station may be a base station in a future communication system.
  • the network device may also be an access node, a wireless relay node, a wireless backhaul node, etc. in a wireless fidelity (WiFi) system.
  • the network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device may also be a wearable device or a vehicle-mounted device.
  • the network device may also be a small station, a transmission reception point (TRP) (also may be referred to as a transmission reception point, etc.).
  • TRP transmission reception point
  • the base station may also be a base station in a public land mobile network (PLMN) that will evolve in the future, and so on.
  • PLMN public land mobile network
  • Terminal equipment may also be referred to as user equipment (UE), terminal, and so on.
  • a terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable, or vehicle-mounted; it can also be deployed on the water, such as a ship, etc.; it can also be deployed in the air, for example, in the air. Airplanes, balloons, or satellites.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial control) Wireless terminals in ), wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and wireless terminals in transportation safety , Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device may also be a terminal device in a future 6G network or a terminal device in a future evolved PLMN, etc.
  • FIG. 1 is only an exemplary illustration, and does not specifically limit the number of terminal devices, network devices, and the number of cells covered by the network devices included in the communication system.
  • the terminal device 1 and the terminal device 2 can also communicate with anything (vehicle-to-everything, V2X) or machine through device-to-device (D2D) technology or vehicle-to-everything (V2X) technology.
  • V2X vehicle-to-everything
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • the embodiment of the present application does not limit the communication method between the terminal device 1 and the terminal device 2.
  • the communication system involved in FIG. 1 can be applied to communication scenarios of other embodiments of the present application, and details are not described herein again.
  • the network device and the terminal device 1 can be used to execute the information indication method shown in FIG. 5 and/or FIG. 8.
  • the network device and the terminal device 2 may also be used to execute the information indication method shown in FIG. 5 and/or FIG. 8.
  • the UE sends a random access preamble (random access preamble) to a base station, which may also be referred to as a first message (Msg1).
  • the role of the random access preamble is to notify the base station that there is a random access request, and enable the base station to estimate the transmission delay between it and the UE, so that the base station can calibrate the uplink timing and pass the calibration information through the timing advance command ( timing advance command) inform the UE.
  • the base station sends a random access response to the UE after detecting the random access preamble, which may also be referred to as a second message (Msg2).
  • the random access response may include the sequence number of the random access preamble received in 201, the timing advance command, the uplink resource allocation information, and the temporary cell-radionetwork temporary identifier (TC-RNTI).
  • the UE receives a random access response, and if the random access preamble indicated by the sequence number of the random access preamble in the random access response is the same as the random access preamble sent by the UE to the base station in 201, then The UE considers that the random access response is a random access response for the UE, that is, the UE has received the random access response of the UE.
  • the UE sends uplink messages on the uplink resources indicated by the random access response, for example, sending uplink data on the physical uplink shared channel (PUSCH), also known as the third message (Msg3). ).
  • PUSCH physical uplink shared channel
  • Msg3 can carry a unique user ID.
  • the base station receives the uplink message of the UE, and returns a conflict resolution message to the UE that has successfully accessed, which is also called a fourth message (Msg4).
  • Msg4 a fourth message
  • the base station will carry the unique user identifier in Msg3 in the conflict resolution message to indicate the UE that has successfully accessed, and other UEs that have not successfully accessed will re-initiate random access.
  • a two-step random access process (2-step RACH) is currently proposed, as shown in Figure 3, where the UE sends random access to the base station at the same time in the first step. Preamble and data.
  • the base station sends a random access response to the UE.
  • the UE sends the random access preamble and data in the first step, thereby reducing the delay of uplink data transmission; on the other hand, the base station does not need to send the Msg3 corresponding scheduling for the UE Information, which can reduce signaling overhead.
  • MsgA can be used to represent the first interactive message of two-step random access.
  • the MsgA is sent by the UE to the base station.
  • the MsgA message includes the MsgA preamble part and the MsgA data part.
  • the preamble is carried on the MsgA physical random access channel (physical random access channel, PRACH), the data part is carried on MsgA PUSCH for transmission.
  • PRACH physical random access channel
  • the response content of MsgB may include at least one of a response to the preamble and a response to the PUSCH.
  • the response message sent by the base station to the UE may include fallback response information (fallback random access response RAR) or correct response information (success RAR). The following describes the rollback response information and the correct response information:
  • the base station If the base station detects the MsgA PRACH correctly and the PUSCH decodes incorrectly, the base station sends back response information to the UE; if the base station detects the MsgA PRACH correctly and the PUSCH decodes correctly, the base station sends the correct response information to the UE.
  • the fallback response information may include: the index of the preamble (random access preamble index) carried by the MsgA, the timing advance command, the TC-RNTI, and the uplink scheduling grant (UL grant).
  • the correct response information may include: contention resolution ID (CRID), C-RNTI, and timing advance command.
  • the base station when the base station detects the PRACH in MsgA correctly and decodes the PUSCH correctly, in addition to the information included in the above-mentioned correct response information, the base station may also need to send one or more of the following information to the UE: Information about the resources of the feedback confirmation message, the transmission power control command used to transmit the confirmation message, the uplink data transmission grant (UL grant), the RRC message (such as radio resource control reconfiguration information, radio resource control connection establishment information, radio resource control recovery Information, etc.).
  • the base station may also need to send one or more of the following information to the UE: Information about the resources of the feedback confirmation message, the transmission power control command used to transmit the confirmation message, the uplink data transmission grant (UL grant), the RRC message (such as radio resource control reconfiguration information, radio resource control connection establishment information, radio resource control recovery Information, etc.).
  • the UE when the UE receives the correct response information, for the correct response information, the UE also needs to feed back HARQ response information to the base station.
  • the UE sends the HARQ response information to the base station, the UE needs to obtain the HARQ response information carrying the HARQ response information.
  • the information indicating the resource used to feed back HARQ response information generally includes a PUCCH resource indicator (PUCCH resource indicator) and a PDSCH-to-HARQ feedback timing indicator (PDSCH-to-HARQ_feedback timing indicator).
  • PUCCH resource indicator PUCCH resource indicator
  • PDSCH-to-HARQ_feedback timing indicator PDSCH-to-HARQ_feedback timing indicator
  • the method for the UE to obtain frequency domain resources for feeding back HARQ response information according to the PUCCH resource indication refers to formula (1):
  • r PUCCH is the index number of the PUCCH frequency domain resource in the preset PUCCH frequency domain resource set, according to the index number, the UE can obtain the frequency domain resource block location/index number used to feed back HARQ response information according to the preset rule;
  • n CCE, 0 is the index number of the first control channel element (control channel element, CCE) of the PDCCH of the PDSCH where the scheduling response information is located, and N CCE, 0 is the control resource set (CORESET) of the PDCCH
  • the number of CCEs; ⁇ PRI is the value of the PUCCH resource indicator field, and the value of the general PUCCH resource indicator field is ⁇ 0-7 ⁇ .
  • the method for the UE to obtain the time domain resource for feeding back HARQ response information according to the PDSCH to HARQ feedback time indicator refers to formula (2):
  • n PUCCH n+n B (2)
  • n PUCCH is the time slot where the PUCCH that sends the HARQ-ACK feedback information for the PDSCH is located
  • time slot n is an uplink time slot.
  • the uplink time slot n refers to the time slot structure of the PUCCH, and n is the location of the last symbol of the PDSCH.
  • the corresponding uplink time slot can also be understood as the uplink time slot n corresponds to the last symbol of the PDSCH received by the UE in the time domain.
  • n B is the pre-configuration according to the value of the PDSCH to HARQ feedback time indicator field The value in the set of values.
  • the value in the pre-configured value set can be fixed ⁇ 1,2,3,4,5,6,7,8 ⁇ , or the value in the pre-configured value set can be the network side
  • B is the value of the PDSCH to HARQ feedback time indication field, and the value of B corresponds to the index value of the pre-configured value set.
  • the information indicating the resource used to feed back HARQ response information needs to be configured by the base station while sending the correct response information to the UE.
  • the base station will also configure the transmission power control command (TPC) of the PUCCH to the terminal. command) and so on.
  • TPC transmission power control command
  • the base station Since MsgB is allowed to contain the correct response information of multiple UEs, the base station needs to indicate the resource for feeding back HARQ response information to each UE that receives the correct response information.
  • One possible solution is to include the correct response information of each UE. Increase the indication field indicating the resources used to feed back the confirmation message; but this solution needs to increase the load of the correct response information. Therefore, the embodiment of the present application provides an information indication method, which can avoid increasing the load of correct response information, and further avoid increasing the load of random access response. For this method, refer to FIG. 5.
  • each RNTI involved in the embodiments of the present application first introduces each RNTI involved in the embodiments of the present application.
  • different RNTI value ranges are predefined, as shown in Table 1:
  • RA-RNTI TC-RNTI
  • C-RNTI TC-RNTI
  • FFEF binary: 1111111111101111
  • RA-RNTI 1+s_id+14 ⁇ t_id+14 ⁇ 80 ⁇ f_id+14 ⁇ 80 ⁇ 8 ⁇ ul_carrier_id (3)
  • s_id is the index number (0 ⁇ s_id ⁇ 14) of the first orthogonal frequency division multiplexing (OFDM) symbol of each PRACH occasion (RO);
  • t_id is a system frame The index number of the first time slot (slot) where the PRACH transmission opportunity is located (0 ⁇ t_id ⁇ 80).
  • f_id is the frequency where the PRACH transmission opportunity is located.
  • the index number of the domain resource (0 ⁇ f_id ⁇ 8);
  • ul_carrier_id is the index number of the uplink carrier used for random access preamble transmission (0 means normal UL carrier (NUL), 1 means supplementary uplink carrier (NUL) UL carrier, SUL).
  • NUL normal UL carrier
  • NUL supplementary uplink carrier
  • SUL supplementary uplink carrier
  • the RA-RNTI can be used for In 4-step RACH, when the base station sends response information (carried in the PDSCH) to the UE, it scrambles the cyclic redundancy check (CRC) of the PDCCH scheduling the PDSCH.
  • CRC cyclic redundancy check
  • ⁇ ⁇ f RA 2 ⁇ ⁇ 15[kHz] 0 15 1 30 2 60 3 120 4 240
  • one possible method is to use a new RNTI when the base station sends a random access response (carried in PDSCH) to the 2-step RACH terminal
  • the CRC of the PDCCH for scheduling the PDSCH is scrambled.
  • the new RNTI may be referred to as MsgB-RNTI.
  • the value of MsgB-RNTI can be calculated based on the transmission resource of MsgA in 2-step RACH, or calculated based on the PRACH resource carrying the preamble in MsgA, or calculated based on the PUSCH resource carrying uplink data in MsgA, or Calculated based on the PRACH resource carrying the preamble and the PUSCH resource carrying the uplink data in MsgA, or based on the above calculation method, based on the information of the preamble sequence and/or demodulation reference signal (demodulation reference signal, DMRS) sequence get.
  • demodulation reference signal demodulation reference signal
  • the embodiment of the present application does not limit the name of the MsgB-RNTI.
  • the MsgB-RNTI may also include other names and so on.
  • Table 1 and Table 2 shown above are only examples, and should not be construed as limiting the embodiments of the present application.
  • FIG. 5 is a schematic flowchart of an information indication method provided by an embodiment of the present application, and the method can be applied to the system shown in FIG. 1. As shown in Figure 5, the method includes:
  • the UE sends a random access request to a base station; the base station receives the random access request.
  • the random access request is a random access request in a two-step random access process, that is, the random access information may include preamble and data.
  • the random access request may not be limited to a random access request in a two-step random access process, but may also be a random access request in another type of random access process in the future, and so on.
  • the base station sends a random access response to the UE; the UE receives the random access response.
  • the random access response may include correct response information and/or fallback response information.
  • the random access response may include response information from multiple UEs. After receiving the random access response, the UE can know that the response information was sent to itself according to the preamble index or contention resolution ID in the response information. of.
  • the foregoing 501 and 502 may be other types of random access procedures, for example, the random access request sent by the UE does not include the preamble, but includes uplink data.
  • the above 501 and the above 502 can be replaced with:
  • the UE sends a random access request to the base station; the base station receives the random access request.
  • the random access request is a random access request that does not include a preamble, and the random access information includes uplink data.
  • the base station sends a random access response to the UE; the UE receives the random access response.
  • the base station may measure the timing advance according to a demodulation reference signal (DMRS) in the uplink data. If the base station detects the DMRS successfully and the uplink data is decoded incorrectly, the base station sends response information for the DMRS to the UE; if the base station decodes the uplink data successfully, the base station sends the response information for the uplink data to the UE.
  • DMRS demodulation reference signal
  • the base station After receiving the random access response (including response information), the UE can know that the response information is sent to itself according to the DMRS index or contention resolution ID in the response information.
  • the base station may include the first RNTI in the random access response, and the first RNTI may be as shown below.
  • the random access response includes the first RNTI
  • the first RNTI includes the first field and/or the second field, that is, the first field and the second field may be included in In the first RNTI.
  • the first field is used to indicate the first frequency domain resource
  • the second field is used to indicate the first time domain resource.
  • the first frequency domain resource can be understood as the frequency domain resource indicated by the PUCCH resource indicator field in the foregoing description
  • the first time domain resource can be understood as the time domain indicated by the PDSCH to HARQ feedback time indicator field in the foregoing description. Resources.
  • the first RNTI may include a C-RNTI, that is, the first field and the second field may be included in the C-RNTI.
  • the random access response received by the UE includes correct response information
  • the correct response information includes a C-RNTI
  • the C-RNTI may include a first field and a second field. Therefore, the UE can confirm the time-frequency resource where the PUCCH carrying the HARQ response information is located according to the first field and the second field.
  • the method for the UE to obtain the time-frequency resource where the PUCCH is located according to the first field and the second field refer to the foregoing description; or, refer to the description about n B shown in FIG. 8; or, refer to other related descriptions, etc., Not detailed here.
  • the first RNTI may also be another RNTI, and the other RNTI is used to identify a unique identifier during data transmission between the UE and the base station, such as TC-RNTI and so on. It can be understood that the correct response information shown above may include other names in other types of random access procedures.
  • the method of the embodiment of the present application will be described by taking the first RNTI being the C-RNTI as an example.
  • the value of C-RNTI is obtained according to the N system value corresponding to the bit length i of the first field and the N system value corresponding to the bit length j of the second field.
  • the N system includes: decimal, octal, and hexadecimal. Any one of them. That is, the UE can obtain the first time domain resource and the first frequency domain resource according to the bit value of the C-RNTI.
  • N is ten as an example to illustrate how the UE obtains the first time domain resource and the first frequency domain resource according to the C-RNTI:
  • D 1 is the value of C-RNTI
  • D 2 is the value of the second RNTI
  • i is the bit length of the first field
  • j is the bit length of the second field
  • A is the decimal value of i bits
  • B is j bits
  • C is the decimal value of k bits
  • i+j+k L
  • L is the bit length of C-RNTI.
  • the first threshold may be 65519
  • the value of the second RNTI may be possible values of other RNTIs other than the first RNTI.
  • the second field is PDSCH
  • the bits of C-RNTI are expressed as: ck-1...c0ai-1...a0bj-1...b0 or ck-1...c0bj-1...b0ai-1...a0.
  • ck-1...c0 is the remaining bits of all the bits of C-RNTI except for the bits occupied by the PUCCH resource indicator field and the PDSCH to HARQ feedback time indicator field
  • the length is k
  • i+j+k L
  • L is the bit length of C-RNTI, as shown in FIG. 6. According to the above A, B and C, the value of C-RNTI can be shown in the following formula (6):
  • the value of C makes the value of C-RNTI satisfy that C-RNTI is not greater than 65519 (hex: FFEF), and the value of C-RNTI does not collide with the values of other types of RNTI.
  • the other types of RNTI can be RA-RNTI, TC-RNTI, MCS-C-RNTI, CS-RNTI, TPC-PUCCH-RNTI, TPC-PUSCH-RNTI, TPC-SRS-RNTI, INT-RNTI , Any one or more of SFI-RNTI or SP-CSI-RNTI.
  • RNTI is not limited to the RNTI types listed above, and may also include other possible RNTI types, such as MsgB-RNTI.
  • RNTI types such as MsgB-RNTI.
  • the value of C can also satisfy the following formula (7):
  • the second threshold can be understood as the maximum value of each RNTI.
  • the value of C-RNTI can satisfy that C-RNTI is less than or equal to 65519 (hex: FFEF) and C-RNTI is greater than the maximum value of RA-RNTI and/or MsgB-RNTI, and the value of C-RNTI is not the same as The values of other types of RNTI collide.
  • the PUCCH resource indicator field is 4 bits (or 3 bits or other values), which is represented by a3a2a1a0, which takes the value A; the length of the PDSCH to HARQ feedback time indicator field is 3 bits (or 2 bits or other values), which is b2b1b0 To indicate that the value is B.
  • the bit of C-RNTI is expressed as: c8c7c6c5c4c3c2c1c0 a3a2a1a0 b2b 1b0 or c8c7c6c5c4c3c2c1c0b2b1b0 a3a2a1a0.
  • c8c7c6c5c4c3c2c1c0 is the remaining bits of all bits of C-RNTI except for the bits occupied by the PUCCH resource indicator field and the PDSCH to HARQ feedback time indicator field, and the value is C.
  • D 1 is the value of C-RNTI
  • D 2 is the value of the second RNTI
  • i is the bit length of the first field
  • j is the bit length of the second field
  • A is the decimal value of i bits
  • B is j bits
  • C is the decimal value of k bits
  • i+j+k L
  • L is the bit length of C-RNTI.
  • the second field is PDSCH
  • the bit of C-RNTI is expressed as: ai-1...a0 bj-1...b0ck-1...c0 or bj-1...b0ai-1...a0ck-1...c0.
  • ck-1...c0 is the remaining bits of all the bits of C-RNTI except for the bits occupied by the PUCCH resource indicator field and the PDSCH to HARQ feedback time indicator field
  • the length is k
  • i+j+k L
  • L is the bit length of C-RNTI.
  • the value of C needs to be such that the value of C-RNTI is less than or equal to 65519 (hex : FFEF) and the value of C-RNTI does not collide with the value of other types of RNTI.
  • the other types of RNTI may be TC-RNTI, MCS-C-RNTI, CS-RNTI, TPC-PUCCH-RNTI, TPC-PUSCH-RNTI, TPC-SRS-RNTI, INT-RNTI, SFI-RNTI Or any one or more of SP-CSI-RNTI.
  • the values of A and B make the value of C-RNTI smaller than the maximum value of RA-RNTI and/or MsgB-RNTI, then the value of C needs to satisfy such that the value of C-RNTI is not the same as the value of RA-RNTI. And/or the value of MsgB-RNTI collides.
  • the PUCCH resource indicator field is 4 bits (or 3 bits or other values), which is represented by a3a2a1a0, which takes the value A;
  • the length of the PDSCH to HARQ feedback time indicator field is 3 bits (or 2 bits or other values), which is b2b1b0 To indicate that the value is B.
  • the bit of C-RNTI is expressed as: a3a2a1a0b2b1b0 c8c7c6c5c4c3c2c1c0 or b2b1b0 a3a2a1a0c8c7c6c5c4c3c2c1c0.
  • the RO configuration in Table 3 above is applicable to the terminal communication mode being frequency division duplexing (FDD).
  • FDD frequency division duplexing
  • the above method for determining the value of C-RNTI according to the RO configuration in Table 3 is not unique, but only to illustrate that when certain bits of the C-RNTI are used for PUCCH resource indication in the embodiment of this application, Possible values of C-RNTI. Therefore, the value method and range of C-RNTI are not limited to the above embodiments. The value method and range of C-RNTI can be changed according to other possible RO configurations, etc. The specific value of C-RNTI in the embodiment of this application The method is not limited.
  • the information that the UE obtains and indicates the resource for feeding back HARQ response information is carried in the first RNTI included in the response information sent by the base station to the UE.
  • the UE may obtain resources for feeding back HARQ response information according to the first field and the second field in the first RNTI.
  • the UE obtains the frequency domain resource (ie the first frequency domain resource) used to feed back HARQ response information according to the PUCCH resource indication (ie the first field) with reference to formula (11):
  • ⁇ PRI ⁇ PRI_UE, ⁇ PRI_UE first field and the value for the PUCCH resource indication field.
  • the UE obtains the time domain resource (ie the first time domain resource) used to feed back the HARQ response information according to the PDSCH to HARQ feedback time indicator (ie the second field) with reference to formula (12):
  • n PUCCH n+n B (12)
  • time slot n is the uplink time slot corresponding to the last symbol of the PDSCH
  • n B is the value in the pre-configured value set obtained according to the PDSCH to HARQ feedback time indication value B
  • B is the second field
  • PDSCH The value of the HARQ feedback time indication field.
  • the specific value of n PUCCH also needs to refer to the method in Figure 8 below, which will not be repeated here.
  • the UE sends HARQ response information according to the first time domain resource and the first frequency domain resource.
  • the UE may determine the time-frequency resource where the PUCCH used to carry the HARQ response information is located according to the first time domain resource and the first frequency domain resource, so as to send the HARQ response information on the time-frequency resource where the PUCCH is located .
  • the method for the UE to obtain the time-frequency resource where the PUCCH is located according to the first field and the second field refer to the foregoing description, or for the method for how the UE obtains the time-frequency resource where the PUCCH is located according to the second field, refer to the method shown in FIG. 8 Shows the description of n B , which will not be repeated here.
  • the correct response information includes a contention resolution ID (CRID).
  • the CRID can be carried in the PDSCH scheduled by DCI.
  • the UE receives the response information carrying the CRID sent by the base station, and the UE needs to send HARQ response information to the base station.
  • the HARQ response information can be used to respond to the PDSCH of the CRID received by the UE.
  • the time when the UE sends the HARQ response information and the effective time of the timing advance command are described.
  • the random access response includes a timing advance command (TA command), which is used by the UE
  • TA command timing advance command
  • the time adjustment of the uplink data transmission is performed, and the above-mentioned uplink data transmission does not include the PUSCH transmission scheduled by the uplink scheduling grant (UL grant) in the random access response.
  • the uplink time slot for which the UE receives the timing advance command is n2
  • the effective time of the timing advance command is n2+k TA +1, where k TA satisfies the following formula (13):
  • NT ,1 is the time domain length (unit: ms) of N 1 OFDM symbols, which corresponds to the reception time length of the PDSCH, and the user processing capability is 1 and additional PDSCH DMRS is configured.
  • N TA, max is the maximum timing advance value (unit: ms) provided by the 12bit timing advance command; The number of time slots in each subframe; T sf is the length of the 1ms subframe.
  • NT ,1 and NT ,2 are determined according to the configured minimum subcarrier spacing, where the minimum subcarrier spacing is all uplink carriers of all uplink BWPs and all downlinks of all downlink BWPs applied by the timing advance command configured on the network side
  • the received PDSCH carries a timing advance command; N TA,max is determined according to the configured minimum subcarrier interval, where the minimum subcarrier interval is
  • the timing advance command configured on the network side is the minimum subcarrier spacing of all uplink carriers of all uplink BWPs and all carriers on the initial uplink BWPs.
  • Msg4 is the PDSCH scheduled by DCI format 1_0, and the time slot where the PDSCH ends is time slot n1, then the UE sends HARQ response information
  • the time slot of is n1+k, where time slot n1 is an uplink time slot.
  • the uplink time slot n1 refers to the time slot structure of PUCCH.
  • the uplink time slot n1 corresponds to the last symbol of the PDSCH received by the UE in the time domain.
  • K represents the number of time slots, and the value of k is determined by the PDSCH to HARQ feedback time indicator field.
  • the timing advance timer is in the running state, that is, the timing advance is in the effective state.
  • the UE when the UE receives the response information containing the contention resolution ID sent by the base station for MsgA, the UE simultaneously obtains the timing advance command and the information indicating the resource used to feed back the HARQ response information.
  • the resource information for feeding back HARQ response information includes a PUCCH resource indicator and a PDSCH to HARQ feedback time indicator. Therefore, when the UE sends HARQ response information, the UE cannot determine whether the timing advance command is in a valid state.
  • FIG. 8 is a schematic flowchart of an information indication method provided by an embodiment of the present application, and the method can be applied to the system shown in FIG. 1. As shown in Figure 8, the method includes:
  • the base station sends a random access response to the UE, and the UE receives the random access response.
  • the random access response includes indication information, and the indication information is used to indicate the first frequency domain resource and the first time domain resource.
  • the information used to indicate the time-frequency resource (PUCCH time-frequency resource indicator) carrying the HARQ response information may be included in the PDSCH carrying the response information, or implicitly included in other information in the PDSCH of the response information; or Included in the PDCCH (that is, DCI) of the PDSCH that is scheduled to carry the response information.
  • the information used to indicate the time-frequency resource carrying the HARQ response information is the indication information shown in 801 above.
  • the indication information may be carried in the first C-RNTI as shown in FIG. 5, which will not be repeated here.
  • the UE sends HARQ response information according to the first time domain resource and the first frequency domain resource; wherein, the transmission time slot of the HARQ response information is related to the effective time slot of the timing advance command.
  • the random access response also includes a timing advance command
  • the base station responds to the random access request.
  • the UE will receive a response message containing the contention resolution ID sent by the base station for the random access request (it can also be understood as a random access response containing the contention resolution ID), except for the contention
  • the resolution ID it also includes timing advance commands and information indicating resources for feeding back HARQ response information.
  • the contention resolution ID may not be included in the response information.
  • the response information includes a timing advance command and information indicating the time-frequency resource used to carry HARQ response information, and the PDCCH of the response information is scheduled
  • the CRC is scrambled by the user's unique identifier, for example, the CRC of the PDCCH scheduling the response information is scrambled by the user's C-RNTI.
  • the UE receives the timing advance command and the PUCCH resource indication information at the same time, that is, the UE receives the timing advance command and the end time of the PDSCH indicated by the PDSCH to HARQ feedback time is the same.
  • the indication information and the timing advance command are carried in the same physical downlink shared channel PDSCH.
  • the timing advance command is carried in the downlink control information DCI, and the indication information is carried in the PDSCH scheduled by the DCI.
  • the indication information and the timing advance command are carried in the same DCI, for another example, or the timing advance command is carried in the PDSCH scheduled by the DCI, and the indication information is carried in the DCI.
  • the specific relationship between the transmission time slot of the HARQ response information and the effective time slot of the timing advance command can be as follows:
  • the time slot for the UE to send HARQ response information to the base station satisfies the following formula (14), (15) or (16):
  • n PUCCH n TA + n B (14)
  • n PUCCH n + k TA + n B (15)
  • n PUCCH max ⁇ n+n B , n+k TA +1 ⁇ (16)
  • n PUCCH is the time slot for the UE to send HARQ response information
  • time slot n is the end time slot of PDSCH, which is also understandable
  • the time slot n is the uplink time slot corresponding to the last symbol of the PDSCH
  • k TA is the adjustment parameter of the timing advance.
  • n B is a specific value whose index in the pre-configured value set is B, and said B is a specific value of a field indicating the first time domain resource.
  • the end time slot of PDSCH can also be understood as the end time slot of PDSCH, that is, time slot n is the last time slot in which the UE receives the PDSCH that carries the timing advance command and/or the information indicating the resource used to feed back HARQ response information. Or the time slot n is the last time slot of the PDSCH scheduled by the DCI that carries the resource for feeding back HARQ response information. Time slot n TA is the time slot in which the timing advance command received by the UE takes effect.
  • the minimum time slot interval between the PUCCH transmission time slot of the UE and the last time slot of the PDSCH received by the UE is NT ,1 +0.5 (ms), where NT ,1 is the time for N 1 OFDM symbols.
  • the time slot for the UE to send HARQ response information to the base station may also satisfy the following formulas (17), (18) or (19):
  • n PUCCH n TA + n B + ⁇ RAR (17)
  • n PUCCH n+k TA +n B + ⁇ RAR (18)
  • n PUCCH max ⁇ n+n B + ⁇ RAR , n+k TA +1 ⁇ (19)
  • n PUCCH is the time slot for the UE to send HARQ response information
  • ⁇ RAR is a constant pre-configured by the network
  • the value of ⁇ RAR is determined according to the sub-carrier interval ⁇ .
  • Table 4 the relationship between ⁇ RAR and sub-carrier interval ⁇ As shown in Table 4:
  • the sub-carrier interval ⁇ can be one of the following values of the sub-carrier interval of the data channel: the sub-carrier interval ⁇ is the sub-carrier interval of the PUSCH to be transmitted by the UE; or the carrier interval ⁇ is the PUCCH to be transmitted by the UE.
  • the subcarrier interval, the PUCCH is used to send HARQ response information; or the carrier interval ⁇ is the subcarrier interval of the PDSCH received by the UE, and the UE needs to send HARQ response information after receiving the PDSCH.
  • ⁇ RAR and the subcarrier interval ⁇ may be other predefined relationships, and is not limited to the value relationships listed in Table 4 above.
  • the n B may be a specific value indicated by the PDSCH to HARQ feedback time indication field; or, the n B may also be a value in a predefined value set obtained according to the index number indicated by the indication field.
  • the value of n B can include the following two methods:
  • n B specific value corresponding to the PDSCH to HARQ feedback time indicator field.
  • bit length of the PDSCH to HARQ feedback time indicator field is 3 bits
  • the value of n B is the value 0-7 corresponding to the bits of the PDSCH to HARQ feedback time indicator field; it can be understood that the PDSCH to HARQ feedback time indicator field
  • the bit length of is not limited to the bit length described in the example.
  • n B a specific value in the preset value set, and the specific value of the PDSCH to HARQ feedback time indicator field corresponds to the index number of the preset value set.
  • n B there is an index relationship between n B and the value indicated by the PDSCH to HARQ feedback time indication field.
  • the bit length of the PDSCH to HARQ feedback time indicator field is 3 bits
  • the value of n B is 0-7
  • bit length of the PDSCH to HARQ feedback time indication field is not limited to the bit length described in the example, and the set of offset values from the PDSCH to the HARQ feedback time of the network configuration is not limited to the value described in the example. Combine.
  • the timing advance timer of the UE is running, or the timing advance state of the UE is valid, at this time, if the response information sent by the base station to the UE still contains the timing advance command and indication for feeding back HARQ response information Resource information. Then the effective time slot of the timing advance command satisfies the formula (20), and at the same time, the timing advance timer restarts or updates the timing.
  • n TA_update n+k TA + ⁇ (20)
  • the time slot for the UE to send HARQ response information to the base station satisfies the following formula (21), (22), (23) or (24):
  • n PUCCH n TA_update + n B (21)
  • n PUCCH n + k TA + n B (22)
  • n PUCCH max ⁇ n+n B , n TA_update ⁇ (23)
  • n PUCCH n+n B (24)
  • is a constant (such as 1)
  • n PUCCH is the time slot for the UE to send HARQ response information
  • n TA is the effective time slot of the timing advance command
  • time slot n is the uplink time slot corresponding to the last symbol of the PDSCH .
  • the PDSCH carries the response information sent by the base station
  • k TA is the TA adjustment parameter
  • n B is the specific value of the first time domain resource index.
  • the values of k TA and n B refer to the description in the foregoing embodiment.
  • the time slot in which the UE sends the HARQ response information to the base station satisfies the following formulas (25), (26), (27) or (28):
  • n PUCCH n TA_update + n B + ⁇ RAR (25)
  • n PUCCH n+k TA +n B + ⁇ RAR (26)
  • n PUCCH max ⁇ n+n B + ⁇ RAR , n TA_update ⁇ (27)
  • n PUCCH n+n B + ⁇ RAR (28)
  • n PUCCH is the time slot for the UE to send HARQ response information
  • ⁇ RAR is a constant pre-configured by the network
  • the value of ⁇ RAR is determined according to the sub-carrier interval ⁇ . For example, the relationship between ⁇ RAR and sub-carrier interval ⁇ is shown in the table 4 shown.
  • ⁇ RAR and the subcarrier interval ⁇ may be other predefined relationships, and is not limited to the value relationships listed in Table 4 above.
  • the formulas (14) and (21) indicate that the UE starts to calculate the PUCCH transmission time slot at the time slot where the timing advance command takes effect, that is, the time slot where the timing advance command takes effect or is updated.
  • formulas (15), (16), (22) and (23) it is indicated that PUCCH transmission can be the same as the time when the timing advance command takes effect, or the time slot offset value is considered at the time when the timing advance command takes effect;
  • formula (24) Means that the PUCCH can be sent when the current timing advance state is valid, without waiting for the timing advance command to be updated.
  • the transmission time of the PUCCH when the UE sends the HARQ response information considers the time slot interval in which the timing advance command received by the terminal takes effect to ensure the validity of the PUCCH sent by the terminal and the base station can correctly detect the PUCCH.
  • the time slot in which the UE sends the HARQ response information to the base station may satisfy the following formula (29):
  • n PUCCH n+n B (29)
  • time slot n is the uplink time slot corresponding to the last symbol of the PDSCH sent by the base station that carries the correct response information.
  • the PDSCH carries the resource indicating the HARQ response information, or the DCI for scheduling the PDSCH resource Carries indicating the resources used to feed back HARQ response information.
  • the response information can be any of the following.
  • the UE when the UE initiates a four-step random procedure, it will receive a random access response for the preamble sent by the base station (RAR) information; or in some embodiments, the UE initiates a two-step random access procedure, and the base station only detects the transmitted preamble, and the UE will receive the fallback response (fallbackRAR) information for the preamble sent by the base station; or In some of its embodiments, the UE initiates a two-step random access process. When the two-step random access process reaches the maximum number of transmissions, the UE will fall back to four-step random access.
  • RAR base station
  • fallbackRAR fallback response
  • the UE will receive the preamble sent by the base station. Code Random Access Response (RAR) information; or in some embodiments, the UE only sends uplink data (carried on PUSCH), and the base station only detects the DMRS of PUSCH. At this time, the UE will receive the DMRS sent by the base station. Random access response.
  • RAR Code Random Access Response
  • the base station detects the preamble/DMRS correctly, the base station sends response information for the preamble/DMRS to the UE, and the UE receives the response information, and the response information includes a timing advance command.
  • the timing advance command is used to adjust the time when the UE performs uplink data transmission, and the above uplink data transmission does not include the PUSCH transmission scheduled by the uplink scheduling grant (UL grant) in the response information.
  • the UE may also obtain the first time domain resource and the first frequency domain resource according to the common indication information used to feed back HARQ response information in the DCI and the user-level resource information used to feed back HARQ response information.
  • the user-level resource information for feeding back HARQ response information is included in the response information carried by the PDSCH scheduled by the DCI.
  • the form of the user-level resource information used to feed back HARQ response information in the response information carried in the PDSCH is not limited here, and can be
  • the UE receives the response information sent by the base station, and obtains the user-feedback HARQ response according to the public indication information used to feed back HARQ response information carried in the DCI and the user-level resource information used to feed back HARQ response information carried in the response information The first time domain resource and the first frequency domain resource of the information.
  • the public indication information used to feed back HARQ response information includes a PUCCH resource public indication and a public indication of PDSCH to HARQ feedback time.
  • the user-level resource information used to feed back HARQ response information includes a user-level PUCCH resource indication and a user-level PDSCH. To HARQ feedback time indication.
  • the method for obtaining the first time domain resource and the first frequency domain resource for the public indication information used for feeding back HARQ response information and the user-level resource information for feeding back HARQ response information is as follows:
  • the UE obtains the frequency domain resource (ie, the first frequency domain resource) for feeding back HARQ response information according to the PUCCH resource indication, referring to formula (30), which is the same as formula (11),
  • the PUCCH resource indication is obtained according to the common indication information used to feed back HARQ response information and the user-level resource information used to feed back HARQ response information.
  • ⁇ PRI ⁇ PRI_com + ⁇ PRI_UE
  • ⁇ PRI_com PUCCH resource is a common indication field value, ⁇ PRI_UE user-level values for the PUCCH resource indication field.
  • the UE obtains the time domain resource (ie, the first time domain resource) used to feed back HARQ response information, which can refer to formulas (14)/(17), (15)/(18), (16)/ (19), or refer to formula (18)/(25), (19)/(26), (20)/(27), (21)/(28); or refer to formula (29).
  • B is the value in the pre-configured value set obtained according to the PDSCH to HARQ feedback time indication value B
  • B B com + B UE
  • B com is the value of the PDSCH to HARQ feedback time common indication field
  • B UE is the value of the user-level PDSCH to HARQ feedback time indication field.
  • the methods and operations implemented by the terminal device may also be implemented by components (for example, a chip or a circuit) that can be used for the terminal device.
  • Fig. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device is used to execute the method described in the embodiment of the present application.
  • the communication device includes:
  • the communication device may be a terminal device or a chip.
  • the receiving unit 901 is configured to receive a random access response from a network device; wherein, the random access response includes the first wireless network temporary identifier RNTI, and the first RNTI includes a first field and a second field.
  • the field is used to indicate the first frequency domain resource, and the above-mentioned second field is used to indicate the first time domain resource;
  • the sending unit 902 is configured to send hybrid automatic repeat request HARQ response information according to the first time domain resource and the first frequency domain resource.
  • the communication device may also be a network device. among them,
  • the receiving unit 901 can be used to receive a random access request from a terminal device
  • the sending unit 902 may be configured to send a random access response to the above-mentioned terminal device; wherein, the above-mentioned random access response includes a first wireless network temporary identifier RNTI, and the above-mentioned first RNTI includes a first field and a second field.
  • the field is used to indicate the first frequency domain resource
  • the second field is used to indicate the first time domain resource
  • the first frequency domain resource and the first time domain resource are used to indicate the time of hybrid automatic repeat request HARQ response information. Frequency resources, the HARQ response information is used to feed back that the random access response is correctly received.
  • the value of the first RNTI is obtained according to the N-ary value corresponding to the bit length i of the first field and the N-ary value corresponding to the bit length j of the second field.
  • the system includes: any one of decimal, octal, and hexadecimal.
  • the value of the above-mentioned first RNTI satisfies the following conditions:
  • D 1 is the value of the first RNTI
  • D 2 is the value of the second RNTI
  • i is the bit length of the first field
  • j is the bit length of the second field
  • A is the i
  • the above B is the decimal value of the j bits
  • the above C is the decimal value of k bits
  • i+j+k L
  • the above L is the bit length of the first RNTI.
  • the value of the foregoing first RNTI also satisfies the following conditions:
  • the value of the above-mentioned first RNTI satisfies the following conditions:
  • D 1 is the value of the first RNTI
  • D 2 is the value of the second RNTI
  • i is the bit length of the first field
  • j is the bit length of the second field
  • A is the i
  • the above B is the decimal value of the j bits
  • the above C is the decimal value of k bits
  • i+j+k L
  • the above L is the bit length of the first RNTI.
  • the time slot in which the terminal device sends the HARQ response information to the network device satisfies the following conditions:
  • n PUCCH n TA + n B
  • n PUCCH n+k TA +n B
  • n PUCCH max ⁇ n+n B , n+k TA +1 ⁇
  • the n PUCCH is the time slot for the terminal device to send the HARQ response information
  • the n TA is the effective time slot of the timing advance command
  • the n is the uplink time slot corresponding to the last symbol of the PDSCH
  • the k TA is the TA Adjust the parameters
  • the above-mentioned PDSCH carries the above-mentioned random access response
  • n B is a specific value whose index is B in the pre-configured value set.
  • the receiving unit 901 when the communication device shown in FIG. 9 is a terminal device or a chip of a terminal device, the receiving unit 901 is configured to receive a random access response from a network device; wherein, the above-mentioned random access The response includes indication information, and the above indication information is used to indicate the first frequency domain resource and the first time domain resource;
  • the sending unit 902 is configured to send hybrid automatic repeat request HARQ response information according to the first time domain resource and the first frequency domain resource; wherein the sending time slot of the HARQ response information is related to the effective time slot of the timing advance command.
  • the above-mentioned random access response further includes the above-mentioned timing advance command;
  • the above indication information and the above timing advance command are carried in the same physical downlink shared channel PDSCH;
  • the above timing advance command is carried in the downlink control information DCI, and the above indication information is carried in the PDSCH scheduled by the above DCI;
  • the above indication information and the above timing advance command are carried in the same DCI.
  • the time slot for sending the HARQ response information to the network device satisfies the following conditions:
  • n PUCCH n TA + n B
  • n PUCCH n+k TA +n B
  • n PUCCH max ⁇ n+n B , n+k TA +1 ⁇
  • the n PUCCH is the time slot for the terminal device to send the HARQ response information
  • the n TA is the effective time slot of the timing advance command
  • the n is the uplink time slot corresponding to the last symbol of the PDSCH
  • the k TA is TA adjustment parameter
  • the above n B is a specific value of the index B in the pre-configured value set
  • the above B is the specific value of the field indicating the first time domain resource.
  • the effective time slot of the above timing advance command satisfies the following conditions:
  • n TA_update n+k TA + ⁇
  • the time slot for sending the HARQ response information to the network device satisfies the following conditions:
  • n PUCCH n TA_update + n B
  • n PUCCH n+k TA +n B
  • n PUCCH max ⁇ n+n B , n TA_update ⁇
  • n PUCCH n+n B
  • is a constant
  • n PUCCH is the time slot for the terminal device to send the HARQ response information
  • n TA_update is the effective time slot of the timing advance command
  • n is the uplink time slot corresponding to the last symbol of the PDSCH
  • the above k TA is a TA adjustment parameter
  • the above n B is a specific value of the index B in the pre-configured value set
  • the above B is a specific value of the field indicating the first time domain resource.
  • the above-mentioned communication device when the above-mentioned communication device is a terminal device or a component in the terminal device that implements the above-mentioned functions, the above-mentioned device may further include a processing unit, which is not shown in FIG. 9, and the processing unit may be one or more processors,
  • the sending unit 902 may be a transmitter
  • the receiving unit 901 may be a receiver
  • the sending unit 902 and the receiving unit 901 are integrated into one device, such as a transceiver.
  • the processing unit can be one or more processors
  • the sending unit 902 can be an output interface
  • the receiving unit 901 can be an input interface
  • the sending unit 902 and the receiving unit 901 are integrated into one unit, such as a transceiver.
  • the transceiver unit may be an input/output interface, or a communication interface, or an interface circuit, or an interface, etc.
  • a communication device 100 provided by an embodiment of the application is used to implement the functions of the terminal device in the foregoing method.
  • the device may be a terminal device, a device in a terminal device, or a device that can be matched and used with the terminal device.
  • the device can also be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 100 includes at least one processor 1020, which is configured to implement the function of the terminal device in the method provided in the embodiment of the present application.
  • the device 100 may also include a communication interface 1010.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, which is used to communicate with other devices through a transmission medium.
  • the communication interface 1010 is used for the device in the device 100 to communicate with other devices.
  • the processor 1020 uses the communication interface 1010 to send and receive data, and is used to implement the method described in the foregoing method embodiment.
  • the device 100 may also include at least one memory 1030 for storing program instructions and/or data.
  • the memory 1030 and the processor 1020 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1020 may operate in cooperation with the memory 1030.
  • the processor 1020 may execute program instructions stored in the memory 1030. At least one of the at least one memory may be included in the processor.
  • connection medium between the aforementioned communication interface 1010, the processor 1020, and the memory 1030 is not limited in the embodiment of the present application.
  • the memory 1030, the processor 1020, and the communication interface 1010 are connected by a bus 1040.
  • the bus is represented by a thick line in FIG. 10, and the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used to represent in FIG. 10, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • FIG. 11 is a schematic structural diagram of a terminal device 110 provided by an embodiment of this application.
  • the terminal device can perform the methods shown in FIG. 5 and FIG. 8, or the terminal device can also perform the operation of the terminal device shown in FIG. 9.
  • FIG. 11 only shows the main components of the terminal device.
  • the terminal device 110 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to execute the processes described in FIG. 5 and FIG. 8.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the terminal device 110 may also include input and output devices, such as a touch screen, a display screen, a keyboard, etc., which are mainly used to receive data input by a user and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 11 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire terminal.
  • the equipment controls, executes the software program, and processes the data of the software program.
  • the processor may also be a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • ROM read-only memory
  • PROM programmable read-only memory
  • EPROM erasable programmable read-only memory
  • electrically available Erase programmable read-only memory electrically available Erase programmable read-only memory
  • EEPROM electrically available Erase programmable read-only memory
  • flash memory electrically available Erase programmable read-only memory
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the antenna and radio frequency circuit with transceiving function can be regarded as the transceiving unit 1101 of the terminal device 110, and the processor with processing function can be regarded as the processing unit 1102 of the terminal device 110.
  • the terminal device 110 may include a transceiver unit 1101 and a processing unit 1102.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiving unit 1101 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiving unit 1101 can be regarded as the sending unit, that is, the transceiving unit 1101 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver unit 1101 and the processing unit 1102 may be integrated into one device or separated into different devices.
  • the processor and the memory may also be integrated into one device or separate into different devices.
  • the transceiver unit 1101 may be used to execute the method shown in FIG. 6.
  • the transceiver unit 1101 may be used to execute the method shown in FIG. 8.
  • the device shown in FIG. 12 can also be referred to.
  • the device includes a processor 1212, a data sending processor 1220, and a data receiving processor 1230.
  • the processing unit 701 in the foregoing embodiment may be the processor 1212 in FIG. 12, and completes corresponding functions.
  • the receiving unit in the foregoing embodiment may be the receiving data processor 1230 in FIG. 12, and the sending unit may be the sending data processor 1220 in FIG. 12.
  • the channel encoder and the channel decoder are shown in FIG. 12, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are merely illustrative.
  • FIG. 13 is a schematic structural diagram of a network device 1300 provided by an embodiment of this application.
  • the network device can perform the operations of the network device in the methods shown in FIG. 6 and FIG. 8, or the network device may also perform the operations when the communication device shown in FIG. 9 is a network device.
  • the network device 1300 includes one or more remote radio units (RRU) 1301 and one or more baseband units (BBU) 1302.
  • the above-mentioned RRU 1301 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1313 and a radio frequency unit 1313.
  • the above-mentioned RRU1301 part is mainly used for the transceiver of radio frequency signals and the conversion of radio frequency signals and baseband signals.
  • the above-mentioned BBU1302 part is mainly used for baseband processing and control of network equipment.
  • the above-mentioned RRU 1301 and BBU 1302 may be physically set together, or may be physically separated, that is, distributed network equipment.
  • the above-mentioned BBU 1302 is the control center of the network equipment, and can also be called the processing unit, which is mainly used to complete the baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum and so on.
  • the above-mentioned BBU1302 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network of a single access standard (such as an LTE network), or can respectively support wireless access of different access standards. Access to the network.
  • the aforementioned BBU 1302 further includes a memory 1321 and a processor 1322.
  • the aforementioned memory 1321 is used to store necessary messages and data.
  • the above-mentioned processor 1322 is used to control the network device to perform necessary actions, for example, to control the network device to perform the corresponding operation shown in FIG. 13.
  • the foregoing memory 1321 and processor 1322 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board.
  • the processor may be a CPU, NP, or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the above-mentioned hardware chip may be ASIC, PLD or a combination thereof.
  • the above-mentioned PLD can be CPLD, FPGA, GAL or any combination thereof.
  • the memory may include volatile memory, such as RAM; the memory may also include non-volatile memory, such as flash memory, hard disk, or solid-state hard disk; the memory may also include a combination of the foregoing types of memory.
  • the network device shown in FIG. 13 is only an example. In specific implementation, there may be other types of network devices. Therefore, the network device shown in FIG. 13 should not be understood as a limitation to the embodiments of the present application. .
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code runs on a computer, the computer executes FIG. 5 or Figure 8 shows the method in the embodiment. Further, the computer can be made to execute the method shown in FIG. 5 or FIG. 8 according to various scenarios provided in the embodiments of the present application.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute the steps shown in FIG. 5 or FIG. 8 Show the method in the embodiment. Further, the computer can be made to execute the method shown in FIG. 5 or FIG. 8 according to various scenarios provided in the embodiments of the present application.
  • the present application also provides a system, which includes the aforementioned terminal device and network device.
  • the terminal device may be used to execute the method shown in FIG. 5 or FIG. 8 provided by the embodiment of the present application.
  • the network device may also be used to execute the method shown in FIG. 5 or FIG. 8 provided by the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc), SSD)) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息指示方法及装置,该方法包括:终端设备接收来自网络设备的随机接入响应;其中,该随机接入响应中包括第一无线网络临时标识RNTI,该第一RNTI中包括第一字段和第二字段,该第一字段用于指示第一频域资源,该第二字段用于指示第一时域资源;该终端设备根据该第一时域资源和该第一频域资源发送混合自动重传请求HARQ应答信息。可使得终端设备获得用于承载HARQ应答信息的时频资源,进一步的,还可减少随机接入响应的负载大小,该随机接入响应中包括用于指示承载HARQ应答信息的时频资源的信息。相应的,还提供了一种通信装置。

Description

信息指示方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种信息指示方法及装置。
背景技术
在长期演进(long term evolution,LTE)通信系统中,处于空闲态或非激活(inactive)态的终端设备在上行数据传输前,往往需要通过四次信息交互以进入无线资源控制(Radio Resource Control,RRC)连接态。进一步的,该终端设备在进入RRC连接态后,便可与网络设备进行通信。
但是,终端设备与网络设备之间通过四次信息交互的方法,往往会产生较高的时延,因此,业界提出了一种两步随机接入过程,第一步:终端设备在第一步中同时发送随机接入前导和数据。第二步:网络设备向终端设备发送随机接入响应。在终端设备接收到随机接入响应后,该终端设备可在已获得的承载混合自动重传请求(hybrid automatic repeat request,HARQ)-确认应答(acknowledgement,ACK)的时频资源上向网络设备发送HARQ-ACK。
由此,终端设备如何获得承载HARQ-ACK的时频资源亟待解决。
发明内容
本申请实施例提供一种信息指示方法及装置,可使得终端设备获得用于承载HARQ应答信息的时频资源,进一步的,还可减少随机接入响应的负载大小,该随机接入响应中包括用于指示承载HARQ应答信息的时频资源的信息。
第一方面,本申请提供一种信息指示方法,所述方法包括:终端设备接收来自网络设备的随机接入响应;其中,所述随机接入响应中包括第一无线网络临时标识(radionetworktemporaryidentifier,RNTI),所述第一RNTI中包括第一字段和第二字段,所述第一字段用于指示第一频域资源,所述第二字段用于指示第一时域资源;所述终端设备根据所述第一时域资源和所述第一频域资源发送混合自动重传请求HARQ应答信息。
本申请实施例中,终端设备不仅获得了用于承载HARQ应答信息的时频资源,而且通过复用第一RNTI,还减少了信令开销,减少网络设备发送的随机接入响应的负载大小。
在一种可能的实现方式中,所述第一RNTI的值根据所述第一字段的比特长度i对应的N进制值和所述第二字段的比特长度j对应的N进制值得到,所述N进制包括:十进制、八进制、十六进制中的任一项。
在一种可能的实现方式中,所述第一RNTI的值满足如下条件:
0<D 1≤第一阈值,且D 1≠D 2
D 1=C*2 i+j+A*2 j+B或者D 1=C*2 i+j+B*2 i+A
其中,所述D 1为所述第一RNTI的值,所述D 2为第二RNTI的值,所述i为所述第一 字段的比特长度,所述j为所述第二字段的比特长度,所述A为所述i比特的十进制值,所述B为所述j比特的十进制值,所述C为k比特的十进制值,且i+j+k=L,所述L为所述第一RNTI的比特长度。
在一种可能的实现方式中,所述第一RNTI的值还满足如下条件:
第二阈值<D 1≤第一阈值。
在一种可能的实现方式中,所述第一RNTI的值满足如下条件:
0<D 1≤第一阈值,且D 1≠D 2
D 1=A*2 j+k+B*2 k+C或者D 1=B*2 i+k+A*2 k+C
其中,所述D 1为所述第一RNTI的值,所述D 2为第二RNTI的值,所述i为所述第一字段的比特长度,所述j为所述第二字段的比特长度,所述A为所述i比特的十进制值,所述B为所述j比特的十进制值,所述C为k比特的十进制值,且i+j+k=L,所述L为所述第一RNTI的比特长度。
在一种可能的实现方式中,所述终端设备向所述网络设备发送HARQ应答信息的时隙满足如下条件:
n PUCCH=n TA+n B
或者,n PUCCH=n+k TA+n B
或者,n PUCCH=max{n+n B,n+k TA+1}
其中,所述n PUCCH为所述终端设备发送所述HARQ应答信息的时隙,所述n TA为定时提前命令的生效时隙,所述n为物理下行共享信道(physical downlink shared channel,PDSCH)的最后一个符号所对应的上行时隙,所述k TA为定时提前(time advance,TA)调整参数,所述PDSCH承载所述随机接入响应,n B为预配置取值集合中的索引为B的具体取值。
第二方面,本申请提供一种信息指示方法,所述方法包括:网络设备接收来自终端设备的随机接入请求;所述网络设备向所述终端设备发送随机接入响应;其中,所述随机接入响应中包括第一无线网络临时标识RNTI,所述第一RNTI中包括第一字段和第二字段,所述第一字段用于指示第一频域资源,所述第二字段用于指示第一时域资源,且所述第一频域资源和所述第一时域资源用于指示混合自动重传请求HARQ应答信息的时频资源,所述HARQ应答信息用于反馈所述随机接入响应被正确接收。
在一种可能的实现方式中,所述第一RNTI的值根据所述第一字段的比特长度i对应的N进制值和所述第二字段的比特长度j对应的N进制值得到,所述N进制包括:十进制、八进制、十六进制中的任一项。
在一种可能的实现方式中,所述第一RNTI的值满足如下条件:
0<D 1≤第一阈值,且D 1≠D 2
D 1=C*2 i+j+A*2 j+B或者D 1=C*2 i+j+B*2 i+A
其中,所述D 1为所述第一RNTI的值,所述D 2为第二RNTI的值,所述i为所述第一字段的比特长度,所述j为所述第二字段的比特长度,所述A为所述i比特的十进制值,所述B为所述j比特的十进制值,所述C为k比特的十进制值,且i+j+k=L,所述L为所述第一RNTI的比特长度。
在一种可能的实现方式中,所述第一RNTI的值还满足如下条件:
第二阈值<D 1≤第一阈值。
在一种可能的实现方式中,所述第一RNTI的值满足如下条件:
0<D 1≤第一阈值,且D 1≠D 2
D 1=A*2 j+k+B*2 k+C或者D 1=B*2 i+k+A*2 k+C
其中,所述D 1为所述第一RNTI的值,所述D 2为第二RNTI的值,所述i为所述第一字段的比特长度,所述j为所述第二字段的比特长度,所述A为所述i比特的十进制值,所述B为所述j比特的十进制值,所述C为k比特的十进制值,且i+j+k=L,所述L为所述第一RNTI的比特长度。
在一种可能的实现方式中,所述终端设备向所述网络设备发送HARQ应答信息的时隙满足如下条件:
n PUCCH=n TA+n B
或者,n PUCCH=n+k TA+n B
或者,n PUCCH=max{n+n B,n+k TA+1}
其中,所述n PUCCH为所述终端设备发送所述HARQ应答信息的上行时隙时隙,所述n TA为定时提前命令的生效时隙,所述n为PDSCH的最后一个符号所对应的上行时隙,所述PDSCH承载所述随机接入响应,所述k TA为定时提前(time advance,TA)调整参数,所述PDSCH用于传输所述随机接入响应,n B为预配置取值集合中的索引为B的具体取值。
第三方面,本申请提供一种信息指示方法,所述方法包括:终端设备接收来自网络设备的随机接入响应;其中,所述随机接入响应中包括指示信息,所述指示信息用于指示第一频域资源和第一时域资源;所述终端设备根据所述第一时域资源和所述第一频域资源发送混合自动重传请求HARQ应答信息;其中,所述HARQ应答信息的发送时隙与定时提前命令的生效时隙相关。
本申请实施例中,将HARQ应答信息的发送时隙与定时提前命令的生效时隙相关联,可保证终端设备发送承载该HARQ应答信息的物理上行控制信道(PUCCH)的有效性,使得网络设备能够正确检测(physical uplink control channel,PUCCH)。
在一种可能的实现方式中,所述随机接入响应中还包括所述定时提前命令;其中,所述指示信息和所述定时提前命令携带于同一个物理下行共享信道PDSCH中;或者,所述定时提前命令携带于下行控制信息DCI中,所述指示信息携带于所述DCI调度的PDSCH中;或者,所述指示信息和所述定时提前命令携带于同一个DCI中。
在一种可能的实现方式中,所述终端设备向所述网络设备发送所述HARQ应答信息的时隙满足如下条件:
n PUCCH=n TA+n B
或者,n PUCCH=n+k TA+n B
或者,n PUCCH=max{n+n B,n+k TA+1}
其中,所述n PUCCH为所述终端设备发送所述HARQ应答信息的时隙,所述n TA为所述定时提前命令的生效时隙,所述n为PDSCH的最后一个符号所对应的上行时隙,所述PDSCH承载所述随机接入响应,所述k TA为定时提前调整参数,所述n B为预配置取值集合中的索引为B的具体取值,所述B为指示所述第一时域资源的字段具体取值。
在一种可能的实现方式中,所述定时提前命令的生效时隙满足如下条件:
n TA_update=n+k TA
所述终端设备向所述网络设备发送所述HARQ应答信息的时隙满足如下条件:
n PUCCH=n TA_update+n B
或者,n PUCCH=n+k TA+n B
或者,n PUCCH=max{n+n B,n TA_update}
或者,n PUCCH=n+n B
其中,所述Δ为常量,所述n PUCCH为所述终端设备发送所述HARQ应答信息的时隙,所述n TA_update为所述定时提前命令的生效时隙,所述n为PDSCH的最后一个符号所对应的上行时隙,所述PDSCH承载所述随机接入响应,所述k TA为定时提前调整参数,所述n B为预配置取值集合中的索引为B的具体取值,所述B为指示所述第一时域资源的字段具体取值。
第四方面,本申请提供一种通信装置,所述通信装置包括接收单元和发送单元,所述接收单元,用于执行如第一方面和/或第三方面所述的方法。
第五方面,本申请提供一种通信装置,所述通信装置包括接收单元和发送单元,所述接收单元,用于执行如第二方面所述的方法。
第六方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序或指令时,如第一方面和/或第三方面所述的方法被执行。
第七方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器调用存储器中的计算机程序或指令时,如第二方面所述的方法被执行。
第八方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第一方面和/或第三方面所述的方法。
第九方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如第二方面所述的方法。
第十方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于执行所述程序代码,以使所述通信装置执行如第一方面和/或第三方面所述的方法。
第十一方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储程序代码;所述处理器,用于执行所述程序代码,以使所述通信装置执行如第二方面所述的方法。
第十二方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面和/或第三方面所示的相应的方法。
第十三方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第二方面所示的相应的方法。
第十四方面,本申请提供一种通信系统,所述通信系统包括终端设备和网络设备,所述终端设备用于执行如第一方面所述的方法,所述网络设备用于执行如第二方面所述的方法。或者,所述终端设备还可用于执行如第三方面所述的方法。
第十五方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储指令或计算机程序,当所述指令或所述计算机程序被执行时,使得第一方面和/或所述的方法被实现。
第十六方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储指令或计算机程序,当所述指令或所述计算机程序被执行时,使得第二方面所述的方法被实现。
第十七方面,本申请提供一种计算机程序产品,所述计算机程序产品包括指令或计算机程序,当所述指令或所述或计算机程序被执行时,使得第一方面和/或第三方面所述的方法被实现。
第十八方面,本申请提供一种计算机程序产品,所述计算机程序产品包括指令或或计算机程序,当所述指令或所述或计算机程序被执行时,使得第二方面所述的方法被实现。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种四步随机接入的流程示意图;
图3是本申请实施例提供的一种两步随机接入的流程示意图;
图4是本申请实施例提供的各个RNTI的取值范围示意图;
图5是本申请实施例提供的一种信息指示方法的流程示意图;
图6是本申请实施例提供的一种C-RNTI的格式示意图;
图7是本申请实施例提供的一种C-RNTI的格式示意图;
图8是本申请实施例提供的一种信息指示方法的流程示意图;
图9是本申请实施例提供的一种通信装置的结构示意图;
图10是本申请实施例提供的一种终端设备的结构示意图;
图11是本申请实施例提供的一种终端设备的结构示意图;
图12是本申请实施例提供的一种终端设备的结构示意图;
图13是本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至 少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本申请使用的通信系统可理解为无线蜂窝通信系统,又或者理解为基于蜂窝网络架构的无线通信系统等等,本申请提供的各个方法可以应用于各类通信系统中,例如,可以是物联网(internet of things,IoT)系统、窄带物联网(narrow band internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统,还可以是LTE与5G混合架构系统、也可以是5G新无线(new radio,NR)系统,以及未来通信发展中出现的新的通信系统(如6G)等。只要通信系统中需要反馈HARQ应答信息,均可以采用本申请实施例提供的方法。作为示例,图1是本申请实施例提供的一种通信系统的示意图,本申请中的方案可适用于该通信系统。该通信系统可以包括至少一个网络设备,仅示出一个,如图1中的基站(the next generation Node B,gNB);以及与该网络设备连接的一个或多个终端设备,如图1中的终端设备1和终端设备2。
其中,网络设备可以是能和终端设备通信的设备。网络设备可以是任意一种具有无线收发功能的设备,包括但不限于基站。例如,该基站可以为gNB,又或者该基站为未来通信系统中的基站。可选的,该网络设备还可以为无线局域网(wireless fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。可选的,该网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。可选的,该网络设备还可以是可穿戴设备或车载设备等。可选的,该网络设备还可以是小站,传输节点(transmission reception point,TRP)(也可以称为传输接收点等等)等。可理解,该基站还可以是未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站等等。
终端设备,也可称为用户设备(user equipment,UE)、终端等。终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上,如轮船上等;还可以部署在空中,例如部署在飞机、气球或卫星上等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。可理解,该终端设备还可是未来6G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可理解,图1仅是一种示例性说明,并不对通信系统中包括的终端设备、网络设备的数量、网络设备覆盖的小区数量进行具体限定。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技 术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
进一步的,图1所示的通信系统中,终端设备1和终端设备2也可以通过设备到设备(device to device,D2D)技术或车与任何事物通信(vehicle-to-everything,V2X)或机器到机器(machine to machine,M2M)等技术进行通信,本申请实施例对于终端设备1与终端设备2之间的通信方法不作限定。
需要说明的是,图1涉及的通信系统可以应用于本申请其他实施例的通信场景,在此不再赘述。例如,网络设备和终端设备1可用于执行图5和/或图8所示的信息指示方法。又例如,网络设备和终端设备2也可用于执行图5和/或图8所示的信息指示方法。
以下将介绍本申请实施例所涉及的四步随机接入方法和两步随机接入方法。
目前在LTE和5G等无线通信系统中终端设备进行随机接入通常需要四步,如图2所示:
201、UE向基站发送随机接入前导码(random access preamble),也可以称为第一消息(Msg1)。随机接入前导码的作用是通知基站有一个随机接入请求,并使得基站能估计其与UE之间的传输时延,以便基站校准上行定时(uplink timing)并将校准信息通过定时提前命令(timing advance command)告知UE。
202、基站在检测到随机接入前导码后向UE发送随机接入响应,也可以称为第二消息(Msg2)。随机接入响应可以包括上述201中所收到随机接入前导码的序列编号、定时提前命令、上行资源分配信息和临时小区无线网络临时标识(temporarycell-radionetworktemporaryidentifier,TC-RNTI)等。
203、UE接收随机接入响应,如果该随机接入响应中的随机接入前导码的序列编号所指示的随机接入前导码和上述201中UE向基站发送的随机接入前导码相同,则UE认为该随机接入响应是针对该UE的随机接入响应,即UE接收到了该UE的随机接入响应。UE接收到随机接入响应后,在随机接入响应指示的上行资源上发送上行消息,例如在物理上行共享信道(physical uplink shared channel,PUSCH)上发送上行数据,也称为第三消息(Msg3)。其中,Msg3可以携带唯一的用户标识。
204、基站接收到UE的上行消息,向接入成功的UE返回冲突解决消息,也称为第四消息(Msg4)。基站在冲突解决消息中将携带Msg3中的唯一用户标识以指示接入成功的UE,而其他没有接入成功的UE将重新发起随机接入。
对于四步随机接入过程,处于空闲态或inactive态的UE想要进行上行数据传输时至少先要完成上述的四次信息交互以进入RRC连接态。然而,随着未来超可靠低时延(ultra reliable low latency,URLLC)、机器通信(machine type communication,MTC)和物联网(internet of things,IoT)的迅速发展,稀疏、小包及低时延需求的数据传输也有了越来越多的应用场景,要满足这一类数据业务的传输,传统的4-step RACH由于UE与基站之间的多步交互引入的时延成为了技术瓶颈。
为了降低接入延时和信令开销,目前提出了一种两步随机接入过程(2-step RACH),如图3所示,其中,UE在第一步中同时向基站发送随机接入前导码(preamble)和数据, 第二步,基站向UE发送随机接入响应。在两步随机接入过程中,一方面UE在第一步中发送随机接入前导码和数据,从而可以降低上行数据传输的时延;另一方面,基站不需要为UE发送Msg3对应的调度信息,从而可以降低信令开销。通常可以使用MsgA表示两步随机接入的第一条交互消息,MsgA由UE发送给基站,MsgA消息包括MsgA preamble部分和MsgA数据部分,preamble承载在MsgA物理随机接入信道(physical random access channel,PRACH)上传输,数据部分承载在MsgA PUSCH上传输。
其中,MsgB的响应内容可以包括针对preamble的响应和针对PUSCH的响应中的至少一种。作为示例,对于两步随机接入过程,基站向UE发送的响应消息可以包括回退响应信息(fallbackrandom access response RAR)或正确响应信息(success RAR)。以下分别描述该回退响应信息和正确响应信息:
若基站对MsgA的PRACH检测正确,PUSCH译码错误,则基站向UE发送回退响应信息;若基站对MsgA的PRACH检测正确,PUSCH译码正确,则基站向UE发送正确响应信息。其中,回退响应信息中可以包括:MsgA携带的前导码的索引(random access preamble index)、定时提前命令、TC-RNTI和上行调度授权(UL grant)。正确响应信息中可以包括:竞争解决冲突标识(contention resolution ID,CRID)、C-RNTI和定时提前命令。可选的,当基站对MsgA中的PRACH检测正确和PUSCH译码正确,除了上述正确响应信息中所包括的信息,基站还可能需要向UE发送以下信息中的一种或者多种:指示用于反馈确认消息的资源的信息、用于传输确认消息的传输功率控制命令、上行数据传输授权(UL grant)、RRC message(比如无线资源控制重配置信息、无线资源控制连接建立信息、无线资源控制恢复信息等)。
进一步的,在UE收到正确响应信息的情况下,针对该正确响应信息,该UE还需要向基站反馈HARQ应答信息,该UE向基站发送HARQ应答信息时,该UE需要获得承载该HARQ应答信息的PUCCH所在的时频资源。具体的,指示用于反馈HARQ应答信息的资源的信息一般包括PUCCH资源指示(PUCCH resource indicator)和PDSCH到HARQ反馈时间指示(PDSCH-to-HARQ_feedback timing indicator)。UE可根据PUCCH资源指示和PDSCH到HARQ反馈时间指示确认携带HARQ的时频资源。
UE根据PUCCH资源指示获得用于反馈HARQ应答信息的频域资源的方法参考公式(1):
Figure PCTCN2019116875-appb-000001
其中r PUCCH为预设的PUCCH频域资源集合中PUCCH频域资源的索引号,根据该索引号,UE根据预设的规则可以获得用于反馈HARQ应答信息的频域资源块位置/索引号;n CCE,0为调度响应信息所在的PDSCH的PDCCH的第一个控制信道元素(control channel element,CCE)索引号,N CCE,0为所述PDCCH的控制资源集合(control resource set,CORESET)中的CCE个数;Δ PRI为PUCCH资源指示字段的取值,一般的PUCCH资源指示字段的取值为{0~7}。
UE根据PDSCH到HARQ反馈时间指示获得用于反馈HARQ应答信息的时域资源的方法参考公式(2):
n PUCCH=n+n B(2)
即UE在时隙n PUCCH上通过PUCCH发送针对PDSCH的HARQ-ACK反馈信息。其中n PUCCH是发送针对PDSCH的HARQ-ACK反馈信息的PUCCH所在的时隙,时隙n为一个上行时隙,该上行时隙n参考PUCCH的时隙结构,该n为PDSCH的最后一个符号所对应的上行时隙,也可理解为上行时隙n在时域与UE收到的PDSCH的最后一个符号对应的上行时隙,n B为根据PDSCH到HARQ反馈时间指示字段的取值获得预配置的取值集合中的取值。一般的,预配置的取值集合中的取值可以是固定的{1,2,3,4,5,6,7,8},或者预配置的取值集合中的取值可以是网络侧预选的取值。B为PDSCH到HARQ反馈时间指示字段的取值,B的取值对应于预配置的取值集合的索引值。
进一步的,指示用于反馈HARQ应答信息的资源的信息需要基站在向UE发送正确响应信息的同时配置,另外,基站也会向终端配置该PUCCH的传输功控调整参数(transmit power control command,TPC command)等等。
由于MsgB中允许包含多个UE的正确响应信息,所以基站需要给每个收到正确响应信息的UE指示用于反馈HARQ应答信息的资源,一种可能的方案就是每个UE的正确响应信息中增加指示用于反馈确认消息的资源的指示字段;但该方案需要增加正确响应信息的负载。因此,本申请实施例提供一种信息指示方法,可避免增加正确响应信息的负载,进一步避免增加随机接入响应的负载,对于该方法可参考图5。
在介绍本申请实施例所提供的信息指示方法之前,先介绍本申请实施例中涉及的各个RNTI。作为示例,在NR系统中,预定义了不同的RNTI的取值范围,具体如表1所示:
表1
Figure PCTCN2019116875-appb-000002
由表1可知,RA-RNTI、TC-RNTI、C-RNTI的取值区间为1-65519(十六进制:FFEF,二进制:1111111111101111)。对于RA-RNTI的取值可满足如下公式(3):
RA-RNTI=1+s_id+14×t_id+14×80×f_id+14×80×8×ul_carrier_id  (3)
其中,s_id是每个PRACH传输机会(PRACH occasion,RO)的第一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的索引号(0≤s_id<14);t_id是一个系统帧中PRACH传输机会所在的第一个时隙(slot)的索引号(0≤t_id<80),slot的取值与在载波间隔有关系,即Δf RA∈{1.25,5}时,μ=0,否则,μ的取值根据Δf RA∈{15,30,60,120}而决定,此时子载波间隔Δf RA与参数μ之间的对应关系如表2所示;f_id是PRACH传输机会所在的频域资源的索引号(0≤f_id<8);ul_carrier_id是用于随机接入前导 码传输的上行载波的索引号(0表示正常上行载波(normal UL carrier,NUL),1表示补充上行载波(supplementary UL carrier,SUL)。根据上述公式(3)可知RA-RNTI的取值范围为:1~17920(十六进制:4600,二进制:0100 0110 0000 0000)。可理解,该RA-RNTI可用于在4-step RACH中,基站向UE发送响应信息(承载于PDSCH中)时,对调度该PDSCH的PDCCH的循环冗余校验(cyclic redundancy check,CRC)进行加扰。
表2
μ Δf RA=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
作为示例,为区分2-step RACH和4-step RACH的响应信息,一种可能的方法是,基站向2-step RACH的终端发送随机接入响应(承载于PDSCH中)时,采用新的RNTI对调度PDSCH的PDCCH的CRC进行加扰,为了下文表述清楚,该新的RNTI可称为MsgB-RNTI。例如,MsgB-RNTI的取值可以根据2-step RACH中MsgA的传输资源计算获得的,或者根据MsgA中承载前导码的PRACH资源计算得到,或者根据MsgA中承载上行数据的PUSCH资源计算得到,或者根据MsgA中承载前导码的PRACH资源和承载上行数据的PUSCH资源计算得到,或者在上述计算方法的基础上,根据前导序序列和/或解调参考信号(demodulation reference signal,DMRS)序列的信息计算得到。可理解,该MsgB-RNTI的取值与RA-RNTI的取值没有碰撞。可理解,本申请实施例对于该MsgB-RNTI的名称不作限定,在具体实现中,该MsgB-RNTI可能还包括其他名称等等。例如,对于RA-RNTI的取值和MsgB-RNTI的取值可参考图4,以及对于其他RNTI的取值可参考表1。可理解,以上所示的表1和表2仅为示例,不应将其理解为对本申请实施例的限定。
以下将详细介绍本申请实施例提供的信息指示方法。
图5是本申请实施例提供的一种信息指示方法的流程示意图,该方法可应用于图1所示的系统。如图5所示,该方法包括:
501、UE向基站发送随机接入请求;基站接收该随机接入请求。
本申请实施例中,该随机接入请求为两步随机接入过程中的随机接入请求,即该随机接入信息中可包括preamble和数据。或者,该随机接入请求可不限于两步随机接入过程中的随机接入请求,还可为未来其他类型的随机接入过程中的随机接入请求等等。
502、基站向UE发送随机接入响应;UE接收该随机接入响应。
该随机接入响应中可包括正确响应信息和/或回退响应信息。对于该正确响应信息和该回退响应信息的具体描述可参考前述实施例。也就是说,该随机接入响应中可以包括多个UE的响应信息,UE接收到该随机接入响应后,可根据响应信息中的前导码索引或者竞争解决ID来得知响应信息是发送给自己的。
作为示例,由于上述501和502可为其他类型的随机接入过程,因此比如UE发送的 随机接入请求中不包括preamble,包括上行数据。该情况下,上述501和上述502可替换为:
5011)UE向基站发送随机接入请求;基站接收该随机接入请求。该随机接入请求为不包含前导码的随机接入请求,该随机接入信息中包括上行数据。
5022)基站向UE发送随机接入响应;UE接收该随机接入响应。例如,基站可以根据上行数据中的解调参考信号(demodulation reference signal,DMRS)测量定时提前。如果基站对DMRS检测成功,上行数据译码错误,基站向UE发送针对DMRS的响应信息;如果基站对上行数据译码成功,基站向UE发送针对该上行数据的响应信息。UE接收到该随机接入响应(包括响应信息)后,可根据响应信息中的DMRS索引或者竞争解决ID来得知该响应信息是发送给自己的。可理解,如果基站对上行数据译码成功,则基站需要向UE发送HARQ应答信息,由此,UE就需要获得承载(或反馈)该HARQ应答信息的时频资源。该情况下,基站可在随机接入响应中包括第一RNTI,对于该第一RNTI可如下所示。
本申请实施例中,上述502或上述5022中,随机接入响应中包括第一RNTI,该第一RNTI中包括第一字段和/或第二字段,即第一字段和第二字段可包含于第一RNTI中。该第一字段用于指示第一频域资源,该第二字段用于指示第一时域资源。其中,该第一频域资源可理解为前述描述中的PUCCH资源指示字段所指示的频域资源,第一时域资源可理解为前述描述中的PDSCH到HARQ反馈时间指示字段所指示的时域资源。该第一RNTI可包括C-RNTI,即第一字段和第二字段可包含于C-RNTI中。例如,UE接收到的随机接入响应中包括正确响应信息,该正确响应信息中包括C-RNTI,该C-RNTI中可包括第一字段和第二字段。由此UE可根据该第一字段和该第二字段来确认承载HARQ应答信息的PUCCH所在的时频资源。对于UE根据第一字段和第二字段得到该PUCCH所在的时频资源的方法可参考前述描述;又或者,可参考图8所示关于n B的描述;又或者,参考其他相关描述等等,这里不作详述。可理解,第一RNTI也可以是其他RNTI,该其他RNTI用于识别UE与基站之间进行数据传输时的唯一标识,比如TC-RNTI等等。可理解,以上所示的正确响应信息在其他类型的随机接入过程,可能包括其他名称等。
以下将以第一RNTI为C-RNTI为例来说明本申请实施例的方法。
其中,C-RNTI的值根据第一字段的比特长度i对应的N进制值和第二字段的比特长度j对应的N进制值得到,N进制包括:十进制、八进制、十六进制中的任一项。也就是说,UE可根据该C-RNTI的比特取值得到第一时域资源和第一频域资源。以下将以N为十为例来说明UE如何根据C-RNTI得到第一时域资源和第一频域资源:
方式一、
C-RNTI的值满足如下公式(4)和公式(5):
0<D 1≤第一阈值,且D 1≠D 2  (4)
D 1=C*2 i+j+A*2 j+B或者D 1=C*2 i+j+B*2 i+A  (5)
其中,D 1为C-RNTI的值,D 2为第二RNTI的值,i为第一字段的比特长度,j为第二字段的比特长度,A为i比特的十进制值,B为j比特的十进制值,C为k比特的十进制值,且i+j+k=L,L为C-RNTI的比特长度。可理解,该第一阈值可为65519,第二RNTI的值为除了第一RNTI以外的其他RNTI的可能取值。
作为示例,第一字段即PUCCH资源指示字段长度为i比特,用ai-1…a0来表示,取值A=ai-1*2 i-1+…+a0*2 0,第二字段即PDSCH到HARQ反馈时间指示字段长度为j比特,用bj-1…b0来表示,取值为B=bj-1*2 j-1+…+b0*2 0。则C-RNTI的比特表示为:ck-1…c0ai-1…a0bj-1…b0或者ck-1…c0bj-1…b0ai-1…a0。其中ck-1…c0是C-RNTI所有比特位中除了PUCCH资源指示字段和PDSCH到HARQ反馈时间指示字段占用的比特位之外的剩余比特位,长度为k,取值为C=ck-1*2 k-1+…+c0*2 0。其中,i+j+k=L,L为C-RNTI的比特位长度,如图6所示。根据以上A、B和C,C-RNTI的取值可如下公式(6)所示:
C-RNTI=C*2 i+j+A*2 j+B或者C-RNTI=C*2 i+j+B*2 i+A  (6)
其中,C的取值使得C-RNTI的取值满足C-RNTI不大于65519(hex:FFEF),且C-RNTI的取值不与其他类型的RNTI的取值发生碰撞。可选的,该其他类型的RNTI可以是RA-RNTI、TC-RNTI、MCS-C-RNTI、CS-RNTI、TPC-PUCCH-RNTI、TPC-PUSCH-RNTI、TPC-SRS-RNTI、INT-RNTI、SFI-RNTI或SP-CSI-RNTI中的任一种或多种。可理解,本申请实施例中,其他类型的RNTI不限于上述所列的RNTI类型,还可以包含其他可能的RNTI类型,例如MsgB-RNTI。可选的,为了降低基站对C-RNTI取值的复杂度,C的取值还可满足如下公式(7):
第二阈值<C-RNTI≤65519  (7)
其中,第二阈值可理解为各个RNTI的最大取值。例如,C-RNTI的取值可满足C-RNTI小于或等于65519(hex:FFEF)且C-RNTI大于RA-RNTI和/或MsgB-RNTI的最大取值,且C-RNTI的取值不与其他类型的RNTI的取值发生碰撞。
举例来说,PUCCH资源指示字段为4bit(也可以是3bit或者其他值)用a3a2a1a0来表示,取值A;PDSCH到HARQ反馈时间指示字段长度为3bit(也可以是2bit或者其他值),用b2b1b0来表示,取值为B。则C-RNTI的bit表示为:c8c7c6c5c4c3c2c1c0 a3a2a1a0 b2b 1b0或者c8c7c6c5c4c3c2c1c0b2b1b0 a3a2a1a0。其中c8c7c6c5c4c3c2c1c0是C-RNTI所有比特位中除了PUCCH资源指示字段和PDSCH到HARQ反馈时间指示字段占用的比特位之外的剩余比特位,取值为C。则C-RNTI=C*2 7+A*2 3+B或者C-RNTI=C*2 7+B*2 4+A;且C的取值使得C-RNTI的取值满足C-RNTI小于或等于65519(hex:FFEF),且大于RA-RNTI和MsgB-RNTI的最大取值,且C-RNTI的取值不与其他类型的RNTI的取值发生碰撞。
方式二、
C-RNTI的值满足如下公式(8)和公式(9):
0<D 1<第一阈值,且D 1≠D 2  (8)
D 1=A*2 j+k+B*2 k+C或者D 1=B*2 i+k+A*2 k+C  (9)
其中,D 1为C-RNTI的值,D 2为第二RNTI的值,i为第一字段的比特长度,j为第二字段的比特长度,A为i比特的十进制值,B为j比特的十进制值,C为k比特的十进制值,且i+j+k=L,L为C-RNTI的比特长度。
作为示例,第一字段即PUCCH资源指示字段长度为i比特,用ai-1…a0来表示,取值A=ai-1*2 i-1+…+a0*2 0,第二字段即PDSCH到HARQ反馈时间指示字段长度为j比特,用bj-1…b0来表示,取值为B=bj-1*2 j-1+…+b0*2 0。则C-RNTI的bit表示为:ai-1…a0 bj-1…b0ck-1…c0或者bj-1…b0ai-1…a0ck-1…c0。其中ck-1…c0是C-RNTI所有比特位中除了PUCCH资源指示字段和PDSCH到HARQ反馈时间指示字段占用的比特位之外的剩余比特位,长度为k,取值为C=ck-1*2 k-1+…+c0*2 0。其中,i+j+k=L,L为C-RNTI的比特位长度。如图7所示。根据以上A、B和C,C-RNTI的取值可如下公式(10)所示:
C-RNTI=A*2 j+k+B*2 k+C或者C-RNTI=B*2 i+k+A*2 k+C  (10)
例如,A和B的取值使得C-RNTI的取值大于RA-RNTI和/或MsgB-RNTI的最大取值,则C的取值需要满足使得C-RNTI的取值小于或等于65519(hex:FFEF)且C-RNTI的取值不与其他类型的RNTI的取值发生碰撞。可选的,该其他类型的RNTI可以是TC-RNTI、MCS-C-RNTI、CS-RNTI、TPC-PUCCH-RNTI、TPC-PUSCH-RNTI、TPC-SRS-RNTI、INT-RNTI、SFI-RNTI或SP-CSI-RNTI中的任一种或多种。又例如,A和B的取值使得C-RNTI的取值小于RA-RNTI和/或MsgB-RNTI的最大取值,则C的取值需要满足使得C-RNTI的取值不与RA-RNTI和/或MsgB-RNTI的取值发生碰撞。
举例来说,PUCCH资源指示字段为4bit(也可以是3bit或者其他值)用a3a2a1a0来表示,取值A;PDSCH到HARQ反馈时间指示字段长度为3bit(也可以是2bit或者其他值),用b2b1b0来表示,取值为B。则C-RNTI的bit表示为:a3a2a1a0b2b1b0 c8c7c6c5c4c3c2c1c0或者b2b1b0 a3a2a1a0c8c7c6c5c4c3c2c1c0。其中c8c7c6c5c4c3c2c1c0是C-RNTI所有比特位中除了PUCCH资源指示字段和PDSCH到HARQ-ACK反馈时间指示字段占用的比特位之外的剩余比特位,取值为C。则C-RNTI=A*2 12+B*2 9+C或者C-RNTI=B*2 13+A*2 9+C。
对于上述C的取值需要满足使得C-RNTI的取值不与RA-RNTI和MsgB-RNTI的取值发生碰撞的解释,如表3:
表3
Figure PCTCN2019116875-appb-000003
上述表3中的RO配置适用于终端通信模式为频分双工(frequency division duplexing,FDD)。根据该表3可知:RA-RNTI的取值区间:1+{0,2,4,6,8,10,12}+14*{0~19}+14*80*{0~7}+14*80*8*{0,1},根据上述RA-RNTI的取值区间,可知RA-RATI的取值为奇数,且最大值为17077,二进制表示为0100 0010 1011 0101。
以RA-RNTI的取值对C-RNTI的影响为例,此时C-RNTI的可能取值区间:
如果a3a2a1a0和b2b1b0的取值使得C-RNTI<=17077,则c8c7c6c5c4c3c2c1c0的取值满足mod(C,2)=0。如果a3a2a1a0和b2b1b0使得C-RNTI>17077,则c8c7c6c5c4c3c2c1c0的取值使得C-RNTI的取值小于或等于65519(hex:FFEF),且不与其他RNTI的取值发生碰撞。
可理解,上述根据表3中的RO配置来确定C-RNTI的取值方法并不是唯一的,只是 为了说明本申请实施例中根据C-RNTI的中某些比特位用于PUCCH资源指示时,C-RNTI的可能取值。因此C-RNTI的取值方法和范围不限于上述实施例,C-RNTI的取值方法和范围可以根据其他可能的RO配置而发生变化等等,本申请实施例对于C-RNTI的具体取值方法不作限定。
在以上各种情况下,UE获得指示用于反馈HARQ应答信息的资源的信息是携带于基站发送给UE的响应信息所包含的第一RNTI中。UE可以根据第一RNTI中的第一字段和第二字段获得用于反馈HARQ应答信息的资源。
例如,UE根据PUCCH资源指示(即第一字段)获得用于反馈HARQ应答信息的频域资源(即第一频域资源)参考公式(11):
Figure PCTCN2019116875-appb-000004
或者r PUCCH=Δ PRI  (11)
其中,Δ PRI=Δ PRI_UEPRI_UE为第一字段及PUCCH资源指示字段的取值。
例如,UE根据PDSCH到HARQ反馈时间指示(即第二字段)获得用于反馈HARQ应答信息的时域资源(即第一时域资源)参考公式(12):
n PUCCH=n+n B   (12)
其中,时隙n为PDSCH的最后一个符号所对应的上行时隙,n B为根据PDSCH到HARQ反馈时间指示取值B获得预配置的取值集合中的取值,B为第二字段即PDSCH到HARQ反馈时间指示字段的取值。n PUCCH的具体取值还需参考下文图8中的方法,这里不再一一赘述。
503、UE根据第一时域资源和第一频域资源发送HARQ应答信息。
本申请实施例中,UE可根据第一时域资源和第一频域资源确定用于承载HARQ应答信息的PUCCH所在的时频资源,从而在该PUCCH所在的时频资源上来发送该HARQ应答信息。对于UE根据第一字段和第二字段得到该PUCCH所在的时频资源的方法可参考前述描述,又或者,对于UE如何根据第二字段得到该PUCCH所在的时域资源的方法可参考图8所示关于n B的描述,这里不作一一赘述。
实施本申请实施例,通过在C-RNTI中包括PUCCH资源指示字段和PDSCH到HARQ反馈时间指示字段,可有效避免增加响应信息的负载。
在本申请的一些实施例中,如在随机接入过程中,正确响应信息中包括竞争解决冲突标识(contention resolution ID,CRID)。该CRID可承载于由DCI所调度的PDSCH中。UE接收到基站发送的携带CRID的响应信息,UE需要向基站发送HARQ应答信息,该HARQ应答信息可用于响应UE接收到该CRID的PDSCH。
这里以4-step RACH为例,对UE发送HARQ应答信息的时刻和定时提前命令生效时刻进行说明。在4-step RACH中,UE在发送Msg1前导码后,UE会接收到基站发送的随机接入响应Msg2,该随机接入响应中包括定时提前命令(TA command),该定时提前命令用于UE进行上行数据传输的时间调整,而上述上行数据传输不包含由随机接入响应中的上行调度授权(UL grant)所调度的PUSCH传输。如UE收到定时提前命令的上行时隙为n2,则定时提前命令的生效时间为n2+k TA+1,其中k TA满足如下公式(13):
Figure PCTCN2019116875-appb-000005
其中,N T,1为N 1个OFDM符号的时域长度(单位为ms),对应于PDSCH的接收时长,并且用户处理能力为1且配置了额外的PDSCH DMRS。如果μ=0,假设N T,1=14;N T,2为N 2个OFDM符号的时域长度(单位为ms),对应于PUSCH的准备时长,且用户处理能力为1;N TA,max是12bit长度的定时提前命令所提供的最大定时提前值(单位为ms);
Figure PCTCN2019116875-appb-000006
的每个子帧中的时隙数;T sf是1ms子帧长度。N T,1和N T,2是根据所配置的最小子载波间隔确定的,其中最小子载波间隔是网络侧配置的定时提前命令应用的所有上行BWP的所有上行载波和所有下行BWP的所有下行载波中的最小子载波间隔;时隙n2和时隙数
Figure PCTCN2019116875-appb-000007
是根据所配置的最小子载波间隔确定的,其中最小子载波间隔是网络侧配置的定时提前命令应用的所有上行BWP的所有上行载波的最小子载波间隔,且时隙n2是在假设T TA=0时与接收的PDSCH重叠的上行时隙的最后一个时隙,所述接收的PDSCH中承载定时提前命令;N TA,max是根据所配置的最小子载波间隔确定的,其中最小子载波间隔是网络侧配置的定时提前命令应用的所有上行BWP的所有上行载波和初始上行BWPs上的所有载波的最小子载波间隔。
在4-step RACH中,UE发送msg3后,接收到基站发送的竞争解决信息Msg4,Msg4是由DCI格式1_0调度的PDSCH,且该PDSCH结束的时隙为时隙n1,则UE发送HARQ应答信息的时隙是n1+k,其中时隙n1为一个上行时隙,该上行时隙n1参考PUCCH的时隙结构,该上行时隙n1在时域与UE收到的PDSCH的最后一个符号所对应的的上行时隙,k表示时隙个数,k的取值由PDSCH到HARQ反馈时间指示字段确定。
由上述4-step RACH中定时提前命令生效的时隙可知,UE向基站发送HARQ应答信息时,定时提前计时器是运行的状态,即定时提前是有效状态。
然而,在2-step RACH中,当UE收到基站发送的针对MsgA的包含竞争解决ID的响应信息时,UE同时获得定时提前命令和指示用于反馈HARQ应答信息的资源的信息,其中指示用于反馈HARQ应答信息的资源的信息包含PUCCH资源指示和PDSCH到HARQ反馈时间指示。由此,UE发送HARQ应答信息时,UE无法确定定时提前命令是否处于有效状态。
因此,本申请实施例还提供了一种信息指示方法,图8是本申请实施例提供的一种信息指示方法的流程示意图,该方法可应用于图1所示的系统。如图8所示,该方法包括:
801、基站向UE发送随机接入响应,UE接收该随机接入响应;其中,随机接入响应中包括指示信息,指示信息用于指示第一频域资源和第一时域资源。
可理解,对于指示信息在随机接入响应中的具体位置,本申请实施例不作限定。
例如,用于指示承载HARQ应答信息的时频资源的信息(PUCCH的时频资源指示)可以包含于承载响应信息的PDSCH中,或者隐式地包含于响应信息的PDSCH中的其他信息中;或者包含于调度承载响应信息的PDSCH的PDCCH(即DCI)中。其中,用于指示承载HARQ应答信息的时频资源的信息即为上述801所示的指示信息。
又例如,该指示信息可承载于如图5所示的第一C-RNTI中,这里不作一一赘述。
802、UE根据第一时域资源和第一频域资源发送HARQ应答信息;其中,HARQ应答信息的发送时隙与定时提前命令的生效时隙相关。
在本申请的一些实施例中,随机接入响应中还包括定时提前命令;
例如,当UE向基站发送的随机接入请求中包含前导码和上行数据(即MsgA PRACH和MsgA PUSCH),或者UE向基站发送的随机接入请求包含上行数据(即只有PUSCH),基站对随机接入请求全部译码正确时,UE会收到基站发送的针对随机接入请求的包含竞争解决ID的响应信息(也可理解为包含竞争解决ID的随机接入响应),响应信息中除了竞争解决ID之外,还包括定时提前命令和指示用于反馈HARQ应答信息的资源的信息。
在本申请的一些实施例中,响应信息中可能不包含竞争解决ID,如响应信息中包含定时提前命令和指示用于承载HARQ应答信息的时频资源的信息,而调度该响应信息的PDCCH的CRC由用户唯一的标识加扰,比如调度该响应信息的PDCCH的CRC由用户的C-RNTI加扰。
在上述情况下,UE收到定时提前命令和PUCCH资源指示信息的时刻相同,即UE收到定时提前命令和PDSCH到HARQ反馈时间指示的PDSCH的结束时刻相同。
本申请实施例中,例如,指示信息和定时提前命令携带于同一个物理下行共享信道PDSCH中。又例如,定时提前命令携带于下行控制信息DCI中,指示信息携带于DCI调度的PDSCH中。又例如,指示信息和定时提前命令携带于同一个DCI中,又例如,或者定时提前命令携带于DCI调度的PDSCH中,指示信息携带于DCI中。
此时对于HARQ应答信息的发送时隙与定时提前命令的生效时隙的具体关系可如下所示:
方式一、
UE向基站发送HARQ应答信息的时隙满足如下公式(14)、(15)或(16):
n PUCCH=n TA+n B  (14)
或者,n PUCCH=n+k TA+n B  (15)
或者,n PUCCH=max{n+n B,n+k TA+1}  (16)
其中,n PUCCH为UE发送HARQ应答信息的时隙,n TA为定时提前命令的生效时隙,可以有n TA=n+k TA+1,时隙n为PDSCH的结束时隙,也可理解为时隙n为PDSCH的最后一个符号所对应的上行时隙,k TA为定时提前的调整参数,对于k TA的取值可以参考前述实施例。n B为预配置取值集合中的索引为B的具体取值,所述B为指示第一时域资源的字段具体取值,对于该B的具体描述可参考前述实施例。PDSCH的结束时隙,也可理解为PDSCH的结束时隙,即时隙n是UE收到携带定时提前命令和/或指示用于反馈HARQ应答信息的资源的信息的PDSCH所在的最后一个时隙,或者时隙n是携带了反馈HARQ应答信息的资源的DCI所调度的PDSCH的最后一个时隙。时隙n TA是UE收到的定时提前命令生效的时隙。同时,UE进行PUCCH传输时隙与UE收到的PDSCH的最后一个时隙之间的最小时隙间隔为N T,1+0.5(ms),其中N T,1为N 1个OFDM符号的时域长度(单位为ms),对应于PDSCH的接收时长,并且用户处理能力为1且配置了额外的PDSCH DMRS。如果μ=0,假设N T,1=14。
在一些实施例中,UE向基站发送HARQ应答信息的时隙还可满足如下公式(17)、(18)或(19):
n PUCCH=n TA+n BRAR  (17)
或者,n PUCCH=n+k TA+n BRAR  (18)
或者,n PUCCH=max{n+n BRAR,n+k TA+1}  (19)
其中,n PUCCH为UE发送HARQ应答信息的时隙,Δ RAR为网络预配置的一个常数,Δ RAR的取值根据子载波间隔μ来确定,示例性的,Δ RAR与子载波间隔μ的关系如表4所示:
表4
μ Δ RAR
0 2
1 3
2 4
3 6
其中,子载波间隔μ可以是以下几种数据信道的子载波间隔取值中的一种:子载波间隔μ是UE待发送的PUSCH的子载波间隔;或者载波间隔μ是UE待发送的PUCCH的子载波间隔,该PUCCH用于发送HARQ应答信息;或者载波间隔μ是UE收到的PDSCH的子载波间隔,UE接收该PDSCH后需要发送HARQ应答信息。
可以理解,Δ RAR与子载波间隔μ的关系可以是其他预定义的关系,不限于上述表4中所列举的取值关系。
该n B可以是PDSCH到HARQ反馈时间指示字段指示的具体数值;或者,该n B也可以是根据该指示字段所指示的索引号获得的预定义的取值集合中的数值。例如,该n B的取值可包括以下两种方法:
方法一、n B=PDSCH到HARQ反馈时间指示字段对应的具体取值。
对于方法一来说,即PDSCH到HARQ反馈时间指示字段所指示的值为多少,该n B即为多个。例如,PDSCH到HARQ反馈时间指示字段的比特长度为3bit,则n B的取值为PDSCH到HARQ反馈时间指示字段的比特所对应的取值0~7;可以理解,PDSCH到HARQ反馈时间指示字段的比特长度并不限定于示例中所描述的比特长度。
方法二、n B=预设的取值集合中的一个具体取值,而PDSCH到HARQ反馈时间指示字段的具体取值对应该预设的取值集合的索引号。
对于方法二来说,n B与PDSCH到HARQ反馈时间指示字段所指示的值之间有索引关系。例如PDSCH到HARQ反馈时间指示字段的比特长度为3bit,则n B的取值为0~7,网络的配置的PDSCH到HARQ反馈时间的偏移值集合为{1,2,3,4,5,6,7,8},则当PDSCH到HARQ反馈时间指示字段的比特为000时,n B=1,当PDSCH到HARQ反馈时间指示字段的比特为001时,n B=2,依此类推。可以理解,PDSCH到HARQ反馈时间指示字段的比特长度并不限定于示例中所描述的比特长度,网络的配置的PDSCH到HARQ反馈时间的偏移值集合并不限定于示例中所描述的取值结合。
可理解,以上所示的方法一和方式二仅为示例,不应将其理解为对本申请实施例的限定。
方式二、
如果UE处于RRC连接态,UE的定时提前计时器是运行的,或者UE的定时提前状态有效,此时如果基站向UE发送的响应信息中仍包含了定时提前命令和指示用于反馈 HARQ应答信息的资源的信息。则定时提前命令的生效时隙满足如公式(20),同时,定时提前计时器重启或更新计时。
n TA_update=n+k TA+Δ  (20)
UE向基站发送HARQ应答信息的时隙满足如下公式(21)、(22)、(23)或(24):
n PUCCH=n TA_update+n B  (21)
或者,n PUCCH=n+k TA+n B  (22)
或者,n PUCCH=max{n+n B,n TA_update}  (23)
或者,n PUCCH=n+n B  (24)
其中,Δ为常量(如可为1),n PUCCH为UE发送HARQ应答信息的时隙,n TA为定时提前命令的生效时隙,时隙n为PDSCH的最后一个符号所对应的上行时隙。该PDSCH承载基站发送的响应信息,k TA为TA调整参数,n B为索引为第一时域资源的具体取值。k TA和n B的取值参考前述实施例中的描述。
在另一些实施例中,UE向基站发送HARQ应答信息的时隙满足如下公式(25)、(26)、(27)或(28):
n PUCCH=n TA_update+n BRAR  (25)
或者,n PUCCH=n+k TA+n BRAR  (26)
或者,n PUCCH=max{n+n BRAR,n TA_update}  (27)
或者,n PUCCH=n+n BRAR  (28)
n PUCCH为UE发送HARQ应答信息的时隙,Δ RAR为网络预配置的一个常数,Δ RAR的取值根据子载波间隔μ来确定,示例性的,Δ RAR与子载波间隔μ的关系如表4所示。
可以理解,Δ RAR与子载波间隔μ的关系可以是其他预定义的关系,不限于上述表4中所列举的取值关系。
其中,对于公式(14)和(21)表示UE在定时提前命令生效的时隙即定时提前命令生效或者更新的时隙开始计算PUCCH的传输时隙。对于公式(15)、(16)、(22)和(23)表示PUCCH的发送可以与定时提前命令生效的时刻相同,或者在定时提前命令生效的时刻上考虑时隙偏移值;公式(24)则表示PUCCH的发送可以在当前的定时提前状态有效时发送,无需等待定时提前命令更新。
本申请实施例中,UE发送HARQ应答信息PUCCH的传输时刻考虑终端收到的定时提前命令生效的时隙间隔,保证终端发送PUCCH的有效性,基站能正确检测PUCCH。
在本申请的一些实施例中,若基站向UE发送的正确响应信息中不包括定时提前命令,则UE向基站发送HARQ应答信息的时隙可满足如下公式(29):
n PUCCH=n+n B  (29)
其中,时隙n是基站发送的携带正确响应信息的PDSCH所在的最后一个符号所对应的上行时隙,该PDSCH中携带了指示用于反馈HARQ应答信息的资源,或者调度该PDSCH资源的DCI中携带了指示用于反馈HARQ应答信息的资源。
在本申请的一些实施例中,在不同的随机接入过程中,响应信息可以是以下任一种,比如UE发起四步随机过程时,会收到基站发送的针对前导码的随机接入响应(RAR)信 息;或者在一些实施例中,UE发起两步随机接入过程,基站只检测到了发送的前导码,UE会受到基站发送的针对前导码的回退响应(fallbackRAR)信息;或者在一些其实施例中,UE发起两步随机接入过程,当两步随机接入过程达到最大发送次数后,UE会回退到四步随机接入,此时UE会收到基站发送的针对前导码的随机接入响应(RAR)信息;或者在一些实施例中,UE只发送了上行数据(承载于PUSCH),基站只检测到了PUSCH的DMRS,此时,UE会收到基站发送的针对DMRS的随机接入响应。当基站对前导码/DMRS检测正确,则基站向UE发送针对该前导码/DMRS的响应信息,UE接收该响应信息,该响应信息中包括定时提前命令。该定时提前命令用于UE进行上行数据传输的时刻调整,而上述上行数据传输不包含由该响应信息中的上行调度授权(UL grant)所调度的PUSCH传输。
在本申请的一些实施例中,UE获得用于反馈HARQ应答信息的资源的信息还有其他方法:
UE还可以根据DCI中的用于反馈HARQ应答信息的公共指示信息和用户级的用于反馈HARQ应答信息的资源的信息获得所述第一时域资源和第一频域资源。而用户级的用于反馈HARQ应答信息的资源的信息包含于通过所述DCI调度的PDSCH携带的响应信息中。用户级的用于反馈HARQ应答信息的资源的信息在PDSCH携带的响应信息中的形式这里不限制,可以是
1.通过前述实施例中响应信息中的第一RNTI携带,即跟前述实施例中的方法相同;
2.或者通过响应信息中的独立字段携带。比如,独立的第一字段和第二字段。
UE接收到基站发送的响应信息,根据DCI中携带的用于反馈HARQ应答信息的公共指示信息和响应信息中携带的用户级的用于反馈HARQ应答信息的资源的信息获得所述用户反馈HARQ应答信息的第一时域资源和第一频域资源。
用于反馈HARQ应答信息的公共指示信息中包含PUCCH资源公共指示和PDSCH到HARQ反馈时间公共指示,用户级的用于反馈HARQ应答信息的资源的信息包含用户级的PUCCH资源指示和用户级的PDSCH到HARQ反馈时间指示。
用于反馈HARQ应答信息的公共指示信息和用户级的用于反馈HARQ应答信息的资源的信息获得第一时域资源和第一频域资源的方法如下:
UE根据PUCCH资源指示获得用于反馈HARQ应答信息的频域资源(即第一频域资源)参考公式(30),公式(30)与公式(11)相同,
Figure PCTCN2019116875-appb-000008
或者r PUCCH=Δ PRI  (30)
其中PUCCH资源指示是根据用于反馈HARQ应答信息的公共指示信息和用户级的用于反馈HARQ应答信息的资源的信息获得。Δ PRI=Δ PRI_comPRI_UEPRI_com为PUCCH资源公共指示字段的取值,Δ PRI_UE为用户级的PUCCH资源指示字段的取值。
UE根据PDSCH到HARQ反馈时间指示获得用于反馈HARQ应答信息的时域资源(即第一时域资源)可参考公式(14)/(17),(15)/(18),(16)/(19),或者参考公式(18)/(25),(19)/(26),(20)/(27),(21)/(28);或者参考公式(29)。其中n ,B为根据PDSCH到HARQ反馈时间指示取值B获得预配置的取值集合中的取值,B=B com+B UE,B com为PDSCH到 HARQ反馈时间公共指示字段的取值,B UE为用户级的PDSCH到HARQ反馈时间指示字段的取值。
可理解,以上各个实施例各有侧重,其中一个实施例中未详细描述的实现方式可参考其他实施例,这里不再一一赘述。例如,对于图8所示方法的具体实现方式,可参考图5所示方法的描述。进一步的,本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现。
以下将详细描述本申请实施例所提供的通信装置。
图9是本申请实施例提供的一种通信装置的结构示意图。该通信装置用于执行本申请实施例所描述的方法,如图9所示,该通信装置包括:
例如,该通信装置可以为终端设备,也可以为芯片。
接收单元901,用于接收来自网络设备的随机接入响应;其中,上述随机接入响应中包括第一无线网络临时标识RNTI,上述第一RNTI中包括第一字段和第二字段,上述第一字段用于指示第一频域资源,上述第二字段用于指示第一时域资源;
发送单元902,用于根据上述第一时域资源和上述第一频域资源发送混合自动重传请求HARQ应答信息。
例如,该通信装置还可为网络设备。其中,
接收单元901,可用于接收来自终端设备的随机接入请求;
发送单元902,可用于向上述终端设备发送随机接入响应;其中,上述随机接入响应中包括第一无线网络临时标识RNTI,上述第一RNTI中包括第一字段和第二字段,上述第一字段用于指示第一频域资源,上述第二字段用于指示第一时域资源,且上述第一频域资源和上述第一时域资源用于指示混合自动重传请求HARQ应答信息的时频资源,上述HARQ应答信息用于反馈上述随机接入响应被正确接收。
在一种可能的实现方式中,上述第一RNTI的值根据上述第一字段的比特长度i对应的N进制值和上述第二字段的比特长度j对应的N进制值得到,上述N进制包括:十进制、八进制、十六进制中的任一项。
在一种可能的实现方式中,上述第一RNTI的值满足如下条件:
0<D 1≤第一阈值,且D 1≠D 2
D 1=C*2 i+j+A*2 j+B或者D 1=C*2 i+j+B*2 i+A
其中,上述D 1为上述第一RNTI的值,上述D 2为第二RNTI的值,上述i为上述第一字段的比特长度,上述j为上述第二字段的比特长度,上述A为上述i比特的十进制值,上述B为上述j比特的十进制值,上述C为k比特的十进制值,且i+j+k=L,上述L为上述第一RNTI的比特长度。
在一种可能的实现方式中,上述第一RNTI的值还满足如下条件:
第二阈值<D 1≤第一阈值。
在一种可能的实现方式中,上述第一RNTI的值满足如下条件:
0<D 1≤第一阈值,且D 1≠D 2
D 1=A*2 j+k+B*2 k+C或者D 1=B*2 i+k+A*2 k+C
其中,上述D 1为上述第一RNTI的值,上述D 2为第二RNTI的值,上述i为上述第一字段的比特长度,上述j为上述第二字段的比特长度,上述A为上述i比特的十进制值,上述B为上述j比特的十进制值,上述C为k比特的十进制值,且i+j+k=L,上述L为上述第一RNTI的比特长度。
在一种可能的实现方式中,上述终端设备向上述网络设备发送HARQ应答信息的时隙满足如下条件:
n PUCCH=n TA+n B
或者,n PUCCH=n+k TA+n B
或者,n PUCCH=max{n+n B,n+k TA+1}
其中,上述n PUCCH为上述终端设备发送上述HARQ应答信息的时隙,上述n TA为定时提前命令的生效时隙,上述n为PDSCH的最后一个符号所对应的上行时隙,上述k TA为TA调整参数,上述PDSCH承载上述随机接入响应,n B为预配置取值集合中的索引为B的具体取值。
本申请的一些实施例中,在图9所示的通信装置为终端设备,或者为终端设备的芯片时,接收单元901,用于接收来自网络设备的随机接入响应;其中,上述随机接入响应中包括指示信息,上述指示信息用于指示第一频域资源和第一时域资源;
发送单元902,用于根据上述第一时域资源和上述第一频域资源发送混合自动重传请求HARQ应答信息;其中,上述HARQ应答信息的发送时隙与定时提前命令的生效时隙相关。
在一种可能的实现方式中,上述随机接入响应中还包括上述定时提前命令;其中,
上述指示信息和上述定时提前命令携带于同一个物理下行共享信道PDSCH中;
或者,上述定时提前命令携带于下行控制信息DCI中,上述指示信息携带于上述DCI调度的PDSCH中;
或者,上述指示信息和上述定时提前命令携带于同一个DCI中。
在一种可能的实现方式中,向上述网络设备发送上述HARQ应答信息的时隙满足如下条件:
n PUCCH=n TA+n B
或者,n PUCCH=n+k TA+n B
或者,n PUCCH=max{n+n B,n+k TA+1}
其中,上述n PUCCH为上述终端设备发送上述HARQ应答信息的时隙,上述n TA为上述定时提前命令的生效时隙,上述n为PDSCH的最后一个符号所对应的上行时隙,上述k TA为TA调整参数,上述n B为预配置取值集合中的索引为B的具体取值,上述B为指示上述第一时域资源的字段具体取值。
在一种可能的实现方式中,其特征在于,上述定时提前命令的生效时隙满足如下条件:
n TA_update=n+k TA
向上述网络设备发送上述HARQ应答信息的时隙满足如下条件:
n PUCCH=n TA_update+n B
或者,n PUCCH=n+k TA+n B
或者,n PUCCH=max{n+n B,n TA_update}
或者,n PUCCH=n+n B
其中,上述Δ为常量,上述n PUCCH为上述终端设备发送上述HARQ应答信息的时隙,上述n TA_update为上述定时提前命令的生效时隙,上述n为PDSCH的最后一个符号所对应的上行时隙,上述k TA为TA调整参数,上述n B为预配置取值集合中的索引为B的具体取值,上述B为指示上述第一时域资源的字段具体取值。
需要理解的是,当上述通信装置是终端设备或终端设备中实现上述功能的部件时,上述装置还可包括处理单元,图9中未示出,该处理单元可以是一个或多个处理器,发送单元902可以是发送器,接收单元901可以是接收器,或者发送单元902和接收单元901集成于一个器件,例如收发器。
当上述通信装置是芯片时,处理单元可以是一个或多个处理器,发送单元902可以是输出接口,接收单元901可以是输入接口,或者发送单元902和接收单元901集成于一个单元,如收发单元,该收发单元可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。
可理解,对于图9所示的各个单元的实现可以参考前述实施例的相应描述。
如图10所示为本申请实施例提供的一种通信装置100,用于实现上述方法中终端设备的功能。当实现终端设备的功能时,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该装置还可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。装置100包括至少一个处理器1020,用于实现本申请实施例提供的方法中终端设备的功能。装置100还可以包括通信接口1010。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1010用于装置100中的装置可以和其它设备进行通信。处理器1020利用通信接口1010收发数据,并用于实现上述方法实施例所述的方法。
装置100还可以包括至少一个存储器1030,用于存储程序指令和/或数据。存储器1030和处理器1020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1020可能和存储器1030协同操作。处理器1020可能执行存储器1030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图10中以存储器1030、处理器1020以及通信接口1010之间通过总线1040连接,总线在图10中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
装置100具体是芯片或者芯片系统时,通信接口1010所输出或接收的可以是基带信号。装置100具体是设备时,通信接口1010所输出或接收的可以是射频信号。在本申请实施例 中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
作为示例,图11为本申请实施例提供的一种终端设备110的结构示意图。该终端设备可执行如图5和图8所示的方法,或者,该终端设备也可执行如图9所示的终端设备的操作。
为了便于说明,图11仅示出了终端设备的主要部件。如图11所示,终端设备110包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行图5和图8所描述的流程。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备110还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图11仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处 理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
示例性的,在申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备110的收发单元1101,将具有处理功能的处理器视为终端设备110的处理单元1102。
如图11所示,终端设备110可以包括收发单元1101和处理单元1102。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1101中用于实现接收功能的器件视为接收单元,将收发单元1101中用于实现发送功能的器件视为发送单元,即收发单元1101包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,收发单元1101、处理单元1102可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。
例如,收发单元1101可用于执行图6所示的方法。又例如,收发单元1101可用于执行图8所示的方法。
本申请实施例中的通信装置为终端设备时,还可以参照图12所示的设备。该设备包括处理器1212,发送数据处理器1220,接收数据处理器1230。上述实施例中的处理单元701可以是图12中的处理器1212,并完成相应的功能。上述实施例中的接收单元可以是图12中的接收数据处理器1230,发送单元可以是图12中的发送数据处理器1220。虽然图12中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
可理解的是,本申请实施例中的终端设备的实现方式,具体可参考前述各个实施例,这里不再详述。
图13为本申请实施例提供的一种网络设备1300的结构示意图。该网络设备可执行如图6和图8所示的方法中的网络设备的操作,或者该网络设备也可以执行图9所示的通信 装置为网络设备时的操作。
网络设备1300包括一个或多个远端射频单元(remote radio unit,RRU)1301和一个或多个基带单元(baseband unit,BBU)1302。上述RRU1301可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1313和射频单元1313。上述RRU1301部分主要用于射频信号的收发以及射频信号与基带信号的转换。上述BBU1302部分主要用于进行基带处理,对网络设备进行控制等。上述RRU1301与BBU1302可以是物理上设置在一起,也可以物理上分离设置的,即分布式网络设备。
上述BBU1302为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一个示例中,上述BBU1302可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网。上述BBU1302还包括存储器1321和处理器1322。上述存储器1321用以存储必要的消息和数据。上述处理器1322用于控制网络设备进行必要的动作,例如控制网络设备执行图13所示的相应的操作。上述存储器1321和处理器1322可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。可选的,处理器可以是CPU,NP或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是ASIC,PLD或其组合。上述PLD可以是CPLD,FPGA,GAL或其任意组合。存储器可以包括易失性存储器,例如RAM;存储器也可以包括非易失性存储器,例如快闪存储器,硬盘或固态硬盘;存储器还可以包括上述种类的存储器的组合。
可理解的是,本申请实施例中的网络设备的实现方式,具体可参考前述各个实施例,这里不再详述。
可理解,图13所示的网络设备仅为一种示例,在具体实现中,可能还存在其他类型的网络设备,因此,不应将图13所示的网络设备理解为对本申请实施例的限定。
可理解,根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图5或图8所示实施例中的方法。进一步的,可使得该计算机根据本申请实施例提供的各个场景来执行图5或图8所示的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图5或图8所示实施例中的方法。进一步的,可使得该计算机根据本申请实施例提供的各个场景来执行图5或图8所示的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的终端设备以及网络设备。其中,终端设备可用于执行本申请实施例提供的图5或图8所示的方法。网络设备也可用于执行本申请实施例提供的图5或图8所示的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地 产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种信息指示方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的随机接入响应;其中,所述随机接入响应中包括第一无线网络临时标识RNTI,所述第一RNTI中包括第一字段和第二字段,所述第一字段用于指示第一频域资源,所述第二字段用于指示第一时域资源;
    所述终端设备根据所述第一时域资源和所述第一频域资源发送混合自动重传请求HARQ应答信息。
  2. 一种信息指示方法,其特征在于,所述方法包括:
    网络设备接收来自终端设备的随机接入请求;
    所述网络设备向所述终端设备发送随机接入响应;其中,所述随机接入响应中包括第一无线网络临时标识RNTI,所述第一RNTI中包括第一字段和第二字段,所述第一字段用于指示第一频域资源,所述第二字段用于指示第一时域资源,且所述第一频域资源和所述第一时域资源用于指示混合自动重传请求HARQ应答信息的时频资源,所述HARQ应答信息用于反馈所述随机接入响应被正确接收。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一RNTI的值根据所述第一字段的比特长度i对应的N进制值和所述第二字段的比特长度j对应的N进制值得到,所述N进制包括:十进制、八进制、十六进制中的任一项。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一RNTI的值满足如下条件:
    0<D 1≤第一阈值,且D 1≠D 2
    D 1=C*2 i+j+A*2 j+B或者D 1=C*2 i+j+B*2 i+A
    其中,所述D 1为所述第一RNTI的值,所述D 2为第二RNTI的值,所述i为所述第一字段的比特长度,所述j为所述第二字段的比特长度,所述A为所述i比特的十进制值,所述B为所述j比特的十进制值,所述C为k比特的十进制值,且i+j+k=L,所述L为所述第一RNTI的比特长度。
  5. 根据权利要求4所述的方法,其特征在于,所述第一RNTI的值还满足如下条件:
    第二阈值<D 1≤第一阈值。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一RNTI的值满足如下条件:
    0<D 1≤第一阈值,且D 1≠D 2
    D 1=A*2 j+k+B*2 k+C或者D 1=B*2 i+k+A*2 k+C
    其中,所述D 1为所述第一RNTI的值,所述D 2为第二RNTI的值,所述i为所述第一字段的比特长度,所述j为所述第二字段的比特长度,所述A为所述i比特的十进制值,所述B为所述j比特的十进制值,所述C为k比特的十进制值,且i+j+k=L,所述L为所述第一RNTI的比特长度。
  7. 根据权利要求4-6任一项所述的方法,其特征在于,所述终端设备向所述网络设备发送HARQ应答信息的时隙满足如下条件:
    n PUCCH=n TA+n B
    或者,n PUCCH=n+k TA+n B
    或者,n PUCCH=max{n+n B,n+k TA+1}
    其中,所述n PUCCH为所述终端设备发送所述HARQ应答信息的时隙,所述n TA为定时提前命令的生效时隙,所述n为物理下行共享信道PDSCH的最后一个符号所对应的上行时隙,所述k TA为定时提前TA调整参数,所述PDSCH承载所述随机接入响应,n B为预配置取值集合中的索引为B的具体取值。
  8. 一种信息指示方法,其特征在于,所述方法包括:
    终端设备接收来自网络设备的随机接入响应;其中,所述随机接入响应中包括指示信息,所述指示信息用于指示第一频域资源和第一时域资源;
    所述终端设备根据所述第一时域资源和所述第一频域资源发送混合自动重传请求HARQ应答信息;其中,所述HARQ应答信息的发送时隙与定时提前命令的生效时隙相关。
  9. 根据权利要求8所述的方法,其特征在于,所述随机接入响应中还包括所述定时提前命令;其中,
    所述指示信息和所述定时提前命令携带于同一个物理下行共享信道PDSCH中;
    或者,所述定时提前命令携带于下行控制信息DCI中,所述指示信息携带于所述DCI调度的PDSCH中;
    或者,所述指示信息和所述定时提前命令携带于同一个DCI中。
  10. 根据权利要求8或9所述的方法,其特征在于,所述终端设备向所述网络设备发送所述HARQ应答信息的时隙满足如下条件:
    n PUCCH=n TA+n B
    或者,n PUCCH=n+k TA+n B
    或者,n PUCCH=max{n+n B,n+k TA+1}
    其中,所述n PUCCH为所述终端设备发送所述HARQ应答信息的时隙,所述n TA为所述定时提前命令的生效时隙,所述n为物理下行共享信道PDSCH的最后一个符号所对应的上行时隙,所述PDSCH承载所述随机接入响应,所述k TA为定时提前TA调整参数,所述n B为预配置取值集合中的索引为B的具体取值,所述B为指示所述第一时域资源的字段具体取值。
  11. 根据权利要求8或9所述的方法,其特征在于,所述定时提前命令的生效时隙满足如下条件:
    n TA_update=n+k TA
    所述终端设备向所述网络设备发送所述HARQ应答信息的时隙满足如下条件:
    n PUCCH=n TA_update+n B
    或者,n PUCCH=n+k TA+n B
    或者,n PUCCH=max{n+n B,n TA_update}
    或者,n PUCCH=n+n B
    其中,所述Δ为常量,所述n PUCCH为所述终端设备发送所述HARQ应答信息的时隙,所述n TA_update为所述定时提前命令的生效时隙,所述n为物理下行共享信道PDSCH的最后 一个符号所对应的上行时隙,所述PDSCH承载所述随机接入响应,所述k TA为TA调整参数,所述n B为预配置取值集合中的索引为B的具体取值,所述B为指示所述第一时域资源的字段具体取值。
  12. 一种通信装置,其特征在于,所述装置包括:
    接收单元,用于接收来自网络设备的随机接入响应;其中,所述随机接入响应中包括第一无线网络临时标识RNTI,所述第一RNTI中包括第一字段和第二字段,所述第一字段用于指示第一频域资源,所述第二字段用于指示第一时域资源;
    发送单元,用于根据所述第一时域资源和所述第一频域资源发送混合自动重传请求HARQ应答信息。
  13. 一种通信装置,其特征在于,所述装置包括:
    接收单元,用于接收来自终端设备的随机接入请求;
    发送单元,用于向所述终端设备发送随机接入响应;其中,所述随机接入响应中包括第一无线网络临时标识RNTI,所述第一RNTI中包括第一字段和第二字段,所述第一字段用于指示第一频域资源,所述第二字段用于指示第一时域资源,且所述第一频域资源和所述第一时域资源用于指示混合自动重传请求HARQ应答信息的时频资源,所述HARQ应答信息用于反馈所述随机接入响应被正确接收。
  14. 根据权利要求12或13所述的装置,其特征在于,所述第一RNTI的值根据所述第一字段的比特长度i对应的N进制值和所述第二字段的比特长度j对应的N进制值得到,所述N进制包括:十进制、八进制、十六进制中的任一项。
  15. 根据权利要求12-14任一项所述的装置,其特征在于,所述第一RNTI的值满足如下条件:
    0<D 1≤第一阈值,且D 1≠D 2
    D 1=C*2 i+j+A*2 j+B或者D 1=C*2 i+j+B*2 i+A
    其中,所述D 1为所述第一RNTI的值,所述D 2为第二RNTI的值,所述i为所述第一字段的比特长度,所述j为所述第二字段的比特长度,所述A为所述i比特的十进制值,所述B为所述j比特的十进制值,所述C为k比特的十进制值,且i+j+k=L,所述L为所述第一RNTI的比特长度。
  16. 根据权利要求15所述的装置,其特征在于,所述第一RNTI的值还满足如下条件:
    第二阈值<D 1≤第一阈值。
  17. 根据权利要求12-14任一项所述的装置,其特征在于,所述第一RNTI的值满足如下条件:
    0<D 1≤第一阈值,且D 1≠D 2
    D 1=A*2 j+k+B*2 k+C或者D 1=B*2 i+k+A*2 k+C
    其中,所述D 1为所述第一RNTI的值,所述D 2为第二RNTI的值,所述i为所述第一字段的比特长度,所述j为所述第二字段的比特长度,所述A为所述i比特的十进制值,所述B为所述j比特的十进制值,所述C为k比特的十进制值,且i+j+k=L,所述L为所述第一RNTI的比特长度。
  18. 根据权利要求15-17任一项所述的装置,其特征在于,所述终端设备向所述网络 设备发送HARQ应答信息的时隙满足如下条件:
    n PUCCH=n TA+n B
    或者,n PUCCH=n+k TA+n B
    或者,n PUCCH=max{n+n B,n+k TA+1}
    其中,所述n PUCCH为所述终端设备发送所述HARQ应答信息的时隙,所述n TA为定时提前命令的生效时隙,所述n为物理下行共享信道PDSCH的最后一个符号所对应的上行时隙,所述k TA为定时提前TA调整参数,所述PDSCH承载所述随机接入响应,n B为预配置集合中的索引为B的具体取值。
  19. 一种通信装置,其特征在于,所述装置包括:
    接收单元,用于接收来自网络设备的随机接入响应;其中,所述随机接入响应中包括指示信息,所述指示信息用于指示第一频域资源和第一时域资源;
    发送单元,用于根据所述第一时域资源和所述第一频域资源发送混合自动重传请求HARQ应答信息;其中,所述HARQ应答信息的发送时隙与定时提前命令的生效时隙相关。
  20. 根据权利要求19所述的装置,其特征在于,所述随机接入响应中还包括所述定时提前命令;其中,
    所述指示信息和所述定时提前命令携带于同一个物理下行共享信道PDSCH中;
    或者,所述定时提前命令携带于下行控制信息DCI中,所述指示信息携带于所述DCI调度的PDSCH中;
    或者,所述指示信息和所述定时提前命令携带于同一个DCI中。
  21. 根据权利要求19或20所述的装置,其特征在于,向所述网络设备发送所述HARQ应答信息的时隙满足如下条件:
    n PUCCH=n TA+n B
    或者,n PUCCH=n+k TA+n B
    或者,n PUCCH=max{n+n B,n+k TA+1}
    其中,所述n PUCCH为所述终端设备发送所述HARQ应答信息的时隙,所述n TA为所述定时提前命令的生效时隙,所述n为物理下行共享信道PDSCH的最后一个符号所对应的上行时隙,所述PDSCH承载所述随机接入响应,所述k TA为定时提前TA调整参数,所述n B为预配置取值集合中的索引为B的具体取值,所述B为指示所述第一时域资源的字段具体取值。
  22. 根据权利要求19或20所述的装置,其特征在于,所述定时提前命令的生效时隙满足如下条件:
    n TA_update=n+k TA
    向所述网络设备发送所述HARQ应答信息的时隙满足如下条件:
    n PUCCH=n TA_update+n B
    或者,n PUCCH=n+k TA+n B
    或者,n PUCCH=max{n+n B,n TA_update}
    或者,n PUCCH=n+n B
    其中,所述Δ为常量,所述n PUCCH为所述终端设备发送所述HARQ应答信息的时隙, 所述n TA_update为所述定时提前命令的生效时隙,所述n为物理下行共享信道PDSCH的最后一个符号所对应的上行时隙,所述PDSCH承载所述随机接入响应,所述k TA为TA调整参数,所述n B为预配置取值集合中的索引为B的具体取值,所述B为指示所述第一时域资源的字段具体取值。
  23. 一种通信装置,其特征在于,所述装置包括处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1-11任一项所述的方法。
  24. 一种通信装置,其特征在于,所述装置包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以使得所述通信装置执行如权利要求1-11任一项所述的方法。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1-11中任一项所述的方法被实现。
  26. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被执行时,使如权利要求1-11任一项所述的方法被实现。
PCT/CN2019/116875 2019-11-08 2019-11-08 信息指示方法及装置 WO2021088075A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2022526172A JP7402327B2 (ja) 2019-11-08 2019-11-08 情報表示方法及び装置
CN201980101838.0A CN114616911A (zh) 2019-11-08 2019-11-08 信息指示方法及装置
KR1020227017721A KR20220089705A (ko) 2019-11-08 2019-11-08 정보 지시 방법 및 장치
PCT/CN2019/116875 WO2021088075A1 (zh) 2019-11-08 2019-11-08 信息指示方法及装置
BR112022008662A BR112022008662A2 (pt) 2019-11-08 2019-11-08 Método e aparelho de indicação de informações
EP19952082.6A EP4044747A4 (en) 2019-11-08 2019-11-08 METHOD AND APPARATUS FOR INDICATING INFORMATION
US17/738,213 US20220272771A1 (en) 2019-11-08 2022-05-06 Information Indication Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/116875 WO2021088075A1 (zh) 2019-11-08 2019-11-08 信息指示方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/738,213 Continuation US20220272771A1 (en) 2019-11-08 2022-05-06 Information Indication Method and Apparatus

Publications (2)

Publication Number Publication Date
WO2021088075A1 true WO2021088075A1 (zh) 2021-05-14
WO2021088075A8 WO2021088075A8 (zh) 2022-05-27

Family

ID=75849546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116875 WO2021088075A1 (zh) 2019-11-08 2019-11-08 信息指示方法及装置

Country Status (7)

Country Link
US (1) US20220272771A1 (zh)
EP (1) EP4044747A4 (zh)
JP (1) JP7402327B2 (zh)
KR (1) KR20220089705A (zh)
CN (1) CN114616911A (zh)
BR (1) BR112022008662A2 (zh)
WO (1) WO2021088075A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130251A1 (en) * 2022-01-05 2023-07-13 Zte Corporation Non-terrestrial wireless communication method, device, and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117479283A (zh) * 2022-07-18 2024-01-30 上海朗帛通信技术有限公司 一种用于无线通信的方法和装置
CN115066011B (zh) * 2022-08-18 2022-11-22 广州世炬网络科技有限公司 小区管理终端的方法及系统
CN116582231B (zh) * 2023-07-12 2023-12-22 深圳传音控股股份有限公司 处理方法、通信设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616443A (zh) * 2008-06-23 2009-12-30 华为技术有限公司 消息处理方法、装置以及系统
US20180323920A1 (en) * 2017-05-05 2018-11-08 Motorola Mobility Llc Indicating resources for transmitting modulation symbols
CN109495975A (zh) * 2017-09-11 2019-03-19 北京三星通信技术研究有限公司 随机接入方法、基站设备及用户设备
CN109756991A (zh) * 2017-11-06 2019-05-14 华为技术有限公司 通信方法及装置
US20190222400A1 (en) * 2018-01-16 2019-07-18 Lenovo (Singapore) Pte. Ltd. Rate-matching a data transmission around resources
CN110351878A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种随机接入处理方法和相关设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034865B (zh) * 2018-01-12 2020-09-15 维沃移动通信有限公司 Pucch资源的确定方法及其接收方法、终端设备和网络侧设备
WO2019160364A1 (ko) * 2018-02-14 2019-08-22 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101616443A (zh) * 2008-06-23 2009-12-30 华为技术有限公司 消息处理方法、装置以及系统
US20180323920A1 (en) * 2017-05-05 2018-11-08 Motorola Mobility Llc Indicating resources for transmitting modulation symbols
CN109495975A (zh) * 2017-09-11 2019-03-19 北京三星通信技术研究有限公司 随机接入方法、基站设备及用户设备
CN109756991A (zh) * 2017-11-06 2019-05-14 华为技术有限公司 通信方法及装置
US20190222400A1 (en) * 2018-01-16 2019-07-18 Lenovo (Singapore) Pte. Ltd. Rate-matching a data transmission around resources
CN110351878A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种随机接入处理方法和相关设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON, NOKIA, NOKIA SHANGHAI BELL: "Msg3 buffer handling for EDT in 36.321", 3GPP DRAFT; R2-1816021 MSG3 BUFFER HANDLING FOR EDT IN 36.321, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chengdu, China; 20181008 - 20181012, 12 October 2018 (2018-10-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051525211 *
See also references of EP4044747A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023130251A1 (en) * 2022-01-05 2023-07-13 Zte Corporation Non-terrestrial wireless communication method, device, and storage medium

Also Published As

Publication number Publication date
KR20220089705A (ko) 2022-06-28
EP4044747A1 (en) 2022-08-17
US20220272771A1 (en) 2022-08-25
EP4044747A4 (en) 2022-11-02
CN114616911A (zh) 2022-06-10
WO2021088075A8 (zh) 2022-05-27
JP2023500344A (ja) 2023-01-05
JP7402327B2 (ja) 2023-12-20
BR112022008662A2 (pt) 2022-07-19

Similar Documents

Publication Publication Date Title
US11825488B2 (en) Techniques in configured grant uplink transmission in new radio (NR) systems operating in unlicensed spectrum
TWI691225B (zh) 衝突處理之方法、及其使用者設備和基地台
CN110035550B (zh) 上行控制信息传输方法和通信装置
WO2021089043A1 (zh) 传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质
WO2021088075A1 (zh) 信息指示方法及装置
US12010690B2 (en) Communication method, communications apparatus, and storage medium
WO2019214424A1 (zh) 通信方法和通信装置
EP3648389A1 (en) Communication method, network device, and relay device
WO2018082414A1 (zh) 免授权传输的方法、终端和网络设备
WO2020052573A1 (zh) 通信方法、装置及计算机存储介质
EP3661298B1 (en) Wireless communication method and apparatus
EP2870815A1 (en) Methods and apparatus for contention based transmission
US11129173B2 (en) Method and apparatus for transmitting sidelink feedback information
US10548170B2 (en) Method, device, computer-readable storage and carrier for random access
EP4301076A1 (en) Communication method and apparatus
US20220377766A1 (en) Configured ul with repetition
WO2021073534A1 (en) Method and apparatus for downlink control information
US20230371040A1 (en) Information determination method and apparatus, device, and storage medium
WO2021217378A1 (zh) 无线通信方法、终端设备和网络设备
JP2023547806A (ja) 通信方法および装置
WO2021088026A1 (zh) 一种确定数据传输反馈时延的方法及装置
US20220368505A1 (en) Data feedback method and apparatus
WO2018201850A1 (zh) 资源配置方法、装置和系统
WO2023011120A1 (zh) 一种通信方法、装置及系统
CN114982168B (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526172

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022008662

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227017721

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019952082

Country of ref document: EP

Effective date: 20220512

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022008662

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220504