WO2021089043A1 - 传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质 - Google Patents

传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质 Download PDF

Info

Publication number
WO2021089043A1
WO2021089043A1 PCT/CN2020/127522 CN2020127522W WO2021089043A1 WO 2021089043 A1 WO2021089043 A1 WO 2021089043A1 CN 2020127522 W CN2020127522 W CN 2020127522W WO 2021089043 A1 WO2021089043 A1 WO 2021089043A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission channel
lbt
transmission
information
configuration information
Prior art date
Application number
PCT/CN2020/127522
Other languages
English (en)
French (fr)
Inventor
李新彩
赵亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/774,809 priority Critical patent/US20220408420A1/en
Priority to EP20884830.9A priority patent/EP4057754A4/en
Priority to CA3157086A priority patent/CA3157086A1/en
Priority to KR1020227017640A priority patent/KR20220087542A/ko
Publication of WO2021089043A1 publication Critical patent/WO2021089043A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1858Transmission or retransmission of more than one copy of acknowledgement message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • This application relates to a wireless communication network, for example, to a method and device for configuring a transmission channel, a method and device for sending a transmission channel, equipment, and a storage medium.
  • the NR system can support the highest frequency of 52.6 GHz, and in subsequent versions such as R17, it will support higher frequency bands. Due to the relatively greater influence of channel fading and multipath in the high frequency band, the coverage performance of the uplink transmission channel is reduced, and the data transmission efficiency is reduced.
  • This application provides a method and device for configuring a transmission channel, a method and device for sending a transmission channel, equipment, and a storage medium.
  • a method for configuring a transmission channel including:
  • resource configuration information includes time domain resource information, frequency domain resource information, and spatial direction information, and the resource configuration information is used to configure the transmission mode of the user equipment transmission channel;
  • the transmission channel is received according to the resource configuration information.
  • a method for sending a transmission channel including:
  • resource configuration information sent by the base station, where the resource configuration information includes time domain resource information, frequency domain resource information, and spatial direction information;
  • a device for configuring a transmission channel including:
  • the first sending module is configured to send resource configuration information to the user equipment, where the resource configuration information includes: time domain resource information, frequency domain resource information, and spatial direction information, and the resource configuration information is used to configure the user equipment to transmit The sending mode of the channel;
  • the first receiving module is configured to receive the transmission channel according to the resource configuration information.
  • a device for sending a transmission channel including:
  • the second receiving module is configured to receive resource configuration information sent by the base station, where the resource configuration information includes time domain resource information, frequency domain resource information, and spatial direction information;
  • the second sending module is set to configure the sending mode of the transmission channel according to the resource configuration information, and send the transmission channel.
  • a device including:
  • One or more processors are One or more processors;
  • Memory used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement any method as in the embodiments of the present application.
  • a storage medium is also provided, the storage medium stores a computer program, and when the computer program is executed by a processor, any one of the methods in the embodiments of the present application is implemented.
  • FIG. 1 is a schematic structural diagram of a wireless network system provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of sending data in one beam direction according to an embodiment
  • FIG. 3 is a flowchart of a method for configuring a transmission channel in an embodiment of the present application
  • Fig. 4 is a flowchart of a method for sending a transmission channel in an embodiment of the present application
  • FIG. 5 is a schematic diagram of sending data in different beam directions in an embodiment of the present application.
  • Fig. 6 is a schematic diagram of beam direction priority in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of PUCCH transmission across slot boundaries in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the execution sequence of LBT in the case of multiple beam directions in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the execution sequence of LBT in still another case of multiple beam directions in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an apparatus for configuring a transmission channel in an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a transmission channel sending device in an embodiment of the present application.
  • Fig. 12 is a schematic structural diagram of a device provided by the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LIE-A Advanced long term evolution
  • UMTS Universal Mobile Telecommunication System
  • 5G fifth generation mobile network
  • FIG. 1 is a schematic structural diagram of a wireless network system provided by an embodiment of this application.
  • the wireless network system 100 includes a base station 101, a user equipment 110, a user equipment 120, and a user equipment 130.
  • the base station 101 performs wireless communication with the user equipment 110, the user equipment 120, and the user equipment 130, respectively.
  • the base station may be a device that can communicate with user equipment.
  • the base station can be any device with wireless transceiver functions, including but not limited to: base station NodeB, evolved base station eNodeB, base station in 5G communication system, base station in future communication system, wireless fidelity (Wireless Fidelity, WiFi) system In the access node, wireless relay node, wireless backhaul node, etc.
  • the base station may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario; the base station may also be a small station, a transmission reference point (TRP), etc., which are not limited in this embodiment of the application.
  • cloud radio access network cloud radio access network, CRAN
  • TRP transmission reference point
  • User equipment is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, Balloons and satellites are classy).
  • the user equipment may be a mobile phone (mobile phone), a tablet computer (Portable Android Device, Pad), a computer with wireless transceiver function, a virtual reality (Virtual Reality, VR) terminal, an augmented reality (Augmented Reality, AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety
  • a virtual reality Virtual Reality, VR
  • an augmented reality Augmented Reality, AR
  • an industrial Wireless terminals in industrial control wireless terminals in self-driving
  • wireless terminals in remote medical wireless terminals in smart grid
  • the embodiments of this application do not limit the application scenarios.
  • User equipment can sometimes be called terminal, access terminal, User Equipment (UE) unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile equipment, UE terminal, wireless communication equipment, UE agent Or UE device, etc.
  • UE User Equipment
  • the embodiments of the present application are not limited.
  • the uplink channel of the user equipment includes the Physical Uplink Shared Channel (PUSCH), the Physical Uplink Control Channel (PUCCH), and the Physical Random Access Channel (PRACH).
  • PUSCH can transmit data information, scheduling request (Scheduling Request, SR), Hybrid Automatic Repeat Request (Acknowledgement, HARQ ACK) and channel state information (Channel State Information, CSI), and PUCCH can transmit scheduling request (Scheduling Request, SR), HARQ-ACK and CSI.
  • the NR system can support the highest frequency of 52.6 GHz, and in subsequent versions such as R17, it will support higher frequency bands.
  • a large section of spectrum belongs to shared unlicensed frequency bands, such as above 60 GHz, but the high frequency is relatively more affected by channel fading and multipath, so the coverage performance of PUCCH is reduced, and PUCCH transmission methods need to be enhanced.
  • NR systems face many problems when using unlicensed carriers.
  • LBT Listen Before Talk
  • CCA Clear Channel Assessment
  • the LBT method is omnidirectional, without standardized orientation, and includes two categories, one with random backoff, and the other without random backoff. For high frequencies, if the omnidirectional LBT method is still used, the probability of space reuse will be greatly reduced.
  • the resource allocation for PUCCH is allocated in units of resource blocks (Resource Block, RB), and one PUCCH can only occupy one RB or multiple consecutive RBs at a time.
  • resource Block RB
  • the bandwidth occupied by user equipment data transmission must exceed 80% of the LBT bandwidth. Therefore, PUCCH usually uses interleaving for transmission, but how to allocate interleaving units, especially in high-frequency scenarios, is still There is no conclusion.
  • Beam transmission is an effective way to improve the coverage performance of high frequency bands.
  • the base station uses multiple antennas to form a beam only in the direction of the communicating user equipment to transmit signals. Through this technology, it is possible to reduce the escape direction of wireless signals and prevent or reduce interference to other terminals existing in other places.
  • Fig. 2 is a schematic diagram of sending data in one beam direction according to an embodiment. As shown in Fig. 2, for PUCCH, only one beam direction can be configured for transmission, that is, the user equipment can only form a beam along one beam direction.
  • Fig. 3 is a flowchart of a method for configuring a transmission channel in an embodiment of the present application.
  • the method may be applicable to a situation where a base station configures resources on a high-frequency carrier.
  • This method can be executed by the transmission channel configuration device provided in this application, and the transmission channel configuration device can be implemented by software and/or hardware.
  • the transmission channel configuration method is applied to a base station.
  • the method for configuring the transmission channel mainly includes steps S11 and S12.
  • the resource configuration information includes time domain resource information, frequency domain resource information, and spatial direction information, and the resource configuration information is used to configure a transmission mode of the user equipment transmission channel.
  • the base station sends resource configuration information to the user equipment so that the user equipment configures the transmission channel, so that the base station and the user equipment can negotiate the transmission mode of the high-band transmission channel through messages, which solves the problem of transmission channel coverage.
  • the problems of performance degradation and low data transmission efficiency have enhanced the transmission method of the transmission channel.
  • the transmission channel refers to the uplink control channel of the user equipment, and mainly includes PUSCH, PUCCH and PRACH.
  • PUCCH is taken as an example for description.
  • the resource configuration information is sent to the user equipment in one of the following ways: system messages, RRC signaling, downlink DCI, or Media Access Control Control Element (MAC CE).
  • system messages RRC signaling, downlink DCI, or Media Access Control Control Element (MAC CE).
  • MAC CE Media Access Control Control Element
  • the time domain resource information includes one or more of the following: the number of resource units RU, the slot position and symbol position of the demodulation reference signal (Demodulation Reference Signal, DMRS), Start symbol, number of symbols, number of time slots.
  • demodulation Reference Signal Demodulation Reference Signal, DMRS
  • the number of time slots is used to indicate the number of time slots for PUCCH transmission
  • the number of RUs is used to indicate the number of RU units for PUCCH transmission.
  • the number of RUs and the number of time slots are configured by the base station.
  • the start symbol is used to indicate the position of the symbol in the first time slot when the transmission channel transmits multiple time slots; the number of symbols is used to indicate the position of the symbol in the transmission channel The position of the symbol in the last slot when multiple slots are transmitted.
  • the start symbol is used to indicate the position of the symbol in the first RU when multiple RUs are transmitted on the transmission channel; the number of symbols is used to indicate the number of symbols transmitted on the transmission channel.
  • the symbol position in the last RU in the case of one RU.
  • the same transmission channel is configured with one or more start symbols.
  • the time slot position and symbol position of the DMRS are used to determine the time slot where the DMRS is located and the symbol position in the time slot where the DMRS is located.
  • the frequency domain resource information includes one or more of the following: interleaving unit indication information, frequency domain resource allocation type indication information, and frequency domain resource allocation type switching indication information.
  • the interleaving unit indication information includes one or more of the following: interleaving unit index, interleaving unit offset, interleaving unit bitmap, start and length indicator (SLIV) ) Value, subband index and offset relative to the first RB of the subband.
  • the frequency domain resource allocation type indication information is used to indicate a frequency domain resource allocation method corresponding to a transmission channel, wherein the frequency domain resource allocation method includes a continuous resource allocation method and an interleaved resource allocation method ;
  • the frequency domain resource allocation type switching indication information is used to indicate the dynamic switching of the resource allocation mode.
  • the spatial direction information is a spatial relationship between a spatial reference signal RS and a transmission channel
  • the reference signal includes any one of the following: SSB, channel state Information Reference Signal (Channel State Information Reference Signal, CSI-RS), Sounding Reference Signal (Sounding Reference Signal, SRS), Discovery Reference Signal (Discovery Reference Signal, DRS), and the spatial direction information is configured by UE-specific parameters.
  • different spatial reference signals RS have a priority order
  • different beam directions have a priority order
  • FIG. 4 is a flowchart of a method for sending a transmission channel in an embodiment of the present application.
  • the method may be applicable to a situation where a user equipment performs resource configuration according to resource configuration information.
  • the method can be executed by the transmission channel sending device provided in the present application, and the transmission channel sending device can be implemented by software and/or hardware, and the transmission channel sending method is applied to the user equipment.
  • the method for sending a transmission channel mainly includes steps S21 and S22.
  • S21 Receive resource configuration information sent by the base station, where the resource configuration information includes time domain resource information, frequency domain resource information, and spatial direction information.
  • the user equipment is used to configure the transmission channel according to the resource configuration information sent by the base station, so that the base station and the user equipment can negotiate the transmission mode of the high-band transmission channel through a message, which solves the problem of transmission channel coverage performance degradation.
  • the problem of low transmission efficiency enhances the transmission mode of the transmission channel.
  • the transmission channel refers to the uplink control channel of the user equipment, which mainly includes PUSCH, PUCCH and PRACH.
  • PUCCH is taken as an example for description.
  • the time domain resource information includes one or more of the following: the number of resource units RU, the slot position and symbol position of the demodulation reference signal DMRS, the start symbol, the number of symbols, the number of slots .
  • the start symbol is used to indicate the position of the symbol in the first time slot when the transmission channel transmits multiple time slots; the number of symbols is used to indicate the position of the symbol in the transmission channel The position of the symbol in the last slot when multiple slots are transmitted.
  • the start symbol is used to indicate the position of the symbol in the first RU when multiple RUs are transmitted on the transmission channel; the number of symbols is used to indicate the number of symbols transmitted on the transmission channel.
  • the position of the symbol in the last RU in the case of one RU.
  • the same transmission channel is configured with one or more start symbols.
  • the time slot position and symbol position of the DMRS are used to determine the time slot where the DMRS is located and the symbol position in the time slot where the DMRS is located.
  • the frequency domain resource information includes one or more of the following: interleaving unit indication information, frequency domain resource allocation type indication information, and frequency domain resource allocation type switching indication information.
  • the interleaving unit indication information includes one or more of the following: an interleaving unit index, an interleaving unit offset, an interleaving unit bitmap, an RLIV value, a subband index, and a subband index relative to the subband.
  • the offset of one RB is one or more of the following: an interleaving unit index, an interleaving unit offset, an interleaving unit bitmap, an RLIV value, a subband index, and a subband index relative to the subband.
  • the frequency domain resource allocation type indication information is used to indicate a frequency domain resource allocation method corresponding to a transmission channel, wherein the frequency domain resource allocation method includes a continuous resource allocation method and an interleaved resource allocation method ;
  • the frequency domain resource allocation type switching indication information is used to indicate the dynamic switching of the resource allocation mode.
  • the spatial direction information is the spatial relationship between the spatial reference signal RS and the transmission channel, wherein the RS includes any one of the following: SSB, CSI-RS, SRS, DRS, so The spatial direction information is configured by UE-specific parameters.
  • different spatial reference signals RS have a priority order
  • different beam directions have a priority order
  • the transmission channel when the transmission channel is transmitted through multiple beam directions at the same time, before the transmission channel is transmitted, it includes performing the listen-before-speak LBT by any of the following methods:
  • Method 1 In the case of non-continuous transmission of the transmission channel, for each beam direction, a directional cat4 LBT is performed.
  • Manner 2 In the case of discontinuous transmission of the transmission channel, the omnidirectional cat4 LBT is performed in the first beam direction, and the directional cat2 LBT is performed in all beam directions except the first beam direction.
  • Method 6 In the case that the bandwidth occupied by the transmission channel exceeds the bandwidth threshold, omnidirectional LBT is performed for each beam direction.
  • configuring the transmission mode of the transmission channel according to the resource configuration information and sending the transmission channel includes: for each beam direction, performing LBT in sequence according to the priority order of the beam direction, and performing LBT in each beam direction. When LBT is successfully performed in all directions, the beam direction with the highest priority is selected to transmit the transmission channel.
  • configuring the transmission mode of the transmission channel according to the resource configuration information includes: in the case that two or more transmission channels overlap in the time domain during the repeated transmission process, according to the execution of the LBT The result determines how the transmission channel is sent.
  • determining the transmission mode of the transmission channel according to the execution result of LBT includes: performing LBT in sequence according to the sequence of the start symbols of two or more transmission channels, and presetting the transmission channel in the first transmission channel. If the LBT is successfully executed within the number of repetitions, the first transmission channel is sent, and if the first transmission channel is successfully sent, the second transmission channel is sent; the preset number of the first transmission channel If the execution of LBT is unsuccessful within the number of repetitions, the transmission of the first transmission channel is abandoned, and at the beginning of the second transmission channel, LBT is executed, and the second transmission channel is sent.
  • determining the transmission mode of the transmission channel according to the execution result of the LBT includes: executing LBT in sequence according to the priority order of the control information carried by the transmission channel; if the execution of the LBT is successful, the execution of the LBT is successfully executed. The transmission channel.
  • determining the transmission mode of the transmission channel according to the execution result of the LBT includes: for two transmission channels overlapping in the time domain, in the case that any transmission channel is configured with multiple beam directions, the transmission channel adopts Any configured beam direction except the beam direction with the highest priority performs LBT and transmits the transmission channel.
  • the transmission channel configuration method and the transmission channel transmission method in the embodiment of the present application can be applied to an unlicensed carrier, and can also be applied to a licensed carrier, which is not limited in this embodiment.
  • the multiple beam directions mentioned in this application refer to multiple SRS resources, or multiple DMRS resources, or multiple CSI-RS resources, or multiple SSB resources, or any one of multiple Spatial RelationInfo parameters .
  • the location of the LBT described in this application reserves the corresponding gap time domain resources through frame structure configuration or puncturing during data transmission.
  • a larger subcarrier space (SCS) than low frequency bands is usually used to combat multipath channel fading, such as 240kHz, 480kHz, 960kHz, 1920kHz SCS.
  • SCS subcarrier space
  • the length of a time slot in the time domain will be reduced accordingly. For example, compared to the original 15kHz SCS corresponding to a time slot length of 1ms, the 480kHz SCS corresponding to a time slot length is only 0.03125ms.
  • NR still uses the time slot as the basic unit of PUCCH data transmission, the efficiency of data transmission will be very low. Therefore, for a large SCS, a larger data transmission unit resource unit (Resource Unit, RU) can be introduced to transmit a certain PUCCH.
  • Resource Unit Resource Unit
  • one PUCCH can transmit multiple consecutive resource units RU.
  • one PUCCH can transmit k consecutive RUs, and each RU includes N subcarriers and M time slots.
  • the value of N and M can be determined according to SCS.
  • the number of carriers and the number of time slots included in the RU can be determined according to the attributes and time of the carrier, or the number of carriers and the number of time slots included in the RU can also be determined according to the type of service.
  • the base station can configure the number of consecutive time slots and the number of subcarriers included in each RU through a predefined method or a radio resource control (Radio Resource Control, RRC) signaling configuration method, where k, M, and N are all positive integers .
  • RRC Radio Resource Control
  • the slot boundaries between different SCSs are aligned within 1 ms.
  • Table 1 is a table of the number of consecutive time slots and the number of subcarriers included in the SCS provided in the embodiment of the application. As shown in Table 1, when the SCS is 120KHZ, one RU contains 2 time slots, and one RU contains 12 subcarriers. Carrier: When the SCS is 240KHZ, one RU contains 4 time slots, and one RU contains 6 subcarriers. The number of consecutive time slots and the number of subcarriers included in different SCS are shown in Table 1, which will not be repeated in this embodiment.
  • one RU can transmit one PUCCH, or one PUCCH can transmit multiple consecutive RUs, and the method that one PUCCH can transmit multiple RUs is shown in the following example.
  • each PUCCH may be sent through multiple beam directions at a certain moment, or may be sent through different beam directions at different moments.
  • the station base station or UE
  • LBT the station will execute LBT first, and only after successful execution of LBT can it send in the corresponding direction.
  • the station executes LBT please refer to the following example.
  • the frequency domain resource allocation of the high-frequency PUCCH includes the frequency domain resource allocation in the initial access phase and the UE-specific frequency domain resource allocation after the initial access.
  • the HARQ-ACK transmission is mainly for the Msg4 feedback of the random access channel (Random Access Channel, RACH) process.
  • RACH Random Access Channel
  • PRB Physical Resource Block
  • the base station configures message 3 and the frequency domain resource allocation mode corresponding to PUCCH as continuous through the synchronization signal block (PSS/SSS/PBCH block, SSB) or remaining minimum system information (RMSI) Resource allocation is also interwoven resource allocation.
  • PSS/SSS/PBCH block PSS/SSS/PBCH block, SSB
  • RMSI remaining minimum system information
  • the base station can indicate the type of resource allocation through a bit field in Downlink Control Information (DCI). For example, one bit is used to indicate continuous resource allocation or interleaved resource allocation, or one bit is used to notify dynamic switching of resource allocation types. If this bit is enabled, the original resource allocation type is switched to another resource allocation type. If it is not enabled, the original resource allocation type is still used. In other words, interleaving resource allocation is the default resource allocation method. When this bit is enabled, it represents a conversion from interleaving resource allocation to continuous resource allocation.
  • DCI Downlink Control Information
  • the DCI includes fallback DCI and non-fallcack DCI, and the continuous resource allocation is the uplink resource allocation Type 0/1 in R15.
  • the method for allocating high-frequency PUCCH resources after the RRC connection is established is described.
  • the base station configures a maximum of K PUCCH resource configuration information for a UE through high-level RRC signaling, and the PUCCH resource configuration information is allocated independently for each bandwidth part (BWP), the first PUCCH
  • the maximum number of PUCCH resources included in the resource configuration information is T, and the number of other PUCCH resources is t.
  • the maximum number of uplink control information (Uplink Control Information, UCI) bits that can be transmitted for each set of PUCCH resource configuration information is different.
  • UCI Uplink Control Information
  • the resources sent on the PUCCH triggered by each DCI are given by using the indication signaling PUCCH Resource Indicator (PRI) in the DCI, or when the resource set contains a large number of resources, through PRI signaling and hidden
  • PRI PUCCH Resource Indicator
  • the resource of each PUCCH includes a PUCCH format type
  • the format type includes PUCCH format 1 and PUCCH format 3
  • the time domain resource allocation and frequency domain location information corresponding to the format includes one or more interleaving units.
  • the frequency domain resource of each PUCCH will give a specific "interlace index” or “interlace offset”, where the "interlace offset” value is the interlace offset value relative to the interlace index 0.
  • the start symbol in the time domain resource indication is only used for the first PUCCH, and the middle is a complete time slot.
  • the number of symbols is used to indicate the last PUCCH, and the information about the number of RUs occupied by one PUCCH transmission is added.
  • the definition of RU is determined from the above example, and will not be repeated in this embodiment.
  • multiple candidate start symbols can be configured to increase the probability of sending an Acknowledgement/Negative Acknowledgement (ACK/NACK).
  • the spatial configuration of PUCCH transmission is to configure a spatial relationship between a reference signal RS and PUCCH, where RS is any one of SSB/CSI-RS/SRS/DRS, and This parameter is UE-specific airspace resource configuration.
  • the spatial configuration of PUCCH transmission includes configuring multiple SRS resource indications for each UE and activating multiple spatial configurations at the same time.
  • the spatial configuration of PUCCH transmission includes configuring multiple DMRS port resources, and the DMRS port has a quasi-co-location (QCL) relationship with the beam of the reference signal.
  • QCL quasi-co-location
  • the PUCCH resource configuration may be configured for each BWP, or for each carrier, or for multiple carrier groups, or for each cell.
  • the resource configuration update can be through RRC signaling, MAC CE, or SSB/System Information Block (System Information Block, SIB) notification.
  • the method of transmitting the PUCCH in multiple beam directions at high frequencies is described.
  • the PUCCH adopts the non-codebook transmission mode, that is, the spatial information transmitted by the PUCCH refers to the precoding corresponding to the SRS resource, and no special transmission precoding matrix indicator (Transmit Precoder Matrix Indicator, TPMI) is required.
  • TPMI Transmit Precoder Matrix Indicator
  • Figure 5 is a schematic diagram of sending data in different beam directions in an embodiment of the present application.
  • the high-frequency PUCCH can adopt the transmission mode shown in Figure 5, that is, different beam directions are used for data transmission at different times, and multiple PUCCHs carry The UCI content is the same, or multiple PUCCHs carry the same UCI but different redundancy versions (Redundancy Version, RV).
  • RV Redundancy Version
  • the base station configures one SRS resource configuration information
  • the SRS resource configuration information includes multiple SRS resources
  • one of the sounding reference signal resource indicator (Sounding Reference Signal Resource Indicator, SRI) resources is used to send one PUCCH at each moment.
  • PUCCH1 uses SRI1
  • PUCCH2 uses SRI2
  • PUCCH3 uses SRI3
  • PUCCH4 uses SRI4.
  • PUCCH1 to PUCCH4 carry the same UCI content.
  • the base station can configure multiple candidate beam directions for the PUCCH of the UE to send data at the same time.
  • the UE can perform independent directional LBT in these multiple beam directions at the same time, or when the width range of the multiple beam directions exceeds a predefined threshold, the UE needs to perform an omnidirectional LBT.
  • the beam directions of the multiple candidates configured have a priority order, and the priority order is given at the time of configuration, and can also be adjusted later.
  • Fig. 6 is a schematic diagram of beam direction priority in an embodiment of the present application.
  • the base station configures the PUCCH spatial reference signal as CSI-RS, and the base station configures a CSI-RS resource configuration information.
  • the resource configuration information includes multiple CSI-RS resources, such as CSI-RS resource 1, CSI-RS resource 2, CSI-RS resource 3, CSI-RS resource 4. Different CSI-RS resources have different beam directions. It is assumed that the configuration order is sorted from high to low in priority, that is, resource 1 priority> resource 2 priority> resource 3 priority> resource 4 priority. Then, the UE executes LBT in sequence from high to low according to the configuration information.
  • PUCCH is sent in that direction, or the UE executes LBT in these multiple beam directions at the same time. If only one succeeds, the PUCCH is sent in that direction, and if it is greater than or equal to two directions that perform LBT successfully, the beam direction with the higher priority is selected to send the PUCCH.
  • a PUCCH will transmit multiple consecutive RUs in the time domain or a PUCCH will be sent through multiple beams or multiple candidate beam directions at the same time. Then the LBT method executed before the multiple beam transmission can be performed in one of the following ways:
  • Manner 1 Perform omnidirectional cat4 LBT on the first PUCCH, if PUCCH is discontinuous in the middle, perform directional cat2 LBT on subsequent beams. If the PUCCH is continuous, if the first PUCCH performs LBT successfully, the subsequent beams do not perform LBT.
  • Method 2 For each beam direction, the directional cat4 LBT method is implemented.
  • Mode 3 The LBT mode of cat2 in which each beam direction is oriented.
  • Method 4 When the beam direction angle or broadband exceeds the threshold, perform omnidirectional LBT.
  • the second method is applicable to scenarios where the PUCCH is discontinuous.
  • the contention window size (CWS) of each beam is maintained independently and does not affect each other.
  • the base station may pre-schedule multiple beam directions, and the UE executes LBT in multiple beam directions in sequence according to priority, and which beam direction executes LBT to successfully send which beam.
  • the base station can configure multiple candidate beams for the UE. When the UE fails to perform LBT on one or some of the previous beams, it can be postponed. The base station detects from the first beam configured before, and when it reaches When the number of repetitions is configured, the DCI is sent to indicate the original candidate beam resources to other UEs for use.
  • the base station may configure multiple beam directions for transmission, and specify specific beams through multiple spatial resource configurations.
  • PUCCH transmission selects one of the following two methods to send according to the result of LBT.
  • the base station has priority information when configuring multiple SRS resources for the UE.
  • the UE successfully performs LBT in multiple beam directions, it selects the beam with higher priority for transmission, and the base station follows the configuration Priority of detection.
  • the RS referenced by the PUCCH spatial resources configured by the base station for the UE is SRS, and three SRS resources are configured, and the priority is sorted according to the priority of SRS1, SRS2, and SRS3, and the UE is assigned to the corresponding three SRS resources at the same time or respectively.
  • LBT is performed in the beam direction. If only one beam direction LBT succeeds, the PUCCH is sent in that direction. If two or three directions are successful, the UE sends the PUCCH in the beam direction with the higher priority in the order of priority. If the UE successfully performs LBT in the beam directions corresponding to the SRS1 and SRS2 resources, the UE chooses to send the scheduled PUCCH in the beam direction corresponding to SRS1.
  • This method solves the problem that PUCCH transmission cannot be decoded correctly if LBT execution fails in a certain beam direction in a high-frequency unlicensed carrier scenario.
  • the PUCCH does not have a gap in the middle of the repeated process, which requires that the time domain start and length of the repeated PUCCH will be different among multiple slots.
  • PUCCH is transmitted across slot boundaries. For high-frequency applications with large SCS, a slot is relatively short. Supporting cross-slot transmission can also improve PUCCH coverage.
  • Figure 7 is a schematic diagram of PUCCH transmission across slot boundaries in an embodiment of the present application.
  • the base station can configure a PUCCH resource to continuously transmit 4 slots starting from time slot 1.
  • the UCI content sent by these four slots is different, and this Several slots can share DMRS symbols, that is, not every slot has DMRS symbols.
  • the first and third slots can contain DMRS symbols, while the second and fourth slots do not contain DMRS symbols.
  • the first and third slots can contain only one DMRS symbol or two DMRS symbols. Or only one of the four slots contains the DMRS symbol.
  • ACK/NACK may be mapped to adjacent DMRS symbols on both sides of the DMRS symbol. For example, if the DMRS symbol is located on the fourth symbol of the second slot, the ACK/NACK information is mapped to the third and fifth symbols. Time slots without DMRS are not mapped with ACK/NACK information.
  • the first part of the CSI information is mapped to the previous time slot, and the second part is mapped to the remaining time slot of PUCCH transmission.
  • NRU New Radio Unlicensed Spectrum
  • NRU New Radio Unlicensed Spectrum
  • PUCCH with high UCI priority may not be sent due to LBT, and it is impossible to determine in advance which PUCCH will start transmission, so it needs to be combined with LBT. As a result, PUCCH transmission is performed.
  • FIG. 8 is a schematic diagram of the execution sequence of LBT in the case of multiple beam directions in the embodiment of the present application.
  • PUCCH1 is repeatedly sent 4 times, and then in the repetition process in the first
  • the second repetition, the third repetition, or the start or repetition of the fourth repetition overlaps with the repetition of PUCCH2.
  • the UE transmits PUCCH according to one of the following rules.
  • Rule 1 The UE executes LBT from the smallest start symbol index according to the order of the PUCCH start symbol. If the UE successfully performs LBT within the first two repetitions of the first PUCCH, then the first PUCCH is sent. In the overlapping part, the second PUCCH is punctured until the transmission of the first PUCCH ends, and then the transmission of the second PUCCH is started.
  • the UE fails to perform LBT within the first two repetitions of the first PUCCH, the transmission of the first PUCCH is abandoned, and the UE performs LBT at the beginning of the second PUCCH, and sends the second PUCCH after success.
  • Rule 2 The UE performs LBT before the PUCCH start symbol with the highest UCI priority according to the priority order of the PUCCH carrying UCI. If it succeeds, it sends the PUCCH. If it fails, it sends it before the PUCCH with the second highest UCI priority. If LBT is executed, the PUCCH is sent if it succeeds, and the PUCCH with the priority again is selected to execute LBT and PUCCH is sent if it fails.
  • the time-frequency resources configured for PUCCH1 in slot 2 or the first time slot transmitted by PUCCH2 are the same.
  • the UE can choose Other beam directions with lower priority perform LBT and transmit PUCCH2.
  • FIG. 9 is a schematic diagram of the execution sequence of LBT in the case of multiple beam directions in an embodiment of the present application. As shown in FIG. 9, one beam is wide and one is narrow. , The UE performs LBT and determines the final PUCCH to be sent according to the following method.
  • the UE first selects the PUCCH with a wide beam direction range to perform LBT on the corresponding beam. If it succeeds, it selects the wide beam to send the corresponding PUCCH. Otherwise, if the UE fails to perform LBT on the wide beam, it changes to another PUCCH.
  • the corresponding narrow beam performs LBT detection, and if it succeeds, the corresponding PUCCH is transmitted through the narrow beam, and if it fails, the transmission is abandoned.
  • the PUCCH resource allocation and HARQ-ACK feedback method of the Ultra Reliable and Low Latency Communications (URLLC) service are described.
  • the ACK/NACK feedback does not need to wait for the notification of the DCI.
  • Some ACK/NACK feedback for URLLC services can be configured by the base station configuration feedback period + offset.
  • the UE does not need to perform LBT in some cases before the feedback, for example, the time difference between the end point of the downlink data transmission and the position where the ACK/NACK is sent is less than 16 microseconds, or the UE only performs a 16 microsecond or 25 microsecond LBT detection If the LBT is successful, the UE can feed back ACK/NACK at these locations, and feed back all the ACK/NACKs configured for the HARQ process of the URLLC service. At the same time, for each process, a 1-bit New Data Indicator (NDI) information is reported to tell the base station whether the ACK/NACK is feedback for the last PDSCH transmission or the latest scheduled HARQ-ACK feedback.
  • NDI New Data Indicator
  • FIG. 10 is a schematic structural diagram of an apparatus for configuring a transmission channel in an embodiment of the present application.
  • the apparatus may be applicable to a situation where a base station configures resources on a high-frequency carrier.
  • the transmission channel configuration device can be implemented by software and/or hardware, and the transmission channel configuration method is applied to the base station.
  • the apparatus for configuring a transmission channel mainly includes: a first sending module 101 and a first receiving module 102.
  • the first sending module 101 is configured to send resource configuration information to the user equipment, where the resource configuration information includes: time domain resource information, frequency domain resource information, and spatial direction information, and the resource configuration information is used to configure the user equipment The transmission method of the transmission channel.
  • the first receiving module 102 is configured to receive the transmission channel according to the resource configuration information.
  • the transmission channel configuration device provided in this embodiment is used in the transmission channel configuration method of the embodiment of this application.
  • the implementation principles and technical effects of the transmission channel configuration device provided in this embodiment are similar to the transmission channel configuration method of the embodiment of this application. , I won’t repeat it here.
  • the time domain resource information includes one or more of the following: the number of resource units RU, the slot position and symbol position of the demodulation reference signal DMRS, the start symbol, the number of symbols, the number of slots .
  • the start symbol is used to indicate the position of the symbol in the first time slot when the transmission channel transmits multiple time slots; the number of symbols is used to indicate the position of the symbol in the transmission channel The position of the symbol in the last slot when multiple slots are transmitted.
  • the start symbol is used to indicate the position of the symbol in the first RU when multiple RUs are transmitted on the transmission channel; the number of symbols is used to indicate the number of symbols transmitted on the transmission channel.
  • the position of the symbol in the last RU in the case of one RU.
  • the same transmission channel is configured with one or more start symbols.
  • the time slot position and symbol position of the DMRS are used to determine the time slot where the DMRS is located and the symbol position in the time slot where the DMRS is located.
  • the frequency domain resource information includes one or more of the following: interleaving unit indication information, frequency domain resource allocation type indication information, and frequency domain resource allocation type switching indication information.
  • the interleaving unit indication information includes one or more of the following: interleaving unit index, interleaving unit offset, interleaving unit bitmap, SLIV value, subband index, and relative to the subband The offset of one RB.
  • the frequency domain resource allocation type indication information is used to indicate a frequency domain resource allocation method corresponding to a transmission channel, wherein the frequency domain resource allocation method includes a continuous resource allocation method and an interleaved resource allocation method ;
  • the frequency domain resource allocation type switching indication information is used to indicate the dynamic switching of the resource allocation mode.
  • the spatial direction information is the spatial relationship between the spatial reference signal RS and the transmission channel, wherein the RS includes any one of the following: SSB, CSI-RS, SRS, DRS, so The spatial direction information is configured by UE-specific parameters.
  • FIG. 11 is a schematic structural diagram of an apparatus for sending a transmission channel in an embodiment of the present application.
  • the method may be applicable to a situation where a user equipment performs resource configuration according to resource configuration information.
  • the sending device of the transmission channel may be implemented by software and/or hardware, and the sending device of the transmission channel is applied to the user equipment.
  • the transmitting device of the transmission channel provided by the present application mainly includes a second receiving module 111 and a second transmitting module 112.
  • the second receiving module 111 is configured to receive resource configuration information sent by a base station, where the resource configuration information includes time domain resource information, frequency domain resource information, and spatial direction information.
  • the second sending module 112 is configured to configure the sending mode of the transmission channel according to the resource configuration information, and send the transmission channel.
  • the transmission channel sending device provided in this embodiment is used in the transmission channel sending method of the embodiment of this application.
  • the implementation principles and technical effects of the transmission channel sending device provided in this embodiment are similar to the transmission channel sending method of the embodiment of this application. , I won’t repeat it here.
  • the device further includes an LBT execution module, which is configured to perform listening before sending by any of the following methods when the transmission channel is sent through multiple beam directions at the same time.
  • LBT execution module which is configured to perform listening before sending by any of the following methods when the transmission channel is sent through multiple beam directions at the same time.
  • Method 1 In the case of non-continuous transmission of the transmission channel, for each beam direction, directional cat4 LBT is performed;
  • Method 2 In the case of discontinuous transmission of the transmission channel, the omnidirectional cat4 LBT is performed in the first beam direction, and all beam directions except the first beam direction are directional cat2 LBT;
  • Method 3 For each beam direction, perform directional cat2 LBT;
  • Method 4 For each beam direction, perform LBT in sequence according to the priority order of the beam direction;
  • Method 6 In the case that the bandwidth occupied by the transmission channel exceeds the bandwidth threshold, omnidirectional LBT is performed for each beam direction.
  • the second sending module 112 is configured to perform LBT in sequence according to the priority order of the beam directions for each beam direction, and select priority if LBT is successfully performed in each beam direction.
  • the beam direction with the highest level transmits the transmission channel.
  • the second sending module 112 is configured to determine the transmission of the transmission channel according to the execution result of the LBT when two or more transmission channels overlap in the time domain during repeated transmission. the way.
  • the second sending module 112 is configured to sequentially execute LBT according to the sequence of the start symbols of two or more transmission channels;
  • the first transmission channel is sent, and if the first transmission channel is successfully sent, the second transmission channel is sent;
  • the transmission of the first transmission channel is abandoned, at the beginning of the second transmission channel, LBT is executed, and the second transmission channel is sent .
  • the second sending module 112 is configured to execute LBT in sequence according to the priority order of the control information carried by the transmission channel; in the case where the LBT is successfully executed, the transmission channel that successfully executes the LBT is sent.
  • the second sending module 112 is set to overlap two transmission channels in the time domain.
  • the transmission channel except the one with the highest priority is used.
  • Any configured beam direction other than the beam direction performs LBT and transmits the transmission channel.
  • FIG. 12 is a schematic structural diagram of a device provided by the present application.
  • the device provided by the present application includes one or more processors 121 and a memory 122; There may be one or more processors 121 in the device.
  • one processor 121 is taken as an example; the memory 122 is used to store one or more programs; the one or more programs are processed by the one or more programs.
  • the processor 121 executes, so that the one or more processors 121 implement the method described in the embodiment of the present invention.
  • the equipment also includes: a communication device 123, an input device 124, and an output device 125.
  • the processor 121, the memory 122, the communication device 123, the input device 124, and the output device 125 in the device may be connected through a bus or other methods.
  • the connection through a bus is taken as an example.
  • the input device 124 can be used to receive inputted digital or character information, and generate key signal input related to user settings and function control of the device.
  • the output device 125 may include a display device such as a display screen.
  • the communication device 123 may include a receiver and a transmitter.
  • the communication device 123 is configured to transmit and receive information according to the control of the processor 121.
  • the memory 122 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions/modules corresponding to the transmission channel configuration method described in the embodiment of the present application (for example, the configuration of the transmission channel).
  • the first sending module 101 and the first receiving module 102 in the device, and the program instructions/modules corresponding to the transmission method of the transmission channel described in the embodiment of the present application for example, the second receiving module 111 and the second receiving module 111 in the transmission device of the transmission channel).
  • the second sending module 112 can be configured to store software programs, computer-executable programs, and modules, such as the program instructions/modules corresponding to the transmission channel configuration method described in the embodiment of the present application (for example, the configuration of the transmission channel).
  • the memory 122 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 122 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 122 may include a memory remotely provided with respect to the processor 121, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the foregoing device can implement any of the transmission channel configuration methods described in the embodiments of the present application, and the method includes:
  • resource configuration information includes time domain resource information, frequency domain resource information, and spatial direction information, and the resource configuration information is used to configure the transmission mode of the user equipment transmission channel;
  • the transmission channel is received according to the resource configuration information.
  • the foregoing device can implement any of the transmission channel sending methods described in the embodiments of the present application, and the method includes:
  • resource configuration information sent by the base station, where the resource configuration information includes time domain resource information, frequency domain resource information, and spatial direction information;
  • the embodiments of the present application also provide a storage medium, where the storage medium stores a computer program, and the computer program implements the method described in any of the embodiments of the present application when the computer program is executed by a processor.
  • resource configuration information includes time domain resource information, frequency domain resource information, and spatial direction information, and the resource configuration information is used to configure the transmission mode of the user equipment transmission channel;
  • the transmission channel is received according to the resource configuration information.
  • resource configuration information sent by the base station, where the resource configuration information includes time domain resource information, frequency domain resource information, and spatial direction information;
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or (Compact Disk, CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processors
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • processors based on multi-core processor architecture such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processors, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.

Abstract

本申请提出一种传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质,传输信道的配置方法包括:发送资源配置信息至用户设备,其中,所述资源配置信息包括:时域资源信息、频域资源信息和空间方向信息,所述资源配置信息用于配置用户设备传输信道的发送方式;按照所述资源配置信息接收传输信道。

Description

传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质
本申请要求在2019年11月08日提交中国专利局、申请号为201911089428.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质。
背景技术
在新空口(New Radio,NR)R15和R16版本中,NR系统可以支持到最高频率52.6GHz,而在后续版本如R17中,将会支持到更高的频段。由于在高频段信道衰落及多径影响相对更大,导致上行传输信道的覆盖性能下降,数据传输效率下降。
发明内容
本申请提供一种传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质。
提供一种传输信道的配置方法,包括:
发送资源配置信息至用户设备,其中,所述资源配置信息包括:时域资源信息、频域资源信息和空间方向信息,所述资源配置信息用于配置用户设备传输信道的发送方式;
按照所述资源配置信息接收传输信道。
还提供一种传输信道的发送方法,包括:
接收基站发送的资源配置信息,其中,所述资源配置信息包括时域资源信息、频域资源信息和空间方向信息;
根据所述资源配置信息配置传输信道的发送方式,并发送传输信道。
还提供一种传输信道的配置装置,包括:
第一发送模块,被设置为发送资源配置信息至用户设备,其中,所述资源配置信息包括:时域资源信息、频域资源信息和空间方向信息,所述资源配置信息用于配置用户设备传输信道的发送方式;
第一接收模块,被设置为按照所述资源配置信息接收传输信道。
还提供一种传输信道的发送装置,包括:
第二接收模块,被设置为接收基站发送的资源配置信息,其中,所述资源配置信息包括时域资源信息、频域资源信息和空间方向信息;
第二发送模块,被设置为根据所述资源配置信息配置传输信道的发送方式,并发送传输信道。
还提供了一种设备,包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中的任意一种方法。
还提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例中的任意一种方法。
附图说明
图1为本申请实施例提供的一种无线网络系统的结构示意图;
图2是一实施例提供的一个波束方向上发送数据的示意图;
图3是本申请实施例中的一种传输信道的配置方法的流程图;
图4是本申请实施例中的一种传输信道的发送方法的流程图;
图5是本申请实施例中的一种不同波束方向上发送数据的示意图;
图6是本申请实施例中的波束方向优先级的示意图;
图7是本申请实施例中的PUCCH跨slot边界传输的示意图;
图8是本申请实施例中的多个波束方向的情况下LBT的执行顺序示意图;
图9是本申请实施例中的又一种多个波束方向的情况下LBT的执行顺序示意图;
图10是本申请实施例中的一种传输信道的配置装置的结构示意图;
图11是本申请实施例中的一种传输信道的发送装置的结构示意图;
图12是本申请提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LIE-A(Advanced long term evolution,先进的长期演进)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及第五代移动通信(5th generation mobile networks,5G)系统等,本申请实施例并不限定。在本申请中以5G系统为例进行说明。
本申请实施例可以用于不同的制式的无线网络。无线接入网络在不同的系统中可包括不同的通信节点。图1为本申请实施例提供的一种无线网络系统的结构示意图。如图1所示,该无线网络系统100包括基站101、用户设备110、用户设备120和用户设备130。基站101分别与用户设备110、用户设备120和用户设备130之间进行无线通信。
本申请实施例中,基站可以是能和用户设备通信的设备。基站可以是任意一种具有无线收发功能的设备,包括但不限于:基站NodeB、演进型基站eNodeB、5G通信系统中的基站、未来通信系统中的基站、无线保真(Wireless Fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器;基站还可以是小站,传输节点(transmission reference point,TRP)等,本申请实施例并不限定。
用户设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述用户设备可以是手机(mobile phone)、平板电脑(Portable Android Device,Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线 终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。用户设备有时也可以称为终端、接入终端、用户设备(User Equipment,UE)单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。本申请实施例并不限定。
用户设备的上行信道包括物理上行共享信道(Physical Uplink Shared Channel,PUSCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)和物理随机接入信道(Physical Random Access Channel,PRACH)。PUSCH中可以传输数据信息、调度请求(Scheduling Request,SR)、混合自动重传请求应答(Hybrid Automatic Repeat Request Acknowledgement,HARQ ACK)和信道状态信息(Channel State Information,CSI),PUCCH中可以传输调度请求(Scheduling Request,SR)、HARQ-ACK和CSI。
在5G新空口(NR,New Radio)R15和R16版本中,NR系统可以支持到最高频率52.6GHz,而在后续版本如R17中,将会支持到更高的频段。对于高频,有一大段频谱属于共享的非授权频段,例如60GHz以上,但高频由于信道衰落及多径影响相对更大,因此PUCCH的覆盖性能下降,PUCCH的发送方式需要增强。
NR系统利用非授权载波时会面临诸多问题。首先,在有些国家和地区,对于非授权载波的使用有相应的管制政策。比如,用户设备在使用非授权载波传输数据之前必须先执行先听后说(Listen Before Talk,LBT),也叫做空闲信道评估(Clear Channel Assessment,CCA),只有LBT执行成功的用户设备才能在该非授权载波对应的资源上发送数据,如果LBT执行失败则将不能发送数据。
在一实施例中,LBT方式都是全向的,没有标准化定向,且包括两大类,一类是带随机回退的,另一类是不带随机回退的。对于高频,如果仍然采用全向的LBT方式,则会大大降低空间重用的概率。
对于PUCCH的资源分配是以资源块(Resource Block,RB)为单位进行分配的,一个PUCCH每个时刻仅能占一个RB或者是多个连续的RB。对于非授权载波受管制的要求,用户设备数据发送所占据的带宽必须超过LBT带宽的80%,因此PUCCH通常会采用交织的方式进行发送,但如何进行交织单元的分配特别是高频场景下仍没有结论。
波束发送是一种提高高频段覆盖性能的有效方式。在基站与用户设备进行通信时,基站利用多个天线仅在通信的用户设备的方向上形成波束而发送信号。通过该技术,能够缩减无线信号逃逸的方向,防止或减少对存在于其他场所的其他终端的干扰。
图2是一实施例提供的一个波束方向上发送数据的示意图,如图2所示,对于PUCCH,只能配置一个波束方向进行发送,即用户设备只能沿着一个波束方向形成波束。
图3是本申请实施例中的一种传输信道的配置方法的流程图,该方法可以适用于基站对高频载波上的资源进行配置的情况。该方法可以由本申请提供的传输信道的配置装置执行,该传输信道的配置装置可以由软件和/或硬件实现,所述传输信道的配置方法应用于基站上。
如图3所示,本申请实施例提供的传输信道的配置方法主要包括步骤S11和S12。
S11、发送资源配置信息至用户设备,其中,所述资源配置信息包括:时域资源信息、频域资源信息和空间方向信息,所述资源配置信息用于配置用户设备传输信道的发送方式。
S12、按照所述资源配置信息接收传输信道。
通过上述步骤,采用了基站向用户设备发送资源配置信息,使得该用户设备配置传输信道的方式,从而使得基站和用户设备之间可以通过消息协商高频段传输信道的发送模式,解决了传输信道覆盖性能下降,数据传输效率低的问题,增强了传输信道的发送方式。
在本实施例中,传输信道是指用户设备的上行控制信道,主要包括PUSCH、PUCCH和PRACH。在本实施例中以PUCCH为例进行说明。
在一实施例中,所述资源配置信息通过如下方式之一发送至用户设备:系统消息、RRC信令、下行DCI或者介质访问控制层控制单元(Media Access Control Control Element,MAC CE)。
在一个示例性的实施方式中,所述时域资源信息包括以下一个或多个:资源单元RU数目,解调参考信号解调参考信号(Demodulation Reference Signal,DMRS)的时隙位置及符号位置,起始符号,符号数目,时隙数目。
本实施例中,所述时隙数目用于指示PUCCH传输的时隙数目,所述RU数目用于指示PUCCH传输的RU单元的数目。所述RU数目和时隙数目由基站进行配置。
在一个示例性的实施方式中,所述起始符号,用于指示在传输信道传输多个时隙的情况下第一个时隙中的符号位置;所述符号数目,用于指示在传输信道传输多个时隙的情况下最后一个时隙中的符号位置。
在一个示例性的实施方式中,所述起始符号,用于指示在传输信道传输多 个RU的情况下第一个RU中的符号位置;所述符号数目,用于指示在传输信道传输多个RU的情况下最后一个RU中的符号位置。
在一个示例性的实施方式中,同一个传输信道配置一个或多个起始符号。
在一个示例性的实施方式中,所述DMRS的时隙位置及符号位置用于确定DMRS所在时隙以及所在时隙中的符号位置。
在一个示例性的实施方式中,所述频域资源信息包括以下一个或多个:交织单元指示信息、频域资源分配类型指示信息、频域资源分配类型切换指示信息。
在一个示例性的实施方式中,所述交织单元指示信息包括以下一个或多个:交织单元索引,交织单元偏移量,交织单元位图,起始和长度指示信息(Start and Length Indicator,SLIV)值,子带索引及相对于该子带第一个RB的偏移量。
在一个示例性的实施方式中,所述频域资源分配类型指示信息用于指示传输信道对应的频域资源分配方式,其中,所述频域资源分配方式包括连续资源分配方式和交织资源分配方式;所述频域资源分配类型切换指示信息用于指示资源分配方式的动态切换。
在一个示例性的实施方式中,所述空间方向信息是空间参考信号RS和传输信道之间的空间关系,其中,所述参考信号(Reference Signal,RS)包括以下任一项:SSB、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、探测参考信号(Sounding Reference Signal,SRS)、发现参考信号(Discovery Reference Signal,DRS),所述空间方向信息由UE-specific参数配置。
在一个示例性的实施方式中,不同的空间参考信号RS之间具有优先级顺序,不同波束方向之间具有优先级顺序。
图4是本申请实施例中的一种传输信道的发送方法的流程图,该方法可以适用于用户设备根据资源配置信息进行资源配置的情况。该方法可以由本申请提供的传输信道的发送装置执行,该传输信道的发送装置可以由软件和/或硬件实现,所述传输信道的发送方法应用于用户设备上。
如图4所示,本申请提供的传输信道的发送方法主要包括步骤S21和S22。
S21、接收基站发送的资源配置信息,其中,所述资源配置信息包括时域资源信息、频域资源信息和空间方向信息。
S22、根据所述资源配置信息配置传输信道的发送方式,并发送传输信道。
通过上述步骤,采用了用户设备根据基站发送的资源配置信息配置传输信道的方式,从而使得基站和用户设备之间可以通过消息协商高频段传输信道的发送模式,解决了传输信道覆盖性能下降,数据传输效率低的问题,增强了传输信道的发送方式。
在本实施例中的,传输信道是指用户设备的上行控制信道,主要包括PUSCH、PUCCH和PRACH。在本实施例中以PUCCH为例进行说明。
在一个示例性的实施方式中,所述时域资源信息包括以下一个或多个:资源单元RU数目,解调参考信号DMRS的时隙位置及符号位置,起始符号,符号数目,时隙数目。
在一个示例性的实施方式中,所述起始符号,用于指示在传输信道传输多个时隙的情况下第一个时隙中的符号位置;所述符号数目,用于指示在传输信道传输多个时隙的情况下最后一个时隙中的符号位置。
在一个示例性的实施方式中,所述起始符号,用于指示在传输信道传输多个RU的情况下第一个RU中的符号位置;所述符号数目,用于指示在传输信道传输多个RU的情况下最后一个RU中符号的位置。
在一个示例性的实施方式中,同一个传输信道配置一个或多个起始符号。
在一个示例性的实施方式中,所述DMRS的时隙位置及符号位置用于确定DMRS所在时隙以及所在时隙中的符号位置。
在一个示例性的实施方式中,所述频域资源信息包括以下一个或多个:交织单元指示信息、频域资源分配类型指示信息、频域资源分配类型切换指示信息。
在一个示例性的实施方式中,所述交织单元指示信息包括以下一个或多个:交织单元索引,交织单元偏移量,交织单元位图,RLIV值,子带索引及相对于该子带第一个RB的偏移量。
在一个示例性的实施方式中,所述频域资源分配类型指示信息用于指示传输信道对应的频域资源分配方式,其中,所述频域资源分配方式包括连续资源分配方式和交织资源分配方式;所述频域资源分配类型切换指示信息用于指示资源分配方式的动态切换。
在一个示例性的实施方式中,所述空间方向信息是空间参考信号RS和传输信道之间的空间关系,其中,所述RS包括以下任一项:SSB、CSI-RS、SRS、DRS,所述空间方向信息由UE-specific参数配置。
在一个示例性的实施方式中,不同的空间参考信号RS之间具有优先级顺 序,不同波束方向之间具有优先级顺序。
在一个示例性的实施方式中,在同时通过多个波束方向发送传输信道的情况下,在发送传输信道之前,包括通过以下任一项方式执行先听后说LBT:
方式一:在传输信道非连续传输的情况下,对于每个波束方向,均执行定向的cat4的LBT。
方式二:在传输信道非连续传输的情况下,第一个波束方向上执行全向的cat4的LBT,除第一个波束方向之外的所有波束方向上均执行定向的cat2的LBT。
方式三:对于每个波束方向,均执行定向的cat2的LBT。
方式四:对于每个波束方向,按照波束方向的优先级顺序依次执行LBT。
方式五:在波束方向角度超过角度阈值的情况下,对于每个波束方向,均执行全向的LBT。
方式六:在传输信道所占据的宽带超过宽带阈值的情况下,对于每个波束方向,均执行全向的LBT。
在一个示例性的实施方式中,根据所述资源配置信息配置传输信道的发送方式,并发送传输信道,包括:对于每个波束方向,按照波束方向的优先级顺序依次执行LBT,在每个波束方向均执行LBT成功的情况下,选择优先级最高的波束方向发送传输信道。
在一个示例性的实施方式中,根据所述资源配置信息配置传输信道的发送方式,包括:在两个或两个以上传输信道在重复发送过程中存在时域重叠的情况下,根据LBT的执行结果确定传输信道的发送方式。
在一个示例性的实施方式中,根据LBT的执行结果确定传输信道的发送方式,包括:按照两个或两个以上传输信道的起始符号的先后顺序依次执行LBT,在第一个传输信道预设数量的重复次数内执行LBT成功的情况下,发送第一个传输信道,在第一个传输信道发送成功的情况下,再发送第二个传输信道;在第一个传输信道预设数量的重复次数内执行LBT未成功的情况下,放弃发送第一个传输信道,在第二个传输信道的起始位置,执行LBT,并发送第二个传输信道。
在一个示例性的实施方式中,根据LBT的执行结果确定传输信道的发送方式,包括:按照传输信道承载的控制信息的优先级顺序依次执行LBT;在执行LBT成功的情况下,发送执行LBT成功的传输信道。
在一个示例性的实施方式中,根据LBT的执行结果确定传输信道的发送方 式,包括:对于时域重叠的两个传输信道,在任一传输信道配置多个波束方向的情况下,该传输信道采用除优先级最高的波束方向之外的任一配置的波束方向执行LBT并发送传输信道。
需要说明的是,本申请实施例中的传输信道的配置方法以及传输信道的发送方法可以用于非授权载波,也可以应用于授权载波,本实施例中不进行限定。
本申请中所述的多个波束方向,是指多个SRS资源,或多个DMRS资源,或多个CSI-RS资源,或多个SSB资源,或是多个Spatial RelationInfo参数中的任一种。
本申请中所述的LBT的位置都会通过帧结构配置或数据发送过程中打孔方式预留相应的gap时域资源。
在一个应用示例中,对高频场景下PUCCH传输单元的时域及频域构成进行说明。
对于高频频段,例如60GHz以上的频段,通常会采用比低频频段更大的子载波间隔(sub carrier space,SCS)来对抗多径信道衰落,例如采用240kHz,480kHz,960kHz,1920kHz的SCS。采用大的SCS,在时域上一个时隙的长度就会相应的缩小。例如,相对于原来15kHz的SCS对应一个时隙长度是1ms,则480kHz的SCS对应一个时隙的长度仅为0.03125ms。如果NR仍然以时隙为PUCCH数据传输的基本单位,则数据传输的效率就会非常低。因此针对大的SCS,可以引入更大的数据传输单元资源单元(Resource Unit,RU)来传输某个PUCCH。
在高频频段,一个PUCCH可以传输多个连续的资源单元RU。例如,一个PUCCH可以传输k个连续的RU,且每个RU包括N个子载波,M个时隙。其中,N,M的值可以根据SCS进行确定。RU包含的载波数目及时隙数目可以根据载波属性及时刻来确定,或者RU包含的载波数目及时隙数目也可以根据业务类型来确定。基站可以通过预定义方式,或者无线资源控制(Radio Resource Control,RRC)信令配置的方式来配置每个RU包含的连续时隙数目及子载波数目,其中,k,M,N均为正整数。
在一实施例中,不同SCS间在1ms内时隙边界是对齐的。例如,表1是本申请实施例提供的SCS包含的连续时隙数目及子载波数目表,如表1所示,SCS是120KHZ的情况下,一个RU包含2个时隙,一个RU包含12个子载波;SCS是240KHZ的情况下,一个RU包含4个时隙,一个RU包含6个子载波。不同的SCS包含的连续时隙数目及子载波数目如表1所示,本实施例不再赘述。
表1
Figure PCTCN2020127522-appb-000001
对于高频频段,一个RU可以传输一个PUCCH,或者一个PUCCH可以传输多个连续的RU,一个PUCCH可以传输多个RU的方法参见下述示例。
在一实施例中,对于每一个PUCCH在某个时刻可能会通过多个波束方向发送,或者是在不同的时刻通过不同的波束方向发送。在发送之前站点(基站或UE)会先执行LBT,执行LBT成功后才能在相应的方向发送,站点如何执行LBT参见下述示例。
在一个应用示例中,对高频PUCCH的频域资源分配方法进行说明。
高频PUCCH的频域资源分配包括初始接入阶段的频域资源分配以及初始接入之后的UE专有的频域资源分配。
对于初始接入阶段,HARQ-ACK的发送主要是针对随机接入信道(Random Access Channel,RACH)过程的Msg4的反馈。对于RRC信令配置的PUCCH资源配置表格中的16行或者更多行中的“物理资源块(Physical Resource Block,PRB)offset”列参数修改为“interlace index”或者“interlace offset”,其中,所述的“interlace offset”值是相对于interlace index 0的offset值。
对于初始接入阶段,基站通过同步信号块(PSS/SSS/PBCH block,SSB)或者剩余最小系统信息(Remaining minimum system information,RMSI)来配置消息3以及PUCCH所对应的频域资源分配方式为连续资源分配还是交织的资源分配。
对于初始接入成功进入连接态之后,基站可以通过下行控制信息(Downlink Control Information,DCI)里面的比特域来指示资源分配的类型。例如通过一比特来指示是连续资源分配还是交织的资源分配,或者通过一比特来通知资源分 配类型的动态切换,如果该比特使能则从原来的资源分配类型切换成另外一种资源分配类型,如果不使能则仍然是原来的资源分配类型。或者说交织资源分配是默认的资源分配方式,当该比特使能的时候代表从交织资源分配转换成连续的资源分配方式。
所述DCI包括fallback DCI和Non-fallcack DCI,所述连续资源分配为R15中的上行资源分配Type 0/1。
在一个应用性的示例中,对RRC连接建立之后的高频PUCCH资源分配方法进行说明。
利用非授权载波时,为了提高PUCCH发送成功的概率,可以多配置几个候选的资源集合。或者每个资源集包含的PUCCH资源数目可以增加到多个。
例如,在RRC连接建立后,基站通过高层RRC信令为一个UE最多配置K个PUCCH资源配置信息,且PUCCH资源配置信息是每个带宽部分(bandwidth part,BWP)独立分配的,第一个PUCCH资源配置信息包含的最大PUCCH资源数目是T个,其他PUCCH资源数目是t个。每个集合的PUCCH资源配置信息能够传输的最大上行控制信息(Uplink Control Information,UCI)比特数目不同。每个DCI触发的PUCCH发送的资源通过采用DCI里面的指示信令PUCCH资源指示(PUCCH Resource Indicator,PRI)给出,或者当资源集合中包含的资源数目比较多的时候,通过PRI信令和隐含确定指示的方式联合确定出PUCCH的具体资源。
其中,每个PUCCH的资源包括PUCCH的格式类型,所述格式类型包括PUCCH format 1和PUCCH format 3,该格式对应的时域资源分配,频域位置信息。频域位置包括一个或多个交织单元。每个PUCCH的频域资源会给出具体的“interlace index”或者“interlace offset”,其中,所述的“interlace offset”值是相对于interlace index 0的交织offset值。
在一实施例中,对于时域资源指示中的起始符号仅用于第一个PUCCH,中间是完整的时隙,符号数目用于指示最后一个PUCCH,增加一个PUCCH发送所占据的RU数目信息,RU的定义从上述示例中确定,本实施例中不再进行赘述。
在一实施例中,对于同一个PUCCH,可以配置多个候选的起始符号,提高肯定应答/否定应答(Acknowledgement/Negative Acknowledgement,ACK/NACK)发送的概率。
在一实施例中,对于空域资源分配,PUCCH传输的空间配置就是配置一个 参考信号RS和PUCCH之间的空间关系,其中,RS为SSB/CSI-RS/SRS/DRS中的任意一种,且该参数为UE-specific的空域资源配置。PUCCH传输的空间配置包括给每个UE配置多个SRS资源指示,同时激活多个空间配置。或者PUCCH传输的空间配置包括配置多个DMRS端口资源,且所述DMRS端口与参考信号的波束有准共址(Quasi Co-Location,QCL)关系。
在一实施例中,对于PUCCH资源配置可以是每个BWP配置的,也可以是每个载波配置的,或者是多个载波组的,或者是每个小区配置的。资源的配置更新可以是通过RRC信令,也可以是通过MAC CE,也可以是SSB/系统信息块(System Information Block,SIB)通知。
在一个应用示例中,对PUCCH在高频通过多个波束方向发送的方法进行说明。
对于PUCCH,可以在不同重复时刻采用不同波束方向进行发送。
在一实施例中,PUCCH采用Non-codebook的传输方式,即PUCCH传输的空间信息参考SRS资源对应的预编码,不用给出专门的传输预编码矩阵指示(Transmit Precoder Matrix Indicator,TPMI)。
图5是本申请实施例中的一种不同波束方向上发送数据的示意图,高频PUCCH可以采用如图5所示的传输方式,即不同时刻采用不同的波束方向进行数据传输,多个PUCCH承载的UCI内容是相同的,或者多个PUCCH承载相同UCI不同的冗余版本(Redundancy Version,RV)。
首先,基站配置一个SRS资源配置信息,该SRS资源配置信息包含多个SRS资源,每个时刻用其中一个探测参考信号资源指示(Sounding Reference Signal Resource Indicator,SRI)资源发送一个PUCCH。PUCCH1用SRI1,PUCCH2用SRI2,PUCCH3用SRI3,PUCCH4用SRI4。其中PUCCH1到PUCCH4携带的UCI内容相同。
通过该方式一方面提高PUCCH的发送概率,另一方面提高了PUCCH的覆盖性能。
在一个应用的示例中,对PUCCH在高频通过多个波束方向发送数据的另外一种方法进行说明。
基站可以给UE的PUCCH在同一时刻配置多个候选的波束方向发送数据。UE可以同时在这多个波束方向上执行独立的方向LBT,或者当这多个波束方向 的宽度范围超过预定义阈值的时候,UE需要执行全向的LBT方式。
在一实施例中,配置的多个候选的波束方向具有优先级顺序,优先级顺序在配置的时候给出,后面也可以进行调整。
图6是本申请实施例中的波束方向优先级的示意图,如图6所示,基站配置PUCCH空间参考信号为CSI-RS,且基站配置一个CSI-RS资源配置信息,该资源配置信息包含多个CSI-RS资源,如CSI-RS资源1,CSI-RS资源2,CSI-RS资源3,CSI-RS资源4。不同CSI-RS资源有不同的波束方向,假设配置顺序按照优先级从高到低排序,即资源1的优先级>资源2的优先级>资源3的优先级>资源4的优先级。然后,UE按照配置信息按照优先级从高到低的顺序依次执行LBT,一旦某个波束方向执行LBT成功,则就在该方向发送PUCCH,或者UE同时在这多个波束方向上执行LBT,如果只有一个成功则在该方向上发送PUCCH,如果是大于或等于两个方向上执行LBT成功,则选择优先级高的波束方向发送PUCCH。
在一个应用的示例中,对PUCCH进行多个RU的连续传输所执行的LBT的方式进行说明。
如上述应用示例所述,一个PUCCH在时域上会传输连续的多个RU或者一个PUCCH同时通过多个波束或多个候选的波束方向发送。则这多个波束发送之前所执行的LBT方式可以通过下面方式之一进行:
方式一:在第一个PUCCH上执行全向的cat4的LBT,如果PUCCH是中间非连续的,在后续波束上执行定向的cat2的LBT方式。如果PUCCH是连续的,如果第一个PUCCH执行LBT成功,则后续波束不执行LBT。
方式二:每个波束方向,都执行定向的cat4的LBT方式。
方式三:每个波束方向都执行定向的cat2的LBT方式。
方式四:当波束方向角度或宽带超过阈值的时候,执行全向的LBT。
需要说明的是,方式二适用于PUCCH中间非连续的场景。
在一实施例中,对于cat4的LBT方式,每个波束的竞争窗的大小(Contention Window Size,CWS)的维护是独立维护的,相互不影响。
在一个应用的示例中,为了提高数据LBT成功的概率,基站可以预调度多个波束方向,UE按照优先级依次在多个波束方向上执行LBT,哪个波束方向上执行LBT成功发送哪个波束。
如果某个波束上执行LBT没有成功,则该波束上的UCI信息就不能发送,会影响PUCCH的解调性能。为了解决上述问题,基站可以给UE配置多个候选的波束,当UE在前面的某个或某些波束LBT没有执行成功,则可以顺延,基站从前面第一个配置的波束进行检测,当达到配置的重复的次数的时候,则发送DCI将原来候选的波束资源指示给其他UE使用。
本实施例对一个PUCCH同时通过多个波束方向发送的情况进行说明。
对于PUCCH非授权载波的传输,基站可能会配置多个波束方向发送,通过多个空间资源配置给出具体的波束,PUCCH发送根据LBT的结果选择下面两种方法之一发送。
在一实施例中,基站在给UE配置多个SRS资源的时候有个优先级信息,当UE在多个波束方向执行LBT成功的时候,选择优先级较高的波束进行发送,同时基站按照配置的优先级进行检测。
例如基站给UE配置的PUCCH空域资源参考的RS为SRS,且配置了三个SRS资源,同时按照SRS1,SRS2,SRS3的优先级高低进行排序,则UE同时或分别在这三个SRS资源对应的波束方向上执行LBT,如果只有一个波束方向LBT成功则在该方向发送PUCCH,如果有两个或者三个方向LBT都成功,则UE按照优先级顺序在优先级高的波束方向发送PUCCH。如UE在SRS1和SRS2资源对应的波束方向上都执行LBT成功,UE选择在SRS1对应的波束方向发送调度的PUCCH。
通过该方法解决了在高频非授权载波场景下,如果某个波束方向执行LBT失败对PUCCH发送产生的不能正确解码的问题。
在一个应用的示例中,对一个PUCCH跨slot边界传输或传输多个RU的方法进行说明。
如果slot之间不连续,则会丢失信道。因此,需要PUCCH在重复的过程中间没有gap,这就需要重复的PUCCH的时域起始和长度在多个slot之间会不同。
PUCCH跨slot边界传输,对于高频采用大的SCS的情况下一个slot比较短,支持跨slot传输也可以提高PUCCH的覆盖。
图7是本申请实施例中的PUCCH跨slot边界传输的示意图,基站可以配置某个PUCCH资源从时隙1开始连续传输4个slot,这四个slot发送的UCI内容是不相同的,且这几个slot可以共享DMRS符号,即不是每个slot里面都有DMRS符号,可以第一个和第三个slot里面包含DMRS符号,而第二个和第四个slot里面不包含DMRS符号。对于第一个和第三个slot里面可以只包含一个 DMRS符号,也可以包含两个DMRS符号。或者四个slot里面只有一个slot里面包含DMRS符号。
对于不同UCI在这多个slot的映射方式,可以是ACK/NACK映射到DMRS符号的两边的临近的DMRS符号上面。例如如果DMRS符号位于第二个时隙的第四个符号,则ACK/NACK信息映射到第三个和第五个符号上面。没有DMRS的时隙不映射ACK/NACK信息。
对于CSI信息的第一部分映射到前面的时隙,第二部分映射到PUCCH传输的剩余的时隙。
在一个应用的示例中,对两个PUCCH在重复发送或连续传输多个时隙或RU过程中出现时域重叠情况的解决方法进行说明。
对于新无线电未许可频谱(New Radio Unlicensed Spectrum,NRU),由于LBT的原因,UCI优先级高的PUCCH可能会由于LBT不能发送,并且也没法提前确定哪个PUCCH先开始传输,所以需要结合LBT的结果进行PUCCH的发送。
图8是本申请实施例中的多个波束方向的情况下LBT的执行顺序示意图,如图8所示,有两个重复发送的PUCCH,PUCCH1重复发送了4次,然后在重复过程中在第二次重复或第三次重复或者第四次重复的开始或重复过程中跟PUCCH2的重复发生了重叠,则这个时候UE按照下面的规则之一进行PUCCH的发送。
规则一:UE按照PUCCH的起始符号的先后顺序先从起始符号索引小的开始执行LBT,如果UE在第一个PUCCH前两次重复次数内执行LBT成功,则发送第一个PUCCH,对于重叠的部分,第二个PUCCH打孔直到第一个PUCCH传输结束,才开始第二个PUCCH的传输。
如果UE在第一个PUCCH前两次重复次数内执行LBT没有成功,则放弃第一个PUCCH的传输,则UE在第二个PUCCH的起始执行LBT,成功后发送第二个PUCCH。
规则二:UE按照PUCCH承载UCI的优先级顺序,先在UCI优先级高的PUCCH起始符号之前执行LBT,如果成功则发送该PUCCH,如果失败,则在承载UCI优先级次高的PUCCH发送之前执行LBT,成功则发送该PUCCH,失败则选择再次优先级的PUCCH执行LBT并发送PUCCH。
规则三:对于重叠的优先级较低的PUCCH选择另外一个候选的波束方向发送或者执行LBT。
如图8所示,PUCCH1在时隙2或者RU2跟PUCCH2传输的第一个时隙配置的时频资源是一样的,则这个时候,如果PUCCH2配置了多个候选的波束方向的话,UE可以选择其他的优先级较低的波束方向执行LBT并发送PUCCH2。
在一个应用的示例中,对两个PUCCH在空域发送上出现重叠的情况进行说明。
如果基站给某个UE配置PUCCH1在多个不同的波束方向上重复发送,同时又配置有PUCCH2在多个不同的波束方向上重复发送,且这两个PUCCH在时间以及空间上面存在一定的重合,如这个两个波束之间是包含的关系,图9是本申请实施例中的又一种多个波束方向的情况下LBT的执行顺序示意图,如图9所示,一个波束宽,一个波束窄,则UE按照下面的方法执行LBT以及确定最终发送的PUCCH。
UE首先选择波束方向范围大的PUCCH在相应波束上执行LBT,如果成功,则选择发送宽的波束发送相应的PUCCH,否则,如果UE在宽的波束上执行LBT没有成功,则换成另一个PUCCH对应的窄的波束进行LBT检测,成功则通过窄的波束发送相应的PUCCH,也失败的话就放弃发送。
在一个应用的示例中,对超可靠低延迟通信(Ultra Reliable and Low Latency Communications,URLLC)业务的PUCCH的资源分配及HARQ-ACK反馈方法进行说明。
对于URLLC业务的ACK/NACK反馈,为了降低数据反馈及重传的时延,ACK/NACK反馈还可以不用等待DCI的通知。可以通过基站配置反馈周期+offset的方式配置一些用于URLLC业务的ACK/NACK反馈。UE在反馈之前有些情况下不需要做LBT,例如下行数据传输的结束点和ACK/NACK发送的位置之间的时间差小于16微秒,或者UE只做一次16微秒或者25微秒的LBT检测,如果LBT成功,则UE就在这些位置可以反馈ACK/NACK,且反馈所有配置用于URLLC业务的HARQ进程的ACK/NACK。同时,对于每个进程,上报1比特新数据指示符(New Data Indicator,NDI)信息来告诉基站该ACK/NACK是对上一次传输PDSCH的反馈还是对最新的调度的HARQ-ACK反馈。
图10是本申请实施例中的一种传输信道的配置装置的结构示意图,该装置可以适用于基站对高频载波上的资源进行配置的情况。该传输信道的配置装置可以由软件和/或硬件实现,所述传输信道的配置方法应用于基站上。
如图10所示,本申请实施例提供的传输信道的配置装置主要包括:第一发送模块101和第一接收模块102。
第一发送模块101,被设置为发送资源配置信息至用户设备,其中,所述资源配置信息包括:时域资源信息、频域资源信息和空间方向信息,所述资源配置信息用于配置用户设备传输信道的发送方式。
第一接收模块102,被设置为按照所述资源配置信息接收传输信道。
本实施例提供的传输信道的配置装置用于本申请实施例的传输信道的配置方法,本实施例提供的传输信道的配置装置实现原理和技术效果与本申请实施例的传输信道的配置方法类似,此处不再赘述。
在一个示例性的实施方式中,所述时域资源信息包括以下一个或多个:资源单元RU数目,解调参考信号DMRS的时隙位置及符号位置,起始符号,符号数目,时隙数目。
在一个示例性的实施方式中,所述起始符号,用于指示在传输信道传输多个时隙的情况下第一个时隙中的符号位置;所述符号数目,用于指示在传输信道传输多个时隙的情况下最后一个时隙中的符号位置。
在一个示例性的实施方式中,所述起始符号,用于指示在传输信道传输多个RU的情况下第一个RU中的符号位置;所述符号数目,用于指示在传输信道传输多个RU的情况下最后一个RU中符号的位置。
在一个示例性的实施方式中,同一个传输信道配置一个或多个起始符号。
在一个示例性的实施方式中,所述DMRS的时隙位置及符号位置用于确定DMRS所在时隙以及所在时隙中的符号位置。
在一个示例性的实施方式中,所述频域资源信息包括以下一个或多个:交织单元指示信息、频域资源分配类型指示信息、频域资源分配类型切换指示信息。
在一个示例性的实施方式中,所述交织单元指示信息包括以下一个或多个:交织单元索引,交织单元偏移量,交织单元位图,SLIV值,子带索引及相对于该子带第一个RB的偏移量。
在一个示例性的实施方式中,所述频域资源分配类型指示信息用于指示传输信道对应的频域资源分配方式,其中,所述频域资源分配方式包括连续资源分配方式和交织资源分配方式;所述频域资源分配类型切换指示信息用于指示资源分配方式的动态切换。
在一个示例性的实施方式中,所述空间方向信息是空间参考信号RS和传输 信道之间的空间关系,其中,所述RS包括以下任一项:SSB、CSI-RS、SRS、DRS,所述空间方向信息由UE-specific参数配置。
在一个示例性的实施方式中,不同的空间参考信号RS之间有优先级顺序,不同波束方向之间有优先级顺序。
图11是本申请实施例中的一种传输信道的发送装置的结构示意图,该方法可以适用于用户设备根据资源配置信息进行资源配置的情况。该传输信道的发送装置可以由软件和/或硬件实现,所述传输信道的发送装置应用于用户设备上。
如图11所示,本申请提供的传输信道的发送装置主要包括第二接收模块111和第二发送模块112。
第二接收模块111,被设置为接收基站发送的资源配置信息,其中,所述资源配置信息包括时域资源信息、频域资源信息和空间方向信息。
第二发送模块112,被设置为根据所述资源配置信息配置传输信道的发送方式,并发送传输信道。
本实施例提供的传输信道的发送装置用于本申请实施例的传输信道的发送方法,本实施例提供的传输信道的发送装置实现原理和技术效果与本申请实施例的传输信道的发送方法类似,此处不再赘述。
在一个示例性的实施方式中,所述装置还包括LBT执行模块,被设置为在同时通过多个波束方向发送传输信道的情况下,发送传输信道之前,通过以下任一项方式执行先听后说LBT:
方式一:在传输信道非连续传输的情况下,对于每个波束方向,均执行定向的cat4的LBT;
方式二:在传输信道非连续传输的情况下,第一个波束方向上执行全向的cat4的LBT,除第一个波束方向之外的所有波束方向均执行定向的cat2的LBT;
方式三:对于每个波束方向,均执行定向的cat2的LBT;
方式四:对于每个波束方向,按照波束方向的优先级顺序依次执行LBT;
方式五:在波束方向角度超过角度阈值的情况下,对于每个波束方向,均执行全向的LBT;
方式六:在传输信道所占据的宽带超过宽带阈值的情况下,对于每个波束方向,均执行全向的LBT。
在一个示例性的实施方式中,第二发送模块112,被设置为对于每个波束方 向,按照波束方向的优先级顺序依次执行LBT,在每个波束方向均执行LBT成功的情况下,选择优先级最高的波束方向发送传输信道。
在一个示例性的实施方式中,第二发送模块112,被设置为在两个或两个以上传输信道在重复发送过程中存在时域重叠的情况下,根据LBT的执行结果确定传输信道的发送方式。
在一个示例性的实施方式中,第二发送模块112,被设置为按照两个或两个以上传输信道的起始符号的先后顺序依次执行LBT;
在第一个传输信道预设数量的重复次数内执行LBT成功的情况下,发送第一个传输信道,在第一个传输信道发送成功的情况下,再发送第二个传输信道;
在第一个传输信道预设数量的重复次数内执行LBT未成功的情况下,放弃发送第一个传输信道,在第二个传输信道的起始位置,执行LBT,并发送第二个传输信道。
在一个示例性的实施方式中,第二发送模块112,被设置为按照传输信道承载的控制信息的优先级顺序依次执行LBT;在执行LBT成功的情况下,发送执行LBT成功的传输信道。
在一个示例性的实施方式中,第二发送模块112,被设置为对于时域重叠的两个传输信道,在任一传输信道配置多个波束方向的情况下,该传输信道采用除优先级最高的波束方向之外的任一配置的波束方向执行LBT并发送传输信道。
本申请实施例还提供了一种设备,图12是本申请提供的一种设备的结构示意图,如图12所示,本申请提供的设备,包括一个或多个处理器121和存储器122;该设备中的处理器121可以是一个或多个,图12中以一个处理器121为例;存储器122用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器121执行,使得所述一个或多个处理器121实现如本发明实施例中所述的方法。
设备还包括:通信装置123、输入装置124和输出装置125。
设备中的处理器121、存储器122、通信装置123、输入装置124和输出装置125可以通过总线或其他方式连接,图12中以通过总线连接为例。
输入装置124可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的按键信号输入。输出装置125可包括显示屏等显示设备。
通信装置123可以包括接收器和发送器。通信装置123设置为根据处理器121的控制进行信息收发通信。
存储器122作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述传输信道的配置方法对应的程序指令/模块(例如,传输信道的配置装置中第一发送模块101和第一接收模块102),再如本申请实施例所述传输信道的发送方法对应的程序指令/模块(例如,传输信道的发送装置中的第二接收模块111和第二发送模块112)。存储器122可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器122可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器122可包括相对于处理器121远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
需要说明的是,在本申请实施例提供的设备是基站的情况下,上述设备可以实现本申请实施例中任一所述的传输信道的配置方法,所述方法包括:
发送资源配置信息至用户设备,其中,所述资源配置信息包括:时域资源信息、频域资源信息和空间方向信息,所述资源配置信息用于配置用户设备传输信道的发送方式;
按照所述资源配置信息接收传输信道。
在本申请实施例提供的设备是用户设备UE的情况下,上述设备可以实现本申请实施例中任一所述的传输信道的发送方法,所述方法包括:
接收基站发送的资源配置信息,其中,所述资源配置信息包括时域资源信息、频域资源信息和空间方向信息;
根据所述资源配置信息配置传输信道的发送方式,并发送传输信道。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的方法。
本申请实施例中任一所述的传输信道的配置方法,包括:
发送资源配置信息至用户设备,其中,所述资源配置信息包括:时域资源信息、频域资源信息和空间方向信息,所述资源配置信息用于配置用户设备传输信道的发送方式;
按照所述资源配置信息接收传输信道。
本申请实施例中任一所述的传输信道的发送方法,包括:
接收基站发送的资源配置信息,其中,所述资源配置信息包括时域资源信息、频域资源信息和空间方向信息;
根据所述资源配置信息配置传输信道的发送方式,并发送传输信道。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或(Compact Disk,CD)光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (22)

  1. 一种传输信道的配置方法,包括:
    发送资源配置信息至用户设备,其中,所述资源配置信息包括:时域资源信息、频域资源信息和空间方向信息,所述资源配置信息用于配置所述用户设备的传输信道的发送方式;
    按照所述资源配置信息接收传输信道。
  2. 根据权利要求1所述的方法,其中,所述时域资源信息包括以下至少之一:资源单元RU数目,解调参考信号DMRS的时隙位置及符号位置,起始符号,符号数目,时隙数目。
  3. 根据权利要求2所述的方法,其中,所述起始符号,用于指示在所述传输信道传输多个时隙的情况下第一个时隙中的符号位置;所述符号数目,用于指示在所述传输信道传输多个时隙的情况下最后一个时隙中的符号位置。
  4. 根据权利要求2所述的方法,其中,所述起始符号,用于指示在所述传输信道传输多个RU的情况下第一个RU中的符号位置;所述符号数目,用于指示在所述传输信道传输多个RU的情况下最后一个RU中的符号位置。
  5. 根据权利要求2所述的方法,其中,同一个传输信道配置至少一个起始符号。
  6. 根据权利要求2所述的方法,其中,所述DMRS的时隙位置及符号位置用于确定DMRS所在时隙以及所在时隙中的符号位置。
  7. 根据权利要求1所述的方法,其中,所述频域资源信息包括以下至少之一:交织单元指示信息、频域资源分配类型指示信息、频域资源分配类型切换指示信息。
  8. 根据权利要求7所述的方法,其中,所述交织单元指示信息包括以下至少之一:交织单元索引,交织单元偏移量,交织单元位图,起始交织单元和长度指示SLIV值,子带索引及相对于子带第一个资源块RB的偏移量。
  9. 根据权利要求7所述的方法,其中,所述频域资源分配类型指示信息用于指示所述传输信道对应的频域资源分配方式,其中,所述频域资源分配方式包括连续资源分配方式和交织资源分配方式;所述频域资源分配类型切换指示信息用于指示资源分配方式的动态切换。
  10. 根据权利要求1所述的方法,其中,所述空间方向信息是参考信号RS和所述传输信道之间的空间关系,其中,所述RS包括以下任一项:同步信号块SSB、信道状态信息参考信号CSI-RS、探测参考信号SRS、发现参考信号DRS,所述空间方向信息由UE-specific参数配置。
  11. 根据权利要求10所述的方法,其中,不同的空间参考信号RS之间具有优先级顺序,不同波束方向之间具有优先级顺序。
  12. 一种传输信道的发送方法,包括:
    接收基站发送的资源配置信息,其中,所述资源配置信息包括时域资源信息、频域资源信息和空间方向信息;
    根据所述资源配置信息配置传输信道的发送方式,并发送所述传输信道。
  13. 根据权利要求12所述的方法,其中,在同时通过多个波束方向发送所述传输信道的情况下,在发送所述传输信道之前,包括通过以下任一项方式执行先听后说LBT:
    在所述传输信道是非连续传输的情况下,对于每个波束方向,均执行定向的类型cat4的LBT;
    在所述传输信道是非连续传输的情况下,在第一个波束方向上执行全向的cat4的LBT,在除所述第一个波束方向之外的所有波束方向上均执行定向的cat2的LBT;
    对于每个波束方向,均执行定向的cat2的LBT;
    对于每个波束方向,按照波束方向的优先级顺序依次执行LBT;
    在波束方向的角度超过角度阈值的情况下,对于每个波束方向,均执行全向的LBT;
    在所述传输信道所占据的宽带超过宽带阈值的情况下,对于每个波束方向,均执行全向的LBT。
  14. 根据权利要求12所述的方法,其中,所述根据所述资源配置信息配置传输信道的发送方式,并发送所述传输信道,包括:
    对于每个波束方向,按照波束方向的优先级顺序依次执行LBT,在每个波束方向均执行LBT成功的情况下,选择所述波束方向的优先级顺序中优先级最高的波束方向发送所述传输信道。
  15. 根据权利要求12所述的方法,其中,所述根据所述资源配置信息配置传输信道的发送方式,包括:
    在多个传输信道在重复发送过程中存在时域重叠的情况下,根据LBT的执行结果确定所述传输信道的发送方式。
  16. 根据权利要求15所述的方法,其中,所述根据LBT的执行结果确定所述传输信道的发送方式,包括:
    按照多个传输信道的起始符号的先后顺序依次执行LBT;
    在第一个传输信道预设数量的重复次数内执行LBT成功的情况下,发送第一个传输信道,在所述第一个传输信道发送成功的情况下,发送第二个传输信道;
    在第一个传输信道预设数量的重复次数内执行LBT未成功的情况下,放弃发送所述第一个传输信道,在所述第二个传输信道的起始位置,执行LBT,并发送所述第二个传输信道。
  17. 根据权利要求15所述的方法,其中,所述根据LBT的执行结果确定所述传输信道的发送方式,包括:
    按照所述传输信道承载的控制信息的优先级顺序依次执行LBT;
    在执行LBT成功的情况下,发送执行LBT成功的传输信道。
  18. 根据权利要求15所述的方法,其中,所述根据LBT的执行结果确定所述传输信道的发送方式,包括:
    对于时域重叠的两个传输信道,在任一个传输信道配置多个波束方向的情况下,所述传输信道采用除波束方向的优先级顺序中优先级最高的波束方向之外的任一个配置的波束方向执行LBT并发送所述传输信道。
  19. 一种传输信道的配置装置,包括:
    第一发送模块,被设置为发送资源配置信息至用户设备,其中,所述资源配置信息包括:时域资源信息、频域资源信息和空间方向信息,所述资源配置信息用于配置所述用户设备的传输信道的发送方式;
    第一接收模块,被设置为按照所述资源配置信息接收传输信道。
  20. 一种传输信道的发送装置,包括:
    第二接收模块,被设置为接收基站发送的资源配置信息,其中,所述资源配置信息包括时域资源信息、频域资源信息和空间方向信息;
    第二发送模块,被设置为根据所述资源配置信息配置传输信道的发送方式,并发送所述传输信道。
  21. 一种设备,包括:
    一个或多个处理器;
    存储器,设置为存储一个或多个程序;
    所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-18中任一项所述的方法。
  22. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-18中任一项所述的方法。
PCT/CN2020/127522 2019-11-08 2020-11-09 传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质 WO2021089043A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/774,809 US20220408420A1 (en) 2019-11-08 2020-11-09 Transmission channel configuration method and apparatus, transmission channel sending method and apparatus, device and storage medium
EP20884830.9A EP4057754A4 (en) 2019-11-08 2020-11-09 TRANSMISSION CHANNEL CONFIGURATION METHOD AND APPARATUS, TRANSMISSION CHANNEL TRANSMISSION METHOD AND APPARATUS, DEVICE AND STORAGE MEDIUM
CA3157086A CA3157086A1 (en) 2019-11-08 2020-11-09 Transmission channel configuration method and apparatus, transmission channel sending method and apparatus, device and storage medium
KR1020227017640A KR20220087542A (ko) 2019-11-08 2020-11-09 전송채널의 구성 방법 및 장치, 전송채널의 송신 방법 및 장치, 설비 및 저장매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911089428.7A CN111107555B (zh) 2019-11-08 2019-11-08 传输信道的传输和发送方法、装置、设备和存储介质
CN201911089428.7 2019-11-08

Publications (1)

Publication Number Publication Date
WO2021089043A1 true WO2021089043A1 (zh) 2021-05-14

Family

ID=70420540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127522 WO2021089043A1 (zh) 2019-11-08 2020-11-09 传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质

Country Status (6)

Country Link
US (1) US20220408420A1 (zh)
EP (1) EP4057754A4 (zh)
KR (1) KR20220087542A (zh)
CN (1) CN111107555B (zh)
CA (1) CA3157086A1 (zh)
WO (1) WO2021089043A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111107555B (zh) * 2019-11-08 2023-06-02 中兴通讯股份有限公司 传输信道的传输和发送方法、装置、设备和存储介质
CN111669240B (zh) * 2020-05-15 2022-07-19 中国信息通信研究院 一种支持方向性先听后发传输方法、设备和系统
CN115280864A (zh) * 2020-06-12 2022-11-01 Oppo广东移动通信有限公司 无线通信的方法及设备
US11929803B2 (en) * 2020-07-29 2024-03-12 Qualcomm Incorporated Connected mode beam management for narrowband systems
JP2023536922A (ja) * 2020-08-06 2023-08-30 アップル インコーポレイテッド マルチtrpを用いたpucch動作のための技術
CN114391288A (zh) * 2020-08-19 2022-04-22 上海诺基亚贝尔股份有限公司 用于传输优先级排序的机制
WO2022041027A1 (en) * 2020-08-27 2022-03-03 Zte Corporation Method and apparatus related to direction-based listen before talk
WO2022067611A1 (zh) * 2020-09-30 2022-04-07 Oppo广东移动通信有限公司 先侦听后传输失败上报的方法、终端设备和网络设备
CN112367706B (zh) * 2020-10-29 2023-03-10 Tcl通讯(宁波)有限公司 资源分配方法、装置及存储介质
US11968546B2 (en) * 2021-05-11 2024-04-23 Qualcomm Incorporated Beam coverage assessment for channel access
CN115913475A (zh) * 2021-08-02 2023-04-04 维沃移动通信有限公司 波束信息确定方法、装置、通信设备及存储介质
US11825427B2 (en) * 2021-08-20 2023-11-21 Qualcomm Incorporated Techniques for performing physical layer security during full-duplex communications
US20230090447A1 (en) * 2021-09-17 2023-03-23 Qualcomm Incorpoated Resources for uplink control information multiplexing in an absence of demodulation reference signals
CN116346546A (zh) * 2021-12-24 2023-06-27 华为技术有限公司 一种通信方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458420A (zh) * 2012-05-31 2013-12-18 华为技术有限公司 一种无线通信方法、基站及用户设备
CN103716895A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 物理随机接入信道的资源确定方法及装置
US20170245165A1 (en) * 2016-02-23 2017-08-24 Samsung Electronics Co., Ltd Method and apparatus for measurement reference signal
CN107889244A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 通信方法、装置及系统
CN109121207A (zh) * 2017-06-22 2019-01-01 华为技术有限公司 一种通信方法及设备
CN109792751A (zh) * 2018-12-28 2019-05-21 北京小米移动软件有限公司 传输上行信息的方法、装置、用户设备及基站
CN111107555A (zh) * 2019-11-08 2020-05-05 中兴通讯股份有限公司 传输信道的传输和发送方法、装置、设备和存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644504B (zh) * 2016-08-05 2022-11-25 Lg 电子株式会社 在支持非授权频带的无线通信系统中发送和接收信号的方法和支持该方法的设备
US10667288B2 (en) * 2017-02-21 2020-05-26 Qualcomm Incorporated Techniques for configuring or transmitting grantless transmissions on beams in uplink subframes
CN108631976B (zh) * 2017-03-23 2021-07-16 华为技术有限公司 一种通信方法及装置
US10912128B2 (en) * 2018-01-23 2021-02-02 Samsung Electronics Co., Ltd. Listen-before-talk for wideband operations of NR unlicensed spectrum
CN110149703B (zh) * 2018-02-12 2021-04-27 北京紫光展锐通信技术有限公司 上行控制信息的发送方法及装置、存储介质、用户设备
CN110167187B (zh) * 2018-02-13 2021-08-17 展讯通信(上海)有限公司 未授权频谱中lbt策略的配置方法、设备及可读介质
EP3618328B1 (en) * 2018-02-14 2022-09-07 LG Electronics Inc. Method for transmitting and receiving uplink signal between terminal and base station in wireless communication system for supporting unlicensed band, and apparatus for supporting same
CN110114990B (zh) * 2019-03-25 2023-04-04 北京小米移动软件有限公司 信道检测方法、装置及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458420A (zh) * 2012-05-31 2013-12-18 华为技术有限公司 一种无线通信方法、基站及用户设备
CN103716895A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 物理随机接入信道的资源确定方法及装置
US20170245165A1 (en) * 2016-02-23 2017-08-24 Samsung Electronics Co., Ltd Method and apparatus for measurement reference signal
CN107889244A (zh) * 2016-09-30 2018-04-06 华为技术有限公司 通信方法、装置及系统
CN109121207A (zh) * 2017-06-22 2019-01-01 华为技术有限公司 一种通信方法及设备
CN109792751A (zh) * 2018-12-28 2019-05-21 北京小米移动软件有限公司 传输上行信息的方法、装置、用户设备及基站
CN111107555A (zh) * 2019-11-08 2020-05-05 中兴通讯股份有限公司 传输信道的传输和发送方法、装置、设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4057754A4

Also Published As

Publication number Publication date
EP4057754A1 (en) 2022-09-14
US20220408420A1 (en) 2022-12-22
KR20220087542A (ko) 2022-06-24
CA3157086A1 (en) 2021-05-14
EP4057754A4 (en) 2023-12-06
CN111107555B (zh) 2023-06-02
CN111107555A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2021089043A1 (zh) 传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质
US11516744B2 (en) Method and apparatus for adjusting maximum uplink transmission power in wireless communication system
US11889296B2 (en) Method and apparatus for transmitting uplink information
CN112771785A (zh) 用于经由物理共享信道传送用户数据的方法和设备
WO2021052254A1 (zh) 数据传输方法、装置和系统
US11716768B2 (en) Method and device for providing instruction of physical resource used for random access, and storage medium
WO2019028771A1 (zh) 传输数据的方法和终端设备
US20230122786A1 (en) Method and apparatus for determining channel access procedure in wireless communication system
US20230136113A1 (en) Methods and apparatus for indicating common transmission configuration indicator (tci) state
JP2023500344A (ja) 情報表示方法及び装置
EP4274349A1 (en) Method and device for transmitting downlink data as repeated downlink control information in wireless communication system
US20230371040A1 (en) Information determination method and apparatus, device, and storage medium
CN112088507B (zh) 一种信息传输方法和通信设备以及网络设备
US11134378B2 (en) Data transmission method and apparatus
US20220368505A1 (en) Data feedback method and apparatus
WO2022057175A1 (zh) 一种通信方法和装置
WO2022067752A1 (en) Systems and methods for enhancing uplink transmission
WO2022077479A1 (zh) 一种通信方法及装置
CN110149189B (zh) 一种信息传输方法和装置
WO2024031357A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
EP4304140A1 (en) Information transmission method, apparatus and device, and storage medium
WO2022082805A1 (zh) 一种通信方法及装置
WO2022150990A1 (zh) 一种无线通信的方法及装置、通信设备
KR20160134497A (ko) 면허 및 비면허 대역을 지원하는 네트워크에서 통신 노드의 동작 방법
CN115334653A (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3157086

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227017640

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020884830

Country of ref document: EP

Effective date: 20220608