WO2024031357A1 - 通信方法、装置、设备、存储介质、芯片、产品及程序 - Google Patents

通信方法、装置、设备、存储介质、芯片、产品及程序 Download PDF

Info

Publication number
WO2024031357A1
WO2024031357A1 PCT/CN2022/111232 CN2022111232W WO2024031357A1 WO 2024031357 A1 WO2024031357 A1 WO 2024031357A1 CN 2022111232 W CN2022111232 W CN 2022111232W WO 2024031357 A1 WO2024031357 A1 WO 2024031357A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
tci state
information
srs resource
srs
Prior art date
Application number
PCT/CN2022/111232
Other languages
English (en)
French (fr)
Inventor
史志华
曹建飞
方昀
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/111232 priority Critical patent/WO2024031357A1/zh
Publication of WO2024031357A1 publication Critical patent/WO2024031357A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of this application relate to the field of mobile communication technology, and specifically relate to a communication method, device, equipment, storage medium, chip, product and program.
  • the 5G New Radio (NR) system supports transmission and reception of multiple transmission/reception points (TRPs) to extend coverage to higher frequency bands.
  • TRPs transmission/reception points
  • Multiple communication links may be formed between network devices with multiple TRPs and/or end devices with multiple panels to increase throughput and/or provide additional diversity gain. How terminal equipment performs uplink transmission has always been a concern in this field.
  • Embodiments of the present application provide a communication method, device, equipment, storage medium, chip, product and program.
  • embodiments of the present application provide a communication method, which method includes:
  • the terminal device sends the physical uplink shared channel PUSCH corresponding to the configuration authorization CG according to one or more transmission configuration indication TCI status.
  • embodiments of the present application provide a communication method, which method includes:
  • the network device receives the physical uplink shared channel PUSCH corresponding to the configuration authorization CG; the PUSCH corresponding to the CG is sent according to one or more transmission configuration indication TCI states.
  • an embodiment of the present application provides a communication device, including:
  • the communication unit is configured to send the physical uplink shared channel PUSCH corresponding to the configuration grant CG according to one or more transmission configuration indication TCI states.
  • an embodiment of the present application provides a communication device, including:
  • the communication unit is configured to receive the physical uplink shared channel PUSCH corresponding to the configuration authorization CG; the PUSCH corresponding to the CG is sent according to one or more transmission configuration indication TCI states.
  • embodiments of the present application provide a communication device, including: a processor and a memory,
  • the memory stores a computer program executable on the processor
  • embodiments of the present application provide a computer storage medium that stores one or more programs, and the one or more programs can be executed by one or more processors to implement the first aspect. Or the method described in the second aspect.
  • embodiments of the present application provide a chip, including: a processor configured to call and run a computer program from a memory to implement the method described in the first or second aspect.
  • inventions of the present application provide a computer program product.
  • the computer program product includes a computer storage medium.
  • the computer storage medium stores a computer program.
  • the computer program includes instructions that can be executed by at least one processor. When When the instructions are executed by the at least one processor, the method described in the first aspect or the second aspect is implemented.
  • embodiments of the present application provide a computer program, which causes a computer to execute the method described in the first aspect or the second aspect.
  • the terminal device sends the physical uplink shared channel PUSCH corresponding to the configuration authorization CG according to one or more transmission configuration indication TCI status.
  • the terminal device since the terminal device transmits the PUSCH corresponding to the CG based on one or more TCI states, the terminal device can effectively transmit the PUSCH corresponding to the CG and improve the reliability of the transmission of the PUSCH corresponding to the CG.
  • Figure 1 is a schematic diagram of an application scenario according to the embodiment of the present application.
  • Figure 2 is a schematic diagram of multi-TRP transmission provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of multiple beam transmission provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a TCI status configuration method of PDSCH provided by an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • Figure 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • the communication system 100 may include a terminal device 110 and a network device 120.
  • the network device 120 may communicate with the terminal device 110 through the air interface. Multi-service transmission is supported between the terminal device 110 and the network device 120.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE -A Advanced long term evolution
  • NR New Radio
  • evolution system of NR system LTE-based access to unlicensed spectrum (LTE-U) system on unlicensed spectrum, NR on unlicensed spectrum (NR -based access to unlicensed spectrum (NR-U) system, Universal Mobile Telecommunication System (UMTS), Wireless Local Area Networks (WLAN), Wireless Fidelity (WiFi), LTE time division dual Time Division Duplex (TDD), Universal
  • the network device 120 in this embodiment of the present application may include an access network device 121 and/or a core network device 122.
  • the access network device may provide communication coverage for a specific geographical area and may communicate with terminal devices 110 (eg, UEs) located within the coverage area.
  • terminal devices 110 eg, UEs
  • the terminal device in this application is a device with wireless communication functions, which can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal equipment in this application can be called user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), user unit, user station, mobile station, remote station, remote terminal , mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • Terminal devices may include one or at least a combination of the following: Internet of Things (IoT) devices, satellite terminals, Wireless Local Loop (WLL) stations, Personal Digital Assistants (Personal Digital Assistant, PDA) ), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, servers, mobile phones, tablets (Pad), computers with wireless transceiver capabilities, handheld computers, desktop computers, personal computers Digital assistants, portable media players, smart speakers, navigation devices, smart watches, smart glasses, smart necklaces and other wearable devices, pedometers, digital TV, virtual reality (Virtual Reality, VR) terminal equipment, augmented reality (Augmented Reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and vehicles, vehicle-mounted equipment, vehicle-mounted modules, and wireless devices in the Internet of Vehicles system Modems, handheld devices, customer terminal equipment
  • the terminal device 110 may be any terminal device, including but not limited to terminal devices that adopt wired or wireless connections with the network device 120 or other terminal devices.
  • the terminal device 110 may be used for device-to-device (Device to Device, D2D) communication.
  • D2D Device to Device
  • the access network equipment 121 may include one or at least a combination of the following: an evolutionary base station (Evolutional Node B, eNB or eNodeB) in a Long Term Evolution (LTE) system, a next-generation wireless access network (Next Generation Radio Access Network (NG RAN) equipment, base stations (gNB) in NR systems, small stations, micro stations, wireless controllers in Cloud Radio Access Network (CRAN), wireless fidelity (Wireless- Fidelity, Wi-Fi) access points, transmission/reception points (transmission reception points, TRP), relay stations, access points, in-vehicle devices, wearable devices, hubs, switches, bridges, routers, public land for future evolution Network equipment in the mobile network (Public Land Mobile Network, PLMN), etc.
  • the TRP may be a sending/receiving point.
  • the core network device 122 may be a 5G core network (5G Core, 5GC) device, and the core network device 122 may include one of the following or a combination of at least two: Access and Mobility Management Function (AMF), Authentication Server Function (AUSF), User Plane Function (UPF), Session Management Function (SMF), Location Management Function (LMF), Policy Control Function (Policy Control Function, PCF).
  • AMF Access and Mobility Management Function
  • AUSF Authentication Server Function
  • UPF User Plane Function
  • SMF Session Management Function
  • LMF Location Management Function
  • Policy Control Function Policy Control Function
  • PCF Policy Control Function
  • the core network device may also be the Evolved Packet Core (EPC) device of the LTE network, for example, the session management function + core network data gateway (Session Management Function + Core Packet Gateway, SMF + PGW-C) equipment.
  • EPC Evolved Packet Core
  • SMF+PGW-C can simultaneously realize the functions that SMF and PGW-C can realize.
  • the above-mentioned core network device 122 may also be called by other names, or a new network entity may be formed by dividing the functions of the core network, which is not limited by the embodiments of this application.
  • Various functional units in the communication system 100 can also establish connections through next generation network (NG) interfaces to achieve communication.
  • NG next generation network
  • the terminal device establishes an air interface connection with the access network device through the NR interface for transmitting user plane data and control plane signaling; the terminal device can establish a control plane signaling connection with the AMF through the NG interface 1 (referred to as N1); access Network equipment, such as the next generation wireless access base station (gNB), can establish user plane data connections with UPF through NG interface 3 (referred to as N3); access network equipment can establish control plane signaling with AMF through NG interface 2 (referred to as N2) connection; UPF can establish a control plane signaling connection with SMF through NG interface 4 (referred to as N4); UPF can exchange user plane data with the data network through NG interface 6 (referred to as N6); AMF can communicate with SMF through NG interface 11 (referred to as N11) SMF establishes a control plane signaling connection; SMF can establish a control plane signaling connection with PCF through NG interface 7 (referred to as N7).
  • N1 AMF through the NG interface 1
  • access Network equipment such as the next generation wireless
  • Figure 1 exemplarily shows a base station, a core network device and two terminal devices.
  • the wireless communication system 100 may include multiple base station devices and other numbers of terminals may be included within the coverage of each base station.
  • Equipment the embodiments of this application do not limit this.
  • FIG. 1 only illustrates the system to which the present application is applicable in the form of an example.
  • the method shown in the embodiment of the present application can also be applied to other systems.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship that describes related objects, indicating that three relationships can exist. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and they exist alone. B these three situations.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • A indicates B, which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • the "correspondence” mentioned in the embodiments of this application can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed. , configuration and configured relationship.
  • the "predefined”, “protocol agreement”, “predetermined” or “predefined rules” mentioned in the embodiments of this application can be preset in the equipment (for example, including terminal equipment and network equipment).
  • predefined can refer to what is defined in the protocol.
  • the "protocol" may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this. .
  • NR/5G systems include large-bandwidth communications in high frequency bands (such as frequency bands above 6GHz). When the operating frequency becomes higher, the path loss during transmission will increase, thus affecting the coverage capability of the high-frequency system.
  • an effective technical solution is to use multiple antennas (multiple beams) based on large-scale antenna arrays or massive multiple input multiple output (MIMO, Massive MIMO) Or hybrid beam technology to improve coverage capabilities.
  • a cell uses a wider beam to cover the entire cell. Therefore, at every moment, terminal devices within the cell coverage have the opportunity to obtain the transmission resources allocated by the system.
  • the NR/5G multi-beam system uses different beams to cover the entire cell, that is, each beam covers a smaller range, and multiple beams cover the entire cell through time scanning (sweeping). community effect.
  • different beams are identified through different signals carried on them.
  • synchronization signal blocks (Synchronization Signal block, SS block or SSB) are transmitted on some different beams, and the terminal device can distinguish different beams through different SS blocks.
  • SSB can also be called synchronization signal/physical broadcast channel block (Synchronization Signal/Physical Broadcast Channel block, SS/PBCH block).
  • CSI-RS Channel State Information-Reference Signal
  • visible signals such as these SS blocks and/or CSI-RS can correspond to certain/certain physical beams.
  • the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared CHannel (PDSCH) can be transmitted through different downlink transmit beams.
  • omnidirectional antennas or nearly omnidirectional antennas are used to receive signals sent by different downlink transmit beams of the base station.
  • corresponding beam indication information (beam indication) is needed to assist the terminal device in determining the transmit beam-related information on the network side, or the corresponding receive beam-related information on the terminal device side.
  • the beam indication information does not directly indicate the beam itself, but through the quasi-co-located or Quasi co-location (QCL) quasi-co-location ('QCL-TypeD' type) between signals. Give instructions.
  • QCL quasi-co-located or Quasi co-location
  • 'QCL-TypeD' type quasi-co-location
  • the QCL quasi-colocation assumption is indicated by the Transmission Configuration Indication (TCI) state (TCI-state), that is, the network passes related signaling (such as Radio Resource Control (Radio Resource Control, RRC), and/or Media access control control element (Medium Access Control Control Element, MAC CE), and/or downlink control information (Downlink Control Information, DCI) to configure and/or indicate the TCI status of the pair.
  • TCI Transmission Configuration Indication
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • MAC CE Media Access Control Control Element
  • DCI Downlink Control Information
  • TRP transmission means that on the same carrier, multiple TRPs can communicate with a terminal device at the same time. Since in the NR system, multiple TRP transmissions, or multiple panels or multiple beams can transmit to a terminal device at the same time, the same solution can be used, so they are often not distinguished in the description, for example, it is called multi-TRP transmission. , multiple TRP (multiple TRP, mTRP) transmission, or M-TRP (Multiple-TRP) transmission, or written as multiple TRP/panel/beam transmission.
  • the solution of multiple TRPs or multiple panels/antenna panels (Antenna panels) or multiple beams transmitting downlink data to terminal devices at the same time supports the following two major categories of solutions:
  • Scheme 1 Single-PDCCH based scheme: The terminal equipment only detects one NR-PDCCH.
  • a DCI detected by the control channel PDCCH indicates the correlation of data transmitted simultaneously on multiple TRPs/panel/beams. Instruction information, so that one transmission corresponds to multiple TCI-states, that is, multiple TRP/panel/beam transmissions are implicitly supported through multiple TCI-states.
  • TCI-state and TCI state are understood synonymously.
  • Scheme 2 Multiple-PDCCH based scheme: The terminal equipment receives different NR-PDCCHs from different TRP/panel/beams, and the DCI detected on each control channel PDCCH indicates a corresponding data Transmission related instruction information, in this way, the control resource set (COntrol REsource SET, CORESET) corresponding to the DCI of the scheduling data may be associated with different CORESET resource pool numbers/indexes (CORESET pool index), that is, corresponding to different CORESET pool index, That is, multiple TRP/panel/beam transmissions are implicitly supported through multiple different CORESET pool indexes.
  • CORESET pool index CORESET resource pool index
  • FIG. 2 is a schematic diagram of multi-TRP transmission provided by an embodiment of the present application. As shown in Figure 2, a terminal device can receive information through TRP1 and/or TRP2.
  • Figure 3 is a schematic diagram of multiple beam transmission provided by an embodiment of the present application. As shown in Figure 3, the network device can send information through beam1 and beam2.
  • the terminal equipment only needs to detect one NR-PDCCH, so the control channel detection complexity may be lower than the second solution.
  • the first solution requires rapid information exchange between different panels/TRP/beams.
  • the terminal equipment needs to detect multiple NR-PDCCHs on the same carrier at the same time.
  • the complexity may increase, but the flexibility and robustness may be improved.
  • Possible application scenarios for the second option include at least the following:
  • Scenario 1 Multiple TRPs belong to the same cell, and the connection (backhaul) between TRPs is ideal (that is, rapid information exchange and dynamic information exchange can be performed).
  • Scenario 2 Multiple TRPs belong to the same cell, and the connection (backhaul) between TRPs is non-ideal (that is, TRPs cannot exchange information quickly and can only exchange relatively slow data).
  • Scenario 3 Multiple TRPs belong to different cells, and the connection (backhaul) between TRPs is ideal.
  • Scenario 4 Multiple TRPs belong to different cells, and the connection (backhaul) between TRPs is non-ideal.
  • Scenario 5 Replace the TRP in scenarios 1-4 above with beam, and you can get four multi-beam application scenarios.
  • the first solution is generally considered to be only applicable to scenarios with ideal backhaul connections (ie, Scenario 1 and Scenario 3).
  • R16 only multi-TRP transmission for downlink data transmission is studied and supported.
  • R17 multi-TRP transmission of downlink control channel (PDCCH), uplink data shared channel (PUSCH), and uplink control channel (PUCCH) is studied and supported to increase the reliability of corresponding channel transmission.
  • PDCH downlink control channel
  • PUSCH uplink data shared channel
  • PUCCH uplink control channel
  • CG scheduling-free/Configured Grant
  • RRC scheduling-free/Configured Grant
  • NR supports Type1 CG PUSCH and Type2 CG PUSCH.
  • Type1 CG PUSCH is semi-statically configured by RRC, including time and frequency domain resources, demodulation reference signal (Demodulation Reference Signal, DMRS), open-loop power control, modulation and coding strategy (Modulation and Coding Scheme, MCS) and other parameters required for PUSCH transmission.
  • Type2 CG PUSCH is configured by RRC.
  • Some semi-static parameters include the period of time domain resources, power control, number of repetitions, etc., which are activated by DCI and indicated in the same DCI. Time-frequency resources, DMRS, MCS and other parameters.
  • Both CG PUSCHs have been enhanced based on multiple TRPs in R17.
  • R17 stipulates that a set of P0-PUSCH-Alpha and powerControlLoopToUse be added to the configuration authorization configuration (ConfiguredGrantConfig) for power control of the second TRP.
  • ConfiguredGrantConfig configuration authorization configuration
  • the original first set of power control values is associated with the first Channel sounding reference signal (Sounding Reference Signal, SRS) resource set.
  • the second set of values is associated with the second SRS resource set.
  • For Type1 CG PUSCH add a set of pathlossReferenceIndex fields, srs-ResourceIndicator field, precodingAndNumberOfLayers field to indicate the path loss reference signal corresponding to the second TRP, Reference Signal resource Indicator (SRI) and Precoding matrix indicator (Transmit PrecoderMetricIndicator, TPMI).
  • SRI Reference Signal resource Indicator
  • TPMI Precoding matrix indicator
  • the srs-ResourceIndicator field and precodingAndNumberOfLayers field associated with the second SRS resource set indicated by RRC are the same as those of the first
  • the srs-ResourceIndicator field and the precodingAndNumberOfLayers field associated with each SRS resource set occupy the same number of bits.
  • rrc-ConfiguredUplinkGrant can be translated into rrc-configured uplink grant
  • pathlossReferenceIndex can be translated into path loss reference index
  • srs-ResourceIndicator can be translated into srs-resource indication
  • precodingAndNumberOfLayers can be translated into precoding and layer number.
  • configuration authorization, scheduling-free, and dynamic scheduling-free can be understood in the same way.
  • Configured grant can be configuration authorization, scheduling-free, or dynamic scheduling-free.
  • Configuration grant type 1 PUSCH transmission is semi-statically configured to operate upon receipt of higher layer parameters of the configuration grant configuration including rrc-ConfiguredUplinkGrant, without detecting the UL grant in the DCI.
  • the configured grant type 2 PUSCH transmission is scheduled semi-persistently by the UL grant in the valid active DCI.
  • the transmission solutions discussed above are all for the same carrier.
  • the terminal equipment detects multiple DCIs (for example, 2 DCIs) on the same carrier.
  • Each DCI can schedule the corresponding PDSCH, and multiple PDSCHs can also be scheduled.
  • PDCCH transmission and/or uplink transmission are also on the same carrier or the same cell. The same is true for uplink multi-TRP transmission, which is aimed at transmission on the same carrier.
  • TCI state The following is a description of TCI state:
  • the characteristics of the transmission environment corresponding to the data transmission can be used to improve the reception algorithm.
  • the statistical properties of the channel can be exploited to optimize the design and parameters of the channel estimator.
  • these characteristics corresponding to data transmission are represented by QCL status (QCL-Info).
  • the network side when the network side transmits the downlink control channel or data channel, it will pass the TCI status ( TCI state) indicates the corresponding QCL status information to the terminal device.
  • a TCI state can contain the following configuration:
  • TCI status ID used to identify a TCI status
  • a QCL information includes the following information:
  • QCL type (type) configuration which can be one of QCL type A, QCL type B, QCL type C, QCL type D;
  • the QCL reference signal configuration includes the cell ID where the reference signal is located, the Band Width Part (BWP) ID and the identification of the reference signal (which can be the CSI-RS resource ID or SSB index).
  • BWP Band Width Part
  • the QCL type of at least one QCL information is one of typeA, typeB, and typeC, and the QCL type of the other QCL information (if configured) is QCL type D.
  • QCL-TypeA ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ;
  • QCL-TypeC ⁇ Doppler shift, average delay ⁇
  • the network side can indicate the corresponding TCI status for the downlink signal or downlink channel.
  • the terminal device can assume that the target downlink signal is the same as
  • the large-scale parameters of the reference SSB or reference CSI-RS resources are the same, and the large-scale parameters are determined through QCL type configuration.
  • the terminal device can adopt and receive the reference SSB or reference The receiving beam with the same CSI-RS resource (i.e. Spatial Rx parameter) is used to receive the target downlink signal.
  • the target downlink channel (or downlink signal) and its reference SSB or reference CSI-RS resource are sent by the same TRP or the same panel or the same beam on the network side. If the transmission TRP or transmission panel or transmission beam of two downlink signals or downlink channels are different, different TCI states are usually configured.
  • the TCI status corresponding to CORESET can be indicated through RRC signaling or RRC signaling + Medium Access Control (MAC) signaling.
  • RRC signaling or RRC signaling + Medium Access Control (MAC) signaling.
  • MAC Medium Access Control
  • the set of available TCI states is indicated through RRC signaling, and some of the TCI states are activated through MAC layer signaling. Finally, one or two TCI states are indicated from the activated TCI states through the TCI state indication field in the DCI.
  • TCI status used for the DCI scheduled PDSCH. The situation of 2 TCI states is mainly for scenarios where multiple TRPs are similar.
  • FIG 4 is a schematic diagram of a TCI state configuration method for PDSCH provided by an embodiment of the present application.
  • N candidate TCI states can be determined through RRC signaling.
  • RRC signaling may indicate N candidate TCI states.
  • K activated TCI states can be determined from N candidate TCI states through MAC signaling.
  • One or two used TCI states can be determined from K activated TCI states through DCI signaling.
  • the TCI state indication mechanism was introduced in R15. It is only applicable to downlink channels and signals, and has many limitations when applied in NR systems.
  • 3GPP Rel.17 proposed the concept of unified TCI state. It added important new functions, for example:
  • Mode 1 Contains type 1 TCI state. This type of TCI state can be applied to uplink and downlink channels and signals; this type of TCI state can be called joint TCI state (joint TCI state).
  • Mode 2 Contains two types of TCI states, of which DL TCI state is only applicable to downlink channels and signals; UL TCI state is only applicable to uplink channels and signals.
  • Downlink channels (partial PDCCH, PDSCH) and signals (aperiodic CSI-RS) use the same downlink transmission indicator beam, using DL TCI state or joint TCI state.
  • the uplink channel (PUCCH, PUSCH) and signal (SRS) use the same uplink transmit beam, using UL TCI state or joint TCI state.
  • Unified TCI state can be dynamically updated and indicated using MAC CE and/or DCI.
  • Unified TCI state is suitable for carrier aggregation scenarios, and the beam indication on a single CC can be applied to multiple different CCs.
  • the uplink beam indication can be given simultaneously with the uplink power control parameters through UL TCI state or joint TCI state.
  • Unified TCI state supports inter-cell beam management functions.
  • CORESET A It is only associated with the search space exclusive to the terminal device, so it can be considered as a downlink control channel resource exclusive to the terminal device, and must follow the indicated unified TCI state(s);
  • CORESET B It is only associated with the public search space of the community. Whether it can follow the unified TCI state(s) indicated by the Network (Network, NW) depends on the RRC configuration of the NW;
  • CORESET C It is associated with the search space exclusive to the terminal device and the public search space of the community. Whether it can follow the unified TCI state(s) indicated by the NW depends on the RRC configuration of the NW;
  • CORESET 0 It must be associated with the public search space of the community, and can also be associated with the exclusive search space of the terminal device. Whether it can follow the unified TCI state(s) indicated by the NW depends on the RRC configuration of the NW.
  • the scenario of multi-TRP transmission is not considered, and only the scenario of single TRP is supported.
  • TCI state in the embodiment of this application, if there is no clear indication of which TCI state it is, includes any TCI state mentioned above.
  • TCI state can be joint TCI state, separate TCI state, or DL TCI state. It can also be UL TCI state, or their combination (that is, it contains multiple different types of TCI state, such as at least one of DL TCI state, UL TCI state, joint TCI state, and separate TCI state).
  • the RRC parameter TCI-State it generally refers to DL TCI state and/or joint TCI state.
  • the RRC parameter DLorJointTCIState it generally refers to DL TCI state and/or joint TCI state.
  • the RRC parameter UL-TCIState or TCI-UL-State or UL-TCI-State it generally refers to UL TCI state.
  • Figure 5 is a schematic flowchart of a communication method provided by an embodiment of the present application. As shown in Figure 5, the method includes:
  • the terminal device sends the physical uplink shared channel PUSCH corresponding to the configuration authorization CG according to one or more transmission configuration indications of TCI status.
  • Figure 6 is a schematic flowchart of another communication method provided by an embodiment of the present application. As shown in Figure 6, the method includes:
  • the network device receives the physical uplink shared channel PUSCH corresponding to the configuration authorization CG; the PUSCH corresponding to the CG is sent according to one or more transmission configuration indication TCI states.
  • the PUSCH corresponding to the CG can be replaced with PUSCH or other PUSCH.
  • the TCI state (TCI state) based on which the terminal device transmits the PUSCH corresponding to the CG may be a unified TCI state (unified TCI state).
  • the terminal device can determine the spatial relationship of the PUSCH corresponding to the one or more TCI states or the uplink transmit spatial filter based on the spatial relationship of the PUSCH corresponding to the one or more TCI states or the uplink transmission filter. Send the spatial filter and send the PUSCH corresponding to the CG.
  • transmission may include sending or receiving unless otherwise specified. Specifically, whether transmission is sending or receiving can be determined according to the semantics of the context, which will not be described again in this application.
  • the network device receives the physical uplink shared channel PUSCH corresponding to the configuration grant CG according to one or more transmission configuration indications of TCI status.
  • the network device may determine the spatial relationship of the PUSCH corresponding to the one or more TCI states or the uplink transmit spatial filter based on the spatial relationship of the PUSCH corresponding to the one or more TCI states or the uplink transmission filter. Send spatial filter and receive PUSCH corresponding to CG.
  • the terminal device may transmit the PUSCH corresponding to the CG according to the uplink TCI status available for uplink transmission.
  • the network device may receive the PUSCH corresponding to the CG according to the uplink TCI status available for uplink transmission.
  • the PUSCH corresponding to the CG in any embodiment of the present application may include one or more PUSCHs corresponding to the CG.
  • each CG has a corresponding PUSCH.
  • the PUSCH corresponding to the CG in any embodiment of this application can be understood the same as the PUSCH of the CG or the CG PUSCH.
  • the sending/receiving the PUSCH corresponding to the CG in any embodiment of the present application may include: sending/receiving the PUSCH corresponding to the CG repeatedly (repetition), or sending/receiving the PUSCH corresponding to the CG once.
  • the terminal device sends the physical uplink shared channel PUSCH corresponding to the configuration authorization CG according to one or more transmission configuration indication TCI status.
  • the terminal device since the terminal device transmits the PUSCH corresponding to the CG based on one or more TCI states, the terminal device can effectively transmit the PUSCH corresponding to the CG and improve the reliability of the transmission of the PUSCH corresponding to the CG.
  • the method further includes:
  • the terminal device receives first information; the first information indicates the CG.
  • the method further includes:
  • the network device sends first information; the first information indicates the CG.
  • CG may be called CG configuration (Configured Grant Configuration) or CG configuration information in other embodiments.
  • the terminal device receives the first information sent by the network device, where the first information indicates one or more configuration authorizations.
  • the first information may indicate one or more configuration authorizations on 1 BWP.
  • the configured grant is configured grant Type 1, or configured grant Type 2.
  • the first information when the configuration authorization is configuration authorization type 1, the first information also includes rrc-ConfiguredUplinkGrant in the RRC parameter configuredGrantConfig for the configuration authorization.
  • the method further includes:
  • the terminal device receives second information; the second information indicates that the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the second information indicates that the PUSCH corresponding to the CG is transmitted according to multiple TCI states, or transmitted according to one or more TCI states, or transmitted according to one TCI state.
  • the method further includes:
  • the network device sends second information; the second information indicates that the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the second information indicates that the PUSCH corresponding to the CG is transmitted according to multiple TCI states, or transmitted according to one or more TCI states, or transmitted according to one TCI state.
  • the terminal device receives the second information sent by the network device.
  • the second information may be called configuration authorization indication information or first configuration authorization indication information in other embodiments.
  • the second information may also be called specific indication information or predetermined indication information.
  • the second information may be any information sent by the network device to the terminal device.
  • the second information may be information preconfigured by the terminal device.
  • the second information indicates that the TCI state according to which the PUSCH corresponding to the CG is transmitted may be unified TCI state.
  • different second information indicates the PUSCH corresponding to the CG, and is transmitted according to different numbers of TCI states.
  • different second information indicates the PUSCH corresponding to the CG, and is transmitted according to the same number of TCI states.
  • the CG corresponds to a bandwidth part BWP. In other embodiments, the CG corresponds to a serving cell or a serving cell group or all CGs on a frequency band.
  • the second information is for all configuration authorization CGs on a bandwidth part BWP.
  • the second information is for all configuration authorization CGs on a serving cell or a serving cell group or a frequency band.
  • the second information is for a configuration authorization CG.
  • the second information is authorized for all configurations on a BWP, that is, the content indicated by the second information applies to all configuration authorizations on a BWP.
  • giving one indication information for all CGs on the BWP can reduce the signal. Order overhead.
  • the second information is authorized for a serving cell, a serving cell group, or all configurations on a band, that is, the content indicated by the second information applies to all configuration authorizations on a serving cell, so, Giving an indication message for all CGs on a serving cell/serving cell group/band can reduce signaling overhead.
  • the second information is for one configuration authorization, that is, one configuration authorization has its corresponding second information, and another configuration authorization has its corresponding second information.
  • the second information is individually indicated for each CG.
  • Information can provide independent instructions for different CGs, thereby increasing the flexibility of network configuration and providing greater space for further optimization.
  • the second information includes first target information and second target information
  • the configuration authorization indicated by the first information includes the first configuration authorization and the second configuration authorization
  • the first target information is for the first configuration authorization
  • the PUSCH corresponding to the configuration authorization CG indicated by the second information is transmitted according to 2 unified TCI states, or transmitted according to 1 or 2 unified TCI states.
  • the configuration authorization corresponding to the second information may be one, or it may be all configuration authorizations on this BWP, or it may be all configuration authorizations for this serving cell.
  • clear instruction information is used to determine whether to use 1 or 2 unified TCI states for uplink transmission.
  • it can effectively reduce the implementation complexity of the terminal device, and on the other hand, it can increase the readability of the protocol. For example, it can Avoid deriving it from multiple configuration information.
  • the second information indicates that the CG corresponds to multiple SRS resources, and the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the second information indicates that the CG corresponds to multiple SRS resources, and the PUSCH corresponding to the CG is transmitted according to multiple TCI states, or is transmitted according to one or more TCI states.
  • the second information indicates that the CG corresponds to an SRS resource, and the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the second information is configured through the srs-ResourceIndicator (srs-ResourceIndicator) and srs-ResourceIndicator2 (srs-ResourceIndicator2) configured in the radio resource control RRC parameter rrc-ConfiguredUplinkGrant. to indicate that the CG corresponds to multiple SRS resources.
  • the second information indicates that the CG is configured by srs-ResourceIndicator but not srs-ResourceIndicator2 configured in the RRC parameter rrc-ConfiguredUplinkGrant, or srs-ResourceIndicator2 is configured but not srs-ResourceIndicator. Corresponds to an SRS resource.
  • the second information indicates multiple SRS resources corresponding to the CG by activating the DCI of the CG.
  • the second information indicates an SRS resource corresponding to the CG by activating the DCI of the CG.
  • the second information is a first value, indicating that the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the second information is the first value
  • the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the second information is a second value, indicating that the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the second information is a second value, indicating that the PUSCH corresponding to the CG is transmitted according to one or more TCI states, or indicating that the PUSCH corresponding to the CG is transmitted according to multiple TCI states.
  • the second information is a second value, the PUSCH corresponding to the CG is transmitted according to multiple TCI states, or transmitted according to one or more TCI states.
  • the terminal device when the terminal device receives the second information, the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the PUSCH corresponding to the CG is transmitted according to multiple TCI states, or transmitted according to one or more TCI states.
  • the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the PUSCH corresponding to the CG is transmitted according to multiple TCI states, or transmitted according to one or more TCI states.
  • the terminal device when the terminal device does not receive the second information, the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the PUSCH corresponding to the CG is transmitted according to multiple TCI states, or transmitted according to one or more TCI states.
  • the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the corresponding PUSCH is transmitted according to 2 unified TCI states, or according to 1 or 2 Unified TCI state is used for transmission, so that existing RRC indication information can be reused, reducing signaling design workload and product implementation complexity.
  • 2 SRS resources are indicated in the DCI of the activation configuration authorization.
  • the corresponding PUSCH is transmitted according to 1 unified TCI state, so that the existing RRC can be reused Instruction information reduces signaling design workload and product implementation complexity.
  • srs-ResourceIndicator is configured in the RRC parameter rrc-ConfiguredUplinkGrant, and srs-ResourceIndicator2 is not configured to indicate one SRS resource indicator.
  • srs-ResourceIndicator2 is configured in the RRC parameter rrc-ConfiguredUplinkGrant, and srs-ResourceIndicator is not configured to indicate 1 SRS resource indicator.
  • 1 SRS resource is indicated in the DCI of the activation configuration authorization.
  • the DCI that activates the configuration authorization is recorded as the second DCI.
  • the second information indicates that the PUSCH corresponding to the corresponding configuration authorization is transmitted according to 1 unified TCI state.
  • the second information indicates that the PUSCH corresponding to the corresponding configuration authorization is transmitted according to 2 unified TCI states, or is transmitted according to 1 or 2 unified TCI states.
  • the second information indicates that the PUSCH corresponding to the corresponding configuration authorization is transmitted according to two unified TCI states.
  • clear instruction information is used to determine whether to use 1 or 2 unified TCI states for uplink transmission.
  • it can effectively reduce the implementation complexity of the terminal device, and on the other hand, it can increase the readability of the protocol. For example, it can Avoid deriving it from multiple configuration information.
  • the PUSCH corresponding to the corresponding configuration authorization is transmitted according to a unified TCI state.
  • the PUSCH corresponding to the corresponding configuration authorization is transmitted according to 2 unified TCI states, or transmitted according to 1 or 2 unified TCI states.
  • the corresponding configuration authorizes the corresponding PUSCH to be transmitted according to a unified TCI state; when the terminal device does not receive the second information, or When the network device is not configured with the second information, the corresponding PUSCH corresponding to the configuration authorization is transmitted according to 2 unified TCI states, or transmitted according to 1 or 2 unified TCI states. In this way, through the configured and unconfigured related indication information , which can reduce signaling overhead.
  • the PUSCH corresponding to the corresponding configuration authorization can be transmitted according to 2 unified TCI states, or according to 1 or 2 unified TCI states To transmit; when the terminal device does not receive the second information, or the network device is not configured with the second information, the corresponding PUSCH corresponding to the configuration authorization can be transmitted according to a unified TCI state.
  • the configuration and unconfiguration are related Indication information can reduce signaling overhead.
  • the terminal device may receive sounding reference signal SRS configuration information; the SRS configuration information indicates two SRS resource sets (SRS resource sets) and the usage of the two SRS resource sets is set to " "codebook” or both are set to "nonCodebook”.
  • the network device may send SRS configuration information.
  • the RRC parameter usage in the configuration SRS-ResourceSet parameters of these two SRS resource sets (recorded as the first SRS resource set and the second SRS resource set respectively) is set to “codebook” or both are set to “nonCodebook”.
  • the method further includes: the terminal device receiving third information; the third information indicating an activated TCI state that can be used for uplink transmission; and the terminal device sending according to one or more TCI states.
  • the PUSCH corresponding to the CG includes: the terminal equipment sending the PUSCH corresponding to the CG according to one or more TCI states among the activated TCI states available for uplink transmission.
  • the method further includes: the network device sending third information; the third information indicating an activated TCI state that can be used for uplink transmission; and the activated TCI state that can be used for uplink transmission.
  • One or more TCI states are used by the terminal device to send the PUSCH corresponding to the CG.
  • the activated TCI states available for uplink transmission may be K1 TCI states.
  • the activated TCI state that can be used for uplink transmission can be unified TCI state.
  • the K1 TCI states may be K1 unified TCI states.
  • the method further includes: the network device sending third information; the third information indicating an activated TCI state that can be used for uplink transmission.
  • the "activated" TCI state indicated by the third information can also be said to be the applied (applied) TCI state indicated by the third information.
  • the activated (or used) TCI state is used for subsequent Transmission of some or all channels/signals in the downlink (DL) and/or uplink (UL).
  • K1 TCI states currently activated that can be used for uplink transmission (for example, it can be joint TCI state or UL TCI state).
  • the terminal device may receive third information sent by the network device, where the third information indicates N TCI states.
  • the N TCI states can be N unified TCI states.
  • the terminal device determines the K1 activated (activated, active or applied) TCI states according to the third information.
  • the third information is indicated through MAC CE indication or RRC signaling.
  • the third information is transmitted through DCI signaling.
  • the DCI used to transmit the third information may be recorded as the first DCI.
  • the third information is transmitted through a first field (field) in DCI signaling, and the first field is a Transmission configuration indication field in DCI signaling.
  • At least part of the N TCI states is used to determine/indicate uplink transmission.
  • K1 TCI states among N TCI states are used for uplink, and K2 TCI states are used for downlink.
  • the terminal device also receives the seventh information sent by the network device, and determines the N TCI states indicated by the third information according to the seventh information.
  • the terminal device determines the spatial relationship (spatial relation) of the PUSCH corresponding to the configuration authorization, or the uplink transmit spatial filter (UL TX spatial filter) according to the third information.
  • beams, airspace filters, spatial filters, airspace parameters, space parameters, airspace settings, space settings, QCL information, QCL assumptions, QCL instructions, TCI state (DL TCI state, UL TCI state, Joint Joint TCI state, ), spatial relationship, etc. can be replaced with each other, and the above terms are also equivalent to each other.
  • the terminal equipment determines the spatial relationship of the PUSCH or the uplink transmission spatial filter based on the reference signal in the TCI state used for uplink among the N TCI states (i.e., UL TCI state).
  • the terminal equipment determines the spatial relationship of the PUSCH based on the reference signal corresponding to typeD (type D) in the TCI state (i.e., Joint TCI state) that can be used for both uplink and downlink among the N TCI states, or performs uplink transmission spatial filtering device.
  • type D type D
  • the TCI state i.e., Joint TCI state
  • the terminal device sends the PUSCH corresponding to the CG according to one or more TCI states, including: the first number of activated TCI states available for uplink transmission is less than or equal to the second information indication.
  • the terminal device sends the PUSCH corresponding to the CG according to the first number of activated TCI states that can be used for uplink transmission.
  • the terminal equipment sends the PUSCH corresponding to the CG according to one or more TCI states, including: the first number of activated TCI states available for uplink transmission is greater than the number indicated by the second information.
  • the terminal device When transmitting the second number of TCI states of the PUSCH corresponding to the CG, the terminal device sends the PUSCH corresponding to the CG according to the third number of the activated TCI states that can be used for uplink transmission; Three quantities are less than or equal to the second quantity.
  • the The PUSCH corresponding to the CG is sent according to the activated TCI state that can be used for uplink transmission.
  • the The PUSCH corresponding to the CG is sent according to the third number of activated TCI states that can be used for uplink transmission; the third number is less than or equal to the second number.
  • the activated TCI state that can be used for uplink transmission may be indicated by the network device through third information, and/or may be indicated by the terminal device according to preconfiguration information.
  • the indicated second number of TCI states for transmitting the PUSCH corresponding to the CG may be indicated by the network device through second information, and/or may be indicated by the terminal device according to preconfiguration information.
  • the first quantity may be an integer greater than or equal to 1, and the second quantity may be an integer greater than or equal to 1.
  • the first number may be 1, 2, 3, 4 or 8, etc.
  • the second number may be 1, 2, 3, 4 or 8, etc.
  • the terminal device sends the PUSCH corresponding to the CG according to one or more TCI states, including: the activated TCI state available for uplink transmission includes the first TCI state, and the transmission indicated by the second information
  • the terminal device sends the PUSCH corresponding to the CG according to the first TCI status.
  • the activated TCI state available for uplink transmission includes a first TCI state
  • the second information indicates one or more TCI states for transmitting the PUSCH corresponding to the CG
  • the The PUSCH corresponding to the CG is sent according to the first TCI state.
  • the terminal device sends the PUSCH corresponding to the CG according to one or more TCI states, including: the activated TCI state available for uplink transmission includes the first TCI state, and the transmission indicated by the second information corresponds to the CG If there are multiple TCI states of the PUSCH, or if there are one or more TCI states, the terminal device sends the PUSCH corresponding to the CG according to the first TCI state.
  • the activated TCI state that can be used for uplink transmission may be indicated by the network device through third information, and/or may be indicated by the terminal device according to preconfiguration information.
  • the indicated transmission TCI status of the PUSCH corresponding to the CG is multiple, or one or more, which may be indicated by the network device through the second information, and/or may be indicated by the terminal device according to the preconfiguration information. indicated.
  • the terminal device sends the PUSCH corresponding to the CG according to the first TCI state, including: the terminal device sends the PUSCH corresponding to the CG according to the first TCI state and the first SRS resource. PUSCH.
  • the PUSCH corresponding to the CG is sent according to the first TCI state and the first SRS resource.
  • the first SRS resource corresponds to the first precoding and/or the first number of layers
  • the PUSCH corresponding to the CG is transmitted based on the first precoding and/or the first number of layers.
  • the first layer number may be the first stream number or the first rank in other embodiments.
  • the first SRS resource is indicated by srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the first SRS resource is indicated by srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the first SRS resource is jointly indicated by srs-ResourceIndicator and srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the method further includes: the terminal device receiving fourth information; the fourth information indicates that the first SRS resource is indicated by the srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the method further includes: the terminal device receiving fourth information; the fourth information indicates that the first SRS resource is indicated by srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the method further includes: the terminal device receiving fourth information; the fourth information indicates that the first SRS resource is srs-ResourceIndicator and srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant. jointly directed.
  • the method further includes: the network device sending fourth information; the fourth information indicates that the first SRS resource is indicated by the srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the method further includes: the network device sending fourth information; the fourth information indicates that the first SRS resource is indicated by srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the method further includes: the network device sending fourth information; the fourth information indicates that the first SRS resource is srs-ResourceIndicator and srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant. jointly directed.
  • the first SRS resource is determined by the SRS resource indication field in DCI.
  • the first SRS resource is determined by the second SRS resource indication field in the DCI.
  • the DCI may be the first DCI or the second DCI unless otherwise specified.
  • the method further includes: the terminal device receiving fifth information; the fifth information indicates that the first SRS resource is determined by the SRS resource indication field in the DCI.
  • the method further includes: the terminal device receiving fifth information; the fifth information indicates that the first SRS resource is determined by the second SRS resource indication field in the DCI.
  • the method further includes: the terminal device receiving fifth information; the fifth information indicates that the first SRS resource is a combination of the SRS resource indication field and the second SRS resource indication field in the DCI. definite.
  • the method further includes: the network device sending fifth information; the fifth information indicates that the first SRS resource is determined by the SRS resource indication field in the DCI.
  • the method further includes: the network device sending fifth information; the fifth information indicates that the first SRS resource is determined by the second SRS resource indication field in the DCI.
  • the method further includes: the network device sending fifth information; the fifth information indicates that the first SRS resource is a combination of the SRS resource indication field and the second SRS resource indication field in the DCI. definite.
  • the terminal device sends the PUSCH corresponding to the CG according to the first TCI state, including: the terminal device sends the PUSCH corresponding to the CG according to the first TCI state, the first SRS resource and the second SRS resource. Send the PUSCH corresponding to the CG.
  • the PUSCH corresponding to the CG is sent according to the first TCI state, the first SRS resource and the second SRS resource.
  • the PUSCH transmission corresponding to the first SRS resource and the associated uplink transmission spatial filter or spatial relationship are determined according to the first TCI state; the PUSCH transmission corresponding to the second SRS resource , the associated uplink transmission spatial filter or spatial relationship is determined according to the first TCI state.
  • the method further includes: the terminal device receiving sixth information; the sixth information indicates transmitting the PUSCH corresponding to the CG according to the first TCI state and the first SRS resource.
  • the method further includes: the terminal device receiving sixth information; the sixth information indicates transmitting the CG according to the first TCI state, the first SRS resource and the second SRS resource. Corresponding PUSCH.
  • the method further includes: the network device sending sixth information; the sixth information indicates transmitting the PUSCH corresponding to the CG according to the first TCI state and the first SRS resource.
  • the method further includes: the network device sending sixth information; the sixth information indicates transmitting the CG according to the first TCI state, the first SRS resource and the second SRS resource. Corresponding PUSCH.
  • the following TCI states that are activated and can be used for uplink transmission include the first TCI state, the indicated TCI states for transmitting the PUSCH corresponding to the CG are multiple, or the indicated TCI state for transmitting the PUSCH corresponding to the CG is one or In the case of multiple cases, the way in which the terminal equipment transmits the PUSCH corresponding to the CG is explained:
  • K1 TCI states there are K1 TCI states currently activated that can be used for uplink transmission.
  • K1 1, and the PUSCH corresponding to the configuration authorization is transmitted according to 2 unified TCI states, or based on 1 or 2 unified TCI states.
  • the first SRS resource is indicated by the RRC parameter srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant, or the first SRS resource is indicated by the RRC parameter srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant. .
  • determining the first SRS resource indication information according to the specified RRC parameters can effectively reduce product implementation complexity.
  • the terminal device determines according to the fourth information whether the first SRS resource is indicated by the RRC parameter srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant, or by the RRC parameter srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant. In this way, system flexibility can be improved and more freedom can be provided for network optimization configuration and transmission.
  • the first SRS resource is determined by the "SRS resource indicator” indication field in the DCI, or the first SRS resource is determined by the "Second SRS resource indicator” indication field in the DCI.
  • the DCI may be the first DCI or the second DCI. In this way, determining the first SRS resource indication information based on the specified DCI domain can effectively reduce product implementation complexity.
  • the terminal device determines according to the fifth information whether the first SRS resource is determined by the "SRS resource indicator” indication field in the DCI or by the "Second SRS resource indicator” indication field in the DCI.
  • the The DCI can be the first DCI or the second DCI. In this way, system flexibility can be improved and more freedom can be provided for network optimization configuration and transmission.
  • the first SRS resource and the second SRS resource are respectively indicated by the RRC parameters srs-ResourceIndicator and srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the first SRS resource and the second SRS resource are respectively determined by the "SRS resource indicator" in the DCI and the "Second SRS resource indicator” indication field in the DCI.
  • the DCI can be the first DCI, or Second DCI.
  • TCI state determines the uplink transmit spatial filter or spatial relationship.
  • the terminal device receives the sixth information sent by the network device to determine whether to adopt solution A1 or solution A2.
  • system flexibility can be improved and more freedom can be provided for network optimization configuration and transmission.
  • the fourth information is transmitted through RRC signaling, MAC CE signaling, or DCI signaling.
  • the fifth information is transmitted through RRC signaling, MAC CE signaling, or DCI signaling.
  • the sixth information is transmitted through RRC signaling, MAC CE signaling, or DCI signaling.
  • the terminal device sends the PUSCH corresponding to the CG according to one or more TCI states, including: the activated TCI state available for uplink transmission includes a first TCI state and a second TCI state, and the third TCI state is When the second information indicates that the TCI status of the PUSCH corresponding to the CG is one or more, the terminal device sends the PUSCH corresponding to the CG according to the first TCI status and the second TCI status.
  • the activated TCI state available for uplink transmission includes a first TCI state and a second TCI state
  • the second information indicates that the TCI state for transmitting the PUSCH corresponding to the CG is one or more
  • the PUSCH corresponding to the CG is sent according to the first TCI state and the second TCI state.
  • the terminal device sends the PUSCH corresponding to the CG according to one or more TCI states, including: the activated TCI state available for uplink transmission includes a first TCI state and a second TCI state, and the second information indicates When there are multiple TCI states for transmitting the PUSCH corresponding to the CG, or one or more, the terminal device sends the PUSCH corresponding to the CG according to the first TCI state and the second TCI state. .
  • the activated TCI state that can be used for uplink transmission may be indicated by the network device through third information, and/or may be indicated by the terminal device according to preconfiguration information.
  • the indicated transmission TCI status of the PUSCH corresponding to the CG is multiple, or one or more, which may be indicated by the network device through the second information, and/or may be indicated by the terminal device according to the preconfiguration information. indicated.
  • the terminal device sends the PUSCH corresponding to the CG according to the first TCI state and the second TCI state, including: the terminal device sends the PUSCH corresponding to the CG according to the first TCI state and the second TCI state.
  • Two TCI states a first SRS resource and a second SRS resource, sending the PUSCH corresponding to the CG; wherein the first SRS resource corresponds to the first TCI state; the second SRS resource corresponds to the second TCI state.
  • the PUSCH corresponding to the CG is sent according to the first TCI state, the second TCI state, the first SRS resource and the second SRS resource; wherein the first SRS resource corresponds to the The first TCI state; the second SRS resource corresponds to the second TCI state.
  • the first SRS resource corresponds to the first precoding and/or the first number of layers, and based on the first precoding and/or the first number of layers, the PUSCH corresponding to the CG associated with the first TCI state is transmitted.
  • the first layer number may be the first stream number or the first rank in other embodiments.
  • the second SRS resource corresponds to the second precoding and/or the second number of layers, and based on the second precoding and/or the second number of layers, the PUSCH corresponding to the CG associated with the second TCI state is transmitted.
  • the second layer number may be a second stream number or a second rank in other embodiments.
  • the PUSCH transmission corresponding to the first SRS resource and the associated uplink transmission spatial filter or spatial relationship are determined according to the first TCI state; the PUSCH transmission corresponding to the second SRS resource , the associated uplink transmission spatial filter or spatial relationship is determined according to the second TCI state.
  • the first SRS resource is indicated by srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant; the second SRS resource is indicated by srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the SRS resource with a smaller identifier is the first SRS resource
  • the SRS resource with a larger identifier is the second SRS resource.
  • the SRS resource with the larger identifier is the first SRS resource
  • the SRS resource with the smaller identifier is the second SRS resource.
  • the identifier of the SRS resource indicated by srs-ResourceIndicator may be srs-ResourceIndicator.
  • the identifier of the SRS resource indicated by srs-ResourceIndicator2 may be srs-ResourceIndicator2.
  • the first SRS resource is determined by the SRS resource indication field in the DCI; the second SRS resource is determined by the second SRS resource indication field in the DCI.
  • the SRS resource with the smaller identifier is the first SRS resource
  • the SRS resource with the larger identifier is the The second SRS resource
  • the SRS resource with a larger identifier is the first SRS resource
  • the SRS resource with a smaller identifier is the second SRS resource.
  • the first TCI state is the smallest TCI state among the multiple activated TCI states that can be used for uplink transmission; the second TCI state is the TCI state that is the smallest among the activated TCI states that can be used for uplink transmission.
  • the first TCI state is the largest TCI state among the multiple activated TCI states that can be used for uplink transmission; the second TCI state is the activated TCI state that can be used for uplink transmission.
  • the multiple TCI states identify the smallest TCI state or the second largest TCI state.
  • the method further includes: the terminal device receiving seventh information; the first TCI state is the activated multiple TCI states that can be used for uplink transmission. The frontmost TCI among the plurality of TCIs; the second TCI state is the activated plurality of TCI states that can be used for uplink transmission, and the last TCI or the last TCI among the plurality of TCIs indicated by the seventh information. Two forward TCI.
  • the method further includes: the terminal device receiving seventh information; the first TCI state is the activated multiple TCI states that can be used for uplink transmission, and when the seventh information indicates The last TCI among the plurality of TCIs; the second TCI state is the plurality of activated TCI states that can be used for uplink transmission, and the frontest TCI among the plurality of TCIs indicated by the seventh information or The second-lowest TCI.
  • the method further includes: the network device sends seventh information; the first TCI state is the activated multiple TCI states that can be used for uplink transmission. The frontmost TCI among the plurality of TCIs; the second TCI state is the activated plurality of TCI states that can be used for uplink transmission, and the last TCI or the last TCI among the plurality of TCIs indicated by the seventh information. Two forward TCI.
  • the method further includes: the network device sending seventh information; the first TCI state is the activated multiple TCI states that can be used for uplink transmission, and when the seventh information indicates The last TCI among the plurality of TCIs; the second TCI state is the plurality of activated TCI states that can be used for uplink transmission, and the frontest TCI among the plurality of TCIs indicated by the seventh information or The second-lowest TCI.
  • the method further includes: the terminal device receiving eighth information; the eighth information indicating that the first TCI state is one of the multiple activated TCI states that can be used for uplink transmission, The smallest TCI state is identified; the second TCI state is the largest TCI state or the second smallest TCI state among the multiple activated TCI states that can be used for uplink transmission.
  • the method further includes: the terminal device receiving eighth information; the eighth information indicating that the first TCI state is one of the multiple activated TCI states that can be used for uplink transmission. , identifies the largest TCI state; the second TCI state is the smallest TCI state or the second largest TCI state among the multiple activated TCI states that can be used for uplink transmission.
  • the method further includes: the network device sending eighth information; the eighth information indicates that the first TCI state is one of the multiple activated TCI states that can be used for uplink transmission, The smallest TCI state is identified; the second TCI state is the largest TCI state or the second smallest TCI state among the multiple activated TCI states that can be used for uplink transmission.
  • the method further includes: the network device sending eighth information; the eighth information indicates that the first TCI state is one of the multiple activated TCI states that can be used for uplink transmission. , identifies the largest TCI state; the second TCI state is the smallest TCI state or the second largest TCI state among the multiple activated TCI states that can be used for uplink transmission.
  • the method further includes: the terminal device receiving ninth information; the ninth information indicates that the first TCI state is the activated multiple TCI states that can be used for uplink transmission. The frontmost TCI among the multiple TCIs indicated by the seventh information received by the terminal equipment; the first TCI state is the multiple activated TCI states that can be used for uplink transmission. The lowest TCI or the second highest TCI among multiple TCIs.
  • the method further includes: the terminal device receiving ninth information; the ninth information indicating that the first TCI state is the activated multiple TCI states that can be used for uplink transmission, The last TCI among the multiple TCIs indicated by the seventh information received by the terminal device; the first TCI state is the activated multiple TCI states that can be used for uplink transmission. The most recent TCI or the second most recent TCI among the multiple TCIs.
  • the method further includes: the network device sending ninth information; the ninth information indicates that the first TCI state is the activated multiple TCI states that can be used for uplink transmission.
  • the method further includes: the network device sending ninth information; the ninth information indicates: the first TCI state is the activated multiple TCI states that can be used for uplink transmission, The last TCI among the multiple TCIs indicated by the seventh information received by the terminal device; the first TCI state is the activated multiple TCI states that can be used for uplink transmission. The most recent TCI or the second most recent TCI among the multiple TCIs.
  • the following activated TCI states that can be used for uplink transmission include the first TCI state and the second TCI state, the indicated TCI states for transmitting the PUSCH corresponding to the CG are multiple, or the indicated TCI state for transmitting the PUSCH corresponding to the CG
  • the status is one or more, the way the terminal device transmits the PUSCH corresponding to the CG is explained:
  • K1 TCI states there are K1 TCI states currently activated that can be used for uplink transmission. 4.
  • the corresponding PUSCH is configured to be authorized to transmit according to 2 unified TCI states, or
  • For transmission based on 1 or 2 unified TCI states the following options are available:
  • the uplink transmission spatial filter or spatial relationship is determined according to the first TCI state.
  • the uplink transmission spatial filter is determined according to the second TCI state. or spatial relationship.
  • the first SRS resource and the second SRS resource are respectively indicated by the RRC parameters srs-ResourceIndicator and srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • determining the first SRS resource and the second SRS resource according to the RRC parameters can effectively reduce the complexity of product implementation.
  • the RRC parameters srs-ResourceIndicator and srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant indicate that the one with the smaller ID of the two SRS resources is the first SRS resource, the one with the larger ID is the second SRS resource, or the one with the larger ID is the second SRS resource.
  • One SRS resource, the smaller ID is the second SRS resource. In this way, the flexibility of the system can be increased.
  • the first SRS resource and the second SRS resource are respectively determined by the "SRS resource indicator" in the DCI and the "Second SRS resource indicator” indication field in the DCI.
  • the DCI may be the first DCI or the second DCI. In this way, determining the first SRS resource and the second SRS resource according to the DCI indication domain can effectively reduce the product implementation complexity.
  • the "SRS resource indicator" in DCI and the "Second SRS resource indicator” indication fields in DCI indicate that among the two SRS resources, the one with the smaller ID is the first SRS resource, the one with the larger ID is the second SRS resource, or the one with the larger ID It is the first SRS resource, and the one with the smaller ID is the second SRS resource. In this way, the flexibility of the system can be increased.
  • the first TCI state is the TCI state with the smallest identification (ID) among the K1 TCI states
  • the second TCI state is the largest or the largest identification (ID) among the K1 TCI states.
  • the TCI stat of the second child In this way, determining the corresponding TCI state according to the preset rules can effectively reduce the complexity of product implementation.
  • the first TCI state is the TCI state with the largest identification (ID) among the K1 TCI states
  • the second TCI state is the smallest or the smallest identification (ID) among the K1 TCI states.
  • the second largest one is TCI state.
  • the first TCI state is the TCI state with the highest position among the K1 TCI states in the seventh information
  • the second TCI state is the position of the K1 TCI states in the seventh information.
  • the last or second highest TCI state determining the corresponding TCI state according to the preset rules can effectively reduce the complexity of product implementation.
  • the first TCI state is the TCI state at the last position of the K1 TCI states in the seventh information
  • the second TCI state is the position of the K1 TCI states in the seventh information.
  • the most forward or second behind TCI state In this way, determining the corresponding TCI state according to the preset rules can effectively reduce the complexity of product implementation.
  • the terminal device determines whether to determine the first TCI state and the second TCI state according to scheme B1 or scheme B2 according to the eighth information sent by the receiving network device.
  • configuration through instruction information can increase system flexibility and provide freedom for network optimization.
  • the terminal device determines whether to determine the first TCI state and the second TCI state according to scheme B3 or scheme B4 according to the ninth information sent by the receiving network device.
  • configuration through instruction information can increase system flexibility and provide freedom for network optimization.
  • the eighth information is transmitted by RRC signaling, MAC CE signaling or DCI signaling.
  • the ninth information is transmitted by RRC signaling, MAC CE signaling or DCI signaling.
  • the terminal device sends the PUSCH corresponding to the CG according to one or more TCI states, including: the activated TCI state available for uplink transmission includes a first TCI state and a second TCI state, and the third TCI state is When the TCI status of the PUSCH corresponding to the CG for transmission indicated by the second information is one, the terminal device transmits the PUSCH corresponding to the CG according to the first TCI status or the second TCI status.
  • the activated TCI state available for uplink transmission includes a first TCI state and a second TCI state
  • the second information indicates that the TCI state for transmitting the PUSCH corresponding to the CG is one
  • the PUSCH corresponding to the CG is sent according to the first TCI state or the second TCI state.
  • the activated TCI state that can be used for uplink transmission may be indicated by the network device through third information, and/or may be indicated by the terminal device according to preconfiguration information.
  • the indicated TCI status for transmitting the PUSCH corresponding to the CG is one, which may be indicated by the network device through the second information, and/or may be indicated by the terminal device according to the preconfiguration information.
  • the terminal device sends the PUSCH corresponding to the CG according to the first TCI state or the second TCI state, including: the terminal device sends the PUSCH corresponding to the CG according to the first TCI state and the second TCI state.
  • the TCI state that identifies the smaller one among the two TCI states is sent the PUSCH corresponding to the CG.
  • the terminal device sends the PUSCH corresponding to the CG according to the first TCI state or the second TCI state, including: the terminal device sends the PUSCH corresponding to the CG according to the first TCI state and the second TCI state.
  • the second TCI state identifies a larger TCI state, and sends the PUSCH corresponding to the CG.
  • the terminal device sends the PUSCH corresponding to the CG according to the first TCI state or the second TCI state, including: the terminal device sends the PUSCH corresponding to the CG according to the first TCI state and the second TCI state.
  • the PUSCH corresponding to the CG is sent.
  • the terminal device sends the PUSCH corresponding to the CG according to the first TCI state or the second TCI state, including: the terminal device sends the PUSCH corresponding to the CG according to the first TCI state and the second TCI state.
  • the PUSCH corresponding to the CG is sent.
  • the PUSCH corresponding to the CG is sent according to the TCI state with a smaller identifier among the first TCI state and the second TCI state. In other embodiments, the PUSCH corresponding to the CG is sent according to the TCI state with a larger identifier among the first TCI state and the second TCI state. In some embodiments, the PUSCH corresponding to the CG is the front TCI state among the multiple TCIs indicated by the seventh information received by the terminal device according to the first TCI state and the second TCI state. Sent. In some embodiments, the PUSCH corresponding to the CG is a later TCI state among the multiple TCIs indicated by the seventh information received by the terminal device according to the first TCI state and the second TCI state. Sent.
  • the method further includes: the terminal device receiving tenth information; the tenth information indicates a TCI state that identifies a smaller one among the first TCI state and the second TCI state, Transmit the PUSCH corresponding to the CG.
  • the method further includes: the terminal device receiving tenth information; the tenth information indicates a TCI state that is larger according to the first TCI state and the second TCI state. , transmit the PUSCH corresponding to the CG.
  • the method further includes: the network device sending tenth information; the tenth information indicates a TCI state that is smaller according to the first TCI state and the second TCI state, Transmit the PUSCH corresponding to the CG.
  • the method further includes: the network device sending tenth information; the tenth information indicates a TCI state with a larger identifier among the first TCI state and the second TCI state. , transmit the PUSCH corresponding to the CG.
  • the method further includes: the terminal device receiving eleventh information; the eleventh information indicates that according to the first TCI state and the second TCI state, when the terminal device The first TCI status among the multiple TCIs indicated by the received seventh information transmits the PUSCH corresponding to the CG.
  • the method further includes: the terminal device receiving eleventh information; the eleventh information indicates that according to the first TCI state and the second TCI state, in the terminal The later TCI status among the multiple TCIs indicated by the seventh information received by the device transmits the PUSCH corresponding to the CG.
  • the method further includes: the network device sending eleventh information; the eleventh information indicates that according to the first TCI state and the second TCI state, when the terminal device The first TCI status among the multiple TCIs indicated by the received seventh information transmits the PUSCH corresponding to the CG.
  • the method further includes: the network device sending eleventh information; the eleventh information indicates that according to the first TCI state and the second TCI state, in the terminal The later TCI status among the multiple TCIs indicated by the seventh information received by the device transmits the PUSCH corresponding to the CG.
  • the method further includes: at least one of fourth information, fifth information, sixth information, eighth information, ninth information, tenth information, and eleventh information, through the RRC signal. signaling, media access control control unit MAC CE signaling or downlink control information DCI signaling transmission.
  • different information among the fourth information, the fifth information, the sixth information, the eighth information, the ninth information, the tenth information, and the eleventh information can be transmitted through different signaling or the same signaling.
  • the following is a method for the terminal device to transmit the PUSCH corresponding to the CG when the activated TCI state available for uplink transmission includes a first TCI state and a second TCI state, and the indicated TCI state for transmitting the PUSCH corresponding to the CG is one.
  • K1 TCI states there are K1 TCI states currently activated that can be used for uplink transmission.
  • K1 2
  • the PUSCH corresponding to the authorization is configured to transmit according to 1 unified TCI state
  • the terminal device determines the corresponding PUSCH transmission according to the first TCI state.
  • the uplink transmission spatial filter or spatial relationship is determined according to the first TCI state.
  • the first TCI state is the TCI state with the smallest identification (ID) among the K1 TCI states.
  • ID the identification
  • the first TCI state is the TCI state with the largest ID among the K1 TCI states.
  • the first TCI state is the TCI state with the highest position among the K1 TCI states in the seventh information. In this way, determining the corresponding TCI state according to the preset rules can effectively reduce the complexity of product implementation.
  • the first TCI state is the TCI state with the lowest position among the K1 TCI states in the seventh information. In this way, determining the corresponding TCI state according to the preset rules can effectively reduce the complexity of product implementation.
  • the terminal device determines whether to determine the first TCI state according to scheme C1 or scheme C2 according to the tenth information sent by the receiving network device.
  • configuration through instruction information can increase system flexibility and provide freedom for network optimization.
  • the terminal device determines whether to determine the first TCI state according to scheme C3 or scheme C4 according to the eleventh information sent by the receiving network device.
  • configuration through instruction information can increase system flexibility and provide freedom for network optimization.
  • the tenth information is transmitted by RRC signaling, MAC CE signaling or DCI signaling.
  • the eleventh information is transmitted by RRC signaling, MAC CE signaling or DCI signaling.
  • the seventh information is transmitted through MAC CE signaling.
  • the MAC CE signaling used to transmit the seventh information includes at least one of the following: downlink bandwidth part DL BWP indication information; uplink bandwidth part UL BWP indication information; one or more TCI quantity indication fields, wherein each of the TCI quantity indication fields indicates that one code point codepoint corresponds to one or more TCI states; one or more TCI state type indication fields, each of which The TCI status type indication field indicates that the corresponding TCI status is the downlink DL TCI status, or the joint TCI status, or the uplink UL TCI status; one or more TCI status indication information.
  • the seventh information is transmitted through first MAC CE signaling.
  • the first MAC CE signaling includes downlink bandwidth part (DL BWP) indication information.
  • DL BWP downlink bandwidth part
  • the first MAC CE signaling contains uplink bandwidth part (UL BWP) indication information.
  • U BWP uplink bandwidth part
  • the first MAC CE signaling contains one or more TCI quantity indication fields, where each indication field indicates that one codepoint corresponds to one or more TCI states.
  • the first MAC CE signaling contains one or more TCI state type indication fields, each of which is used to indicate whether the corresponding TCI state is DL/Joint TCI state or UL TCI state.
  • the first MAC CE signaling contains one or more TCI state indication information.
  • the method further includes: the terminal device receives twelfth information; the twelfth information indicates that the TCI state type includes a joint TCI state or an independent TCI state.
  • the method further includes: the terminal device sends twelfth information; the twelfth information indicates that the TCI state type includes a joint TCI state or an independent TCI state.
  • the terminal device may also receive the twelfth information sent by the network device, and the twelfth information indicates that the unified TCI state type is joint TCI state (joint TCI state).
  • the K1 TCI states are K1 joint TCI states.
  • the terminal device can also receive the twelfth information sent by the network device, and the twelfth information indicates that the unified TCI state type is independent TCI state (separate TCI state).
  • the K1 TCI states are K1 UL TCI states.
  • the terminal device sends at least one of the following: first capability information, second capability information, and third capability information.
  • the network device receives at least one of the following: first capability information, second capability information, and third capability information.
  • the first capability information indicates that the terminal device supports a fourth number of TCI states for uplink transmission or uplink repeated transmission, or the first capability information indicates that the terminal device supports the Transmission configuration indication domain in DCI.
  • the second capability information indicates that the terminal equipment supports transmission of the PUSCH corresponding to the CG;
  • the third capability information indicates that the terminal device supports transmitting the PUSCH corresponding to the CG according to a fourth number of TCI states.
  • At least one of the first capability information, the second capability information, and the third capability information may be capability information of the terminal device.
  • the fourth number is 2 or 4.
  • the terminal device when the terminal device sends the first capability information and the second capability information, the first capability information and the second capability information are sent through the same signaling, or the third capability information One capability information and the second capability information are sent through different signaling.
  • the network device receives the first capability information and the second capability information through the same signaling, or the network device receives the first capability information through different signaling. capability information and the second capability information.
  • At least one of the first capability information, the second capability information, and the third capability information is transmitted through RRC signaling or MAC CE signaling.
  • the first capability information is transmitted through RRC signaling or MAC CE signaling.
  • the second capability information is transmitted through RRC signaling or MAC CE signaling.
  • the third capability information is transmitted through RRC signaling or MAC CE signaling.
  • At least one of the first capability information, the second capability information, and the third capability information is reported for the frequency band, and/or is reported independently according to the frequency band combination, and/or, it is reported independently according to each frequency band in the frequency band combination, and/or, it is reported independently according to each carrier on each frequency band in the frequency band combination, and/or, it is reported according to the frequency band range, and /Or, it is reported for the terminal device.
  • the first capability information is reported for the frequency band, or independently reported according to the frequency band combination, or independently reported according to each frequency band in the frequency band combination, or according to each frequency band in the frequency band combination.
  • Each carrier is reported independently, or it is reported according to the frequency band range, or it is reported for the terminal device.
  • the second capability information is reported for the frequency band, or independently reported according to the frequency band combination, or independently reported according to each frequency band in the frequency band combination, or according to each frequency band in the frequency band combination.
  • Each carrier is reported independently, or it is reported according to the frequency band range, or it is reported for the terminal device.
  • the third capability information is reported for the frequency band, or independently reported according to the frequency band combination, or independently reported according to each frequency band in the frequency band combination, or according to each frequency band in the frequency band combination.
  • Each carrier is reported independently, or it is reported according to the frequency band range, or it is reported for the terminal device.
  • the methods for reporting different capability information may be the same or different.
  • the TCI state is a unified TCI state.
  • the terminal device reports first capability information to the network device.
  • the first capability information indicates that the terminal device supports Z1 (Z>1) unified TCIs for uplink transmission or uplink repeated transmission, or the first capability information indicates that the terminal
  • the device supports a codepoint in the Transmission configuration indication field in DCI that can activate or indicate at most Z1 unified TCI for uplink transmission.
  • Z1 is 2, or Z1 is 4.
  • the first capability information is transmitted through RRC signaling or MAC CE.
  • the first capability information is reported for frequency bands (that is, different frequency bands can report corresponding capabilities independently, per band).
  • different frequency bands are reported independently, which allows the terminal equipment to have greater freedom.
  • the terminal equipment can support this function on a certain or certain bands, but other bands do not support this function, thus allowing more terminals to devices to support this new feature.
  • the first capability information is reported independently (per band combination).
  • different frequency band combinations are reported independently, which allows the terminal device to have greater freedom.
  • the terminal device may not support this function in a certain frequency band combination, but support this function in another frequency band combination, thus More terminal devices can be enabled to support this new feature.
  • the first capability information is reported independently according to each frequency band in the frequency band combination (that is, frequency bands in different frequency band combinations can be reported independently, per band per band combination).
  • different frequency band combinations are reported independently, which allows the terminal equipment to have greater freedom.
  • the terminal equipment may not support this function under a certain carrier aggregation (Carrier Aggregation, CA), but under another CA combination Some bands support this feature, allowing more terminal devices to support this new feature.
  • Carrier Aggregation Carrier Aggregation
  • the first capability information is independently reported according to each carrier in each frequency band in the frequency band combination (that is, different carriers (Component Carrier, CC) in the frequency bands in different frequency band combinations can be independently reported , per CC per band per band combination or carrier feature set (Feature Set Per Component-carrier, FSPC)).
  • different carriers Component Carrier, CC
  • FSPC carrier feature set
  • the first capability information is reported according to the frequency range (Frequency Range, FR) (that is, different FRs can be reported independently, per FR, that is, FR1 and FR2 are reported independently).
  • FR Frequency Range
  • different FRs are reported independently, which allows the terminal equipment to have greater freedom.
  • the terminal equipment low frequency (FR1) does not support this function, but supports this function in FR2 (high frequency), which allows more terminal devices to support this new feature.
  • the first capability information is reported for the terminal equipment (UE) (that is, per UE, that is, if a terminal device reports this capability, the terminal device can support this capability in each frequency band). In this way, the signaling overhead of terminal device capability reporting can be reduced.
  • UE terminal equipment
  • the terminal device reports second capability information to the network device, where the second capability information indicates that the terminal device supports configuration authorization PUSCH (CG-PUSCH).
  • CG-PUSCH configuration authorization PUSCH
  • the second capability information is transmitted through RRC signaling or MAC CE.
  • the description about the first capability information can also be used for the second capability information, and the first capability information and the second capability information can correspond to different or the same options.
  • one capability information is for band
  • the other capability information is for band.
  • the information is for per CC per band per band combination, because uplink and downlink have different requirements for terminal equipment capabilities, and using different options for uplink and downlink capabilities can be more conducive to terminal equipment implementation.
  • the first capability information and the second capability information are the same terminal equipment capability (i.e., the above-mentioned third capability information), that is, this capability supports determining the uplink transmission spatial filter according to Z1>1 TCI state in CG-PUSCH , or spatially related information.
  • the first capability information and the second capability information are reported through the same signaling, or reported through different signaling.
  • the terminal device receives the first information sent by the network device, where the first information indicates one or more configuration authorizations (Configured Grant Configuration).
  • the first information may indicate one or more configuration authorizations on 1 BWP.
  • the configured grant is configured grant Type 1, or configured grant Type 2.
  • the first information when the configuration authorization is configuration authorization type 1, the first information also includes rrc-ConfiguredUplinkGrant in the RRC parameter configuredGrantConfig for the configuration authorization.
  • the first information does not include rrc-ConfiguredUplinkGrant in the RRC parameter configuredGrantConfig for the configuration authorization.
  • the first information may indicate configuring one or more of the following information:
  • Frequency domain frequency hopping indication information such as intra-slot hopping and/or inter-slot hopping; demodulation reference signal (DMRS) indication information; resource allocation indication Information, such as time domain and/or frequency domain resource allocation; power control parameter indication information; precoding (precoding) indication information; SRS resource indication information; repeated transmission indication information; Hybrid Automatic Repeat reQuest (HARQ) Process (HARQ process) indication information.
  • DMRS demodulation reference signal
  • DCI format 0_0 or DCI format 0_1 activates configuration authorization (when it is authorization configuration type 2), thereby transmitting PUSCH; or when transmitting the PUSCH corresponding to the configuration authorization (when it is authorization configuration type 1)
  • configuration authorization information You can use the configuration authorization information, and also use some or all of the following information of pushch-Config in the RRC parameters: data scrambling identification physical uplink shared channel (dataScramblingIdentityPUSCH); transmission configuration (txConfig); codebook subset (codebookSubset); maximum Number of transmission streams (maxRank); scaling of UCI transmitted on PUSCH (scaling of UCI-OnPUSCH).
  • DCI format 0_2 activates configuration authorization (when it is authorization configuration type 2)
  • configuration authorization when transmitting the PUSCH corresponding to the configuration authorization, the information of the configuration authorization is used, and the following part of push-Config in the RRC parameter is also used or All information: dataScramblingIdentityPUSCH; txConfig; codebookSubsetDCI-0-2; maxRankDCI-0-2; scaling of UCI-OnPUSCH, resource allocation type 1 granularity DCI-0-2 (resourceAllocationType1GranularityDCI-0-2).
  • the DCI that activates the configuration authorization (recorded as the second DCI) meets one or more of the following conditions:
  • CRC Cyclic Redundancy Check
  • the new data indication field in DCI is set to 0; among them, the new data indication field in DCI can be the downlink feedback information (Downlink Feedback Information, DFI) flag field (DFI flag field).
  • DFI Downlink Feedback Information
  • this field is set to 0;
  • the time domain resource allocation indication field indication in DCI corresponds to a line indicated by a start and length indicator value (Start and lengthindicator value, SLIV).
  • the terminal device can also receive the twelfth information sent by the network device.
  • the twelfth information indicates that the unified TCI state type is joint TCI state (joint TCI state).
  • the combined TCI state can be used for uplink operation (UL operation) or uplink transmission (UL transmission), and can also be used for downlink operation (DL operation) or downlink transmission/reception (DL transmission/reception).
  • UL operation uplink operation
  • DL operation downlink operation
  • DL transmission/reception downlink transmission/reception
  • the twelfth information is indicated by the RRC Information Element (IE) parameter unifiedTCI-StateType, whose value is "Joint”.
  • IE RRC Information Element
  • the twelfth information is configured for the serving cell.
  • the twelfth information is indicated in the RRC IE parameter ServingCellConfig.
  • the terminal device also receives the thirteenth information sent by the network device for configuring or indicating a group of TCI states (recorded as a first TCI state group), where the first TCI state group includes one or more TCI states. .
  • the first TCI state group may be used for uplink operation or uplink transmission, and/or may be the same as downlink operation or downlink transmission.
  • the thirteenth information is configured through RRC parameters.
  • the thirteenth information is configured in RRC IE parameter PDSCH configuration (PDSCH-Config).
  • the thirteenth information is indicated by the RRC IE parameter uplink or the joint TCI state list ul-OrJoint-TCIStateList.
  • the twelfth information indicates that the unified TCI state type is independent TCI state (separate TCI state).
  • UL TCI state is used for uplink operation (UL operation) or uplink transmission (UL transmission)
  • DL TCI state is used for downlink operation (DL operation) or downlink transmission (DL transmission).
  • the twelfth information is indicated by the RRC IE parameter unifiedTCI-StateType, whose value is "Separate”.
  • the twelfth information is configured for the serving cell.
  • the twelfth information is indicated in the RRC IE parameter serving cell configuration ServingCellConfig.
  • the terminal device also receives the fourteenth information sent by the network device for configuring or indicating a second TCI state group, where the second TCI state group includes one or more DL TCI states.
  • the second TCI state group is used for downlink operation or downlink transmission.
  • the fourteenth information is configured through RRC parameters.
  • the fourteenth information is configured in the RRC IE parameter PDSCH-Config.
  • the fourteenth information is indicated through the RRC IE parameter downlink or joint TCI state list-r17 (dl-OrJoint-TCIStateList-r17).
  • the terminal device also receives the fifteenth information sent by the network device for configuring or indicating a third TCI state group, where the third TCI state group includes one or more UL TCI states.
  • the third UL TCI state group is used for uplink operation or uplink transmission.
  • the fifteenth information is configured through RRC parameters.
  • the fifteenth information is configured in the RRC IE parameter bandwidth part uplink dedicated (BWP-UplinkDedicated).
  • the fifteenth information is indicated by the RRC IE parameter uplink TCI add modification list (ul-TCI-ToAddModList).
  • the terminal device receives the seventh information sent by the network device, and the seventh information is transmitted through the first MAC CE signaling.
  • using MAC CE signaling has lower latency than RRC signaling, and also has better transmission reliability, making it easier for the network to quickly instruct terminal equipment to perform corresponding operations.
  • the first MAC CE signaling includes at least one or more of the following information:
  • Serving cell indication information for example, it can be serving cell ID to indicate the corresponding serving cell.
  • the MAC CE is applied to the serving cell.
  • the length of this information field (field) is 5 bits.
  • Downlink bandwidth part (DL BWP) indication information for example, it can be DL BWP ID to indicate the corresponding DL BWP.
  • the MAC CE is applied to the DL BWP.
  • the length of this information field (field) is 2 bits.
  • Uplink bandwidth part (UL BWP) indication information for example, it can be UL BWP ID to indicate the corresponding UL BWP.
  • the MAC CE is applied to the UL BWP.
  • the length of this information field (field) is 2 bits.
  • each indication field indicates one TCI state, and the one TCI state belongs to one of the first TCI state groups.
  • One or more indication fields each of which indicates whether the corresponding TCI state exists.
  • the indication field is in the same byte (Octet or Oct) as another TCI state indication field.
  • each indication field indicates a codepoint corresponding to N TCI states.
  • each indication field has 2 bits, or 3 bits.
  • the value of N may be a value among 1, 2, 3, and 4.
  • the protocol design and system implementation are simple, and most of the performance gains of M-TRP can be obtained, as well as better flexibility in network configuration and scheduling.
  • DL TCI states there are less than or equal to 2 DL TCI states.
  • UL TCI state is less than or equal to 2.
  • each indication field indicates that one codepoint corresponds to 1 or 2 Joint TCI states.
  • the value of N may be a value among 1, 2, 3, 4, 5, and 6.
  • the value of N may be a value among 1, 2, 3, 4, 5, and 6.
  • DL TCI states there are less than or equal to 4 DL TCI states.
  • UL TCI state is less than or equal to 2.
  • the value of N may be a value among 1, 2, 3, 4, 5, 6, 7, and 8.
  • the downlink and uplink performance is improved, providing greater freedom for network optimization.
  • DL TCI states there are less than or equal to 4 DL TCI states.
  • UL TCI state is less than or equal to 4.
  • each indication field indicates that one codepoint corresponds to 1 or 2 or 3 or 4 Joint TCI states.
  • more TRPs are supported for downlink and uplink transmission.
  • the downlink and uplink performance is improved, providing greater freedom for network optimization.
  • K is 8, or 16.
  • TCI state type indication field used to indicate whether the corresponding TCI state is DL/Joint TCI state or UL TCI state.
  • the TCI state type indication field is used to indicate whether the TCI state indication information in the same octet indicates DL/Joint TCI state or UL TCI state.
  • the TCI state type indication field is used to indicate whether the TCI state indication information in the same octet indicates the TCI state in the second TCI state group or the TCI state in the third TCI state group.
  • the length of the indication information is 7 bits.
  • the TCI state indication information is used to indicate UL TCI state
  • the length of the indication information is 7 bits. In this way, more UL TCI states can be indicated and network scheduling flexibility can be improved.
  • the TCI state indication information is used to indicate UL TCI state
  • the most significant bit (the most significant bit) in the indication information is a reserved bit, and the remaining 6 bits indicate UL TCI state.
  • TCI state sub-set number (or DCI codepoint) quantity indication information whose indication refers to a positive integer between 1 and K (recorded as A).
  • the terminal device can reduce the need to read/parse some bits of information and reduce the implementation complexity of the terminal device.
  • the value refers to the number of codepoints in the first domain in the DCI corresponding to the TCI state indicated in the second MAC CE; optionally, the first domain is the Transmission configuration indication domain in the DCI.
  • the maximum number of TCI states indicated by the first MAC CE is 48. In this way, it supports up to 4 TRP transmissions in the downlink and 2 TRP transmissions in the uplink, which improves the downlink transmission performance, improves the flexibility of network configuration and scheduling, and also controls the terminal equipment implementation complexity within a certain range.
  • the maximum number of TCI states indicated by the first MAC CE is 64. In this way, it supports up to 4 TRP transmissions in the downlink and 4 TRP transmissions in the uplink, improving the downlink and uplink transmission performance and improving the flexibility of network configuration and scheduling at the expense of terminal device implementation complexity.
  • the maximum number of TCI states activated by the first MAC CE can be 32, or 48, or 64.
  • the maximum number of Joint TCI states activated by the first MAC CE is 16, or 32.
  • the terminal device may receive third information sent by the network device, where the third information indicates N TCI states.
  • the terminal device determines the K1 activated (activated, active or applied) TCI states according to the third information.
  • the terminal device receives the third information sent by the network device, and the terminal device determines one or more of the following information based on the third information:
  • the RRC parameter followUnifiedTCIstateSRS-r17 is configured in the SRS resource set corresponding to at least part of the SRS.
  • the third information is transmitted through DCI signaling (denoted as first DCI).
  • the third information is transmitted through the Transmission configuration indication field in DCI signaling.
  • the third information may be the same information as the seventh information.
  • the seventh information only indicates the TCI state corresponding to the first code point (codepoint), and does not indicate the TCI state corresponding to other code points other than the first code point, and the first code point corresponds to TCI state X1 and/or TCI state X2, the terminal device can directly determine the activated TCI state based on TCI state X1 and/or TCI state X2.
  • the third information can be different information from the seventh information.
  • the seventh information (such as a MAC CE) indicates that the first code point (codepoint) corresponds to TCI state X1 and/or TCI state X2, and the second code point (codepoint) corresponds to TCI state X3, and the third information indicates the first code point through the DCI corresponding information field, then the terminal device can determine the activated TCI state based on TCI state X1 and/or TCI state X2.
  • the DCI is DCI format 1_1 and/or DCI format 1_2, where DCI format 1_1/1_2 can schedule data at the same time or not schedule downlink transmission (with or without, if applicable, DL assignment).
  • the DCI is DCI format 1_1 and/or DCI format 1_2 and/or DCI format 0_1 and/or DCI format 0_2, where DCI format 1_1/1_2 can schedule data at the same time or not schedule downlink transmission (with or without, if applicable, DL assignment), DCI format 0_1/0_2 can schedule data at the same time or not schedule uplink transmission (with or without, if applicable, UL assignment).
  • the terminal device can make the following assumptions (or in other words, DCI format 1_1/1_2 meets the following conditions):
  • CS-RNTI is used to scramble the CRC of DCI
  • TCI state if at least one of the one or more TCI states indicated by the third information (denoted as TCI state , for example, if TCI state /received TCI state is different from TCI state X; if TCI state If at least one TCI state (denoted as TCI state Starting from the first slot at least BeamAppTime symbols after the last symbol of a PUCCH, the TCI state Or downlink transmission/reception of corresponding QCL information, where the first PUCCH transmission carries HARQ-ACK information corresponding to the first information DCI.
  • TCI state for example, if TCI state /received TCI state is different from TCI state X; if TCI state If at least one TCI state (denoted as TCI state Starting from the first slot at least BeamAppTime symbols after the last symbol of a PUCCH, the TCI state Or downlink transmission/reception of corresponding QCL information, where the first PUCCH transmission carries HARQ-ACK information corresponding to the first
  • the HARQ-ACK information corresponds to the DCI carrying the TCI status indication and has no DL allocation, or corresponds to the DCI carrying the TCI status indication.
  • scheduled PDSCH and if the indicated TCI state is different from the previously indicated one, the indicated DLorJointTCIState or UL-TCIstate shall be applied starting from the first slot that is at least BeamAppTime symbols after the last symbol of the PUCCH.
  • the first time slot and BeamAppTime symbol are both determined on the carrier with the smallest sub-carrier spacing (Sub-Carrier Space, SCS) among the carriers to which the beam indication is applied.
  • SCS sub-Carrier Space
  • TCI state for uplink can be expanded similarly.
  • the current signal indicated by DCI contains TCI state X, and TCI state X and TCI state A1/A2 are different. You can consider the above process. , to determine when TCI state X can be applied.
  • the terminal equipment currently uses 1 or 2 TCI states (denoted as A1, A2) to determine the QCL information corresponding to the downlink transmission.
  • the current DCI indication signal contains TCI state X, and TCI state X and TCI If state A1/A2 are different, you can consider the above process to determine when TCI state X can be applied.
  • the third information indicates N TCI states.
  • the terminal device determines the N TCI states based on the third information and the seventh information.
  • N TCI states are used to determine/indicate uplink transmission.
  • K1 TCI states are used for uplink
  • the terminal device determines the spatial relationship (spatial relation) of the PUSCH corresponding to the configuration authorization, or the uplink transmit spatial filter (UL TX spatial filter) according to the third information.
  • the terminal equipment determines the spatial relationship of the PUSCH or the uplink transmission spatial filter based on the reference signal in the TCI state used for uplink among the N TCI states (i.e., UL TCI state).
  • the terminal equipment determines the spatial relationship of the PUSCH based on the reference signal corresponding to typeD (type D) in the TCI state (i.e., Joint TCI state) that can be used for both uplink and downlink among the N TCI states, or performs uplink transmission spatial filtering device.
  • type D type D
  • the TCI state i.e., Joint TCI state
  • the terminal device performs corresponding configuration authorization PUSCH (CG PUSCH) transmission according to the first SRS resource and/or the second SRS resource and their respective corresponding first TCI state and/or second TCI state.
  • CG PUSCH configuration authorization PUSCH
  • this PUSCH may be transmitted in K consecutive slots, and for another example, this PUSCH may have K nominal retransmissions (nominal repetitions)).
  • the first SRS resource corresponds to the first transmission (for example, the first slot among K consecutive slots, or the first retransmission among K nominal retransmissions)
  • the second SRS resource corresponds to the first transmission among K consecutive slots, or the first retransmission among K nominal retransmissions.
  • the resource corresponds to the second transmission (for example, the second slot among K consecutive slots, or the second retransmission among K nominal retransmissions).
  • the subsequent transmissions similarly contain these two meanings, for example , the first SRS resource corresponds to the third transmission, and the second SRS resource corresponds to the fourth transmission, which will not be described again.
  • the first SRS resource is transmitted for the odd number of times
  • the second SRS resource is transmitted for the even number of times.
  • the second SRS resource is transmitted for the odd-numbered time
  • the first SRS resource is transmitted for the even-numbered time.
  • the first SRS resource and the second SRS resource are applied respectively.
  • the same mapping pattern is repeated in sequence until a total of K transmissions.
  • information units, information elements, and information elements can be understood identically.
  • the first SRS resource is applied to the 1st and 2nd transmissions, and the second SRS resource is applied to the 3rd transmission. and the 4th transmission, and the same mapping pattern is repeated in sequence until a total of K transmissions.
  • the configuration, indication and determination scheme of unified TCI state are given.
  • CG PUSCH independent configuration information is used to indicate whether it is a single TRP (S-TRP) or multiple TRPs (M-TRP) (which may be different from that scheduled by DCI).
  • S-TRP single TRP
  • M-TRP multiple TRPs
  • signaling corresponds to different configuration granularities.
  • CG PUSCH Type 1/Type 2 For CG PUSCH Type 1/Type 2.
  • DCI only instructs how to transmit 1 TCI-state, different specific solutions are given.
  • CG M-TRP
  • DCI instructs how to transmit 2 TCI-state, give Come up with different specific plans.
  • CG is S-TRP, but DCI indicates how to transmit two TCI states, different specific solutions are given.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in this application.
  • the execution of the examples does not constitute any limitations.
  • the terms “downlink”, “uplink” and “sidelink” are used to indicate the transmission direction of signals or data, where “downlink” is used to indicate that the transmission direction of signals or data is from the station.
  • uplink is used to indicate that the transmission direction of the signal or data is the second direction from the user equipment of the cell to the site
  • sidelink is used to indicate that the transmission direction of the signal or data is A third direction sent from User Device 1 to User Device 2.
  • downlink signal indicates that the transmission direction of the signal is the first direction.
  • the term “and/or” is only an association relationship describing associated objects, indicating that three relationships can exist. Specifically, A and/or B can represent three situations: A exists alone, A and B exist simultaneously, and B exists alone. In addition, the character "/" in this article generally indicates that the related objects are an "or" relationship.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application, which is applied to terminal equipment. As shown in Figure 7, the communication device 700 includes:
  • the communication unit 701 is configured to send the physical uplink shared channel PUSCH corresponding to the configuration grant CG according to one or more transmission configuration indication TCI states.
  • the communication device 700 further includes: a determining unit configured to determine one or more transmission configuration indication TCI states.
  • the communication unit 701 is also configured to receive first information; the first information indicates the CG.
  • the communication unit 701 is also configured to receive second information; the second information indicates that the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the CG corresponds to a bandwidth part BWP; or,
  • the CG corresponds to a serving cell or a serving cell group or all CGs on a frequency band.
  • the second information indicates that the CG corresponds to multiple sounding reference signal SRS resources, and the PUSCH corresponding to the CG is transmitted according to one or more TCI states; or,
  • the second information indicates that the CG corresponds to an SRS resource, and the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the second information indicates that the CG corresponds to multiple SRS resources through the srs-resource indicators srs-ResourceIndicator and srs-ResourceIndicator2 configured in the radio resource control RRC parameter rrc-configured uplink grant rrc-ConfiguredUplinkGrant; or,
  • the second information indicates that the CG corresponds to an SRS resource by indicating that the RRC parameter rrc-ConfiguredUplinkGrant is configured with srs-ResourceIndicator and srs-ResourceIndicator2 is not configured, or srs-ResourceIndicator2 is configured and srs-ResourceIndicator is not configured.
  • the second information indicates multiple SRS resources corresponding to the CG by activating the DCI of the CG; or, the second information indicates one corresponding SRS resource of the CG by activating the DCI of the CG. SRS resources.
  • the second information is a first value, indicating that the PUSCH corresponding to the CG is transmitted according to one TCI state; or the second information is a second value, indicating that the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the status transmits the PUSCH corresponding to the CG.
  • the PUSCH corresponding to the CG when the terminal device receives the second information, the PUSCH corresponding to the CG is transmitted according to a TCI state; or, when the terminal device does not receive the second information, The PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the PUSCH corresponding to the CG is transmitted according to one or more TCI states; or, when the terminal device does not receive the second information, In this case, the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the communication unit 701 is also configured to receive third information; the third information indicates the activated TCI status that can be used for uplink transmission; the communication unit 701 is also configured to: according to the activated TCI status that can be used for uplink transmission One or more TCI states among the transmitted TCI states, and the PUSCH corresponding to the CG is sent.
  • the communication unit 701 is further configured to: when the first number of activated TCI states available for uplink transmission is less than or equal to the number of TCI states of the PUSCH that transmits the PUSCH corresponding to the CG indicated by the second information. In the case of the second number, send the PUSCH corresponding to the CG according to the first number of the activated TCI states available for uplink transmission; or, in the first number of activated TCI states available for uplink transmission , when it is greater than the second number of TCI states for transmitting the PUSCH corresponding to the CG indicated by the second information, transmit the PUSCH corresponding to the CG according to the third number of activated TCI states that can be used for uplink transmission. PUSCH; the third quantity is less than or equal to the second quantity.
  • the communication unit 701 is further configured to: when the activated TCI state available for uplink transmission includes a first TCI state, the second information indicates that the TCI state for transmitting the PUSCH corresponding to the CG is one or In the case of multiple, the PUSCH corresponding to the CG is sent according to the first TCI state.
  • the communication unit 701 is further configured to: send the PUSCH corresponding to the CG according to the first TCI state and the first SRS resource.
  • the first SRS resource is indicated by srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant; or the first SRS resource is indicated by srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the communication unit 701 is also used to: receive fourth information;
  • the fourth information indicates that the first SRS resource is indicated by the srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant; or the fourth information indicates that the first SRS resource is indicated by the srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant. Indicated by srs-ResourceIndicator2.
  • the first SRS resource is determined by the SRS resource indication field in DCI; or,
  • the first SRS resource is determined by the second SRS resource indication field in the DCI.
  • the communication unit 701 is also used to: receive fifth information;
  • the fifth information indicates that the first SRS resource is determined by the SRS resource indication field in the DCI; or the fifth information indicates that the first SRS resource is determined by the second SRS resource indication field in the DCI.
  • the communication unit 701 is further configured to send the PUSCH corresponding to the CG according to the first TCI state, the first SRS resource, and the second SRS resource.
  • the PUSCH transmission corresponding to the first SRS resource and the associated uplink transmission spatial filter or spatial relationship are determined according to the first TCI state; the PUSCH transmission corresponding to the second SRS resource , the associated uplink transmission spatial filter or spatial relationship is determined according to the first TCI state.
  • the communication unit 701 is further configured to: receive sixth information; the sixth information indicates transmitting the PUSCH corresponding to the CG according to the first TCI state and the first SRS resource; or, The sixth information indicates that the PUSCH corresponding to the CG is transmitted according to the first TCI state, the first SRS resource and the second SRS resource.
  • the communication unit 701 is further configured to: when the activated TCI state available for uplink transmission includes a first TCI state and a second TCI state, the second information indicates the transmission of the PUSCH corresponding to the CG. When there are one or more TCI states, the PUSCH corresponding to the CG is sent according to the first TCI state and the second TCI state.
  • the communication unit 701 is further configured to: send the PUSCH corresponding to the CG according to the first TCI state, the second TCI state, the first SRS resource, and the second SRS resource; wherein, The first SRS resource corresponds to the first TCI state; the second SRS resource corresponds to the second TCI state.
  • the PUSCH transmission corresponding to the first SRS resource and the associated uplink transmission spatial filter or spatial relationship are determined according to the first TCI state; the PUSCH transmission corresponding to the second SRS resource , the associated uplink transmission spatial filter or spatial relationship is determined according to the second TCI state.
  • the first SRS resource is indicated by srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant; the second SRS resource is indicated by srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the SRS resource with a smaller identifier is the first SRS resource
  • the SRS resource with a larger identifier is the second SRS resource.
  • the SRS resource with the larger identifier is the first SRS resource
  • the SRS resource with the smaller identifier is the second SRS resource.
  • the first SRS resource is determined by the SRS resource indication field in the DCI; the second SRS resource is determined by the second SRS resource indication field in the DCI.
  • the SRS resource with the smaller identifier is the first SRS resource
  • the SRS resource with the larger identifier is the The second SRS resource
  • the SRS resource with a larger identifier is the first SRS resource
  • the SRS resource with a smaller identifier is the second SRS resource.
  • the first TCI state is the smallest TCI state among the multiple activated TCI states that can be used for uplink transmission;
  • the second TCI state is the TCI state that is the smallest among the activated TCI states that can be used for uplink transmission.
  • the first TCI state is the largest TCI state among the plurality of activated TCI states that can be used for uplink transmission; the second TCI state is the plurality of activated TCI states that can be used for uplink transmission, Identifies the smallest TCI state or the second largest TCI state.
  • the communication unit 701 is also used to: receive the seventh information;
  • the first TCI state is the activated multiple TCI states that can be used for uplink transmission, and the frontmost TCI among the multiple TCIs indicated by the seventh information;
  • the second TCI state is the activated Multiple TCI states available for uplink transmission, the last TCI or the second earlier TCI among the multiple TCIs indicated by the seventh information; or, the first TCI state is the activated TCI available for
  • the multiple TCI states for uplink transmission are the last TCI among the multiple TCIs indicated by the seventh information;
  • the second TCI state is the multiple activated TCI states that can be used for uplink transmission, and the second TCI state is the last TCI among the TCIs indicated by the seventh information.
  • the communication unit 701 is also used to: receive the eighth information;
  • the eighth information indicates: the first TCI state is the TCI state with the smallest identification among the multiple activated TCI states available for uplink transmission; the second TCI state is the activated TCI state available for uplink transmission.
  • the communication unit 701 is also used to: receive ninth information;
  • the ninth information indicates: the first TCI state is the activated multiple TCI states that can be used for uplink transmission, and is the frontmost TCI among the multiple TCIs indicated by the seventh information received by the terminal device;
  • the first TCI state is the activated multiple TCI states that can be used for uplink transmission, the last TCI or the second front TCI among the multiple TCIs indicated by the seventh information; or
  • the The ninth information indicates: the first TCI state is the activated multiple TCI states that can be used for uplink transmission, and is the last TCI among the multiple TCIs indicated by the seventh information received by the terminal device;
  • the first TCI state is a plurality of activated TCI states that can be used for uplink transmission, and the first TCI or the second later TCI among the plurality of TCIs indicated by the seventh information.
  • the communication unit 701 is further configured to: when the activated TCI state available for uplink transmission includes a first TCI state and a second TCI state, the second information indicates the transmission of the PUSCH corresponding to the CG.
  • the TCI state is one
  • the PUSCH corresponding to the CG is sent according to the first TCI state or the second TCI state.
  • the communication unit 701 is further configured to: send the PUSCH corresponding to the CG according to the TCI state with a smaller identifier among the first TCI state and the second TCI state; or, according to the third TCI state, Among the first TCI state and the second TCI state, the TCI state with the larger identifier is sent, and the PUSCH corresponding to the CG is sent; or, according to the first TCI state and the second TCI state, the PUSCH received by the terminal device is The first TCI state among the multiple TCIs indicated by the seventh information is sent to the PUSCH corresponding to the CG; or, according to the first TCI state and the second TCI state, the seventh information received by the terminal device is The later TCI status among the multiple indicated TCIs sends the PUSCH corresponding to the CG.
  • the communication unit 701 is further configured to: receive tenth information; the tenth information indicates that according to the TCI state with a smaller identifier among the first TCI state and the second TCI state, transmit the The PUSCH corresponding to the CG; or, the tenth information indicates that the PUSCH corresponding to the CG is transmitted according to the TCI state with a larger identifier among the first TCI state and the second TCI state.
  • the communication unit 701 is further configured to: receive eleventh information; the eleventh information indicates that according to the first TCI state and the second TCI state, when the terminal device receives the The first TCI state among the multiple TCIs indicated by the seventh information is transmitted to the PUSCH corresponding to the CG; or, the eleventh information indicates that the terminal transmits the PUSCH corresponding to the first TCI state and the second TCI state according to the eleventh information indication.
  • the later TCI status among the multiple TCIs indicated by the seventh information received by the device transmits the PUSCH corresponding to the CG.
  • At least one of the fourth information, the fifth information, the sixth information, the eighth information, the ninth information, the tenth information, and the eleventh information is controlled through RRC signaling and media access control.
  • the seventh information is transmitted through MAC CE signaling.
  • the MAC CE signaling used to transmit the seventh information includes at least one of the following:
  • TCI quantity indication fields wherein each of the TCI quantity indication fields indicates that one code point corresponds to one or more TCI states
  • each of the TCI status type indication fields indicates that the corresponding TCI status is the downlink DL TCI status, or the joint TCI status, or the uplink UL TCI status;
  • One or more TCI status indication messages are One or more TCI status indication messages.
  • the communication unit 701 is further configured to: receive twelfth information; the twelfth information indicates that the TCI state type includes a joint TCI state or an independent TCI state.
  • the communication unit 701 is also configured to: send at least one of the following: first capability information, second capability information, and third capability information; wherein the first capability information indicates that the terminal device supports the third capability information.
  • first capability information indicates that the terminal device supports the third capability information.
  • Four numbers of TCI states are used for uplink transmission or uplink repeated transmission, or the first capability information indicates that the terminal device supports a code point codepoint in the transmission configuration indication field of DCI, which can activate or indicate at most the Four numbers of TCI states are used for uplink transmission or uplink repeated transmission
  • the second capability information indicates that the terminal device supports transmission of the PUSCH corresponding to the CG
  • the third capability information indicates that the terminal device supports transmission according to the fourth number
  • the TCI status transmits the PUSCH corresponding to the CG.
  • the fourth number is 2 or 4.
  • the terminal device when the terminal device sends the first capability information and the second capability information, the first capability information and the second capability information are sent through the same signaling, or the third capability information One capability information and the second capability information are sent through different signaling.
  • At least one of the first capability information, the second capability information, and the third capability information is transmitted through RRC signaling or MAC CE signaling.
  • At least one of the first capability information, the second capability information, and the third capability information is reported for the frequency band, and/or is reported independently according to the frequency band combination, and/or, it is reported independently according to each frequency band in the frequency band combination, and/or, it is reported independently according to each carrier on each frequency band in the frequency band combination, and/or, it is reported according to the frequency band range, and /Or, it is reported for the terminal device.
  • the TCI state is a unified TCI state.
  • FIG 8 is a schematic structural composition diagram of another communication device provided by an embodiment of the present application, which is applied to terminal equipment.
  • the communication device 800 includes: a communication unit 801 for receiving the physical uplink corresponding to the configuration authorization CG. Shared channel PUSCH; the PUSCH corresponding to the CG is sent according to one or more transmission configuration indication TCI status.
  • the communication device 800 further includes: a determining unit configured to determine one or more transmission configuration indication TCI states.
  • the communication unit 801 is also configured to: send first information; the first information indicates the CG.
  • the communication unit 801 is further configured to: send second information; the second information indicates that the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the CG corresponds to a bandwidth part BWP; or, the CG corresponds to a serving cell or a serving cell group or all CGs on a frequency band.
  • the second information indicates that the CG corresponds to multiple sounding reference signal SRS resources, and the PUSCH corresponding to the CG is transmitted according to one or more TCI states; or, the second information indicates that the CG corresponds to an SRS resource, and the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the second information indicates that the CG corresponds to multiple SRS resources through the srs-resource indicators srs-ResourceIndicator and srs-ResourceIndicator2 configured in the radio resource control RRC parameter rrc-configured uplink grant rrc-ConfiguredUplinkGrant;
  • the second information indicates that the CG corresponds to an SRS resource by indicating that the RRC parameter rrc-ConfiguredUplinkGrant is configured with srs-ResourceIndicator and srs-ResourceIndicator2 is not configured, or srs-ResourceIndicator2 is configured and srs-ResourceIndicator is not configured.
  • the second information indicates multiple SRS resources corresponding to the CG by activating the DCI of the CG; or, the second information indicates one corresponding SRS resource of the CG by activating the DCI of the CG. SRS resources.
  • the second information is a first value, indicating that the PUSCH corresponding to the CG is transmitted according to one TCI state; or the second information is a second value, indicating that the PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the status transmits the PUSCH corresponding to the CG.
  • the PUSCH corresponding to the CG when the network device sends the second information, the PUSCH corresponding to the CG is transmitted according to a TCI state; or, when the network device does not send the second information, the PUSCH corresponding to the CG is transmitted The PUSCH corresponding to the CG is transmitted according to one or more TCI states.
  • the PUSCH corresponding to the CG is transmitted according to one or more TCI states; or, when the network device does not send the second information , the PUSCH corresponding to the CG is transmitted according to a TCI state.
  • the communication unit 801 is further configured to: send third information; the third information indicates an activated TCI state that can be used for uplink transmission; one of the activated TCI states that can be used for uplink transmission or Multiple TCI states are used by the terminal equipment to send the PUSCH corresponding to the CG.
  • the The PUSCH corresponding to the CG is sent according to the activated TCI state available for uplink transmission; or, the first number of activated TCI states available for uplink transmission is greater than the transmission of the CG indicated by the second information.
  • the PUSCH corresponding to the CG is sent according to the third number of the activated TCI states that can be used for uplink transmission; the third number is less than or equal to the Second quantity.
  • the activated TCI state available for uplink transmission includes a first TCI state
  • the second information indicates one or more TCI states for transmitting the PUSCH corresponding to the CG
  • the The PUSCH corresponding to the CG is sent according to the first TCI state.
  • the PUSCH corresponding to the CG is sent according to the first TCI state and the first SRS resource.
  • the first SRS resource is indicated by srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant; or the first SRS resource is indicated by srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the communication unit 801 is also used to: send fourth information;
  • the fourth information indicates that the first SRS resource is indicated by the srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant; or the fourth information indicates that the first SRS resource is indicated by the srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant. Indicated by srs-ResourceIndicator2.
  • the first SRS resource is determined by the SRS resource indication field in the DCI; or the first SRS resource is determined by the second SRS resource indication field in the DCI.
  • the communication unit 801 is also used to: send fifth information;
  • the fifth information indicates that the first SRS resource is determined by the SRS resource indication field in the DCI; or the fifth information indicates that the first SRS resource is determined by the second SRS resource indication field in the DCI.
  • the PUSCH corresponding to the CG is sent according to the first TCI state, the first SRS resource and the second SRS resource.
  • the PUSCH transmission corresponding to the first SRS resource and the associated uplink transmission spatial filter or spatial relationship are determined according to the first TCI state; the PUSCH transmission corresponding to the second SRS resource , the associated uplink transmission spatial filter or spatial relationship is determined according to the first TCI state.
  • the communication unit 801 is further configured to: send sixth information; the sixth information indicates that the PUSCH corresponding to the CG is transmitted according to the first TCI state and the first SRS resource; or, The sixth information indicates that the PUSCH corresponding to the CG is transmitted according to the first TCI state, the first SRS resource and the second SRS resource.
  • the activated TCI state available for uplink transmission includes a first TCI state and a second TCI state
  • the second information indicates that the TCI state for transmitting the PUSCH corresponding to the CG is one or more
  • the PUSCH corresponding to the CG is sent according to the first TCI state and the second TCI state.
  • the PUSCH corresponding to the CG is sent according to the first TCI state, the second TCI state, the first SRS resource and the second SRS resource; wherein the first SRS resource corresponds to the The first TCI state; the second SRS resource corresponds to the second TCI state.
  • the PUSCH transmission corresponding to the first SRS resource and the associated uplink transmission spatial filter or spatial relationship are determined according to the first TCI state; the PUSCH transmission corresponding to the second SRS resource , the associated uplink transmission spatial filter or spatial relationship is determined according to the second TCI state.
  • the first SRS resource is indicated by srs-ResourceIndicator in the RRC parameter rrc-ConfiguredUplinkGrant; the second SRS resource is indicated by srs-ResourceIndicator2 in the RRC parameter rrc-ConfiguredUplinkGrant.
  • the SRS resource with a smaller identifier is the first SRS resource
  • the SRS resource with a larger identifier is the second SRS resource.
  • the SRS resource with the larger identifier is the first SRS resource
  • the SRS resource with the smaller identifier is the second SRS resource.
  • the first SRS resource is determined by the SRS resource indication field in the DCI; the second SRS resource is determined by the second SRS resource indication field in the DCI.
  • the SRS resource with the smaller identifier is the first SRS resource
  • the SRS resource with the larger identifier is the The second SRS resource
  • the SRS resource with a larger identifier is the first SRS resource
  • the SRS resource with a smaller identifier is the second SRS resource.
  • the first TCI state is the smallest TCI state among the multiple activated TCI states that can be used for uplink transmission; the second TCI state is the TCI state that is the smallest among the activated TCI states that can be used for uplink transmission.
  • the largest TCI state or the second smallest TCI state is identified; or, the first TCI state is the largest TCI state among the multiple activated TCI states that can be used for uplink transmission; so The second TCI state is the smallest TCI state or the second largest TCI state among the multiple activated TCI states that can be used for uplink transmission.
  • the communication unit 801 is further configured to: send seventh information; the first TCI state is the activated multiple TCI states that can be used for uplink transmission. The first TCI among the TCIs; the second TCI state is the activated multiple TCI states that can be used for uplink transmission, and the last TCI or the second last TCI among the multiple TCIs indicated by the seventh information The previous TCI; or, the first TCI state is the activated multiple TCI states that can be used for uplink transmission, and the last TCI among the multiple TCIs indicated by the seventh information; the second TCI The status is the status of multiple activated TCIs that can be used for uplink transmission, which is the frontmost TCI or the second back TCI among the multiple TCIs indicated by the seventh information.
  • the communication unit 801 is also used to: send the eighth information;
  • the eighth information indicates: the first TCI state is the TCI state with the smallest identification among the multiple activated TCI states available for uplink transmission; the second TCI state is the activated TCI state available for uplink transmission.
  • the communication unit 801 is also used to: send ninth information;
  • the ninth information indicates: the first TCI state is the activated multiple TCI states that can be used for uplink transmission, and is the frontmost TCI among the multiple TCIs indicated by the seventh information received by the terminal device;
  • the first TCI state is the activated multiple TCI states that can be used for uplink transmission, the last TCI or the second front TCI among the multiple TCIs indicated by the seventh information; or
  • the The ninth information indicates: the first TCI state is the activated multiple TCI states that can be used for uplink transmission, and is the last TCI among the multiple TCIs indicated by the seventh information received by the terminal device;
  • the first TCI state is a plurality of activated TCI states that can be used for uplink transmission, and the first TCI or the second later TCI among the plurality of TCIs indicated by the seventh information.
  • the activated TCI state available for uplink transmission includes a first TCI state and a second TCI state
  • the second information indicates that the TCI state for transmitting the PUSCH corresponding to the CG is one
  • the PUSCH corresponding to the CG is sent according to the first TCI state or the second TCI state.
  • the PUSCH corresponding to the CG is sent according to the TCI state with a smaller identifier among the first TCI state and the second TCI state; or, the PUSCH corresponding to the CG is sent according to the third TCI state.
  • One TCI state and the second TCI state are sent by the TCI state with the larger identifier; or, the PUSCH corresponding to the CG is received by the terminal device according to the first TCI state and the second TCI state.
  • the first TCI state among the multiple TCIs indicated by the seventh information is sent; or, the PUSCH corresponding to the CG is the first TCI state received by the terminal device according to the first TCI state and the second TCI state.
  • the later TCI status among the multiple TCIs indicated by the seven information is sent.
  • the communication unit 801 is further configured to: send tenth information; the tenth information indicates that according to the TCI state with a smaller identifier among the first TCI state and the second TCI state, transmit the The PUSCH corresponding to the CG; or, the tenth information indicates that the PUSCH corresponding to the CG is transmitted according to the TCI state with a larger identifier among the first TCI state and the second TCI state.
  • the communication unit 801 is also configured to: send eleventh information; the eleventh information indicates that according to the first TCI state and the second TCI state, when the terminal device receives the The first TCI state among the multiple TCIs indicated by the seventh information is transmitted to the PUSCH corresponding to the CG; or, the eleventh information indicates that the terminal transmits the PUSCH corresponding to the first TCI state and the second TCI state according to the eleventh information indication.
  • the later TCI status among the multiple TCIs indicated by the seventh information received by the device transmits the PUSCH corresponding to the CG.
  • At least one of the fourth information, the fifth information, the sixth information, the eighth information, the ninth information, the tenth information, and the eleventh information is controlled through RRC signaling and media access control.
  • the seventh information is transmitted through MAC CE signaling.
  • the MAC CE signaling used to transmit the seventh information includes at least one of the following:
  • TCI quantity indication fields wherein each of the TCI quantity indication fields indicates that one code point corresponds to one or more TCI states
  • each of the TCI status type indication fields indicates that the corresponding TCI status is the downlink DL TCI status, or the joint TCI status, or the uplink UL TCI status;
  • One or more TCI status indication messages are One or more TCI status indication messages.
  • the communication unit 801 is further configured to: send twelfth information; the twelfth information indicates that the TCI state type includes a joint TCI state or an independent TCI state.
  • the communication unit 801 is further configured to receive at least one of the following: first capability information, second capability information, and third capability information; wherein the first capability information indicates that the terminal device supports the third capability information.
  • first capability information indicates that the terminal device supports the third capability information.
  • Four numbers of TCI states are used for uplink transmission or uplink repeated transmission, or the first capability information indicates that the terminal device supports a code point codepoint in the transmission configuration indication field of DCI, which can activate or indicate at most the Four numbers of TCI states are used for uplink transmission or uplink repeated transmission
  • the second capability information indicates that the terminal device supports transmission of the PUSCH corresponding to the CG
  • the third capability information indicates that the terminal device supports transmission according to the fourth number
  • the TCI status transmits the PUSCH corresponding to the CG.
  • the fourth number is 2 or 4.
  • the network device receives the first capability information and the second capability information through the same signaling, or the network device receives the first capability information and the second capability information through different signaling. Second capability information.
  • At least one of the first capability information, the second capability information, and the third capability information is transmitted through RRC signaling or MAC CE signaling.
  • At least one of the first capability information, the second capability information, and the third capability information is reported for the frequency band, and/or is reported independently according to the frequency band combination, and/or, it is reported independently according to each frequency band in the frequency band combination, and/or, it is reported independently according to each carrier on each frequency band in the frequency band combination, and/or, it is reported according to the frequency band range, and /Or, it is reported for the terminal device.
  • the TCI state is a unified TCI state.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 may include one of the following: a terminal device and a network device.
  • the communication device 900 shown in Figure 9 may include a processor 910 and a memory 920.
  • the memory 920 stores a computer program that can be run on the processor 910.
  • the processor 910 executes the program, any of the above embodiments can be implemented. Congestion control methods in .
  • the memory 920 may be a separate device independent of the processor 910 , or may be integrated into the processor 910 .
  • the communication device 900 may also include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices, specifically, may send information or data to other devices, or Receive information or data from other devices.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be a terminal device or a network device according to the embodiment of the present application, and the communication device 900 may implement the corresponding processes implemented by the terminal device or the network device in each method of the embodiment of the present application, For the sake of brevity, no further details will be given here.
  • Embodiments of the present application also provide a computer storage medium that stores one or more programs, and the one or more programs can be executed by one or more processors to implement any implementation of the present application.
  • Congestion control method in the example is described.
  • the computer-readable storage medium can be applied to the terminal device or network device in the embodiment of the present application, and the computer program causes the computer to perform the various methods implemented by the terminal device or the network device in the embodiment of the present application. The corresponding process will not be repeated here for the sake of brevity.
  • Figure 10 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 1000 shown in Figure 10 includes a processor 1010.
  • the processor 1010 is used to call and run a computer program from a memory to implement any embodiment of the present application. Methods.
  • chip 1000 may also include memory 1020 .
  • the processor 1010 can call and run the computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or may be integrated into the processor 1010.
  • the chip 1000 may also include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips. Specifically, it can obtain information or data sent by other devices or chips.
  • the chip 1000 may also include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the terminal device or network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device or the network device in the various methods of the embodiment of the present application. For the sake of simplicity, I won’t go into details here.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer storage medium.
  • the computer storage medium stores a computer program.
  • the computer program includes instructions that can be executed by at least one processor. When the When the instructions are executed by the at least one processor, the congestion control method in any embodiment of the present application is implemented.
  • the computer program product can be applied to the terminal device or network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding steps implemented by the terminal device or the network device in the various methods of the embodiment of the present application.
  • the process for the sake of brevity, will not be repeated here.
  • the computer program product in the embodiment of this application may also be called a software product in other embodiments.
  • An embodiment of the present application also provides a computer program, which causes a computer to execute the congestion control method in any embodiment of the present application.
  • the computer program can be applied to the terminal device or network device in the embodiments of the present application.
  • the computer program When the computer program is run on the computer, it causes the computer to perform the various methods in the embodiments of the present application by the terminal device or the network.
  • the corresponding process of equipment implementation will not be described here for the sake of simplicity.
  • the processor, communication device or chip in the embodiment of the present application may be an integrated circuit chip and has signal processing capabilities. During the implementation process, each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor, communication device or chip may include the integration of any one or more of the following: general-purpose processor, application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), digital signal processor (Digital Signal Processor, DSP), digital Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), Central Processing Unit (CPU), graphics Processor (Graphics Processing Unit, GPU), embedded neural network processing units (NPU), controller, microcontroller, microprocessor, programmable logic device, discrete gate or transistor logic device, discrete Hardware components.
  • ASIC Application Specific Integrated Circuit
  • DSP digital Signal Processor
  • DSPD digital Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory may be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory. Volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • enhanced SDRAM ESDRAM
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application can also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM) , DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM) ), synchronous link dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法、装置、设备、存储介质、芯片、产品及程序,该方法包括:终端设备根据一个或多个传输配置指示TCI状态,发送配置授权CG对应的物理上行共享信道PUSCH。

Description

通信方法、装置、设备、存储介质、芯片、产品及程序 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种通信方法、装置、设备、存储介质、芯片、产品及程序。
背景技术
5G新无线(New Radio,NR)系统中支持多个传输/接收点(transmission reception point,TRP)的发送以及接收,以扩展到更高频段的覆盖范围。在具有多个TRP的网络设备和/或具有多个面板的终端设备之间可以形成多个通信链路,以增加吞吐量和/或提供附加的分集增益。终端设备如何进行上行传输,是本领域一直以来关注的问题。
发明内容
本申请实施例提供一种通信方法、装置、设备、存储介质、芯片、产品及程序。
第一方面,本申请实施例提供一种通信方法,所述方法包括:
终端设备根据一个或多个传输配置指示TCI状态,发送配置授权CG对应的物理上行共享信道PUSCH。
第二方面,本申请实施例提供一种通信方法,所述方法包括:
网络设备接收配置授权CG对应的物理上行共享信道PUSCH;所述CG对应的PUSCH是根据一个或多个传输配置指示TCI状态发送的。
第三方面,本申请实施例提供一种通信装置,包括:
通信单元,用于根据一个或多个传输配置指示TCI状态,发送配置授权CG对应的物理上行共享信道PUSCH。
第四方面,本申请实施例提供一种通信装置,包括:
通信单元,用于接收配置授权CG对应的物理上行共享信道PUSCH;所述CG对应的PUSCH是根据一个或多个传输配置指示TCI状态发送的。
第五方面,本申请实施例提供一种通信设备,包括:处理器和存储器,
所述存储器存储有可在处理器上运行的计算机程序,
所述处理器执行所述程序时实现第一方面或第二方面所述方法。
第六方面,本申请实施例提供一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现第一方面或第二方面所述方法。
第七方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,以实现如第一方面或第二方面所述方法。
第八方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机存储介质,所述计算机存储介质存储计算机程序,所述计算机程序包括能够由至少一个处理器执行的指令,当所述指令由所述至少一个处理器执行时实现第一方面或第二方面所述方法。
第九方面,本申请实施例提供一种计算机程序,所述计算机程序使得计算机执行如第一方面或第二方面所述方法。
在本申请实施例中,终端设备根据一个或多个传输配置指示TCI状态,发送配置授权CG对应的物理上行共享信道PUSCH。这样,由于终端设备进行的CG对应的PUSCH的发送,根据的是一个或多个TCI状态,从而,终端设备能够有效传输CG对应的PUSCH,且能够提高CG对应的PUSCH的传输的可靠性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例 及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的一个应用场景的示意图;
图2为本申请实施例提供的一种多TRP传输的示意图;
图3为本申请实施例提供的一种多个beam传输的示意图;
图4为本申请实施例提供的一种PDSCH的TCI状态配置方法的示意图;
图5为本申请实施例提供的一种通信方法的流程示意图;
图6为本申请实施例提供的另一种通信方法的流程示意图;
图7为本申请实施例提供的通信装置的结构组成示意图;
图8为本申请实施例提供的另一通信装置的结构组成示意图;
图9为本申请实施例提供的一种通信设备示意性结构图;
图10为本申请实施例的芯片的示意性结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
图1为本申请实施例的一个应用场景的示意图,如图1所示,通信系统100可以包括终端设备110和网络设备120。网络设备120可以通过空口与终端设备110通信。终端设备110和网络设备120之间支持多业务传输。
应理解,本申请实施例仅以通信系统100进行示例性说明,但本申请实施例不限定于此。也就是说,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、物联网(Internet of Things,IoT)系统、窄带物联网(Narrow Band Internet of Things,NB-IoT)系统、增强的机器类型通信(enhanced Machine-Type Communications,eMTC)系统、或未来的通信系统(例如6G、7G通信系统)等。
本申请实施例中的网络设备120可以包括接入网设备121和/或核心网设备122。接入网设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110(例如UE)进行通信。
本申请中的终端设备是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。本申请中的终端设备可以称为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)、用户单元、用户站、移动站、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以包括以下之一或者至少两者的组合:物联网(Internet of Things,IoT)设备、卫星终端、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、服务器、手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、掌上电脑、台式计算机、个人数字助理、便捷式媒体播放器、智能音箱、导航装置、智能手表、智能眼镜、智能项链等可穿戴设备、计步器、数字TV、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端以及车联网系统中的车、车载设备、车载模块、无线调制解调器(modem)、手持设备(handheld)、客户终端设备(Customer Premise Equipment,CPE)、智能家电等。可选地,终端设备110 可以是任意终端设备,其包括但不限于与网络设备120或其它终端设备采用有线或者无线连接的终端设备。可选地,终端设备110可以用于设备到设备(Device to Device,D2D)的通信。
接入网设备121可以包括以下之一或者至少两者的组合:长期演进(Long Term Evolution,LTE)系统中的演进型基站(Evolutional Node B,eNB或eNodeB)、下一代无线接入网(Next Generation Radio Access Network,NG RAN)设备、NR系统中的基站(gNB)、小站、微站、云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器、无线保真(Wireless-Fidelity,Wi-Fi)的接入点、传输/接收点(transmission reception point,TRP)、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。在本申请任一实施例中,TRP可以为发送/接收点。
核心网设备122可以是5G核心网(5G Core,5GC)设备,核心网设备122可以包括以下之一或者至少两者的组合:接入与移动性管理功能(Access and Mobility Management Function,AMF)、认证服务器功能(Authentication Server Function,AUSF)、用户面功能(User Plane Function,UPF)、会话管理功能(Session Management Function,SMF)、位置管理功能(Location Management Function,LMF)、策略控制功能(Policy Control Function,PCF)。在另一些实施方式中,核心网络设备也可以是LTE网络的分组核心演进(Evolved Packet Core,EPC)设备,例如,会话管理功能+核心网络的数据网关(Session Management Function+Core Packet Gateway,SMF+PGW-C)设备。应理解,SMF+PGW-C可以同时实现SMF和PGW-C所能实现的功能。在网络演进过程中,上述核心网设备122也有可能叫其它名字,或者通过对核心网的功能进行划分形成新的网络实体,对此本申请实施例不做限制。
通信系统100中的各个功能单元之间还可以通过下一代网络(next generation,NG)接口建立连接实现通信。
例如,终端设备通过NR接口与接入网设备建立空口连接,用于传输用户面数据和控制面信令;终端设备可以通过NG接口1(简称N1)与AMF建立控制面信令连接;接入网设备例如下一代无线接入基站(gNB),可以通过NG接口3(简称N3)与UPF建立用户面数据连接;接入网设备可以通过NG接口2(简称N2)与AMF建立控制面信令连接;UPF可以通过NG接口4(简称N4)与SMF建立控制面信令连接;UPF可以通过NG接口6(简称N6)与数据网络交互用户面数据;AMF可以通过NG接口11(简称N11)与SMF建立控制面信令连接;SMF可以通过NG接口7(简称N7)与PCF建立控制面信令连接。
图1示例性地示出了一个基站、一个核心网设备和两个终端设备,可选地,该无线通信系统100可以包括多个基站设备并且每个基站的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
需要说明的是,图1只是以示例的形式示意本申请所适用的系统,当然,本申请实施例所示的方法还可以适用于其它系统。此外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。还应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。还应理解,在本申请的实施例中提到的“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。还应理解,在本申请的实施例中提到的“预定义”、“协议约定”、“预先确定”或“预定义规则”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。还应理解,本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
以下对多波束系统进行相关说明:
NR/5G系统的设计目标包括高频段(例如6GHz以上的频段)的大带宽通信。当工作频率变高时,传输过程中的路径损耗会增大,从而影响高频系统的覆盖能力。为了能够有效地保证高频段NR系统的覆盖,一种有效的技术方案便是基于大规模天线阵列或大规模多进多出(multiple input multiple output,MIMO,Massive MIMO)采用多天线(multiple beam)或者混合波束(hybrid beam)技术来提高覆盖能力。
现有的2/3/4G典型系统中,一个小区(扇区)使用一个较宽的波束(beam)来覆盖整个小区。因此在每个时刻,小区覆盖范围内终端设备都有机会获得系统分配的传输资源。
NR/5G的多波束(Multi-beam)系统通过不同的波束(beam)来覆盖整个小区,即每个beam覆盖一个较小的范围,通过时间上的扫描(sweeping)来实现多个beam覆盖整个小区的效果。目前不同的beam通过上面承载的不同信号来进行识别。
可选地,一些不同beam上传输不同的同步信号块(Synchronization Signal block,SS block或SSB),终端设备可以通过不同的SS block来分辨出不同的beam。SSB也可以称为同步信号/物理广播信道块(Synchronization Signal/Physical Broadcast Channel block,SS/PBCH block)。
可选地,一些不同的beam上传输不同的信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)信号,终端设备通过CSI-RS信号/CSI-RS资源来识别出不同的beam。
可选地,这些SS block和/或CSI-RS等可见的信号,可以与某个/某些物理的beam对应。
在一个multi-beam系统中,物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)可以通过不同的下行发送波束来传输。
对于6G以下系统,终端设备侧一般没有模拟波束,因此采用全向天线(或者接近全向的天线)来接收基站不同下行发送波束发送的信号。
对于毫米波系统,终端设备侧可能会有模拟波束,需要使用对应的下行接收波束去接收对应的下行发送波束发送的信号。此时,需要相应的波束指示信息(beam indication)来协助终端设备确定网络侧的发送波束相关信息,或者终端设备侧对应的接收波束相关信息。
在NR协议中,波束指示信息不是直接指示波束本身,而是通过信号之间的准共址(Quasi-co-located或Quasi co-location,QCL)准共址('QCL-TypeD'类型)来进行指示。在终端设备侧,确定接收相应的信道/信号,也是基于QCL准共址假设。其中QCL准共址假设是通过传输配置指示(Transmission Configuration Indication,TCI)状态(TCI-state)来指示的,即网络通过相关信令(例如无线资源控制(Radio Resource Control,RRC),和/或媒体接入控制控制单元(Medium Access Control Control Element,MAC CE),和/或下行控制信息(Downlink Control Information,DCI)来配置和/或指示对的TCI状态。
以下对多TRP/面板panel/beam传输进行相关说明:
TRP传输,指的是在同一个载波上,多个TRP可以同时和某个终端设备进行通信。由于在NR系统中,多个TRP传输,或者多个panel或者多个beam同时和一个终端设备进行传输,可以采用相同的的方案,因此在描述中,常常不加以区分,例如称为多TRP传输,多TRP(multiple TRP,mTRP)传输,或者M-TRP(Multiple-TRP)传输,或者写成多个TRP/panel/beam传输。
在相关技术中,多个TRP或者多个面板/天线面板(Antenna panels)或者多个beam同时给终端设备传输下行数据的方案支持下面两大类方案:
方案1:基于单PDCCH的方案(single-PDCCH based scheme):终端设备只检测一个NR-PDCCH,在此控制信道PDCCH检测得到的一个DCI指示多个TRP/panel/beam上同时传输的数据的相关指示信息,这样,一次传输对应多个TCI-state,即通过多个TCI-state来隐式地支持多个TRP/panel/beam传输。
在本申请任一实施例中,TCI-state与TCI state同一理解。
方案2:基于多PDCCH的方案(multiple-PDCCH based scheme):终端设备接收来自不同的TRP/panel/beam上的不同的NR-PDCCH,每个控制信道PDCCH上检测得到的DCI指示一个对应的数据传输的相关指示信息,这样,调度数据的DCI对应的控制资源集(COntrol REsource SET,CORESET)可能会关联到不同的CORESET资源池编号/索引(CORESET pool index),即对应不同的CORESET pool index,即通过多个不同的CORESET pool index来隐式地支持多个TRP/panel/beam传输。
图2为本申请实施例提供的一种多TRP传输的示意图,如图2所示,终端设备可以通过TRP1和/或TRP2来接收信息。
图3为本申请实施例提供的一种多个beam传输的示意图,如图3所示,网络设备可以通过beam1和beam2发送信息。
对于第一种方案,终端设备只需要检测一个NR-PDCCH,因此控制信道检测复杂度可能会低于第二种方案。第一种方案需要在不同的panel/TRP/beam之间能够快速交互信息。
对于第二种方案,终端设备需要在同一个载波上同时去检测多个NR-PDCCH,复杂度可能会有所增加,但是灵活性和鲁棒性可能会改善。
第二种方案的可能应用场景至少有以下一些:
场景1:多个TRP属于同一个小区,TRP之间的连接(backhaul)是理想的(即可以快速进行信息交互,动态信息交互)。
场景2:多个TRP属于同一个小区,TRP之间的连接(backhaul)是非理想的(即TRP之间无法 快速交互信息,只能进行相对较慢的数据交互)。
场景3:多个TRP属于不同的小区,TRP之间的连接(backhaul)是理想的。
场景4:多个TRP属于不同的小区,TRP之间的连接(backhaul)是非理想的。
场景5:把上面的场景1-4中的TRP对应的换成beam,则可以对应的得到四个multi-beam的应用场景。
可选地,第一种方案一般认为只适用于理想连接backhaul的场景(即场景1和场景3)。
在R16中,只研究和支持了下行数据传输的多TRP传输。在R17中,研究和支持了下行控制信道(PDCCH),上行数据共享信道(PUSCH),上行控制信道(PUCCH)的多TRP传输,以增加相应信道传输的可靠性。
区别于动态调度PUSCH(例如每次PUSCH使用DCI来动态调度),免调度/配置授权(Configured Grant,CG)PUSCH(即不需要动态调度,不需要DCI来动态调度)的一些参数由RRC信令配置,而不是由DCI动态指示。NR中支持Type1 CG PUSCH和Type2 CG PUSCH,其中Type1 CG PUSCH由RRC半静态配置包括时频域资源,解调参考信号(Demodulation Reference Signal,DMRS),开环功控,调制与编码策略(Modulation and Coding Scheme,MCS)等所有PUSCH传输时需要的参数,Type2 CG PUSCH则由RRC配置部分半静态参数包括时域资源的周期,功控,重复次数等,由DCI进行激活并在同一个DCI中指示时频资源,DMRS,MCS等参数。R17中对这两种CG PUSCH都进行了基于多TRP的增强。R17中规定在配置授权配置(ConfiguredGrantConfig)中增加一组P0-PUSCH-Alpha和powerControlLoopToUse用于第二个TRP的功率控制,对于Type2 CG PUSCH,原有的第一组功控值关联到第一个信道探测参考信号(Sounding Reference Signal,SRS)资源集,第二组值关联到第二个SRS资源集,使用第一组功控或第二组功控或使用第一和第二组功控取决于DCI中新增加的用以指示单TRP和多TRP动态切换的2比特域。对于Type1 CG PUSCH,在rrc-ConfiguredUplinkGrant中增加一组pathlossReferenceIndex域,srs-ResourceIndicator域,precodingAndNumberOfLayers域用于指示第二个TRP对应的路损参考信号,参考信号资源指示(Reference Signal resource Indicator,SRI)和预编码矩阵指示(Transmit PrecoderMetricIndicator,TPMI)。需要强调的是,与DCI信令对开销要求较高不同,RRC信令对开销相对要求较低,因此通过RRC指示的与第二个SRS资源集关联的srs-ResourceIndicator域和precodingAndNumberOfLayers域与第一个SRS资源集关联的srs-ResourceIndicator域和precodingAndNumberOfLayers域大小所占用的比特数相同。
在本申请任一实施例中,rrc-ConfiguredUplinkGrant可以翻译成rrc-配置上行授权,pathlossReferenceIndex可以翻译成路径损耗参考索引,srs-ResourceIndicator可以翻译成srs-资源指示,precodingAndNumberOfLayers可以翻译成预编码和层数。
在本申请任一实施例中,配置授权、免调度、免动态调度这三者可以作同一理解,或者说,Configured grant可以为配置授权、免调度或免动态调度。
配置授权类型1PUSCH传输半静态地配置为在接收到包括rrc-ConfiguredUplinkGrant的配置授权配置的更高层参数时操作,而无需检测到DCI中的UL授权。在接收到不包括rrc-ConfiguredUplinkGrant的高层参数configuredGrantConfig后,配置授权类型2PUSCH传输由有效激活DCI中的UL授权半持久地调度。
针对多TRP系统,上面讨论的传输方案都是针对在同一个载波的情况下。例如针对基于多PDCCH的PDSCH传输方案(multiple-PDCCH based scheme),终端设备是在同一个载波上检测多个DCI(例如2个DCI),其中每个DCI可以调度对应的PDSCH,多个PDSCH也是在同一个载波上。在PDCCH传输和/或上行传输(例如PUSCH和/或PDCCH中)也都是在同一个载波,或者同一个小区。对于上行的多TRP传输也是一样,针对的是同一个载波上的传输。
以下对TCI state进行相关说明:
终端设备在进行信号接收时,为了提高接收性能,可以利用数据传输所对应的传输环境的特性来改进接收算法。例如可以利用信道的统计特性来优化信道估计器的设计和参数。在NR系统中,数据传输所对应的这些特性通过QCL状态(QCL-Info)来表示。
下行传输如果来自不同的TRP/panel/beam,则数据传输所对应的传输环境的特性可能也会有变化,因此在NR系统中,网络侧在传输下行控制信道或数据信道,会通过TCI状态(TCI state)将对应的QCL状态信息指示给终端设备。
其中,一个TCI状态可以包含如下配置:
TCI状态ID,用于标识一个TCI状态;
QCL信息1;
QCL信息2。
其中,一个QCL信息又包含如下信息:
QCL类型(type)配置,可以是QCL type A,QCL type B,QCL type C,QCL type D中的一个;
QCL参考信号配置,包括参考信号所在的小区ID,带宽部分(Band Width Part,BWP)ID以及参考信号的标识(可以是CSI-RS资源ID或SSB索引)。
其中,如果QCL信息1和QCL信息2都配置了,至少一个QCL信息的QCL类型为typeA,typeB,typeC中的一个,另一个QCL信息(如果配置)的QCL类型为QCL type D。
其中,不同QCL类型配置的定义如下:
‘QCL-TypeA’:{多普勒频移(Doppler shift),多普勒扩展(Doppler spread),平均时延(average delay),延时扩展(delay spread)};
‘QCL-TypeB’:{多普勒频移(Doppler shift),多普勒扩展(Doppler spread)};
‘QCL-TypeC’:{多普勒频移(Doppler shift),平均时延(average delay)};
‘QCL-TypeD’:{空间接收参数(Spatial Rx parameter)}。
在NR系统中,网络侧可以为下行信号或下行信道指示相应的TCI状态。
如果网络侧通过TCI状态配置目标下行信道或目标下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为typeA,typeB或typeC,则终端设备可以假设所述目标下行信号与所述参考SSB或参考CSI-RS资源的大尺度参数是相同的,所述大尺度参数通过QCL类型配置来确定。
类似的,如果网络侧通过TCI状态配置目标下行信道或下行信号的QCL参考信号为参考SSB或参考CSI-RS资源,且QCL类型配置为typeD,则终端设备可以采用与接收所述参考SSB或参考CSI-RS资源相同的接收波束(即Spatial Rx parameter),来接收所述目标下行信号。通常的,目标下行信道(或下行信号)与它的参考SSB或参考CSI-RS资源在网络侧由同一个TRP或者同一个panel或者相同的波束来发送。如果两个下行信号或下行信道的传输TRP或传输panel或发送波束不同,通常会配置不同的TCI状态。
对于下行控制信道,可以通过RRC信令或者RRC信令+媒体接入控制(Medium Access Control,MAC)信令的方式来指示对应CORESET的TCI状态。
对于下行数据信道,可用的TCI状态集合通过RRC信令来指示,并通过MAC层信令来激活其中部分TCI状态,最后通过DCI中的TCI状态指示域从激活的TCI状态中指示一个或两个TCI状态,用于所述DCI调度的PDSCH。2个TCI状态的情况主要是针对多个TRP类似的场景。
图4为本申请实施例提供的一种PDSCH的TCI状态配置方法的示意图,如图4所示,通过RRC信令可以确定N个候选的TCI状态。例如,RRC信令可以指示N个候选的TCI状态。通过MAC信令可以从N个候选的TCI状态中确定K个激活的TCI状态。通过DCI信令可以从K个激活的TCI状态中确定1个或2个使用的TCI状态。
以下对统一TCI状态(Unified TCI state)进行相关说明:
TCI state的指示机制是在R15引入的,仅适用于下行的信道和信号,且在NR系统中应用起来有诸多的限制。为了给NR系统提供一个更统一的上下行波束管理机制,在参照Rel.15/16TCI state的设计基础上,3GPP Rel.17提出了统一TCI state的概念,它增加了重要新功能举例如下:
设计了2种unified TCI state的模式:
模式一:包含1类TCI state,这类TCI state可以适用于上行和下行的信道和信号;可以把这类TCI state称作joint TCI state(联合TCI state)。
模式二:包含两类TCI state,其中DL TCI state仅适用于下行的信道和信号;UL TCI state仅适用于上行的信道和信号。
下行信道(部分PDCCH,PDSCH)和信号(非周期CSI-RS)使用相同的下行发射指示波束,使用DL TCI state或joint TCI state。
上行信道(PUCCH,PUSCH)和信号(SRS)使用相同的上行发射波束,使用UL TCI state或joint TCI state。
Unified TCI state可以使用MAC CE和/或DCI动态更新和指示。
Unified TCI state适用于载波聚合的场景,单CC上的波束指示可以适用于多个不同的CC。
上行的波束指示可以和上行的功率控制参数通过UL TCI state或joint TCI state同时给出。
Unified TCI state支持小区间的波束管理功能。
对于每个CC上的CORESET来说,在3GPP的讨论中大致可以分为一下四种类型:
CORESET A:它仅关联到终端设备专属的搜索空间上,因此可以认为是终端设备专属的下行控制信道资源,且要跟随被指示的unified TCI state(s);
CORESET B:它仅关联到小区公共的搜索空间上,它是否可以跟随网路(Network,NW)指示的 unified TCI state(s),需要看NW的RRC配置;
CORESET C:它即关联到终端设备专属的搜索空间上,也关联到小区公共的搜索空间上,它是否可以跟随NW指示的unified TCI state(s),需要看NW的RRC配置;
CORESET 0:它一定关联到小区公共的搜索空间,也可以同时关联到终端设备专属的搜索空间,它是否可以跟随NW指示的unified TCI state(s),需要看NW的RRC配置。
在R17的unified TCI state机制中,没有考虑多TRP传输的场景,只支持了单TRP的场景。
本申请实施例中的TCI state,如果没有明确指明是哪种TCI state,则包含前述提到的任意TCI state,例如TCI state可以是joint TCI state,可以是separate TCI state,可以是DL TCI state,也可以是UL TCI state,也可以是他们的组合(即包含多个不同类型的TCI state,例如DL TCI state、UL TCI state、joint TCI state、separate TCI state中的至少之一)。如果是使用RRC参数TCI-State,那么一般指的是DL TCI state和/或joint TCI state。如果是使用RRC参数DLorJointTCIState,那么一般指的是DL TCI state和/或joint TCI state。如果是使用RRC参数UL-TCIState或TCI-UL-State或UL-TCI-State,那么一般指的是UL TCI state。
然而,针对多TRP传输系统中的unified TCI state如何配置和指示,还缺乏完善的方案和具体细节。
为便于理解本申请实施例的技术方案,以下通过具体实施例详述本申请的技术方案。以上相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
图5为本申请实施例提供的一种通信方法的流程示意图,如图5所示,该方法包括:
S501、终端设备根据一个或多个传输配置指示TCI状态,发送配置授权CG对应的物理上行共享信道PUSCH。
图6为本申请实施例提供的另一种通信方法的流程示意图,如图6所示,该方法包括:
S601、网络设备接收配置授权CG对应的物理上行共享信道PUSCH;所述CG对应的PUSCH是根据一个或多个传输配置指示TCI状态发送的。
可选地,在本申请的另一些实施例中,CG对应的PUSCH可以替换为PUSCH或其它PUSCH。
可选地,终端设备传输CG对应的PUSCH所根据的TCI状态(TCI state)可以为统一TCI状态(unified TCI state)。
可选地,终端设备可以根据一个或多个TCI状态,确定一个或多个TCI状态对应的PUSCH的空间关系或者上行发送空间滤波器,基于一个或多个TCI状态对应的PUSCH的空间关系或者上行发送空间滤波器,发送CG对应的PUSCH。
在本申请任一实施例中,传输在未作特殊说明的情况下,可以包括发送或接收,具体地,传输为发送或接收,可以根据上下文的语义来确定,本申请对此不再赘述。
可选地,网络设备根据一个或多个传输配置指示TCI状态,接收配置授权CG对应的物理上行共享信道PUSCH。可选地,网络设备可以根据一个或多个TCI状态,确定一个或多个TCI状态对应的PUSCH的空间关系或者上行发送空间滤波器,基于一个或多个TCI状态对应的PUSCH的空间关系或者上行发送空间滤波器,接收CG对应的PUSCH。
可选地,终端设备可以根据可用于上行传输的上行TCI状态,传输CG对应的PUSCH。可选地,网络设备可以根据可用于上行传输的上行TCI状态,接收CG对应的PUSCH。
本申请任一实施例中的CG对应的PUSCH,可以包括一个或多个CG对应的PUSCH。可选地,每个CG都有对应的PUSCH。
本申请任一实施例中的CG对应的PUSCH,可以与CG的PUSCH或CG PUSCH作同一理解。
本申请任一实施例中的发送/接收CG对应的PUSCH,可以包括:重复(repetition)发送/接收CG对应的PUSCH,或者,单次发送/接收CG对应的PUSCH。
在本申请实施例中,终端设备根据一个或多个传输配置指示TCI状态,发送配置授权CG对应的物理上行共享信道PUSCH。这样,由于终端设备进行的CG对应的PUSCH的发送,根据的是一个或多个TCI状态,从而,终端设备能够有效传输CG对应的PUSCH,且能够提高CG对应的PUSCH的传输的可靠性。
在一些实施例中,所述方法还包括:
所述终端设备接收第一信息;所述第一信息指示所述CG。
在一些实施例中,所述方法还包括:
所述网络设备发送第一信息;所述第一信息指示所述CG。
在一些实施例中,CG在其它实施例中可以称为CG配置(Configured Grant Configuration)或CG配置信息。
可选地,终端设备接收网络设备发送的第一信息,所述第一信息指示1个或多个配置授权。
可选地,第一信息可以指示1个BWP上的1个或多个配置授权。
可选地,配置授权是配置授权类型1(configured grant Type 1),或者配置授权类型2(configured grant Type 2)。
可选地,当配置授权是配置授权类型1时,第一信息针对配置授权还在RRC参数configuredGrantConfig中包含了rrc-ConfiguredUplinkGrant。
在一些实施例中,所述方法还包括:
所述终端设备接收第二信息;所述第二信息指示根据一个或多个TCI状态传输所述CG对应的PUSCH。例如,所述第二信息指示所述CG对应的PUSCH,根据多个TCI状态进行传输,或者根据一个或多个TCI状态进行传输,或者根据一个TCI状态进行传输。
在一些实施例中,所述方法还包括:
所述网络设备发送第二信息;所述第二信息指示根据一个或多个TCI状态传输所述CG对应的PUSCH。例如,所述第二信息指示所述CG对应的PUSCH,根据多个TCI状态进行传输,或者根据一个或多个TCI状态进行传输,或者根据一个TCI状态进行传输。
可选地,终端设备接收网络设备发送的第二信息。
可选地,第二信息在其它实施例中可以称为配置授权指示信息或者第一配置授权指示信息。可选地,第二信息也可以称为特定指示信息或预定指示信息。第二信息可以为网络设备向终端设备发送的任一个信息。可选地,在本申请的其它实施例中,第二信息可以为终端设备预先配置的信息。
可选地,第二信息指示传输CG对应的PUSCH所根据的TCI状态可以为unified TCI state。
可选地,不同的第二信息指示所述CG对应的PUSCH,根据不同数量的TCI状态进行传输。可选地,不同的第二信息指示所述CG对应的PUSCH,根据相同数量的TCI状态进行传输。
在一些实施例中,所述CG对应一个带宽部分BWP。在另一些实施例中,所述CG对应一个服务小区或一个服务小区组或一个频段band上所有的CG。
在一些实施例中,所述第二信息针对一个带宽部分BWP上所有的配置授权CG。
在另一些实施例中,所述第二信息针对一个服务小区或一个服务小区组或一个频段band上所有的配置授权CG。
在又一些实施例中,所述第二信息针对一个配置授权CG。
可选地,第二信息是针对一个BWP上所有配置授权的,即第二信息指示的内容应用于一个BWP上所有配置授权,这样,针对BWP上所有CG来给出一个指示信息,能够降低信令开销。
可选地,第二信息是针对一个服务小区(serving cell)或者一个serving cell组,或者一个band上所有配置授权的,即第二信息指示的内容应用于一个serving cell上所有配置授权,这样,针对一个serving cell/serving cell组/band上所有CG来给出一个指示信息,能够降低信令开销。
可选地,第二信息是针对一个配置授权的,即一个配置授权有其对应的第二信息,另一个配置授权有其对应的另一个第二信息,这样,针对每个CG单独指示第二信息,能够针对不同的CG进行独立指示,从而增加网络配置的灵活性,为进一步优化提供更大的空间。例如,第二信息包括第一目标信息和第二目标信息,第一信息指示的配置授权包括第一配置授权和第二配置授权,第一目标信息是针对第一配置授权的,第二目标信息是针对第二配置授权的。
可选地,第二信息指示的配置授权CG对应的PUSCH根据2个unified TCI state来进行传输,或者根据1个或2个unified TCI state来进行传输。其中,第二信息对应的配置授权,可能是1个,也可能是这个BWP上所有的配置授权,也可能是这个serving cell是哪个所有的配置授权。这样,通过明确的指示信息来确定是采用1个还是2个unified TCI state来进行上行传输,一方面可以有效地降低终端设备实现复杂度,另一方面可以增加协议的可读性,例如,可以避免从多个配置信息中去推导得到。
在一些实施例中,所述第二信息指示所述CG对应多个SRS资源,所述CG对应的PUSCH根据一个或多个TCI状态进行传输。例如,所述第二信息指示所述CG对应多个SRS资源,所述CG对应的PUSCH根据多个TCI状态进行传输,或者根据一个或多个TCI状态进行传输。
在另一些实施例中,所述第二信息指示所述CG对应一个SRS资源,所述CG对应的PUSCH根据一个TCI状态进行传输。
在一些实施例中,所述第二信息通过无线资源控制RRC参数rrc-配置上行授权(rrc-ConfiguredUplinkGrant)中配置的srs-资源指示(srs-ResourceIndicator)和srs-资源指示2(srs-ResourceIndicator2)来指示所述CG对应多个SRS资源。
在另一些实施例中,所述第二信息通过RRC参数rrc-ConfiguredUplinkGrant中配置有srs-ResourceIndicator,没有配置srs-ResourceIndicator2,或者配置有srs-ResourceIndicator2,没有配置有srs-ResourceIndicator,来指示所述CG对应一个SRS资源。
在一些实施例中,所述第二信息通过激活所述CG的DCI指示所述CG对应的多个SRS资源。
在另一些实施例中,所述第二信息通过激活所述CG的DCI指示所述CG对应的一个SRS资源。
在一些实施例中,所述第二信息为第一取值,表示根据一个TCI状态传输所述CG对应的PUSCH。例如,在所述第二信息为第一取值的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输。
在另一些实施例中,所述第二信息为第二取值,表示根据一个或多个TCI状态传输所述CG对应的PUSCH。示例性地,所述第二信息为第二取值,表示根据一个或多个TCI状态传输所述CG对应的PUSCH,或者,表示根据多个TCI状态传输所述CG对应的PUSCH。例如,在所述第二信息为第二取值的情况下,所述CG对应的PUSCH根据多个TCI状态进行传输,或者根据一个或多个TCI状态进行传输。
在一些实施例中,在所述终端设备接收到第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输。
在另一些实施例中,在所述终端设备未接收到第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输。例如,在所述终端设备未接收到第二信息的情况下,所述CG对应的PUSCH根据多个TCI状态进行传输,或者根据一个或多个TCI状态进行传输。
在一些实施例中,在所述网络设备发送第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输。
在另一些实施例中,在所述网络设备未发送第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输。
在一些实施例中,在所述终端设备接收到第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输。例如,在所述终端设备接收到第二信息的情况下,所述CG对应的PUSCH根据多个TCI状态进行传输,或者根据一个或多个TCI状态进行传输。
在另一些实施例中,在所述终端设备未接收到第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输。
在一些实施例中,在网络设备发送第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输。例如,在所述网络设备发送第二信息的情况下,所述CG对应的PUSCH根据多个TCI状态进行传输,或者根据一个或多个TCI状态进行传输。
在另一些实施例中,在所述网络设备未发送第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输。
可选地,当所述配置授权对应有2个SRS资源(SRS resource)或者SRS资源指示(SRS resource indicators)时,对应的PUSCH根据2个unified TCI state来进行传输,或者根据1个或2个unified TCI state来进行传输,这样,可以重用现有RRC指示信息,降低信令设计工作量和产品实现复杂度。
可选地,通过RRC参数rrc-ConfiguredUplinkGrant中srs-ResourceIndicator,srs-ResourceIndicator2来指示2个SRS resource indicator。
可选地,激活配置授权的DCI中指示了2个SRS resource。
可选地,当所述配置授权对应有1个SRS资源(SRS resource)或者SRS资源指示(SRS resource indicators)时,对应的PUSCH根据1个unified TCI state来进行传输,这样,可以重用现有RRC指示信息,降低信令设计工作量和产品实现复杂度。
可选地,通过RRC参数rrc-ConfiguredUplinkGrant中配置有srs-ResourceIndicator,没有配置srs-ResourceIndicator2来指示1个SRS resource indicators。可选地,通过RRC参数rrc-ConfiguredUplinkGrant中配置有srs-ResourceIndicator2,没有配置srs-ResourceIndicator来指示1个SRS resource indicators。
可选地,激活配置授权的DCI中指示了1个SRS resource。
需要说明的是,在本申请的一些实施例中,激活配置授权的DCI记为第二DCI。
可选地,第二信息指示对应的配置授权对应的PUSCH根据1个unified TCI state来进行传输。可选地,第二信息指示对应的配置授权对应的PUSCH根据2个unified TCI state来进行传输,或者,根据1个或2个unified TCI state来进行传输。可选地,第二信息指示对应的配置授权对应的PUSCH根据2个unified TCI state来进行传输。
这样,通过明确的指示信息来确定是采用1个还是2个unified TCI state来进行上行传输,一方面可以有效地降低终端设备实现复杂度,另一方面可以增加协议的可读性,例如,可以避免从多个配置信息中去推导得到。
可选地,第二信息为第一取值时,对应的配置授权对应的PUSCH根据1个unified TCI state来进行传输。第二信息为第二取值时,对应的配置授权对应的PUSCH根据2个unified TCI state来进行传输, 或者根据1个或2个unified TCI state来进行传输。
可选地,当终端设备接收到第二信息,或者网络设备配置第二信息时,对应的配置授权对应的PUSCH根据1个unified TCI state来进行传输;当终端设备未接收到第二信息,或者网络设备未配置第二信息时,对应的配置授权对应的PUSCH根据2个unified TCI state来进行传输,或者根据1个或2个unified TCI state来进行传输,这样,通过配置和未配置相关指示信息,可以降低信令开销。
可选地,当终端设备接收到第二信息,或者网络设备配置第二信息时,对应的配置授权对应的PUSCH可以根据2个unified TCI state来进行传输,或者根据1个或2个unified TCI state来进行传输;当终端设备未接收到第二信息,或者网络设备未配置第二信息时,对应的配置授权对应的PUSCH可以根据1个unified TCI state来进行传输,这样,通过配置和未配置相关指示信息,可以降低信令开销。
在一些实施例中,终端设备可以接收探测参考信号SRS配置信息;所述SRS配置信息指示2个SRS资源集(SRS resource set)且所述2个SRS资源集的用途(usage)都设为“码本”(“codebook”)或者都设为“非码本”(“nonCodebook”)。在另一些实施例中,网络设备可以发送SRS配置信息。
可选地,这两个SRS resource set(分别记为第一SRS resource set和第二SRS resource set)配置SRS-ResourceSet参数中的RRC参数usage都设为“codebook”或者都设为“nonCodebook”。
在一些实施例中,所述方法还包括:所述终端设备接收第三信息;所述第三信息指示激活的可用于上行传输的TCI状态;所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:所述终端设备根据所述激活的可用于上行传输的TCI状态中的一个或多个TCI状态,发送所述CG对应的PUSCH。
在一些实施例中,所述方法还包括:所述网络设备发送第三信息;所述第三信息指示激活的可用于上行传输的TCI状态;所述激活的可用于上行传输的TCI状态中的一个或多个TCI状态,用于所述终端设备发送所述CG对应的PUSCH。
可选地,激活的可用于上行传输的TCI状态可以为K1个TCI状态。可选地,激活的可用于上行传输的TCI状态,可以为unified TCI state。可选地,K1个TCI状态可以为K1个unified TCI state。
在一些实施例中,所述方法还包括:所述网络设备发送第三信息;所述第三信息指示激活的可用于上行传输的TCI状态。可选地,第三信息指示的“激活的”TCI状态,也可以说是第三信息指示的使用的(applied)TCI状态,所述激活的(或者说,使用的)TCI状态用于后续的下行(DL)和/或上行(UL)的部分或全部信道/信号的传输。
可选地,当前激活的可用于上行传输有K1个TCI state(例如可以是joint TCI state,也可以是UL TCI state)。
可选地,在终端设备/网络设备确定当前激活的可用于上行传输有K1个TCI state之前,终端设备可以接收网络设备发送的第三信息,所述第三信息指示N个TCI state。可选地,N个TCI state可以为N个unified TCI state。
可选地,终端设备根据所述第三信息确定所述K1个激活的(activated、active或applied)TCI state。
可选地,所述第三信息通过MAC CE指示或RRC信令指示。
可选地,所述第三信息通过DCI信令传输。
在本申请任一实施例中,用于传输第三信息的DCI可以记为第一DCI。
可选地,所述第三信息通过DCI信令中第一域(field)来传输,所述第一域为DCI信令中的Transmission configuration indication域。
可选地,所述N个TCI state中的至少部分用于确定/指示上行传输。
可选地,N个TCI state中的K1个TCI state用于上行,K2个TCI state用于下行。
在一种情况下,0<=K1<=N,0<=K2<=N,例如可以N=K1=K2,也可以N=K1,K2=0,或者其他组合。例如,可以是K1=N个UL TCI state,可以是N个Joint TCI state同时用于上行和下行,即N=K1=K2。
可选地,终端设备还接收网络设备发送的第七信息,根据所述第七信息,确定所述第三信息指示的N个TCI state。
可选地,终端设备根据第三信息确定配置授权对应的PUSCH的空间关系(spatial relation),或者上行发送空间滤波器(UL TX spatial filter)。
本申请任一实施例中,波束、空域滤波器、空间滤波器、空域参数、空间参数、空域设置、空间设置、QCL信息、QCL假设、QCL指示、TCI state(DL TCI state、UL TCI state、联合Joint TCI state、)、空间关系等之间可以互相替换,上述术语之间也相互等效。
可选地,终端设备根据N个TCI state中用于上行的TCI state(即UL TCI state)中的参考信号确定PUSCH的空间关系,或者上行发送空间滤波器。
可选地,终端设备根据N个TCI state中可同时用于上行和下行的TCI state(即Joint TCI state)中 的typeD(类型D)对应的参考信号确定PUSCH的空间关系,或者上行发送空间滤波器。
在一些实施例中,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:在激活的可用于上行传输的TCI状态的第一数量,小于或等于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,所述终端设备根据所述第一数量的所述激活的可用于上行传输的TCI状态,发送所述CG对应的PUSCH。
在另一些实施例中,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:在激活的可用于上行传输的TCI状态的第一数量,大于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,所述终端设备根据第三数量的所述激活的可用于上行传输的TCI状态,发送所述CG对应的PUSCH;所述第三数量小于或等于所述第二数量。
在一些实施例中,在激活的可用于上行传输的TCI状态的第一数量,小于或等于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,所述CG对应的PUSCH是根据所述激活的可用于上行传输的TCI状态发送的。
在另一些实施例中,在激活的可用于上行传输的TCI状态的第一数量,大于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,所述CG对应的PUSCH是根据第三数量的所述激活的可用于上行传输的TCI状态发送的;所述第三数量小于或等于所述第二数量。
可选地,激活的可用于上行传输的TCI状态,可以是网络设备通过第三信息指示的,和/或,可以是终端设备根据预配置信息指示的。可选地,指示的传输所述CG对应的PUSCH的TCI状态的第二数量,可以是网络设备通过第二信息指示的,和/或,可以是终端设备根据预配置信息指示的。
可选地,第一数量可以为大于或等于1的整数,第二数量可以为大于或等于1的整数。例如,第一数量可以为1、2、3、4或8等,第二数量可以为1、2、3、4或8等。
在一些实施例中,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:在激活的可用于上行传输的TCI状态包括第一TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,所述终端设备根据所述第一TCI状态,发送所述CG对应的PUSCH。
在一些实施例中,在激活的可用于上行传输的TCI状态包括第一TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,所述CG对应的PUSCH是根据所述第一TCI状态发送的。
例如,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:在激活的可用于上行传输的TCI状态包括第一TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为多个,或者为一个或多个的情况下,所述终端设备根据所述第一TCI状态,发送所述CG对应的PUSCH。
可选地,激活的可用于上行传输的TCI状态,可以是网络设备通过第三信息指示的,和/或,可以是终端设备根据预配置信息指示的。可选地,指示的传输所述CG对应的PUSCH的TCI状态为多个,或者为一个或多个,可以是网络设备通过第二信息指示的,和/或,可以是终端设备根据预配置信息指示的。
在一些实施例中,所述终端设备根据所述第一TCI状态,发送所述CG对应的PUSCH,包括:所述终端设备根据所述第一TCI状态和第一SRS资源,发送所述CG对应的PUSCH。
在一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态和第一SRS资源发送的。
可选地,第一SRS资源对应第一预编码和/或第一层数,基于第一预编码和/或第一层数,进行CG对应的PUSCH的传输。可选地,第一层数在其它实施例中可以为第一流数或第一秩。
在一些实施例中,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的。
在另一些实施例中,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
在又一些实施例中,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator和srs-ResourceIndicator2联合指示的。
在一些实施例中,所述方法还包括:所述终端设备接收第四信息;所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的。
在另一些实施例中,所述方法还包括:所述终端设备接收第四信息;所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
在又一些实施例中,所述方法还包括:所述终端设备接收第四信息;所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator和srs-ResourceIndicator2联合指示的。
在一些实施例中,所述方法还包括:所述网络设备发送第四信息;所述第四信息指示所述第一SRS 资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的。
在另一些实施例中,所述方法还包括:所述网络设备发送第四信息;所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
在又一些实施例中,所述方法还包括:所述网络设备发送第四信息;所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator和srs-ResourceIndicator2联合指示的。
在一些实施例中,所述第一SRS资源是由DCI中SRS资源指示域确定的。
在另一些实施例中,所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
可选地,在本申请任一实施例中,DCI在未作特殊说明的情况下,可以是第一DCI或者第二DCI。
在一些实施例中,所述方法还包括:所述终端设备接收第五信息;所述第五信息指示所述第一SRS资源是由DCI中SRS资源指示域确定的。
在另一些实施例中,所述方法还包括:所述终端设备接收第五信息;所述第五信息指示所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
在又一些实施例中,所述方法还包括:所述终端设备接收第五信息;所述第五信息指示所述第一SRS资源是由DCI中SRS资源指示域和第二SRS资源指示域联合确定的。
在一些实施例中,所述方法还包括:所述网络设备发送第五信息;所述第五信息指示所述第一SRS资源是由DCI中SRS资源指示域确定的。
在另一些实施例中,所述方法还包括:所述网络设备发送第五信息;所述第五信息指示所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
在又一些实施例中,所述方法还包括:所述网络设备发送第五信息;所述第五信息指示所述第一SRS资源是由DCI中SRS资源指示域和第二SRS资源指示域联合确定的。
在一些实施例中,所述终端设备根据所述第一TCI状态,发送所述CG对应的PUSCH,包括:所述终端设备根据所述第一TCI状态、第一SRS资源以及第二SRS资源,发送所述CG对应的PUSCH。
在一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态、第一SRS资源以及第二SRS资源发送的。
在一些实施例中,所述第一SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的;所述第二SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的。
在一些实施例中,所述方法还包括:所述终端设备接收第六信息;所述第六信息指示根据所述第一TCI状态和第一SRS资源,传输所述CG对应的PUSCH。
在另一些实施例中,所述方法还包括:所述终端设备接收第六信息;所述第六信息指示根据所述第一TCI状态、第一SRS资源以及第二SRS资源,传输所述CG对应的PUSCH。
在一些实施例中,所述方法还包括:所述网络设备发送第六信息;所述第六信息指示根据所述第一TCI状态和第一SRS资源,传输所述CG对应的PUSCH。
在另一些实施例中,所述方法还包括:所述网络设备发送第六信息;所述第六信息指示根据所述第一TCI状态、第一SRS资源以及第二SRS资源,传输所述CG对应的PUSCH。
以下对在激活的可用于上行传输的TCI状态包括第一TCI状态,指示的传输所述CG对应的PUSCH的TCI状态为多个,或者指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,终端设备传输CG对应的PUSCH的方式进行说明:
可选地,当前激活的可用于上行传输有K1个TCI state,当K1=1时,并且配置授权对应的PUSCH根据2个unified TCI state来进行传输,或者根据1个或2个unified TCI state来进行传输,可以有以下选项:
可选地,终端设备根据所述K1=1个TCI state(即上述的第一TCI状态)确定PUSCH传输,即PUSCH的单次或多次重复传输,都是用所述K1=1个TCI state确定上行发送空间滤波器或空间关系。
可选地,存在方案A1:终端设备根据第一SRS resource和所述K1=1个TCI state确定PUSCH传输,这样,在网络指示了单个TCI的情况下,只使用1个SRS resource指示信息可以降低终端设备处理复杂度,节约终端设备的能耗。
可选地,所述第一SRS resource是由RRC参数rrc-ConfiguredUplinkGrant中的RRC参数srs-ResourceIndicator指示的,或所述第一SRS resource是由RRC参数rrc-ConfiguredUplinkGrant中的RRC参数srs-ResourceIndicator2指示的。这样,根据规定的RRC参数确定第一SRS resource指示信息,可以有效地降低产品实现复杂度。
可选地,终端设备根据第四信息确定第一SRS resource是由RRC参数rrc-ConfiguredUplinkGrant 中的RRC参数srs-ResourceIndicator指示,还是由RRC参数rrc-ConfiguredUplinkGrant中的RRC参数srs-ResourceIndicator2指示。这样,可以提高系统灵活性,为网络优化配置和传输提供更大自由度。
可选地,所述第一SRS resource是由DCI中“SRS resource indicator”指示域确定的,或所述第一SRS resource是由DCI中“Second SRS resource indicator”指示域确定的。可选地,所述DCI可以为第一DCI,或者第二DCI。这样,根据规定的DCI域确定第一SRS resource指示信息,可以有效地降低产品实现复杂度。
可选地,终端设备根据第五信息确定第一SRS resource是由DCI中“SRS resource indicator”指示域确定的,还是由DCI中“Second SRS resource indicator”指示域确定的,可选地,所述DCI可以为第一DCI,或者第二DCI。这样,可以提高系统灵活性,为网络优化配置和传输提供更大自由度。
可选地,存在方案A2:终端设备根据第一SRS resource、第二SRS resource和所述K1=1个TCI确定PUSCH传输。这样,即使在系统只指示1个用于下行的TCI state时,仍然支持PUSCH的重复传输,可以提高PUSCH传输的可靠性。
可选地,第一SRS resource、第二SRS resource分别由RRC参数rrc-ConfiguredUplinkGrant中的RRC参数srs-ResourceIndicator和srs-ResourceIndicator2指示。
可选地,第一SRS resource、第二SRS resource分别由DCI中“SRS resource indicator”和DCI中“Second SRS resource indicator”指示域确定的,可选地,所述DCI可以为第一DCI,或者第二DCI。
可选地,第一SRS resource对应的PUSCH传输时,根据所述K1=1个TCI state确定上行发送空间滤波器或空间关系,第二SRS resource对应的PUSCH传输时,根据所述K1=1个TCI state确定上行发送空间滤波器或空间关系。
可选地,终端设备接收网络设备发送的第六信息确定是采用方案A1还是方案A2。这样,可以提高系统灵活性,为网络优化配置和传输提供更大自由度。
可选地,第四信息通过RRC信令,MAC CE信令,或DCI信令传输。可选地,第五信息通过RRC信令,MAC CE信令,或DCI信令传输。可选地,第六信息通过RRC信令,MAC CE信令,或DCI信令传输。
在一些实施例中,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,所述终端设备根据所述第一TCI状态和所述第二TCI状态,发送所述CG对应的PUSCH。
在一些实施例中,在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态发送的。
例如,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为多个,或者为一个或多个的情况下,所述终端设备根据所述第一TCI状态和所述第二TCI状态,发送所述CG对应的PUSCH。
可选地,激活的可用于上行传输的TCI状态,可以是网络设备通过第三信息指示的,和/或,可以是终端设备根据预配置信息指示的。可选地,指示的传输所述CG对应的PUSCH的TCI状态为多个,或者为一个或多个,可以是网络设备通过第二信息指示的,和/或,可以是终端设备根据预配置信息指示的。
在一些实施例中,所述终端设备根据所述第一TCI状态和所述第二TCI状态,发送所述CG对应的PUSCH,包括:所述终端设备根据所述第一TCI状态、所述第二TCI状态、第一SRS资源以及第二SRS资源,发送所述CG对应的PUSCH;其中,所述第一SRS资源对应所述第一TCI状态;所述第二SRS资源对应所述第二TCI状态。
在一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态、所述第二TCI状态、第一SRS资源以及第二SRS资源发送的;其中,所述第一SRS资源对应所述第一TCI状态;所述第二SRS资源对应所述第二TCI状态。
可选地,第一SRS资源对应第一预编码和/或第一层数,基于第一预编码和/或第一层数,进行第一TCI状态关联的CG对应的PUSCH的传输。可选地,第一层数在其它实施例中可以为第一流数或第一秩。
可选地,第二SRS资源对应第二预编码和/或第二层数,基于第二预编码和/或第二层数,进行第二TCI状态关联的CG对应的PUSCH的传输。可选地,第二层数在其它实施例中可以为第二流数或第二秩。
在一些实施例中,所述第一SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的;所述第二SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第二TCI状态确定的。
在一些实施例中,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;所述第二SRS资源是由所述RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
在一些实施例中,RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator和srs-ResourceIndicator2指示的SRS资源中标识较小的SRS资源为所述第一SRS资源,标识较大的SRS资源为第二SRS资源,或者,标识较大的SRS资源为第一SRS资源,标识较小的SRS资源为第二SRS资源。
可选地,srs-ResourceIndicator指示的SRS资源的标识可以为srs-ResourceIndicator。可选地,srs-ResourceIndicator2指示的SRS资源的标识可以为srs-ResourceIndicator2。
在一些实施例中,所述第一SRS资源是由DCI中SRS资源指示域确定的;所述第二SRS资源是由所述DCI中第二SRS资源指示域确定的。
在一些实施例中,DCI中SRS资源指示域和所述DCI中第二SRS资源指示域指示的SRS资源中,标识较小的SRS资源为所述第一SRS资源,标识较大的SRS资源为所述第二SRS资源,或者,标识较大的SRS资源为所述第一SRS资源,标识较小的SRS资源为所述第二SRS资源。
在一些实施例中,所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI状态。
在另一些实施例中,所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
在一些实施例中,所述方法还包括:所述终端设备接收第七信息;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI。
在另一些实施例中,所述方法还包括:所述终端设备接收第七信息;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
在一些实施例中,所述方法还包括:所述网络设备发送第七信息;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI。
在另一些实施例中,所述方法还包括:所述网络设备发送第七信息;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
在一些实施例中,所述方法还包括:所述终端设备接收第八信息;所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI状态。
在另一些实施例中,所述方法还包括:所述终端设备接收第八信息;所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
在一些实施例中,所述方法还包括:所述网络设备发送第八信息;所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI状态。
在另一些实施例中,所述方法还包括:所述网络设备发送第八信息;所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
在一些实施例中,所述方法还包括:所述终端设备接收第九信息;所述第九信息指示:所述第一 TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠前的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI。
在另一些实施例中,所述方法还包括:所述终端设备接收第九信息;所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠后的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
在一些实施例中,所述方法还包括:所述网络设备发送第九信息;所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠前的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI。
在另一些实施例中,所述方法还包括:所述网络设备发送第九信息;所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠后的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
以下对激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,指示的传输所述CG对应的PUSCH的TCI状态为多个,或者指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,终端设备传输CG对应的PUSCH的方式进行说明:
可选地,当前激活的可用于上行传输有K1个TCI state,4.当K1>1时(以K1=2为例),并且配置授权对应的PUSCH根据2个unified TCI state来进行传输,或者根据1个或2个unified TCI state来进行传输,可以有以下选项:
可选地,终端设备根据第一SRS resource、第二SRS resource以及所述K1=2个TCIstate中的第一TCI state,第二TCI state确定PUSCH传输,其中第一SRS resource对应第一TCI state,第二SRS resource对应第二TCI state。
可选地,第一SRS resource对应的PUSCH传输时,根据第一TCI state确定上行发送空间滤波器或空间关系,第二SRS resource对应的PUSCH传输时,根据第二TCI state确定上行发送空间滤波器或空间关系。
可选地,第一SRS resource、第二SRS resource分别由RRC参数rrc-ConfiguredUplinkGrant中的RRC参数srs-ResourceIndicator和srs-ResourceIndicator2指示。这样,根据RRC参数确定第一SRS resource和第二SRS resource,可以有效地降低产品实现复杂度。
可选地,RRC参数rrc-ConfiguredUplinkGrant中的RRC参数srs-ResourceIndicator和srs-ResourceIndicator2指示2个SRS resource中ID小的为第一SRS resource、ID大的为第二SRS resource,或者ID大的为第一SRS resource、ID小的为第二SRS resource。这样,可以增加系统的灵活性。
可选地,第一SRS resource、第二SRS resource分别由DCI中“SRS resource indicator”和DCI中“Second SRS resource indicator”指示域确定的。可选地,所述DCI可以为第一DCI,或者第二DCI。这样,在根据DCI指示域确定第一SRS resource和第二SRS resource,可以有效地降低产品实现复杂度。
可选地,DCI中“SRS resource indicator”和DCI中“Second SRS resource indicator”指示域指示2个SRS resource中ID小的为第一SRS resource、ID大的为第二SRS resource,或者ID大的为第一SRS resource、ID小的为第二SRS resource。这样,可以增加系统的灵活性。
可选地,存在方案B1:第一TCI state是所述K1个TCI state中标识(ID)最小的那个TCI state,第二TCI state是所述K1个TCI state中标识(ID)最大的或第二小的那个TCI stat。这样,根据预设规则确定对应的TCI state,可以有效地降低产品实现复杂度。
可选地,存在方案B2:第一TCI state是所述K1个TCI state中标识(ID)最大的那个TCI state,第二TCI state是所述K1个TCI state中标识(ID)最小的或第二大的那个TCI state。这样,根据预设规则确定对应的TCI state,可以有效地降低产品实现复杂度。
可选地,存在方案B3:第一TCI state是所述K1个TCI state在第七信息中位置最靠前的那个TCI state,第二TCI state是所述K1个TCI state在第七信息中位置最靠后或第二靠前的那个TCI state。这样,根据预设规则确定对应的TCI state,可以有效地降低产品实现复杂度。
可选地,存在方案B4:第一TCI state是所述K1个TCI state在第七信息中位置最靠后的那个TCI state,第二TCI state是所述K1个TCI state在第七信息中位置最靠前或第二靠后的那个TCI state。这样,根据预设规则确定对应的TCI state,可以有效地降低产品实现复杂度。
可选地,终端设备根据接收网络设备发送的第八信息,确定按照方案B1还是方案B2来确定第一 TCI state和第二TCI state。这样,通过指示信息来配置,可以增加系统灵活性,为网络优化提供自由度。
可选地,终端设备根据接收网络设备发送的第九信息,确定按照方案B3还是方案B4来确定第一TCI state和第二TCI state。这样,通过指示信息来配置,可以增加系统灵活性,为网络优化提供自由度。
可选地,所述第八信息由RRC信令,MAC CE信令或DCI信令传输。可选地,第九信息由RRC信令,MAC CE信令或DCI信令传输。
在一些实施例中,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个的情况下,所述终端设备根据所述第一TCI状态或所述第二TCI状态,发送所述CG对应的PUSCH。
在一些实施例中,在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个的情况下,所述CG对应的PUSCH是根据所述第一TCI状态或所述第二TCI状态发送的。
可选地,激活的可用于上行传输的TCI状态,可以是网络设备通过第三信息指示的,和/或,可以是终端设备根据预配置信息指示的。可选地,指示的传输所述CG对应的PUSCH的TCI状态为一个,可以是网络设备通过第二信息指示的,和/或,可以是终端设备根据预配置信息指示的。
在一些实施例中,所述终端设备根据所述第一TCI状态或所述第二TCI状态,发送所述CG对应的PUSCH,包括:所述终端设备根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态,发送所述CG对应的PUSCH。
在另一些实施例中,所述终端设备根据所述第一TCI状态或所述第二TCI状态,发送所述CG对应的PUSCH,包括:所述终端设备根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态,发送所述CG对应的PUSCH。
在又一些实施例中,所述终端设备根据所述第一TCI状态或所述第二TCI状态,发送所述CG对应的PUSCH,包括:所述终端设备根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态,发送所述CG对应的PUSCH。
在再一些实施例中,所述终端设备根据所述第一TCI状态或所述第二TCI状态,发送所述CG对应的PUSCH,包括:所述终端设备根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态,发送所述CG对应的PUSCH。
对应到网络设备侧:
在一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态发送的。在另一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态发送的。在又一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态发送的。在再一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态发送的。
在一些实施例中,所述方法还还包括:所述终端设备接收第十信息;所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态,传输所述CG对应的PUSCH。
在另一些实施例中,所述方法还还包括:所述终端设备接收第十信息;所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态,传输所述CG对应的PUSCH。
在一些实施例中,所述方法还还包括:所述网络设备发送第十信息;所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态,传输所述CG对应的PUSCH。
在另一些实施例中,所述方法还还包括:所述网络设备发送第十信息;所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态,传输所述CG对应的PUSCH。
在一些实施例中,所述方法还还包括:所述终端设备接收第十一信息;所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态,传输所述CG对应的PUSCH。
在另一些实施例中,所述方法还还包括:所述终端设备接收第十一信息;所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态,传输所述CG对应的PUSCH。
在一些实施例中,所述方法还还包括:所述网络设备发送第十一信息;所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态,传输所述CG对应的PUSCH。
在另一些实施例中,所述方法还还包括:所述网络设备发送第十一信息;所述第十一信息指示根据 所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态,传输所述CG对应的PUSCH。
在一些实施例中,所述方法还还包括:第四信息、第五信息、第六信息、第八信息、第九信息、第十信息、第十一信息中的至少之一,通过RRC信令、媒体接入控制控制单元MAC CE信令或下行控制信息DCI信令传输。
可选额,第四信息、第五信息、第六信息、第八信息、第九信息、第十信息、第十一信息中,不同的信息可以通过不同的信令或相同的信令传输。
以下对在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,指示的传输所述CG对应的PUSCH的TCI状态为一个的情况下,终端设备传输CG对应的PUSCH的方式进行说明:
可选地,当前激活的可用于上行传输有K1个TCI state,当K1=2时,并且配置授权对应的PUSCH根据1个unified TCI state来进行传输,可以有以下选项:
可选地,终端设备根据第一TCI state来确定对应的PUSCH传输。可选地,对应的PUSCH传输,根据第一TCI state确定上行发送空间滤波器或空间关系。
可选地,存在方案C1:第一TCI state是所述K1个TCI state中标识(ID)最小的那个TCI state。这样,根据预设规则确定对应的TCI state,可以有效地降低产品实现复杂度。
可选地,存在方案C2:第一TCI state是所述K1个TCI state中标识(ID)最大的那个TCI state。这样,根据预设规则确定对应的TCI state,可以有效地降低产品实现复杂度。
可选地,存在方案C3:第一TCI state是所述K1个TCI state在第七信息中位置最靠前的那个TCI state。这样,根据预设规则确定对应的TCI state,可以有效地降低产品实现复杂度。
可选地,存在方案C4:第一TCI state是所述K1个TCI state在第七信息中位置最靠后的那个TCI state。这样,根据预设规则确定对应的TCI state,可以有效地降低产品实现复杂度。
可选地,终端设备根据接收网络设备发送的第十信息,确定按照方案C1还是方案C2来确定第一TCI state。这样,通过指示信息来配置,可以增加系统灵活性,为网络优化提供自由度。
可选地,终端设备根据接收网络设备发送的第十一信息,确定按照方案C3还是方案C4来确定第一TCI state。这样,通过指示信息来配置,可以增加系统灵活性,为网络优化提供自由度。
可选地,所述第十信息由RRC信令,MAC CE信令或DCI信令传输。可选地,第十一信息由RRC信令,MAC CE信令或DCI信令传输。
在一些实施例中,所述第七信息通过MAC CE信令传输。
在一些实施例中,用于传输所述第七信息的MAC CE信令(对应下述的第一MAC CE信令)中包括以下至少之一:下行带宽部分DL BWP指示信息;上行带宽部分UL BWP指示信息;一个或多个TCI数量指示域,其中,每个所述TCI数量指示域指示一个代码点codepoint对应1个或多个TCI状态;一个或多个TCI状态类型指示域,每个所述TCI状态类型指示域指示对应的TCI状态是下行DL TCI状态,或者联合Joint TCI状态,或者上行UL TCI状态;一个或多个TCI状态指示信息。
可选地,所述第七信息通过第一MAC CE信令传输。
可选地,第一MAC CE信令中包含下行带宽部分(DL BWP)指示信息。
可选地,第一MAC CE信令中包含上行带宽部分(UL BWP)指示信息。
可选地,第一MAC CE信令中包含1个或多个TCI数量指示域,其中每个指示域指示一个codepoint对应1个或多个TCI state。
可选地,第一MAC CE信令中包含1个或多个TCI state类型指示域,每个用于指示对应的TCI state是DL/Joint TCI state,还是UL TCI state。
可选地,第一MAC CE信令中包含1个或多个TCI state指示信息。
在一些实施例中,所述方法还包括:终端设备接收第十二信息;所述第十二信息指示TCI状态类型包括联合TCI状态或独立TCI状态。
在一些实施例中,所述方法还包括:终端设备发送第十二信息;所述第十二信息指示TCI状态类型包括联合TCI状态或独立TCI状态。
可选地,终端设备还可以接收网络设备发送的第十二信息,第十二信息指示unified TCI state类型为联合TCI state(joint TCI state)。这样,所述K1个TCI state为K1个joint TCI state。
可选地,终端设备还可以接收网络设备发送的第十二信息,第十二信息指示unified TCI state类型为独立TCI state(separate TCI state)。这样,所述K1个TCI state为K1个UL TCI state。
在一些实施例中,所述终端设备发送以下至少之一:第一能力信息、第二能力信息、第三能力信息。在一些实施例中,所述网络设备接收以下至少之一:第一能力信息、第二能力信息、第三能力信息。
其中,所述第一能力信息指示所述终端设备支持第四数量的TCI状态用于上行传输或上行重复传 输,或者,所述第一能力信息指示所述终端设备支持DCI中Transmission configuration indication域中的一个codepoint,最多可激活或者指示第四数量的TCI状态用于上行传输或上行重复传输;
所述第二能力信息指示所述终端设备支持传输所述CG对应的PUSCH;
所述第三能力信息指示所述终端设备支持根据第四数量的TCI状态传输所述CG对应的PUSCH。
可选地,第一能力信息、第二能力信息、第三能力信息中的至少一个,可以是终端设备的能力信息。
在一些实施例中,所述第四数量为2或4。
在一些实施例中,在所述终端设备发送第一能力信息和第二能力信息的情况下,所述第一能力信息和所述第二能力信息通过同一个信令发送,或者,所述第一能力信息和所述第二能力信息通过不同的信令发送。
在一些实施例中,对于网络设备侧,所述网络设备通过同一个信令接收所述第一能力信息和所述第二能力信息,或者所述网络设备通过不同的信令接收所述第一能力信息和所述第二能力信息。
在一些实施例中,所述第一能力信息、所述第二能力信息、所述第三能力信息中的至少一个,是通过RRC信令或者MAC CE信令传输的。
例如,所述第一能力信息是通过RRC信令或者MAC CE信令传输的。又例如,所述第二能力信息是通过RRC信令或者MAC CE信令传输的。再例如,所述第三能力信息是通过RRC信令或者MAC CE信令传输的。
在一些实施例中,所述第一能力信息、所述第二能力信息、所述第三能力信息中的至少一个,是针对频段band上报的,和/或,是按照频段组合独立上报的,和/或,是按照频段组合中的每个频段独立上报的,和/或,是按照频段组合中的每个频段上每个载波独立上报的,和/或,是按照频段范围上报的,和/或,是针对所述终端设备上报的。
例如,所述第一能力信息是针对频段band上报的,或者是按照频段组合独立上报的,或者是按照频段组合中的每个频段独立上报的,或者是按照频段组合中的每个频段上每个载波独立上报的,或者是按照频段范围上报的,或者是针对所述终端设备上报的。
例如,所述第二能力信息是针对频段band上报的,或者是按照频段组合独立上报的,或者是按照频段组合中的每个频段独立上报的,或者是按照频段组合中的每个频段上每个载波独立上报的,或者是按照频段范围上报的,或者是针对所述终端设备上报的。
例如,所述第三能力信息是针对频段band上报的,或者是按照频段组合独立上报的,或者是按照频段组合中的每个频段独立上报的,或者是按照频段组合中的每个频段上每个载波独立上报的,或者是按照频段范围上报的,或者是针对所述终端设备上报的。
可选地,不同能力信息上报的方式可以相同或不同。
在一些实施例中,所述TCI状态为统一unified TCI状态。
可选地,终端设备向网络设备上报第一能力信息,所述第一能力信息指示终端设备支持Z1个(Z>1)unified TCI用于上行传输或上行重复传输,或者第一能力信息指示终端设备支持DCI中Transmission configuration indication域的一个codepoint最多可以激活或者指示(indicate)Z1个unified TCI用于上行传输。
可选地,Z1为2,或者Z1为4。
可选地,所述第一能力信息通过RRC信令,或者MAC CE传输。
可选地,第一能力信息是针对频段(band)上报的(即不同的频段可以独立上报对应的能力,per band)。这样,不同的频段独立上报,可以让终端设备实现具有更大的自由度,例如终端设备可以在某个或者某些band上支持,其他band上不支持这一功能,从而可以让更多的终端设备来支持这一新功能。
可选地,第一能力信息是按照频段组合(band combination)独立上报的(per band combination)。这样,不同的频段组合独立上报,可以让终端设备实现具有更大的自由度,例如终端设备可以在某个频段组合下不支持这一功能,但是在另一个频段组合下支持这一功能,从而可以让更多的终端设备来支持这一新功能。
可选地,第一能力信息是按照频段组合(band combination)中的每个频段独立上报的(即不同的频段组合中的频段可以独立上报,per band per band combination)。这样,不同的频段组合独立上报,可以让终端设备实现具有更大的自由度,例如终端设备可以在某个载波聚合(Carrier Aggregation,CA)下不支持这一功能,但是在另一个CA组合下某些band支持这一功能,从而可以让更多的终端设备来支持这一新功能。
可选地,第一能力信息是按照频段组合(band combination)中的每个频段上每个载波独立上报的(即不同的频段组合中的频段中的不同载波(Component Carrier,CC)可以独立上报,per CC per band per band combination或者载波特征集合(Feature Set Per Component-carrier,FSPC))。这样,不同的频 段组合独立上报,并且一个band上的不同载波也可以独立上报,可以让终端设备实现具有更大的自由度,从而可以让更多的终端设备来支持这一新功能。
可选地,第一能力信息是按照频段范围(Frequency Range,FR)上报的(即不同的FR可以独立上报,per FR,即FR1和FR2各自独立上报)。这样,不同的FR独立上报,可以让终端设备实现具有更大的自由度,例如终端设备低频(FR1)不支持这一功能,但是在FR2(高频)支持这一功能,从而可以让更多的终端设备来支持这一新功能。
可选地,第一能力信息是针对终端设备(UE)上报的(即per UE,就是说如果一个终端设备上报这个能力,则该终端设备在各个频段上都可以支持这个能力)。这样,能够降低终端设备能力上报的信令开销。
可选地,终端设备向网络设备上报第二能力信息,所述第二能力信息指示终端设备支持配置授权PUSCH(CG-PUSCH)。
可选地,所述第二能力信息通过RRC信令,或者MAC CE传输。
可选地,关于第一能力信息的描述,可以同样用于第二能力信息,并且第一能力信息和第二能力信息可以对应不同或相同的选项,例如一个能力信息是针对band,另一个能力信息是针对per CC per band per band combination,因为上下行对终端设备能力要求不同,上下行能力使用不同的选项,可以更有利于终端设备实现。
可选地,第一能力信息和第二能力信息是同一个终端设备能力(即上述的第三能力信息),即这个能力支持在CG-PUSCH根据Z1>1个TCI state确定上行发送空间滤波器,或者空间相关信息。
可选地,第一能力信息和第二能力信息通过同一个信令上报,或者通过不同的信令上报。
以下进一步说明本申请实施例中的通信方法的实施方式:
终端设备接收网络设备发送的第一信息,所述第一信息指示1个或多个配置授权(Configured Grant Configuration)。可选地,第一信息可以指示1个BWP上的1个或多个配置授权。
可选地,配置授权是配置授权类型1(configured grant Type 1),或者配置授权类型2(configured grant Type 2)。
可选地,当配置授权是配置授权类型1时,第一信息针对配置授权还在RRC参数configuredGrantConfig中包含rrc-ConfiguredUplinkGrant。
可选地,当配置授权是配置授权类型2时,第一信息针对配置授权在RRC参数configuredGrantConfig中不包含rrc-ConfiguredUplinkGrant。
可选地,第一信息可以指示配置授权下面的一项或多项信息:
频域跳频指示信息,例如时隙(slot)内跳频(intra-slot hopping)和/或slot之间跳频(inter-slot hopping);解调参考信号(DMRS)指示信息;资源分配指示信息,例如时域和/或频域资源分配;功率控制参数指示信息;预编码(precoding)指示信息;SRS资源指示信息;重复传输指示信息;混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程(HARQ process)指示信息。
可选地,当DCI format 0_0或DCI format 0_1激活配置授权(当其为授权配置类型2时),从而传输PUSCH时;或者传输配置授权对应的PUSCH时(当其为授权配置类型1时),可以使用配置授权的信息,同时还使用RRC参数中pusch-Config的下列部分或全部信息:数据扰码标识物理上行共享信道(dataScramblingIdentityPUSCH);传输配置(txConfig);码本子集(codebookSubset);最大传输流数(maxRank);PUSCH上传输的UCI的缩放(scaling of UCI-OnPUSCH)。
可选地,当DCI format 0_2激活配置授权(当其为授权配置类型2时),从而传输配置授权对应的PUSCH时,使用配置授权的信息,同时还使用RRC参数中pusch-Config的下列部分或全部信息:dataScramblingIdentityPUSCH;txConfig;codebookSubsetDCI-0-2;maxRankDCI-0-2;scaling of UCI-OnPUSCH,资源分配类型1粒度DCI-0-2(resourceAllocationType1GranularityDCI-0-2)。
可选地,当配置授权为授权配置类型2时,激活配置授权的DCI(记为第二DCI)满足下面1个或多个条件:
使用以下参数加扰DCI使用的循环冗余校验(Cyclic Redundancy Check,CRC):参数cs-RNTI配置的配置调度无线网络临时标识(Configured Scheduling-Radio Network Temporary Identity,CS-RNTI),或者参数g-cs-RNTI配置的组配置调度无线网络临时标识(Group-Configured Scheduling-Radio Network Temporary Identity,G-CS-RNTI);
DCI中新数据指示域设为0;其中,DCI中新数据指示域可以为下行反馈信息(Downlink Feedback Information,DFI)标志字段(DFI flag field)。
如果DCI中DFI flag field存在,这个域设为0;
DCI中时域资源分配指示域指示对应1个起点和长度指示值(Start and lengthindicator value,SLIV) 指示的行。
可选地,当有1个配置授权时,激活配置授权的DCI中部分域的规定如表1所示:
表1
Figure PCTCN2022111232-appb-000001
当有多个配置授权时,激活配置授权的DCI中部分域的规定如表2所示:
表2
Figure PCTCN2022111232-appb-000002
可选地,终端设备还可以接收网络设备发送的第十二信息。
以下提供两个实施例:
在第一个实施例中,所述第十二信息指示unified TCI state类型为联合TCI state(joint TCI state)。
可选地,所述联合TCI state即可用于上行操作(UL operation)或上行传输(UL transmission),也可以用于下行操作(DL operation)或下行传输/接收(DL transmission/reception)。
可选地,所述第十二信息通过RRC信息单元(Information Element,IE)参数unifiedTCI-StateType指示,其取值为“Joint”。
可选地,所述第十二信息针对serving cell配置的。
可选地,所述第十二信息在RRC IE参数ServingCellConfig里面指示的。
可选地,终端设备还接收网络设备发送的第十三信息,用于配置或指示一组TCI state(记为第一TCI state组),所述第一TCI state组包含一个或多个TCI state。
可选地,第一TCI state组可以用于上行操作或上行传输,和/或,可以同于下行操作或下行传输。
可选地,所述第十三信息通过RRC参数配置。
可选地,第十三信息在RRC IE参数PDSCH配置(PDSCH-Config)中配置。
可选地,第十三信息通过RRC IE参数上行或联合TCI状态列表ul-OrJoint-TCIStateList来指示。
在第二个实施例中,所述第十二信息指示unified TCI state类型为独立TCI state(separate TCI state)。
可选地,UL TCI state用于上行操作(UL operation)或上行传输(UL transmission),DL TCI state用于下行操作(DL operation)或下行传输(DL transmission)。
可选地,所述第十二信息通过RRC IE参数unifiedTCI-StateType指示,其取值为“Separate”。
可选地,所述第十二信息针对serving cell配置的。
可选地,所述第十二信息在RRC IE参数服务小区配置ServingCellConfig里面指示的。
可选地,终端设备还接收网络设备发送的第十四信息,用于配置或指示第二TCI state组,所述第二TCI state组包含1个或多个DL TCI state。
可选地,所述第二TCI state组用于下行操作或下行传输。
可选地,所述第十四信息通过RRC参数配置。
可选地,第十四信息在RRC IE参数PDSCH-Config中配置。
可选地,第十四信息通过RRC IE参数下行或联合TCI状态列表-r17(dl-OrJoint-TCIStateList-r17)来指示。
可选地,终端设备还接收网络设备发送的第十五信息,用于配置或指示第三TCI state组,所述第三TCI state组包含1个或多个UL TCI state。
可选地,所述第三UL TCI state组用于上行操作或上行传输。
可选地,所述第十五信息通过RRC参数配置。
可选地,第十五信息在RRC IE参数带宽部分上行专用(BWP-UplinkDedicated)中配置。
可选地,第十五信息通过RRC IE参数上行TCI添加修改列表(ul-TCI-ToAddModList)来指示。
以下对第七信息进行相关说明:
可选地,终端设备接收网络设备发送的第七信息,所述第七信息通过第一MAC CE信令传输。这样,使用MAC CE信令延时比RRC信令低,同时也具有较好的传输可靠性,便于网络快速指示终端设备进行相应的操作。
可选地,所述第一MAC CE信令包括以下至少一项或多项信息:
(1)服务小区指示信息,例如可以是serving cell ID来指示对应的服务小区,所述MAC CE应用 于所述服务小区,可选地,这个信息域(field)长度为5比特(5bits)。
(2)下行带宽部分(DL BWP)指示信息,例如可以是DL BWP ID来指示对应的DL BWP,所述MAC CE应用于所述DL BWP,可选地,这个信息域(field)长度为2比特。
(3)上行带宽部分(UL BWP)指示信息,例如可以是UL BWP ID来指示对应的UL BWP,所述MAC CE应用于所述UL BWP,可选地,这个信息域(field)长度为2比特。
(4)多个TCI state指示域,每个指示域指示1个TCI state,所述1个TCI state属于所述第一TCI state组中的1个。
(5)1个或多个指示域,所述每个指示域指示对应的TCI state是否存在。可选地,所述指示域与另外一个TCI state指示域在同一个字节(Octet或者Oct)中。
(6)K个TCI数量指示域,其中每个指示域指示一个codepoint对应N个TCI state。这样,能够指示UL和DL TCI state的总数量,能够减少比特数,压缩MAC CE信令的开销。可选地,每个指示域有2比特,或者3个bit。
可选地,针对上述的第二个实施例,N的取值可以为1,2,3,4中的值。这样,协议设计和系统实现简单,能够获得M-TRP的绝大部分性能增益,以及网络配置和调度的较好灵活性。
可选地,其中DL TCI state小于等于2个。可选地,其中UL TCI state小于等于2个。
可选地,针对上述的第一个实施例,每个指示域指示一个codepoint对应1个或2个Joint TCI state。
可选地,针对上述的第二个实施例,N的取值可以为1,2,3,4,5,6中的值。这样,支持更多TRP进行下行传输,在部分场景下,对下行性能有一些提升,为网络优化提供更大的自由度。
可选地,其中DL TCI state小于等于4个。可选地,其中UL TCI state小于等于2个。
可选地,针对上述的第二个实施例,N的取值可以为1,2,3,4,5,6,7,8中的值。这样,支持更多TRP进行下行传输和上行传输,在部分场景下,对下行和上行性能有一些提升,为网络优化提供更大的自由度。
可选地,其中DL TCI state小于等于4个。可选地,其中UL TCI state小于等于4个。
可选地,针对上述的第一个实施例,每个指示域指示一个codepoint对应1个或2个或3个或4个Joint TCI state。这样,支持更多TRP进行下行传输和上行传输,在部分场景下,对下行和上行性能有一些提升,为网络优化提供更大的自由度。
可选地,K为8,或16。
(7)TCI state类型指示域,用于指示对应的TCI state是DL/Joint TCI state,还是UL TCI state。
可选地,所述TCI state类型指示域用于指示所在同一个octet的TCI state指示信息指示的是DL/Joint TCI state,还是UL TCI state。
可选地,所述TCI state类型指示域用于指示所在同一个octet的TCI state指示信息指示的是第二TCI state组中的TCI state,还是第三TCI state组中的TCI state。
(8)TCI state指示信息。
可选地,如果所述TCI state指示信息用于指示DL/Joint TCI state,那么所述指示信息长度为7比特。
可选地,如果所述TCI state指示信息用于指示UL TCI state,那么所述指示信息长度为7比特。这样,能够指示更多的UL TCI state,提高网络调度灵活性。
可选地,如果所述TCI state指示信息用于指示UL TCI state,那么所述指示信息中的最高位(the most significant bit)是保留比特,剩余的6比特指示UL TCI state。
(9)TCI state子集合数目(或者DCI codepoint)数量指示信息,其指示指为1到K之间的正整数(记为A)。这样,可以让终端设备减少读取/解析部分比特的信息,降低终端设备实现复杂度。
可选地,所述数值指的是第二MAC CE中指示的TCI state对应的DCI中第一域的codepoint的数目;可选地,第一域为DCI中的Transmission configuration indication域。
可选地,第一MAC CE指示的TCI state的最大数量为32。这样,最多支持上下行都是2个TRP传输,(2+2)*8=32。可选地,第一MAC CE指示的TCI state的最大数量为48。这样,最多支持下行4个TRP传输,上行2个TRP传输,提高下行传输性能,提高网络配置和调度的灵活性,同时也把终端设备实现复杂度控制在一定范围。可选地,第一MAC CE指示的TCI state的最大数量为64。这样,最多支持下行4个TRP传输,上行4个TRP传输,提高下行和上行传输性能,提高网络配置和调度的灵活性,以终端设备实现复杂度为代价。
可选地,第一MAC CE激活的TCI state的最大数量可以为32,或者48,或者64。
可选地,第一MAC CE激活的Joint TCI state的最大数量为16,或者32。
在前面基础上,当前激活的可用于上行传输有K1个TCI state(例如可以是joint TCI state,也可以 是UL TCI state)。在这之前,终端设备可以接收网络设备发送的第三信息,所述第三信息指示N个TCI state。可选地,终端设备根据所述第三信息确定所述K1个激活的(activated、active或者applied)TCI state。
可选地,终端设备接收网络设备发送的第三信息,终端设备根据第三信息确定以下一个或多个信息:
(1)PDSCH DMRS对应的QCL信息。
(2)PDCCH DMRS对应的QCL信息,或者部分CORESET对应的DMRS对应的QCL信息。
(3)至少部分CSI-RS对应的QCL信息。
(4)PUSCH的上行发送空间滤波器(UL TX spatial filter)。
(5)至少部分PUCCH的上行发送空间滤波器。
(6)至少部分SRS的上行发送空间滤波器。
(7)所述至少部分SRS对应的SRS resource set中配置了RRC参数followUnifiedTCIstateSRS-r17。
可选地,所述第三信息通过DCI信令(记为第一DCI)传输,可选地,所述第三信息通过DCI信令中的Transmission configuration indication域来传输。
可选地,第三信息可以与第七信息为同一信息。例如,第七信息仅指示第一码点(codepoint)对应的TCI state,没有指示第一码点之外的其他码点对应的TCI state,并且第一码点对应TCI state X1和/或TCI state X2,则终端设备可以直接根据TCI state X1和/或TCI state X2确定激活的TCI状态。可选的,第三信息可以和第七信息是不同的信息,例如第七信息(例如一个MAC CE)指示第一码点(codepoint)对应TCI state X1和/或TCI state X2,第二码点(codepoint)对应TCI state X3,第三信息通过DCI对应信息域指示了第一码点,则终端设备可以根据TCI state X1和和/或TCI state X2确定激活的TCI状态。
可选地,所述DCI为DCI format 1_1和/或DCI format 1_2,其中DCI format 1_1/1_2可是同时调度数据或者不调度下行传输(with or without,if applicable,DL assignment)。
可选地,所述DCI为DCI format 1_1和/或DCI format 1_2和/或DCI format 0_1和/或DCI format 0_2,其中DCI format 1_1/1_2可是同时调度数据或者不调度下行传输(with or without,if applicable,DL assignment),DCI format 0_1/0_2可是同时调度数据或者不调度上行传输(with or without,if applicable,UL assignment)。
可选地,如果without DL assignment,对于DCI format 1_1/1_2,终端设备可以进行如下假设(或者说,DCI format 1_1/1_2满足如下条件):
(1)CS-RNTI用于对DCI的CRC进行加扰;
(2)以下DCI字段的值设置如下:
冗余版本(Redundancy Version,RV)=全“1”;
MCS=全“1”;
新数据指示(new data indicator,NDI)=0;
为频域资源分配(Frequency Domain Resource Allocation,FDRA)类型0设为全“0”,或为FDRA类型1设为全“1”,或为动态切换(dynamicSwitch)设为全“0”。
可选地,如果第三信息指示的一个或多个TCI state中至少一个TCI state(记为TCI state X)与先前指示的(the previously indicated)TCI state中的任意一个都不同(考虑相同方向的,例如,如果TCI state X用于上行传输,则考虑先前指示的用于上行传输的TCI state与TCI state X不同;如果TCI state X用于下行传输/接收,则考虑先前指示的用于下行传输/接收的TCI state与TCI state X不同;如果TCI state X用于上行传输以及下行传输/接收,则考虑先前指示的用于上行传输以及下行传输/接收的TCI state与TCI state X不同),或者如果第三信息指示的一个或多个TCI state中至少一个TCI state(记为TCI state X)与终端设备当前激活/使用(activated,或者applied)的所有TCI state中的任意一个都不同,从第一PUCCH的最后一个符号起之后的至少间隔BeamAppTime个符号后的第一个slot开始,第三信息指示的TCI state X生效,即终端设备可以根据TCI state X来确定上行发送空间滤波器,和/或下行传输/接收对应的QCL信息,其中第一PUCCH传输承载第一信息DCI对应的HARQ-ACK信息。
可选地,当终端设备将发送带有HARQ-ACK信息的PUCCH的最后一个符号时,HARQ-ACK信息对应于携带TCI状态指示的DCI且没有DL分配,或对应于由携带TCI状态指示的DCI调度的PDSCH,并且如果指示的TCI状态与先前指示的不同,指示的DLorJointTCIState或UL-TCIstate应该从第一个时隙开始应用,该时隙至少是PUCCH的最后一个符号之后的BeamAppTime符号。第一个时隙和BeamAppTime符号都在应用波束指示的载波中具有最小子载波间隔(Sub-Carrier Space,SCS)的载波上确定。
可选地,以一个DCI最多能指示2个用于下行传输/接收(DL operation,或者DL transmission/reception)的TCI state为例,其他情况(用于上行的TCI state,或者同时用于上行和下行 的TCI state)可以类似扩展。假设网络先前指示了TCI state A1,TCI state A2用于下行传输,当前这次DCI指示的信号中包含了TCI state X,并且TCI state X和TCI state A1/A2都不同,则可以考虑上面的流程,来确定TCI state X在什么时候可以使用(can be applied)。再例如,目前终端设备使用1个或2个TCI state(记为A1,A2)来确定下行传输对应的QCL信息,当前这次DCI指示的信号中包含了TCI state X,并且TCI state X和TCI state A1/A2都不同,则可以考虑上面的流程,来确定TCI state X在什么时候可以使用(can be applied)。
可选地,所述第三信息指示N个TCI state。
可选地,终端设备根据第三信息和第七信息确定所述N个TCI state。
可选地,所述N个TCI state中的至少部分用于确定/指示上行传输。可选地,K1个TCI state用于上行,K2个TCI state用于下行,0<=K1<=N,0<=K2<=N,例如可以N=K1=K2,也可以N=K1,K2=0,或者其他组合。例如,可以是K1=N个UL TCI state,可以N个Joint TCI state同时用于上行和下行,即N=K1=K2。
可选地,终端设备根据第三信息确定配置授权对应的PUSCH的空间关系(spatial relation),或者上行发送空间滤波器(UL TX spatial filter)。
可选地,终端设备根据N个TCI state中用于上行的TCI state(即UL TCI state)中的参考信号确定PUSCH的空间关系,或者上行发送空间滤波器。
可选地,终端设备根据N个TCI state中可同时用于上行和下行的TCI state(即Joint TCI state)中的typeD(类型D)对应的参考信号确定PUSCH的空间关系,或者上行发送空间滤波器。
可选地,终端设备根据第一SRS resource和/或第二SRS resource以及其各自对应的第一TCI state和/或第二TCI state进行相应的配置授权PUSCH(CG PUSCH)传输。
可选地,如果对应的PUSCH重复传输K次(例如可以是这个PUSCH在K个连续slot传输,再例如,这个PUSCH可以是有K次名义重传(nominal repetitions))。
可选地,当K=2时,第一SRS resource对应第1次传输(例如K个连续slot中的第1个slot,或者K个名义重传中的第1次重传),第二SRS resource对应第2次传输(例如K个连续slot中的第2个slot,或者K个名义重传中的第2次重传)后面的第几次传输,都是类似包含这两种含义,例如,第一SRS resource对应第3次传输,第二SRS resource对应第4次传输,不再赘述。或者说,第一SRS resource第奇数次传输,第二SRS resource第偶数次传输。在另一些实施例中,第二SRS resource第奇数次传输,第一SRS resource第偶数次传输。
可选地,当K>2,如果RRC信息单元(Information Element)配置授权配置(RRC IE ConfiguredGrantConfig)指示了循环映射(cyclicMapping)(即cyclicMapping被enabled),第一SRS resource和第二SRS resource分别应用于第1次和第2次传输,后续相同的映射图案依次重复,直到一共K次传输。可选地,信息单元、信息要素、信息元素可以同一理解。
可选地,当K>2,如果RRC IE ConfiguredGrantConfig指示了顺序映射(sequentialMapping)(即sequentialMapping被enabled),第一SRS resource应用于第1次和第2次传输,第二SRS resource应用于第3次和第4次传输,后续相同的映射图案依次重复,直到一共K次传输。
在本申请实施例中,针对多TRP/panel/beam的传输场景中CG PUSCH传输方案,给出unified TCI state的配置、指示和确定方案。
可选地,CG PUSCH独立配置信息,用于指示其是单TRP(S-TRP)还是多TRP(M-TRP)(与DCI调度的可以不一样)。可选地,信令对应的不同配置颗粒度。
可选地,针对CG PUSCH Type 1/Type 2。可选地,若CG为M-TRP,但是DCI只指示1个TCI-state如何传输,给出不同具体方案可选地,若CG为M-TRP,DCI指示了2个TCI state如何传输,给出不同具体方案。可选地,若CG为S-TRP,但是DCI指示了2个TCI state如何传输,给出不同具体方案。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。例如,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。又例如,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。又例如,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以和现有技术任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
还应理解,在本申请的各种方法实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。此外,在本申请实施例中,术语“下行”、“上行”和“侧行”用于表示信号或数据的传输方向,其中,“下行” 用于表示信号或数据的传输方向为从站点发送至小区的用户设备的第一方向,“上行”用于表示信号或数据的传输方向为从小区的用户设备发送至站点的第二方向,“侧行”用于表示信号或数据的传输方向为从用户设备1发送至用户设备2的第三方向。例如,“下行信号”表示该信号的传输方向为第一方向。另外,本申请实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。具体地,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图7为本申请实施例提供的通信装置的结构组成示意图,应用于终端设备,如图7所示,所述通信装置700包括:
通信单元701,用于根据一个或多个传输配置指示TCI状态,发送配置授权CG对应的物理上行共享信道PUSCH。
在一些实施例中,通信装置700还包括:确定单元,用于确定一个或多个传输配置指示TCI状态。
在一些实施例中,通信单元701,还用于接收第一信息;所述第一信息指示所述CG。
在一些实施例中,通信单元701,还用于接收第二信息;所述第二信息指示根据一个或多个TCI状态传输所述CG对应的PUSCH。
在一些实施例中,所述CG对应一个带宽部分BWP;或者,
所述CG对应一个服务小区或一个服务小区组或一个频段band上所有的CG。
在一些实施例中,所述第二信息指示所述CG对应多个探测参考信号SRS资源,所述CG对应的PUSCH根据一个或多个TCI状态进行传输;或者,
所述第二信息指示所述CG对应一个SRS资源,所述CG对应的PUSCH根据一个TCI状态进行传输。
在一些实施例中,所述第二信息通过无线资源控制RRC参数rrc-配置上行授权rrc-ConfiguredUplinkGrant中配置的srs-资源指示srs-ResourceIndicator和srs-ResourceIndicator2来指示所述CG对应多个SRS资源;或者,
所述第二信息通过RRC参数rrc-ConfiguredUplinkGrant中配置有srs-ResourceIndicator,没有配置srs-ResourceIndicator2,或者配置有srs-ResourceIndicator2,没有配置有srs-ResourceIndicator,来指示所述CG对应一个SRS资源。
在一些实施例中,所述第二信息通过激活所述CG的DCI指示所述CG对应的多个SRS资源;或者,所述第二信息通过激活所述CG的DCI指示所述CG对应的一个SRS资源。
在一些实施例中,所述第二信息为第一取值,表示根据一个TCI状态传输所述CG对应的PUSCH;或者,所述第二信息为第二取值,表示根据一个或多个TCI状态传输所述CG对应的PUSCH。
在一些实施例中,在所述终端设备接收到第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输;或者,在所述终端设备未接收到第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输。
在一些实施例中,在所述终端设备接收到第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输;或者,在所述终端设备未接收到第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输。
在一些实施例中,通信单元701,还用于接收第三信息;所述第三信息指示激活的可用于上行传输的TCI状态;通信单元701,还用于:根据所述激活的可用于上行传输的TCI状态中的一个或多个TCI状态,发送所述CG对应的PUSCH。
在一些实施例中,通信单元701,还用于:在激活的可用于上行传输的TCI状态的第一数量,小于或等于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,根据所述第一数量的所述激活的可用于上行传输的TCI状态,发送所述CG对应的PUSCH;或者,在激活的可用于上行传输的TCI状态的第一数量,大于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,根据第三数量的所述激活的可用于上行传输的TCI状态,发送所述CG对应的PUSCH;所述第三数量小于或等于所述第二数量。
在一些实施例中,通信单元701,还用于:在激活的可用于上行传输的TCI状态包括第一TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,根据所述第一TCI状态,发送所述CG对应的PUSCH。
在一些实施例中,通信单元701,还用于:根据所述第一TCI状态和第一SRS资源,发送所述CG对应的PUSCH。
在一些实施例中,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;或者,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的 srs-ResourceIndicator2指示的。
在一些实施例中,通信单元701,还用于:接收第四信息;
所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;或者,所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
在一些实施例中,所述第一SRS资源是由DCI中SRS资源指示域确定的;或者,
所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
在一些实施例中,通信单元701,还用于:接收第五信息;
所述第五信息指示所述第一SRS资源是由DCI中SRS资源指示域确定的;或者,所述第五信息指示所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
在一些实施例中,通信单元701,还用于:根据所述第一TCI状态、第一SRS资源以及第二SRS资源,发送所述CG对应的PUSCH。
在一些实施例中,所述第一SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的;所述第二SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的。
在一些实施例中,通信单元701,还用于:接收第六信息;所述第六信息指示根据所述第一TCI状态和第一SRS资源,传输所述CG对应的PUSCH;或者,所述第六信息指示根据所述第一TCI状态、第一SRS资源以及第二SRS资源,传输所述CG对应的PUSCH。
在一些实施例中,通信单元701,还用于:在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,根据所述第一TCI状态和所述第二TCI状态,发送所述CG对应的PUSCH。
在一些实施例中,通信单元701,还用于:根据所述第一TCI状态、所述第二TCI状态、第一SRS资源以及第二SRS资源,发送所述CG对应的PUSCH;其中,所述第一SRS资源对应所述第一TCI状态;所述第二SRS资源对应所述第二TCI状态。
在一些实施例中,所述第一SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的;所述第二SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第二TCI状态确定的。
在一些实施例中,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;所述第二SRS资源是由所述RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
在一些实施例中,RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator和srs-ResourceIndicator2指示的SRS资源中标识较小的SRS资源为所述第一SRS资源,标识较大的SRS资源为第二SRS资源,或者,标识较大的SRS资源为第一SRS资源,标识较小的SRS资源为第二SRS资源。
在一些实施例中,所述第一SRS资源是由DCI中SRS资源指示域确定的;所述第二SRS资源是由所述DCI中第二SRS资源指示域确定的。
在一些实施例中,DCI中SRS资源指示域和所述DCI中第二SRS资源指示域指示的SRS资源中,标识较小的SRS资源为所述第一SRS资源,标识较大的SRS资源为所述第二SRS资源,或者,标识较大的SRS资源为所述第一SRS资源,标识较小的SRS资源为所述第二SRS资源。
在一些实施例中,所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI状态;或者,
所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
在一些实施例中,通信单元701,还用于:接收第七信息;
所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI;或者,所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
在一些实施例中,通信单元701,还用于:接收第八信息;
所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI状态;或者,所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
在一些实施例中,通信单元701,还用于:接收第九信息;
所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠前的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI;或者,所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠后的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
在一些实施例中,通信单元701,还用于:在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个的情况下,根据所述第一TCI状态或所述第二TCI状态,发送所述CG对应的PUSCH。
在一些实施例中,通信单元701,还用于:根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态,发送所述CG对应的PUSCH;或者,根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态,发送所述CG对应的PUSCH;或者,根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态,发送所述CG对应的PUSCH;或者,根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态,发送所述CG对应的PUSCH。
在一些实施例中,通信单元701,还用于:接收第十信息;所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态,传输所述CG对应的PUSCH;或者,所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态,传输所述CG对应的PUSCH。
在一些实施例中,通信单元701,还用于:接收第十一信息;所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态,传输所述CG对应的PUSCH;或者,所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态,传输所述CG对应的PUSCH。
在一些实施例中,第四信息、第五信息、第六信息、第八信息、第九信息、第十信息、第十一信息中的至少之一,通过RRC信令、媒体接入控制控制单元MAC CE信令或下行控制信息DCI信令传输。
在一些实施例中,所述第七信息通过MAC CE信令传输。
在一些实施例中,用于传输所述第七信息的MAC CE信令中包括以下至少之一:
下行带宽部分DL BWP指示信息;
上行带宽部分UL BWP指示信息;
一个或多个TCI数量指示域,其中,每个所述TCI数量指示域指示一个代码点codepoint对应1个或多个TCI状态;
一个或多个TCI状态类型指示域,每个所述TCI状态类型指示域指示对应的TCI状态是下行DL TCI状态,或者联合Joint TCI状态,或者上行UL TCI状态;
一个或多个TCI状态指示信息。
在一些实施例中,通信单元701,还用于:接收第十二信息;所述第十二信息指示TCI状态类型包括联合TCI状态或独立TCI状态。
在一些实施例中,通信单元701,还用于:发送以下至少之一:第一能力信息、第二能力信息、第三能力信息;其中,所述第一能力信息指示所述终端设备支持第四数量的TCI状态用于上行传输或上行重复传输,或者,所述第一能力信息指示所述终端设备支持DCI中传输配置指示Transmission configuration indication域中的一个代码点codepoint,最多可激活或者指示第四数量的TCI状态用于上行传输或上行重复传输;所述第二能力信息指示所述终端设备支持传输所述CG对应的PUSCH;所述第三能力信息指示所述终端设备支持根据第四数量的TCI状态传输所述CG对应的PUSCH。
在一些实施例中,所述第四数量为2或4。
在一些实施例中,在所述终端设备发送第一能力信息和第二能力信息的情况下,所述第一能力信息和所述第二能力信息通过同一个信令发送,或者,所述第一能力信息和所述第二能力信息通过不同的信令发送。
在一些实施例中,所述第一能力信息、所述第二能力信息、所述第三能力信息中的至少一个,是通过RRC信令或者MAC CE信令传输的。
在一些实施例中,所述第一能力信息、所述第二能力信息、所述第三能力信息中的至少一个,是针对频段band上报的,和/或,是按照频段组合独立上报的,和/或,是按照频段组合中的每个频段独立上报的,和/或,是按照频段组合中的每个频段上每个载波独立上报的,和/或,是按照频段范围上报的,和/或,是针对所述终端设备上报的。
在一些实施例中,所述TCI状态为统一unified TCI状态。
图8为本申请实施例提供的另一通信装置的结构组成示意图,应用于终端设备,如图8所示,所述通信装置800包括:通信单元801,用于接收配置授权CG对应的物理上行共享信道PUSCH;所述CG对应的PUSCH是根据一个或多个传输配置指示TCI状态发送的。
在一些实施例中,所述通信装置800还包括:确定单元,用于确定一个或多个传输配置指示TCI状态。
在一些实施例中,通信单元801,还用于:发送第一信息;所述第一信息指示所述CG。
在一些实施例中,通信单元801,还用于:发送第二信息;所述第二信息指示根据一个或多个TCI状态传输所述CG对应的PUSCH。
在一些实施例中,所述CG对应一个带宽部分BWP;或者,所述CG对应一个服务小区或一个服务小区组或一个频段band上所有的CG。
在一些实施例中,所述第二信息指示所述CG对应多个探测参考信号SRS资源,所述CG对应的PUSCH根据一个或多个TCI状态进行传输;或者,所述第二信息指示所述CG对应一个SRS资源,所述CG对应的PUSCH根据一个TCI状态进行传输。
在一些实施例中,所述第二信息通过无线资源控制RRC参数rrc-配置上行授权rrc-ConfiguredUplinkGrant中配置的srs-资源指示srs-ResourceIndicator和srs-ResourceIndicator2来指示所述CG对应多个SRS资源;或者,所述第二信息通过RRC参数rrc-ConfiguredUplinkGrant中配置有srs-ResourceIndicator,没有配置srs-ResourceIndicator2,或者配置有srs-ResourceIndicator2,没有配置有srs-ResourceIndicator,来指示所述CG对应一个SRS资源。
在一些实施例中,所述第二信息通过激活所述CG的DCI指示所述CG对应的多个SRS资源;或者,所述第二信息通过激活所述CG的DCI指示所述CG对应的一个SRS资源。
在一些实施例中,所述第二信息为第一取值,表示根据一个TCI状态传输所述CG对应的PUSCH;或者,所述第二信息为第二取值,表示根据一个或多个TCI状态传输所述CG对应的PUSCH。
在一些实施例中,在所述网络设备发送第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输;或者,在所述网络设备未发送第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输。
在一些实施例中,在所述网络设备发送第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输;或者,在所述网络设备未发送第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输。
在一些实施例中,通信单元801,还用于:发送第三信息;所述第三信息指示激活的可用于上行传输的TCI状态;所述激活的可用于上行传输的TCI状态中的一个或多个TCI状态,用于所述终端设备发送所述CG对应的PUSCH。
在一些实施例中,在激活的可用于上行传输的TCI状态的第一数量,小于或等于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,所述CG对应的PUSCH是根据所述激活的可用于上行传输的TCI状态发送的;或者,在激活的可用于上行传输的TCI状态的第一数量,大于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,所述CG对应的PUSCH是根据第三数量的所述激活的可用于上行传输的TCI状态发送的;所述第三数量小于或等于所述第二数量。
在一些实施例中,在激活的可用于上行传输的TCI状态包括第一TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,所述CG对应的PUSCH是根据所述第一TCI状态发送的。
在一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态和第一SRS资源发送的。
在一些实施例中,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;或者,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
在一些实施例中,通信单元801,还用于:发送第四信息;
所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;或者,所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
在一些实施例中,所述第一SRS资源是由DCI中SRS资源指示域确定的;或者,所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
在一些实施例中,通信单元801,还用于:发送第五信息;
所述第五信息指示所述第一SRS资源是由DCI中SRS资源指示域确定的;或者,所述第五信息指示所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
在一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态、第一SRS资源以及第二SRS资源发送的。
在一些实施例中,所述第一SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的;所述第二SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的。
在一些实施例中,通信单元801,还用于:发送第六信息;所述第六信息指示根据所述第一TCI状态和第一SRS资源,传输所述CG对应的PUSCH;或者,所述第六信息指示根据所述第一TCI状态、第一SRS资源以及第二SRS资源,传输所述CG对应的PUSCH。
在一些实施例中,在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态发送的。
在一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态、所述第二TCI状态、第一SRS资源以及第二SRS资源发送的;其中,所述第一SRS资源对应所述第一TCI状态;所述第二SRS资源对应所述第二TCI状态。
在一些实施例中,所述第一SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的;所述第二SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第二TCI状态确定的。
在一些实施例中,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;所述第二SRS资源是由所述RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
在一些实施例中,RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator和srs-ResourceIndicator2指示的SRS资源中标识较小的SRS资源为所述第一SRS资源,标识较大的SRS资源为第二SRS资源,或者,标识较大的SRS资源为第一SRS资源,标识较小的SRS资源为第二SRS资源。
在一些实施例中,所述第一SRS资源是由DCI中SRS资源指示域确定的;所述第二SRS资源是由所述DCI中第二SRS资源指示域确定的。
在一些实施例中,DCI中SRS资源指示域和所述DCI中第二SRS资源指示域指示的SRS资源中,标识较小的SRS资源为所述第一SRS资源,标识较大的SRS资源为所述第二SRS资源,或者,标识较大的SRS资源为所述第一SRS资源,标识较小的SRS资源为所述第二SRS资源。
在一些实施例中,所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI状态;或者,所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
在一些实施例中,通信单元801,还用于:发送第七信息;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI;或者,所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
在一些实施例中,通信单元801,还用于:发送第八信息;
所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI状态;或者,所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传 输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
在一些实施例中,通信单元801,还用于:发送第九信息;
所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠前的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI;或者,所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠后的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
在一些实施例中,在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个的情况下,所述CG对应的PUSCH是根据所述第一TCI状态或所述第二TCI状态发送的。
在一些实施例中,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态发送的;或者,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态发送的;或者,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态发送的;或者,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态发送的。
在一些实施例中,通信单元801,还用于:发送第十信息;所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态,传输所述CG对应的PUSCH;或者,所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态,传输所述CG对应的PUSCH。
在一些实施例中,通信单元801,还用于:发送第十一信息;所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态,传输所述CG对应的PUSCH;或者,所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态,传输所述CG对应的PUSCH。
在一些实施例中,第四信息、第五信息、第六信息、第八信息、第九信息、第十信息、第十一信息中的至少之一,通过RRC信令、媒体接入控制控制单元MAC CE信令或下行控制信息DCI信令传输。
在一些实施例中,所述第七信息通过MAC CE信令传输。
在一些实施例中,用于传输所述第七信息的MAC CE信令中包括以下至少之一:
下行带宽部分DL BWP指示信息;
上行带宽部分UL BWP指示信息;
一个或多个TCI数量指示域,其中,每个所述TCI数量指示域指示一个代码点codepoint对应1个或多个TCI状态;
一个或多个TCI状态类型指示域,每个所述TCI状态类型指示域指示对应的TCI状态是下行DL TCI状态,或者联合Joint TCI状态,或者上行UL TCI状态;
一个或多个TCI状态指示信息。
在一些实施例中,通信单元801,还用于:发送第十二信息;所述第十二信息指示TCI状态类型包括联合TCI状态或独立TCI状态。
在一些实施例中,通信单元801,还用于:接收以下至少之一:第一能力信息、第二能力信息、第三能力信息;其中,所述第一能力信息指示所述终端设备支持第四数量的TCI状态用于上行传输或上行重复传输,或者,所述第一能力信息指示所述终端设备支持DCI中传输配置指示Transmission configuration indication域中的一个代码点codepoint,最多可激活或者指示第四数量的TCI状态用于上行传输或上行重复传输;所述第二能力信息指示所述终端设备支持传输所述CG对应的PUSCH;所述第三能力信息指示所述终端设备支持根据第四数量的TCI状态传输所述CG对应的PUSCH。
在一些实施例中,所述第四数量为2或4。
在一些实施例中,所述网络设备通过同一个信令接收所述第一能力信息和所述第二能力信息,或者所述网络设备通过不同的信令接收所述第一能力信息和所述第二能力信息。
在一些实施例中,所述第一能力信息、所述第二能力信息、所述第三能力信息中的至少一个,是通过RRC信令或者MAC CE信令传输的。
在一些实施例中,所述第一能力信息、所述第二能力信息、所述第三能力信息中的至少一个,是针对频段band上报的,和/或,是按照频段组合独立上报的,和/或,是按照频段组合中的每个频段独立上报的,和/或,是按照频段组合中的每个频段上每个载波独立上报的,和/或,是按照频段范围上报的, 和/或,是针对所述终端设备上报的。
在一些实施例中,所述TCI状态为统一unified TCI状态。
图9为本申请实施例提供的一种通信设备示意性结构图,该通信设备900可以包括以下之一:终端设备、网络设备。图9所示的通信设备900可以包括处理器910和存储器920,所述存储器920存储有可在处理器910上运行的计算机程序,所述处理器910执行所述程序时实现上述任一实施例中的拥塞控制方法。
可选地,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
在一些实施例中,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备900具体可为本申请实施例的终端设备或网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现本申请任一实施例中的拥塞控制方法。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的终端设备或网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
图10为本申请实施例的芯片的示意性结构图,图10所示的芯片1000包括处理器1010,处理器1010用于从存储器中调用并运行计算机程序,以实现本申请任一实施例中的方法。
在一些实施例中,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
在一些实施例中,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一些实施例中,该芯片可应用于本申请实施例中的终端设备或网络设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机存储介质,所述计算机存储介质存储计算机程序,所述计算机程序包括能够由至少一个处理器执行的指令,当所述指令由所述至少一个处理器执行时实现本申请任一实施例中的拥塞控制方法。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的终端设备或网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,本申请实施例中的计算机程序产品在另一些实施例中也可以称为软件产品。
本申请实施例还提供了一种计算机程序,所述计算机程序使得计算机执行本申请任一实施例中的拥塞控制方法。
在一些实施例中,该计算机程序可应用于本申请实施例中的终端设备或网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例的处理器、通信装置或者芯片可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器、通信装置或者芯片可以包括以下任一个或多个的集成:通用处理器、特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、图形处理器(Graphics Processing Unit,GPU)、嵌入式神经网络处理器(neural-network processing units,NPU)、控制器、微控制器、微处理器、可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬 件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器或计算机存储介质可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器或计算机存储介质为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (99)

  1. 一种通信方法,所述方法包括:
    终端设备根据一个或多个传输配置指示TCI状态,发送配置授权CG对应的物理上行共享信道PUSCH。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端设备接收第一信息,所述第一信息指示所述CG。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    所述终端设备接收第二信息;所述第二信息指示根据一个或多个TCI状态传输所述CG对应的PUSCH。
  4. 根据权利要求1至3任一项所述的方法,其中,所述CG对应一个带宽部分BWP;或者,
    所述CG对应一个服务小区或一个服务小区组或一个频段band上所有的CG。
  5. 根据权利要求3或4所述的方法,其中,所述第二信息指示所述CG对应多个探测参考信号SRS资源,所述CG对应的PUSCH根据一个或多个TCI状态进行传输;或者,
    所述第二信息指示所述CG对应一个SRS资源,所述CG对应的PUSCH根据一个TCI状态进行传输。
  6. 根据权利要求5所述的方法,其中,所述第二信息通过无线资源控制RRC参数rrc-配置上行授权rrc-ConfiguredUplinkGrant中配置的srs-资源指示srs-ResourceIndicator和srs-ResourceIndicator2来指示所述CG对应多个SRS资源;或者,
    所述第二信息通过RRC参数rrc-ConfiguredUplinkGrant中配置有srs-ResourceIndicator,没有配置srs-ResourceIndicator2,或者配置有srs-ResourceIndicator2,没有配置有srs-ResourceIndicator,来指示所述CG对应一个SRS资源。
  7. 根据权利要求5所述的方法,其中,所述第二信息通过激活所述CG的DCI指示所述CG对应的多个SRS资源;或者,
    所述第二信息通过激活所述CG的DCI指示所述CG对应的一个SRS资源。
  8. 根据权利要求3或4所述的方法,其中,所述第二信息为第一取值,表示根据一个TCI状态传输所述CG对应的PUSCH;或者,
    所述第二信息为第二取值,表示根据一个或多个TCI状态传输所述CG对应的PUSCH。
  9. 根据权利要求1或2所述的方法,其中,在所述终端设备接收到第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输;或者,
    在所述终端设备未接收到第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输。
  10. 根据权利要求1或2所述的方法,其中,在所述终端设备接收到第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输;或者,
    在所述终端设备未接收到第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输。
  11. 根据权利要求1至10任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第三信息;所述第三信息指示激活的可用于上行传输的TCI状态;
    所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:
    所述终端设备根据所述激活的可用于上行传输的TCI状态中的一个或多个TCI状态,发送所述CG对应的PUSCH。
  12. 根据权利要求3所述的方法,其中,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:
    在激活的可用于上行传输的TCI状态的第一数量,小于或等于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,所述终端设备根据所述第一数量的所述激活的可用于上行传输的TCI状态,发送所述CG对应的PUSCH;或者,
    在激活的可用于上行传输的TCI状态的第一数量,大于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,所述终端设备根据第三数量的所述激活的可用于上行传输的TCI状态,发送所述CG对应的PUSCH;所述第三数量小于或等于所述第二数量。
  13. 根据权利要求3所述的方法,其中,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:
    在激活的可用于上行传输的TCI状态包括第一TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,所述终端设备根据所述第一TCI状态,发送所述CG对 应的PUSCH。
  14. 根据权利要求13所述的方法,其中,所述终端设备根据所述第一TCI状态,发送所述CG对应的PUSCH,包括:
    所述终端设备根据所述第一TCI状态和第一SRS资源,发送所述CG对应的PUSCH。
  15. 根据权利要求14所述的方法,其中,
    所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;或者,
    所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
  16. 根据权利要求14或15所述的方法,其中,所述方法还包括:
    所述终端设备接收第四信息;
    所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;或者,
    所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
  17. 根据权利要求14所述的方法,其中,
    所述第一SRS资源是由DCI中SRS资源指示域确定的;或者,
    所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
  18. 根据权利要求14或17所述的方法,其中,所述方法还包括:
    所述终端设备接收第五信息;
    所述第五信息指示所述第一SRS资源是由DCI中SRS资源指示域确定的;或者,
    所述第五信息指示所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
  19. 根据权利要求13所述的方法,其中,所述终端设备根据所述第一TCI状态,发送所述CG对应的PUSCH,包括:
    所述终端设备根据所述第一TCI状态、第一SRS资源以及第二SRS资源,发送所述CG对应的PUSCH。
  20. 根据权利要求19所述的方法,其中,
    所述第一SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的;
    所述第二SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的。
  21. 根据权利要求13至20任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第六信息;
    所述第六信息指示根据所述第一TCI状态和第一SRS资源,传输所述CG对应的PUSCH;或者,
    所述第六信息指示根据所述第一TCI状态、第一SRS资源以及第二SRS资源,传输所述CG对应的PUSCH。
  22. 根据权利要求3所述的方法,其中,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:
    在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,所述终端设备根据所述第一TCI状态和所述第二TCI状态,发送所述CG对应的PUSCH。
  23. 根据权利要求22所述的方法,其中,所述终端设备根据所述第一TCI状态和所述第二TCI状态,发送所述CG对应的PUSCH,包括:
    所述终端设备根据所述第一TCI状态、所述第二TCI状态、第一SRS资源以及第二SRS资源,发送所述CG对应的PUSCH;
    其中,所述第一SRS资源对应所述第一TCI状态;所述第二SRS资源对应所述第二TCI状态。
  24. 根据权利要求23所述的方法,其中,
    所述第一SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的;
    所述第二SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第二TCI状态确定的。
  25. 根据权利要求19至21、23、24任一项所述的方法,其中,
    所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;
    所述第二SRS资源是由所述RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
  26. 根据权利要求19至21、23至25任一项所述的方法,其中,RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator和srs-ResourceIndicator2指示的SRS资源中标识较小的SRS资源为所述第一SRS资源,标识较大的SRS资源为第二SRS资源,或者,标识较大的SRS资源为第一SRS资源,标识较小的SRS资源为第二SRS资源。
  27. 根据权利要求19至21、23、24任一项所述的方法,其中,
    所述第一SRS资源是由DCI中SRS资源指示域确定的;
    所述第二SRS资源是由所述DCI中第二SRS资源指示域确定的。
  28. 根据权利要求19至21、23、24、27任一项所述的方法,其中,DCI中SRS资源指示域和所述DCI中第二SRS资源指示域指示的SRS资源中,标识较小的SRS资源为所述第一SRS资源,标识较大的SRS资源为所述第二SRS资源,或者,标识较大的SRS资源为所述第一SRS资源,标识较小的SRS资源为所述第二SRS资源。
  29. 根据权利要求22至24任一项所述的方法,其中,
    所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI状态;或者,
    所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
  30. 根据权利要求22至24任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第七信息;
    所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI;或者,
    所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
  31. 根据权利要求22至24任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第八信息;
    所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI状态;或者,
    所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
  32. 根据权利要求22至24任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收第九信息;
    所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠前的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI;或者,
    所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠后的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
  33. 根据权利要求3所述的方法,其中,所述终端设备根据一个或多个TCI状态,发送CG对应的PUSCH,包括:
    在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个的情况下,所述终端设备根据所述第一TCI状态或所述第二TCI状态,发送所述CG对应的PUSCH。
  34. 根据权利要求33所述的方法,其中,所述终端设备根据所述第一TCI状态或所述第二TCI状态,发送所述CG对应的PUSCH,包括:
    所述终端设备根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态,发送所述CG 对应的PUSCH;或者,所述终端设备根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态,发送所述CG对应的PUSCH;或者,所述终端设备根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态,发送所述CG对应的PUSCH;或者,所述终端设备根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态,发送所述CG对应的PUSCH。
  35. 根据权利要求33或34所述的方法,其中,所述方法还还包括:所述终端设备接收第十信息;
    所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态,传输所述CG对应的PUSCH;或者,
    所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态,传输所述CG对应的PUSCH。
  36. 根据权利要求33或34所述的方法,其中,所述方法还还包括:
    所述终端设备接收第十一信息;
    所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态,传输所述CG对应的PUSCH;或者,
    所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态,传输所述CG对应的PUSCH。
  37. 根据权利要求16、18、21、31、32、35、36任一项所述的方法,其中,第四信息、第五信息、第六信息、第八信息、第九信息、第十信息、第十一信息中的至少之一,通过RRC信令、媒体接入控制控制单元MAC CE信令或下行控制信息DCI信令传输。
  38. 根据权利要求30、32、34、36任一项所述的方法,其中,所述第七信息通过MAC CE信令传输。
  39. 根据权利要求30、32、34、36、38任一项所述的方法,其中,用于传输所述第七信息的MAC CE信令中包括以下至少之一:
    下行带宽部分DL BWP指示信息;
    上行带宽部分UL BWP指示信息;
    一个或多个TCI数量指示域,其中,每个所述TCI数量指示域指示一个代码点codepoint对应1个或多个TCI状态;
    一个或多个TCI状态类型指示域,每个所述TCI状态类型指示域指示对应的TCI状态是下行DL TCI状态,或者联合Joint TCI状态,或者上行UL TCI状态;
    一个或多个TCI状态指示信息。
  40. 根据权利要求11至39任一项所述的方法,其中,所述方法还包括:
    终端设备接收第十二信息;
    所述第十二信息指示TCI状态类型包括联合TCI状态或独立TCI状态。
  41. 根据权利要求1至40任一项所述的方法,其中,所述方法还包括:
    所述终端设备发送以下至少之一:第一能力信息、第二能力信息、第三能力信息;
    其中,所述第一能力信息指示所述终端设备支持第四数量的TCI状态用于上行传输或上行重复传输,或者,所述第一能力信息指示所述终端设备支持DCI中传输配置指示Transmission configuration indication域中的一个代码点codepoint,最多可激活或者指示第四数量的TCI状态用于上行传输或上行重复传输;
    所述第二能力信息指示所述终端设备支持传输所述CG对应的PUSCH;
    所述第三能力信息指示所述终端设备支持根据第四数量的TCI状态传输所述CG对应的PUSCH。
  42. 根据权利要求41所述的方法,其中,所述第四数量为2或4。
  43. 根据权利要求41或42所述的方法,其中,在所述终端设备发送第一能力信息和第二能力信息的情况下,所述第一能力信息和所述第二能力信息通过同一个信令发送,或者,所述第一能力信息和所述第二能力信息通过不同的信令发送。
  44. 根据权利要求41至43任一项所述的方法,其中,所述第一能力信息、所述第二能力信息、所述第三能力信息中的至少一个,是通过RRC信令或者MAC CE信令传输的。
  45. 根据权利要求41至44任一项所述的方法,其中,所述第一能力信息、所述第二能力信息、所述第三能力信息中的至少一个,是针对频段band上报的,和/或,是按照频段组合独立上报的,和/或,是按照频段组合中的每个频段独立上报的,和/或,是按照频段组合中的每个频段上每个载波独立上报的,和/或,是按照频段范围上报的,和/或,是针对所述终端设备上报的。
  46. 根据权利要求1至45任一项所述的方法,其中,所述TCI状态为统一unified TCI状态。
  47. 一种通信方法,所述方法包括:
    网络设备接收配置授权CG对应的物理上行共享信道PUSCH;所述CG对应的PUSCH是根据一个或多个传输配置指示TCI状态发送的。
  48. 根据权利要求47所述的方法,其中,所述方法还包括:
    所述网络设备发送第一信息;所述第一信息指示所述CG。
  49. 根据权利要求47或48所述的方法,其中,所述方法还包括:
    所述网络设备发送第二信息;所述第二信息指示根据一个或多个TCI状态传输所述CG对应的PUSCH。
  50. 根据权利要求47至49任一项所述的方法,其中,所述CG对应一个带宽部分BWP;或者,
    所述CG对应一个服务小区或一个服务小区组或一个频段band上所有的CG。
  51. 根据权利要求49或50所述的方法,其中,所述第二信息指示所述CG对应多个探测参考信号SRS资源,所述CG对应的PUSCH根据一个或多个TCI状态进行传输;或者,
    所述第二信息指示所述CG对应一个SRS资源,所述CG对应的PUSCH根据一个TCI状态进行传输。
  52. 根据权利要求51所述的方法,其中,所述第二信息通过无线资源控制RRC参数rrc-配置上行授权rrc-ConfiguredUplinkGrant中配置的srs-资源指示srs-ResourceIndicator和srs-ResourceIndicator2来指示所述CG对应多个SRS资源;或者,
    所述第二信息通过RRC参数rrc-ConfiguredUplinkGrant中配置有srs-ResourceIndicator,没有配置srs-ResourceIndicator2,或者配置有srs-ResourceIndicator2,没有配置有srs-ResourceIndicator,来指示所述CG对应一个SRS资源。
  53. 根据权利要求51所述的方法,其中,所述第二信息通过激活所述CG的DCI指示所述CG对应的多个SRS资源;或者,
    所述第二信息通过激活所述CG的DCI指示所述CG对应的一个SRS资源。
  54. 根据权利要求49或50所述的方法,其中,所述第二信息为第一取值,表示根据一个TCI状态传输所述CG对应的PUSCH;或者,
    所述第二信息为第二取值,表示根据一个或多个TCI状态传输所述CG对应的PUSCH。
  55. 根据权利要求47或48所述的方法,其中,在所述网络设备发送第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输;或者,
    在所述网络设备未发送第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输。
  56. 根据权利要求47或48所述的方法,其中,在所述网络设备发送第二信息的情况下,所述CG对应的PUSCH根据一个或多个TCI状态进行传输;或者,
    在所述网络设备未发送第二信息的情况下,所述CG对应的PUSCH根据一个TCI状态进行传输。
  57. 根据权利要求47至56任一项所述的方法,其中,所述方法还包括:
    所述网络设备发送第三信息;所述第三信息指示激活的可用于上行传输的TCI状态;所述激活的可用于上行传输的TCI状态中的一个或多个TCI状态,用于所述终端设备发送所述CG对应的PUSCH。
  58. 根据权利要求49所述的方法,其中,
    在激活的可用于上行传输的TCI状态的第一数量,小于或等于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,所述CG对应的PUSCH是根据所述激活的可用于上行传输的TCI状态发送的;或者,
    在激活的可用于上行传输的TCI状态的第一数量,大于所述第二信息指示的传输所述CG对应的PUSCH的TCI状态的第二数量的情况下,所述CG对应的PUSCH是根据第三数量的所述激活的可用于上行传输的TCI状态发送的;所述第三数量小于或等于所述第二数量。
  59. 根据权利要求49所述的方法,其中,
    在激活的可用于上行传输的TCI状态包括第一TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,所述CG对应的PUSCH是根据所述第一TCI状态发送的。
  60. 根据权利要求59所述的方法,其中,所述CG对应的PUSCH是根据所述第一TCI状态和第一SRS资源发送的。
  61. 根据权利要求60所述的方法,其中,
    所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;或者,
    所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
  62. 根据权利要求60或61所述的方法,其中,所述方法还包括:
    所述网络设备发送第四信息;
    所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;或者,
    所述第四信息指示所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
  63. 根据权利要求60所述的方法,其中,
    所述第一SRS资源是由DCI中SRS资源指示域确定的;或者,
    所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
  64. 根据权利要求60或63所述的方法,其中,所述方法还包括:
    所述网络设备发送第五信息;
    所述第五信息指示所述第一SRS资源是由DCI中SRS资源指示域确定的;或者,
    所述第五信息指示所述第一SRS资源是由DCI中第二SRS资源指示域确定的。
  65. 根据权利要求59所述的方法,其中,所述CG对应的PUSCH是根据所述第一TCI状态、第一SRS资源以及第二SRS资源发送的。
  66. 根据权利要求65所述的方法,其中,
    所述第一SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的;
    所述第二SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的。
  67. 根据权利要求59至66任一项所述的方法,其中,所述方法还包括:
    所述网络设备发送第六信息;
    所述第六信息指示根据所述第一TCI状态和第一SRS资源,传输所述CG对应的PUSCH;或者,
    所述第六信息指示根据所述第一TCI状态、第一SRS资源以及第二SRS资源,传输所述CG对应的PUSCH。
  68. 根据权利要求49所述的方法,其中,在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个或多个的情况下,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态发送的。
  69. 根据权利要求68所述的方法,其中,所述CG对应的PUSCH是根据所述第一TCI状态、所述第二TCI状态、第一SRS资源以及第二SRS资源发送的;
    其中,所述第一SRS资源对应所述第一TCI状态;所述第二SRS资源对应所述第二TCI状态。
  70. 根据权利要求69所述的方法,其中,所述第一SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第一TCI状态确定的;
    所述第二SRS资源对应的PUSCH传输,所关联的上行发送空间滤波器或空间关系,是根据所述第二TCI状态确定的。
  71. 根据权利要求65至67、69、70任一项所述的方法,其中,所述第一SRS资源是由RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator指示的;所述第二SRS资源是由所述RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator2指示的。
  72. 根据权利要求65至67、69至71任一项所述的方法,其中,RRC参数rrc-ConfiguredUplinkGrant中的srs-ResourceIndicator和srs-ResourceIndicator2指示的SRS资源中标识较小的SRS资源为所述第一SRS资源,标识较大的SRS资源为第二SRS资源,或者,标识较大的SRS资源为第一SRS资源,标识较小的SRS资源为第二SRS资源。
  73. 根据权利要求65至67、69、70任一项所述的方法,其中,所述第一SRS资源是由DCI中SRS资源指示域确定的;所述第二SRS资源是由所述DCI中第二SRS资源指示域确定的。
  74. 根据权利要求65至67、69、70、73任一项所述的方法,其中,DCI中SRS资源指示域和所述DCI中第二SRS资源指示域指示的SRS资源中,标识较小的SRS资源为所述第一SRS资源,标识较大的SRS资源为所述第二SRS资源,或者,标识较大的SRS资源为所述第一SRS资源,标识较小的SRS资源为所述第二SRS资源。
  75. 根据权利要求68至70任一项所述的方法,其中,
    所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI 状态;或者,
    所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
  76. 根据权利要求68至70任一项所述的方法,其中,所述方法还包括:
    所述网络设备发送第七信息;
    所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI;或者,
    所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
  77. 根据权利要求68至70任一项所述的方法,其中,所述方法还包括:
    所述网络设备发送第八信息;
    所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态或第二小的TCI状态;或者,
    所述第八信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最大的TCI状态;所述第二TCI状态为所述激活的可用于上行传输的多个TCI状态中,标识最小的TCI状态或第二大的TCI状态。
  78. 根据权利要求68至70任一项所述的方法,其中,所述方法还包括:
    所述网络设备发送第九信息;
    所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠前的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠后的TCI或者第二靠前的TCI;或者,
    所述第九信息指示:所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述终端设备接收的第七信息指示的多个TCI中最靠后的TCI;所述第一TCI状态为所述激活的可用于上行传输的多个TCI状态,在所述第七信息指示的多个TCI中最靠前的TCI或者第二靠后的TCI。
  79. 根据权利要求49所述的方法,其中,在激活的可用于上行传输的TCI状态包括第一TCI状态和第二TCI状态,所述第二信息指示的传输所述CG对应的PUSCH的TCI状态为一个的情况下,所述CG对应的PUSCH是根据所述第一TCI状态或所述第二TCI状态发送的。
  80. 根据权利要求79所述的方法,其中,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态发送的;或者,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态发送的;或者,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态发送的;或者,所述CG对应的PUSCH是根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态发送的。
  81. 根据权利要求79或80所述的方法,其中,所述方法还还包括:所述网络设备发送第十信息;
    所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较小的TCI状态,传输所述CG对应的PUSCH;或者,
    所述第十信息指示根据所述第一TCI状态和所述第二TCI状态中标识较大的TCI状态,传输所述CG对应的PUSCH。
  82. 根据权利要求79或80所述的方法,其中,所述方法还还包括:所述网络设备发送第十一信息;
    所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠前的TCI状态,传输所述CG对应的PUSCH;或者,
    所述第十一信息指示根据所述第一TCI状态和所述第二TCI状态,在所述终端设备接收的第七信息指示的多个TCI中靠后的TCI状态,传输所述CG对应的PUSCH。
  83. 根据权利要求62、64、67、77、78、81、82任一项所述的方法,其中,第四信息、第五信息、第六信息、第八信息、第九信息、第十信息、第十一信息中的至少之一,通过RRC信令、媒体接入控制控制单元MAC CE信令或下行控制信息DCI信令传输。
  84. 根据权利要求76、78、80、82任一项所述的方法,其中,所述第七信息通过MAC CE信令传输。
  85. 根据权利要求76、78、80、82、84任一项所述的方法,其中,用于传输所述第七信息的MAC CE信令中包括以下至少之一:
    下行带宽部分DL BWP指示信息;
    上行带宽部分UL BWP指示信息;
    一个或多个TCI数量指示域,其中,每个所述TCI数量指示域指示一个代码点codepoint对应1个或多个TCI状态;
    一个或多个TCI状态类型指示域,每个所述TCI状态类型指示域指示对应的TCI状态是下行DL TCI状态,或者联合Joint TCI状态,或者上行UL TCI状态;
    一个或多个TCI状态指示信息。
  86. 根据权利要求57至85任一项所述的方法,其中,所述方法还包括:
    终端设备发送第十二信息;
    所述第十二信息指示TCI状态类型包括联合TCI状态或独立TCI状态。
  87. 根据权利要求47至86任一项所述的方法,其中,所述方法还包括:
    所述网络设备接收以下至少之一:第一能力信息、第二能力信息、第三能力信息;
    其中,所述第一能力信息指示所述终端设备支持第四数量的TCI状态用于上行传输或上行重复传输,或者,所述第一能力信息指示所述终端设备支持DCI中传输配置指示Transmission configuration indication域中的一个代码点codepoint,最多可激活或者指示第四数量的TCI状态用于上行传输或上行重复传输;
    所述第二能力信息指示所述终端设备支持传输所述CG对应的PUSCH;
    所述第三能力信息指示所述终端设备支持根据第四数量的TCI状态传输所述CG对应的PUSCH。
  88. 根据权利要求87所述的方法,其中,所述第四数量为2或4。
  89. 根据权利要求87或88所述的方法,其中,所述网络设备通过同一个信令接收所述第一能力信息和所述第二能力信息,或者所述网络设备通过不同的信令接收所述第一能力信息和所述第二能力信息。
  90. 根据权利要求87至89任一项所述的方法,其中,所述第一能力信息、所述第二能力信息、所述第三能力信息中的至少一个,是通过RRC信令或者MAC CE信令传输的。
  91. 根据权利要求87至90任一项所述的方法,其中,所述第一能力信息、所述第二能力信息、所述第三能力信息中的至少一个,是针对频段band上报的,和/或,是按照频段组合独立上报的,和/或,是按照频段组合中的每个频段独立上报的,和/或,是按照频段组合中的每个频段上每个载波独立上报的,和/或,是按照频段范围上报的,和/或,是针对所述终端设备上报的。
  92. 根据权利要求47至91任一项所述的方法,其中,所述TCI状态为统一unified TCI状态。
  93. 一种通信装置,包括:通信单元,用于根据一个或多个传输配置指示TCI状态,发送配置授权CG对应的物理上行共享信道PUSCH。
  94. 一种通信装置,包括:通信单元,用于接收配置授权CG对应的物理上行共享信道PUSCH;所述CG对应的PUSCH是根据一个或多个传输配置指示TCI状态发送的。
  95. 一种通信设备,包括:处理器和存储器,
    所述存储器存储有可在处理器上运行的计算机程序,
    所述处理器执行所述程序时实现权利要求1至46任一项或者47至92任一项所述方法。
  96. 一种计算机存储介质,所述计算机存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现权利要求1至46任一项或者47至92任一项所述方法。
  97. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,以实现如权利要求1至46任一项或者47至92任一项所述方法。
  98. 一种计算机程序产品,所述计算机程序产品包括计算机存储介质,所述计算机存储介质存储计算机程序,所述计算机程序包括能够由至少一个处理器执行的指令,当所述指令由所述至少一个处理器执行时实现权利要求1至46任一项或者47至92任一项所述方法。
  99. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至46任一项或者47至92任一项所述方法。
PCT/CN2022/111232 2022-08-09 2022-08-09 通信方法、装置、设备、存储介质、芯片、产品及程序 WO2024031357A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111232 WO2024031357A1 (zh) 2022-08-09 2022-08-09 通信方法、装置、设备、存储介质、芯片、产品及程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/111232 WO2024031357A1 (zh) 2022-08-09 2022-08-09 通信方法、装置、设备、存储介质、芯片、产品及程序

Publications (1)

Publication Number Publication Date
WO2024031357A1 true WO2024031357A1 (zh) 2024-02-15

Family

ID=89850078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111232 WO2024031357A1 (zh) 2022-08-09 2022-08-09 通信方法、装置、设备、存储介质、芯片、产品及程序

Country Status (1)

Country Link
WO (1) WO2024031357A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586846A (zh) * 2019-02-15 2020-08-25 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
WO2022084976A1 (en) * 2020-10-23 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Configured grant based pusch transmission to multiple trps
WO2022144861A1 (en) * 2021-01-04 2022-07-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and systems of downlink and uplink transmission configuration indicator (tci)
CN114846761A (zh) * 2020-01-15 2022-08-02 Oppo广东移动通信有限公司 用于物理上行链路共享信道传输的方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586846A (zh) * 2019-02-15 2020-08-25 成都华为技术有限公司 传输配置编号状态指示的方法和通信装置
CN114846761A (zh) * 2020-01-15 2022-08-02 Oppo广东移动通信有限公司 用于物理上行链路共享信道传输的方法、终端设备和网络设备
WO2022084976A1 (en) * 2020-10-23 2022-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Configured grant based pusch transmission to multiple trps
WO2022144861A1 (en) * 2021-01-04 2022-07-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and systems of downlink and uplink transmission configuration indicator (tci)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-2108870, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052057746 *

Similar Documents

Publication Publication Date Title
WO2021089043A1 (zh) 传输信道的配置方法和装置、传输信道的发送方法和装置、设备及存储介质
US11936585B2 (en) Method and device for transmitting or receiving downlink channel from multiple transmission reception points in wireless communication system
CN113261224A (zh) 用于单dci多时隙调度的harq处理
US20220217694A1 (en) Method and apparatus for transmitting and receiving pdcch in wireless communication system
WO2019233339A1 (zh) 传输信息的方法和通信设备
US11864206B2 (en) Method and device for transmitting/receiving downlink channel from multiple transmission/reception points in wireless communication system
US20230073095A1 (en) Method and apparatus for transmitting or receiving downlink channel from multiple transmission/reception points in wireless communication system
WO2021027518A1 (zh) 处理数据的方法和通信装置
US20230156740A1 (en) Method and device for transmitting and receiving pdcch in wireless communication system
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2020221321A1 (zh) 通信方法以及通信装置
JP2023514516A (ja) Pucch信頼性拡張のシステムおよび方法
US20230117189A1 (en) Blind decoding-based method and device for transmitting and receiving downlink channel in wireless communication system
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
US11737131B2 (en) Method and apparatus for transmitting and receiving channel state information in wireless communication system
US11963187B2 (en) Systems and methods for slot offset information management
US20220264339A1 (en) Method and apparatus for transmitting and receiving pdcch in wireless communication system
WO2024031357A1 (zh) 通信方法、装置、设备、存储介质、芯片、产品及程序
US20230224726A1 (en) Method and device for transmission and reception based on default spatial parameter in wireless communication system
EP4113881A1 (en) Method and device for transmitting and receiving reference signal in wireless communication system
WO2022027509A1 (zh) 上行数据的发送方法、装置和系统
WO2024026779A1 (zh) 数据传输方法及装置、终端设备、网络设备
WO2024031237A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023206004A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023097622A1 (zh) 上行信号传输方法、设备、芯片、介质、产品及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954333

Country of ref document: EP

Kind code of ref document: A1