WO2019029463A1 - 一种接收控制信息、发送控制信息的方法及设备 - Google Patents

一种接收控制信息、发送控制信息的方法及设备 Download PDF

Info

Publication number
WO2019029463A1
WO2019029463A1 PCT/CN2018/098687 CN2018098687W WO2019029463A1 WO 2019029463 A1 WO2019029463 A1 WO 2019029463A1 CN 2018098687 W CN2018098687 W CN 2018098687W WO 2019029463 A1 WO2019029463 A1 WO 2019029463A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
parameter
uplink control
repetition number
network device
Prior art date
Application number
PCT/CN2018/098687
Other languages
English (en)
French (fr)
Inventor
温容慧
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18844741.1A priority Critical patent/EP3661299B1/en
Priority to BR112020002455-4A priority patent/BR112020002455A2/pt
Publication of WO2019029463A1 publication Critical patent/WO2019029463A1/zh
Priority to US16/783,157 priority patent/US11395272B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and a device for receiving control information and transmitting control information.
  • the format of the uplink control channel is determined according to the content of the uplink information, and different PUCCH formats correspond to different reliability of the uplink transmission. For example, if the uplink control channel is a physical uplink control channel (PUCCH), if a one-bit acknowledgement (ACK)/negative acknowledgement (NACK) is transmitted through the PUCCH, the PUCCH format 1a is adopted, if the channel quality is transmitted through the PUCCH. For channel quality indicator (CQI), PUCCH format 1 is used.
  • PUCCH format 1 is used for channel quality indicator (CQI).
  • the reliability requirements for uplink transmission may be different in different coverage scenarios.
  • the maximum transmission power of the terminal device is lower than that of the base station, the power consumption and the like are also considered, and the channel condition is poor or the transmission power of the terminal device located at the edge of the cell is limited, which may cause the uplink of the terminal device located at the edge of the cell.
  • the transmission distance is smaller than the transmission distance of the base station, that is, the uplink coverage is limited.
  • the terminal equipment in the scenario with limited uplink coverage can actually reduce the reliability of the uplink transmission and improve the reliability of the downlink transmission, so as to ensure the complete transmission process as much as possible. Reliability, and this can reduce the reliability requirements for the uplink control channel.
  • the terminal device located at the center of the cell may not be limited in uplink coverage, and may be sent according to the reliability corresponding to the uplink information.
  • the format of the uplink control channel is determined according to the content of the uplink information, and the format of the uplink channel cannot be adjusted according to different scenarios, that is, the reliability of the uplink transmission cannot be adjusted.
  • the embodiment of the present invention provides a method and a device for receiving control information and sending control information, which are used to flexibly adjust the reliability of uplink transmission.
  • a method of receiving control information is provided, the method being executable by a network device, such as a base station.
  • the method includes: the network device sending the indication information of the uplink control channel to the terminal device, where the indication information of the uplink control channel is used to indicate the following at least one transmission parameter: a time domain length parameter, a frequency domain length parameter, and a time domain repetition number a parameter, a frequency domain repetition number parameter, and a transmit diversity mode parameter; the network device receives uplink control information from the terminal device by using the uplink control channel according to the indication information.
  • a method of transmitting control information is provided, the method being executable by a terminal device.
  • the method includes: the terminal device receiving the indication information of the uplink control channel from the network device, where the indication information of the uplink control channel is used to indicate at least one of the following transmission parameters: a time domain length parameter, a frequency domain length parameter, and a time domain repetition number The parameter, the frequency domain repetition number parameter, and the transmit diversity mode parameter; the terminal device sends uplink control information to the network device by using the uplink control channel according to the indication information.
  • the network device sends the indication information of the uplink control channel to the terminal device, where the indication information may indicate at least one parameter, that is, the uplink channel can be implemented by adjusting one parameter or multiple parameters of the at least one parameter.
  • the network device can flexibly adjust the uplink channel according to different coverage scenarios, so that the reliability of the transmission can be adjusted, so that the uplink transmission is more in line with the requirements of the scenario.
  • the indication information includes first format information of the uplink control channel, and the first format information includes the at least one parameter.
  • the network device directly indicates the specific first format information for the terminal device, and the terminal device can directly determine the uplink control channel according to the first format information, which is simple.
  • the network device before the network device sends the indication information of the uplink control channel to the terminal device, the network device further sends the RRC signaling or the MCE to the terminal device; the RRC signaling or the MCE includes multiple Format information, wherein, among the plurality of format information, at least one parameter of different format information has different values.
  • the method before the terminal device receives the indication information of the uplink control channel from the network device, the method further includes: the terminal device receiving the RRC signaling or the MCE from the network device; the RRC signaling or the MCE includes multiple formats Information, wherein, among the plurality of format information, different format information has at least one parameter having different values.
  • the network device may pre-configure a plurality of format information of the uplink control channel by using at least one parameter as described above, and when it is necessary to configure an uplink control channel, only one of the plurality of pre-configured format information is selected as the uplink control.
  • the format information of the channel can be used in a simple manner.
  • the network device can be configured with multiple format information with different reliability.
  • the network device can select one format information, such as a network device, from multiple format information according to factors such as the current scenario and the reliability requirement of the service.
  • the first format information is selected from the plurality of format information according to factors such as the uplink coverage and the requirements of the service itself. Since the first format information is originally configured by at least one parameter as above, the first format information can naturally indicate at least one parameter.
  • the first format information selected in this way is more in line with the needs of the scene, and can make the transmission more efficient.
  • the network device before the network device sends the indication information of the uplink control channel to the terminal device, the network device further indicates the resource information of the second format to the terminal device by using RRC signaling or an MCE.
  • the terminal device before the terminal device receives the indication information of the uplink control channel from the network device, the terminal device further determines, by using the RRC signaling or the MCE, the resource information of the second format indicated by the network device for the terminal device.
  • the indication information is used to indicate a time domain repetition number parameter, and the value of the time domain repetition number parameter and the location of the starting time domain resource are used to determine a time domain corresponding to the second format. The number of repetitions and the corresponding time domain location; wherein the location of the starting time domain resource is obtained by the resource information of the second format.
  • the network device can be configured with the second format in advance, and the second format is configured as a fixed format information.
  • the network device can determine the uplink according to the current scenario and the reliability requirement of the service. For the control channel, whether additional parameters need to be configured, the other parameters herein may also be a subset of at least one of the previous parameters. If additional parameters need to be configured, the network device configures the second format information and the M parameters of the at least one parameter for the uplink control channel, where M is a positive integer, and M is less than or equal to the total number of at least one parameter.
  • the M parameters here may be the parameters selected from the at least one parameter according to the situation.
  • the second format may not indicate the number of repetitions of the time domain, that is, the number of repetitions indicated by the second format is generally 1, Therefore, when the M parameters are selected, the time domain repetition number parameter can be selected. Then, the network device completes the configuration of the uplink control channel by configuring the second format information and the time domain repetition number parameter for the uplink control channel. By configuring the time domain repetition number parameter, the uplink control information can be repeatedly transmitted in the time domain, which improves the reliability of the uplink transmission, and the adjustment manner is very flexible.
  • the network device receives the uplink control information from the terminal device by using the uplink control channel according to the indication information, including: the network device is in a time domain location indicated by the time domain repetition number parameter. And receiving, by the terminal device, the uplink control information according to the time domain repetition number indicated by the time domain repetition number parameter.
  • the terminal device sends the uplink control information to the network device by using the uplink control channel according to the indication information, including: the terminal device is in a time domain location indicated by the time domain repetition number parameter, according to The time domain repetition number indicated by the time domain repetition number parameter sends the uplink control information to the network device.
  • the terminal device sends the uplink control information according to the time domain repeating number parameter, and the network device also receives the uplink control information according to the time domain repeating number parameter.
  • the transmission of uplink control information in this way is highly reliable.
  • the indication information includes a bitmap, where the bitmap is used to indicate the frequency domain repetition number parameter corresponding to the second format and a corresponding frequency domain location; or the indication information includes a frequency domain repetition number parameter, where the frequency domain repetition number parameter is used to determine a frequency domain repetition number corresponding to the second format and a corresponding frequency domain location; wherein the frequency domain repetition number parameter has a value and a frequency
  • the location information is in one-to-one correspondence; or, the indication information includes a frequency domain repetition number parameter and a location of the starting frequency domain resource, where the frequency domain repetition number parameter and the location of the starting frequency domain resource are used to determine the second format Corresponding frequency domain repetition times and corresponding frequency domain locations; wherein the location of the initial frequency domain resource is obtained by using the resource information of the second format.
  • the network device can determine whether additional configuration is required for the uplink control channel according to the current scenario and the reliability requirement of the service.
  • the parameter if additional parameters need to be configured, the network device configures the second format information and the M parameters of the at least one parameter for the uplink control channel.
  • the M parameters here may be the parameters selected from the at least one parameter according to the situation.
  • the second format may not indicate the number of repetitions of the frequency domain, that is, the number of repetitions indicated by the second format is generally 1, Therefore, the frequency domain repetition number parameter can be selected when the M parameters are selected.
  • the network device completes the configuration of the uplink control channel by configuring the second format information and the frequency domain repetition number parameter for the uplink control channel.
  • the network device may select any one of the indication manners according to the situation, which is more flexible.
  • the network device receives the uplink control information from the terminal device by using the uplink control channel according to the indication information, where the network device is in the frequency domain location indicated by the frequency domain repetition number parameter. And receiving, by the terminal device, the uplink control information according to the frequency domain repetition number indicated by the frequency domain repetition number parameter.
  • the terminal device sends the uplink control information to the network device by using the uplink control channel according to the indication information, where the terminal device is in the frequency domain location indicated by the frequency domain repetition number parameter, according to the The frequency domain repetition number indicated by the frequency domain repetition number parameter sends the uplink control information to the network device.
  • the terminal device sends the uplink control information according to the frequency domain repetition number parameter, and the network device also receives the uplink control information according to the frequency domain repetition number parameter.
  • the transmission of uplink control information in this way is highly reliable.
  • the time domain length parameter is the number of time domain resources, the time domain resource is a symbol or a time slot or a subframe; and the frequency domain length parameter is a number of frequency domain resources,
  • the frequency domain resource is a PRB or an RBG.
  • the time domain length parameter and the frequency domain length parameter are explained.
  • the network device sends the indication information of the uplink control channel to the terminal device, where the network device sends the indication information of the uplink control channel to the terminal device by using the DCI.
  • the terminal device receives the indication information of the uplink control channel from the network device, where the terminal device receives the indication information of the uplink control channel from the network device by using the DCI.
  • the embodiment of the present application does not limit the manner in which the network device sends the indication information.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a transmitter and a receiver.
  • the network device may further include a processor.
  • the transmitter, receiver and processor may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a transmitter and a receiver.
  • the terminal device may further include a processor.
  • the transmitter, receiver and processor may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a transmitting unit and a receiving unit.
  • the network device may further include a processing unit.
  • the transmitting unit, the receiving unit and the processing unit may perform the respective functions of the methods provided by any of the above-described first aspect or any of the possible aspects of the first aspect.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a transmitting unit and a receiving unit.
  • the terminal device may further include a processing unit.
  • the transmitting unit, the receiving unit and the processing unit may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, a communication interface, and a processor coupled to the memory and the communication interface.
  • the program code stored in the memory includes instructions that, when executed by the processor, cause the communication device to perform the method performed by the network device in any of the possible aspects of the first aspect or the first aspect described above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, a communication interface, and a processor coupled to the memory and the communication interface.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the second aspect or the second aspect above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect of the first aspect of the design Said method.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the possible aspects of the second aspect or the second aspect described above Said method.
  • a computer program product comprising: instructions stored in a computer program product, when executed on a computer, causing the computer to perform any of the first aspect or the first aspect described above The method described in the design.
  • a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any one of the second aspect or the second aspect described above The method described in the design.
  • the adjustment of the uplink channel can be implemented by adjusting one parameter or multiple parameters of the at least one parameter, and the network device can flexibly adjust the uplink channel according to different coverage scenarios, so that the transmission can be implemented.
  • the adjustment of reliability makes the uplink transmission more in line with the needs of the scene.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for receiving control information and transmitting control information according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of repeatedly transmitting uplink control information in a time domain and a frequency domain according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of repeatedly transmitting uplink control information in a time domain according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of resources pre-configured by a network device for a terminal device
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a communication apparatus according to an embodiment of the present application.
  • a terminal device including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (UE), a wireless terminal device, a mobile terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station.
  • Remote station access point (AP), remote terminal, access terminal, user terminal, user agent, or user Equipment (user device) and so on.
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • smart watches smart helmets, smart glasses, smart bracelets, mobile phones, tablets, computers with wireless transceivers
  • Virtual Reality (VR) devices Augmented Reality, AR) terminal equipment
  • wireless terminal in industrial control wireless terminal in self driving, wireless terminal in remote medical surgery
  • smart grid A wireless terminal, a wireless terminal in transport safety, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, global positioning system
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more cells.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution (LTE) system or an evolved LTE system (LTE-A), or
  • the next generation node B (gNB) in the new radio (NR) system of the fifth generation mobile communication system (5G) may be included in the embodiment of the present application.
  • the uplink control channel includes, for example, a physical uplink control channel (PUCCH) or an enhanced physical uplink control channel (EPUCCH), and may also include other uplink control channels, and different ones.
  • PUCCH physical uplink control channel
  • EPUCCH enhanced physical uplink control channel
  • the uplink control channel may have different names.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • NR system 5G NR system
  • LTE system Long Term Evolution
  • next-generation mobile communication system or other similar mobile communication system.
  • the international telecommunication union defines three types of application scenarios for 5G and future mobile communication systems: enhanced mobile broadband (eMBB), high reliable low latency communication (ultra reliable and low latency). Communications, URLLC) and massive machine type communications (mMTC).
  • eMBB enhanced mobile broadband
  • URLLC high reliable low latency communication
  • mMTC massive machine type communications
  • Typical eMBB services include: ultra high definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main features of these services are large amount of transmitted data and high transmission rate.
  • Typical URLLC services include: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and tactile interaction applications such as remote repair and remote surgery.
  • the main features of these services are ultra-reliable. Sex, low latency, less data transfer and burstiness.
  • Typical mMTC services include: smart grid distribution automation, smart city, etc. The main features are huge number of networked devices, small amount of transmitted data, and insensitive data transmission delay. These mMTC terminals need to meet low cost and very long standby. The demand for time.
  • the URLLC service requires extremely high latency, and the transmission delay is required to be within 0.5 milliseconds (millisecond, ms) without considering reliability, and the transmission delay requirement is required to achieve 99.999% reliability. Within 1ms.
  • the smallest time scheduling unit is a transmission time interval (TTI) of 1 ms duration.
  • TTI transmission time interval
  • the data transmission of the wireless air interface can use a shorter time scheduling unit, for example, using a mini-slot or a larger sub-carrier interval as the smallest time scheduling unit.
  • a mini-slot includes one or more time domain symbols, where the time domain symbols may be orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM orthogonal frequency division multiplexing
  • the corresponding time length is 0.5 ms; for a time slot with a subcarrier spacing of 60 kHz, the corresponding time The length is shortened to 0.125ms.
  • the reliability requirements of URLLC are extremely high. This requirement is not only reflected in the data channel but also in the control channel. Therefore, the reliability of URLLC is a cascade of reliability of multiple types of channels. It has been studied that the reliability of multiple types of channels can be transferred and interchanged. For example, since the maximum transmission power of the terminal device is lower than that of the base station, the power consumption and the like are also considered, and the channel condition is poor or the transmission power of the terminal device located at the edge of the cell is limited, which may cause the uplink of the terminal device located at the edge of the cell. The transmission distance is smaller than the transmission distance of the base station, that is, the uplink coverage is limited.
  • the reliability of the uplink transmission can be appropriately reduced, and the reliability of the downlink transmission is improved, so that the reliability of the complete transmission process can be ensured as much as possible, and thus the uplink can be reduced. Control channel reliability requirements.
  • the content included in the uplink control information may be the confirmation result of the downlink data information, the channel quality measurement of the terminal device, and the like, and the time-frequency resource size occupied by different contents may be different. Therefore, in the LTE system, the format of the uplink control channel is determined according to the content of the uplink information, and the format of the selected uplink control channel is the same as long as the contents of the uplink information are the same. For example, refer to Table 1, which is a schematic diagram of different uplink control information formats defined by different contents in an LTE system:
  • the corresponding PUCCH format is determined, and different PUCCH formats correspond to different transmission reliability, that is, the information of the PUCCH bearer is determined, which is equal to The reliability of the transmission is determined.
  • the format of the uplink channel cannot be adjusted according to different scenarios, that is, the reliability of the uplink transmission cannot be adjusted.
  • the technical solution of the embodiment of the present application is provided to implement flexible adjustment for the uplink channel, thereby achieving adjustment of the reliability of the transmission.
  • FIG. 1 it is a schematic structural diagram of a mobile communication system to which the embodiment of the present application is applied.
  • the mobile communication system includes a core network device, a radio access network device, and at least one terminal device (such as terminal device 1 and terminal device 2 in FIG. 1).
  • the terminal device is connected to the radio access network device in a wireless manner, and the radio access network device is connected to the core network device by using a wireless manner or a wired manner.
  • the core network device and the wireless access network device may be independent physical devices, or may integrate the functions of the core network device with the logical functions of the wireless access network device on the same physical device, or may be a physical device.
  • the functions of some core network devices and the functions of some wireless access network devices are integrated.
  • the terminal device can be fixed or mobile.
  • FIG. 1 is only a schematic diagram.
  • the mobile communication system may further include other network devices, for example, a wireless relay device and a wireless backhaul device, which are not shown in FIG.
  • the number of core network devices, radio access network devices, and terminal devices included in the mobile communication system is not limited in this embodiment of the present application.
  • the radio access network device is an access device that the terminal device accesses to the mobile communication system by using a wireless device, and may be a base station NodeB, an evolved base station eNodeB, a base station in a 5G mobile communication system, a base station in a future mobile communication system, or
  • the specific technology and the specific device configuration adopted by the radio access network device are not limited in the embodiment of the present application, such as an access node in a wireless fidelity (WLAN) system.
  • WLAN wireless fidelity
  • the wireless access network equipment and terminal equipment can be deployed on land, indoors or outdoors, hand-held or on-board; it can also be deployed on the water; it can also be deployed on airborne aircraft, balloons or satellites.
  • the application scenarios of the radio access network device and the terminal device are not limited in this embodiment.
  • the radio access network device and the terminal device and the terminal device and the terminal device and the terminal device can communicate through a licensed spectrum, or can communicate through an unlicensed spectrum, or can simultaneously pass the licensed spectrum and Authorize the spectrum for communication.
  • the radio access network device and the terminal device and the terminal device and the terminal device can communicate through the spectrum below 6G, or can communicate through the spectrum of 6G or higher, and can simultaneously use the spectrum below 6G and the spectrum above 6G. Communicate.
  • the embodiment of the present application does not limit the spectrum resources used between the radio access network device and the terminal device.
  • an embodiment of the present application provides a method for receiving control information and transmitting control information.
  • the method provided by the embodiment of the present application is applied to the application scenario shown in FIG. 1 as an example.
  • the network device mentioned below may be the radio access network device in the application scenario shown in FIG. 1.
  • the network device configures an uplink control channel for the terminal device.
  • the network device may configure an uplink control channel for the terminal device when determining that the terminal device is to send the uplink control information by using the uplink control channel, or configure the uplink control channel for the terminal device before the terminal device temporarily does not send the uplink control information.
  • the network device can configure the uplink control channel in multiple manners, which are respectively introduced below.
  • a method of selecting format information from a plurality of pre-configured format information 1.
  • the network device pre-configures a plurality of format information of the uplink control channel, where each format information may be configured by using at least one parameter: a time domain length parameter, a frequency domain length parameter, a repetition number parameter, And the transmit diversity mode parameters.
  • the repetition number parameter may include a time domain repetition number parameter and/or a frequency domain repetition number parameter.
  • the at least one parameter may further include a power parameter, a time domain resource parameter, a frequency domain resource parameter, and a sequence resource parameter, that is, each format information may be configured by using at least one parameter as follows.
  • time domain length parameter time domain length parameter, frequency domain length parameter, time domain repetition number parameter, frequency domain repetition number parameter, power parameter, transmit diversity mode parameter, time domain resource parameter, frequency domain resource parameter, and sequence resource parameter. That is, by configuring the value of at least one parameter, the format information of the uplink control channel is obtained. Then, in at least one parameter, as long as one parameter or a plurality of parameters have different values, it is considered that the corresponding format information is different.
  • the network device is configured with the first format information and the second format information, where the first format information and the second format information are configured by using a time domain length parameter, a frequency domain length parameter, a repetition number parameter, and a transmit diversity mode parameter, where The time domain length parameter in the first format information has a value of 2, and the time domain length parameter in the second format information has a value of 4, which indicates that the first format information and the second format information are different format information. Because there is at least one parameter whose value is different.
  • the time domain length parameter is the number of time domain resources, and the time domain resource is a symbol, or a slot, or a subframe.
  • the existing uplink control channel can support the transmission of 1, 2, 4 to 14 symbols, and the network device configures the format of the uplink control channel for the terminal device to determine that the uplink control channel occupies several symbols. From the perspective of transmission reliability, the greater the number of symbols occupied, the higher the reliability of transmission.
  • the symbol here may be an orthogonal frequency division multiplexing (OFDM) symbol.
  • the frequency domain length parameter is the number of frequency domain resources, and the frequency domain resource is a physical resource block (PRB) or a resource block group (RBG).
  • the network device configures the format of the uplink control channel for the terminal device, so as to determine that the uplink control channel occupies several PRBs. From the aspect of transmission reliability, the more the number of occupied PRBs, the higher the reliability of transmission is generally.
  • the repetition number parameter is used to indicate the number of repeated transmissions of the uplink control channel, and if the repetition number parameter includes the time domain repetition number parameter, it is used to indicate the number of times the uplink control channel is repeatedly transmitted in the time domain, and if the repetition number parameter includes the frequency domain repetition number
  • the parameter is used to indicate the number of times the uplink control channel repeats transmission in the frequency domain.
  • the transmission of the uplink control channel described herein may be understood as transmitting uplink control information through the uplink control channel. As shown in FIG. 3, for example, the uplink control channel occupies one time-frequency resource for transmission, and the format information configured for the terminal device needs to be repeated six times, that is, a total of six time domain resources are occupied.
  • each repetition is 3 times in the time domain, and the value of the instantaneous domain repetition number parameter is 3, wherein each time unit is repeated twice in the frequency domain, that is, the frequency domain repetition number parameter has a value of 2 .
  • the time or frequency resources occupied by each repetition may be continuous or discontinuous.
  • the transmit diversity mode parameter is used to indicate whether the terminal device adopts a transmit diversity mode when transmitting uplink control information through the uplink control channel.
  • the terminal device can use space diversity to improve the reliability of the uplink transmission. That is, if the transmit diversity mode is used to transmit the uplink control information, the reliability will be higher, and if the transmit diversity mode is not used to send the uplink control. Information is less reliable than using transmit diversity.
  • the power parameter is used to indicate the uplink transmit power used when transmitting the uplink control information through the uplink control channel.
  • the higher the uplink transmit power the higher the reliability of the transmission.
  • the value of the power parameter configured by the network device can be higher, that is, the terminal device can adopt a higher uplink transmit power for such a service, so as to ensure transmission as much as possible.
  • the reliability of the eMBB service is not very high.
  • the value of the power parameter configured by the network device can be lower, that is, the terminal device can adopt lower uplink transmit power for such service. To reduce the power consumption of the terminal device.
  • the time domain resource parameter is used to indicate the time domain resource occupied by the uplink control channel
  • the frequency domain resource parameter is used to indicate the frequency domain resource occupied by the uplink control channel
  • the sequence resource parameter is used to indicate the sequence resource occupied by the uplink control channel.
  • the network device pre-configures a plurality of format information of the uplink control channel by using at least one parameter as described above, and when it is necessary to configure an uplink control channel, only one of the plurality of format information configured in advance is selected as the uplink control channel.
  • the format information can be used in a simple way.
  • the network device can be configured with multiple format information with different reliability.
  • the network device can select one format information, such as a network device, from multiple format information according to factors such as the current scenario and the reliability requirement of the service.
  • the first format information is selected from the plurality of format information according to factors such as the uplink coverage and the requirements of the service itself. Since the first format information is originally configured by at least one parameter as above, the first format information can naturally indicate at least one parameter.
  • the first format information selected in this way is more in line with the needs of the scene, and can make the transmission more efficient.
  • the network device pre-configures the format information of the uplink control channel.
  • the network device pre-configures or pre-defines a format information of the uplink control channel, and the format information is referred to as second format information, and the second format is used.
  • the information corresponds to the second format of the uplink control channel.
  • the pre-defined format is, for example, any of a number of fixed formats defined by the protocol. When the protocol is in a fixed format, the pre-defined formats are also pre-defined for which uplink control information is specifically transmitted.
  • the second format may be extended to any one of the LTE systems, for example, the PUCCH format 1 in the LTE system, or the PUCCH format 1a, or the second format, or the network device in the embodiment of the present application is as described above.
  • the format configured by the at least one parameter, the network device may configure one format as the second format according to the at least one parameter.
  • the second format is configured as a fixed format.
  • the network device can determine whether additional configuration is required for the uplink control channel according to the current scenario and the reliability requirement of the service.
  • the parameters, other parameters here, may also be a subset of at least one of the previous parameters. If additional parameters need to be configured, the network device configures the second format and the M parameters of the at least one parameter for the uplink control channel, where M is a positive integer and M is less than or equal to the total number of at least one parameter.
  • the M parameters herein may be the parameters selected from the at least one parameter according to the situation.
  • the second format may not indicate the number of repetitions in the time domain or the frequency domain, that is, the number of repetitions indicated by the second format is generally 1, so the time domain repetition number parameter may be selected when the M parameters are selected, or the frequency domain repetition number may be selected. Parameters, or you can also select the time domain repeat count parameter and the frequency domain repeat count parameter. Then, the network device completes the configuration for the uplink control channel by configuring the second format and the M parameters for the uplink control channel.
  • the network device configures multiple resources for transmitting uplink control information for the terminal device in advance.
  • the network device configures four resources on different frequency resources for the terminal device. That is, resource 1 to resource 4.
  • the configured resources can be notified to the terminal device in advance through high layer signaling.
  • the network device sends uplink control information
  • the network device determines, for the terminal device, the transmission resource used by the uplink control information.
  • the network device also configures the uplink control channel to be sent on the resources as much as possible, so that the allocated resources can be utilized as much as possible to improve resource utilization.
  • the network device may also configure the uplink control channel to repeatedly transmit on the allocated resources.
  • the number of repetitions of the specific configuration may be determined by the network device according to factors such as the uplink channel quality of the terminal device and the reliability requirements reported by the terminal device. For example, if the reliability of the terminal device is low, the network device can only configure the terminal device to send uplink control information on a certain resource, that is, no need to repeat the transmission. If the reliability requirement of the terminal device is high, the network device can configure the terminal device.
  • the uplink control information is repeatedly sent on multiple resources, for example, the uplink control information is repeatedly sent on the resource 1 and the resource 3 shown in FIG. 4, or the uplink control information is repeatedly sent on the resource 2 and the resource 4 shown in FIG. It is an example of repeated transmission in the frequency domain.
  • the network device sends indication information of the uplink control channel to the terminal device, where the terminal device receives the indication information from the network device.
  • the indication information is used to indicate at least one of the following parameters: a time domain length parameter, a frequency domain length parameter, a time domain repetition number parameter, a frequency domain repetition number parameter, and a transmit diversity mode parameter.
  • the indication information may be used to indicate at least one of the following parameters: a time domain length parameter, a frequency domain length parameter, a time domain repetition number parameter, a frequency domain repetition number parameter, a power parameter, a transmit diversity mode parameter, a time domain resource parameter, Frequency domain resource parameters, and sequence resource parameters.
  • the indication information is generated, and the indication information is the configuration result of the network device.
  • the network device sends the indication information to the terminal device, and the terminal device can determine the configuration of the uplink control channel.
  • the network device may send the indication information to the terminal device by using downlink control information (DCI).
  • DCI downlink control information
  • the embodiment of the present application does not limit the manner in which the network device sends the indication information.
  • the indication information may include first format information, where the first format information includes at least one parameter as described above.
  • the network device may further notify the terminal device of the configured multiple format information, and before the network device sends the indication information of the uplink control channel to the terminal device, the network device may send the radio resource control to the terminal device (
  • a radio resource control (RRC) signaling or media access control layer (MCE) the RRC signaling or MCE includes a plurality of format information configured by the network device.
  • RRC radio resource control
  • MCE media access control layer
  • the network device may notify one or more of the time domain length parameter, the frequency domain length parameter, the time domain repetition number parameter, the frequency domain repetition number parameter, the time domain resource parameter, and the frequency domain resource parameter.
  • the parameter can make the terminal device determine the value of other parameters accordingly, that is, the network device does not need to notify too many parameters in the indication information, which can further save transmission resources.
  • the format information 1 of the plurality of format information needs to occupy 2 symbols when the transmission is not repeated, and the network device notifies the terminal device to send the uplink control information with the length of 4 symbols by using the indication information, that is, the time domain is indicated in the indication information.
  • the terminal device can determine that the number of times of the uplink control information is 2, which is the premise that the network device notifies the multiple format information through RRC signaling or MCE. And instructing the terminal device to select the format information 1 in the plurality of format information, the format information 1 is repeated twice in the time domain, and is understood as the first format information; otherwise, the network device notifies the terminal device to send the time domain repetition of the uplink control information.
  • the terminal device can determine that the uplink control information with a length of 4 symbols is to be sent.
  • the indication information may be used to indicate the M parameters, for example, the time domain repetition number parameter or the frequency domain repetition number parameter. Wait.
  • the network device needs to notify the terminal device of the format information of the second format (ie, the second format information) in advance, and before the network device sends the indication information of the uplink control channel to the terminal device, the network device may pass the RRC.
  • the signaling such as signaling or MCE indicates the second format information for the terminal device.
  • the terminal device actually knows the second format, and the network device may not need to send the second format information to the terminal device.
  • the resource information of the second format indicated by the second format information needs to be sent to the terminal device, that is, before the network device sends the indication information of the uplink control channel to the terminal device, the network device may use RRC signaling or MCE. Let the terminal device indicate the resource information of the second format.
  • the resource information of the second format may include the resource location where the second format is located, or the resource information of the second format includes the information of the time resource and/or the frequency resource occupied by the PUCCH of the second format.
  • the same format may also correspond to multiple resources. Then, if the resource information of the second format includes only one PUCCH resource, the terminal device may determine the resource location where the second format is located according to the resource information of the second format, and if The resource information of the second format includes a plurality of different PUCCH resources, and the network device may further notify, by dynamic signaling (eg, DCI), which PUCCH resource is selected by the terminal device for transmission.
  • DCI dynamic signaling
  • the M parameters include the time domain repetition number parameter, the value of the time domain repetition number parameter and the location of the starting time domain resource may be used to determine the second format.
  • the location of the starting time domain resource may be indicated by the resource information in the second format.
  • the network device pre-configures resource information of the second format for the terminal device, as shown by resource 1 in the figure.
  • the network device notifies the terminal device of the number of repetitions in the time domain according to the reliability requirement of the terminal device, for example, three times, the terminal device starts with the resource 1 and is in the time domain.
  • the uplink control information is repeatedly transmitted twice in the resource 2 and the resource 3 in sequence.
  • the number of repetitions in the time domain is continuous, but may not be continuous, and is not limited herein.
  • FIG. 4 is an example in which the number of repetitions is continuous in the time domain.
  • the network device if the network device adopts mode 2 to configure the uplink control channel, and the M parameters include the frequency domain repetition number parameter, the network device involves sending the value of the frequency domain repetition number parameter to the terminal device by using the indication information.
  • the optional notification methods are a few of the optional notification methods:
  • A indicated by the form of a bitmap.
  • the network device sequentially assigns each resource number in advance, and indicates whether a resource is used for information transmission through “0” or “1” in the bitmap.
  • the indication information may be indicated by a bitmap of 4 bits. If the bitmap indicates 0101, it indicates that the resource 2 and the resource 4 are used to send uplink control information, if If the bitmap indicates 0001, the resource 4 sends uplink control information. This kind of indication is more intuitive.
  • the network device pre-establishes the correspondence between the value of the frequency domain repetition number parameter and the resource. For example, if the value of the frequency domain repetition number parameter is 2, it is sent on the resource 1 and the resource 3, and the value of the frequency domain repetition number parameter is If it is 1, it is sent on the resource 2, and the network device can send the correspondence to the terminal device in advance.
  • the network device only needs to send the value of the frequency domain repetition number parameter to the terminal device in the indication information, and after the terminal device receives the value of the frequency domain repetition number parameter, according to the correspondence, it can determine which resources are transmitted.
  • Block 1 is the starting six consecutive physical resource blocks (PRBs), and the value of the frequency domain repetition number parameter of 2 means that 12 consecutive PRBs starting with resource block 1 are occupied. And so on.
  • PRBs physical resource blocks
  • the network device pre-establishes the value of the frequency domain repetition number parameter, the location of the initial frequency domain resource, and the correspondence between the resources. For example, when the value of the frequency domain repetition number parameter is 2, the corresponding state is the initial frequency domain resource.
  • the resource where the location is located + the resource that is separated from the sequence number of the resource, for example, the starting resource is 1, and the corresponding resource is sent on the resource 1 and the resource 3 (the resource 1 and the resource 3 are separated by one serial number); or for example, the frequency domain is repeated.
  • the value corresponding to the value of the number parameter is 2, and the resource of position +1 of the starting frequency domain resource and the resource of the resource number are separated by two.
  • the network device can send the correspondence to the terminal device in advance. Then, the network device only needs to send the value of the frequency domain repetition number parameter to the terminal device in the indication information, and after the terminal device receives the value of the frequency domain repetition number parameter, according to the correspondence, it can determine which resources are transmitted.
  • the indication manners described above are applicable to the case where the frequency domain resources allocated in advance by the network device are discontinuous, and may also be applied to the case where the frequency domain resources allocated in advance by the network device are continuous. In the case that the frequency domain resources allocated in advance by the network device are continuous, the network device may use other indication manners according to any of the above manners, and is described below.
  • the network device may also indicate the length of the resource block. For example, different repetition times are arranged from the resource block 1, and the length of the resource block is 1 to indicate that the resource block is occupied. 1. If the length of the resource block is 2, it means that two consecutive PRBs starting with resource block 1 are occupied, and so on.
  • the network device adopts mode 1 to configure the uplink control channel
  • the first format information includes the frequency domain repetition number parameter
  • the frequency domain repetition number parameter is already bound to the format, as long as the network device indicates the start to the terminal device.
  • the frequency domain resource location the terminal device can determine the value of the frequency domain repetition number parameter according to the first format information, and then all the frequency domain resource locations occupied by the uplink control channel can be determined.
  • the terminal device sends the uplink control information to the network device by using the uplink control channel according to the indication information, and the network device receives the uplink control information from the terminal device by using the uplink control channel according to the indication information.
  • the indication information indicates the first format information
  • the first format information includes the value of the frequency domain repetition number parameter
  • the indication information indicates the M parameters
  • the M parameters include the frequency domain repetition number parameter
  • the terminal device may be in the frequency.
  • the frequency domain location indicated by the domain repetition number parameter sends uplink control information on the uplink control channel according to the frequency domain repetition number indicated by the frequency domain repetition number parameter.
  • the network device also receives the uplink control information on the uplink control channel according to the frequency domain repetition number indicated by the frequency domain repetition number parameter.
  • the terminal device may The time domain location indicated by the time domain repetition number parameter sends uplink control information to the network device on the uplink control channel according to the time domain repetition number indicated by the time domain repetition number parameter.
  • the network device also receives the uplink control information sent by the terminal device on the uplink control channel according to the time domain repetition number indicated by the time domain repetition number parameter.
  • the indication information indicates the first format information
  • the first format information includes the value of the power parameter
  • the indication information indicates the M parameters
  • the M parameters include the power parameter
  • the terminal device may perform the uplink transmission according to the power parameter.
  • the power sends uplink control information to the network device on the uplink control channel.
  • the network device also receives the uplink control information sent by the terminal device on the uplink control channel according to the uplink transmit power indicated by the power parameter.
  • the network device may also select to notify the terminal device of the configuration of the uplink control channel in an implicit manner. It is described in the background of the present application that the reliability of the uplink channel and the downlink channel can be interchanged, and the network device and the terminal device can pre-agreed the reliability interchange rule of the uplink channel and the downlink channel, and the terminal device repeats through the downlink channel.
  • the number of times can determine the reliability of the downlink channel, so that the terminal device can determine the reliability requirement of the uplink control channel or the time domain repetition number or the frequency domain repetition number of the uplink channel through a pre-agreed reliability interchange rule, if the network device is The terminal device is configured with multiple format information, and the different format information may correspond to different reliability requirements or time domain repetition times or frequency domain repetition times, and the terminal device may determine the first format information, or if the network device is pre-configured and fixed. After the second format information is determined by the terminal device, the terminal device determines the reliability requirement of the uplink control channel or the time domain repetition number or the frequency domain repetition number of the uplink channel, and determines the configuration of the uplink control channel. In this way, the network device is not required to notify the terminal device of the relevant transmission parameters of the uplink control channel by using additional signaling, which saves signaling overhead.
  • the network device may configure an uplink control channel according to factors such as coverage and reliability requirements, so that the configured uplink control channel is more in line with the requirements of the scenario.
  • the configuration is flexible and easy to implement.
  • FIG. 6 shows a schematic structural diagram of a network device 600.
  • the network device 600 can implement the functions of the network devices referred to above.
  • the network device 600 can include a transmitter 601 and a receiver 602.
  • the transmitter 601 can be used to perform S22 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • Receiver 602 can be used to perform S23 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • the network device 600 may further include a processor 603, which may be used to perform S21 in the embodiment shown in FIG. 2, may be used to generate indication information, RRC signaling, MCE, etc., and may further configure multiple formats in advance. Information or second format information, etc., and/or for performing other processes supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 7 shows a schematic structural diagram of a terminal device 700.
  • the terminal device 700 can implement the functions of the terminal device referred to above.
  • the terminal device 700 can include a receiver 701 and a transmitter 702.
  • the receiver 701 can be used to perform S22 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • Transmitter 702 can be used to perform S23 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • the terminal device 700 may further include a processor 703, configured to determine the first format information according to the indication information, or determine the second format information and the M parameters according to the indication information, that is, determine the configuration of the uplink control channel according to the indication information. And/or other processes for supporting the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the network device 600 and the terminal device 700 are presented in the form of dividing each functional module into functions, or may be presented in an integrated manner to divide the functional modules.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), a processor and memory that executes one or more software or firmware programs, integrated logic circuits, and/or other devices that provide the above functionality. .
  • ASIC application-specific integrated circuit
  • the network device 600 or the terminal device 700 can also be implemented by the structure of the communication device 800 as shown in FIG.
  • the communication device 800 can include a memory 801, a processor 802, and a communication interface 803.
  • the memory 801 and the communication interface 803 are connected to the processor 802.
  • the memory 801 is for storing computer execution instructions, and when the communication device 800 is running, the processor 802 executes computer execution instructions stored by the memory 801 to cause the communication device 800 to perform the method provided by the embodiment shown in FIG. 2.
  • the communication interface 803 can be implemented by a transceiver or by a separate receiver and transmitter.
  • transmitter 601 and receiver 602 may correspond to communication interface 803 in FIG.
  • the processor 703 can be embedded in or independent of the memory 801 of the communication device 800 in hardware/software.
  • receiver 701 and transmitter 702 may correspond to communication interface 803 in FIG.
  • the processor 703 can be embedded in or independent of the memory 801 of the communication device 800 in hardware/software.
  • the communication device 800 can be a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), and a central processing unit ( Central processor unit (CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), programmable logic controller (programmable logic) Device, PLD) or other integrated chip.
  • the communication device 800 can also be a separate network element, such as a terminal device or a network device as described above.
  • the network device provided by the embodiment shown in FIG. 6 can also be implemented in other forms.
  • the network device includes a transmitting unit and a receiving unit.
  • the network device may further include a processing unit.
  • the transmitting unit can be used to perform S22 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • the receiving unit can be used to perform S23 in the embodiment shown in Figure 2, and/or other processes for supporting the techniques described herein.
  • the processing unit may be configured to perform S21 in the embodiment shown in FIG. 2, may be used to generate indication information, RRC signaling, MCE, etc., and may further configure a plurality of format information or second format information, etc., and/or Used to complete other processes that support the techniques described herein. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the terminal device provided by the embodiment shown in FIG. 7 can also be implemented in other forms.
  • the terminal device includes a receiving unit and a transmitting unit.
  • the terminal device may further include a processing unit.
  • the receiving unit can be used to perform S22 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • the transmitting unit can be used to perform S23 in the embodiment shown in FIG. 2, and/or other processes for supporting the techniques described herein.
  • the processing unit is configured to determine the first format information according to the indication information, or determine the second format information and the M parameters according to the indication information, that is, determine the configuration of the uplink control channel according to the indication information, and/or to support the technology described herein. Other processes. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • the network device 600, the terminal device 700, and the communication device 800 provided by the embodiments of the present application can be used to perform the method provided in the embodiment shown in FIG. 2, so that the technical effects that can be obtained can be referred to the foregoing method embodiments. This will not be repeated here.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a Solid State Disk (SSD)) or the like.
  • a magnetic medium e.g., a floppy disk, a hard disk, a magnetic tape
  • an optical medium e.g., a DVD
  • a semiconductor medium e.g., a Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种接收控制信息、发送控制信息的方法及设备,用于灵活调整上行传输的可靠性。其中的一种配置控制信道的方法包括:网络设备向终端设备发送上行控制信道的指示信息;其中,所述上行控制信道的指示信息用于指示以下至少一个传输参数:时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、以及发射分集方式参数;所述网络设备根据所述指示信息通过所述上行控制信道从所述终端设备接收上行控制信息。

Description

一种接收控制信息、发送控制信息的方法及设备
本申请要求在2017年8月9日提交中国专利局、申请号为201710677555.3、申请名称为“一种接收控制信息、发送控制信息的方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种接收控制信息、发送控制信息的方法及设备。
背景技术
目前在通过上行控制信道发送上行信息时,是根据上行信息的内容来确定上行控制信道的格式,不同的PUCCH格式就对应了上行传输不同的可靠性。例如上行控制信道为物理上行控制信道(physical uplink control channel,PUCCH),如果通过PUCCH发送1个比特的肯定应答(ACK)/否定应答(NACK),则采用PUCCH格式1a,如果通过PUCCH发送信道质量指示(channel quality indicator,CQI),则采用PUCCH格式1。
然而即使是对于同样的上行信息,在不同的覆盖场景下,对上行传输的可靠性要求也可能存在不同。例如,由于终端设备的最大发送功率低于基站,还要考虑功耗等问题,则信道条件较差或位于小区边缘的终端设备的发射功率会受限,可能导致位于小区边缘的终端设备的上行传输距离小于基站的传输距离,即上行覆盖受限。在发送同样的上行信息的情况下,对于上行覆盖受限的场景下的终端设备,实际上可以适当减小上行传输的可靠性,并提高下行传输的可靠性,这样也能尽量保证完整传输过程的可靠性,且这样可以降低对上行控制信道的可靠性要求。而对于位于小区中心的终端设备,可能不存在上行覆盖受限的情况,则可以按照该上行信息对应的可靠性来发送。
但根据如前的介绍可知,目前是根据上行信息的内容来确定上行控制信道的格式,无法根据不同的场景对上行信道的格式进行调整,即无法调整上行传输的可靠性。
发明内容
本申请实施例提供一种接收控制信息、发送控制信息的方法及设备,用于灵活调整上行传输的可靠性。
第一方面,提供一种接收控制信息的方法,该方法可通过网络设备执行,网络设备例如为基站。该方法包括:网络设备向终端设备发送上行控制信道的指示信息;其中,所述上行控制信道的指示信息用于指示以下至少一个传输参数:时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、以及发射分集方式参数;所述网络设备根据所述指示信息通过所述上行控制信道从所述终端设备接收上行控制信息。
第二方面,提供一种发送控制信息的方法,该方法可通过终端设备执行。该方法包括:终端设备从网络设备接收上行控制信道的指示信息;其中,所述上行控制信道的指示信息用于指示以下至少一个传输参数:时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、以及发射分集方式参数;所述终端设备根据所述指示信息通过所述上行控制信道向所述网络设备发送上行控制信息。
本申请实施例中,网络设备向终端设备发送上行控制信道的指示信息,指示信息可以 指示至少一个参数,也就是说,通过调整至少一个参数中的一个参数或多个参数就能够实现对上行信道的调整,那么网络设备就可以根据不同的覆盖场景来灵活调整上行信道,从而可以实现对传输的可靠性的调整,使得上行传输更符合场景的需求。
在一个可能的设计中,所述指示信息包括所述上行控制信道的第一格式信息,所述第一格式信息包含所述至少一个参数。
在这种情况下,网络设备直接为终端设备指示具体的第一格式信息,则终端设备可直接根据第一格式信息确定上行控制信道,方式较为简单。
在一个可能的设计中,在网络设备向终端设备发送上行控制信道的指示信息之前,所述网络设备还向所述终端设备发送RRC信令或MCE;所述RRC信令或所述MCE包括多个格式信息,其中,所述多个格式信息中,不同的格式信息至少有一个参数的取值不同。相应的,在终端设备从网络设备接收上行控制信道的指示信息之前,还包括:所述终端设备从所述网络设备接收RRC信令或MCE;所述RRC信令或所述MCE包括多个格式信息,其中,所述多个格式信息中,不同的格式信息至少有一个参数的取值不同。
即,网络设备可以通过如上的至少一个参数预先配置上行控制信道的多个格式信息,则在需要配置某个上行控制信道时,只需从预先配置的多个格式信息中选择一个作为该上行控制信道的格式信息即可,方式较为简单。其中,网络设备可配置可靠性不同的多个格式信息,则网络设备在选择时,可根据当前的场景以及业务的可靠性需求等因素来从多个格式信息中选择一个格式信息,例如网络设备根据上行覆盖的情况以及业务本身的需求等因素从多个格式信息中选择了第一格式信息。因为第一格式信息本来就是通过如上的至少一个参数配置的,那么第一格式信息自然能够指示至少一个参数。通过这种方式选择的第一格式信息较为符合场景的需求,能够使得传输更有效。
在一个可能的设计中,在网络设备向终端设备发送上行控制信道的指示信息之前,所述网络设备还通过RRC信令或MCE为所述终端设备指示第二格式的资源信息。相应的,在终端设备从网络设备接收上行控制信道的指示信息之前,所述终端设备还通过RRC信令或MCE确定所述网络设备为所述终端设备指示的第二格式的资源信息。
在一个可能的设计中,所述指示信息用于指示时域重复次数参数,所述时域重复次数参数的取值以及起始时域资源的位置用于确定所述第二格式对应的时域重复次数以及对应的时域位置;其中,所述起始时域资源的位置通过所述第二格式的资源信息获取。
网络设备可以事先配置第二格式,第二格式配置后就作为固定的格式信息,在需要配置某个上行控制信道时,网络设备可根据当前的场景以及业务的可靠性需求等因素确定对于该上行控制信道来说,是否需要额外配置其他的参数,这里的其他的参数,也可以是如前的至少一个参数的子集。如果需要额外配置其他的参数,则网络设备为该上行控制信道配置第二格式信息以及至少一个参数中的M个参数,M为正整数,且M小于或等于至少一个参数的总数量。这里的M个参数,可以是根据情况从至少一个参数中选取的参数,例如,一般来说第二格式可以不指示时域的重复次数,即第二格式所指示的重复次数一般都是1,因此在选取M个参数时可选取时域重复次数参数,则,网络设备通过为上行控制信道配置第二格式信息和时域重复次数参数,就完成了对于该上行控制信道的配置。而通过配置时域重复次数参数,使得上行控制信息可以在时域上重复发送,提高了上行传输的可靠性,且调整方式十分灵活。
在一个可能的设计中,网络设备根据所述指示信息通过所述上行控制信道从所述终端 设备接收上行控制信息,包括:所述网络设备在所述时域重复次数参数指示的时域位置上,根据所述时域重复次数参数所指示的时域重复次数从所述终端设备接收所述上行控制信息。相应的,所述终端设备根据所述指示信息通过所述上行控制信道向所述网络设备发送上行控制信息,包括:所述终端设备在所述时域重复次数参数指示的时域位置上,根据所述时域重复次数参数所指示的时域重复次数向所述网络设备发送所述上行控制信息。
如果网络设备为终端设备配置了时域重复次数参数,则终端设备就根据时域重复次数参数来发送上行控制信息,而网络设备也根据时域重复次数参数来接收上行控制信息。通过这种方式传输上行控制信息可靠性较高。
在一个可能的设计中,所述指示信息包括bitmap,所述bitmap用于指示所述第二格式所对应的所述频域重复次数参数以及对应的频域位置;或,所述指示信息包括所述频域重复次数参数,所述频域重复次数参数用于确定所述第二格式所对应的频域重复次数以及对应的频域位置;其中,所述频域重复次数参数的取值与频域位置一一对应;或,所述指示信息包括频域重复次数参数以及起始频域资源的位置,所述频域重复次数参数以及起始频域资源的位置用于确定所述第二格式所对应的频域重复次数以及对应的频域位置;其中,所述起始频域资源的位置是通过所述第二格式的资源信息获取的。
如果网络设备事先配置了第二格式,在需要配置某个上行控制信道时,网络设备可根据当前的场景以及业务的可靠性需求等因素确定对于该上行控制信道来说,是否需要额外配置其他的参数,如果需要额外配置其他的参数,则网络设备为该上行控制信道配置第二格式信息以及至少一个参数中的M个参数。这里的M个参数,可以是根据情况从至少一个参数中选取的参数,例如,一般来说第二格式可以不指示频域的重复次数,即第二格式所指示的重复次数一般都是1,因此在选取M个参数时可选取频域重复次数参数,则,网络设备通过为上行控制信道配置第二格式信息和频域重复次数参数,就完成了对于该上行控制信道的配置。对于频域重复次数参数以及相应的频域位置可以有不同的指示方式,网络设备可以根据情况选择其中任意一种指示方式使用,较为灵活。
在一个可能的设计中,网络设备根据所述指示信息通过所述上行控制信道从所述终端设备接收上行控制信息,包括:所述网络设备在所述频域重复次数参数指示的频域位置上,根据所述频域重复次数参数所指示的频域重复次数从所述终端设备接收所述上行控制信息。相应的,终端设备根据所述指示信息通过所述上行控制信道向所述网络设备发送上行控制信息,包括:所述终端设备在所述频域重复次数参数指示的频域位置上,根据所述频域重复次数参数所指示的频域重复次数向所述网络设备发送所述上行控制信息。
如果网络设备为终端设备配置了频域重复次数参数,则终端设备就根据频域重复次数参数来发送上行控制信息,而网络设备也根据频域重复次数参数来接收上行控制信息。通过这种方式传输上行控制信息可靠性较高。
在一个可能的设计中,所述时域长度参数为时域资源的个数,所述时域资源为符号或时隙或子帧;所述频域长度参数为频域资源的个数,所述频域资源为PRB或RBG。
解释了时域长度参数以及频域长度参数。
在一个可能的设计中,网络设备向终端设备发送上行控制信道的指示信息,包括:所述网络设备通过DCI向所述终端设备发送所述上行控制信道的所述指示信息。相应的,终端设备从网络设备接收上行控制信道的指示信息,包括:所述终端设备通过DCI从所述网络设备接收所述上行控制信道的所述指示信息。
当然本申请实施例不限制网络设备发送指示信息的方式。
第三方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,网络设备的具体结构可包括发送器和接收器。可选的,该网络设备还可以包括处理器。发送器、接收器和处理器可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第四方面,提供一种终端设备。该终端设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,终端设备的具体结构可包括发送器和接收器。可选的,该终端设备还可以包括处理器。发送器、接收器和处理器可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第五方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,网络设备的具体结构可包括发送单元和接收单元。可选的,该网络设备还可以包括处理单元。发送单元、接收单元和处理单元可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第六方面,提供一种终端设备。该终端设备具有实现上述方法设计中的终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,终端设备的具体结构可包括发送单元和接收单元。可选的,该终端设备还可以包括处理单元。发送单元、接收单元和处理单元可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第七方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;通信接口,以及处理器,处理器与存储器、通信接口耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第一方面或第一方面的任意一种可能的设计中网络设备所执行的方法。
第八方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;通信接口,以及处理器,处理器与存储器、通信接口耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第二方面或第二方面的任意一种可能的设计中终端设备所执行的方法。
第九方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所 述的方法。
第十一方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
本申请实施例中,通过调整至少一个参数中的一个参数或多个参数就能够实现对上行信道的调整,那么网络设备就可以根据不同的覆盖场景来灵活调整上行信道,从而可以实现对传输的可靠性的调整,使得上行传输更符合场景的需求。
附图说明
图1为本申请实施例的一种应用场景示意图;
图2为本申请实施例提供的接收控制信息、发送控制信息的方法的流程图;
图3为本申请实施例提供的在时域和频域上重复传输上行控制信息的示意图;
图4为本申请实施例提供的在时域上重复传输上行控制信息的示意图;
图5为网络设备为终端设备预先配置的资源的示意图;
图6为本申请实施例提供的网络设备的一种结构示意图;
图7为本申请实施例提供的终端设备的一种结构示意图;
图8为本申请实施例提供的通信装置的一种示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设 备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括长期演进(long term evolution,LTE)系统或演进的LTE系统(LTE-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信系统(5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
3)上行控制信道,例如包括物理上行控制信道(physical uplink control channel,PUCCH)或增强的物理上行控制信道(enhanced physical uplink control channel,EPUCCH),还可能包括其他的上行控制信道,以及在不同的通信系统中,上行控制信道可能有不同的名称。
4)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
本文所提供的技术方案可以应用于5G NR系统(下文简称NR系统)或LTE系统,还可以应用于下一代移动通信系统或其他类似的移动通信系统。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术背景。
移动通信技术已经深刻地改变了人们的生活,但人们对更高性能的移动通信技术的追求从未停止。为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,第五代(the fifth generation,5G)移动通信系统应运而生。国际电信联盟(international telecommunication union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。
典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧 城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。
其中,URLLC业务对时延要求极高,在不考虑可靠性的情况下,传输时延要求在0.5毫秒(millisecond,ms)以内,而在达到99.999%的可靠性的前提下,传输时延要求在1ms以内。
在LTE系统中,最小的时间调度单元为一个1ms时间长度的传输时间间隔(transmission time interval,TTI)。为了满足URLLC业务的传输时延需求,无线空口的数据传输可以使用更短的时间调度单元,例如使用迷你时隙(mini-slot)或更大的子载波间隔的时隙作为最小的时间调度单元。其中,一个mini-slot包括一个或多个时域符号,这里的时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。对于子载波间隔为15千赫兹(kilohertz,kHz)的一个时隙,包括6个或7个时域符号,对应的时间长度为0.5ms;对于子载波间隔为60kHz的一个时隙,对应的时间长度则缩短为0.125ms。
URLLC对可靠性的要求极高,这种要求不仅体现在数据信道,也体现在控制信道。因此,URLLC的可靠性是多种类型信道的可靠性的级联。经研究,多种类型信道的可靠性可以相互转移和互换。例如,由于终端设备的最大发送功率低于基站,还要考虑功耗等问题,则信道条件较差或位于小区边缘的终端设备的发射功率会受限,可能导致位于小区边缘的终端设备的上行传输距离小于基站的传输距离,即上行覆盖受限。对于上行覆盖受限的场景下的终端设备,实际上可以适当减小上行传输的可靠性,并提高下行传输的可靠性,这样也能尽量保证完整传输过程的可靠性,且这样可以降低对上行控制信道的可靠性要求。
上行控制信息中包含的内容可能为下行数据信息的确认结果、终端设备测量信道质量上报等,不同的内容占用的时频资源大小可能会不同。因此在LTE系统中,是根据上行信息的内容来确定上行控制信道的格式,只要上行信息的内容相同,则选择的上行控制信道的格式就相同。例如参见表1,是LTE系统中根据不同的内容定义的不同的上行控制信息格式的示意:
表1
Figure PCTCN2018098687-appb-000001
根据表1可知,在LTE系统中,只要PUCCH承载的信息确定了,相应的PUCCH格式也就确定了,不同的PUCCH格式对应不同的传输可靠性,即,确定了PUCCH承载的信息,也就等于确定了传输的可靠性。
即,在LTE系统中,无法根据不同的场景对上行信道的格式进行调整,即无法调整上行传输的可靠性。
鉴于此提供了本申请实施例的技术方案,以实现对于上行信道的灵活调整,从而实现对于传输的可靠性的调整。
如上介绍了技术背景,下面介绍本申请实施例的一种应用场景,请参见图1,是本申请的实施例应用的移动通信系统的一种架构示意图。
如图1所示,该移动通信系统包括核心网设备、无线接入网设备和至少一个终端设备(如图1中的终端设备1和终端设备2)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线方式或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,或者也可以将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分的核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该移动通信系统中还可以包括其它网络设备,例如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G移动通信系统中的基站、未来移动通信系统中的基站或无线保真(wIreless-fidelity,WiFi)系统中的接入节点等,本申请实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球或卫星上。本申请实施例对无线接入网设备和终端设备的应用场景不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
下面结合附图介绍本申请实施例提供的技术方案。
请参见图2,本申请一实施例提供一种接收控制信息、发送控制信息的方法,在下文的介绍过程中,均以本申请实施例提供的方法应用于图1所示的应用场景为例,则如下所提及的网络设备可以是图1所示的应用场景中的无线接入网设备。
S21、网络设备为终端设备配置上行控制信道。
网络设备可以是在确定终端设备待通过上行控制信道发送上行控制信息时为终端设备配置上行控制信道,或者在终端设备暂时不发送上行控制信息时网络设备也可以预先为终端设备配置上行控制信道。
在本申请实施例中,网络设备可以通过多种方式来配置上行控制信道,下面分别介绍。
1、从预先配置的多个格式信息中选择格式信息的方式。
在方式1中,网络设备预先配置了上行控制信道的多个格式信息,其中,每个格式信息都可以通过如下的至少一个参数来配置:时域长度参数、频域长度参数、重复次数参数、以及发射分集方式参数。其中,重复次数参数可以包括时域重复次数参数和/或频域重复次数参数。作为可选的方式,至少一个参数的可选项中还可以包括功率参数、时域资源参数、 频域资源参数、及序列资源参数,也就是说每个格式信息可以通过如下的至少一个参数来配置:时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、功率参数、发射分集方式参数、时域资源参数、频域资源参数、及序列资源参数。即,通过配置至少一个参数的取值,就得到了上行控制信道的格式信息。那么,至少一个参数中,只要有一个参数或多个参数的取值不同,就认为对应的是不同的格式信息。例如网络设备配置了第一格式信息和第二格式信息,第一格式信息和第二格式信息都是通过时域长度参数、频域长度参数、重复次数参数、以及发射分集方式参数配置的,其中,第一格式信息中的时域长度参数的取值为2,第二格式信息中的时域长度参数的取值为4,这就表明第一格式信息和第二格式信息是不同的格式信息,因为有至少一个参数的取值是不同的。
其中,时域长度参数为时域资源的个数,时域资源为符号,或时隙(slot),或子帧(subframe)。例如现有的上行控制信道可以支持1,2,4~14个符号的传输,网络设备为终端设备配置了上行控制信道的格式,即可以确定出该上行控制信道占用了几个符号。从传输可靠性的方面考虑,占用的符号的数量越多,则一般来说传输的可靠性就越高。这里的符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。
频域长度参数为频域资源的个数,频域资源为物理资源块(physical resource block,PRB)或资源块组(resource block group,RBG)。例如网络设备为终端设备配置了上行控制信道的格式,即可以确定出该上行控制信道占用了几个PRB。从传输可靠性的方面考虑,占用的PRB的数量越多,则一般来说传输的可靠性就越高。
重复次数参数用于指示上行控制信道的重复传输次数,如果重复次数参数包括时域重复次数参数,则用于指示上行控制信道在时域上重复传输的次数,如果重复次数参数包括频域重复次数参数,则用于指示上行控制信道在频域上重复传输的次数。其中,这里所述的传输上行控制信道,可以理解为通过上行控制信道传输上行控制信息。如图3所示,例如上行控制信道每次占用1块时频资源进行传输,为终端设备配置的格式信息需要6次重复传输,即一共占用6块时域资源。其中,6次重复在时域上是3次,即时域重复次数参数的取值为3,其中每个时间单元上在频域又重复了2次,即频域重复次数参数的取值为2。其中,各次重复所占用的时间或频率资源可以是连续或者非连续的。
发射分集方式参数用于指示终端设备在通过上行控制信道发送上行控制信息时是否采用发射分集方式。一般来说,终端设备可以利用空间分集提高上行传输的可靠性,也就是说,如果采用发射分集方式来发送上行控制信息,则可靠性会比较高,而如果不采用发射分集方式来发送上行控制信息,则相对于采用发射分集方式来说可靠性会较低。
功率参数用于指示通过上行控制信道发送上行控制信息时所采用的上行发射功率。一般来说,上行发射功率越大,则传输的可靠性也就越高。那么,对于URLLC业务等对可靠性要求较高的业务,网络设备为其配置的功率参数的取值可以较高,即终端设备对于这类业务可以采用较高的上行发射功率,以尽量保证传输的可靠性,而对于eMBB业务等对可靠性的要求不是很高的业务,网络设备为其配置的功率参数的取值可以较低,即终端设备对于这类业务可以采用较低的上行发射功率,以减少终端设备的功耗。
时域资源参数用于指示上行控制信道占用的时域资源,频域资源参数用于指示上行控制信道占用的频域资源,序列资源参数用于指示上行控制信道占用的序列资源。网络设备将重复次数参数以及时频资源、码域资源和频域资源联合分配,有利于不同的终端设备之间正交。
网络设备通过如上的至少一个参数预先配置了上行控制信道的多个格式信息,则在需要配置某个上行控制信道时,只需从预先配置的多个格式信息中选择一个作为该上行控制信道的格式信息即可,方式较为简单。其中,网络设备可配置可靠性不同的多个格式信息,则网络设备在选择时,可根据当前的场景以及业务的可靠性需求等因素来从多个格式信息中选择一个格式信息,例如网络设备根据上行覆盖的情况以及业务本身的需求等因素从多个格式信息中选择了第一格式信息。因为第一格式信息本来就是通过如上的至少一个参数配置的,那么第一格式信息自然能够指示至少一个参数。通过这种方式选择的第一格式信息较为符合场景的需求,能够使得传输更有效。
2、根据预先配置的格式信息以及M个参数进行配置的方式。
在方式2下,网络设备预先配置了上行控制信道的格式信息,例如网络设备预先配置了或协议预先定义了上行控制信道的一个格式信息,将该格式信息称为第二格式信息,第二格式信息对应于上行控制信道的第二格式。预先定义的格式例如为协议定义的一些固定的格式中的任一种格式,其中,协议在定义的一些固定的格式时,也会预先定义这些格式具体用于传输何种上行控制信息。第二格式可以延用LTE系统中的任意一种格式,例如为LTE系统中的PUCCH格式1,或者为PUCCH格式1a等,或者第二格式也可以是本申请实施例中网络设备根据如前介绍的至少一个参数所配置的格式,则网络设备根据至少一个参数配置一个格式作为第二格式即可。
第二格式配置后就作为固定的格式,在需要配置某个上行控制信道时,网络设备可根据当前的场景以及业务的可靠性需求等因素确定对于该上行控制信道来说,是否需要额外配置其他的参数,这里的其他的参数,也可以是如前的至少一个参数的子集。如果需要额外配置其他的参数,则网络设备为该上行控制信道配置第二格式以及至少一个参数中的M个参数,M为正整数,且M小于或等于至少一个参数的总数量。这里的M个参数,可以是根据情况从至少一个参数中选取的参数,至于究竟从至少一个参数中选取哪个参数或哪些参数作为M个参数,本申请实施例不做限制,例如,一般来说第二格式可以不指示时域或频域的重复次数,即第二格式所指示的重复次数一般都是1,因此在选取M个参数时可选取时域重复次数参数,或者选取频域重复次数参数,或者也可以同时选取时域重复次数参数和频域重复次数参数等。则,网络设备通过为上行控制信道配置第二格式和M个参数,就完成了对于该上行控制信道的配置。
一般来说,网络设备都会提前为终端设备配置多个用于传输上行控制信息的资源,可参考图4,在相同时间单位内,网络设备为终端设备配置了不同频率资源上的4块资源,即资源1~资源4。配置的资源可以通过高层信令提前通知给终端设备。当终端设备有上行控制信息发送,例如由网络设备触发或通知终端设备发送上行控制信息时,网络设备为终端设备确定该上行控制信息所采用的发送资源。那么本申请实施例中,网络设备也尽量配置上行控制信道在这些资源上发送,从而可以尽量利用已分配的资源,提高资源的利用率。
另外,网络设备配置的参数如果包括频域重复次数参数,则网络设备也可以尽量配置上行控制信道在已分配的资源上重复发送。具体配置的重复次数可以由网络设备根据终端设备的上行信道质量、终端设备上报的可靠性要求等因素来确定。例如终端设备的可靠性要求较低,则网络设备可以只配置终端设备在某一个资源上发送上行控制信息,即无需重复发送,如果终端设备的可靠性要求较高,则网络设备可配置终端设备在多个资源上重复发送上行控制信息,例如在图4所示的资源1和资源3上重复发送上行控制信息,或在图 4所示的资源2和资源4上重复发送上行控制信息,都是在频域上重复发送的示例。
S22、网络设备向终端设备发送上行控制信道的指示信息,则终端设备从网络设备接收指示信息。其中,指示信息用于指示以下至少一个参数:时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、以及发射分集方式参数。作为可选方案,指示信息可用于指示以下至少一个参数:时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、功率参数、发射分集方式参数、时域资源参数、频域资源参数、及序列资源参数。
即,网络设备配置上行控制信道后,生成指示信息,指示信息就是网络设备的配置结果。网络设备将指示信息发送给终端设备,则终端设备就可以确定上行控制信道的配置。例如网络设备可以通过下行控制信息(downlink control information,DCI)将指示信息发送给终端设备,当然本申请实施例不限制网络设备发送指示信息的方式。
作为一种示例,如果网络设备为终端设备配置的是第一格式信息,则该指示信息可以包括第一格式信息,第一格式信息就包含如前所述的至少一个参数。在这种情况下,网络设备还可以将配置的多个格式信息事先通知给终端设备,则在网络设备向终端设备发送上行控制信道的指示信息之前,网络设备可以向终端设备发送无线资源控制(radio resource control,RRC)信令或媒体接入控制层控制实体(media access control control element,MCE),该RRC信令或MCE就包括网络设备所配置的多个格式信息。根据前文的介绍可知,在这多个格式信息中,不同的格式信息至少有一个参数的取值不同,这样才形成了不同的格式信息。
其中,所述的时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、时域资源参数、及频域资源参数等,网络设备可以通过通知其中的一个或多个参数就可以使终端设备相应确定其他的参数取值,即网络设备无需在指示信息中通知过多的参数,可进一步节省传输资源。例如,多个格式信息中的格式信息1在不重复传输时需要占用2个符号,则网络设备通过指示信息通知终端设备发送长度为4个符号的上行控制信息,即在指示信息中指示时域长度参数的取值为4,则终端设备就可以确定发送该上行控制信息的时域重复次数为2,当然这个前提是,网络设备通过RRC信令或MCE除了告知多个格式信息外,还一并告知终端设备选用多个格式信息中的格式信息1,则格式信息1在时域上重复两次,就理解为第一格式信息;反之,网络设备通知终端设备发送上行控制信息的时域重复次数为2,则终端设备即可确定要发送的是长度为4个符号的上行控制信息。
作为另一种示例,如果网络设备为终端设备配置的是第二格式和M个参数,那么该指示信息可以用于指示M个参数,例如用于指示时域重复次数参数或频域重复次数参数等。在这种情况下,网络设备需要事先将第二格式的格式信息(即第二格式信息)通知给终端设备,则在网络设备向终端设备发送上行控制信道的指示信息之前,网络设备可以通过RRC信令或MCE等信令为终端设备指示第二格式信息。或者,如果第二格式是LTE系统中已有的PDCCH格式,例如为PDCCH格式1a等,那么终端设备实际上已经知晓了第二格式,则网络设备可以无需再将第二格式信息发送给终端设备,而需要将第二格式信息所指示的第二格式的资源信息发送给终端设备,即,在网络设备向终端设备发送上行控制信道的指示信息之前,网络设备可以通过RRC信令或MCE等信令为终端设备指示第二格式的资源信息。其中,第二格式的资源信息可以包括第二格式所在的资源位置,或者理解为,第二格式的资源信息包括第二格式的PUCCH所占用的时间资源和/或频率资源的信息。其 中,同一种格式也可能对应多个资源,那么,如果第二格式的资源信息只包括一个PUCCH资源,则终端设备根据第二格式的资源信息就可以确定第二格式所在的资源位置,而如果第二格式的资源信息包括多个不同的PUCCH资源,则网络设备可以进一步通过动态信令(例如DCI)来通知终端设备究竟选择其中的哪个PUCCH资源进行传输。
其中,如果网络设备采用方式2来配置上行控制信道,且M个参数包括时域重复次数参数,则时域重复次数参数的取值以及起始时域资源的位置就可以用于确定第二格式对应的时域重复次数以及对应的时域位置。其中,起始时域资源的位置可以通过第二格式的资源信息来指示。如图4所示,网络设备为终端设备预先配置了第二格式的资源信息,如图中资源1所示。当实际要终端设备发送上行控制信息时,网络设备根据需要终端设备达到的可靠性要求,通知终端设备在时域的重复次数,如3次,则终端设备以资源1为起始点,在时域的资源2和资源3上依次重复发送2次所述上行控制信息。一般的,考虑到上行控制信息的发送时延,时域上的重复次数是连续的,但也可以不连续,这里不做限制,图4是以重复次数在时域上连续为例。
或者,如果网络设备采用方式2来配置上行控制信道,且M个参数包括频域重复次数参数,则网络设备涉及到要通过指示信息将频域重复次数参数的取值发送给终端设备。下面介绍几种可选的通知方式:
A、通过位图(bitmap)的形式指示。
网络设备依次为预先分配的每块资源编号,通过bitmap中“0”或“1”来指示一块资源是否用于信息传输。例如图5中所示的网络设备预先分配的4块资源,指示信息可通过4个比特位的bitmap来指示,如果bitmap指示为0101,则表示资源2和资源4用于发送上行控制信息,如果bitmap指示为0001,则表示资源4发送上行控制信息。这种指示方式较为直观。
B、通过频域重复次数参数的取值指示。
网络设备预先建立频域重复次数参数的取值与资源之间的对应关系,例如频域重复次数参数的取值为2则对应在资源1和资源3上发送,频域重复次数参数的取值为1则对应在资源2上发送等,且网络设备可以事先将该对应关系发送给终端设备。则网络设备只需在指示信息中将频域重复次数参数的取值发送给终端设备即可,终端设备接收频域重复次数参数的取值后,根据该对应关系就可以确定通过哪些资源发送。
作为一种示例,如果网络设备预先分配的频域资源是连续的,则例如不同的重复次数都从资源块1开始排列,则频域重复次数参数的取值为1则表示占用的是以资源块1为起始的连续的6个物理资源块(physical resource block,PRB),频域重复次数参数的取值为2则表示占用的是以资源块1为起始的连续的12个PRB,以此类推。
C、通过频域重复次数参数和起始频域资源的位置指示。
网络设备预先建立频域重复次数参数的取值、起始频域资源的位置以及资源之间的对应关系,例如频域重复次数参数的取值为2时对应的状态是起始频域资源的位置所在的资源+与该资源的序号间隔1个的资源,例如起始资源为1,则对应在资源1和资源3上发送(资源1和资源3即间隔一个序号);或者例如频域重复次数参数的取值为2对应的状态是起始频域资源的位置+1的资源和与该资源的序号间隔2个的资源,例如起始资源为1,则对应在资源2和资源4上发送(资源2的序号就是起始频域资源的位置所在的资源的序号加1,资源4与资源2间隔2个序号)。且网络设备可以事先将该对应关系发送给终端设备。则网络设备只需在指示信息中将频域重复次数参数的取值发送给终端设备即可,终端设备接收频域重 复次数参数的取值后,根据该对应关系就可以确定通过哪些资源发送。
如上介绍的几种指示方式,可适用于网络设备预先分配的频域资源不连续的情况,也可以适用于网络设备预先分配的频域资源连续的情况。其中,对于网络设备预先分配的频域资源连续的情况,网络设备除了可以根据如上的任一种方式指示之外,还可以采用其他的指示方式,下面进行介绍。
D、通过资源块的长度指示。
如果网络设备预先分配的频域资源是连续的,则网络设备还可以采用资源块的长度来指示,例如不同的重复次数都从资源块1开始排列,资源块的长度为1则表示占用资源块1,资源块的长度为2则表示占用以资源块1为起始的连续的2个PRB,以此类推。
另外,如果网络设备采用方式1来配置上行控制信道,如果第一格式信息中包括频域重复次数参数,则相当于频域重复次数参数已经和格式绑定,只要网络设备向终端设备指示起始频域资源位置,则终端设备就可以根据第一格式信息确定频域重复次数参数的取值,那么就可以确定出上行控制信道占用的全部的频域资源位置。
S23、终端设备根据指示信息,通过上行控制信道向网络设备发送上行控制信息,则网络设备也根据指示信息,通过该上行控制信道从终端设备接收上行控制信息。
例如指示信息指示了第一格式信息,第一格式信息包括频域重复次数参数的取值,或者指示信息指示M个参数,且M个参数中包括频域重复次数参数,则终端设备可以在频域重复次数参数所指示的频域位置上,根据频域重复次数参数所指示的频域重复次数在上行控制信道上发送上行控制信息。网络设备同样是在频域重复次数参数指示的频域位置上,根据频域重复次数参数所指示的频域重复次数在上行控制信道上接收所述上行控制信息。
或者例如指示信息指示了第一格式信息,第一格式信息包括时域重复次数参数的取值,或者指示信息指示M个参数,且M个参数中包括时域重复次数参数,则终端设备可以在时域重复次数参数所指示的时域位置上,根据时域重复次数参数所指示的时域重复次数在上行控制信道上向网络设备发送上行控制信息。网络设备同样是在时域重复次数参数指示的时域位置上,根据时域重复次数参数所指示的时域重复次数在上行控制信道上接收终端设备发送的上行控制信息。
例如指示信息指示了第一格式信息,第一格式信息包括功率参数的取值,或者指示信息指示M个参数,且M个参数中包括功率参数,则终端设备可以根据功率参数所指示的上行发射功率在上行控制信道上向网络设备发送上行控制信息。网络设备同样是根据功率参数所指示的上行发射功率在上行控制信道上接收终端设备发送的上行控制信息。
此外,除了上述的网络设备通过指示信息来通知终端设备上行控制信道的配置的方法之外,网络设备也可以选择通过隐式的方式来通知终端设备上行控制信道的配置。在本申请的背景技术中介绍了,上行信道和下行信道的可靠性可以互换,则网络设备和终端设备可以预先约定上行信道和下行信道的可靠性互换规则,终端设备通过下行信道的重复次数可以确定下行信道的可靠性,这样,终端设备通过预先约定的可靠性互换规则可以相应确定上行控制信道的可靠性要求或上行信道的时域重复次数或频域重复次数,如果网络设备为终端设备配置了多个格式信息,则不同的格式信息可以对应不同的可靠性要求或时域重复次数或频域重复次数,则终端设备可以确定第一格式信息,或如果网络设备预先配置了固定的第二格式信息,则终端设备确定了上行控制信道的可靠性要求或上行信道的时域重 复次数或频域重复次数后,就确定了上行控制信道的配置。这样,不需要网络设备通过额外的信令来通知终端设备上行控制信道的相关发送参数,节省了信令开销。
本申请实施例中,网络设备可根据覆盖情况以及可靠性要求等因素来配置上行控制信道,使得配置的上行控制信道更符合场景的需求。且配置方式较为灵活,也易于实现。
下面结合附图介绍本申请实施例提供的装置。
图6示出了一种网络设备600的结构示意图。该网络设备600可以实现上文中涉及的网络设备的功能。该网络设备600可以包括发送器601和接收器602。其中,发送器601可以用于执行图2所示的实施例中的S22,和/或用于支持本文所描述的技术的其它过程。接收器602可以用于执行图2所示的实施例中的S23,和/或用于支持本文所描述的技术的其它过程。可选的,网络设备600还可以包括处理器603,可以用于执行图2所示的实施例中的S21,可以用于生成指示信息、RRC信令、MCE等,还可以预先配置多个格式信息或第二格式信息等,和/或,用于完成支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图7示出了一种终端设备700的结构示意图。该终端设备700可以实现上文中涉及的终端设备的功能。该终端设备700可以包括接收器701和发送器702。其中,接收器701可以用于执行图2所示的实施例中的S22,和/或用于支持本文所描述的技术的其它过程。发送器702可以用于执行图2所示的实施例中的S23,和/或用于支持本文所描述的技术的其它过程。可选的,该终端设备700还可以包括处理器703,用于根据指示信息确定第一格式信息,或根据指示信息确定第二格式信息以及M个参数,即根据指示信息确定上行控制信道的配置,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,网络设备600和终端设备700对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将网络设备600或终端设备700通过如图8所示的通信装置800的结构实现。
如图8所示,通信装置800可以包括:存储器801、处理器802、以及通信接口803。其中,存储器801以及通信接口803与处理器802连接。存储器801用于存储计算机执行指令,当通信装置800运行时,处理器802执行存储器801存储的计算机执行指令,以使通信装置800执行图2所示的实施例提供的方法。具体的方法可参考上文及附图中的相关描述,此处不再赘述。其中,通信接口803可以通过收发器实现,或者通过独立的接收器和发送器实现。
在一个示例中,发送器601和接收器602可以对应图8中的通信接口803。处理器703可以以硬件形式/软件形式内嵌于或独立于通信装置800的存储器801中。
在一个示例中,接收器701和发送器702可以对应图8中的通信接口803。处理器703可以以硬件形式/软件形式内嵌于或独立于通信装置800的存储器801中。
可选的,通信装置800可以是现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on  chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以采用可编程控制器(programmable logic device,PLD)或其他集成芯片。或者,通信装置800也可以是单独的网元,例如为如前所述的终端设备或网络设备。
另外,图6所示的实施例提供的网络设备还可以通过其他形式实现。例如该网络设备包括发送单元和接收单元。可选的,该网络设备还可以包括处理单元。其中,发送单元可以用于执行图2所示的实施例中的S22,和/或用于支持本文所描述的技术的其它过程。接收单元可以用于执行图2所示的实施例中的S23,和/或用于支持本文所描述的技术的其它过程。处理单元可以用于执行图2所示的实施例中的S21,可以用于生成指示信息、RRC信令、MCE等,还可以预先配置多个格式信息或第二格式信息等,和/或,用于完成支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
另外,图7所示的实施例提供的终端设备还可以通过其他形式实现。例如该终端设备包括接收单元和发送单元。可选的,该终端设备还可以包括处理单元。其中,接收单元可以用于执行图2所示的实施例中的S22,和/或用于支持本文所描述的技术的其它过程。发送单元可以用于执行图2所示的实施例中的S23,和/或用于支持本文所描述的技术的其它过程。处理单元用于根据指示信息确定第一格式信息,或根据指示信息确定第二格式信息以及M个参数,即根据指示信息确定上行控制信道的配置,和/或用于支持本文所描述的技术的其它过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的网络设备600、终端设备700、及通信装置800可用于执行图2所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介 质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (44)

  1. 一种接收控制信息的方法,其特征在于,包括:
    网络设备向终端设备发送上行控制信道的指示信息;其中,所述上行控制信道的指示信息用于指示以下至少一个传输参数:时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、以及发射分集方式参数;
    所述网络设备根据所述指示信息通过所述上行控制信道从所述终端设备接收上行控制信息。
  2. 如权利要求1所述的方法,其特征在于,所述指示信息包括所述上行控制信道的第一格式信息,所述第一格式信息包含所述至少一个参数。
  3. 如权利要求2所述的方法,其特征在于,在网络设备向终端设备发送上行控制信道的指示信息之前,还包括:
    所述网络设备向所述终端设备发送无线资源控制RRC信令或媒体接入控制层控制实体MCE;所述RRC信令或所述MCE包括多个格式信息,其中,所述多个格式信息中,不同的格式信息至少有一个参数的取值不同。
  4. 如权利要求1所述的方法,其特征在于,在网络设备向终端设备发送上行控制信道的指示信息之前,还包括:
    所述网络设备通过RRC信令或MCE为所述终端设备指示第二格式的资源信息。
  5. 如权利要求4所述的方法,其特征在于,所述指示信息用于指示时域重复次数参数,所述时域重复次数参数的取值以及起始时域资源的位置用于确定所述第二格式对应的时域重复次数以及对应的时域位置;其中,所述起始时域资源的位置通过所述第二格式的资源信息获取。
  6. 如权利要求5所述的方法,其特征在于,所述网络设备根据所述指示信息通过所述上行控制信道从所述终端设备接收上行控制信息,包括:
    所述网络设备在所述时域重复次数参数指示的时域位置上,根据所述时域重复次数参数所指示的时域重复次数从所述终端设备接收所述上行控制信息。
  7. 如权利要求4所述的方法,其特征在于,
    所述指示信息包括位图bitmap,所述bitmap用于指示所述第二格式所对应的所述频域重复次数参数以及对应的频域位置;或
    所述指示信息包括所述频域重复次数参数,所述频域重复次数参数用于确定所述第二格式所对应的频域重复次数以及对应的频域位置;其中,所述频域重复次数参数的取值与频域位置一一对应;或
    所述指示信息包括频域重复次数参数以及起始频域资源的位置,所述频域重复次数参数以及起始频域资源的位置用于确定所述第二格式所对应的频域重复次数以及对应的频域位置;其中,所述起始频域资源的位置是通过所述第二格式的资源信息获取的。
  8. 如权利要求7所述的方法,其特征在于,所述网络设备根据所述指示信息通过所述上行控制信道从所述终端设备接收上行控制信息,包括:
    所述网络设备在所述频域重复次数参数指示的频域位置上,根据所述频域重复次数参数所指示的频域重复次数从所述终端设备接收所述上行控制信息。
  9. 如权利要求1-8任一所述的方法,其特征在于,
    所述时域长度参数为时域资源的个数,所述时域资源为符号或时隙或子帧;
    所述频域长度参数为频域资源的个数,所述频域资源为物理资源块PRB或资源块组RBG。
  10. 如权利要求1-9任一所述的方法,其特征在于,网络设备向终端设备发送上行控制信道的指示信息,包括:
    所述网络设备通过下行控制信息DCI向所述终端设备发送所述上行控制信道的所述指示信息。
  11. 一种发送控制信息的方法,其特征在于,包括:
    终端设备从网络设备接收上行控制信道的指示信息;其中,所述上行控制信道的指示信息用于指示以下至少一个传输参数:时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、以及发射分集方式参数;
    所述终端设备根据所述指示信息通过所述上行控制信道向所述网络设备发送上行控制信息。
  12. 如权利要求11所述的方法,其特征在于,所述指示信息包括所述上行控制信道的第一格式信息,所述第一格式信息包含所述至少一个参数。
  13. 如权利要求12所述的方法,其特征在于,在终端设备从网络设备接收上行控制信道的指示信息之前,还包括:
    所述终端设备从所述网络设备接收无线资源控制RRC信令或媒体接入控制层控制实体MCE;所述RRC信令或所述MCE包括多个格式信息,其中,所述多个格式信息中,不同的格式信息至少有一个参数的取值不同。
  14. 如权利要求11所述的方法,其特征在于,在终端设备从网络设备接收上行控制信道的指示信息之前,还包括:
    所述终端设备通过RRC信令或MCE确定所述网络设备为所述终端设备指示的第二格式的资源信息。
  15. 如权利要求14所述的方法,其特征在于,所述指示信息用于指示时域重复次数参数,所述时域重复次数参数的取值以及起始时域资源的位置用于确定所述第二格式对应的时域重复次数以及对应的时域位置;其中,所述起始时域资源的位置通过所述第二格式的资源信息获取。
  16. 如权利要求15所述的方法,其特征在于,所述终端设备根据所述指示信息通过所述上行控制信道向所述网络设备发送上行控制信息,包括:
    所述终端设备在所述时域重复次数参数指示的时域位置上,根据所述时域重复次数参数所指示的时域重复次数向所述网络设备发送所述上行控制信息。
  17. 如权利要求14所述的方法,其特征在于,
    所述指示信息包括位图bitmap,所述bitmap用于指示所述第二格式所对应的所述频域重复次数参数以及对应的频域位置;或
    所述指示信息包括所述频域重复次数参数,所述频域重复次数参数用于确定所述第二格式所对应的频域重复次数以及对应的频域位置;其中,所述频域重复次数参数的取值与频域位置一一对应;或
    所述指示信息包括频域重复次数参数以及起始频域资源的位置,所述频域重复次数参数以及起始频域资源的位置用于确定所述第二格式所对应的频域重复次数以及对应的频域位置;其中,所述起始频域资源的位置是通过所述第二格式的资源信息获取的。
  18. 如权利要求17所述的方法,其特征在于,所述终端设备根据所述指示信息通过所述上行控制信道向所述网络设备发送上行控制信息,包括:
    所述终端设备在所述频域重复次数参数指示的频域位置上,根据所述频域重复次数参数所指示的频域重复次数向所述网络设备发送所述上行控制信息。
  19. 如权利要求11-18任一所述的方法,其特征在于,
    所述时域长度参数为时域资源的个数,所述时域资源为符号或时隙或子帧;
    所述频域长度参数为频域资源的个数,所述频域资源为物理资源块PRB或资源块组RBG。
  20. 如权利要求11-19任一所述的方法,其特征在于,终端设备从网络设备接收上行控制信道的指示信息,包括:
    所述终端设备通过下行控制信息DCI从所述网络设备接收所述上行控制信道的所述指示信息。
  21. 一种网络设备,其特征在于,包括:
    发送器,用于向终端设备发送上行控制信道的指示信息;其中,所述上行控制信道的指示信息用于指示以下至少一个传输参数:时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、以及发射分集方式参数;
    接收器,用于根据所述指示信息通过所述上行控制信道从所述终端设备接收上行控制信息。
  22. 如权利要求21所述的网络设备,其特征在于,所述指示信息包括所述上行控制信道的第一格式信息,所述第一格式信息包含所述至少一个参数。
  23. 如权利要求22所述的网络设备,其特征在于,所述发送器还用于:
    在向终端设备发送上行控制信道的指示信息之前,向所述终端设备发送无线资源控制RRC信令或媒体接入控制层控制实体MCE;所述RRC信令或所述MCE包括多个格式信息,其中,所述多个格式信息中,不同的格式信息至少有一个参数的取值不同。
  24. 如权利要求21所述的网络设备,其特征在于,所述发送器还用于:
    在向终端设备发送上行控制信道的指示信息之前,通过RRC信令或MCE为所述终端设备指示第二格式的资源信息。
  25. 如权利要求24所述的网络设备,其特征在于,所述指示信息用于指示时域重复次数参数,所述时域重复次数参数的取值以及起始时域资源的位置用于确定所述第二格式对应的时域重复次数以及对应的时域位置;其中,所述起始时域资源的位置通过所述第二格式的资源信息获取。
  26. 如权利要求25所述的网络设备,其特征在于,所述接收器根据所述指示信息通过所述上行控制信道从所述终端设备接收上行控制信息,包括:
    所述接收器在所述时域重复次数参数指示的时域位置上,根据所述时域重复次数参数所指示的时域重复次数从所述终端设备接收所述上行控制信息。
  27. 如权利要求24所述的网络设备,其特征在于,
    所述指示信息包括位图bitmap,所述bitmap用于指示所述第二格式所对应的所述频域重复次数参数以及对应的频域位置;或
    所述指示信息包括所述频域重复次数参数,所述频域重复次数参数用于确定所述第二格式所对应的频域重复次数以及对应的频域位置;其中,所述频域重复次数参数的取值与 频域位置一一对应;或
    所述指示信息包括频域重复次数参数以及起始频域资源的位置,所述频域重复次数参数以及起始频域资源的位置用于确定所述第二格式所对应的频域重复次数以及对应的频域位置;其中,所述起始频域资源的位置是通过所述第二格式的资源信息获取的。
  28. 如权利要求27所述的网络设备,其特征在于,所述接收器根据所述指示信息通过所述上行控制信道从所述终端设备接收上行控制信息,包括:
    所述接收器在所述频域重复次数参数指示的频域位置上,根据所述频域重复次数参数所指示的频域重复次数从所述终端设备接收所述上行控制信息。
  29. 如权利要求21-28任一所述的网络设备,其特征在于,
    所述时域长度参数为时域资源的个数,所述时域资源为符号或时隙或子帧;
    所述频域长度参数为频域资源的个数,所述频域资源为物理资源块PRB或资源块组RBG。
  30. 如权利要求21-29任一所述的网络设备,其特征在于,所述发送器向终端设备发送上行控制信道的指示信息,包括:
    所述发送器通过下行控制信息DCI向所述终端设备发送所述上行控制信道的所述指示信息。
  31. 一种终端设备,其特征在于,包括:
    接收器,用于从网络设备接收上行控制信道的指示信息;其中,所述上行控制信道的指示信息用于指示以下至少一个传输参数:时域长度参数、频域长度参数、时域重复次数参数、频域重复次数参数、以及发射分集方式参数;
    发送器,用于根据所述指示信息通过所述上行控制信道向所述网络设备发送上行控制信息。
  32. 如权利要求31所述的终端设备,其特征在于,所述指示信息包括所述上行控制信道的第一格式信息,所述第一格式信息包含所述至少一个参数。
  33. 如权利要求32所述的终端设备,其特征在于,所述接收器还用于:
    在从网络设备接收上行控制信道的指示信息之前,从所述网络设备接收无线资源控制RRC信令或媒体接入控制层控制实体MCE;所述RRC信令或所述MCE包括多个格式信息,其中,所述多个格式信息中,不同的格式信息至少有一个参数的取值不同。
  34. 如权利要求31所述的终端设备,其特征在于,所述接收器还用于:
    在从网络设备接收上行控制信道的指示信息之前,通过RRC信令或MCE确定所述网络设备为所述终端设备指示的第二格式的资源信息。
  35. 如权利要求34所述的终端设备,其特征在于,所述指示信息用于指示时域重复次数参数,所述时域重复次数参数的取值以及起始时域资源的位置用于确定所述第二格式对应的时域重复次数以及对应的时域位置;其中,所述起始时域资源的位置通过所述第二格式的资源信息获取。
  36. 如权利要求35所述的终端设备,其特征在于,所述发送器根据所述指示信息通过所述上行控制信道向所述网络设备发送上行控制信息,包括:
    所述发送器在所述时域重复次数参数指示的时域位置上,根据所述时域重复次数参数所指示的时域重复次数向所述网络设备发送所述上行控制信息。
  37. 如权利要求34所述的终端设备,其特征在于,
    所述指示信息包括位图bitmap,所述bitmap用于指示所述第二格式所对应的所述频域重复次数参数以及对应的频域位置;或
    所述指示信息包括所述频域重复次数参数,所述频域重复次数参数用于确定所述第二格式所对应的频域重复次数以及对应的频域位置;其中,所述频域重复次数参数的取值与频域位置一一对应;或
    所述指示信息包括频域重复次数参数以及起始频域资源的位置,所述频域重复次数参数以及起始频域资源的位置用于确定所述第二格式所对应的频域重复次数以及对应的频域位置;其中,所述起始频域资源的位置是通过所述第二格式的资源信息获取的。
  38. 如权利要求37所述的终端设备,其特征在于,所述发送器根据所述指示信息通过所述上行控制信道向所述网络设备发送上行控制信息,包括:
    所述发送器在所述频域重复次数参数指示的频域位置上,根据所述频域重复次数参数所指示的频域重复次数向所述网络设备发送所述上行控制信息。
  39. 如权利要求31-38任一所述的终端设备,其特征在于,
    所述时域长度参数为时域资源的个数,所述时域资源为符号或时隙或子帧;
    所述频域长度参数为频域资源的个数,所述频域资源为物理资源块PRB或资源块组RBG。
  40. 如权利要求31-39任一所述的终端设备,其特征在于,所述接收器从网络设备接收上行控制信道的指示信息,包括:
    所述接收器通过下行控制信息DCI从所述网络设备接收所述上行控制信道的所述指示信息。
  41. 一种计算机可读存取介质,其特征在于,用于存储指令,当所述指令被计算机运行时,使得所述计算机执行如权利要求1-10任一项所述的方法。
  42. 一种计算机可读存取介质,其特征在于,用于存储指令,当所述指令被计算机运行时,使得所述计算机执行如权利要求11-20任一项所述的方法。
  43. 一种装置,其特征在于,包括处理器和与所述处理器耦合的存储器,所述存储器用于存储指令,所述处理器用于读取并运行所述指令,以执行如权利要求1-10任一项所述的方法。
  44. 一种装置,其特征在于,包括处理器和与所述处理器耦合的存储器,所述存储器用于存储指令,所述处理器用于读取并运行所述指令,以执行如权利要求11-20任一项所述的方法。
PCT/CN2018/098687 2017-08-09 2018-08-03 一种接收控制信息、发送控制信息的方法及设备 WO2019029463A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18844741.1A EP3661299B1 (en) 2017-08-09 2018-08-03 Method and device for receiving control information and sending control information
BR112020002455-4A BR112020002455A2 (pt) 2017-08-09 2018-08-03 método e dispositvo para receber informaçõs de controle e método e dispositivo para enviar informações de controle
US16/783,157 US11395272B2 (en) 2017-08-09 2020-02-05 Method and device for receiving and sending control information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710677555.3A CN109392113B (zh) 2017-08-09 2017-08-09 一种接收控制信息、发送控制信息的方法及设备
CN201710677555.3 2017-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/783,157 Continuation US11395272B2 (en) 2017-08-09 2020-02-05 Method and device for receiving and sending control information

Publications (1)

Publication Number Publication Date
WO2019029463A1 true WO2019029463A1 (zh) 2019-02-14

Family

ID=65273345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098687 WO2019029463A1 (zh) 2017-08-09 2018-08-03 一种接收控制信息、发送控制信息的方法及设备

Country Status (5)

Country Link
US (1) US11395272B2 (zh)
EP (1) EP3661299B1 (zh)
CN (1) CN109392113B (zh)
BR (1) BR112020002455A2 (zh)
WO (1) WO2019029463A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277384B (zh) * 2019-02-27 2021-09-14 维沃移动通信有限公司 传输资源指示方法、传输方法、网络设备和终端
CN111918333B (zh) * 2019-05-07 2023-10-24 成都华为技术有限公司 数据传输方法和设备
WO2021174542A1 (zh) * 2020-03-06 2021-09-10 北京小米移动软件有限公司 下行控制信道传输方法、装置、终端及接入网设备
WO2022151380A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 传输pucch的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752070A (zh) * 2011-04-20 2012-10-24 华为技术有限公司 控制信息的发送、接收方法和装置
US20130121259A1 (en) * 2011-11-14 2013-05-16 Research In Motion Limited Method and system for requesting a service utilizing a sequence of codes
CN103209483A (zh) * 2012-01-12 2013-07-17 华为技术有限公司 传输上行控制信息的方法、用户设备和基站
CN106559841A (zh) * 2015-09-25 2017-04-05 北京大学 一种lte上行物理控制信道pucch资源的分配方法和装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101969685B (zh) * 2010-09-30 2015-11-25 中兴通讯股份有限公司 一种物理上行控制信道的功率设置方法及用户设备
EP2564611B1 (en) * 2011-07-01 2015-02-18 Ofinno Technologies, LLC Synchronization signal and control messages in multicarrier OFDM
CN109921885B (zh) * 2012-04-20 2021-11-26 北京三星通信技术研究有限公司 支持发送分集和信道选择的分配harq-ack信道资源的方法
CN103916867A (zh) * 2012-12-31 2014-07-09 中国移动通信集团设计院有限公司 一种确定控制信道容量的方法和装置
EP3214793B1 (en) * 2014-10-30 2019-06-26 LG Electronics Inc. Pucch transmission method by mtc device
CN106162888B (zh) * 2015-04-10 2022-11-08 夏普株式会社 载波聚合中的pucch资源配置方法及其设备
US10038521B2 (en) * 2015-08-12 2018-07-31 Lg Electronics Inc. Method for transmitting control information and an apparatus therefor
CN110431896B (zh) * 2017-03-20 2021-04-09 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102752070A (zh) * 2011-04-20 2012-10-24 华为技术有限公司 控制信息的发送、接收方法和装置
US20130121259A1 (en) * 2011-11-14 2013-05-16 Research In Motion Limited Method and system for requesting a service utilizing a sequence of codes
CN103209483A (zh) * 2012-01-12 2013-07-17 华为技术有限公司 传输上行控制信息的方法、用户设备和基站
CN106559841A (zh) * 2015-09-25 2017-04-05 北京大学 一种lte上行物理控制信道pucch资源的分配方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3661299A4

Also Published As

Publication number Publication date
CN109392113A (zh) 2019-02-26
EP3661299A4 (en) 2020-07-15
BR112020002455A2 (pt) 2020-07-28
CN109392113B (zh) 2022-09-02
EP3661299B1 (en) 2021-11-17
US11395272B2 (en) 2022-07-19
EP3661299A1 (en) 2020-06-03
US20200178248A1 (en) 2020-06-04

Similar Documents

Publication Publication Date Title
CN113348642B (zh) 执行发送和接收操作的用户设备和系统
WO2020020180A1 (zh) 一种资源配置方法及装置
WO2018171605A1 (zh) 接收信息的方法及其装置和发送信息的方法及其装置
WO2018202163A1 (zh) 一种资源指示方法及装置
US11395272B2 (en) Method and device for receiving and sending control information
WO2018166048A1 (zh) 一种传输方向的配置方法、设备及系统
CN115516805A (zh) 涉及子时隙物理上行链路控制信道(pucch)重复的系统和方法
US11018725B2 (en) Data transmission method, apparatus, and system
WO2019029348A1 (zh) 数据传输方法、终端和基站
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2022067726A1 (zh) 用于资源调度的通信方法及装置
WO2022022286A2 (en) Method and apparatus for transmitting csi report
US20220312459A1 (en) Enhanced Configured Grants
WO2021073020A1 (zh) 一种通信方法及装置
CN112997433B (zh) 用于harq传输的方法以及通信设备
WO2019137221A1 (zh) 一种上行数据传输方法及装置
WO2016168967A1 (zh) 一种分量载波组的配置方法及设备
CN114451017A (zh) 一种激活和释放非动态调度传输的方法及装置
US20220183029A1 (en) Method for sending and receiving control information, apparatus, and system
WO2018028454A1 (zh) 信息的传输方法及相关装置
US20220303073A1 (en) Technologies for Reliable Physical Data Channel Reception in Wireless Communications
US20220304042A1 (en) Enhanced Configured Grants
WO2023203938A1 (ja) 端末、基地局、通信方法及び集積回路
WO2022016477A1 (zh) 一种通信方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020002455

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018844741

Country of ref document: EP

Effective date: 20200224

ENP Entry into the national phase

Ref document number: 112020002455

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200205