WO2021174542A1 - 下行控制信道传输方法、装置、终端及接入网设备 - Google Patents

下行控制信道传输方法、装置、终端及接入网设备 Download PDF

Info

Publication number
WO2021174542A1
WO2021174542A1 PCT/CN2020/078257 CN2020078257W WO2021174542A1 WO 2021174542 A1 WO2021174542 A1 WO 2021174542A1 CN 2020078257 W CN2020078257 W CN 2020078257W WO 2021174542 A1 WO2021174542 A1 WO 2021174542A1
Authority
WO
WIPO (PCT)
Prior art keywords
repetitions
downlink control
length
control channel
transmission
Prior art date
Application number
PCT/CN2020/078257
Other languages
English (en)
French (fr)
Inventor
牟勤
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/078257 priority Critical patent/WO2021174542A1/zh
Priority to CN202080000485.8A priority patent/CN113632564A/zh
Priority to EP20923670.2A priority patent/EP4117362A4/en
Priority to US17/905,720 priority patent/US20230106966A1/en
Publication of WO2021174542A1 publication Critical patent/WO2021174542A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method, device, terminal, and access network equipment for downlink control channel transmission.
  • the Physical Downlink Control Channel is used to carry scheduling and other control information, and may include, for example, transmission format, resource allocation, uplink scheduling permission, power control, and uplink retransmission information.
  • the embodiments of the present disclosure provide a downlink control channel transmission method, device, terminal, and access network equipment, so that the terminal can save transmission time and reduce power consumption; reduce the difference of repeated transmission channels, and facilitate demodulation processing.
  • the technical solution is as follows:
  • a downlink control channel transmission method including:
  • the downlink control channel is repeatedly received on at least one transmission unit in the transmission period of the downlink control channel, and each transmission unit is used to continuously and repeatedly transmit the downlink control channel at least twice.
  • the repeatedly receiving the downlink control channel on at least one transmission unit in the transmission period of the downlink control channel includes:
  • the set of repetition times includes a plurality of repetition times of different sizes, and the number of downlink control channels repeatedly transmitted on the at least one transmission unit is a number in the set of repetition times;
  • the multiple repetition times are used in sequence for repeated reception of the downlink control channel until the downlink control channel is correctly demodulated or all the repetition times in the set of repetition times are traversed. repeat times.
  • the method when the number of the transmission units is greater than 1, the length of the interval between any adjacent transmission units is the same, and the method further includes:
  • determining the length of the transmission unit includes:
  • the length of the transmission unit is determined based on the number of repetitions used in the current transmission.
  • determining the interval length includes:
  • the interval length is determined based on the maximum number of repetitions, where the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the method further includes:
  • the downlink control channel is received periodically.
  • the determining the length of the transmission period includes:
  • Determining the length of the transmission period based on at least one of the length of the transmission unit, the length of the interval, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the method further includes:
  • the downlink control channel is received from the start transmission time.
  • the determining the initial transmission time includes:
  • Determining the initial transmission time based on at least one of the length of the transmission unit, the length of the interval, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the determining the set of repetition times includes:
  • the set of repetition times is determined based on the maximum number of repetitions, and the maximum value in the set of repetition times is the maximum number of repetitions.
  • the obtaining the maximum number of repetitions includes:
  • Radio resource control signaling where the radio resource control signaling includes the maximum number of repetitions.
  • a downlink control channel transmission method including:
  • the downlink control channel is repeatedly sent on at least one transmission unit in each transmission period of the downlink control channel, and each transmission unit is used to continuously transmit the downlink control channel at least twice.
  • the repeatedly sending the downlink control channel on at least one transmission unit in each transmission period of the downlink control channel includes:
  • the downlink control channel is repeatedly sent according to the number of repetitions, and the number of repeated transmissions of the downlink control channel on the at least one transmission unit is the number of repetitions.
  • the method when the number of the transmission units is greater than 1, the length of the interval between any adjacent transmission units is the same, and the method further includes:
  • determining the length of the transmission unit includes:
  • the length of the transmission unit is determined based on the number of repetitions used in the current transmission.
  • determining the interval length includes:
  • the interval length is determined based on the maximum number of repetitions, where the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the method further includes:
  • At least one of the length of the transmission unit and the length of the interval is sent using configuration signaling.
  • the method further includes:
  • the downlink control channel is sent periodically.
  • the determining the length of the transmission period includes:
  • Determining the length of the transmission period based on at least one of the length of the transmission unit, the length of the interval, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the method further includes:
  • the downlink control channel is sent from the start transmission time.
  • the determining the initial transmission time includes:
  • Determining the initial transmission time based on at least one of the length of the transmission unit, the length of the interval, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the method further includes:
  • Radio resource control signaling includes a maximum number of repetitions, and the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • a downlink control channel transmission device including:
  • the receiving module is configured to repeatedly receive the downlink control channel on at least one transmission unit in the transmission period of the downlink control channel, and each transmission unit is used to continuously and repeatedly transmit the downlink control channel at least twice.
  • a downlink control channel transmission device including:
  • the sending module is configured to repeatedly send the downlink control channel on at least one transmission unit in each transmission period of the downlink control channel, and each transmission unit is used to continuously transmit the downlink control channel at least twice.
  • a terminal including: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to load and execute the executable Command to implement the aforementioned downlink control channel transmission method.
  • an access network device comprising: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured to load And execute the executable instruction to realize the aforementioned downlink control channel transmission method.
  • a computer-readable storage medium which can execute the aforementioned downlink control channel transmission method when the instructions in the computer-readable storage medium are executed by a processor.
  • the downlink control channel is carried on at least one transmission unit when repeated transmission of the downlink control channel is performed in each transmission period, and each transmission unit is used to continuously retransmit the downlink control channel at least twice.
  • each transmission unit is used to continuously retransmit the downlink control channel at least twice.
  • Figure 1 is a schematic diagram of a network architecture provided by an embodiment of the present disclosure
  • Figure 2 is a schematic diagram of a transmission location provided by an embodiment of the present disclosure
  • Fig. 3 is a flow chart showing a method for transmitting a downlink control channel according to an exemplary embodiment
  • Fig. 4 is a flowchart showing a method for transmitting a downlink control channel according to an exemplary embodiment
  • Fig. 5 is a flow chart showing a method for transmitting a downlink control channel according to an exemplary embodiment
  • Figure 6 is a schematic diagram of a transmission location provided by an embodiment of the present disclosure.
  • Fig. 7 is a flow chart showing a method for transmitting a downlink control channel according to an exemplary embodiment
  • FIG. 8 is a schematic diagram of a transmission position provided by an embodiment of the present disclosure.
  • Fig. 9 is a schematic structural diagram showing a device for transmitting a downlink control channel according to an exemplary embodiment
  • Fig. 10 is a schematic structural diagram showing a device for transmitting a downlink control channel according to an exemplary embodiment
  • Fig. 11 is a block diagram showing a terminal according to an exemplary embodiment
  • Fig. 12 is a block diagram showing an access network device according to an exemplary embodiment.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system may include: an access network 12 and a terminal 13.
  • the access network 12 includes several access network devices 120.
  • the access network device 120 may be a base station, which is a device deployed in an access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different.
  • 5G New Radio (NR) systems they are called gNodeB or gNB. With the evolution of communication technology, the name "base station” may be described and will change.
  • access network equipment For the convenience of description, the above-mentioned devices that provide wireless communication functions for terminals are collectively referred to as access network equipment hereinafter.
  • the terminal 13 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user equipment, mobile stations (MS), Terminal and so on.
  • the access network device 120 and the terminal 13 communicate with each other through a certain air interface technology, such as a Uu interface.
  • the access network device 120 does not send a downlink control channel to the terminal 13 in every slot.
  • the downlink control channel (Physical Downlink Control Channel, PDCCH) is only sent to the terminal at a predetermined time.
  • PDCCH Physical Downlink Control Channel
  • the length of the transmission period (T in Figure 2): used to indicate how many slots the terminal starts to monitor and transmit PDCCH, and A in Figure 2 represents a slot;
  • the number of continuous slots per transmission when the terminal starts PDCCH monitoring, how many slots need to be continuously monitored, for example, 3 in Figure 2;
  • the position of the symbol used for transmission in the slot there are multiple symbols in a slot, which symbols the terminal needs to monitor the PDCCH, for example, the shaded in Figure 2 corresponds to the slot for transmitting the PDCCH.
  • a shaded rectangle in Figure 2 represents a transmission of PDCCH, which may correspond to 1 to 3 slots, that is, in the current NR system, a shaded rectangle in Figure 2 is a PDCCH transmission opportunity.
  • different PDCCHs can be transmitted or the same PDCCH can be transmitted.
  • Fig. 3 is a flow chart showing a method for transmitting a downlink control channel according to an exemplary embodiment. Referring to Figure 3, the method includes the following steps:
  • step 101 the terminal repeatedly receives the downlink control channel on at least one transmission unit in the transmission period of the downlink control channel.
  • each transmission unit is used to continuously and repeatedly transmit the downlink control channel at least twice.
  • one transmission unit may include multiple slots.
  • the downlink control channel is carried on at least one transmission unit when repeated transmission of the downlink control channel is performed in each transmission period, and each transmission unit is used to continuously retransmit the downlink control channel at least twice.
  • each transmission unit is used to continuously retransmit the downlink control channel at least twice.
  • at least part of the downlink control channel is continuously transmitted, avoiding the scattered arrangement of downlink control channels in related technologies, saving transmission time and reducing power consumption; at the same time, reducing the transmission time to reduce the repeated transmission channel
  • the difference is convenient for the demodulation processing of the terminal. It can improve the transmission performance under the condition of enhanced coverage.
  • repeatedly receiving the downlink control channel on at least one transmission unit in the transmission period of the downlink control channel includes:
  • the set of repetition times includes a plurality of repetition times of different sizes, and the number of downlink control channels repeatedly transmitted on at least one transmission unit is a number in the set of repetition times;
  • each transmission period starting from the initial transmission time, multiple repetition times are used in sequence to repeatedly receive the downlink control channel until the downlink control channel is correctly demodulated or all repetition times in the set of repetition times are traversed.
  • the terminal selects multiple repetitions from the set of repetitions to perform demodulation in sequence until the downlink control channel is correctly demodulated or all repetitions in the set of repetitions are traversed. This solution does not require access to the network.
  • the device sends the actual number of repetitions to the terminal, which saves signaling overhead and reduces system power consumption.
  • the method further includes:
  • the terminal in a transmission cycle, if the number of transmission units is greater than 1, the terminal also needs to determine the length of the transmission unit and the interval length, and then perform downlink according to the determined transmission unit length and interval length. Control channel reception.
  • determining the length of the transmission unit includes:
  • the length of the transmission unit is determined based on the number of repetitions used in the current transmission.
  • the length section of the transmission unit may be configured to the terminal through the access network device, or may be obtained by the terminal itself from the protocol, or determined based on the maximum number of repetitions.
  • determining the interval length includes:
  • the configuration signaling includes the interval length
  • the interval length is determined based on the maximum number of repetitions, and the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the length section of the transmission unit may be configured to the terminal through the access network device, or may be obtained by the terminal itself from the protocol, or determined based on the maximum number of repetitions.
  • the method further includes:
  • the downlink control channel is received periodically.
  • the terminal implements periodic transmission of the downlink control channel with the access network device by determining the length of the transmission period.
  • determining the length of the transmission period includes:
  • Determining the length of the transmission period based on at least one of the length of the transmission unit, the length of the interval, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the terminal determines the length of the transmission period by at least one of the length of the transmission unit and the maximum number of repetitions. This solution does not require the access network device to send the length of the transmission period to the terminal, saving signaling Overhead, reducing system power consumption.
  • the method further includes:
  • the downlink control channel is received from the initial transmission time.
  • the terminal realizes the correct transmission of the downlink control channel with the access network device by determining the initial transmission time.
  • determining the initial transmission time includes:
  • Determining the initial transmission time based on at least one of the length of the transmission unit, the length of the interval, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the terminal determines the initial transmission time by at least one of the length of the transmission unit and the maximum number of repetitions. This solution does not require the access network equipment to send the initial transmission time to the terminal, saving signaling Overhead, reducing system power consumption.
  • determining the set of repetition times includes:
  • the set of repetition times is determined, and the maximum value in the set of repetition times is the maximum number of repetitions.
  • the set of repetition times can be determined by the maximum number of repetitions, so that the terminal can subsequently demodulate the downlink control channel based on the set of repetition times.
  • obtaining the maximum number of repetitions includes:
  • Radio Resource Control Radio Resource Control
  • the radio resource control signaling includes the maximum number of repetitions.
  • the maximum number of repetitions is limited to use radio resource control signaling for transmission. Since the maximum number of repetitions does not change frequently, it can usually be used as a static parameter after configuration. The number of repetitions actually used between the access network equipment and the terminal will dynamically change with the channel quality of the terminal. Therefore, only the maximum number of repetitions are transmitted through signaling instead of the actual number of repetitions used each time, which can reduce signaling. Overhead.
  • Fig. 4 is a flow chart showing a method for transmitting a downlink control channel according to an exemplary embodiment. Referring to Figure 4, the method includes the following steps:
  • step 201 the access network device repeatedly sends the downlink control channel on at least one transmission unit in each transmission period of the downlink control channel.
  • each transmission unit is used to continuously and repeatedly transmit the downlink control channel at least twice.
  • one transmission unit may include multiple slots.
  • the downlink control channel is carried on at least one transmission unit when repeated transmission of the downlink control channel is performed in each transmission period, and each transmission unit is used to continuously retransmit the downlink control channel at least twice.
  • each transmission unit is used to continuously retransmit the downlink control channel at least twice.
  • at least part of the downlink control channel is continuously transmitted, avoiding the scattered arrangement of downlink control channels in related technologies, saving transmission time and reducing power consumption; at the same time, reducing the transmission time to reduce the repeated transmission channel
  • the difference is convenient for the demodulation processing of the terminal. It can improve the transmission performance under the condition of enhanced coverage.
  • repeatedly sending the downlink control channel on at least one transmission unit in each transmission period of the downlink control channel includes:
  • the downlink control channel is repeatedly transmitted according to the number of repetitions, and the number of repeated transmissions of the downlink control channel on at least one transmission unit is the number of repetitions.
  • the method further includes:
  • determining the length of the transmission unit includes:
  • the length of the transmission unit is determined based on the number of repetitions used in the current transmission.
  • determining the interval length includes:
  • the interval length is determined based on the maximum number of repetitions, and the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the method further includes:
  • At least one of the length of the transmission unit and the interval length is sent using configuration signaling.
  • the method further includes:
  • the downlink control channel is sent periodically.
  • determining the length of the transmission period includes:
  • Determining the length of the transmission period based on at least one of the length of the transmission unit, the length of the interval, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the method further includes:
  • the downlink control channel is sent from the initial transmission time.
  • determining the initial transmission time includes:
  • Determining the initial transmission time based on at least one of the length of the transmission unit, the length of the interval, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the method further includes:
  • the radio resource control signaling is sent.
  • the radio resource control signaling includes the maximum number of repetitions.
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • Fig. 5 is a flowchart showing a method for transmitting a downlink control channel according to an exemplary embodiment. Referring to Figure 5, the method includes the following steps:
  • the access network device sends the maximum number of repetitions to the terminal.
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period; the terminal receives the maximum number of repetitions sent by the access network device.
  • the access network device can configure the maximum number of repetitions to the terminal by configuring parameters. For example, the access network device sends radio resource control signaling to the terminal, and the radio resource control signaling includes the maximum number of repetitions; the terminal receives the radio resource control signaling sent by the access network device.
  • the maximum number of repetitions may be pre-configured in the access network device, for example, in the protocol.
  • step 302 the access network device obtains channel status information of the terminal.
  • the channel status information is used to indicate the channel quality of the terminal.
  • the channel quality is related to the location of the terminal. For example, the channel quality when the terminal is in the center of a cell is higher than the channel quality when the terminal is on the edge of the cell.
  • the terminal can report the channel status information to the access network device through a message.
  • step 303 the access network device determines the number of repetitions based on the channel status information of the terminal.
  • the number of repetitions refers to the number of times that the downlink control channel is repeatedly transmitted, and the terminal can achieve the effect of coverage enhancement by repeatedly transmitting the downlink control channel. Therefore, the better the channel quality, the fewer the number of repetitions, and the worse the channel quality, the more the number of repetitions, that is, the channel quality is negatively related to the number of repetitions.
  • a set of repetition times can be determined based on the maximum number of repetitions. For example, if the maximum number of repetitions is Rmax, the set of repetition times can be ⁇ 1/8Rmax, 1/4Rmax, 1/2Rmax, Rmax ⁇ , and access
  • the network equipment determines the number of repetitions based on the terminal's channel condition information, it can choose from the set of repetitions. For example, when the channel quality is good, the repetition number can be selected as 1/8Rmax or 1/4Rmax, and when the channel quality is good, it can be selected to repeat. The number of times is 1/2Rmax or Rmax.
  • the set of repetition times here is just an example, and in other implementation manners, the set of repetition times may also include more or less values, or include different values.
  • step 304 the access network device determines the length of the transmission period and the initial transmission time.
  • the access network device may determine the length of the transmission period based on the maximum number of repetitions.
  • A can be specified in the access network equipment protocol, where A can be a positive integer.
  • the access network device can configure the parameter A to the terminal by configuring the parameter, so that the terminal can calculate the length T of the transmission period in the same way.
  • the access network device may determine the initial transmission time based on the maximum number of repetitions.
  • a may be specified in the access network equipment protocol.
  • the access network device can configure the parameter a to the terminal by configuring the parameter, so that the terminal can calculate the initial transmission time X in the same way.
  • the initial transmission time X calculated here may be a subframe, a time slot, or a symbol.
  • the calculated time slot is the Xth time slot.
  • the positions of the subframe and the symbol may be determined by using a predetermined value or other methods.
  • the access network device can send it to the terminal through signaling, such as radio resource control signaling.
  • step 305 the terminal determines a set of repetition times, and the set of repetition times includes multiple repetition times of different sizes.
  • the set of repetition times can be ⁇ 1/8Rmax, 1/4Rmax, 1/2Rmax, Rmax ⁇ .
  • the terminal After receiving the Rmax sent by the access network device, the terminal can obtain the respective values of the set of repetition times.
  • step 306 the terminal determines the length of the transmission period and the initial transmission time.
  • the terminal determines the length of the transmission period and the initial transmission time to be the same as those of the access network equipment, and adopts the method determined by the terminal itself instead of the method sent by the access network equipment, which can save signaling overhead and reduce System power consumption.
  • the parameter A and the parameter a can be obtained from the protocol, or can be configured by the access network device to the terminal together with the maximum number of repetitions Rmax.
  • the access network device determines the starting position of each transmission period according to the initial transmission time and the length of the transmission period, and repeatedly sends the downlink control channel according to the number of repetitions in each transmission period.
  • each cycle includes a transmission unit, and the number of times the downlink control channel is repeatedly transmitted by the transmission unit is the number of repetitions.
  • each cycle includes more than two transmission units, which are continuous in the time domain, and the number of times the downlink control channel is repeatedly transmitted by more than two transmission units is the number of repetitions.
  • Fig. 6 is a schematic diagram of a transmission position provided by an embodiment of the present disclosure.
  • the resources used to transmit the downlink control channel are continuous. These resources constitute the transmission unit B, that is, the shaded rectangle in the figure. Each shaded rectangle represents a downlink control channel transmission. .
  • the access network device may not be able to determine the length of the transmission unit.
  • the access network device can also determine the length of the transmission unit based on the number of repetitions in the current transmission period. For example, the length of the transmission unit can be set to the actual number of repetitions determined for the current transmission. That is, in a certain transmission, the actual number of repetitions determined is X times, then the length of the transmission unit can be set to X.
  • the resource corresponding to B in FIG. 6 may also include more than two consecutive transmission units.
  • Step 308 The terminal determines the starting position of each transmission period according to the initial transmission time and the length of the transmission period, and in each transmission period, it uses multiple repetition times to repeatedly receive the downlink control channel until it is demodulated correctly. Exit the downlink control channel or traverse all the repetition times in the set of repetition times.
  • the terminal may sequentially select values from the set of repetition times ⁇ 1/8Rmax, 1/4Rmax, 1/2Rmax, Rmax ⁇ to perform repeated reception and demodulation.
  • the downlink control channel is repeatedly received from the initial transmission time, and then demodulated according to the number of repetitions in the set from small to large, until the downlink control channel is correctly demodulated or the repetition set is traversed. All repetitions.
  • the value can also be from large to small, or in random order.
  • the number of repetitions is determined by the terminal itself, instead of being sent by the access network device, which can save signaling overhead and reduce system power consumption.
  • each transmission period includes only one transmission unit or includes more than two consecutive transmission units.
  • each transmission period includes two or more transmission units arranged at intervals will be described below with reference to FIG. 6. Wherein, the length of the interval between any adjacent transmission units is the same.
  • Fig. 7 is a flow chart showing a method for transmitting a downlink control channel according to an exemplary embodiment. Referring to Figure 7, the method includes the following steps:
  • the access network device sends the maximum number of repetitions to the terminal.
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period; the terminal receives the maximum number of repetitions sent by the access network device.
  • step 301 The detailed process of this step is the same as step 301.
  • step 402 the access network device obtains channel status information of the terminal.
  • step 403 the access network device determines the number of repetitions based on the channel status information of the terminal.
  • step 303 The detailed process of this step is the same as step 303.
  • step 404 the access network device determines the length of the transmission unit and the length of the interval.
  • the access network device can obtain the length of the transmission unit configured in the protocol
  • the length of the transmission unit can be determined based on Table 1 below:
  • M can be specified in the access network equipment protocol.
  • the access network device can configure the parameter M to the terminal by configuring the parameter, so that the terminal can determine the length of the transmission unit in the same way.
  • Table 1 is only an example. In practice, the maximum number of repetitions can be divided into more levels, so as to correspond to more transmission unit lengths.
  • the length of the transmission unit is determined based on the number of repetitions used in the current transmission.
  • the access network device selects an appropriate transmission unit length based on the number of repetitions.
  • the number of transmission units is a set value, and the length of the transmission unit can be determined based on the number of repetitions and the set value.
  • the access network device can obtain the interval length configured in the protocol
  • the interval length is determined based on the maximum number of repetitions, and the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the access network device can configure the foregoing corresponding relationship to the terminal, so that the terminal can determine the interval length in the same manner.
  • step 405 the access network device determines the length of the transmission period and the initial transmission time.
  • the access network device may determine the length of the transmission period and the initial transmission time in the same manner as in step 304.
  • the access network device may also determine the length of the transmission period based on the length of the transmission unit, or determine the length of the transmission period based on the length of the interval, or based on the maximum number of repetitions and the length of the transmission unit. Two of the and interval lengths determine the length of the transmission period.
  • the access network device can also determine the initial transmission time based on the length of the transmission unit, or determine the initial transmission time based on the length of the interval, or determine the initial transmission time based on two of the maximum number of repetitions, the length of the transmission unit, and the length of the interval. Transmission time.
  • the determination method of the length of the transmission period and the initial transmission time can be determined by using a predefined correspondence relationship.
  • the corresponding relationship between the length of the predefined transmission period, the maximum number of repetitions and the length of the transmission unit, and the length of the transmission period can be obtained based on the corresponding relationship after determining the maximum number of repetitions and the length of the transmission unit.
  • step 406 the terminal determines a set of repetition times, and the set of repetition times includes multiple repetition times of different sizes.
  • step 305 The detailed process of this step is the same as that of step 305.
  • step 407 the terminal determines the length of the transmission unit and the length of the interval.
  • the terminal may determine the length of the transmission unit and the interval length in the same manner as the access network device.
  • the access network device can configure at least one of the length of the transmission unit and the interval length to the terminal by means of configuration parameters, and the terminal can obtain the transmission unit information after receiving the configuration parameters. At least one of length and interval length.
  • the configuration parameter here may be radio resource control signaling.
  • step 408 the terminal determines the length of the transmission period and the initial transmission time.
  • the terminal determines the length of the transmission period and the initial transmission time to be the same as those of the access network equipment, and adopts the method determined by the terminal itself instead of the method sent by the access network equipment, which can save signaling overhead and reduce System power consumption.
  • the parameter A and the parameter a can be obtained from the protocol, or can be configured by the access network device to the terminal together with the maximum number of repetitions Rmax.
  • the access network device determines the starting position of each transmission period according to the initial transmission time and the length of the transmission period, and repeats the downlink transmission according to the number of repetitions, the length of the transmission unit and the interval length in each transmission period. Control channel.
  • each cycle includes more than two transmission units, and the total number of downlink control channels repeatedly transmitted by more than two transmission units is the number of repetitions.
  • Fig. 8 is a schematic diagram of a transmission position provided by an embodiment of the present disclosure.
  • the resources used to transmit the downlink control channel may constitute at least two transmission units B, that is, the shaded rectangles in the figure, and each shaded rectangle represents one downlink control channel transmission.
  • the length between the transmission units B is the aforementioned interval length.
  • Step 410 The terminal determines the starting position of each transmission period according to the initial transmission time and the length of the transmission period, and in each transmission period, according to the determined transmission unit length and interval length, multiple repetition times are successively adopted Repeated reception of the downlink control channel is performed until the downlink control channel is correctly demodulated or all repetition times in the set of repetition times are traversed.
  • the terminal may sequentially select values from the set of repetition times ⁇ 1/8Rmax, 1/4Rmax, 1/2Rmax, Rmax ⁇ to perform repeated reception and demodulation.
  • the downlink control channel is repeatedly received from the initial transmission time, and then demodulated according to the number of repetitions in the set from small to large, until the downlink control channel is correctly demodulated or the repetition set is traversed. All repetitions.
  • the value can also be from large to small, or in random order.
  • the number of repetitions is determined by the terminal itself, instead of being sent by the access network device, which can save signaling overhead and reduce system power consumption.
  • Fig. 9 is a schematic diagram showing a structure of a downlink control channel transmission device according to an exemplary embodiment.
  • the device has the function of realizing the terminal in the above method embodiment, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device includes: a receiving module 501.
  • the receiving module 501 is configured to repeatedly receive the downlink control channel on at least one transmission unit in the transmission period of the downlink control channel, and each transmission unit is used to continuously and repeatedly transmit the downlink control channel at least twice.
  • the receiving module 501 includes:
  • the determining submodule 511 is configured to determine a set of repetition times, the set of repetition times includes a plurality of repetition times of different sizes, and the number of downlink control channels repeatedly transmitted on at least one transmission unit is a number in the set of repetition times;
  • the receiving sub-module 512 is configured to use multiple repetition times to repeatedly receive the downlink control channel from the initial transmission time in each transmission period until the downlink control channel is correctly demodulated or the set of repetition times is traversed All repetitions.
  • the length of the interval between any adjacent transmission units is the same, which may further include:
  • the determining module 502 is configured to determine the length of the transmission unit and the length of the interval.
  • the determining module 502 is configured to obtain configuration signaling sent by the access network device, where the configuration signaling includes the length of the transmission unit;
  • the length of the transmission unit is determined based on the number of repetitions used in the current transmission.
  • the determining module 502 is configured to obtain configuration signaling sent by the access network device, where the configuration signaling includes the interval length;
  • the interval length is determined based on the maximum number of repetitions, and the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the determining module 502 is further configured to determine the length of the transmission period
  • the receiving module 501 is configured to periodically receive the downlink control channel according to the length of the transmission period.
  • the determining module 502 is configured to determine the length of the transmission period based on at least one of the length of the transmission unit, the interval length, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the determining module 502 is configured to determine the initial transmission time
  • the receiving module 501 is configured to receive the downlink control channel from the initial transmission time in each transmission period.
  • the determining module 502 is configured to determine the initial transmission time based on at least one of the length of the transmission unit, the interval length, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the determining module 502 is configured to obtain a maximum number of repetitions, and the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period;
  • a set of repetition times is determined, and the maximum value in the set of repetition times is the maximum number of repetitions.
  • the receiving module 501 is configured to receive radio resource control signaling, and the radio resource control signaling includes the maximum number of repetitions.
  • Fig. 10 is a schematic structural diagram of a downlink control channel transmission device according to an exemplary embodiment.
  • the device has the function of realizing the access network equipment in the above method embodiment, and this function can be realized by hardware, or by hardware executing corresponding software.
  • the device includes: a sending module 601.
  • the sending module 601 is configured to repeatedly send the downlink control channel on at least one transmission unit in each transmission period of the downlink control channel, and each transmission unit is used to continuously transmit the downlink control channel at least twice.
  • the sending module 601 includes:
  • the obtaining submodule 611 is configured to obtain channel status information of the terminal
  • the determining submodule 612 is configured to determine the number of repetitions based on the channel condition information of the terminal;
  • the sending submodule 613 is configured to repeatedly send the downlink control channel according to the number of repetitions, and the number of repeated transmissions of the downlink control channel on at least one transmission unit is the number of repetitions.
  • the device may further include:
  • the determining module 602 is configured to determine the length of the transmission unit and the length of the interval.
  • the determining module 602 is configured to obtain the length of the transmission unit configured in the protocol
  • the length of the transmission unit is determined based on the number of repetitions used in the current transmission. For example, the length of the transmission unit can be set to the actual number of repetitions determined for the current transmission. That is, in a certain transmission, the actual number of repetitions determined is X times, then the length of the transmission unit can be set to X.
  • the determining module 602 is configured to obtain the interval length configured in the protocol
  • the interval length is determined based on the maximum number of repetitions, and the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the sending module 601 is configured to use configuration signaling to send at least one of the length of the transmission unit and the length of the interval.
  • the determining module 602 is configured to determine the length of the transmission period
  • the sending module 601 is configured to periodically send the downlink control channel according to the length of the transmission period.
  • the determining module 602 is configured to determine the length of the transmission period based on at least one of the length of the transmission unit, the interval length, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the determining module 602 is configured to determine the initial transmission time
  • the sending module 601 is configured to send the downlink control channel from the initial transmission time in each transmission period.
  • the determining module 602 is configured to determine the initial transmission time based on at least one of the length of the transmission unit, the interval length, and the maximum number of repetitions;
  • the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • the sending module 601 is configured to send radio resource control signaling.
  • the radio resource control signaling includes a maximum number of repetitions, and the maximum number of repetitions is the maximum number of repetitions of the downlink control channel in each transmission period.
  • Fig. 11 is a block diagram showing a terminal 700 according to an exemplary embodiment.
  • the terminal 700 may include a processor 701, a receiver 702, a transmitter 703, a memory 704, and a bus 705.
  • the processor 701 includes one or more processing cores, and the processor 701 executes various functional applications and information processing by running software programs and modules.
  • the receiver 702 and the transmitter 703 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 704 is connected to the processor 701 through the bus 705.
  • the memory 704 may be used to store at least one instruction, and the processor 701 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 704 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static anytime access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, and the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the downlink control channel transmission method provided by the foregoing method embodiments.
  • Fig. 12 is a block diagram showing an access network device 800 according to an exemplary embodiment.
  • the access network device 800 may include a processor 801, a receiver 802, a transmitter 803, and a memory 804.
  • the receiver 802, the transmitter 803, and the memory 804 are respectively connected to the processor 801 through a bus.
  • the processor 801 includes one or more processing cores, and the processor 801 executes the method executed by the access network device in the downlink control channel transmission method provided by the embodiments of the present disclosure by running software programs and modules.
  • the memory 804 can be used to store software programs and modules. Specifically, the memory 804 may store the operating system 8041, an application module 8042 required by at least one function.
  • the receiver 802 is used to receive communication data sent by other devices, and the transmitter 803 is used to send communication data to other devices.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set, or instruction set, and the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement the downlink control channel transmission method provided by the foregoing method embodiments.
  • An exemplary embodiment of the present disclosure also provides a downlink control channel transmission system.
  • the downlink control channel transmission system includes a terminal and an access network device.
  • the terminal is the terminal provided in the embodiment shown in FIG. 11.
  • the access network device is the access network device provided in the embodiment shown in FIG. 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种下行控制信道传输方法、装置、终端及接入网设备,属于通信技术领域。所述方法包括:在下行控制信道的传输周期中的至少一个传输单元上重复接收下行控制信道,每个所述传输单元用于连续重复传输至少两次下行控制信道。

Description

下行控制信道传输方法、装置、终端及接入网设备 技术领域
本公开涉及通信技术领域,尤其涉及一种下行控制信道传输方法、装置、终端及接入网设备。
背景技术
在通信系统中,下行控制信道(Physical Downlink Control Channel,PDCCH)用于承载调度以及其他控制信息,例如可以包含传输格式、资源分配、上行调度许可、功率控制以及上行重传信息等。
在5G新空口(NR,New Radio)系统中,接入网设备和终端之间通过重复传输PDCCH可以达到覆盖增强的效果。
发明内容
本公开实施例提供了一种下行控制信道传输方法、装置、终端及接入网设备,使得终端可以节省传输时间,减少功耗;减小重复传输信道的差异性,便于解调处理。所述技术方案如下:
根据本公开实施例的一方面,提供一种下行控制信道传输方法,所述方法包括:
在下行控制信道的传输周期中的至少一个传输单元上重复接收下行控制信道,每个所述传输单元用于连续重复传输至少两次下行控制信道。
在本公开实施例的至少一种实现方式中,所述在下行控制信道的传输周期中的至少一个传输单元上重复接收下行控制信道,包括:
确定重复次数集合,所述重复次数集合包括多个大小不同的重复次数,所述至少一个传输单元上重复传输的下行控制信道的次数为所述重复次数集合中的一个次数;
在每个传输周期中,从起始传输时间开始依次采用所述多个重复次数进行下行控制信道的重复接收,直到正确解调出所述下行控制信道或遍历完所述重复次数集合中所有的重复次数。
在本公开实施例的至少一种实现方式中,当所述传输单元的个数大于1时,任意相邻的所述传输单元之间的间隔长度相同,所述方法还包括:
确定所述传输单元的长度和所述间隔长度。
在本公开实施例的至少一种实现方式中,确定所述传输单元的长度,包括:
获取接入网设备发送的配置信令,所述配置信令包括所述传输单元的长度;
或者,获取协议中配置的所述传输单元的长度;
或者,基于最大重复次数与阈值大小关系,确定所述传输单元的长度,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数;
或者,基于当次传输所使用的重复次数确定所述传输单元的长度。
在本公开实施例的至少一种实现方式中,确定所述间隔长度,包括:
获取接入网设备发送的配置信令,所述配置信令包括所述间隔长度;
或者,获取协议中配置的所述间隔长度;
或者,基于所述传输单元的长度确定所述间隔长度;
或者,基于最大重复次数确定所述间隔长度,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
在本公开实施例的至少一种实现方式中,所述方法还包括:
确定传输周期的长度;
按照所述传输周期的长度,周期性地接收所述下行控制信道。
在本公开实施例的至少一种实现方式中,所述确定传输周期的长度,包括:
基于所述传输单元的长度、所述间隔长度和最大重复次数中的至少一项确定所述传输周期的长度;
所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
在本公开实施例的至少一种实现方式中,所述方法还包括:
确定起始传输时间;
在每个传输周期内,从所述起始传输时间开始接收所述下行控制信道。
在本公开实施例的至少一种实现方式中,所述确定起始传输时间,包括:
基于所述传输单元的长度、所述间隔长度和最大重复次数中的至少一项确定所述起始传输时间;
所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
在本公开实施例的至少一种实现方式中,所述确定重复次数集合,包括:
获取最大重复次数,所述最大重复次数为每个传输周期中下行控制信道的 最大重复次数;
基于所述最大重复次数,确定所述重复次数集合,所述重复次数集合中的最大值为所述最大重复次数。
在本公开实施例的至少一种实现方式中,所述获取最大重复次数,包括:
接收无线资源控制信令,所述无线资源控制信令包括所述最大重复次数。
根据本公开实施例的一方面,提供一种下行控制信道传输方法,所述方法包括:
在下行控制信道的每个传输周期中的至少一个传输单元上重复发送下行控制信道,每个所述传输单元用于连续传输至少两次下行控制信道。
在本公开实施例的至少一种实现方式中,所述在下行控制信道的每个传输周期中的至少一个传输单元上重复发送下行控制信道,包括:
获取终端的信道状况信息;
基于所述终端的信道状况信息确定所述重复次数;
按照所述重复次数重复发送所述下行控制信道,所述至少一个传输单元上重复传输的下行控制信道的次数为所述重复次数。
在本公开实施例的至少一种实现方式中,当所述传输单元的个数大于1时,任意相邻的所述传输单元之间的间隔长度相同,所述方法还包括:
确定所述传输单元的长度和所述间隔长度。
在本公开实施例的至少一种实现方式中,确定所述传输单元的长度,包括:
获取协议中配置的所述传输单元的长度;
或者,基于最大重复次数与阈值大小关系,确定所述传输单元的长度,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数;
或者,基于当次传输所使用的重复次数确定所述传输单元的长度。
在本公开实施例的至少一种实现方式中,确定所述间隔长度,包括:
获取协议中配置的所述间隔长度;
或者,基于所述传输单元的长度确定所述间隔长度;
或者,基于最大重复次数确定所述间隔长度,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
在本公开实施例的至少一种实现方式中,所述方法还包括:
采用配置信令发送所述传输单元的长度和所述间隔长度中的至少一个。
在本公开实施例的至少一种实现方式中,所述方法还包括:
确定传输周期的长度;
按照所述传输周期的长度,周期性地发送所述下行控制信道。
在本公开实施例的至少一种实现方式中,所述确定传输周期的长度,包括:
基于所述传输单元的长度、所述间隔长度和最大重复次数中的至少一项确定所述传输周期的长度;
所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
在本公开实施例的至少一种实现方式中,所述方法还包括:
确定起始传输时间;
在每个传输周期内,从所述起始传输时间开始发送所述下行控制信道。
在本公开实施例的至少一种实现方式中,所述确定起始传输时间,包括:
基于所述传输单元的长度、所述间隔长度和最大重复次数中的至少一项确定所述起始传输时间;
所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
在本公开实施例的至少一种实现方式中,所述方法还包括:
发送无线资源控制信令,所述无线资源控制信令包括最大重复次数,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
根据本公开实施例的一方面,提供一种下行控制信道传输装置,所述装置包括:
接收模块,被配置为在下行控制信道的传输周期中的至少一个传输单元上重复接收下行控制信道,每个所述传输单元用于连续重复传输至少两次下行控制信道。
根据本公开实施例的一方面,提供一种下行控制信道传输装置,所述装置包括:
发送模块,被配置为在下行控制信道的每个传输周期中的至少一个传输单元上重复发送下行控制信道,每个所述传输单元用于连续传输至少两次下行控制信道。
根据本公开实施例的另一方面,提供一种终端,所述终端包括:处理器; 用于存储处理器可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现前述下行控制信道传输方法。
根据本公开实施例的另一方面,提供一种接入网设备,所述接入网设备包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现前述下行控制信道传输方法。
根据本公开实施例的另一方面,提供一种计算机可读存储介质,当所述计算机可读存储介质中的指令由处理器执行时,能够执行如前所述的下行控制信道传输方法。
在本公开实施例中,通过在每个传输周期中进行下行控制信道的重复传输时,将下行控制信道承载在至少一个传输单元上,每个传输单元用于连续重复传输至少两次下行控制信道,这样,至少部分下行控制信道是连续传输的,避免了相关技术中,下行控制信道分散布置的情况,节省了传输时间,减少了功耗;同时,通过缩短传输时间来减小重复传输信道的差异性,便于终端的解调处理。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是本公开实施例提供的网络架构示意图;
图2是本公开实施例提供的传输位置示意图;
图3是根据一示例性实施例示出的一种下行控制信道传输方法的流程图;
图4是根据一示例性实施例示出的一种下行控制信道传输方法的流程图;
图5是根据一示例性实施例示出的一种下行控制信道传输方法的流程图;
图6是本公开实施例提供的传输位置示意图;
图7是根据一示例性实施例示出的一种下行控制信道传输方法的流程图;
图8是本公开实施例提供的传输位置示意图;
图9是根据一示例性实施例示出的一种下行控制信道传输装置的结构示意 图;
图10是根据一示例性实施例示出的一种下行控制信道传输装置的结构示意图;
图11是根据一示例性实施例示出的一种终端的框图;
图12是根据一示例性实施例示出的一种接入网设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
图1示出的是本公开一个示意性实施例提供的通信系统的框图,如图1所示,该通信系统可以包括:接入网12和终端13。
接入网12中包括若干接入网设备120。接入网设备120可以是基站,基站是一种部署在接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,在5G新空口(NR,New Radio)系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能描述,会变化。为方便描述,下文中将上述为终端提供无线通信功能的装置统称为接入网设备。
终端13可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端等等。为方便描述,上面提到的设备统称为终端。接入网设备120与终端13之间通过某种空口技术互相通信,例如Uu接口。
在NR系统中,为了功率节省,接入网设备120并不是在每个时隙(slot)都会给终端13发送下行控制信道。只会在预定时刻给终端发送下行控制信道(Physical Downlink Control Channel,PDCCH)。接入网设备120在给终端13发送下行控制信道时,通常是通过几个参数来确定的,下面结合附图2进行说 明:
传输周期的长度(图2中的T):用来指示终端每间隔多少个slot就开始启动PDCCH的监测和传输,图2中A表示一个slot;
每次传输持续的slot数量:当终端启动PDCCH监测时,需要持续对多少个slot监测,例如图2中为3个;
在slot中的用来传输的符号位置:在一个slot中有多个符号,终端需要在哪些符号上监测PDCCH,例如图2中阴影对应传输PDCCH的slot。
需要说明的是,图2一个阴影的矩形表示PDCCH的一次传输,其可能对应1~3个slot,也即在当前的NR系统中,图2中的一个阴影矩形都是一次PDCCH的传输机会,在不同的传输机会中可以传输不同的PDCCH或者传输相同的PDCCH。
接入网设备和终端之间通过重复传输可以达到覆盖增强的效果,但这种离散的配置(任意相邻2次PDCCH都是采用不相邻的符号)会拉长终端的接收时间,不利于功率节省。同时,由于传输时间长,信道状况发生变化的可能性大,导致传输相同PDCCH的信道差异性比较大,不利于PDCCH的解调。
本公开实施例描述的通信系统以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图3是根据一示例性实施例示出的一种下行控制信道传输方法的流程图。参见图3,该方法包括以下步骤:
在步骤101中,终端在下行控制信道的传输周期中的至少一个传输单元上重复接收下行控制信道。
其中,每个传输单元用于连续重复传输至少两次下行控制信道。
在本公开实施例中,一个传输单元可以包括多个slot。
在本公开实施例中,通过在每个传输周期中进行下行控制信道的重复传输时,将下行控制信道承载在至少一个传输单元上,每个传输单元用于连续重复传输至少两次下行控制信道,这样,至少部分下行控制信道是连续传输的,避免了相关技术中,下行控制信道分散布置的情况,节省了传输时间,减少了功耗;同时,通过缩短传输时间来减小重复传输信道的差异性,便于终端的解调 处理。使得在覆盖增强的条件下能够提升传输性能。
可选地,在下行控制信道的传输周期中的至少一个传输单元上重复接收下行控制信道,包括:
确定重复次数集合,重复次数集合包括多个大小不同的重复次数,至少一个传输单元上重复传输的下行控制信道的次数为重复次数集合中的一个次数;
在每个传输周期中,从起始传输时间开始依次采用多个重复次数进行下行控制信道的重复接收,直到正确解调出下行控制信道或遍历完重复次数集合中所有的重复次数。
在该实现方式中,终端从重复次数集合中选择多个重复次数依次进行解调处理,直到正确解调出下行控制信道或遍历完重复次数集合中所有的重复次数,这种方案无需接入网设备将实际的重复次数发送给终端,节省了信令开销,降低了系统功耗。
可选地,当传输单元的个数大于1时,任意相邻的传输单元之间的间隔长度相同,该方法还包括:
确定传输单元的长度和间隔长度。
在该实现方式中,在一个传输周期中,若传输单元的个数大于1时,则终端还需要先确定出传输单元的长度和间隔长度,然后按照确定出传输单元的长度和间隔长度进行下行控制信道的接收。
可选地,确定传输单元的长度,包括:
获取接入网设备发送的配置信令,配置信令包括传输单元的长度;
或者,获取协议中配置的传输单元的长度;
或者,基于最大重复次数与阈值大小关系,确定传输单元的长度,最大重复次数为每个传输周期中下行控制信道的最大重复次数;
或者,基于当次传输所使用的重复次数确定所述传输单元的长度。
在该实现方式中,传输单元的长度节可以通过接入网设备配置给终端,也可以由终端自己从协议中获取,或基于最大重复次数确定。
可选地,确定间隔长度,包括:
获取接入网设备发送的配置信令,配置信令包括间隔长度;
或者,获取协议中配置的间隔长度;
或者,基于传输单元的长度确定间隔长度;
或者,基于最大重复次数确定间隔长度,最大重复次数为每个传输周期中 下行控制信道的最大重复次数。
在该实现方式中,传输单元的长度节可以通过接入网设备配置给终端,也可以由终端自己从协议中获取,或基于最大重复次数确定。
可选地,该方法还包括:
确定传输周期的长度;
按照传输周期的长度,周期性地接收下行控制信道。
在该实现方式中,终端通过确定传输周期的长度,实现与接入网设备之间的下行控制信道的周期性传输。
可选地,确定传输周期的长度,包括:
基于传输单元的长度、间隔长度和最大重复次数中的至少一项确定传输周期的长度;
最大重复次数为每个传输周期中下行控制信道的最大重复次数。
在该实现方式中,终端通过传输单元的长度间隔长度和最大重复次数中的至少一项确定传输周期的长度,这种方案无需接入网设备将传输周期的长度发送给终端,节省了信令开销,降低了系统功耗。
可选地,该方法还包括:
确定起始传输时间;
在每个传输周期内,从起始传输时间开始接收下行控制信道。
在该实现方式中,终端通过确定起始传输时间,实现与接入网设备之间的下行控制信道的正确传输。
可选地,确定起始传输时间,包括:
基于传输单元的长度、间隔长度和最大重复次数中的至少一项确定起始传输时间;
最大重复次数为每个传输周期中下行控制信道的最大重复次数。
在该实现方式中,终端通过传输单元的长度间隔长度和最大重复次数中的至少一项确定起始传输时间,这种方案无需接入网设备将起始传输时间发送给终端,节省了信令开销,降低了系统功耗。
可选地,确定重复次数集合,包括:
获取最大重复次数,最大重复次数为每个传输周期中下行控制信道的最大重复次数;
基于最大重复次数,确定重复次数集合,重复次数集合中的最大值为最大 重复次数。
在该实现方式中,通过最大重复次数即可确定出重复次数集合,使得终端后续可以基于该重复次数集合进行下行控制信道的解调。
可选地,获取最大重复次数,包括:
接收无线资源控制(Radio Resource Control,RRC)信令,无线资源控制信令包括最大重复次数。
在该实现方式中,限定了最大重复次数采用无线资源控制信令传输,由于该最大重复次数不会经常变化,通常配置后可以当做静态参数。而接入网设备和终端间实际使用的重复次数会随着终端的信道质量动态变化,因此,通过信令仅传输最大重复次数,而不传输每次实际使用的重复次数,可以减小信令开销。
值得说明的是,前述步骤101与上述可选步骤可以任意组合。
图4是根据一示例性实施例示出的一种下行控制信道传输方法的流程图。参见图4,该方法包括以下步骤:
在步骤201中,接入网设备在下行控制信道的每个传输周期中的至少一个传输单元上重复发送下行控制信道。
其中,每个传输单元用于连续重复传输至少两次下行控制信道。
在本公开实施例中,一个传输单元可以包括多个slot。
在本公开实施例中,通过在每个传输周期中进行下行控制信道的重复传输时,将下行控制信道承载在至少一个传输单元上,每个传输单元用于连续重复传输至少两次下行控制信道,这样,至少部分下行控制信道是连续传输的,避免了相关技术中,下行控制信道分散布置的情况,节省了传输时间,减少了功耗;同时,通过缩短传输时间来减小重复传输信道的差异性,便于终端的解调处理。使得在覆盖增强的条件下能够提升传输性能。
可选地,在下行控制信道的每个传输周期中的至少一个传输单元上重复发送下行控制信道,包括:
获取终端的信道状况信息;
基于终端的信道状况信息确定重复次数;
按照重复次数重复发送下行控制信道,至少一个传输单元上重复传输的下行控制信道的次数为重复次数。
可选地,当传输单元的个数大于1时,任意相邻的传输单元之间的间隔长度相同,该方法还包括:
确定传输单元的长度和间隔长度。
可选地,确定传输单元的长度,包括:
获取协议中配置的传输单元的长度;
或者,基于最大重复次数与阈值大小关系,确定传输单元的长度,最大重复次数为每个传输周期中下行控制信道的最大重复次数;
或者,基于当次传输所使用的重复次数确定所述传输单元的长度。
可选地,确定间隔长度,包括:
获取协议中配置的间隔长度;
或者,基于传输单元的长度确定间隔长度;
或者,基于最大重复次数确定间隔长度,最大重复次数为每个传输周期中下行控制信道的最大重复次数。
可选地,该方法还包括:
采用配置信令发送传输单元的长度和间隔长度中的至少一个。
可选地,该方法还包括:
确定传输周期的长度;
按照传输周期的长度,周期性地发送下行控制信道。
可选地,确定传输周期的长度,包括:
基于传输单元的长度、间隔长度和最大重复次数中的至少一项确定传输周期的长度;
最大重复次数为每个传输周期中下行控制信道的最大重复次数。
可选地,该方法还包括:
确定起始传输时间;
在每个传输周期内,从起始传输时间开始发送下行控制信道。
可选地,确定起始传输时间,包括:
基于传输单元的长度、间隔长度和最大重复次数中的至少一项确定起始传输时间;
最大重复次数为每个传输周期中下行控制信道的最大重复次数。
可选地,该方法还包括:
发送无线资源控制信令,无线资源控制信令包括最大重复次数,最大重复 次数为每个传输周期中下行控制信道的最大重复次数。
值得说明的是,前述步骤201与上述可选步骤可以任意组合。
图5是根据一示例性实施例示出的一种下行控制信道传输方法的流程图。参见图5,该方法包括以下步骤:
在步骤301中,接入网设备向终端发送最大重复次数,最大重复次数为每个传输周期中下行控制信道的最大重复次数;终端接收接入网设备发送的最大重复次数。
在该步骤中,接入网设备可以通过配置参数的方式,将最大重复次数配置给终端。如,接入网设备向终端发送无线资源控制信令,无线资源控制信令包括最大重复次数;终端接收接入网设备发送的无线资源控制信令。
在本公开实施例中,最大重复次数可以预先配置在接入网设备中,例如配置在协议中。
在步骤302中,接入网设备获取终端的信道状况信息。
其中,信道状况信息用于表示终端的信道质量,通常,信道质量与终端所处的位置等相关,例如终端处于小区中心时的信道质量高于终端处于小区边缘的信道质量。终端可以通过消息将信道状况信息上报给接入网设备。
在步骤303中,接入网设备基于终端的信道状况信息确定重复次数。
重复次数是指重复传输下行控制信道的次数,终端通过重复传输下行控制信道可以达到覆盖增强的效果。因此,信道质量越好,重复次数可以越少,信道质量越差,重复次数可以越多,也即信道质量与重复次数负相关。
在本公开实施例中,基于最大重复次数可以确定出一个重复次数集合,例如最大重复次数为Rmax,则重复次数集合可以为{1/8Rmax,1/4Rmax,1/2Rmax,Rmax},接入网设备基于终端的信道状况信息确定重复次数时,从该重复次数集合中选择,如信道质量较好时,可以选择重复次数为1/8Rmax或1/4Rmax,信道质量较好时,可以选择重复次数为1/2Rmax或Rmax。
当然,这里的重复次数集合即为示例,在其他实现方式中,该重复次数集合还可以包括更多或更少的值,或者包括与此不同的值等。
在步骤304中,接入网设备确定传输周期的长度和起始传输时间。
在本公开实施例中,接入网设备可以基于最大重复次数确定传输周期的长度。例如,可以根据最大重复次数Rmax计算传输周期的长度T,比如T=A*Rmax。 其中,A可以是接入网设备协议中指定的,这里的A可以为正整数。通过将传输周期长度设置为A倍的Rmax,这样一个周期中除了传输该终端的资源外,其他间隙也是Rmax的整数倍,使得该间隙可以被其他终端充分利用,不会产生碎片化资源。同样地,接入网设备可以通过配置参数的方式将该参数A配置给终端,使得终端可以采用同样的方式计算出传输周期的长度T。
在本公开实施例中,接入网设备可以基于最大重复次数确定起始传输时间。例如,可以根据最大重复次数Rmax计算起始传输时间X,比如X mod(A*Rmax)=a。其中,a可以是接入网设备协议中指定的。同样地,接入网设备可以通过配置参数的方式将该参数a配置给终端,使得终端可以采用同样的方式计算出起始传输时间X。
这里计算得出的起始传输时间X可以是子帧、时隙或者符号,例如计算出的是第X个时隙,此时子帧和符号的位置可以采用预定值或者其他方式确定出。采用预定值或者其他方式确定出的位置,接入网设备可以通过信令发送给终端,例如无线资源控制信令。
在步骤305中,终端确定重复次数集合,重复次数集合包括多个大小不同的重复次数。
如前,重复次数集合可以为{1/8Rmax,1/4Rmax,1/2Rmax,Rmax},终端在接收到接入网设备发送的Rmax后,可以得到该重复次数集合的各个值。
在步骤306中,终端确定传输周期的长度和起始传输时间。
在该实现方式中,终端确定传输周期的长度和起始传输时间与接入网设备相同,采用终端自己确定的方式,而不采用由接入网设备发送的方式,可以节省信令开销,降低系统功耗。
在终端确定传输周期的长度和起始传输时间的过程中,参数A和参数a可以从协议中得到,或者可以同最大重复次数Rmax一起由接入网设备配置给终端。
在步骤307中,接入网设备按照起始传输时间和传输周期的长度确定每个传输周期的起始位置,并在每个传输周期中按照重复次数重复发送下行控制信道。
在这种实现方式中,每个周期包括一个传输单元,该传输单元重复传输的下行控制信道的次数为重复次数。或者,每个周期包括两个以上的传输单元,这些传输单元在时域上连续,两个以上传输单元重复传输的下行控制信道的次 数为重复次数。
图6是本公开实施例提供的传输位置示意图。参见图6,在每个传输周期T中,用来传输下行控制信道的资源是连续的,这些资源构成了传输单元B,也即图中阴影矩形,每个阴影矩形表示一次下行控制信道的传输。在这种情况下,接入网设备可以不确定出传输单元的长度。当然,接入网设备也可以基于当前传输周期中的重复次数确定出传输单元的长度,例如,可以将传输单元的长度设置为当次传输所确定的实际重复次数。即某次的传输中,所确定的实际重复次数为X次,那么传输单元的长度即可设置为X。
在其他实施例中,图6中B所对应的资源,也可以包括两个以上连续的传输单元。
步骤308:终端按照起始传输时间和传输周期的长度确定每个传输周期的起始位置,并在每个传输周期中,依次采用多个重复次数进行下行控制信道的重复接收,直到正确解调出下行控制信道或遍历完重复次数集合中所有的重复次数。
示例性地,终端可以从重复次数集合{1/8Rmax,1/4Rmax,1/2Rmax,Rmax}中,依次取值进行重复接收和解调。例如在传输周期内,从起始传输时间开始重复接收下行控制信道,然后按照从小到大的方式重复次数集合中的次数进行解调,直到正确解调出下行控制信道或遍历完重复次数集合中所有的重复次数。当然,取值的方式除了从小到大外,也可以是从大到小,或者随机顺序。
在该实现方式中,重复次数由终端自己尝试确定,而不采用由接入网设备发送的方式,可以节省信令开销,降低系统功耗。
图5示出的方法流程中,每个传输周期仅包括一个传输单元或者包括两个以上连续的传输单元。下面结合图6对每个传输周期包括两个以上间隔布置的传输单元的情况进行说明。其中,任意相邻的传输单元之间的间隔长度相同。
图7是根据一示例性实施例示出的一种下行控制信道传输方法的流程图。参见图7,该方法包括以下步骤:
在步骤401中,接入网设备向终端发送最大重复次数,最大重复次数为每个传输周期中下行控制信道的最大重复次数;终端接收接入网设备发送的最大重复次数。
该步骤的详细过程与步骤301相同。
在步骤402中,接入网设备获取终端的信道状况信息。
该步骤的详细过程与步骤302相同。
在步骤403中,接入网设备基于终端的信道状况信息确定重复次数。
该步骤的详细过程与步骤303相同。
在步骤404中,接入网设备确定传输单元的长度和间隔长度。
在本公开实施例中,接入网设备可以获取协议中配置的传输单元的长度;
或者,基于最大重复次数与阈值大小关系,确定传输单元的长度,最大重复次数为每个传输周期中下行控制信道的最大重复次数;
示例性地,传输单元的长度可以基于下表1确定:
表1
最大重复次数 传输单元的长度
>M 8
<=M 4
其中,M可以是接入网设备协议中指定的。同样地,接入网设备可以通过配置参数的方式将该参数M配置给终端,使得终端可以采用同样的方式确定出传输单元的长度。
当然,表1仅为举例,实际还可以将最大重复次数划分更多的等级,从而对应更多的传输单元的长度。
或者,基于当次传输所使用的重复次数确定传输单元的长度。
例如,接入网设备基于重复次数的大小,选择合适的传输单元的长度。例如,传输单元的数量为设定数值,基于重复次数和该设定数值即可确定出传输单元的长度。
在本公开实施例中,接入网设备可以获取协议中配置的间隔长度;
或者,基于传输单元的长度确定间隔长度;
或者,基于最大重复次数确定间隔长度,最大重复次数为每个传输周期中下行控制信道的最大重复次数。
示例性地,间隔长度与传输单元的长度可以存在对应关系,或者间隔长度与最大重复次数可以存在对应关系。该对应关系可以是接入网设备协议中指定的。同样地,接入网设备可以将上述对应关系配置给终端,使得终端可以采用同样的方式确定出间隔长度。
在步骤405中,接入网设备确定传输周期的长度和起始传输时间。
在本公开实施例的一种实现方式中,接入网设备可以采用与步骤304相同的方式确定传输周期的长度和起始传输时间。
在本公开实施例的另一种实现方式中,接入网设备还可以基于传输单元的长度确定传输周期的长度,或者基于间隔长度确定传输周期的长度,或者基于最大重复次数、传输单元的长度和间隔长度中的两个确定传输周期的长度。
同样地,接入网设备还可以基于传输单元的长度确定起始传输时间,或者基于间隔长度确定起始传输时间,或者基于最大重复次数、传输单元的长度和间隔长度中的两个确定起始传输时间。
这里,传输周期的长度和起始传输时间的确定方式可以采用预定义的对应关系确定。例如,预定义传输周期的长度与最大重复次数和传输单元的长度的对应关系,在确定最大重复次数和传输单元的长度后基于该对应关系,即可得到传输周期的长度。
在步骤406中,终端确定重复次数集合,重复次数集合包括多个大小不同的重复次数。
该步骤的详细过程与步骤305相同。
在步骤407中,终端确定传输单元的长度和间隔长度。
在本公开实施例的一种实现方式中,终端可以采用与接入网设备相同的方式确定传输单元的长度和间隔长度。
在本公开实施例的另一种实现方式中,接入网设备可以通过配置参数的方式将该传输单元的长度和间隔长度中的至少一个配置给终端,终端接收配置参数即可获得传输单元的长度和间隔长度中的至少一个。这里的配置参数可以为无线资源控制信令。
在步骤408中,终端确定传输周期的长度和起始传输时间。
在该实现方式中,终端确定传输周期的长度和起始传输时间与接入网设备相同,采用终端自己确定的方式,而不采用由接入网设备发送的方式,可以节省信令开销,降低系统功耗。
在终端确定传输周期的长度和起始传输时间的过程中,参数A和参数a可以从协议中得到,或者可以同最大重复次数Rmax一起由接入网设备配置给终端。
在步骤409中,接入网设备按照起始传输时间和传输周期的长度确定每个传输周期的起始位置,并在每个传输周期中按照重复次数、传输单元的长度和 间隔长度重复发送下行控制信道。
在这种实现方式中,每个周期包括两个以上传输单元,两个以上传输单元重复传输的下行控制信道的总次数为重复次数。
图8是本公开实施例提供的传输位置示意图。参见图8,在每个传输周期T中,用来传输下行控制信道的资源可以构成至少2个传输单元B,也即图中阴影矩形,每个阴影矩形表示一次下行控制信道的传输。传输单元B之间的长度为前述间隔长度。
步骤410:终端按照起始传输时间和传输周期的长度确定每个传输周期的起始位置,并在每个传输周期中,按照确定出的传输单元的长度和间隔长度,依次采用多个重复次数进行下行控制信道的重复接收,直到正确解调出下行控制信道或遍历完重复次数集合中所有的重复次数。
示例性地,终端可以从重复次数集合{1/8Rmax,1/4Rmax,1/2Rmax,Rmax}中,依次取值进行重复接收和解调。例如在传输周期内,从起始传输时间开始重复接收下行控制信道,然后按照从小到大的方式重复次数集合中的次数进行解调,直到正确解调出下行控制信道或遍历完重复次数集合中所有的重复次数。当然,取值的方式除了从小到大外,也可以是从大到小,或者随机顺序。
在该实现方式中,重复次数由终端自己尝试确定,而不采用由接入网设备发送的方式,可以节省信令开销,降低系统功耗。
图9是根据一示例性实施例示出的一种下行控制信道传输装置的结构示意图。该装置具有实现上述方法实施例中终端的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。如图9所示,该装置包括:接收模块501。
其中,接收模块501被配置为在下行控制信道的传输周期中的至少一个传输单元上重复接收下行控制信道,每个传输单元用于连续重复传输至少两次下行控制信道。
可选地,接收模块501包括:
确定子模块511,被配置为确定重复次数集合,重复次数集合包括多个大小不同的重复次数,至少一个传输单元上重复传输的下行控制信道的次数为重复次数集合中的一个次数;
接收子模块512,被配置为在每个传输周期中,从起始传输时间开始依次采用多个重复次数进行下行控制信道的重复接收,直到正确解调出下行控制信道 或遍历完重复次数集合中所有的重复次数。
可选地,当传输单元的个数大于1时,任意相邻的传输单元之间的间隔长度相同,该还可以包括:
确定模块502,被配置为确定传输单元的长度和间隔长度。
可选地,确定模块502,被配置为获取接入网设备发送的配置信令,配置信令包括传输单元的长度;
或者,获取协议中配置的传输单元的长度;
或者,基于最大重复次数与阈值大小关系,确定传输单元的长度,最大重复次数为每个传输周期中下行控制信道的最大重复次数;
或者,基于当次传输所使用的重复次数确定传输单元的长度。
可选地,确定模块502,被配置为获取接入网设备发送的配置信令,配置信令包括间隔长度;
或者,获取协议中配置的间隔长度;
或者,基于传输单元的长度确定间隔长度;
或者,基于最大重复次数确定间隔长度,最大重复次数为每个传输周期中下行控制信道的最大重复次数。
可选地,确定模块502,还被配置为确定传输周期的长度;
接收模块501,被配置为按照传输周期的长度,周期性地接收下行控制信道。
可选地,确定模块502,被配置为基于传输单元的长度、间隔长度和最大重复次数中的至少一项确定传输周期的长度;
最大重复次数为每个传输周期中下行控制信道的最大重复次数。
可选地,确定模块502,被配置为确定起始传输时间;
接收模块501,被配置为在每个传输周期内,从起始传输时间开始接收下行控制信道。
可选地,确定模块502,被配置为基于传输单元的长度、间隔长度和最大重复次数中的至少一项确定起始传输时间;
最大重复次数为每个传输周期中下行控制信道的最大重复次数。
可选地,确定模块502,被配置为获取最大重复次数,最大重复次数为每个传输周期中下行控制信道的最大重复次数;
基于最大重复次数,确定重复次数集合,重复次数集合中的最大值为最大重复次数。
可选地,接收模块501,被配置为接收无线资源控制信令,无线资源控制信令包括最大重复次数。
图10是根据一示例性实施例示出的一种下行控制信道传输装置的结构示意图。该装置具有实现上述方法实施例中接入网设备的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。如图10所示,该装置包括:发送模块601。
其中,发送模块601被配置为在下行控制信道的每个传输周期中的至少一个传输单元上重复发送下行控制信道,每个传输单元用于连续传输至少两次下行控制信道。
可选地,发送模块601包括:
获取子模块611,被配置为获取终端的信道状况信息;
确定子模块612,被配置为基于终端的信道状况信息确定重复次数;
发送子模块613,被配置为按照重复次数重复发送下行控制信道,至少一个传输单元上重复传输的下行控制信道的次数为重复次数。
可选地,当传输单元的个数大于1时,任意相邻的传输单元之间的间隔长度相同,该装置还可以包括:
确定模块602,被配置为确定传输单元的长度和间隔长度。
可选地,确定模块602,被配置为获取协议中配置的传输单元的长度;
或者,基于最大重复次数与阈值大小关系,确定传输单元的长度,最大重复次数为每个传输周期中下行控制信道的最大重复次数;
或者,基于当次传输中所使用的重复次数确定传输单元的长度。例如,可以将传输单元的长度设置为当次传输所确定的实际重复次数。即某次的传输中,所确定的实际重复次数为X次,那么传输单元的长度即可设置为X。
可选地,确定模块602,被配置为获取协议中配置的间隔长度;
或者,基于传输单元的长度确定间隔长度;
或者,基于最大重复次数确定间隔长度,最大重复次数为每个传输周期中下行控制信道的最大重复次数。
可选地,发送模块601,被配置为采用配置信令发送传输单元的长度和间隔长度中的至少一个。
可选地,确定模块602,被配置为确定传输周期的长度;
发送模块601,被配置为按照传输周期的长度,周期性地发送下行控制信道。
可选地,确定模块602,被配置为基于传输单元的长度、间隔长度和最大重复次数中的至少一项确定传输周期的长度;
最大重复次数为每个传输周期中下行控制信道的最大重复次数。
可选地,确定模块602,被配置为确定起始传输时间;
发送模块601,被配置为在每个传输周期内,从起始传输时间开始发送下行控制信道。
可选地,确定模块602,被配置为基于传输单元的长度、间隔长度和最大重复次数中的至少一项确定起始传输时间;
最大重复次数为每个传输周期中下行控制信道的最大重复次数。
可选地,发送模块601,被配置为发送无线资源控制信令,无线资源控制信令包括最大重复次数,最大重复次数为每个传输周期中下行控制信道的最大重复次数。
图11是根据一示例性实施例示出的一种终端700的框图,该终端700可以包括:处理器701、接收器702、发射器703、存储器704和总线705。
处理器701包括一个或者一个以上处理核心,处理器701通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器702和发射器703可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器704通过总线705与处理器701相连。
存储器704可用于存储至少一个指令,处理器701用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行 以实现上述各个方法实施例提供的下行控制信道传输方法。
图12是根据一示例性实施例示出的一种接入网设备800的框图,接入网设备800可以包括:处理器801、接收机802、发射机803和存储器804。接收机802、发射机803和存储器804分别通过总线与处理器801连接。
其中,处理器801包括一个或者一个以上处理核心,处理器801通过运行软件程序以及模块以执行本公开实施例提供的下行控制信道传输方法中接入网设备所执行的方法。存储器804可用于存储软件程序以及模块。具体的,存储器804可存储操作系统8041、至少一个功能所需的应用程序模块8042。接收机802用于接收其他设备发送的通信数据,发射机803用于向其他设备发送通信数据。
在示例性实施例中,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述各个方法实施例提供的下行控制信道传输方法。
本公开一示例性实施例还提供了一种下行控制信道传输系统,所述下行控制信道传输系统包括终端和接入网设备。所述终端为如图11所示实施例提供的终端。所述接入网设备为如图12所示实施例提供的接入网设备。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (27)

  1. 一种下行控制信道传输方法,其特征在于,所述方法包括:
    在下行控制信道的传输周期中的至少一个传输单元上重复接收下行控制信道,每个所述传输单元用于连续重复传输至少两次下行控制信道。
  2. 根据权利要求1所述的方法,其特征在于,所述在下行控制信道的传输周期中的至少一个传输单元上重复接收下行控制信道,包括:
    确定重复次数集合,所述重复次数集合包括多个大小不同的重复次数,所述至少一个传输单元上重复传输的下行控制信道的次数为所述重复次数集合中的一个次数;
    在每个传输周期中,从起始传输时间开始依次采用所述多个重复次数进行下行控制信道的重复接收,直到正确解调出所述下行控制信道或遍历完所述重复次数集合中所有的重复次数。
  3. 根据权利要求1或2所述的方法,其特征在于,当所述传输单元的个数大于1时,任意相邻的所述传输单元之间的间隔长度相同,所述方法还包括:
    确定所述传输单元的长度和所述间隔长度。
  4. 根据权利要求3所述的方法,其特征在于,确定所述传输单元的长度,包括:
    获取接入网设备发送的配置信令,所述配置信令包括所述传输单元的长度;
    或者,获取协议中配置的所述传输单元的长度;
    或者,基于最大重复次数与阈值大小关系,确定所述传输单元的长度,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数;
    或者,基于当次中所使用的重复次数确定所述传输单元的长度。
  5. 根据权利要求3所述的方法,其特征在于,确定所述间隔长度,包括:
    获取接入网设备发送的配置信令,所述配置信令包括所述间隔长度;
    或者,获取协议中配置的所述间隔长度;
    或者,基于所述传输单元的长度确定所述间隔长度;
    或者,基于最大重复次数确定所述间隔长度,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    确定传输周期的长度;
    按照所述传输周期的长度,周期性地接收所述下行控制信道。
  7. 根据权利要求6所述的方法,其特征在于,所述确定传输周期的长度,包括:
    基于所述传输单元的长度、间隔长度和最大重复次数中的至少一项确定所述传输周期的长度;
    所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述方法还包括:
    确定起始传输时间;
    在每个传输周期内,从所述起始传输时间开始接收所述下行控制信道。
  9. 根据权利要求8所述的方法,其特征在于,所述确定起始传输时间,包括:
    基于所述传输单元的长度、间隔长度和最大重复次数中的至少一项确定所述起始传输时间;
    所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
  10. 根据权利要求2至9任一项所述的方法,其特征在于,所述确定重复次数集合,包括:
    获取最大重复次数,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数;
    基于所述最大重复次数,确定所述重复次数集合,所述重复次数集合中的最大值为所述最大重复次数。
  11. 根据权利要求10所述的方法,其特征在于,所述获取最大重复次数,包括:
    接收无线资源控制信令,所述无线资源控制信令包括所述最大重复次数。
  12. 一种下行控制信道传输方法,其特征在于,所述方法包括:
    在下行控制信道的每个传输周期中的至少一个传输单元上重复发送下行控制信道,每个所述传输单元用于连续传输至少两次下行控制信道。
  13. 根据权利要求12所述的方法,其特征在于,所述在下行控制信道的每个传输周期中的至少一个传输单元上重复发送下行控制信道,包括:
    获取终端的信道状况信息;
    基于所述终端的信道状况信息确定所述重复次数;
    按照所述重复次数重复发送所述下行控制信道,所述至少一个传输单元上重复传输的下行控制信道的次数为所述重复次数。
  14. 根据权利要求12或13所述的方法,其特征在于,当所述传输单元的个数大于1时,任意相邻的所述传输单元之间的间隔长度相同,所述方法还包括:
    确定所述传输单元的长度和所述间隔长度。
  15. 根据权利要求14所述的方法,其特征在于,确定所述传输单元的长度,包括:
    获取协议中配置的所述传输单元的长度;
    或者,基于最大重复次数与阈值大小关系,确定所述传输单元的长度,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数;
    或者,基于当次传输所使用的重复次数确定所述传输单元的长度。
  16. 根据权利要求14所述的方法,其特征在于,确定所述间隔长度,包括:
    获取协议中配置的所述间隔长度;
    或者,基于所述传输单元的长度确定所述间隔长度;
    或者,基于最大重复次数确定所述间隔长度,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
  17. 根据权利要求14至16任一项所述的方法,其特征在于,所述方法还包括:
    采用配置信令发送所述传输单元的长度和所述间隔长度中的至少一个。
  18. 根据权利要求12至17任一项所述的方法,其特征在于,所述方法还包括:
    确定传输周期的长度;
    按照所述传输周期的长度,周期性地发送所述下行控制信道。
  19. 根据权利要求18所述的方法,其特征在于,所述确定传输周期的长度,包括:
    基于所述传输单元的长度、间隔长度和最大重复次数中的至少一项确定所述传输周期的长度;
    所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
  20. 根据权利要求12至19任一项所述的方法,其特征在于,所述方法还包括:
    确定起始传输时间;
    在每个传输周期内,从所述起始传输时间开始发送所述下行控制信道。
  21. 根据权利要求20所述的方法,其特征在于,所述确定起始传输时间,包括:
    基于所述传输单元的长度、间隔长度和最大重复次数中的至少一项确定所述起始传输时间;
    所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
  22. 根据权利要求12至21任一项所述的方法,其特征在于,所述方法还包括:
    发送无线资源控制信令,所述无线资源控制信令包括最大重复次数,所述最大重复次数为每个传输周期中下行控制信道的最大重复次数。
  23. 一种下行控制信道传输装置,其特征在于,所述装置包括:
    接收模块,被配置为在下行控制信道的传输周期中的至少一个传输单元上重复接收下行控制信道,每个所述传输单元用于连续重复传输至少两次下行控制信道。
  24. 一种下行控制信道传输装置,其特征在于,所述装置包括:
    发送模块,被配置为在下行控制信道的每个传输周期中的至少一个传输单元上重复发送下行控制信道,每个所述传输单元用于连续传输至少两次下行控制信道。
  25. 一种终端,其特征在于,所述终端包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现权利要求1至11任一项所述的下行控制信道传输。
  26. 一种接入网设备,其特征在于,所述接入网设备包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现权利要求12至22任一项所述的下行控制信道传输。
  27. 一种计算机可读存储介质,其特征在于,当所述计算机可读存储介质中的指令由处理器执行时,能够执行权利要求1至11任一所述的下行控制信道传输,或者,能够执行权利要求12至22任一项所述的下行控制信道传输。
PCT/CN2020/078257 2020-03-06 2020-03-06 下行控制信道传输方法、装置、终端及接入网设备 WO2021174542A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/078257 WO2021174542A1 (zh) 2020-03-06 2020-03-06 下行控制信道传输方法、装置、终端及接入网设备
CN202080000485.8A CN113632564A (zh) 2020-03-06 2020-03-06 下行控制信道传输方法、装置、终端及接入网设备
EP20923670.2A EP4117362A4 (en) 2020-03-06 2020-03-06 DOWNLINK CONTROL CHANNEL TRANSMISSION APPARATUS AND METHOD, TERMINAL AND ACCESS NETWORK DEVICE
US17/905,720 US20230106966A1 (en) 2020-03-06 2020-03-06 Downlink control channel transmission method and apparatus, terminal and access network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078257 WO2021174542A1 (zh) 2020-03-06 2020-03-06 下行控制信道传输方法、装置、终端及接入网设备

Publications (1)

Publication Number Publication Date
WO2021174542A1 true WO2021174542A1 (zh) 2021-09-10

Family

ID=77614450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078257 WO2021174542A1 (zh) 2020-03-06 2020-03-06 下行控制信道传输方法、装置、终端及接入网设备

Country Status (4)

Country Link
US (1) US20230106966A1 (zh)
EP (1) EP4117362A4 (zh)
CN (1) CN113632564A (zh)
WO (1) WO2021174542A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165508A (zh) * 2014-01-27 2016-11-23 松下电器(美国)知识产权公司 无线通信方法、演进节点b和用户设备
CN107734606A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种多播业务的传输方法及装置
CN109769303A (zh) * 2017-11-09 2019-05-17 成都鼎桥通信技术有限公司 一种随机接入与业务传输的方法
US20200022144A1 (en) * 2018-07-09 2020-01-16 Samsung Electronics Co., Ltd. Overhead reduction and reliability enhancements for dl control signaling
CN111435870A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 下行控制信道的传输方法及装置、存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400598B2 (ja) * 2013-01-14 2018-10-03 エルジー エレクトロニクス インコーポレイティド 下りリンク信号受信方法およびユーザ機器、並びに下りリンク信号送信方法および基地局
WO2015050339A1 (ko) * 2013-10-04 2015-04-09 주식회사 케이티 하향링크 제어 채널을 송수신하는 방법 및 그 장치
CN109392113B (zh) * 2017-08-09 2022-09-02 华为技术有限公司 一种接收控制信息、发送控制信息的方法及设备
US11464008B2 (en) * 2018-07-12 2022-10-04 Qualcomm Incorporated Determination rule of PDSCH scheduled slot with PDCCH repetition
CN110536459A (zh) * 2018-08-10 2019-12-03 中兴通讯股份有限公司 一种重复传输方法及装置、通信设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165508A (zh) * 2014-01-27 2016-11-23 松下电器(美国)知识产权公司 无线通信方法、演进节点b和用户设备
CN107734606A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种多播业务的传输方法及装置
CN109769303A (zh) * 2017-11-09 2019-05-17 成都鼎桥通信技术有限公司 一种随机接入与业务传输的方法
US20200022144A1 (en) * 2018-07-09 2020-01-16 Samsung Electronics Co., Ltd. Overhead reduction and reliability enhancements for dl control signaling
CN111435870A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 下行控制信道的传输方法及装置、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4117362A4 *

Also Published As

Publication number Publication date
US20230106966A1 (en) 2023-04-06
CN113632564A (zh) 2021-11-09
EP4117362A4 (en) 2023-12-06
EP4117362A1 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
JP7375837B2 (ja) 低複雑度の狭帯域端末のためのランダムアクセス手順でのharqメッセージに割り当てられたリソースを示すための方法
US10834763B2 (en) Method and apparatus for handling overlap of different channels in wireless communication system
CN108282879B (zh) 数据传输方法及装置
US11160054B2 (en) Method and apparatus of operation considering bandwidth part in next generation wireless communication system
CN105827371B (zh) 一种实现上行控制信息的传输方法及装置
CN108605342B (zh) 具有传输间隙的数据块重复
US20200267730A1 (en) Measurement method and apparatus for supporting mobility in communication system
US20210160852A1 (en) Resource configuration method and terminal device
EP3008967A1 (en) Telecommunications apparatus and methods
JP2022002392A (ja) 交差ニューメロロジースケジューリングのための方法及びデバイス
KR20200027954A (ko) 자율 전송을 위한 방법 및 장치
CN105144617B (zh) 一种信息传输方法、基站及用户设备
US20160143086A1 (en) Telecommunications apparatus and methods
EP3553989A1 (en) Data transmission method and apparatus
WO2017113077A1 (zh) 一种上行紧急业务传输方法、基站、用户设备及系统
CN111756496B (zh) 上行传输的配置方法、装置、基站及用户设备
US11134378B2 (en) Data transmission method and apparatus
CN110831222A (zh) 一种调度方法和装置
WO2021159297A1 (zh) 上下行传输冲突解决方法、装置及存储介质
WO2021003746A1 (zh) 非授权频谱上的信道状态指示方法、装置及存储介质
WO2021174542A1 (zh) 下行控制信道传输方法、装置、终端及接入网设备
CN106162881B (zh) 一种数据传输方法及装置
US11115993B2 (en) Data transmission method, terminal device, and access network device
WO2017124937A1 (zh) 数据传输的方法及装置
US20230254850A1 (en) Method and apparatus for scheduling data channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020923670

Country of ref document: EP

Effective date: 20221006

NENP Non-entry into the national phase

Ref country code: DE