WO2021003746A1 - 非授权频谱上的信道状态指示方法、装置及存储介质 - Google Patents

非授权频谱上的信道状态指示方法、装置及存储介质 Download PDF

Info

Publication number
WO2021003746A1
WO2021003746A1 PCT/CN2019/095641 CN2019095641W WO2021003746A1 WO 2021003746 A1 WO2021003746 A1 WO 2021003746A1 CN 2019095641 W CN2019095641 W CN 2019095641W WO 2021003746 A1 WO2021003746 A1 WO 2021003746A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
antenna panel
antenna
idle
channel state
Prior art date
Application number
PCT/CN2019/095641
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201980001348.3A priority Critical patent/CN110521273B/zh
Priority to BR112022000272A priority patent/BR112022000272A2/pt
Priority to PCT/CN2019/095641 priority patent/WO2021003746A1/zh
Priority to KR1020227004168A priority patent/KR20220034824A/ko
Priority to EP19937345.7A priority patent/EP3998833A4/en
Priority to JP2022501033A priority patent/JP7345041B2/ja
Priority to US17/625,756 priority patent/US20220278725A1/en
Publication of WO2021003746A1 publication Critical patent/WO2021003746A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular to a method, device and storage medium for indicating channel status on an unlicensed spectrum.
  • the base station When the base station needs to use a certain frequency band on the unlicensed spectrum to communicate with the terminal, the base station first executes the LBT (listen before talk) process to detect whether the frequency band is free; if the frequency band is free, the base station can use the The frequency band communicates with the terminal; if the frequency band is not idle, such as being occupied by other equipment, the base station cannot use the frequency band to communicate with the terminal.
  • LBT listen before talk
  • the base station in order to improve the spatial diversity gain, can communicate with the terminal through multiple antenna panels, and the channel state detection results of multiple antenna panels may be different. In this scenario, how the base station provides a channel state indication to the terminal has yet to have a complete solution.
  • the embodiments of the present disclosure provide a method, a device and a storage medium for indicating channel status on an unlicensed spectrum.
  • the technical solution is as follows:
  • a method for indicating channel status on an unlicensed spectrum including:
  • the base station sends channel state indication information through the first antenna panel, and the channel state indication information is used to indicate the channel state detection results of the k antenna panels of the base station on at least one BWU (Bandwidth Unit) of the unlicensed spectrum ,
  • the k is a positive integer.
  • the k antenna panels include the first antenna panel.
  • the multiple antenna panels when it is detected that there are multiple antenna panels with idle channels, the multiple antenna panels respectively send corresponding channel state indication information;
  • the channel state indication information sent by the i-th antenna panel is used to indicate the channel state detection result of the i-th antenna panel on at least one BWU of the unlicensed spectrum, and the i is a positive integer.
  • the k antenna panels include at least one antenna panel of the base station, except for the first antenna panel, for which channel idle is detected.
  • the first antenna panel is an antenna panel that detects that a channel is idle.
  • the first antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs with the channel detected as being idle.
  • the first antenna panel is an antenna panel within a channel occupation time.
  • the first antenna panel is the antenna panel with the largest remaining channel occupancy time and/or the largest number of BWUs detected to be idle.
  • the channel state indication information includes a channel idle indication signal corresponding to each of the k antenna panels;
  • the channel idle indicator signal corresponding to the i-th antenna panel in the k antenna panels is used to indicate that the i-th antenna panel detects a BWU with an idle channel, and the i is a positive value less than or equal to the k Integer.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • the channel state indicator is used to indicate whether the channel state detection result is idle.
  • the channel idle indicator signal corresponding to the i-th antenna panel further includes at least one of the following: the channel occupancy duration of the BWU whose channel is detected to be idle by the i-th antenna panel, and the i-th antenna panel The time slot format of the BWU whose channel is detected to be idle during the channel occupation time, and the resource allocation of the BWU whose channel is detected to be idle by the i-th antenna panel during the channel occupation time.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • Channel idle indicator signals respectively sent on each BWU whose channel is detected to be idle on the i-th antenna panel;
  • the channel idle indicator signal sent on the j-th BWU whose channel is detected to be idle on the i-th antenna panel is used to indicate the channel state detection result of the i-th antenna panel on the j-th BWU Is idle, and the j is a positive integer.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • the target BWP includes N BWUs among the M BWUs whose channels are detected to be idle by the i-th antenna panel, where N is less than or equal to M, and both M and N are positive integers.
  • the k antenna panels share the same channel idle indicator signal; or, the channel idle indicator signals corresponding to the k antenna panels do not share the same channel idle indicator signal.
  • a method for indicating channel status on an unlicensed spectrum including:
  • the terminal detects the channel state indication information issued by each antenna panel of the base station according to the first cycle, the channel state indication information is used to indicate the channel state detection result of the k antenna panels of the base station on at least one BWU of the unlicensed spectrum ,
  • the k is a positive integer
  • the terminal After the terminal receives the channel state indication information sent by the first antenna panel of the base station, the terminal detects the PDCCH (Physical Downlink Control Channel) issued by the first antenna panel according to the second cycle. Control channel) signaling.
  • PDCCH Physical Downlink Control Channel
  • the second period is greater than or equal to the first period.
  • the PDCCH signaling includes: uplink and downlink resources of the first antenna panel scheduled by the base station to the terminal, and/or other antennas of the base station except the first antenna panel The channel status detection result of the panel.
  • a channel state indicating device on an unlicensed spectrum which is applied to a base station, and the device includes:
  • the information sending module is configured to send channel state indication information through the first antenna panel, where the channel state indication information is used to indicate the channel state detection results of the k antenna panels of the base station on at least one BWU of the unlicensed spectrum,
  • the k is a positive integer.
  • the k antenna panels include the first antenna panel.
  • the multiple antenna panels when it is detected that there are multiple antenna panels with idle channels, the multiple antenna panels respectively send corresponding channel state indication information;
  • the channel state indication information sent by the i-th antenna panel is used to indicate the channel state detection result of the i-th antenna panel on at least one BWU of the unlicensed spectrum, and the i is a positive integer.
  • the k antenna panels include at least one antenna panel of the base station, except for the first antenna panel, for which channel idle is detected.
  • the first antenna panel is an antenna panel that detects that a channel is idle.
  • the first antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs with the channel detected as being idle.
  • the first antenna panel is an antenna panel within a channel occupation time.
  • the first antenna panel is the antenna panel with the largest remaining channel occupancy time and/or the largest number of BWUs detected to be idle.
  • the channel state indication information includes a channel idle indication signal corresponding to each of the k antenna panels;
  • the channel idle indicator signal corresponding to the i-th antenna panel in the k antenna panels is used to indicate that the i-th antenna panel detects a BWU with an idle channel, and the i is a positive value less than or equal to the k Integer.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • the channel state indicator is used to indicate whether the channel state detection result is idle.
  • the channel idle indicator signal corresponding to the i-th antenna panel further includes at least one of the following: the channel occupancy duration of the BWU whose channel is detected to be idle by the i-th antenna panel, and the i-th antenna panel The time slot format of the BWU whose channel is detected to be idle during the channel occupation time, and the resource allocation of the BWU whose channel is detected to be idle by the i-th antenna panel during the channel occupation time.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • Channel idle indicator signals respectively sent on each BWU whose channel is detected to be idle on the i-th antenna panel;
  • the channel idle indicator signal sent on the j-th BWU whose channel is detected to be idle on the i-th antenna panel is used to indicate the channel state detection result of the i-th antenna panel on the j-th BWU Is idle, and the j is a positive integer.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • the i-th antenna panel detects N BWUs out of M BWUs with idle channels, where N is less than or equal to M, and both M and N are positive integers.
  • the k antenna panels share the same channel idle indicator signal; or, the channel idle indicator signals corresponding to the k antenna panels do not share the same channel idle indicator signal.
  • a channel state indicating device on an unlicensed spectrum which is applied to a terminal, and the device includes:
  • the first detection module is configured to detect the channel state indication information issued by each antenna panel of the base station according to the first cycle, and the channel state indication information is used to indicate that the k antenna panels of the base station are in at least one of the unlicensed spectrums.
  • the second detection module is configured to detect the PDCCH signaling issued by the first antenna panel according to a second cycle after receiving the channel state indication information sent by the first antenna panel of the base station.
  • the second period is greater than or equal to the first period.
  • the PDCCH signaling includes: uplink and downlink resources of the first antenna panel scheduled by the base station to the terminal, and/or other antennas of the base station except the first antenna panel The channel status detection result of the panel.
  • a channel state indicating device on an unlicensed spectrum which is applied to a base station, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the channel state indication information is sent through the first antenna panel, and the channel state indication information is used to indicate the channel state detection results of the k antenna panels of the base station on at least one BWU of the unlicensed spectrum, where k is a positive integer.
  • a channel state indicating device on an unlicensed spectrum which is applied to a terminal, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • the channel state indication information is used to indicate the channel state detection result of the k antenna panels of the base station on at least one BWU of the unlicensed spectrum,
  • the k is a positive integer
  • the physical downlink control channel PDCCH signaling sent by the first antenna panel is detected according to the second cycle.
  • a non-transitory computer-readable storage medium having a computer program stored thereon, and the computer program, when executed by a processor, implements the steps of the method described in the first aspect.
  • a non-transitory computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor, the steps of the method described in the second aspect are implemented.
  • the base station transmits channel state indication information through the first antenna panel, and the channel state indication information is used to indicate the channel state detection result of at least one antenna panel of the base station on at least one BWU of the unlicensed spectrum ;
  • Fig. 1 is a schematic diagram showing a network architecture according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a method for indicating channel status on an unlicensed spectrum according to an exemplary embodiment
  • Fig. 3 is a flowchart showing a method for indicating channel status on an unlicensed spectrum according to another exemplary embodiment
  • Fig. 4 is a block diagram showing a device for indicating channel status on an unlicensed spectrum according to an exemplary embodiment
  • Fig. 5 is a block diagram showing a device for indicating channel status on an unlicensed spectrum according to another exemplary embodiment
  • Fig. 6 is a schematic structural diagram showing a base station according to an exemplary embodiment
  • Fig. 7 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • Fig. 1 is a schematic diagram showing a network architecture according to an exemplary embodiment.
  • the network architecture may include: a base station 110 and a terminal 120.
  • the base station 110 is deployed in the access network.
  • the access network in the 5G NR system can be called NG-RAN (New Generation-Radio Access Network).
  • the base station 110 and the terminal 120 communicate with each other through a certain air interface technology, for example, may communicate with each other through cellular technology.
  • the base station 110 is a device deployed in an access network to provide the terminal 120 with a wireless communication function.
  • the base station 110 may include various forms of macro base stations, micro base stations, relay stations, access points, and so on.
  • the names of devices with base station functions may be different. For example, in a 5G NR system, they are called gNodeB or gNB. As communication technology evolves, the name "base station" may change.
  • the above-mentioned devices that provide wireless communication functions for the terminal 120 are collectively referred to as base stations.
  • the base station 110 may also be an in-vehicle device, which is suitable for communication between vehicles in the Internet of Vehicles. When communicating between vehicles, the channels or signaling in the present disclosure are all channels or signaling suitable for sidelinks.
  • the number of terminals 120 is usually multiple, and one or more terminals 120 may be distributed in a cell managed by each base station 110.
  • the terminal 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem, as well as various forms of User Equipment (UE), mobile stations ( Mobile Station, MS), terminal device (terminal device), etc.
  • UE User Equipment
  • MS Mobile Station
  • terminal device terminal device
  • the terminal 120 may also be an in-vehicle device, which is suitable for scenarios of communication between vehicles in the Internet of Vehicles.
  • the channels or signaling in the present disclosure are all channels or signaling suitable for side links.
  • the "5G NR system" in the embodiments of the present disclosure may also be referred to as a 5G system or an NR system, but those skilled in the art can understand its meaning.
  • the technical solutions described in the embodiments of the present disclosure may be applicable to the 5G NR system, and may also be applicable to the subsequent evolution system of the 5G NR system and the 5G NR vehicle networking system.
  • Fig. 2 is a flow chart showing a method for indicating channel status on an unlicensed spectrum according to an exemplary embodiment. This method can be applied to the base station 110 of the network architecture shown in FIG. 1. The method may include the following steps:
  • the base station sends channel state indication information through the first antenna panel, and the channel state indication information is used to indicate the channel state detection results of k antenna panels of the base station on at least one BWU of the unlicensed spectrum, and k is a positive integer .
  • the base station and the terminal can each have multiple (that is, two or more) antenna panels.
  • the multiple antenna panels of the base station can belong to the same TRP (Transmitter Receiver Point) or multiple different TRPs. That is, each TRP may include one antenna panel or multiple antenna panels.
  • the base station can communicate with the terminal through multiple antenna panels, such as sending information to the terminal or receiving information sent by the terminal.
  • each carrier can contain multiple BWUs, and each BWP can also contain multiple BWUs.
  • each BWU may have its own number and correspond to a different position on the channel.
  • the bandwidth on the carrier may be 100 MHz, each BWU may be 20 MHz, and the carrier may include 5 BWUs.
  • the bandwidth on the carrier may be 400 MHz, each BWU may be 20 MHz, and the carrier may include 20 BWUs.
  • each carrier represents a serving cell.
  • a base station can provide multiple serving cells for the terminal, and multiple antenna panels can be used in each cell to communicate with the terminal in the cell.
  • the channel state detection result of the antenna panel on a certain BWU is used to indicate whether the antenna panel detects that the BWU is idle.
  • Different antenna panels may have the same or different channel state detection results on the same BWU.
  • the first antenna panel is an antenna panel within the channel occupation time. That is, the base station can send the channel state indication information to the terminal through the antenna panel within the channel occupation time.
  • the antenna panel within the channel occupation time refers to the antenna panel that is communicating with the terminal, that is, the first antenna panel has detected that the channel is idle before obtaining the channel occupation time, and the channel occupation time has not ended.
  • the base station selects one antenna panel as the first antenna panel from the antenna panels within the channel occupation time, and sends the channel state indication information to the terminal.
  • the first antenna panel is the antenna panel that detects that the channel is idle, that is, the first antenna panel is the antenna panel that has just detected that the channel is idle, and the base station has not used the antenna panel to send any information to the terminal. . That is, in the following channel occupation time, the base station can send channel state indication information to the terminal through the antenna panel that detects the channel is idle. For example, the base station selects one antenna panel as the first antenna panel from the antenna panels where the channel is detected to be idle, and sends channel state indication information to the terminal. In addition, if the first antenna panel is an antenna panel that detects that a channel is idle, the first antenna panel may send channel state indication information on one or more BWUs that have detected idleness.
  • the above k antenna panels include the first antenna panel. That is, the channel state indication information sent by the first antenna panel is used to indicate its own channel state detection result on at least one BWU of the unlicensed spectrum.
  • the above-mentioned k antenna panels include at least one antenna panel of the base station, except for the first antenna panel, for which channel idle is detected. That is, the channel state indication information sent by the first antenna panel is used to indicate the channel state detection results of other antenna panels on at least one BWU of the unlicensed spectrum. In this case, the channel state indication across the antenna panel is realized.
  • the above k antenna panels include a first antenna panel, and at least one antenna panel other than the first antenna panel for which channel idle is detected. That is, the channel state indication information sent by the first antenna panel is not only used to indicate its own channel state detection result on at least one BWU of the unlicensed spectrum, but also used to indicate that other antenna panels are at least in the unlicensed spectrum. The channel state detection result on a BWU. In this case, the channel state indication across the antenna panel is also realized.
  • the multiple antenna panels when it is detected that there are multiple antenna panels with idle channels, the multiple antenna panels respectively send corresponding channel state indication information; wherein, the channel state indication information sent by the i-th antenna panel is used for Indicate the channel state detection result of the i-th antenna panel on at least one BWU of the unlicensed spectrum, and i is a positive integer. That is, for a plurality of antenna panels whose channels are detected to be idle, each antenna panel respectively sends channel state indication information for indicating its own channel state detection result.
  • the channel state indication information may be one or a combination of the following signals sent by the base station: wake up signal, such as a certain impulse current; SSB (Synchronization Signal Block, synchronization signal) Block), such as PSS (Primary Synchronized Signal), SSS (Secondary Synchronized Signal), PBCH (Physical Broadcast Channel), etc.; DRS (Discovery Signal); Wi-Fi (Wireless Fidelity, wireless fidelity) preamble; PDCCH, such as DCI (Downlink Control Information, downlink control information) signaling; DMRS (Demodulation Reference Signal, demodulation reference signal); or other signals.
  • wake up signal such as a certain impulse current
  • PSS Primary Synchronized Signal
  • SSS Secondary Synchronized Signal
  • PBCH Physical Broadcast Channel
  • DRS Discovery Signal
  • Wi-Fi Wireless Fidelity, wireless fidelity
  • the base station transmits channel state indication information through the first antenna panel, and the channel state indication information is used to indicate that at least one antenna panel of the base station is on at least one BWU of the unlicensed spectrum. It provides a channel state indication scheme in a multi-antenna panel scenario, so that the terminal can learn the channel state detection results of different antenna panels of the base station on each BWU, which is helpful to realize the communication between the terminal and the base station. Reliable transmission.
  • the channel status indication information sent by the first antenna panel is also used to indicate the channel status detection results of other antenna panels on at least one BWU of the unlicensed spectrum, the channel status is indicated across the antenna panels and the channel status is improved. Flexibility of instructions.
  • the first antenna panel can have two situations: 1.
  • the first antenna panel is the antenna panel within the channel occupation time; 2.
  • the first antenna panel is the antenna panel that has just detected that the channel is idle.
  • the first antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs detected to be idle.
  • the first antenna panel is the antenna panel with the largest remaining channel occupation time.
  • the base station When the base station performs LBT, it needs to select a set of channel detection parameters, including channel occupation time, contention window size, channel reception priority level, and so on. According to the occupied time of the channel and the occupied channel time, the remaining channel occupied time can be determined.
  • the remaining channel occupancy time of panel#1 is 1ms
  • the remaining channel occupancy time of panel#2 is 3ms
  • the remaining channel occupancy time of panel#3 is 2ms
  • the first antenna panel is the antenna panel with the most BWUs that have just detected channel idle.
  • the antenna panel can be selected to send information, as in the embodiment of the present disclosure
  • the channel status indication information For multiple antenna panels, if the number of BWUs with idle channels detected on a certain antenna panel is large, it means that the channel conditions around the antenna panel are better, so the antenna panel can be selected to send information, as in the embodiment of the present disclosure
  • the channel status indication information For multiple antenna panels, if the number of BWUs with idle channels detected on a certain antenna panel is large, it means that the channel conditions around the antenna panel are better, so the antenna panel can be selected to send information, as in the embodiment of the present disclosure
  • the channel status indication information For multiple antenna panels, if the number of BWUs with idle channels detected on a certain antenna panel is large, it means that the channel conditions around the antenna panel are better, so the antenna panel can be selected to send information, as in the embodiment of the present disclosure
  • the channel status indication information For multiple antenna panels, if the number of BWUs with idle channels detected on a certain antenna panel is large, it means that the
  • panel#1 detects that the channel is free is 5 BWUs
  • panel#2 detects that the channel is free is 2 BWUs
  • panel#3 detects that the channel is free is 1 BWU
  • you can select the BWU that detects the channel is free The most antenna panel, panel#1, is used as the first antenna panel.
  • the first antenna panel is the antenna panel with the largest remaining channel occupation time and the largest number of BWUs detected to be idle.
  • the remaining channel occupancy time of panel#1 is 3ms
  • the remaining channel occupancy time of panel#2 is 3ms
  • the remaining channel occupancy time of panel#3 is 1ms
  • panel#1 detects that there are 5 BWUs with idle channels
  • panel #2 The number of BWUs with free channels detected is 2 and the number of BWUs with free channels detected by panel#3 is 1, then the antenna panel with the largest remaining channel occupation time and the largest number of BWUs detected to be free can be selected, namely panel#1 as The first antenna panel.
  • the base station when there are multiple antenna panels within the channel occupation time, the base station first selects the antenna panel with the largest remaining channel occupation time from the multiple antenna panels; if the remaining channel occupation time is the largest antenna panel If the number of antenna panels is 1, then directly determine this antenna panel as the first antenna panel; if the number of antenna panels with the largest remaining channel occupation time is greater than 1, then further select the detected antenna panels from the antenna panels with the largest remaining channel occupation time
  • the antenna panel with the most BWUs with idle channels is the first antenna panel.
  • any antenna panel can be selected from the antenna panels with the largest number of BWUs detected to be idle As the first antenna panel, or an antenna panel can also be selected as the first antenna panel according to other selection rules, for example, the antenna panel with the lightest load is selected as the first antenna panel, etc.
  • the embodiment of the present disclosure does not limit this.
  • the base station when there are multiple antenna panels within the channel occupancy time, the base station first selects from the multiple antenna panels the antenna panel with the largest number of BWUs that detect the channel is idle; if it detects that the channel is free, the number of antenna panels with the largest number of BWUs If it is 1, the antenna panel is directly determined as the first antenna panel; if the number of antenna panels with the largest number of BWUs detected to be idle is greater than 1, then the antenna panel with the largest number of BWUs detected to be idle is selected The antenna panel with the longest remaining channel occupation time is used as the first antenna panel.
  • the antenna panel with the largest number of BWUs detected to be idle there are still multiple antenna panels with the largest remaining channel occupation time, you can select any antenna panel from the antenna panels with the largest remaining channel occupation time as the first antenna panel.
  • An antenna panel, or an antenna panel can be selected as the first antenna panel according to other selection rules, for example, the antenna panel with the lightest load is selected as the first antenna panel, etc.
  • the embodiment of the present disclosure does not limit this.
  • the first antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs detected with idle channels.
  • the first antenna panel is the antenna panel with the largest remaining channel occupation time.
  • the channel occupation time obtained can be different. Some antenna panels obtain a longer channel occupation time, while some antenna panels The obtained channel occupation time is relatively small; further, the remaining channel occupation time of multiple antenna panels can also be different.
  • the remaining channel occupancy time of panel#1 is 1ms
  • the remaining channel occupancy time of panel 2 is 3ms
  • the remaining channel occupancy time of panel#3 is 2ms
  • the first antenna panel is the antenna panel with the most BWUs that have detected channel idle.
  • panel#1, panel#2, and panel#3 there are 3 antenna panels, such as panel#1, panel#2, and panel#3.
  • panel#1 detects that the channel is free is 5 BWUs
  • panel#2 detects that the channel is free is 2 BWUs
  • panel#3 detects that the channel is free is 1 BWU
  • you can select the BWU that detects the channel is free The most antenna panel, panel#1, is used as the first antenna panel.
  • the first antenna panel is the antenna panel with the largest remaining channel occupation time and the largest number of BWUs detected to be idle.
  • the remaining channel occupancy time of panel#1 is 3ms
  • the remaining channel occupancy time of panel#2 is 3ms
  • the remaining channel occupancy time of panel#3 is 1ms
  • panel#1 detects that there are 5 BWUs with idle channels
  • panel #2 The number of BWUs with free channels detected is 2 and the number of BWUs with free channels detected by panel#3 is 1, then the antenna panel with the largest remaining channel occupation time and the largest number of BWUs detected to be free can be selected, namely panel#1 as The first antenna panel.
  • the base station when detecting that there are multiple antenna panels with idle channels, the base station first selects the antenna panel with the largest remaining channel occupation time from the multiple antenna panels; if the antenna panel with the largest remaining channel occupation time is If the number is 1, directly determine this antenna panel as the first antenna panel; if the number of antenna panels with the largest remaining channel occupation time is greater than 1, then further select the detected channel from the antenna panels with the largest remaining channel occupation time The antenna panel with the most free BWU is used as the first antenna panel.
  • any antenna panel can be selected from the antenna panels with the largest number of BWUs detected to be idle As the first antenna panel, or an antenna panel can be selected as the first antenna panel according to other selection rules, for example, the antenna panel with the lightest load is selected as the first antenna panel, etc.
  • the embodiment of the present disclosure does not limit this.
  • the base station when detecting that there are multiple antenna panels with idle channels, the base station first selects from the multiple antenna panels the antenna panel with the largest number of BWUs with the channel idle; if the number of antenna panels with the largest number of BWUs is detected 1, then directly determine this antenna panel as the first antenna panel; if the number of antenna panels with the largest number of BWUs detected to be idle is greater than 1, then further select the remaining antenna panels from the antenna panels with the largest number of BWUs detected to be idle The antenna panel with the longest channel occupation time is used as the first antenna panel.
  • the antenna panel with the largest number of BWUs detected to be idle there are still multiple antenna panels with the largest remaining channel occupation time, you can select any antenna panel from the antenna panels with the largest remaining channel occupation time as the first antenna panel.
  • An antenna panel, or an antenna panel can be selected as the first antenna panel according to other selection rules, for example, the antenna panel with the lightest load is selected as the first antenna panel, etc.
  • the embodiment of the present disclosure does not limit this.
  • the antenna panel with the longest remaining channel occupation time is preferentially selected as the first antenna panel; for the second case above, when detecting When there are multiple antenna panels with idle channels, the antenna panel with the most BWUs detected to be idle is selected as the first antenna panel.
  • the embodiments of the present disclosure provide multiple selection methods for the first antenna panel, which improves the flexibility of selecting the first antenna panel.
  • the channel state indication information introduced in the above embodiment in FIG. 1 includes a channel idle indication signal corresponding to each of the k antenna panels.
  • the channel idle indicator signal corresponding to the i-th antenna panel in the k antenna panels is used to indicate that the i-th antenna panel detects a BWU with an idle channel, and i is a positive integer less than or equal to k. That is, the channel idle indicator signal corresponding to the i-th antenna panel is used to inform the terminal which channel or channels of the BWU detected by the i-th antenna panel are idle.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes: the channel state indicator corresponding to each BWU detected by the i-th antenna panel; where the channel state indicator is used for Indicates whether the channel status detection result is idle.
  • the channel state indicator is represented by 1 bit, for example, "0" means busy and "1” means idle, or "1" means busy and "0” means idle.
  • each BWU detected by the i-th antenna panel may belong to the same carrier, or may belong to multiple different carriers, which is not limited in the embodiment of the present disclosure.
  • the channel idle indicator signal corresponding to the 5 BWUs can be represented by 5 bits.
  • the channel idle indicator signal corresponding to the i-th antenna panel can be represented by 10 bits, and each bit is used to indicate the channel corresponding to a BWU Whether the status check result is idle.
  • the channel idle indicator signal corresponding to the i-th antenna panel further includes at least one of the following: the channel occupancy duration of the BWU whose channel is detected by the i-th antenna panel, and the BWU whose channel is detected by the i-th antenna panel.
  • the slot format is used to indicate whether each symbol of each slot is used for downlink (D), uplink (U) or to be determined (X).
  • Resource allocation can be used for PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel, physical random access channel), PDSCH (Physical Downlink Shared Channel, physical downlink shared channel), PUSCH (Physical Uplink) Shared Channel, physical uplink shared channel) and resource allocation of at least one of the other channels.
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • PUSCH Physical Uplink Shared Channel, physical uplink shared channel
  • the first antenna panel may send a channel idle indicator signal on one or more of the idle BWUs.
  • the channel idle indication signal sent by the first antenna panel on a certain idle BWU not only indicates the channel status of the idle BWU, but also indicates the channel status of other BWUs.
  • the number of BWUs with idle channels detected by the first antenna panel is a (a is a positive integer)
  • the first antenna panel can send a channel free indication signal on one of the a BWUs, or A channel idle indicator signal is sent on multiple BWUs of the a BWUs.
  • the same channel idle indicator signal may be sent on the a BWUs respectively.
  • the terminal reads the channel idle indicator signal on one of the BWUs, it obtains the channel status of all BWUs for which the first antenna panel performs channel detection.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes: the channel idle indicator signal respectively sent on each BWU whose channel is detected to be idle on the i-th antenna panel.
  • the channel idle indicator signal sent on the j-th BWU with an idle channel detected on the i-th antenna panel is used to indicate that the channel state detection result of the i-th antenna panel on the j-th BWU is idle, and j is Positive integer.
  • the channel idle indicator signal on a BWU only indicates that its own channel status is idle, and does not indicate the channel status of other BWUs.
  • the channel idle indicator signal on a certain BWU includes the channel occupancy duration of the BWU and the time slot format of the BWU during the channel occupancy time. In this way, the channel status of the BWU is implicitly indicated as idle. In this way, after the terminal reads the channel idle indicator signal on a BWU, it can learn that the channel status of the BWU is idle, and the terminal also needs to monitor whether there are channel idle indicator signals on other BWUs to obtain the channel status of other BWUs. Or the channel idle indicator signal on a certain BWU is wake up signal, SSB, etc.
  • the channel idle indication signal corresponding to the i-th antenna panel includes: BWP switching indication information corresponding to the i-th antenna panel, and the BWP switching indication information is used to indicate the i-th antenna panel between the terminal and the base station.
  • the target BWP includes N BWUs among M BWUs whose channels are detected to be idle by the i-th antenna panel, where N is less than or equal to M, and both M and N are positive integers.
  • the BWUs included in the above target BWP may all be BWUs whose channels are detected to be idle; it may also refer to all BWUs configured by the base station for the terminal, including BWUs with the most free channels and BWUs with the least busy channels. BWP.
  • the BWP By switching the BWP to the BWU that contains the most idle BWU and the least busy BWU, the PDCCH monitoring bandwidth of the terminal is reduced as much as possible, and the utilization rate of the idle BWU is increased.
  • the foregoing BWP switching indication information includes an identifier of the target BWP, and the identifier of the target BWP is used to uniquely identify the target BWP, and different BWPs have different identifiers, and the identifier of the BWP may be recorded as BWP ID.
  • the base station configures the BWP for the terminal, it also configures the BWP ID.
  • the terminal if the terminal receives the BWP switching indication information corresponding to the i-th antenna panel, the terminal considers that the channel status of each BWU included in the target BWP is idle, even if in fact it is possible that the individual BWP included in the target BWP is idle.
  • the channel state of the BWU is busy, but the base station does not schedule the RB (Resource Block, resource block) on the busy BWU to the terminal.
  • the target BWP may include the cause of a BWU with a busy channel state.
  • the main reason is that a BWU with an idle channel state may not be continuous and cannot form a BWP. Therefore, it is necessary to connect the BWU with an idle channel state through the BWU with a busy channel state. Form a BWP.
  • the terminal after receiving the BWP switching instruction information corresponding to the i-th antenna panel, the terminal switches to the target BWP to communicate with the i-th antenna panel.
  • the above embodiment introduced three possible implementations of the channel idle indicator signal.
  • the channel state indication information sent by the first antenna panel may include the channel idle indication signal corresponding to each of the k antenna panels. When k is greater than 1, the k antenna panels may share the same channel idle indication signal, or The channel idle indicator signals corresponding to the k antenna panels are not shared.
  • the base station can indicate the channel state across the antenna panels, so that the antenna panel that transmits the channel state indication information can be flexibly switched.
  • the base station has two antenna panels, denoted as panel#1 and panel#2. Assuming that each antenna panel obtains the same channel occupancy time each time, and panel#1 detects that the channel is idle in advance, in panel#1 During the channel occupation time, if panel#2 detects that the channel is idle, the base station can send the channel state detection result corresponding to panel#2 through panel#1, because when the channel occupation time obtained by panel#1 starts, the terminal will The PDCCH of panel#1 has been detected, so directly use panel#1 to send PDCCH to indicate the channel state detection result of panel#2.
  • the terminal Compared with using panel#2 to send the channel state detection result of panel#2, the terminal only needs to detect The PDCCH sent by panel#1 is sufficient, and there is no need to detect the PDCCH sent by panel#1 and panel#2 at the same time, thereby reducing terminal power consumption. Since panel#2 occupies a channel later than panel#1, when the channel occupancy time of panel#1 ends and the channel occupancy time of panel#2 has not ended, the base station starts to use panel#2 to send PDCCH to the terminal. Panel#1 can check whether the channel is idle again after the channel occupancy time ends.
  • the base station can send panel#1 through panel#2 Corresponding channel state detection results, and so on. In this way, the terminal can always detect one of the antenna panels within the channel occupation time to obtain the channel state detection results of other antenna panels.
  • the base station when the base station has multiple antenna panels and detects that the channel is idle, the multiple antenna panels send the PDCCH to the terminal, and the multi-PDCCH mode or the single-PDCCH mode can be adopted.
  • the multi-PDCCH mode means that multiple antenna panels send PDCCH to the terminal independently
  • the single-PDCCH mode means that the PDCCH is sent to the terminal through one antenna panel, and the PDCCH sent by this antenna panel is used to simultaneously send the correlation of other antenna panels. information.
  • the interactive communication between the multiple antenna panels will have a larger time delay.
  • multiple antenna panels tend to send PDCCH to the terminal independently to perform PDSCH scheduling independently. That is, the base station uses the multi-PDCCH mode to send the PDCCH to the terminal.
  • the base station tends to use one antenna panel to send the PDCCH to the terminal, and the PDCCH sent by this one antenna panel is used to schedule multiple antenna panels to send downlink data at the same time. That is, the base station uses the single-PDCCH mode to send the PDCCH to the terminal.
  • the base station can determine a main antenna panel from the multiple antenna panels where the channel is detected to be idle, and then instruct the terminal to only receive the PDCCH sent by the main antenna panel.
  • the main antenna panel may be the antenna panel with the longest remaining channel occupation time, and the main antenna panel can transmit PDCCH.
  • the base station and the terminal have a common default time. From this time on, the terminal only monitors the PDCCH sent by the main antenna panel, and the main antenna panel is set using the default method, and the base station does not need to display instructions again.
  • the PDCCH sent by the base station may be a group-common PDCCH (group common PDCCH), such as a PDCCH containing the channel status and slot format of each BWU.
  • group-common PDCCH is sent periodically during the channel occupation time, for example, every several time slots.
  • the PDCCH sent by the base station may also include terminal-specific PDCCH resources used for resource scheduling.
  • the base station uses the single-PDCCH method to send the PDCCH to the terminal, and the PDCCH contains the channel idle indicator signals corresponding to multiple antenna panels, the multiple antenna panels can share the same channel idle indicator signal, or the multiple antenna panels The corresponding channel idle indicator signals are not shared.
  • each BWU corresponds to a channel state indicator. For example, on each BWU, as long as at least one antenna panel detects that the channel is idle, the channel status indicator corresponding to the BWU indicates that the channel is idle; only when all antenna panels detect that the channel is busy on the BWU, The channel status indicator corresponding to the BWU indicates that the channel is busy. For another example, on each BWU, as long as at least one antenna panel detects that the channel is busy, the channel status indicator corresponding to the BWU indicates that the channel is busy; only when all antenna panels detect that the channel is idle on the BWU , The channel status indicator corresponding to the BWU indicates that the channel is idle.
  • the base station has two antenna panels
  • the two antenna panels have the same carrier frequency band of 100MHz, and they are divided into 5 BWUs, and the instructions can be completed by 5 bits.
  • This method can save the signaling overhead of the channel idle indicator signal, but the premise is that the BWU division of each antenna panel on the carrier is consistent, that is, the frequency domain position and bandwidth occupied by each BWU are the same.
  • each BWU of each antenna panel corresponds to a channel state indicator identifier. For example, if the base station has two antenna panels, the carrier frequency band of the two antenna panels is the same, both are 100MHz, and they are divided into 5 BWUs, then 10 bits are needed to complete the instructions.
  • the advantage of this method is that it can accurately indicate the channel state detection results of each antenna panel on each BWU. In addition, even if the BWU divisions of different antenna panels on the carrier are inconsistent, this method can also be used for accurate indication.
  • Fig. 3 is a flowchart showing a method for indicating channel status on an unlicensed spectrum according to another exemplary embodiment. This method can be applied to the terminal 120 of the network architecture shown in FIG. 1. The method may include the following steps:
  • the terminal detects the channel state indication information issued by each antenna panel of the base station according to the first cycle.
  • the channel state indication information is used to indicate the channel state of the k antenna panels of the base station on at least one BWU of the unlicensed spectrum.
  • k is a positive integer.
  • the terminal In the case that the terminal has not detected the channel state indication information issued by any antenna panel of the base station, the terminal periodically detects the channel state indication information issued by each antenna panel of the base station according to the first cycle.
  • the first period may be a mini-slot, such as including 1 symbol, 2 symbols, 3 symbols,..., 13 symbols, and so on.
  • step 302 after the terminal receives the channel state indication information sent by the first antenna panel of the base station, the terminal detects the PDCCH signaling issued by the first antenna panel according to the second cycle.
  • the terminal After receiving the channel state indication information issued by the first antenna panel, the terminal periodically detects the PDCCH signaling issued by the first antenna panel according to the second cycle.
  • the second period is greater than or equal to the first period. That is, after receiving the channel state indication information issued by the first antenna panel, the terminal monitors the PDCCH signaling sent on the first antenna panel in a larger period. This helps to save the power consumption of the terminal.
  • the PDCCH signaling includes: uplink and downlink resources of the first antenna panel scheduled by the base station to the terminal, and/or channel state detection results of other antenna panels of the base station except the first antenna panel.
  • the terminal After receiving the channel state indication information issued by the first antenna panel, the terminal continues to monitor the PDCCH signaling sent on the first antenna panel in order to obtain the above two aspects of information.
  • the base station can use the first antenna panel to indicate the channel state detection results of other antenna panels by means of crossing the antenna panels.
  • the channel state detection results of other antenna panels can also be expressed in several ways described above, which are not limited in the embodiment of the present disclosure.
  • the channel state detection results of other antenna panels may also include at least one of the following: the channel occupation time length of the BWU with the channel idle detected by the other antenna panel, and the channel occupation time period of the BWU with the channel idle detected by the other antenna panel Slot format, other antenna panels detect the channel idle BWU resource allocation within the channel occupation time.
  • the terminal is equivalent to detecting the PDCCH all the time, but the detection period of the two phases before and after can be different, for example, when the channel state indicator is received After the PDCCH of the information, increase the detection period, and continue to detect the PDCCH signaling on the antenna panel that has issued the channel state indication information.
  • a solution for a terminal to perform PDCCH monitoring is provided. After receiving the channel state indication information issued by a certain antenna panel, the terminal monitors the PDCCH signaling sent on the antenna panel in a larger period, which helps to save the power consumption of the terminal.
  • Fig. 4 is a block diagram showing a device for indicating channel status on an unlicensed spectrum according to an exemplary embodiment.
  • the device has the function of realizing the example of the method on the side of the base station, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the base station described above, or it can be set in the base station.
  • the apparatus 400 may include:
  • the information sending module 410 is configured to send channel state indication information through the first antenna panel, where the channel state indication information is used to indicate the channel state detection results of the k antenna panels of the base station on at least one BWU of the unlicensed spectrum ,
  • the k is a positive integer.
  • the k antenna panels include the first antenna panel.
  • the multiple antenna panels when it is detected that there are multiple antenna panels with idle channels, the multiple antenna panels respectively send corresponding channel state indication information;
  • the channel state indication information sent by the i-th antenna panel is used to indicate the channel state detection result of the i-th antenna panel on at least one BWU of the unlicensed spectrum, and the i is a positive integer.
  • the k antenna panels include at least one antenna panel of the base station, except for the first antenna panel, for which channel idle is detected.
  • the first antenna panel is an antenna panel that detects that a channel is idle.
  • the first antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs with the channel detected as being idle.
  • the first antenna panel is an antenna panel within a channel occupation time.
  • the first antenna panel is the antenna panel with the largest remaining channel occupancy time and/or the largest number of BWUs detected to be idle.
  • the channel state indication information includes a channel idle indication signal corresponding to each of the k antenna panels;
  • the channel idle indicator signal corresponding to the i-th antenna panel in the k antenna panels is used to indicate that the i-th antenna panel detects a BWU with an idle channel, and the i is a positive value less than or equal to the k Integer.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • the channel state indicator is used to indicate whether the channel state detection result is idle.
  • the channel idle indicator signal corresponding to the i-th antenna panel further includes at least one of the following: the channel occupancy duration of the BWU whose channel is detected to be idle by the i-th antenna panel, and the i-th antenna panel The time slot format of the BWU whose channel is detected to be idle during the channel occupation time, and the resource allocation of the BWU whose channel is detected to be idle by the i-th antenna panel during the channel occupation time.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • Channel idle indicator signals respectively sent on each BWU whose channel is detected to be idle on the i-th antenna panel;
  • the channel idle indicator signal sent on the j-th BWU whose channel is detected to be idle on the i-th antenna panel is used to indicate the channel state detection result of the i-th antenna panel on the j-th BWU Is idle, and the j is a positive integer.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • the i-th antenna panel detects N BWUs out of M BWUs with idle channels, where N is less than or equal to M, and both M and N are positive integers.
  • the k antenna panels share the same channel idle indicator signal; or, the channel idle indicator signals corresponding to the k antenna panels do not share the same channel idle indicator signal.
  • the base station transmits channel state indication information through the first antenna panel, and the channel state indication information is used to indicate that at least one antenna panel of the base station is on at least one BWU of the unlicensed spectrum. It provides a channel state indication scheme in a multi-antenna panel scenario, so that the terminal can learn the channel state detection results of different antenna panels of the base station on each BWU, which is helpful to realize the communication between the terminal and the base station. Reliable transmission.
  • Fig. 5 is a block diagram showing a device for indicating channel status on an unlicensed spectrum according to another exemplary embodiment.
  • the device has the function of realizing the above-mentioned method example on the terminal side, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device can be the terminal described above, or it can be set in the terminal.
  • the device 500 may include: a first detection module 510 and a second detection module 520.
  • the first detection module 510 is configured to detect the channel state indication information issued by each antenna panel of the base station according to the first cycle, and the channel state indication information is used to indicate that the k antenna panels of the base station are at least in the unlicensed spectrum.
  • the k is a positive integer.
  • the second detection module 520 is configured to, after receiving the channel state indication information sent by the first antenna panel of the base station, detect the PDCCH signaling issued by the first antenna panel according to the second cycle.
  • the second period is greater than or equal to the first period.
  • the PDCCH signaling includes: uplink and downlink resources of the first antenna panel scheduled by the base station to the terminal, and/or other antennas of the base station except the first antenna panel The channel status detection result of the panel.
  • a solution for a terminal to perform PDCCH monitoring is provided. After receiving the channel state indication information issued by a certain antenna panel, the terminal monitors the PDCCH signaling sent on the antenna panel in a larger period, which helps to save the power consumption of the terminal.
  • the device provided in the above embodiment realizes its functions, only the division of the above functional modules is used for illustration. In actual applications, the above functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure also provides a channel state indicating device on an unlicensed spectrum.
  • the device can be applied to the base station described above, and can realize the channel on the unlicensed spectrum on the side of the base station provided by the present disclosure.
  • the device may include a processor, and a memory for storing executable instructions of the processor. Among them, the processor is configured as:
  • the channel state indication information is sent through the first antenna panel, and the channel state indication information is used to indicate the channel state detection results of the k antenna panels of the base station on at least one BWU of the unlicensed spectrum, where k is a positive integer.
  • the k antenna panels include the first antenna panel.
  • the multiple antenna panels when it is detected that there are multiple antenna panels with idle channels, the multiple antenna panels respectively send corresponding channel state indication information;
  • the channel state indication information sent by the i-th antenna panel is used to indicate the channel state detection result of the i-th antenna panel on at least one BWU of the unlicensed spectrum, and the i is a positive integer.
  • the k antenna panels include at least one antenna panel of the base station, except for the first antenna panel, for which channel idle is detected.
  • the first antenna panel is an antenna panel that detects that a channel is idle.
  • the first antenna panel is the antenna panel with the largest remaining channel occupation time and/or the largest number of BWUs with the channel detected as being idle.
  • the first antenna panel is an antenna panel within a channel occupation time.
  • the first antenna panel is the antenna panel with the largest remaining channel occupancy time and/or the largest number of BWUs detected to be idle.
  • the channel state indication information includes a channel idle indication signal corresponding to each of the k antenna panels;
  • the channel idle indicator signal corresponding to the i-th antenna panel in the k antenna panels is used to indicate that the i-th antenna panel detects a BWU with an idle channel, and the i is a positive value less than or equal to the k Integer.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • the channel state indicator is used to indicate whether the channel state detection result is idle.
  • the channel idle indicator signal corresponding to the i-th antenna panel further includes at least one of the following: the channel occupancy duration of the BWU whose channel is detected to be idle by the i-th antenna panel, and the i-th antenna panel The time slot format of the BWU whose channel is detected to be idle during the channel occupation time, and the resource allocation of the BWU whose channel is detected to be idle by the i-th antenna panel during the channel occupation time.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • Channel idle indicator signals respectively sent on each BWU whose channel is detected to be idle on the i-th antenna panel;
  • the channel idle indicator signal sent on the j-th BWU whose channel is detected to be idle on the i-th antenna panel is used to indicate the channel state detection result of the i-th antenna panel on the j-th BWU Is idle, and the j is a positive integer.
  • the channel idle indicator signal corresponding to the i-th antenna panel includes:
  • the i-th antenna panel detects N BWUs out of M BWUs with idle channels, where N is less than or equal to M, and both M and N are positive integers.
  • the k antenna panels share the same channel idle indicator signal; or, the channel idle indicator signals corresponding to the k antenna panels do not share the same channel idle indicator signal.
  • An exemplary embodiment of the present disclosure also provides a device for indicating channel status on an unlicensed spectrum.
  • the device can be applied to the terminal described above, and can realize the channel on the unlicensed spectrum on the terminal side provided by the present disclosure.
  • the device may include a processor, and a memory for storing executable instructions of the processor. Among them, the processor is configured as:
  • the channel state indication information is used to indicate the channel state detection result of the k antenna panels of the base station on at least one BWU of the unlicensed spectrum,
  • the k is a positive integer
  • the physical downlink control channel PDCCH signaling sent by the first antenna panel is detected according to the second cycle.
  • the second period is greater than or equal to the first period.
  • the PDCCH signaling includes: uplink and downlink resources of the first antenna panel scheduled by the base station to the terminal, and/or other antennas of the base station except the first antenna panel The channel status detection result of the panel.
  • the base station and the terminal include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 6 is a schematic structural diagram showing a base station according to an exemplary embodiment.
  • the base station 600 includes a transmitter/receiver 601 and a processor 602.
  • the processor 602 may also be a controller, which is represented as "controller/processor 602" in FIG. 6.
  • the transmitter/receiver 601 is used to support the sending and receiving of information between the base station and the terminal in the foregoing embodiment, and to support communication between the base station and other network entities.
  • the processor 602 performs various functions for communicating with the terminal.
  • the uplink signal from the terminal is received via the antenna, demodulated by the receiver 601 (for example, demodulating the high-frequency signal into a baseband signal), and further processed by the processor 602 to restore the terminal Send to business data and signaling information.
  • service data and signaling messages are processed by the processor 602, and modulated by the transmitter 601 (for example, the baseband signal is modulated into a high-frequency signal) to generate a downlink signal, which is transmitted to the terminal via an antenna .
  • the processor 602 is further configured to execute each step on the base station side in the foregoing method embodiment, and/or other steps of the technical solution described in the embodiment of the present disclosure.
  • the base station 600 may further include a memory 603, and the memory 603 is used to store program codes and data of the base station 600.
  • the base station may also include a communication unit 604.
  • the communication unit 604 is used to support the base station to communicate with other network entities (for example, network equipment in the core network, etc.).
  • the communication unit 604 may be an NG-U interface for supporting communication between a base station and a UPF (User Plane Function) entity; or, the communication unit 604 may also be an NG-C The interface is used to support access to AMF (Access and Mobility Management Function) entities for communication.
  • AMF Access and Mobility Management Function
  • FIG. 6 only shows a simplified design of the base station 600.
  • the base station 600 may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all base stations that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • Fig. 7 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • the terminal 700 includes a transmitter 701, a receiver 702, and a processor 703.
  • the processor 703 may also be a controller, which is represented as "controller/processor 703" in FIG. 7.
  • the terminal 700 may further include a modem processor 705, where the modem processor 705 may include an encoder 706, a modulator 707, a decoder 708, and a demodulator 709.
  • the transmitter 701 adjusts (eg, analog conversion, filtering, amplification, and upconversion, etc.) the output samples and generates an uplink signal, which is transmitted to the base station via an antenna.
  • the antenna receives the downlink signal transmitted by the base station.
  • the receiver 702 adjusts (eg, filters, amplifies, down-converts, and digitizes, etc.) the signal received from the antenna and provides input samples.
  • the encoder 706 receives service data and signaling messages to be transmitted on the uplink, and processes the service data and signaling messages (for example, formatting, encoding, and interleaving).
  • the modulator 707 further processes (for example, symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 709 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 708 processes (e.g., deinterleaves and decodes) the symbol estimates and provides decoded data and signaling messages sent to the terminal 700.
  • the encoder 706, the modulator 707, the demodulator 709, and the decoder 708 can be implemented by a synthesized modem processor 705. These units are processed according to the radio access technology adopted by the radio access network (for example, 5G NR and access technologies of other evolved systems). It should be noted that when the terminal 700 does not include the modem processor 705, the foregoing functions of the modem processor 705 may also be performed by the processor 703.
  • the processor 703 controls and manages the actions of the terminal 700, and is used to execute the processing procedure performed by the terminal 700 in the foregoing embodiment of the present disclosure.
  • the processor 703 is further configured to execute each step on the terminal side in the foregoing method embodiment, and/or other steps of the technical solution described in the embodiment of the present disclosure.
  • the terminal 700 may further include a memory 704, and the memory 704 is configured to store program codes and data for the terminal 700.
  • FIG. 7 only shows a simplified design of the terminal 700.
  • the terminal 700 may include any number of transmitters, receivers, processors, modem processors, memories, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by the processor of the base station, the method for indicating the channel state on the unlicensed spectrum on the base station side is implemented .
  • the embodiment of the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by the processor of the terminal, the method for indicating the channel state on the unlicensed spectrum on the terminal side is implemented .

Abstract

本公开是关于一种非授权频谱上的信道状态指示方法、装置及存储介质,涉及通信技术领域。所述方法包括:基站通过第一天线面板发送信道状态指示信息,该信道状态指示信息用于指示基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,k为正整数。本公开实施例提供了一种多天线面板场景下的信道状态指示方案,使得终端能够获知基站的不同天线面板在各个BWU上的信道状态检测结果,有助于实现终端与基站之间的可靠传输。

Description

非授权频谱上的信道状态指示方法、装置及存储介质 技术领域
本公开实施例涉及通信技术领域,特别涉及一种非授权频谱上的信道状态指示方法、装置及存储介质。
背景技术
随着通信技术的发展,提出了非授权频谱的概念,基站和终端之间可以在非授权频谱上进行通信。
当基站需要使用非授权频谱上的某一频段与终端进行通信时,基站先执行LBT(listen before talk,先听后说)流程,检测该频段是否空闲;如果该频段空闲,则基站可以使用该频段与终端进行通信;如果该频段不空闲,如被其它设备占用,则基站就无法使用该频段与终端进行通信。
在5G NR(New Radio,新空口)系统中,为了提高空间分集增益,基站可以通过多个天线面板(panel)与终端进行通信,而多个天线面板的信道状态检测结果可能并不相同,在这种场景下,基站如何向终端提供信道状态指示,尚未有完善的解决方案。
发明内容
本公开实施例提供了一种非授权频谱上的信道状态指示方法、装置及存储介质。所述技术方案如下:
根据本公开实施例的第一方面,提供了一种非授权频谱上的信道状态指示方法,所述方法包括:
基站通过第一天线面板发送信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个BWU(Bandwidth Unit,带宽单元)上的信道状态检测结果,所述k为正整数。
可选地,所述k个天线面板包括所述第一天线面板。
可选地,当检测到信道空闲的天线面板的数量为多个时,所述多个天线面板分别发送各自对应的信道状态指示信息;
其中,第i个天线面板发送的信道状态指示信息,用于指示所述第i个天线面板在所述非授权频谱的至少一个BWU上的信道状态检测结果,所述i为正整数。
可选地,所述k个天线面板包括所述基站除所述第一天线面板之外的、检测到信道空闲的至少一个天线面板。
可选地,所述第一天线面板是检测到信道空闲的天线面板。
可选地,当检测到信道空闲的天线面板有多个时,所述第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述第一天线面板是处于信道占用时间内的天线面板。
可选地,当处于信道占用时间内的天线面板有多个时,所述第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述信道状态指示信息包括所述k个天线面板中的每个天线面板对应的信道空闲指示信号;
其中,所述k个天线面板中的第i个天线面板对应的信道空闲指示信号,用于指示所述第i个天线面板检测到信道空闲的BWU,所述i为小于等于所述k的正整数。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
所述第i个天线面板检测的各个BWU各自对应的信道状态指示标识;
其中,所述信道状态指示标识用于指示信道状态检测结果是否为空闲。
可选地,所述第i个天线面板对应的信道空闲指示信号,还包括以下至少一项:所述第i个天线面板检测到信道空闲的BWU的信道占用时长、所述第i个天线面板检测到信道空闲的BWU在信道占用时间内的时隙格式、所述第i个天线面板检测到信道空闲的BWU在信道占用时间内的资源分配。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
在所述第i个天线面板检测到信道空闲的各个BWU上分别发送的信道空闲指示信号;
其中,在所述第i个天线面板检测到信道空闲的第j个BWU上发送的信道空闲指示信号,用于指示所述第i个天线面板在所述第j个BWU上的信道状态检测结果为空闲,所述j为正整数。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
所述第i个天线面板对应的BWP(Bandwidth Part,带宽部分)切换指示信 息,所述BWP切换指示信息用于指示终端与所述基站的第i个天线面板进行通信时所要切换至的目标BWP,所述目标BWP包括所述第i个天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。
可选地,所述k个天线面板共用同一信道空闲指示信号;或者,所述k个天线面板对应的信道空闲指示信号不共用。
根据本公开实施例的第二方面,提供了一种非授权频谱上的信道状态指示方法,所述方法包括:
终端按照第一周期检测基站的各个天线面板下发的信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,所述k为正整数;
所述终端在接收到所述基站的第一天线面板发送的所述信道状态指示信息之后,所述终端按照第二周期检测所述第一天线面板下发的PDCCH(Physical Downlink Control Channel,物理下行控制信道)信令。
可选地,所述第二周期大于或等于所述第一周期。
可选地,所述PDCCH信令包括:所述基站调度给所述终端的所述第一天线面板的上下行资源,和/或,所述基站除所述第一天线面板之外的其它天线面板的信道状态检测结果。
根据本公开实施例的第三方面,提供了一种非授权频谱上的信道状态指示装置,应用于基站中,所述装置包括:
信息发送模块,被配置为通过第一天线面板发送信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,所述k为正整数。
可选地,所述k个天线面板包括所述第一天线面板。
可选地,当检测到信道空闲的天线面板的数量为多个时,所述多个天线面板分别发送各自对应的信道状态指示信息;
其中,第i个天线面板发送的信道状态指示信息,用于指示所述第i个天线面板在所述非授权频谱的至少一个BWU上的信道状态检测结果,所述i为正整数。
可选地,所述k个天线面板包括所述基站除所述第一天线面板之外的、检测到信道空闲的至少一个天线面板。
可选地,所述第一天线面板是检测到信道空闲的天线面板。
可选地,当检测到信道空闲的天线面板有多个时,所述第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述第一天线面板是处于信道占用时间内的天线面板。
可选地,当处于信道占用时间内的天线面板有多个时,所述第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述信道状态指示信息包括所述k个天线面板中的每个天线面板对应的信道空闲指示信号;
其中,所述k个天线面板中的第i个天线面板对应的信道空闲指示信号,用于指示所述第i个天线面板检测到信道空闲的BWU,所述i为小于等于所述k的正整数。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
所述第i个天线面板检测的各个BWU各自对应的信道状态指示标识;
其中,所述信道状态指示标识用于指示信道状态检测结果是否为空闲。
可选地,所述第i个天线面板对应的信道空闲指示信号,还包括以下至少一项:所述第i个天线面板检测到信道空闲的BWU的信道占用时长、所述第i个天线面板检测到信道空闲的BWU在信道占用时间内的时隙格式、所述第i个天线面板检测到信道空闲的BWU在信道占用时间内的资源分配。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
在所述第i个天线面板检测到信道空闲的各个BWU上分别发送的信道空闲指示信号;
其中,在所述第i个天线面板检测到信道空闲的第j个BWU上发送的信道空闲指示信号,用于指示所述第i个天线面板在所述第j个BWU上的信道状态检测结果为空闲,所述j为正整数。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
所述第i个天线面板对应的BWP切换指示信息,所述BWP切换指示信息用于指示终端与所述基站的第i个天线面板进行通信时所要切换至的目标BWP,所述目标BWP包括所述第i个天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。
可选地,所述k个天线面板共用同一信道空闲指示信号;或者,所述k个天线面板对应的信道空闲指示信号不共用。
根据本公开实施例的第四方面,提供了一种非授权频谱上的信道状态指示 装置,应用于终端中,所述装置包括:
第一检测模块,被配置为按照第一周期检测基站的各个天线面板下发的信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,所述k为正整数;
第二检测模块,被配置为在接收到所述基站的第一天线面板发送的所述信道状态指示信息之后,按照第二周期检测所述第一天线面板下发的PDCCH信令。
可选地,所述第二周期大于或等于所述第一周期。
可选地,所述PDCCH信令包括:所述基站调度给所述终端的所述第一天线面板的上下行资源,和/或,所述基站除所述第一天线面板之外的其它天线面板的信道状态检测结果。
根据本公开实施例的第五方面,提供了一种非授权频谱上的信道状态指示装置,应用于基站中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
通过第一天线面板发送信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,所述k为正整数。
根据本公开实施例的第六方面,提供了一种非授权频谱上的信道状态指示装置,应用于终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
按照第一周期检测基站的各个天线面板下发的信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,所述k为正整数;
在接收到所述基站的第一天线面板发送的所述信道状态指示信息之后,按照第二周期检测所述第一天线面板下发的物理下行控制信道PDCCH信令。
根据本公开实施例的第七方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述 方法的步骤。
根据本公开实施例的第八方面,提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第二方面所述方法的步骤。
本公开实施例提供的技术方案中,基站通过第一天线面板发送信道状态指示信息,该信道状态指示信息用于指示基站的至少一个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果;从而提供了一种多天线面板场景下的信道状态指示方案,使得终端能够获知基站的不同天线面板在各个BWU上的信道状态检测结果,有助于实现终端与基站之间的可靠传输。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种网络架构的示意图;
图2是根据一示例性实施例示出的一种非授权频谱上的信道状态指示方法的流程图;
图3是根据另一示例性实施例示出的一种非授权频谱上的信道状态指示方法的流程图;
图4是根据一示例性实施例示出的一种非授权频谱上的信道状态指示装置的框图;
图5是根据另一示例性实施例示出的一种非授权频谱上的信道状态指示装置的框图;
图6是根据一示例性实施例示出的一种基站的结构示意图;
图7是根据一示例性实施例示出的一种终端的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一 致的装置和方法的例子。
本公开实施例描述的网络架构以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图1是根据一示例性实施例示出的一种网络架构的示意图。该网络架构可以包括:基站110和终端120。
基站110部署在接入网中。5G NR系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。基站110与终端120之间通过某种空口技术互相通信,例如可以通过蜂窝技术相互通信。
基站110是一种部署在接入网中用以为终端120提供无线通信功能的装置。基站110可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“基站”这一名称可能会变化。为方便描述,本公开实施例中,上述为终端120提供无线通信功能的装置统称为基站。基站110也可以是一个车载设备,适用于车联网中车车之间通信的场景。当车车通信时,本公开中的信道或信令都为适用于侧链路(sidelink)的信道或信令。
终端120的数量通常为多个,每一个基站110所管理的小区内可以分布一个或多个终端120。终端120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile Station,MS),终端设备(terminal device)等等。为方便描述,本公开实施例中,上面提到的设备统称为终端。终端120也可以是一个车载设备,适用于车联网中车车之间通信的场景。当车车通信时,本公开中的信道或信令都为适用于侧链路的信道或信令。
本公开实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本公开实施例描述的技术方案可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统以及5G NR车联网系统。
图2是根据一示例性实施例示出的一种非授权频谱上的信道状态指示方法 的流程图。该方法可应用于图1所示的网络架构的基站110中。该方法可以包括如下步骤:
在步骤201中,基站通过第一天线面板发送信道状态指示信息,该信道状态指示信息用于指示基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,k为正整数。
在5G NR系统中,为了提高空间分集增益,基站和终端可以各自拥有多个(即两个或两个以上)天线面板。以基站拥有多个天线面板为例,基站的多个天线面板可以属于同一个TRP(Transmitter Receiver Point,传输接收点),也可以属于多个不同的TRP。也即,每个TRP可以包括一个天线面板,也可以包括多个天线面板。基站可以通过多个天线面板与终端进行通信,如向终端发送信息或接收终端发送的信息。
BWU是指LBT信道检测的带宽单元。在非授权频谱中,每个载波可以包含多个BWU,每个BWP也可以包含多个BWU。可选地,每个BWU可以具有各自编号,且对应于信道上不同的位置。
例如,载波上带宽可以为100MHz,每个BWU为20MHz,载波可以包括5个BWU。又例如,载波上带宽可以为400MHz,每个BWU为20MHz,载波可以包括20个BWU。
需要说明的是,每个载波表示一个服务小区。一个基站可以为终端提供多个服务小区,每个小区内可以用多个天线面板与该小区中的终端进行通信。
另外,对于任意一个天线面板来说,该天线面板在某个BWU上的信道状态检测结果,用于指示该天线面板检测到该BWU是否空闲。不同的天线面板,在同一个BWU上的信道状态检测结果可能相同,也可能不同。
在一种可能的实施方式中,第一天线面板是处于信道占用时间内的天线面板。也即,基站可以通过处于信道占用时间内的天线面板,向终端发送信道状态指示信息。其中,处于信道占用时间内的天线面板,是指正在与终端进行通信的天线面板,即第一天线面板在此之前已经检测到信道空闲而获得了信道占用时间,且信道占用时间还未结束。例如,基站从处于信道占用时间内的天线面板中,选择一个天线面板作为第一天线面板,向终端发送信道状态指示信息。
在另一种可能的实施方式中,第一天线面板是检测到信道空闲的天线面板,即第一天线面板是刚检测到信道空闲的天线面板,基站还未使用该天线面板向终端发送任何信息。也即,在接下来的信道占用时间内,基站可以通过检测到 信道空闲的天线面板,向终端发送信道状态指示信息。例如,基站从检测到信道空闲的天线面板中,选择一个天线面板作为第一天线面板,向终端发送信道状态指示信息。另外,如果第一天线面板是检测到信道空闲的天线面板,则第一天线面板可以在一个或多个检测空闲的BWU上发送信道状态指示信息。
在一个示例中,上述k个天线面板包括第一天线面板。也即,第一天线面板发送的信道状态指示信息,用于指示其自身在非授权频谱的至少一个BWU上的信道状态检测结果。
在另一个示例中,上述k个天线面板包括基站除第一天线面板之外的、检测到信道空闲的至少一个天线面板。也即,第一天线面板发送的信道状态指示信息,用于指示其它天线面板在非授权频谱的至少一个BWU上的信道状态检测结果。在这种情况下,实现了跨天线面板的信道状态指示。
在又一个示例中,上述k个天线面板包括第一天线面板,以及除该第一天线面板之外的、检测到信道空闲的至少一个天线面板。也即,第一天线面板发送的信道状态指示信息,除了用于指示其自身在非授权频谱的至少一个BWU上的信道状态检测结果之外,还用于指示其它天线面板在非授权频谱的至少一个BWU上的信道状态检测结果。在这种情况下,也实现了跨天线面板的信道状态指示。
可选地,当检测到信道空闲的天线面板的数量为多个时,该多个天线面板分别发送各自对应的信道状态指示信息;其中,第i个天线面板发送的信道状态指示信息,用于指示该第i个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,i为正整数。也即,对于检测到信道空闲的多个天线面板,每个天线面板分别发送用于指示自身的信道状态检测结果的信道状态指示信息。
在示例性实施例中,信道状态指示信息可以是基站发送的以下信号中的一种或多种的组合:唤醒信号(wake up signal),比如某种冲击电流;SSB(Synchronization Signal Block,同步信号块),如PSS(Primary Synchronized Signal,主同步信号)、SSS(Secondary Synchronized Signal,辅同步信号)、PBCH(Physical Broadcast Channel,物理广播信道)等;DRS(Discovery signal,发现信号);Wi-Fi(Wireless Fidelity,无线保真)的前导码(Preamble);PDCCH,如DCI(Downlink Control Information,下行控制信息)信令;DMRS(Demodulation Reference Signal,解调参考信号);或者其它信号。
综上所述,本公开实施例提供的技术方案中,基站通过第一天线面板发送 信道状态指示信息,该信道状态指示信息用于指示基站的至少一个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果;从而提供了一种多天线面板场景下的信道状态指示方案,使得终端能够获知基站的不同天线面板在各个BWU上的信道状态检测结果,有助于实现终端与基站之间的可靠传输。
另外,当第一天线面板发送的信道状态指示信息,还用于指示其它天线面板在非授权频谱的至少一个BWU上的信道状态检测结果时,实现了跨天线面板指示信道状态,提高了信道状态指示的灵活性。
在上文实施例已经介绍,第一天线面板可以有两种情况:1、第一天线面板是处于信道占用时间内的天线面板;2、第一天线面板是刚检测到信道空闲的天线面板。
对于上述第1种情况,当处于信道占用时间内的天线面板有多个时,第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
在一个示例中,第一天线面板是剩余信道占用时长最大的天线面板。
基站在进行LBT时,需要选取一套信道检测参数,其中包括信道占用时长、竞争窗口大小、信道接收优先级别等等。根据该信道占用时长,以及已经占用信道时长,即可确定剩余信道占用时长。
例如,当处于信道占用时间内的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1的剩余信道占用时长为1ms,panel#2的剩余信道占用时长为3ms,panel#3的剩余信道占用时长为2ms,则可以选择剩余信道占用时长最大的天线面板,即panel#2作为第一天线面板。
在另一个示例中,第一天线面板是刚检测到信道空闲的BWU最多的天线面板。
对于多个天线面板,若某个天线面板上检测到信道空闲的BWU的数量较多,则表示该天线面板周围信道条件较好,因此可以选择该天线面板来发送信息,如本公开实施例中的信道状态指示信息。
例如,当处于信道占用时间内的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1检测到信道空闲的BWU为5个,panel#2检测到信道空闲的BWU为2个,panel#3检测到信道空闲的BWU为1个,则可以选择检测到信道空闲的BWU最多的天线面板,即panel#1作为第一天线面板。
在又一个示例中,第一天线面板是剩余信道占用时长最大且检测到信道空闲的BWU最多的天线面板。
例如,当处于信道占用时间内的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1的剩余信道占用时长为3ms,panel#2的剩余信道占用时长为3ms,panel#3的剩余信道占用时长为1ms;但是panel#1检测到信道空闲的BWU为5个,panel#2检测到信道空闲的BWU为2个,panel#3检测到信道空闲的BWU为1个,则可以选择剩余信道占用时长最大且检测到信道空闲的BWU最多的天线面板,即panel#1作为第一天线面板。
在其它可能的实施方式中,当处于信道占用时间内的天线面板有多个时,基站先从该多个天线面板中选择剩余信道占用时长最大的天线面板;如果剩余信道占用时长最大的天线面板的数量为1,则直接将这一个天线面板确定为第一天线面板;如果剩余信道占用时长最大的天线面板的数量大于1,则进一步从这些剩余信道占用时长最大的天线面板中,选择检测到信道空闲的BWU最多的天线面板,作为第一天线面板。如果这些剩余信道占用时长最大的天线面板中,检测到信道空闲的BWU最多的天线面板的数量仍然有多个,则可以从这些检测到信道空闲的BWU最多的天线面板中,选择任意一个天线面板作为第一天线面板,或者还可以依据其它选取规则选择一个天线面板作为第一天线面板,如选择负载最轻的一个天线面板作为第一天线面板,等等,本公开实施例对此不作限定。
或者,当处于信道占用时间内的天线面板有多个时,基站先从该多个天线面板中选择检测到信道空闲的BWU最多的天线面板;如果检测到信道空闲的BWU最多的天线面板的数量为1,则直接将这一个天线面板确定为第一天线面板;如果检测到信道空闲的BWU最多的天线面板的数量大于1,则进一步从这些检测到信道空闲的BWU最多的天线面板中,选择剩余信道占用时长最大的天线面板,作为第一天线面板。如果这些检测到信道空闲的BWU最多的天线面板中,剩余信道占用时长最大的天线面板的数量仍然有多个,则可以从这些剩余信道占用时长最大的天线面板中,选择任意一个天线面板作为第一天线面板,或者还可以依据其它选取规则选择一个天线面板作为第一天线面板,如选择负载最轻的一个天线面板作为第一天线面板,等等,本公开实施例对此不作限定。
对于上述第2种情况,当检测到信道空闲的天线面板有多个时,第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
在一个示例中,第一天线面板是剩余信道占用时长最大的天线面板。
检测到信道空闲的多个天线面板,由于选择的信道检测机制和/或信道检测参数不同,从而获得的信道占用时长可以不同,有的天线面板获得的信道占用时长较大,而有的天线面板获得的信道占用时长较小;进一步,多个天线面板的剩余信道占用时长也可以不同。
例如,当检测到信道空闲的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1的剩余信道占用时长为1ms,panel 2的剩余信道占用时长为3ms,panel#3的剩余信道占用时长为2ms,则可以选择剩余信道占用时长最大的天线面板,即panel#2作为第一天线面板。
在另一个示例中,第一天线面板是检测到信道空闲的BWU最多的天线面板。
例如,当检测到信道空闲的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1检测到信道空闲的BWU为5个,panel#2检测到信道空闲的BWU为2个,panel#3检测到信道空闲的BWU为1个,则可以选择检测到信道空闲的BWU最多的天线面板,即panel#1作为第一天线面板。
在又一个示例中,第一天线面板是剩余信道占用时长最大且检测到信道空闲的BWU最多的天线面板。
例如,当检测到信道空闲的天线面板有3个,如panel#1、panel#2和panel#3。其中,panel#1的剩余信道占用时长为3ms,panel#2的剩余信道占用时长为3ms,panel#3的剩余信道占用时长为1ms;但是panel#1检测到信道空闲的BWU为5个,panel#2检测到信道空闲的BWU为2个,panel#3检测到信道空闲的BWU为1个,则可以选择剩余信道占用时长最大且检测到信道空闲的BWU最多的天线面板,即panel#1作为第一天线面板。
在其它可能的实施方式中,当检测到信道空闲的天线面板有多个时,基站先从该多个天线面板中选择剩余信道占用时长最大的天线面板;如果剩余信道占用时长最大的天线面板的数量为1,则直接将这一个天线面板确定为第一天线面板;如果剩余信道占用时长最大的天线面板的数量大于1,则进一步从这些剩余信道占用时长最大的天线面板中,选择检测到信道空闲的BWU最多的天线面板,作为第一天线面板。如果这些剩余信道占用时长最大的天线面板中,检测到信道空闲的BWU最多的天线面板的数量仍然有多个,则可以从这些检测到信道空闲的BWU最多的天线面板中,选择任意一个天线面板作为第一天线面板, 或者还可以依据其它选取规则选择一个天线面板作为第一天线面板,如选择负载最轻的一个天线面板作为第一天线面板,等等,本公开实施例对此不作限定。
或者,当检测到信道空闲的天线面板有多个时,基站先从该多个天线面板中选择检测到信道空闲的BWU最多的天线面板;如果检测到信道空闲的BWU最多的天线面板的数量为1,则直接将这一个天线面板确定为第一天线面板;如果检测到信道空闲的BWU最多的天线面板的数量大于1,则进一步从这些检测到信道空闲的BWU最多的天线面板中,选择剩余信道占用时长最大的天线面板,作为第一天线面板。如果这些检测到信道空闲的BWU最多的天线面板中,剩余信道占用时长最大的天线面板的数量仍然有多个,则可以从这些剩余信道占用时长最大的天线面板中,选择任意一个天线面板作为第一天线面板,或者还可以依据其它选取规则选择一个天线面板作为第一天线面板,如选择负载最轻的一个天线面板作为第一天线面板,等等,本公开实施例对此不作限定。
可选地,对于上述第1种情况,当处于信道占用时间内的天线面板有多个时,优先选择剩余信道占用时长最大的天线面板作为第一天线面板;对于上述第2种情况,当检测到信道空闲的天线面板有多个时,优先选择检测到信道空闲的BWU最多的天线面板作为第一天线面板。
综上所述,在选择向终端发送信道状态指示信息的第一天线面板时,本公开实施例提供了第一天线面板的多种选择方式,提高了第一天线面板选择的灵活性。
在示例性实施例中,上述图1实施例中介绍的信道状态指示信息,包括k个天线面板中的每个天线面板对应的信道空闲指示信号。其中,k个天线面板中的第i个天线面板对应的信道空闲指示信号,用于指示该第i个天线面板检测到信道空闲的BWU,i为小于等于k的正整数。也即,第i个天线面板对应的信道空闲指示信号,用于告知终端该第i个天线面板检测到哪个或哪些BWU的信道空闲。
在第一种可能的实施方式中,第i个天线面板对应的信道空闲指示信号,包括:该第i个天线面板检测的各个BWU各自对应的信道状态指示标识;其中,信道状态指示标识用于指示信道状态检测结果是否为空闲。可选地,信道状态指示标识采用1个bit(比特)表示,如“0”表示繁忙且“1”表示空闲,或者“1”表示繁忙且“0”表示空闲。另外,第i个天线面板检测的各个BWU可以 属于同一载波,也可以属于多个不同载波,本公开实施例对此不作限定。比如,针对某个载波,其带宽为100MHz,分为5个BWU,每个BWU由连续的20MHz组成,则该5个BWU对应的信道空闲指示信号可以用5个bit表示。示例性地,第i个天线面板共检测了10个BWU的信道状态,则该第i个天线面板对应的信道空闲指示信号可以用10个bit表示,每个bit用于指示一个BWU对应的信道状态检测结果是否为空闲。
可选地,第i个天线面板对应的信道空闲指示信号,还包括以下至少一项:第i个天线面板检测到信道空闲的BWU的信道占用时长、第i个天线面板检测到信道空闲的BWU在信道占用时间内的时隙格式、第i个天线面板检测到信道空闲的BWU在信道占用时间内的资源分配。其中,时隙格式用于指示各个时隙的各个符号为用于下行(D)、上行(U)还是待确定(X)。资源分配可以是用于PUCCH(Physical Uplink Control Channel,物理上行控制信道)、PRACH(Physical Random Access Channel,物理随机接入信道)、PDSCH(Physical Downlink Shared Channel,物理下行共享信道)、PUSCH(Physical Uplink Shared Channel,物理上行共享信道)及其它信道中的至少一个信道的资源分配。
另外,如果第一天线面板发送的信道空闲指示信号,用于指示其自身检测到信道空闲的BWU,则第一天线面板可以在其中一个或多个空闲的BWU上发送信道空闲指示信号。第一天线面板在某个空闲的BWU上发送的信道空闲指示信号,不仅指示了该空闲的BWU的信道状态,还指示了其它BWU的信道状态。另外,假设第一天线面板检测到信道空闲的BWU的数量为a个(a为正整数),则第一天线面板可以在这a个BWU中的其中一个BWU上发送信道空闲指示信号,也可以在这a个BWU中的其中多个BWU上发送信道空闲指示信号,例如可以在这a个BWU上分别发送同样的信道空闲指示信号。这样,终端读取其中一个BWU上的信道空闲指示信号之后,即获得了第一天线面板进行信道检测的所有BWU的信道状态。
在第二种可能的实施方式中,第i个天线面板对应的信道空闲指示信号,包括:在第i个天线面板检测到信道空闲的各个BWU上分别发送的信道空闲指示信号。其中,在第i个天线面板检测到信道空闲的第j个BWU上发送的信道空闲指示信号,用于指示该第i个天线面板在第j个BWU上的信道状态检测结果为空闲,j为正整数。
在这种情况下,一个BWU上的信道空闲指示信号,仅指示了其自身的信道 状态为空闲,不去指示其它BWU的信道状态。例如,某个BWU上的信道空闲指示信号,包括该BWU的信道占用时长和该BWU在信道占用时间内的时隙格式,通过这种方式隐式地指示该BWU的信道状态为空闲。这样,终端读取到一个BWU上的信道空闲指示信号之后,能够获知该BWU的信道状态为空闲,终端还需要去监听其它BWU上是否有信道空闲指示信号,以获得其它BWU的信道状态。或者某个BWU上的信道空闲指示信号为wake up signal,SSB等。
在第三种可能的实施方式中,第i个天线面板对应的信道空闲指示信号,包括:第i个天线面板对应的BWP切换指示信息,该BWP切换指示信息用于指示终端与基站的第i个天线面板进行通信时所要切换至的目标BWP。其中,目标BWP包括第i个天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。
可选地,上述目标BWP中包含的BWU可以全都是检测到信道空闲的BWU;也可以是指基站给终端配置的所有BWP中,包含最多个信道空闲的BWU,且包含最少个信道繁忙的BWU的BWP。通过将BWP切换到包含最多个信道空闲的BWU,且包含最少个信道繁忙的BWU的BWP上,从而尽可能地减少了终端的PDCCH监测带宽,且同时提高空闲BWU的使用率。
可选地,上述BWP切换指示信息包括目标BWP的标识,该目标BWP的标识用于唯一标识该目标BWP,不同的BWP具有不同的标识,BWP的标识可以记为BWP ID。当基站给终端配置BWP时,同时也配置了BWP ID。
在这种情况下,如果终端接收到第i个天线面板对应的BWP切换指示信息,则终端认为该目标BWP包括的各个BWU的信道状态均是空闲的,即使事实上可能该目标BWP包括的个别BWU的信道状态是繁忙的,但基站不调度该繁忙的BWU上的RB(Resource Block,资源块)给终端即可。这里,目标BWP可能包括信道状态繁忙的BWU的原因,主要是信道状态空闲的BWU可能并不连续,无法构成一个BWP,因此需要通过该信道状态繁忙的BWU将上述信道状态空闲的BWU连接起来,形成一个BWP。
可选地,终端在接收到第i个天线面板对应的BWP切换指示信息之后,切换至目标BWP与该第i个天线面板进行通信。
上文实施例介绍了信道空闲指示信号的三种可能实现方式。第一天线面板发送的信道状态指示信息,可以包括k个天线面板中的每个天线面板对应的信道空闲指示信号,当k大于1时,该k个天线面板可以共用同一信道空闲指示 信号,或者该k个天线面板对应的信道空闲指示信号不共用。
在本公开实施例中,基站能够跨天线面板地进行信道状态指示,使得发送信道状态指示信息的天线面板可以灵活切换。例如,基站具有两个天线面板,记为panel#1和panel#2,假设每个天线面板每次所获得的信道占用时长是相同的,且panel#1提前检测到了信道空闲,在panel#1处于信道占用时间内时,如果panel#2检测到信道空闲,则基站可以通过该panel#1发送panel#2对应的信道状态检测结果,因为在panel#1获得的信道占用时间开始时,终端就一直在检测panel#1的PDCCH,所以直接使用panel#1发送PDCCH来指示panel#2的信道状态检测结果,与使用panel#2来发送panel#2的信道状态检测结果相比较,终端只需要检测panel#1发送的PDCCH即可,不需要同时检测panel#1和panel#2发送的PDCCH,从而可以减少终端功耗。由于panel#2比panel#1晚占用信道,当panel#1的信道占用时间结束时,panel#2的信道占用时间还未结束,基站开始使用panel#2给终端发送PDCCH。panel#1在信道占用时间结束之后,可以再次检测信道是否空闲,当panel#1再次检测到信道空闲时,如果panel#2的信道占用时间还未结束,基站可以通过panel#2发送panel#1对应的信道状态检测结果,如此循环。由此,终端可以一直检测其中一个正处在信道占用时间内的天线面板,来获得其它天线面板的信道状态检测结果。
另外,当基站存在多个天线面板检测到信道空闲时,该多个天线面板向终端发送PDCCH,可以采用multi-PDCCH方式或者single-PDCCH方式。其中,multi-PDCCH方式是指多个天线面板各自独立给终端发送PDCCH,single-PDCCH方式是指通过一个天线面板向终端发送PDCCH,通过这一个天线面板发送的PDCCH来同时发送其它天线面板的相关信息。
如果基站的多个天线面板之间通信不是理想的回程线路(backhaul),则多个天线面板之间的交互通信会有较大的时延。在这种情况下,多个天线面板倾向于各自独立给终端发送PDCCH,以独立进行PDSCH的调度。也即基站采用multi-PDCCH方式向终端发送PDCCH。如果基站的多个天线面板之间通信是理想的回程线路,则多个天线面板之间的交互通信基本没有时延。在这种情况下,基站倾向于使用一个天线面板来向终端发送PDCCH,通过这一个天线面板发送的PDCCH来同时调度多个天线面板发送下行数据。也即基站采用single-PDCCH方式向终端发送PDCCH。
如果是single-PDCCH方式,基站可以从检测到信道空闲的多个天线面板中确定出一个主天线面板,然后指示终端后续只接收该主天线面板发送的PDCCH。其中,主天线面板可以是剩余信道占用时长最大的天线面板,且该主天线面板能够发送PDCCH。或者,基站和终端有一个共同默认的时刻,从该时刻开始,终端只监听主天线面板发送的PDCCH,主天线面板的设置也使用默认的方法,不需要基站再显示指示。
另外,不论是采用multi-PDCCH方式还是采用single-PDCCH方式发送PDCCH,基站发送的PDCCH可以是group-common PDCCH(群公共PDCCH),比如包含各个BWU的信道状态和时隙格式的PDCCH。并且,该group-common PDCCH在信道占用时间内周期性地发送,比如每隔若干个时隙发送一次。可选地,基站发送的PDCCH还可以包含用于资源调度的终端专用的PDCCH资源。
另外,如果基站采用single-PDCCH方式向终端发送PDCCH,且该PDCCH包含多个天线面板分别对应的信道空闲指示信号时,该多个天线面板可以共用同一信道空闲指示信号,或者该多个天线面板对应的信道空闲指示信号不共用。
如果该多个天线面板共用同一信道空闲指示信号,则每个BWU对应一个信道状态指示标识。例如,在每个BWU上,只要有至少一个天线面板检测到信道空闲,则该BWU对应的信道状态指示标识即指示信道空闲;只有当所有的天线面板在该BWU上均检测到信道繁忙时,该BWU对应的信道状态指示标识才指示信道繁忙。又例如,在每个BWU上,只要有至少一个天线面板检测到信道繁忙,则该BWU对应的信道状态指示标识即指示信道繁忙;只有当所有的天线面板在该BWU上均检测到信道空闲时,该BWU对应的信道状态指示标识才指示信道空闲。比如,基站有2个天线面板,这两个天线面板的载波频段相同,均为100MHz,且划分为5个BWU,则通过5个bit即可完成指示。这种方式可以节省信道空闲指示信号的信令开销,但前提是各个天线面板在载波上的BWU划分是一致的,即每个BWU占用的频域位置和带宽一样。
如果该多个天线面板对应的信道空闲指示信号不共用,则每个天线面板的每个BWU分别对应一个信道状态指示标识。比如,基站有2个天线面板,这两个天线面板的载波频段相同,均为100MHz,且划分为5个BWU,则需要通过10个bit去完成指示。这种方式的好处是可以准确指示每个天线面板在每个BWU上的信道状态检测结果,另外即便不同的天线面板在载波上的BWU划分不一致,采用这种方式也能够进行准确指示。
图3是根据另一示例性实施例示出的一种非授权频谱上的信道状态指示方法的流程图。该方法可应用于图1所示的网络架构的终端120中。该方法可以包括如下步骤:
在步骤301中,终端按照第一周期检测基站的各个天线面板下发的信道状态指示信息,该信道状态指示信息用于指示基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,k为正整数。
在终端还没有检测到基站的任意一个天线面板下发的信道状态指示信息的情况下,终端按照第一周期,周期性地检测基站的各个天线面板下发的信道状态指示信息。其中,第一周期可以是小时隙(mini-slot),如包括1个符号(symbol)、2个符号、3个符号、…、13个符号,等等。
另外,有关信道状态指示信息的介绍说明可参见上文实施例,本实施例对此不再赘述。
在步骤302中,终端在接收到基站的第一天线面板发送的信道状态指示信息之后,终端按照第二周期检测第一天线面板下发的PDCCH信令。
终端在接收到第一天线面板下发的信道状态指示信息之后,按照第二周期,周期性地检测该第一天线面板下发的PDCCH信令。可选地,第二周期大于或等于第一周期。也即,终端在接收到第一天线面板下发的信道状态指示信息之后,以较大的周期来监听该第一天线面板上发送的PDCCH信令。这样有助于节省终端的功耗。
可选地,PDCCH信令包括:基站调度给终端的第一天线面板的上下行资源,和/或,基站除第一天线面板之外的其它天线面板的信道状态检测结果。终端在接收到第一天线面板下发的信道状态指示信息之后,继续监听该第一天线面板上发送的PDCCH信令,是为了获得上述两方面信息。基站可以使用该第一天线面板,采用跨天线面板的方式,指示其它天线面板的信道状态检测结果。其它天线面板的信道状态检测结果,同样可以采用上文介绍的几种方式来表示,本公开实施例对此不作限定。类似地,其它天线面板的信道状态检测结果,也可以包括以下至少一项:其它天线面板检测到信道空闲的BWU的信道占用时长、其它天线面板检测到信道空闲的BWU在信道占用时间内的时隙格式、其它天线面板检测到信道空闲的BWU在信道占用时间内的资源分配。
需要说明的是,当信道状态指示信息为PDCCH和/或PDCCH的DMRS序 列时,终端相当于是一直在检测PDCCH,只是前后两个阶段检测的周期可以不同,例如在接收到用于指示信道状态指示信息的PDCCH之后,增大检测周期,继续检测该下发了信道状态指示信息的天线面板上的PDCCH信令。
综上所述,本公开实施例提供的技术方案中,针对基站具有多天线面板的场景,提供了一种终端进行PDCCH监听的方案。终端在接收到某一天线面板下发的信道状态指示信息之后,以较大的周期来监听该天线面板上发送的PDCCH信令,这样有助于节省终端的功耗。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图4是根据一示例性实施例示出的一种非授权频谱上的信道状态指示装置的框图。该装置具有实现上述基站一侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的基站,也可以设置在基站中。如图4所示,该装置400可以包括:
信息发送模块410,被配置为通过第一天线面板发送信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,所述k为正整数。
可选地,所述k个天线面板包括所述第一天线面板。
可选地,当检测到信道空闲的天线面板的数量为多个时,所述多个天线面板分别发送各自对应的信道状态指示信息;
其中,第i个天线面板发送的信道状态指示信息,用于指示所述第i个天线面板在所述非授权频谱的至少一个BWU上的信道状态检测结果,所述i为正整数。
可选地,所述k个天线面板包括所述基站除所述第一天线面板之外的、检测到信道空闲的至少一个天线面板。
可选地,所述第一天线面板是检测到信道空闲的天线面板。
可选地,当检测到信道空闲的天线面板有多个时,所述第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述第一天线面板是处于信道占用时间内的天线面板。
可选地,当处于信道占用时间内的天线面板有多个时,所述第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述信道状态指示信息包括所述k个天线面板中的每个天线面板对应的信道空闲指示信号;
其中,所述k个天线面板中的第i个天线面板对应的信道空闲指示信号,用于指示所述第i个天线面板检测到信道空闲的BWU,所述i为小于等于所述k的正整数。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
所述第i个天线面板检测的各个BWU各自对应的信道状态指示标识;
其中,所述信道状态指示标识用于指示信道状态检测结果是否为空闲。
可选地,所述第i个天线面板对应的信道空闲指示信号,还包括以下至少一项:所述第i个天线面板检测到信道空闲的BWU的信道占用时长、所述第i个天线面板检测到信道空闲的BWU在信道占用时间内的时隙格式、所述第i个天线面板检测到信道空闲的BWU在信道占用时间内的资源分配。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
在所述第i个天线面板检测到信道空闲的各个BWU上分别发送的信道空闲指示信号;
其中,在所述第i个天线面板检测到信道空闲的第j个BWU上发送的信道空闲指示信号,用于指示所述第i个天线面板在所述第j个BWU上的信道状态检测结果为空闲,所述j为正整数。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
所述第i个天线面板对应的BWP切换指示信息,所述BWP切换指示信息用于指示终端与所述基站的第i个天线面板进行通信时所要切换至的目标BWP,所述目标BWP包括所述第i个天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。
可选地,所述k个天线面板共用同一信道空闲指示信号;或者,所述k个天线面板对应的信道空闲指示信号不共用。
综上所述,本公开实施例提供的技术方案中,基站通过第一天线面板发送信道状态指示信息,该信道状态指示信息用于指示基站的至少一个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果;从而提供了一种多天线面板场景下的信道状态指示方案,使得终端能够获知基站的不同天线面板在各个BWU上的信道状态检测结果,有助于实现终端与基站之间的可靠传输。
图5是根据另一示例性实施例示出的一种非授权频谱上的信道状态指示装置的框图。该装置具有实现上述终端一侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端,也可以设置在终端中。如图5所示,该装置500可以包括:第一检测模块510和第二检测模块520。
第一检测模块510,被配置为按照第一周期检测基站的各个天线面板下发的信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,所述k为正整数。
第二检测模块520,被配置为在接收到所述基站的第一天线面板发送的所述信道状态指示信息之后,按照第二周期检测所述第一天线面板下发的PDCCH信令。
可选地,所述第二周期大于或等于所述第一周期。
可选地,所述PDCCH信令包括:所述基站调度给所述终端的所述第一天线面板的上下行资源,和/或,所述基站除所述第一天线面板之外的其它天线面板的信道状态检测结果。
综上所述,本公开实施例提供的技术方案中,针对基站具有多天线面板的场景,提供了一种终端进行PDCCH监听的方案。终端在接收到某一天线面板下发的信道状态指示信息之后,以较大的周期来监听该天线面板上发送的PDCCH信令,这样有助于节省终端的功耗。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例还提供了一种非授权频谱上的信道状态指示装置,该装置可应用于上文介绍的基站中,能够实现本公开提供的基站一侧的非授权频谱上的信道状态指示方法。该装置可以包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
通过第一天线面板发送信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,所述k为正整数。
可选地,所述k个天线面板包括所述第一天线面板。
可选地,当检测到信道空闲的天线面板的数量为多个时,所述多个天线面板分别发送各自对应的信道状态指示信息;
其中,第i个天线面板发送的信道状态指示信息,用于指示所述第i个天线面板在所述非授权频谱的至少一个BWU上的信道状态检测结果,所述i为正整数。
可选地,所述k个天线面板包括所述基站除所述第一天线面板之外的、检测到信道空闲的至少一个天线面板。
可选地,所述第一天线面板是检测到信道空闲的天线面板。
可选地,当检测到信道空闲的天线面板有多个时,所述第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述第一天线面板是处于信道占用时间内的天线面板。
可选地,当处于信道占用时间内的天线面板有多个时,所述第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
可选地,所述信道状态指示信息包括所述k个天线面板中的每个天线面板对应的信道空闲指示信号;
其中,所述k个天线面板中的第i个天线面板对应的信道空闲指示信号,用于指示所述第i个天线面板检测到信道空闲的BWU,所述i为小于等于所述k的正整数。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
所述第i个天线面板检测的各个BWU各自对应的信道状态指示标识;
其中,所述信道状态指示标识用于指示信道状态检测结果是否为空闲。
可选地,所述第i个天线面板对应的信道空闲指示信号,还包括以下至少一项:所述第i个天线面板检测到信道空闲的BWU的信道占用时长、所述第i个天线面板检测到信道空闲的BWU在信道占用时间内的时隙格式、所述第i个天线面板检测到信道空闲的BWU在信道占用时间内的资源分配。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
在所述第i个天线面板检测到信道空闲的各个BWU上分别发送的信道空闲 指示信号;
其中,在所述第i个天线面板检测到信道空闲的第j个BWU上发送的信道空闲指示信号,用于指示所述第i个天线面板在所述第j个BWU上的信道状态检测结果为空闲,所述j为正整数。
可选地,所述第i个天线面板对应的信道空闲指示信号,包括:
所述第i个天线面板对应的BWP切换指示信息,所述BWP切换指示信息用于指示终端与所述基站的第i个天线面板进行通信时所要切换至的目标BWP,所述目标BWP包括所述第i个天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。
可选地,所述k个天线面板共用同一信道空闲指示信号;或者,所述k个天线面板对应的信道空闲指示信号不共用。
本公开一示例性实施例还提供了一种非授权频谱上的信道状态指示装置,该装置可应用于上文介绍的终端中,能够实现本公开提供的终端一侧的非授权频谱上的信道状态指示方法。该装置可以包括:处理器,以及用于存储处理器的可执行指令的存储器。其中,处理器被配置为:
按照第一周期检测基站的各个天线面板下发的信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个BWU上的信道状态检测结果,所述k为正整数;
在接收到所述基站的第一天线面板发送的所述信道状态指示信息之后,按照第二周期检测所述第一天线面板下发的物理下行控制信道PDCCH信令。
可选地,所述第二周期大于或等于所述第一周期。
可选地,所述PDCCH信令包括:所述基站调度给所述终端的所述第一天线面板的上下行资源,和/或,所述基站除所述第一天线面板之外的其它天线面板的信道状态检测结果。
上述主要从基站和终端的角度,对本公开实施例提供的方案进行了介绍。可以理解的是,基站和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案 的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图6是根据一示例性实施例示出的一种基站的结构示意图。
基站600包括发射器/接收器601和处理器602。其中,处理器602也可以为控制器,图6中表示为“控制器/处理器602”。所述发射器/接收器601用于支持基站与上述实施例中的所述终端之间收发信息,以及支持所述基站与其它网络实体之间进行通信。所述处理器602执行各种用于与终端通信的功能。在上行链路,来自所述终端的上行链路信号经由天线接收,由接收器601进行解调(例如将高频信号解调为基带信号),并进一步由处理器602进行处理来恢复终端所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由处理器602进行处理,并由发射器601进行调制(例如将基带信号调制为高频信号)来产生下行链路信号,并经由天线发射给终端。需要说明的是,上述解调或调制的功能也可以由处理器602完成。例如,处理器602还用于执行上述方法实施例中基站侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,基站600还可以包括存储器603,存储器603用于存储基站600的程序代码和数据。此外,基站还可以包括通信单元604。通信单元604用于支持基站与其它网络实体(例如核心网中的网络设备等)进行通信。例如,在6G NR系统中,该通信单元604可以是NG-U接口,用于支持基站与UPF(User Plane Function,用户平面功能)实体进行通信;或者,该通信单元604也可以是NG-C接口,用于支持接入AMF(Access and Mobility Management Function接入和移动性管理功能)实体进行通信。
可以理解的是,图6仅仅示出了基站600的简化设计。在实际应用中,基站600可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的基站都在本公开实施例的保护范围之内。
图7是根据一示例性实施例示出的一种终端的结构示意图。
所述终端700包括发射器701,接收器702和处理器703。其中,处理器703也可以为控制器,图7中表示为“控制器/处理器703”。可选的,所述终端700还可以包括调制解调处理器705,其中,调制解调处理器705可以包括编码器706、调制器707、解码器708和解调器709。
在一个示例中,发射器701调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给基站。在下行链路上,天线接收基站发射的下行链路信号。接收器702调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。在调制解调处理器705中,编码器706接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器707进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器709处理(例如,解调)该输入采样并提供符号估计。解码器708处理(例如,解交织和解码)该符号估计并提供发送给终端700的已解码的数据和信令消息。编码器706、调制器707、解调器709和解码器708可以由合成的调制解调处理器705来实现。这些单元根据无线接入网采用的无线接入技术(例如,5G NR及其他演进系统的接入技术)来进行处理。需要说明的是,当终端700不包括调制解调处理器705时,调制解调处理器705的上述功能也可以由处理器703完成。
处理器703对终端700的动作进行控制管理,用于执行上述本公开实施例中由终端700进行的处理过程。例如,处理器703还用于执行上述方法实施例中的终端侧的各个步骤,和/或本公开实施例所描述的技术方案的其它步骤。
进一步的,终端700还可以包括存储器704,存储器704用于存储用于终端700的程序代码和数据。
可以理解的是,图7仅仅示出了终端700的简化设计。在实际应用中,终端700可以包含任意数量的发射器,接收器,处理器,调制解调处理器,存储器等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被基站的处理器执行时实现上述基站侧的非授权频谱上的信道状态指示方法。
本公开实施例还提供了一种非临时性计算机可读存储介质,其上存储有计算机程序,所述计算机程序被终端的处理器执行时实现上述终端侧的非授权频谱上的信道状态指示方法。
应当理解的是,在本文中提及的“多个”是指两个或两个以上。“和/或”,描 述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (22)

  1. 一种非授权频谱上的信道状态指示方法,其特征在于,所述方法包括:
    基站通过第一天线面板发送信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个带宽单元BWU上的信道状态检测结果,所述k为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述k个天线面板包括所述第一天线面板。
  3. 根据权利要求2所述的方法,其特征在于,当检测到信道空闲的天线面板的数量为多个时,所述多个天线面板分别发送各自对应的信道状态指示信息;
    其中,第i个天线面板发送的信道状态指示信息,用于指示所述第i个天线面板在所述非授权频谱的至少一个BWU上的信道状态检测结果,所述i为正整数。
  4. 根据权利要求1或2所述的方法,其特征在于,所述k个天线面板包括所述基站除所述第一天线面板之外的、检测到信道空闲的至少一个天线面板。
  5. 根据权利要求1所述的方法,其特征在于,所述第一天线面板是检测到信道空闲的天线面板。
  6. 根据权利要求5所述的方法,其特征在于,当检测到信道空闲的天线面板有多个时,所述第一天线面板是剩余信道占用时长最大和/或检测到信道空闲的BWU最多的天线面板。
  7. 根据权利要求1所述的方法,其特征在于,所述第一天线面板是处于信道占用时间内的天线面板。
  8. 根据权利要求7所述的方法,其特征在于,当处于信道占用时间内的天线面板有多个时,所述第一天线面板是剩余信道占用时长最大和/或检测到信道 空闲的BWU最多的天线面板。
  9. 根据权利要求1所述的方法,其特征在于,所述信道状态指示信息包括所述k个天线面板中的每个天线面板对应的信道空闲指示信号;
    其中,所述k个天线面板中的第i个天线面板对应的信道空闲指示信号,用于指示所述第i个天线面板检测到信道空闲的BWU,所述i为小于等于所述k的正整数。
  10. 根据权利要求9所述的方法,其特征在于,所述第i个天线面板对应的信道空闲指示信号,包括:
    所述第i个天线面板检测的各个BWU各自对应的信道状态指示标识;
    其中,所述信道状态指示标识用于指示信道状态检测结果是否为空闲。
  11. 根据权利要求9所述的方法,其特征在于,所述第i个天线面板对应的信道空闲指示信号,还包括以下至少一项:所述第i个天线面板检测到信道空闲的BWU的信道占用时长、所述第i个天线面板检测到信道空闲的BWU在信道占用时间内的时隙格式、所述第i个天线面板检测到信道空闲的BWU在信道占用时间内的资源分配。
  12. 根据权利要求9所述的方法,其特征在于,所述第i个天线面板对应的信道空闲指示信号,包括:
    在所述第i个天线面板检测到信道空闲的各个BWU上分别发送的信道空闲指示信号;
    其中,在所述第i个天线面板检测到信道空闲的第j个BWU上发送的信道空闲指示信号,用于指示所述第i个天线面板在所述第j个BWU上的信道状态检测结果为空闲,所述j为正整数。
  13. 根据权利要求9所述的方法,其特征在于,所述第i个天线面板对应的信道空闲指示信号,包括:
    所述第i个天线面板对应的带宽部分BWP切换指示信息,所述BWP切换 指示信息用于指示终端与所述基站的第i个天线面板进行通信时所要切换至的目标BWP,所述目标BWP包括所述第i个天线面板检测到信道空闲的M个BWU中的N个BWU,N小于等于M,M和N都为正整数。
  14. 根据权利要求9所述的方法,其特征在于,
    所述k个天线面板共用同一信道空闲指示信号;
    或者,
    所述k个天线面板对应的信道空闲指示信号不共用。
  15. 一种非授权频谱上的信道状态指示方法,其特征在于,所述方法包括:
    终端按照第一周期检测基站的各个天线面板下发的信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个带宽单元BWU上的信道状态检测结果,所述k为正整数;
    所述终端在接收到所述基站的第一天线面板发送的所述信道状态指示信息之后,所述终端按照第二周期检测所述第一天线面板下发的物理下行控制信道PDCCH信令。
  16. 根据权利要求15所述的方法,其特征在于,所述第二周期大于或等于所述第一周期。
  17. 根据权利要求15所述的方法,其特征在于,所述PDCCH信令包括:所述基站调度给所述终端的所述第一天线面板的上下行资源,和/或,所述基站除所述第一天线面板之外的其它天线面板的信道状态检测结果。
  18. 一种非授权频谱上的信道状态指示装置,其特征在于,应用于基站中,所述装置包括:
    信息发送模块,被配置为通过第一天线面板发送信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个带宽单元BWU上的信道状态检测结果,所述k为正整数。
  19. 一种非授权频谱上的信道状态指示装置,其特征在于,应用于终端中,所述装置包括:
    第一检测模块,被配置为按照第一周期检测基站的各个天线面板下发的信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个带宽单元BWU上的信道状态检测结果,所述k为正整数;
    第二检测模块,被配置为在接收到所述基站的第一天线面板发送的所述信道状态指示信息之后,按照第二周期检测所述第一天线面板下发的物理下行控制信道PDCCH信令。
  20. 一种非授权频谱上的信道状态指示装置,其特征在于,应用于基站中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    通过第一天线面板发送信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个带宽单元BWU上的信道状态检测结果,所述k为正整数。
  21. 一种非授权频谱上的信道状态指示装置,其特征在于,应用于终端中,所述装置包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器被配置为:
    按照第一周期检测基站的各个天线面板下发的信道状态指示信息,所述信道状态指示信息用于指示所述基站的k个天线面板在非授权频谱的至少一个带宽单元BWU上的信道状态检测结果,所述k为正整数;
    在接收到所述基站的第一天线面板发送的所述信道状态指示信息之后,按照第二周期检测所述第一天线面板下发的物理下行控制信道PDCCH信令。
  22. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征 在于,所述计算机程序被处理器执行时实现如权利要求1至14任一项所述方法的步骤,或者实现如权利要求15至17任一项所述方法的步骤。
PCT/CN2019/095641 2019-07-11 2019-07-11 非授权频谱上的信道状态指示方法、装置及存储介质 WO2021003746A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980001348.3A CN110521273B (zh) 2019-07-11 2019-07-11 非授权频谱上的信道状态指示方法、装置及存储介质
BR112022000272A BR112022000272A2 (pt) 2019-07-11 2019-07-11 Método e aparelho para indicação de estado de canal em um espectro não licenciado
PCT/CN2019/095641 WO2021003746A1 (zh) 2019-07-11 2019-07-11 非授权频谱上的信道状态指示方法、装置及存储介质
KR1020227004168A KR20220034824A (ko) 2019-07-11 2019-07-11 비면허 스펙트럼에서의 채널 상태 지시 방법, 장치 및 저장 매체
EP19937345.7A EP3998833A4 (en) 2019-07-11 2019-07-11 METHOD AND DEVICE FOR DISPLAYING THE CHANNEL STATUS OF AN UNLICENSED SPECTRUM AND STORAGE MEDIA
JP2022501033A JP7345041B2 (ja) 2019-07-11 2019-07-11 アンライセンススペクトル上のチャネル状態指示方法、装置及び記憶媒体
US17/625,756 US20220278725A1 (en) 2019-07-11 2019-07-11 Method and device for channel state indication on unlicensed spectrum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/095641 WO2021003746A1 (zh) 2019-07-11 2019-07-11 非授权频谱上的信道状态指示方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021003746A1 true WO2021003746A1 (zh) 2021-01-14

Family

ID=68634401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095641 WO2021003746A1 (zh) 2019-07-11 2019-07-11 非授权频谱上的信道状态指示方法、装置及存储介质

Country Status (7)

Country Link
US (1) US20220278725A1 (zh)
EP (1) EP3998833A4 (zh)
JP (1) JP7345041B2 (zh)
KR (1) KR20220034824A (zh)
CN (1) CN110521273B (zh)
BR (1) BR112022000272A2 (zh)
WO (1) WO2021003746A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517912B (zh) * 2020-04-09 2023-06-20 华为技术有限公司 数据传输的方法和装置
CN116419421A (zh) * 2022-01-10 2023-07-11 大唐移动通信设备有限公司 确定数据通信的可用时间长度的方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559120A (zh) * 2015-09-25 2017-04-05 索尼公司 无线通信系统中的电子设备和无线通信方法
US20190020386A1 (en) * 2016-01-12 2019-01-17 Lg Electronics Inc. Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and apparatus therefor
US20190157770A1 (en) * 2016-04-25 2019-05-23 Lg Electronics Inc. Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and device therefor
CN109804695A (zh) * 2019-01-08 2019-05-24 北京小米移动软件有限公司 下行数据发送方法、接收方法、装置和存储介质
CN109845371A (zh) * 2019-01-08 2019-06-04 北京小米移动软件有限公司 下行数据接收方法、发送方法、装置和存储介质

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101715939B1 (ko) * 2009-06-18 2017-03-14 엘지전자 주식회사 채널 상태 정보 피드백 방법 및 장치
WO2011013986A2 (en) * 2009-07-30 2011-02-03 Lg Electronics Inc. Apparatus and method for transmitting channel state information in a mobile communication system
CN102595469B (zh) * 2011-01-12 2016-11-16 中兴通讯股份有限公司 一种信道质量指示信息的确定方法
EP2728767B1 (en) * 2011-06-29 2020-10-07 Lg Electronics Inc. Channel state information transmitting method and user equipment
US9198071B2 (en) * 2012-03-19 2015-11-24 Qualcomm Incorporated Channel state information reference signal configuring and reporting for a coordinated multi-point transmission scheme
EP2899909B1 (en) * 2012-09-26 2021-04-14 Huawei Technologies Co., Ltd. Channel state information measurement method, device and system
CN110417527B (zh) * 2012-10-19 2022-07-05 北京三星通信技术研究有限公司 测量信道参考信号的方法及设备
US10341890B2 (en) * 2013-12-13 2019-07-02 Qualcomm Incorporated CSI feedback in LTE/LTE-advanced systems with unlicensed spectrum
US20150327106A1 (en) * 2014-05-06 2015-11-12 Acer Incorporated Method of Handling Channel Status Information and Related Communication Device
US10581569B2 (en) * 2014-08-22 2020-03-03 Qualcomm Incorporated Techniques for transmitting and receiving synchronization signals over an unlicensed radio frequency spectrum band
US20160127936A1 (en) * 2014-11-05 2016-05-05 Debdeep CHATTERJEE User equipment and methods for csi measurements with reduced bandwidth support
EP4113889A1 (en) * 2015-11-06 2023-01-04 Apple Inc. Channel state information (csi) measurements and csi reporting in licensed assisted access (laa)
US11483842B2 (en) * 2016-02-03 2022-10-25 Apple Inc. CSI (channel state information)-RS (reference signal) overhead reduction for class B FD (full dimensional)-MIMO (multiple input multiple output) systems
WO2018031825A1 (en) * 2016-08-10 2018-02-15 Intel IP Corporation System and method for enhanced csi feedback
CN106658751B (zh) * 2016-12-14 2020-06-02 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置
CN109391296A (zh) * 2017-08-11 2019-02-26 索尼公司 用于无线通信的电子设备、方法和介质
US10959263B2 (en) * 2017-11-03 2021-03-23 Qualcomm Incorporated Listen before talk for millimeter wave multi-user multiple-input multiple-output communications
CN114844533A (zh) * 2018-04-12 2022-08-02 中兴通讯股份有限公司 一种信道状态信息报告方法、接收方法和通信节点
EP3866533A4 (en) * 2018-10-25 2022-06-22 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR DCI RECEIVING AND TRANSMITTING AND STORAGE MEDIA
CN116390213A (zh) * 2018-11-27 2023-07-04 北京小米移动软件有限公司 终端唤醒控制方法、装置及存储介质
EP3944679A4 (en) * 2019-03-25 2022-11-02 Beijing Xiaomi Mobile Software Co., Ltd. SYNCHRONIZATION SIGNAL BLOCK TRANSMISSION METHOD, DEVICE AND STORAGE MEDIUM
WO2021223059A1 (en) * 2020-05-05 2021-11-11 Qualcomm Incorporated Improved transmission configuration indicator state for channel state information report in full-duplex systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559120A (zh) * 2015-09-25 2017-04-05 索尼公司 无线通信系统中的电子设备和无线通信方法
US20190020386A1 (en) * 2016-01-12 2019-01-17 Lg Electronics Inc. Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and apparatus therefor
US20190157770A1 (en) * 2016-04-25 2019-05-23 Lg Electronics Inc. Method for transmitting and receiving channel state information in multi-antenna wireless communication system, and device therefor
CN109804695A (zh) * 2019-01-08 2019-05-24 北京小米移动软件有限公司 下行数据发送方法、接收方法、装置和存储介质
CN109845371A (zh) * 2019-01-08 2019-06-04 北京小米移动软件有限公司 下行数据接收方法、发送方法、装置和存储介质

Also Published As

Publication number Publication date
US20220278725A1 (en) 2022-09-01
EP3998833A1 (en) 2022-05-18
CN110521273B (zh) 2023-09-29
JP7345041B2 (ja) 2023-09-14
KR20220034824A (ko) 2022-03-18
CN110521273A (zh) 2019-11-29
EP3998833A4 (en) 2023-02-01
JP2022540181A (ja) 2022-09-14
BR112022000272A2 (pt) 2022-02-22

Similar Documents

Publication Publication Date Title
EP4277176A2 (en) Methods and apparatuses for transmitting and receiving control signaling, and method for determining information
CN109496457B (zh) Dci的接收方法、发送方法、装置及存储介质
EP3836687A1 (en) Information transmission method and apparatus
EP3873152B1 (en) Downlink control information receiving method, transmitting method and apparatuses
WO2020232566A1 (zh) Bwp切换方法、装置及存储介质
CA2869000A1 (en) Multi-access scheme and signal structure for d2d communications
CN110267226B (zh) 信息发送的方法和装置
JP2022500896A (ja) V2x通信のためのリソース割り当て及び帯域幅部分非活性タイマー処理方法及び装置
US10681623B2 (en) Methods and apparatus for cell access via anchor carrier
CN104969486A (zh) 传输信号的方法和设备
WO2021106837A1 (ja) 端末装置、基地局装置および通信方法
WO2020186527A1 (zh) 系统信息接收方法、发送方法、装置及存储介质
WO2017113077A1 (zh) 一种上行紧急业务传输方法、基站、用户设备及系统
CN110521266B (zh) 非授权频谱上的bwp切换指示方法、装置及存储介质
WO2021003746A1 (zh) 非授权频谱上的信道状态指示方法、装置及存储介质
US11929836B2 (en) Feedback method and apparatus for grant-free uplink transmission, and storage medium
CN111181710A (zh) 通信方法及装置
CN112887074B (zh) 信息发送方法、装置、终端、接入网设备及系统
CN113632411A (zh) 上下行传输冲突解决方法、装置及存储介质
CN114424667B (zh) 一种通信方法及装置
CN112703791B (zh) 一种通信方法及装置
RU2799488C1 (ru) Способ, устройство для индикации состояния каналов в нелицензируемом спектре и носитель информации
CN116134894A (zh) 一种资源信息指示方法及装置
US20240015711A1 (en) Communication method, terminal apparatus, and system
EP4117362A1 (en) Downlink control channel transmission method and apparatus, terminal and access network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501033

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000272

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227004168

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019937345

Country of ref document: EP

Effective date: 20220211

ENP Entry into the national phase

Ref document number: 112022000272

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220107