WO2019192515A1 - 一种反馈信息的传输方法和装置 - Google Patents

一种反馈信息的传输方法和装置 Download PDF

Info

Publication number
WO2019192515A1
WO2019192515A1 PCT/CN2019/081237 CN2019081237W WO2019192515A1 WO 2019192515 A1 WO2019192515 A1 WO 2019192515A1 CN 2019081237 W CN2019081237 W CN 2019081237W WO 2019192515 A1 WO2019192515 A1 WO 2019192515A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
slot timing
slot
downlink
timing value
Prior art date
Application number
PCT/CN2019/081237
Other languages
English (en)
French (fr)
Inventor
邵家枫
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810445299.XA external-priority patent/CN110351027A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019192515A1 publication Critical patent/WO2019192515A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • Embodiments of the present application relate to the field of wireless communications, and in particular, to a method and apparatus for transmitting feedback information.
  • the fifth generation (5G) mobile communication system supports enhanced mobile broadband (eMBB) services, ultra reliable and low latency communications (URLLC) services, and massive machine-like communications ( Massive machine type communications, mMTC) business.
  • eMBB services include: ultra high definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main features of these services are large amount of transmitted data and high transmission rate.
  • Typical URLLC services include wireless control in industrial manufacturing or production processes, motion control for driverless cars and drones, and tactile interaction applications such as remote repair and remote surgery.
  • the main features of these services are ultra-high reliability. Low latency, low data transfer and burstiness.
  • Typical mMTC services include: smart grid distribution automation, smart city, etc.
  • the main features are huge number of networked devices, small amount of transmitted data, and insensitive data transmission delay. These mMTC terminals need to meet low cost and very long standby. The demand for time.
  • the URLLC service has high requirements on the delay and reliability.
  • the URLLC service data can be transmitted in a time slot aggregation manner, that is, a physical downlink control channel (PDCCH).
  • PDCCH physical downlink control channel
  • a plurality of time slot resources are scheduled for transmitting a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • the user equipment After receiving the PDSCH, the user equipment (UE) is configured on the physical uplink control channel (PUCCH) or the physical uplink shared channel (physical uplink shared channel) according to the decoding result of the data carried on the PDSCH.
  • the upper network device feeds back an acknowledgement (ACK) or a negative acknowledgement (NACK).
  • ACK acknowledgement
  • NACK negative acknowledgement
  • This data transmission mechanism is also called a hybrid automatic repeat request-acknowledgment (HARQ-ACK) mechanism.
  • HARQ-ACK hybrid automatic repeat request-acknowledgment
  • the HARQ-ACK semi-static codebook feedback mechanism is introduced in the new radio (NR) of the 5G, that is, the HARQ-ACK feedback information corresponding to the PDSCH received by different receiving occasions is mapped to the same A HARQ-ACK codebook is simultaneously fed back to the network device.
  • NR new radio
  • a downlink receiving occasion corresponds to at least one bit position in the HARQ-ACK codebook, and does not consider the transmission mode in which the downlink uses slot aggregation, thereby causing the HARQ-ACK to be semi-static. There are more redundant bits in the codebook.
  • the present application provides a method and an apparatus for transmitting feedback information, which can effectively reduce redundant bits in a HARQ-ACK codebook and improve transmission reliability of the HARQ-ACK codebook.
  • a first aspect provides a method for transmitting feedback information, including: receiving downlink information, where the downlink information is transmitted according to a first slot timing value in a slot timing value set, and the first slot timing value is used. And the number of time slots indicating a distance between the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located, where the codebook includes feedback information corresponding to the downlink information; generating and transmitting the a codebook, where a location of the feedback information corresponding to the downlink information in the codebook is related to a reception timing corresponding to the transmission of the downlink information, where the reception timing is related to the first slot timing value and an aggregation factor, The aggregation factor is the number of times the downlink information is repeatedly transmitted.
  • the execution body of the transmission method of the feedback information is a communication device, which may be a terminal device or a component applied to the terminal device, such as a chip applied to the terminal device.
  • the terminal device determines the position of the feedback information corresponding to the downlink information in the HARQ-ACK codebook according to the slot timing value and the number of times the downlink information is repeatedly transmitted, thereby effectively reducing the HARQ-ACK.
  • the redundant bits in the codebook improve the transmission reliability of the HARQ-ACK codebook.
  • a second aspect provides a method for transmitting feedback information, including: transmitting downlink information, where the transmission of the downlink information corresponds to a first slot timing value in a slot timing value set, and the slot timing value is used to indicate The number of time slots of the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located, the codebook includes feedback information corresponding to the downlink information; and the codebook is received.
  • the location of the feedback information corresponding to the downlink information in the codebook is related to a reception timing corresponding to the transmission of the downlink information, where the reception timing is related to the first slot timing value and an aggregation factor, and the aggregation factor is The number of times the downlink information is repeatedly transmitted.
  • the execution body of the transmission method of the feedback information is a communication device, which may be a network device or a component applied to the network device, such as a chip applied to the network device.
  • the network device determines the position of the feedback information corresponding to the downlink information in the HARQ-ACK codebook according to the slot timing value and the number of times the downlink information is repeatedly transmitted, thereby effectively reducing the HARQ-ACK.
  • the redundant bits in the codebook improve the transmission reliability of the HARQ-ACK codebook.
  • the aggregation factor is greater than 1, the time slot timing value set further includes a second time slot timing value, and the second time slot timing value is The first slot timing value is different.
  • the first slot timing value is The receiving timing of the second slot timing value is the same, the first threshold value is related to the aggregation factor; or, when the first slot timing value is different from the second slot timing value
  • the first threshold value and the aggregation factor are different.
  • mapping the reception timing corresponding to the slot timing value whose difference is within a certain range to the same receiving occasion further mapping to the same feedback position in the HARQ-ACK codebook, thereby reducing the bit length of the HARQ-ACK codebook Improve the transmission reliability of the HARQ-ACK codebook.
  • the downlink information is downlink control information or downlink data information, where the downlink control information is carried on a downlink control channel, and the downlink data information is carried in a downlink.
  • the aggregation factor is a smaller of an aggregation factor of the downlink control channel and an aggregation factor of the downlink data channel.
  • the first slot timing value is a slot timing value in a subset of the first slot timing value, and the first slot timing value is Each time slot timing value in the set is a slot timing value in the set of slot timing values; the first slot timing value subset includes at least two different slot timing values, the first time The absolute value of the difference between any two different slot timing values in the subset of slot timing values is less than a first threshold, the first threshold being related to the aggregation factor, the aggregation factor being greater than one .
  • the number of receiving occasions corresponding to the first slot timing value is equal to the number of receiving occasions corresponding to the subset of the first slot timing value
  • the reception timing corresponding to the transmission of the downlink information is one of the reception timings corresponding to the reception timing of the first slot timing value.
  • the receiving timing corresponding to the transmission of the downlink information is further related to the index of the first slot timing value subset in the slot timing value set.
  • the number of receiving occasions corresponding to the first slot timing value subset is equal to the number of receiving occasions corresponding to the first downlink symbol configuration set G1, where The first downlink symbol configuration set G1 is determined according to the first slot timing value subset; the G1 is a subset or a complete set of a downlink symbol configuration list, where the downlink symbol configuration list is Each downlink symbol configuration includes index information of a start downlink symbol, persistent symbol number information of a downlink symbol, and slot offset value information, where the slot offset value information is used to indicate a time slot in which the control channel is located and The number of time slots of the distance between the time slots in which the data channel corresponding to the control channel is located.
  • the receiving occasion corresponding to the transmission of the downlink information is further related to an index of the first downlink symbol configuration subset SDSA in the G1, where the downlink The downlink symbol corresponding to the transmission of the information is configured as a first downlink symbol, the first downlink symbol is configured as one downlink symbol configuration in the first SDSA, and all downlink symbol configurations in the first SDSA are configured
  • the downlink symbols are partially or completely overlapped in the time domain, and the downlink symbols corresponding to the downlink symbol configuration are determined by index information of the start downlink symbols in the downlink symbol configuration and persistent symbol number information of the downlink symbols.
  • the first downlink symbol configuration set G1 is determined according to the first time slot timing value subset, and specifically includes: the G1 is And a union of the downlink symbol configuration set corresponding to each slot timing value in the first slot timing value subset, where the downlink symbol configuration set corresponding to each slot timing value is the downlink symbol configuration list Subset or complete set.
  • the second downlink symbol configuration set G2 is a downlink symbol configuration set corresponding to any one slot timing value ST1 in the first slot timing value subset.
  • the G2 does not include the second downlink symbol configuration in the downlink symbol configuration list that meets the following conditions: the downlink symbol corresponding to the second downlink symbol configuration partially or completely overlaps with the uplink symbol in the first time slot T1, or
  • the second slot T2 does not include a control channel listening occasion; wherein the downlink symbol corresponding to the second downlink symbol configuration is index information of a start downlink symbol in the second downlink symbol configuration and a persistent symbol number of the downlink symbol Determining, the T1 is a time slot determined according to the ST1 and a time slot in which the uplink channel of the bearer codebook is located, and the T2 is a time slot offset according to the ST1 and the second downlink symbol configuration.
  • the third downlink symbol configuration set G3 is a downlink symbol configuration set corresponding to any one slot timing value ST2 in the first slot timing value subset.
  • the G3 does not include the third downlink symbol configuration in the downlink symbol configuration list that meets the following conditions: the downlink symbol corresponding to the third downlink symbol configuration and the uplink symbol of each slot in the first slot set TG1 Partially or completely overlapping, or the third time slot T3 does not include a control channel listening occasion; wherein the downlink symbol corresponding to the third downlink symbol configuration is an index of the starting downlink symbol in the third downlink symbol configuration Determining, by the information and the persistent symbol number information of the downlink symbol, the TG1 is a set consisting of time slots determined according to the ST2, the aggregation factor, and a time slot in which the uplink channel of the bearer codebook is located, where T3 is And according to the ST2, the slot offset value information in the third downlink symbol configuration, the aggregation factor
  • the G1 does not include the fourth downlink symbol configuration in the downlink symbol configuration list that meets the following conditions: for the second time slot set TG2
  • the downlink symbol corresponding to the fourth downlink symbol configuration partially or completely overlaps with the uplink symbol of the TG2_T, or the control channel listening timing is not included in the fourth time slot T4 corresponding to the TG2_T
  • the downlink symbol corresponding to the fourth downlink symbol configuration is determined by index information of a start downlink symbol in the fourth downlink symbol configuration and persistent symbol number information of a downlink symbol, each of the TG2
  • the time slot is in one-to-one correspondence with each time slot timing value in the first time slot timing value subset, and the TG2_T is based on the time slot timing value in the first time slot timing value subset and the bearer codebook
  • the time slot determined by the time slot in which the uplink channel is located, the T4 is a time slot timing value according to the first
  • the G1 does not include a fifth downlink symbol configuration in the downlink symbol configuration list that meets the following conditions: a downlink symbol corresponding to the fifth downlink symbol configuration And the uplink symbols of each time slot in the third time slot set TG3 are partially or completely overlapped, or each time slot in the fourth time slot set TG4 does not include a control channel monitoring opportunity;
  • the downlink symbol corresponding to the fifth downlink symbol configuration is determined by the index information of the start downlink symbol and the persistent symbol number information of the downlink symbol in the fifth downlink symbol configuration, where the TG3 is determined according to the first time slot.
  • a set of slot timing values in the subset of timing values a set of time slots determined by the aggregation factor and a slot in which the uplink channel of the bearer codebook is determined, the TG4 being a subset of timing values according to the first slot a slot timing value, a slot offset value information in the fifth downlink symbol configuration, a set of time slots determined by the aggregation factor and a time slot in which the uplink channel is located.
  • the G1 does not include a sixth downlink symbol configuration in the downlink symbol configuration list that meets the following conditions: for each of the third time slot set TG3 The time slot TG3_T, the downlink symbol corresponding to the sixth downlink symbol configuration partially or completely overlaps with the uplink symbol of the TG3_T, or each time slot of the fifth time slot set TG5 corresponding to the TG3_T does not include the control channel a monitoring timing, where the downlink symbol corresponding to the sixth downlink symbol configuration is determined by index information of a starting downlink symbol and a persistent symbol number information of the downlink symbol in the sixth downlink symbol configuration, where the TG3 is And determining, according to the slot timing value in the subset of the first slot timing value, the aggregation factor, and the set of slots determined by the slot in which the uplink channel of the bearer codebook is located, the TG5 is determined according to the TG3_T At least one slot timing value in the corresponding first slot
  • a third aspect provides a method for transmitting feedback information, including: receiving downlink information, where transmission of the downlink information corresponds to a first slot timing value in a subset of timing slots of a first slot, the first slot timing The value is used to indicate the number of timeslots between the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located, and the codebook includes feedback information corresponding to the downlink information, where The first slot timing value subset includes at least two different slot timing values; the codebook is generated and transmitted, and the location of the feedback information corresponding to the downlink information in the codebook corresponds to the downlink information transmission
  • the index of the receiving occasion is related to, the index of the receiving occasion corresponding to the transmission of the downlink information is one of the indexes of the at least one receiving occasion corresponding to the first slot timing value; the first slot timing value corresponds to The number of reception opportunities is determined based on the subset of the first slot timing values.
  • the execution body of the transmission method of the feedback information is a communication device, which may be a terminal device or a component applied to the terminal device, such as a chip applied to the terminal device.
  • the terminal device determines the position of the feedback information corresponding to the downlink information in the HARQ-ACK codebook according to the slot timing value and the number of times the downlink information is repeatedly transmitted, thereby effectively reducing the HARQ-ACK.
  • the redundant bits in the codebook improve the transmission reliability of the HARQ-ACK codebook.
  • a fourth aspect provides a method for transmitting feedback information, including: transmitting downlink information, where the transmission of the downlink information corresponds to a first slot timing value in a subset of timing slots of a first slot, the first slot timing The value is used to indicate the number of timeslots between the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located, and the codebook includes feedback information corresponding to the downlink information, where The first slot timing value subset includes at least two different slot timing values; receiving the codebook, and receiving, by the downlink information, the location of the feedback information in the codebook corresponding to the transmission of the downlink information
  • the index of the timing is related to, the index of the receiving occasion corresponding to the transmission of the downlink information is one of the indexes of the at least one receiving occasion corresponding to the timing value of the first slot; the receiving timing corresponding to the timing value of the first slot
  • the number is determined based on the subset of first slot timing values.
  • the execution body of the transmission method of the feedback information is a communication device, which may be a network device or a component applied to the network device, such as a chip applied to the network device.
  • the network device determines the position of the feedback information corresponding to the downlink information in the HARQ-ACK codebook according to the slot timing value and the number of times the downlink information is repeatedly transmitted, thereby effectively reducing the HARQ-ACK.
  • the redundant bits in the codebook improve the transmission reliability of the HARQ-ACK codebook.
  • the number of receiving occasions corresponding to the first slot timing value is determined according to the subset of the first slot timing values, including: The number of receiving occasions corresponding to the first slot timing value is equal to the number of receiving opportunities corresponding to the first downlink symbol configuration set G1, wherein the G1 is determined according to the first slot timing value subset; G1 is a subset or a complete set of the downlink symbol configuration list, where each downlink symbol configuration in the downlink symbol configuration list includes index information of the start downlink symbol, persistent symbol number information of the downlink symbol, and slot offset value information.
  • the time slot offset value information is used to indicate the number of time slots of the time slot between the time slot in which the control channel is located and the time slot in which the data channel corresponding to the control channel is located.
  • the absolute value of the difference between any two different time slot timing values in the subset of the first time slot timing values is less than the first threshold a value, the first threshold value being related to the aggregation factor, the aggregation factor being greater than one.
  • the index of the receiving occasion corresponding to the transmission of the downlink information is further related to the subset of the first slot timing value in the slot timing value set.
  • the index is related.
  • an index of a receiving occasion corresponding to the transmission of the downlink information is further related to an index of the first downlink symbol configuration subset SDSA in the G1, where The downlink symbol corresponding to the transmission of the downlink information is configured as a first downlink symbol, and the first downlink symbol is configured as one downlink symbol configuration in the first SDSA, and all downlink symbols in the first SDSA And configuring the corresponding downlink symbols to partially or completely overlap in the time domain, where the downlink symbols corresponding to the downlink symbol configuration are determined by index information of the start downlink symbols and downlink symbol number information of the downlink symbols in the downlink symbol configuration.
  • the first downlink symbol configuration set G1 is determined according to the first slot timing value subset, and specifically includes: the G1 is And a union of the downlink symbol configuration set corresponding to each slot timing value in the first slot timing value subset, where the downlink symbol configuration set corresponding to each slot timing value is the downlink symbol configuration list Subset or complete set.
  • the second downlink symbol configuration set G2 is a downlink symbol configuration set corresponding to any one slot timing value ST1 in the first slot timing value subset.
  • the G2 does not include the second downlink symbol configuration in the downlink symbol configuration list that meets the following conditions: the downlink symbol corresponding to the second downlink symbol configuration partially or completely overlaps with the uplink symbol in the first time slot T1, or
  • the second slot T2 does not include a control channel listening occasion; wherein the downlink symbol corresponding to the second downlink symbol configuration is index information of a start downlink symbol in the second downlink symbol configuration and a persistent symbol number of the downlink symbol Determining, the T1 is a time slot determined according to the ST1 and a time slot in which the uplink channel of the bearer codebook is located, and the T2 is a time slot offset according to the ST1 and the second downlink symbol configuration.
  • the third downlink symbol configuration set G3 is a downlink symbol configuration set corresponding to any one slot timing value ST2 in the first slot timing value subset.
  • the G3 does not include the third downlink symbol configuration in the downlink symbol configuration list that meets the following conditions: the downlink symbol corresponding to the third downlink symbol configuration and the uplink symbol of each slot in the first slot set TG1 Partially or completely overlapping, or the third time slot T3 does not include a control channel listening occasion; wherein the downlink symbol corresponding to the third downlink symbol configuration is an index of the starting downlink symbol in the third downlink symbol configuration Determining, by the information and the persistent symbol number information of the downlink symbol, the TG1 is a set consisting of time slots determined according to the ST2, the aggregation factor, and a time slot in which the uplink channel of the bearer codebook is located, where T3 is And according to the ST2, the slot offset value information in the third downlink symbol configuration, the aggregation
  • the G1 does not include a fourth downlink symbol configuration in the downlink symbol configuration list that meets the following conditions: for each of the second slot set TG2 The time slot TG2_T, the downlink symbol corresponding to the fourth downlink symbol configuration partially or completely overlaps with the uplink symbol of the TG2_T, or the fourth time slot T4 corresponding to the TG2_T does not include the control channel monitoring opportunity;
  • the downlink symbol corresponding to the fourth downlink symbol configuration is determined by the index information of the start downlink symbol and the persistent symbol number information of the downlink symbol in the fourth downlink symbol configuration, and each time slot and location in the TG2
  • Each time slot timing value in the first slot timing value subset is in one-to-one correspondence
  • the TG2_T is based on the slot timing value in the first slot timing value subset and the uplink channel of the bearer codebook a time slot determined by the time slot, wherein the T4 is a slot timing value according to the first slot timing value sub
  • the G1 does not include a fifth downlink symbol configuration that meets the following condition in the downlink symbol configuration list: a downlink symbol corresponding to the fifth downlink symbol configuration And the uplink symbols of each time slot in the third time slot set TG3 are partially or completely overlapped, or each time slot in the fourth time slot set TG4 does not include a control channel monitoring opportunity;
  • the downlink symbol corresponding to the fifth downlink symbol configuration is determined by the index information of the start downlink symbol and the persistent symbol number information of the downlink symbol in the fifth downlink symbol configuration, where the TG3 is determined according to the first time slot.
  • a set of slot timing values in the subset of timing values a set of time slots determined by the aggregation factor and a slot in which the uplink channel of the bearer codebook is determined, the TG4 being a subset of timing values according to the first slot a slot timing value, a slot offset value information in the fifth downlink symbol configuration, a set of time slots determined by the aggregation factor and a time slot in which the uplink channel is located.
  • the G1 does not include a sixth downlink symbol configuration in the downlink symbol configuration list that meets the following conditions: for each of the third time slot set TG3 The time slot TG3_T, the downlink symbol corresponding to the sixth downlink symbol configuration partially or completely overlaps with the uplink symbol of the TG3_T, or each time slot of the fifth time slot set TG5 corresponding to the TG3_T does not include the control channel a monitoring timing, where the downlink symbol corresponding to the sixth downlink symbol configuration is determined by index information of a starting downlink symbol and a persistent symbol number information of the downlink symbol in the sixth downlink symbol configuration, where the TG3 is And determining, according to the slot timing value in the subset of the first slot timing value, the aggregation factor, and the set of slots determined by the slot in which the uplink channel of the bearer codebook is located, the TG5 is determined according to the TG3_T At least one slot timing value in the corresponding first
  • a fifth aspect provides a communication apparatus, including: a receiving unit, configured to receive downlink information, where the downlink information transmission corresponds to a first slot timing value in a slot timing value set, and the first slot timing The value is used to indicate the number of timeslots between the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located, and the codebook includes feedback information corresponding to the downlink information; For generating the codebook, the location of the feedback information corresponding to the downlink information in the codebook is related to a reception timing corresponding to the transmission of the downlink information, and the reception timing and the first slot timing value and aggregation The factor is related to the number of times the downlink information is repeatedly transmitted, and the sending unit is configured to send the codebook.
  • the communication device may be a terminal device or a component applied to the terminal device, such as a chip applied to the terminal device.
  • the processing unit is configured to update the time slot timing value set, specifically, to: use the first time value that is greater than or equal to the first time value in the time slot timing value set An element of a second value slot timing value is removed from the set of slot timing values; or an element of the slot timing value set that is less than the second value slot timing value is from the slot Removed from the set of timing values.
  • the second value is equal to a sum of the first value and the aggregation factor, and the first value is equal to a slot timing value having the smallest value in the set of time slot timing values.
  • the processing unit is configured to update the slot timing value set, specifically, to: use a slot timing value that is greater than the second value and less than or equal to the first value in the slot timing value set.
  • the element is removed from the set of slot timing values; or the element of the slot timing value greater than the second value in the set of slot timing values is removed from the set of slot timing values, wherein the first value is equal to the slot timing value
  • the slot timing value with the largest value in the set, and the second value is equal to the difference between the first value and the aggregation factor.
  • a sixth aspect provides a communication apparatus, including: a sending unit, configured to send downlink information, where the downlink information transmission corresponds to a first slot timing value in a slot timing value set, and the first slot timing The value is used to indicate the number of timeslots between the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located, and the codebook includes feedback information corresponding to the downlink information; For receiving the codebook, the location of the feedback information corresponding to the downlink information in the codebook is related to the reception timing corresponding to the transmission of the downlink information, the receiving timing and the first slot timing value and aggregation The factor is related to the number of times the downlink information is repeatedly transmitted, and the processing unit is configured to perform demodulation and decoding on the codebook.
  • the communication device may be a network device or a component applied to the network device, such as a chip applied to the network device.
  • a communication device including: a receiving unit, configured to receive downlink information, where the transmission of the downlink information corresponds to a first slot timing value in a subset of a first slot timing value, the first time The slot timing value is used to indicate the number of timeslots between the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located, and the codebook includes feedback information corresponding to the downlink information, where The first slot timing value subset includes at least two different slot timing values; the processing unit is configured to generate the codebook, where the downlink information corresponds to the feedback information in the codebook and the downlink The index of the reception timing corresponding to the transmission of the information is related, and the index of the reception timing corresponding to the transmission of the downlink information is one of the indexes of the at least one reception timing corresponding to the timing value of the first slot, the first slot The number of receiving occasions corresponding to the timing value is determined according to the subset of the first slot timing values; and the
  • a communication device including: a sending unit, configured to send downlink information, where the downlink information transmission corresponds to a first time slot timing value in a subset of a first time slot timing value, where the first time
  • the slot timing value is used to indicate the number of timeslots between the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located, and the codebook includes feedback information corresponding to the downlink information, where The first time slot timing value subset includes at least two different time slot timing values;
  • the receiving unit is configured to receive the codebook, and the location of the feedback information corresponding to the downlink information in the codebook is The index of the reception timing corresponding to the transmission of the downlink information is related, and the index of the reception timing corresponding to the transmission of the downlink information is one of the indexes of the at least one reception timing corresponding to the timing value of the first slot, the first time The number of receiving occasions corresponding to the slot timing value is determined according to the subset of the first slot
  • a ninth aspect a communication device comprising a processor and a transceiver device, the processor being coupled to the transceiver unit, the processor for executing a computer program or instruction to control receiving and transmitting information by the transceiver device;
  • the processor is further configured to perform the method of the first aspect or any of the possible implementations of the first aspect when the processor executes the computer program or the instruction; or perform any of the foregoing second or second aspects A method in an implementation; or a method in any of the possible implementations of the third or third aspect described above; or a method in any of the possible implementations of the fourth or fourth aspect described above.
  • the transceiver device may be a transceiver or a transceiver circuit or an input/output interface.
  • a computer readable storage medium having stored therein a computer program or instructions that, when executed, implement any of the above aspects or aspects of the first aspect
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of the first aspect or any of the possible implementations of the first aspect; or perform the second aspect or a method in any of the possible implementations of the second aspect; or a method in any of the possible implementations of the third or third aspect described above; or in any of the possible implementations of the fourth or fourth aspect described above Methods.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied;
  • FIG. 2 is a schematic diagram of a relationship between a slot timing value and HARQ feedback in an embodiment of the present application
  • 3 is a schematic diagram of relationship between slot timing values and HARQ feedback when the aggregation factor is 4 in the embodiment of the present application;
  • FIG. 4 is a schematic flowchart diagram of a method for transmitting feedback information according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of determining a receiving occasion corresponding to a slot timing value according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a location of HARQ feedback information corresponding to a slot timing value in a HARQ codebook according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of another receiving occasion corresponding to determining a slot timing value according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a location of HARQ feedback information corresponding to another slot timing value in a HARQ codebook according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another communication apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a downlink symbol configuration provided by an embodiment of the present application.
  • FIG. 12 is a schematic flowchart diagram of another method for transmitting feedback information according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a mobile communication system to which an embodiment of the present application is applied.
  • the mobile communication system includes a core network device 110, a radio access network device 120, and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the radio access network device by means of a wireless connection, and the radio access network device is connected to the core network device by wireless or wired.
  • the core network device and the wireless access network device may be independent physical devices, or may integrate the functions of the core network device with the logical functions of the wireless access network device on the same physical device, or may be a physical device.
  • the functions of some core network devices and the functions of some wireless access network devices are integrated.
  • the terminal device can be fixed or mobile.
  • FIG. 1 is only a schematic diagram, and the communication system may further include other network devices, such as a wireless relay device and a wireless backhaul device, which are not shown in FIG. 1.
  • the embodiment of the present application does not limit the number of core network devices, radio access network devices, and terminal devices included in the mobile communication system.
  • the radio access network device is an access device that the terminal device accesses to the mobile communication system by using a wireless device, and may be a base station NodeB, an evolved base station (evolved NodeB, eNodeB), a transmission reception point (TRP), A next generation base station (gNB) in a 5G mobile communication system, a base station in a future mobile communication system, or an access node in a WiFi system.
  • a radio access network device is referred to as a network device.
  • a network device refers to a radio access network device.
  • the terminal device may also be referred to as a terminal terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial control).
  • Wireless terminal wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the embodiments of the present application do not limit the specific technologies and specific device modes adopted by the terminal device.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, hand-held or on-board; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons and satellites.
  • the application scenarios of the network device and the terminal device are not limited in the embodiment of the present application.
  • the network device and the terminal device can communicate through a licensed spectrum, or through an unlicensed spectrum, or simultaneously through an authorized spectrum and an unlicensed spectrum.
  • the network device and the terminal device can communicate through a spectrum of 6 gigahertz (GHz) or less, or communicate with a spectrum of 6 GHz or higher, and can simultaneously communicate with a spectrum of 6 GHz or lower and a spectrum of 6 GHz or higher.
  • GHz gigahertz
  • the embodiment of the present application does not limit the spectrum resources used between the network device and the terminal device.
  • a HARQ-ACK semi-static codebook feedback mechanism is introduced in the NR, and a HARQ-ACK semi-static code in the Third Generation Partnership Project (3GPP) protocol. This is also referred to as a Type 1 (Type-1) HARQ-ACK codebook.
  • 3GPP Third Generation Partnership Project
  • the network device configures a set of slot timing values for the terminal device by radio resource control (RRC) signaling, or the protocol pre-defined a set of slot timing values, where the slot timing value set includes at least A slot timing value, wherein each slot timing value corresponds to at least one downlink receiving opportunity, and each receiving occasion corresponds to one HARQ feedback position in the HARQ-ACK semi-static codebook.
  • RRC radio resource control
  • the receiving occasions herein may be used to receive data in the PDSCH, and may also be used to receive control signaling in the PDCCH, such as semi-persistent scheduling (SPS) activation or deactivation signaling.
  • SPS semi-persistent scheduling
  • the network device may configure, by using RRC signaling, the slot timing value set of the terminal device to be ⁇ 0, 1, 4, 8, 2, 3 ⁇ , and the index number corresponding to the slot timing value in the slot timing value set is respectively It is 0, 1, 2, 3, 4 and 5.
  • the meanings of index numbers and indexes are the same and can be interchanged.
  • the PDCCH may carry a slot timing value index in the downlink control information (DCI), where the index corresponds to one of the time slot timing value sets.
  • the timing value is used to indicate the number of time slots between the time slot in which the downlink information transmission is located and the time slot in which the uplink channel of the HARQ-ACK semi-static codebook is located.
  • the slot can be the time slot in which the last symbol of the downlink information transmission is located.
  • the slot timing value index carried in the DCI of the PDCCH may be 3, and the corresponding slot timing value is 8.
  • the slot timing value is p: if the terminal device detects one PDCCH, the PDCCH schedules or indicates a downlink information transmission, and the last symbol of the downlink information transmission is located in the time slot. Then the terminal device should feed back the HARQ-ACK information on the slot n, where n and p are non-negative integers, and mod represents the modulo operation.
  • the symbols in the present application are also referred to as time domain symbols, and may be orthogonal frequency division multiplexing (OFDM) symbols, or may be single carrier frequency division multiple access (SC-FDMA).
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier frequency division multiple access
  • OFDM with TP orthogonal frequency division multiplexing with transform precoding
  • the HARQ feedback information corresponding to the downlink information transmission is fed back to the network through the PUCCH or the PUSCH on the slot 13.
  • the distance between the device, that is, the time slot in which the HARQ feedback information is located and the time slot in which the downlink information is transmitted is equal to 8 time slots. Since the slot timing value set is configured as ⁇ 0, 1, 4, 8, 2, 3 ⁇ , after receiving the downlink information transmission with a slot timing value of 8, the terminal device may be according to the slot timing value set.
  • the values of the other elements ⁇ 0, 1, 4, 2, 3 ⁇ determine that the other downlink reception occasions correspond to slot 9, slot 10, slot 11, slot 12, and slot 13, respectively.
  • the HARQ feedback information corresponding to the downlink information received by the terminal device on the five downlink time slots may be combined with the HARQ feedback information corresponding to the downlink information transmitted in the time slot 5 to form a HARQ-ACK codebook on the time slot 13.
  • Feedback to network devices Whether there is downlink information transmission on time slot 9, time slot 10, time slot 11, time slot 12 and time slot 13, and whether the time slot timing value indicated by the network device in these downlink information transmissions is the same as that shown in FIG.
  • the gap timing values are consistent and related to the service requirements and the scheduling algorithm of the network device. When there is no downlink information transmission on time slot 9, time slot 10, time slot 11, time slot 12 and time slot 13, the terminal device will be in time slot 9, time slot 10, time slot 11, time slot 12 and time slot.
  • the terminal device performs the at least one downlink information according to the decoding result of the at least one downlink information.
  • the receiving timing corresponding to the time slot corresponding to the HARQ feedback message is transmitted at a position corresponding to the HARQ-ACK codebook. If the decoding is correct, the ACK is fed back. If the decoding is wrong, NACK is fed back.
  • the NR system For data transmission, the NR system supports two HARQ feedback modes, one is based on transport block (TB) HARQ feedback, that is, one TB feeds back one-bit ACK/NACK information; the other is based on code block group (code Block group, CBG) HARQ feedback, that is, a TB feeds back multiple bits of ACK/NACK information, and how many bits need to be fed back depends on how many CBGs a TB is split into.
  • TB transport block
  • CBG code Block group
  • the NR system also supports single codewords and double codeword transmission. Single codeword transmission transmits only one TB during one data transmission; dual codeword transmission transmits two TBs during one data transmission.
  • the TB-based HARQ feedback is only described by a single codeword transmission, that is, one HARQ feedback position only feeds back one-bit ACK/NACK information.
  • the embodiments of the present application can also be applied to a dual codeword transmission scenario and a CBG-based HARQ feedback scenario.
  • the number of bits included in the HARQ-ACK semi-static codebook is determined by the number of slot timing values in the slot timing value set, and can also be understood as being The number of downlink reception timings corresponding to the slot timing values in the slot timing value set is determined.
  • the HARQ feedback information corresponding to the downlink reception timing determined according to the slot timing value in the slot timing value set is combined into a bit stream in a certain order to form a HARQ-ACK semi-static codebook, and the codebook is carried on the PUCCH or the PUSCH.
  • the upper device is sent to the network device by the terminal device. This order is the order in which the index corresponding to the slot timing value in the slot timing value set is from small to large.
  • the HARQ-ACK semi-static codebook shown in FIG. 2 has a length of 6 bits.
  • the NR introduces a slot aggregation method, that is, one PDCCH schedules multiple slot resources for transmitting PDSCH.
  • the network device configures the aggregation factor for the terminal device through RRC signaling. Taking the aggregation factor equal to 4 as an example, the terminal device receives the PDSCH on the four time slots indicated by the PDCCH, and the transport block (TB) repeats the transmission four times using the same time domain resource on the four time slots.
  • the transport block TB4 adopts a slot aggregation transmission mode, and repeats transmission four times on the time-frequency resources of the slot 6 to the slot 9, and schedules the time slot indicated on the PDCCH of the TB4.
  • the timing value is 4, then on the time slot corresponding to the slot timing values 3, 2, and 1 in the slot timing value set ⁇ 0, 1, 4, 8, 2, 3 ⁇ of the terminal device configured by the network device,
  • the terminal device will no longer receive other PDSCHs, or will not receive PDSCH on the same time domain resource as PDSCH4, where PDSCH4 corresponds to a set of time domain symbol resources in the time slot.
  • a terminal device For slot-based scheduling, also referred to as Type A (type A) PDSCH, a terminal device will only receive one PDSCH in one time slot.
  • the scheduled time domain length may be one or more symbols, and one terminal device may receive one or more PDSCHs in one time slot, but A maximum of one PDSCH can be received on one symbol of a time slot.
  • the feedback bits in the HARQ-ACK codebook corresponding to slot timing values 3, 2, and 1 are redundant. Due to the introduction of the transmission mode of slot aggregation, redundant bits exist in the HARQ-ACK semi-static codebook. If these redundant bits can be removed, the transmission reliability of the uplink HARQ-ACK feedback information can be improved.
  • a downlink symbol configuration list may be predefined, and data transmission is scheduled.
  • the control channel only needs to indicate the downlink symbol configuration index to determine the time domain symbol resource used for data transmission.
  • Each downlink symbol configuration in the downlink symbol configuration list includes index information of a start downlink symbol, persistent symbol number information of a downlink symbol, and slot offset value information, where the slot offset value information is used to indicate when the control channel is located The number of slots of the gap between the slot and the slot in which the data channel corresponding to the control channel is located.
  • the downlink symbol configuration list may be pre-defined by the protocol, or may be configured by the network device to be configured by the RRC signaling to the terminal device.
  • the downlink symbol configuration list may be configured to the terminal device by using a PDSCH configuration list (pdsch-AllocationList) cell in the RRC signaling, where one row in the PDSCH configuration list is a PDSCH time domain resource in the RRC signaling.
  • Configure PDSCH-TimeDomainResourceAllocation
  • the index information of the start downlink symbol and the persistent symbol number information of the downlink symbol may be determined by start and length indicator value (SLIV) information.
  • Tables 1 and 2 are two examples of the list of downlink symbol configurations.
  • the present application does not limit the implementation method of the downlink symbol configuration list, nor does it limit the number of information included in the downlink symbol configuration list.
  • the index information of the start downlink symbol and the persistent symbol number information of the downlink symbol may also be indicated by a SLIV field, as shown in Table 2.
  • one downlink symbol configuration corresponds to one row in the downlink symbol configuration list.
  • the SLIV field has a bit length of 7 bits.
  • the SLIV field is also referred to as a startSymbolAndLength field.
  • the specific correspondence between the index information S of the SLIV and the start downlink symbol and the persistent symbol number information L of the downlink symbol is:
  • Downstream symbol configuration index Time slot offset value K 0 Starting downlink symbol index S Downstream symbol duration symbol number L 0 0 0 13 1 0 0 2 2 1 0 4 3 2 0 7
  • the present application provides a method for transmitting feedback information, which is used to improve transmission reliability of an uplink HARQ-ACK semi-static codebook.
  • the network device sends downlink information to the terminal device, and correspondingly, the terminal device receives downlink information from the network device.
  • the downlink information here may be downlink control information or downlink data information.
  • the downlink control information may be carried on the downlink control channel, and the downlink data information may be carried on the downlink data channel.
  • the downlink control channel takes the PDCCH as an example, and the downlink data channel takes the PDSCH as an example.
  • the transmission of the downlink information corresponds to the first slot timing value in the slot timing value set, and the first slot timing value is used to indicate the distance between the slot where the downlink information is transmitted and the slot where the uplink channel of the bearer code is located.
  • the codebook mentioned here may be the above-mentioned HARQ-ACK semi-static codebook, and the codebook includes feedback information corresponding to the downlink information.
  • the slot timing value set in the embodiment of the present application may be the slot timing value set K1 of the terminal device configured by the protocol pre-defined or configured by the RRC signaling after the network device determines, or may be K1.
  • the subset may also be derived based on the slot timing value set K1, for example, a new set of slot timing values derived from the slot timing value set K1 and the aggregation factor extension.
  • the number of timeslots between the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located may be one of the following:
  • the terminal device generates a codebook, where the feedback information corresponding to the downlink information is carried in the codebook.
  • the feedback information may be determined according to the decoding result of the downlink information received by the terminal device, and if the decoding is successful, the ACK is fed back, and if the decoding fails, the NACK is fed back.
  • the location of the feedback information corresponding to the downlink information in the codebook is related to the reception timing corresponding to the downlink information transmission, and the reception timing is related to the first slot timing value and the aggregation factor, and the aggregation factor is the number of times the downlink information is repeatedly transmitted.
  • the position of the feedback information corresponding to the downlink information in the codebook is related to the first slot timing value and the aggregation factor.
  • the terminal device sends a codebook to the network device.
  • the network device receives the codebook from the terminal device.
  • the network device demodulates and decodes the received codebook. Further, the network device may determine, according to the decoding result of the codebook, whether the downlink information is correctly received by the terminal device.
  • the demodulation and decoding of the received codebook can also be understood as demodulating and decoding the uplink PUCCH or PUSCH carrying the codebook. It can be understood that demodulation decoding may include only demodulation in some scenarios, and does not include decoding. For example, in some scenarios, it can be directly determined according to the demodulation result whether the terminal device correctly receives the downlink information.
  • the aggregation factor may be notified to the terminal device by the network device through high layer signaling or dynamic signaling.
  • the high layer signaling may refer to signaling sent by a higher layer protocol layer, and the upper layer protocol layer is at least one protocol layer above the physical layer.
  • the upper layer protocol layer may specifically include at least one of the following protocol layers: a medium access control (MAC) layer, a radio link control (RLC) layer, and a packet data convergence protocol (packet data convergence). Protocol, PDCP) layer, radio resource control (RRC) layer and non access stratum (NAS).
  • Dynamic signaling may refer to signaling sent by the physical layer, such as signaling or information sent by the downlink control information DCI.
  • the number of times the downlink information is repeatedly transmitted can be understood as the maximum number of times the downlink channel corresponding to the downlink information is transmitted, and the downlink channels carry the downlink information.
  • these downlink channels are indicated by the same DCI.
  • the aggregation factor is 4, and the downlink channel corresponding to the downlink information is the PDSCH, and the maximum number of times the PDSCH channel is transmitted is 4 times.
  • the PDSCHs all carry the downlink information, and the PDSCHs are scheduled by one DCI.
  • the aggregation factor is 4, and the downlink channel corresponding to the downlink information is the PDCCH, and the maximum number of times the PDCCH channel is transmitted is 4 times, and the PDCCHs all carry the downlink information.
  • the aggregation factor may be the number of times the downlink information between multiple time slots is repeatedly transmitted.
  • the plurality of downlink channels corresponding to the downlink information are downlink channels respectively in different time slots.
  • the reception timing is related to the slot timing value and the aggregation factor.
  • the slot timing value set further includes the second slot timing value
  • the first slot The timing value corresponds to the reception timing corresponding to the second slot timing value.
  • the first threshold is related to the aggregation factor F a .
  • the first threshold is equal to the aggregation factor F a ; or the first threshold is equal to F a + ⁇ , and the value of ⁇ may be an integer, for example, 1 Or -1; or, the first threshold is equal to ⁇ F a , and the value of ⁇ may be a positive real number; or, the first threshold is a function with F a as a variable.
  • the relationship between the foregoing receiving timing and the slot timing value and the aggregation factor may also be described as: when the absolute value of the difference between the first slot timing value and the second slot timing value is greater than or equal to the first threshold, The reception timing corresponding to the first slot timing value and the second slot timing value is different.
  • the first slot timing value is 0, the second slot timing value is 2, the first threshold is 4, and the absolute value of the difference between the first slot timing value and the second slot timing value is 2, 2 Less than the first threshold value 4, the reception timing corresponding to the first slot timing value and the second slot timing value is the same.
  • the first slot timing value is 0, the second slot timing value is 4, the first threshold is 4, and the absolute value of the difference between the first slot timing value and the second slot timing value is 4, 4 Equal to the first threshold value 4, the reception timing corresponding to the first slot timing value and the second slot timing value is different.
  • the foregoing determining conditions may also be different when the first threshold is different.
  • the relationship between the receiving timing and the slot timing value and the aggregation factor may be described as:
  • the absolute value of the difference between the first slot timing value and the second slot timing value is less than or equal to the first threshold
  • the first slot timing value and the second slot timing value correspond to the same reception timing.
  • the relationship between the reception timing and the slot timing value and the aggregation factor may also be described as: when the absolute value of the difference between the first slot timing value and the second slot timing value is greater than the first threshold, The reception timing corresponding to the first slot timing value and the second slot timing value is different.
  • the absolute value of the difference between the first slot timing value and the second slot timing value is equal to a larger value of the first slot timing value and the second slot timing value minus the first slot timing value and the second The value of the smaller of the slot timing values. It can be understood that the foregoing determining conditions may be implemented in multiple manners, and the difference between the first slot timing value and the second slot timing value may or may not take an absolute value.
  • the receiving timings corresponding to the first slot timing value and the second slot timing value are the same, and can also be understood as dividing the first slot timing value and the second slot timing value satisfying the condition into the same slot timing value. concentrated.
  • the first slot timing value is a slot timing value in the subset of the first slot timing values, and each slot timing value in the first slot timing value subset is a slot timing in the slot timing value set. a value; the first slot timing value subset includes at least two different slot timing values, and an absolute value of a difference between any two different slot timing values in the first slot timing value subset is less than the first
  • the threshold value, the first threshold value is related to the aggregation factor, and the aggregation factor is greater than 1.
  • the number of slot timing values included in the first slot timing value subset is less than or equal to an aggregation factor.
  • mapping to the same or the same in the HARQ-ACK codebook by mapping the downlink reception timing of the two slot timing values whose absolute value is less than one threshold to the same reception opportunity or multiple identical reception occasions Multiple feedback positions, so that redundant bits in the HARQ-ACK codebook can be effectively reduced, thereby improving the transmission reliability of the HARQ-ACK codebook.
  • the following describes the mapping method of the slot timing value of the network device and the terminal device to the receiving occasion.
  • One is to start mapping from the slot timing value with the smallest value in the slot timing value set, as shown in FIG. 5.
  • the receiving timing corresponding to the first slot timing value is a first receiving occasion
  • the first slot timing value is a slot in the set of slot timing values that is greater than or equal to the first value and smaller than the second value.
  • Timing value may also be understood as: when the first slot timing value satisfies the first condition, the receiving occasion corresponding to the first slot timing value is the first receiving occasion; and/or, when the first slot timing value is not satisfied In the first condition, the reception timing corresponding to the first slot timing value is other reception timing different from the first reception timing.
  • the first condition is greater than or equal to the first value and less than the second value.
  • the first value is equal to the slot timing value having the smallest value in the slot timing value set, and the second value is equal to the sum of the first value and the aggregation factor.
  • the mapping method is also understood to be that the first slot timing value is a slot timing value in the subset of the first slot timing values, and the first slot timing value subset is greater than or equal to the first value in the slot timing value set. And a time slot timing value smaller than the second value is composed.
  • mapping method is that the receiving timing corresponding to the first slot timing value is the first receiving timing, and the first slot timing value is the slot timing value of the slot timing value set that is smaller than the second value.
  • the foregoing mapping method may also be understood as: when the first slot timing value is smaller than the second value, the receiving timing corresponding to the first slot timing value is the first receiving occasion; and/or, when the first slot timing value is greater than or When the second value is equal to, the reception timing corresponding to the first time slot timing value is different from the other reception timing of the first reception timing.
  • the mapping method is also understood to be that the first slot timing value is a slot timing value in the subset of the first slot timing values, and the first slot timing value subset is smaller than the second value in the slot timing value set.
  • the slot timing value is composed.
  • the slot timing value of the slot timing value set K 1 greater than or equal to K 1,m and less than K 1,m +F a can be matched to the same receiving occasion or multiple identical receiving by the above-mentioned receiving timing mapping method. Timing; or, the slot timing value less than K 1, m + F a in the slot timing value set K 1 may be corresponding to the same receiving occasion or multiple identical receiving occasions, thereby reducing the HARQ-ACK codebook number of bits, the transmission reliability improved codebook, wherein, m is the slot timing set value K 1 value in the minimum value of the index in slot timing set K 1, F a polymerization factor.
  • the first receiving occasion may be one receiving occasion or multiple receiving occasions. For example, if it is based on 1 TB of HARQ feedback and only one PDSCH can be received in one slot, then the first reception opportunity is a reception opportunity. If it is based on 2 TB of HARQ feedback, or when more than one PDSCH is received in one slot, or CBG based HARQ feedback, then the first reception opportunity may be more than one reception opportunity.
  • the network device and the terminal device may set the value of K 1 slot timing to update the value of the slot timing set value and less than or equal to a first value of the second element of the slot timing value from slot timing set value Or removed; or, the elements of the slot timing value in the set of slot timing values that are less than the second value are removed from the set of slot timing values.
  • the slot timing set value K is equal to K 1 is greater than 1, and m is less than K 1, m + F a slot timing set K 1 values from a slot timing values remove; or the slot timing set value is less than K 1 K 1, m + F a slot from a slot timing timing values K 1 value set in is removed.
  • the mapping process in the above S510 may be performed cyclically until the updated slot timing value set is an empty set. It can be understood that the slot timing value included in the slot timing value set is divided into at least one slot timing value subset, and the element in each slot timing value subset is the time slot set value set. The gap timing value, the elements of any two slot timing value subsets do not intersect.
  • the receiving timing corresponding to the first slot timing value is the second receiving occasion, and the first slot timing value is greater than or equal to the third value and less than the fourth value in the slot timing value set.
  • the slot timing value; or, the receiving timing corresponding to the first slot timing value is a second receiving timing, and the first slot timing value is a slot timing value smaller than the fourth value in the slot timing value set.
  • the mapping method is equivalent to: when the first time slot timing value is greater than or equal to the third value and less than the fourth value, the receiving time corresponding to the first time slot value is the second receiving occasion; or the first time slot timing value is less than When the fourth value is used, the reception timing corresponding to the value of the first time slot is the second reception timing.
  • the third value is equal to the slot timing value in the set of slot timing values that is greater than or equal to the second value and the smallest value
  • the fourth value is equal to the sum of the third value and the aggregation factor.
  • the mapping method is also understood to be that the first slot timing value is a slot timing value in the first slot timing value subset, and the first slot timing value subset is greater than or equal to the third value in the slot timing value set. And the slot timing value is less than the fourth value, or the first slot timing value subset is composed of the slot timing value of the slot timing value set smaller than the fourth value.
  • the result shown in FIG. 6 can be obtained, that is, the slot timing values 0, 1, 2, and 3 correspond to the same receiving occasion or A plurality of identical receiving occasions, corresponding to the same feedback position in the codebook, that is, only feedback information corresponding to one of the slot timing values 0, 1, 2, and 3 can be fed back at the feedback position of the codebook.
  • the feedback information contains at least one bit. It can be understood that when there is no downlink information transmission on the time slots corresponding to the slot timing values 0, 1, 2, and 3, the terminal device sends feedback information at the feedback position, and the feedback information includes at least one NACK.
  • the terminal device When there is a downlink information transmission on the time slot corresponding to the slot timing value 0, 1, 2 or 3, the terminal device sends the feedback information at the feedback position according to the decoding result of the downlink information.
  • the feedback information contains at least one bit. If the decoding is correct, an ACK is fed back at the feedback position. If the decoding is wrong, NACK is fed back at the feedback position.
  • the other is to start mapping from the slot timing value with the largest value in the slot timing value set, as shown in FIG.
  • the receiving timing corresponding to the first slot timing value is a first receiving occasion
  • the first slot timing value is a slot in the set of slot timing values that is greater than the second value and less than or equal to the first value.
  • Timing value may also be understood as: when the first slot timing value satisfies the second condition, the receiving occasion corresponding to the first slot timing value is the first receiving occasion; and/or, when the first slot timing value is not satisfied In the second condition, the reception timing corresponding to the first slot timing value is other reception timing different from the first reception timing.
  • the second condition is greater than the second value and less than or equal to the first value.
  • the first value is equal to the slot timing value having the largest value in the slot timing value set, and the second value is equal to the difference between the first value and the aggregation factor.
  • the mapping method is also understood to be that the first slot timing value is a slot timing value in the subset of the first slot timing values, and the first slot timing value subset is greater than the second value by the slot timing value set and A time slot timing value that is less than or equal to the first value.
  • mapping method is: the receiving timing corresponding to the first slot timing value is a first receiving occasion, and the first slot timing value is a slot timing value greater than the second value in the slot timing value set.
  • the mapping method may also be understood as: when the first slot timing value is greater than the second value, the receiving timing corresponding to the first slot timing value is the first receiving occasion; and/or, when the first slot timing value is less than or When the second value is equal to, the reception timing corresponding to the first time slot timing value is different from the other reception timing of the first reception timing.
  • the mapping method is also understood to be that the first slot timing value is a slot timing value in the subset of the first slot timing values, and the first slot timing value subset is greater than the second value in the slot timing value set.
  • the slot timing value is composed.
  • the slot timing value of the slot timing value set K 1 greater than K 1,m -F a and less than or equal to K 1,m may be corresponding to the same receiving occasion or multiple identical receiving by the above-mentioned receiving timing mapping method. Timing; or, the slot timing value greater than K 1, m -F a in the slot timing value set K 1 may be corresponding to the same receiving occasion or multiple identical receiving occasions, thereby reducing the HARQ-ACK codebook number of bits, the transmission reliability improved codebook, wherein, m is the slot timing set value K 1 in the maximum value of the index in slot timing set value of K 1, F a polymerization factor.
  • the network device and the terminal device may slot timing set value K 1 is updated. For example, removing an element of the slot timing value set that is greater than the second value and less than or equal to the first value from the slot timing value set; or, when the slot timing value set is greater than the second value The elements of the slot timing value are removed from the set of slot timing values.
  • the slot timing is greater than the value set K 1 K 1, m -F a 1 K or less, slot timing set K m values from a slot timing values Or removed; or, the slot timing value of the slot timing value set K 1 greater than K 1,m -F a is removed from the slot timing value set K 1 .
  • the mapping process in the above S710 may be performed cyclically until the updated slot timing value set is an empty set. It can be understood that the slot timing value included in the slot timing value set is divided into at least one slot timing value subset, and the element in each slot timing value subset is the time slot set value set. The gap timing value, the elements of any two slot timing value subsets do not intersect.
  • the receiving timing corresponding to the first slot timing value is the second receiving occasion, and the first slot timing value is greater than the fourth value and less than or equal to the third value in the slot timing value set.
  • the slot timing value; or, the receiving timing corresponding to the first slot timing value is a second receiving timing, and the first slot timing value is a slot timing value greater than a fourth value in the slot timing value set.
  • the mapping method is equivalent to: when the first time slot timing value is greater than the fourth value and less than or equal to the third value, the receiving time corresponding to the first time slot value is the second receiving occasion; or the first time slot timing value is greater than When the fourth value is used, the reception timing corresponding to the value of the first time slot is the second reception timing.
  • the third value is equal to the slot timing value of the slot timing value set that is less than or equal to the second value and has the largest value
  • the fourth value is equal to the difference between the third value and the aggregation factor.
  • the mapping method is also understood to be that the first slot timing value is a slot timing value in the subset of the first slot timing value, and the first slot timing value subset is greater than the fourth value by the slot timing value set and The slot timing value is less than or equal to the third value, or the first slot timing value subset is composed of slot timing values greater than the fourth value in the slot timing value set.
  • the result shown in FIG. 8 can be obtained, that is, the slot timing values 1, 2, 3, and 4 correspond to the same receiving occasion or A plurality of identical receiving occasions, corresponding to the same feedback position in the codebook, that is, only feedback information corresponding to one of the slot timing values 1, 2, 3, and 4 can be fed back at the feedback position of the codebook.
  • the feedback information contains at least one bit. It can be understood that when there is no downlink information transmission on the time slots corresponding to the slot timing values 0, 1, 2, and 3, the terminal device sends feedback information at the feedback position, and the feedback information includes at least one NACK.
  • the terminal device When there is a downlink information transmission on the time slot corresponding to the slot timing value 0, 1, 2 or 3, the terminal device sends the feedback information at the feedback position according to the decoding result of the downlink information.
  • the feedback information contains at least one bit. If the decoding is correct, an ACK is fed back at the feedback position. If the decoding is wrong, NACK is fed back at the feedback position.
  • the following describes how the terminal device determines the downlink receiving occasion, so that the terminal determines the length of the HARQ-ACK codebook and the position of the feedback information corresponding to the downlink information in the codebook according to the receiving timing, thereby reducing the bit length of the HARQ-ACK codebook and improving the HARQ.
  • - Transmission reliability of the ACK codebook It can be understood that the network device can also adopt the same process of determining the downlink receiving occasion, so as to further determine the location of the feedback information corresponding to the downlink information in the codebook, so that the network device understands the HARQ-ACK codebook and the terminal device. be consistent.
  • the slot timing value set K 1 of the terminal device is fixed to ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ . If the terminal needs to monitor 1_1 DCI PDCCH format, the network device through RRC signaling set value K 1 slot timing assigned to the terminal device. If the terminal device needs to monitor the PDCCH of the DCI format 1_0 and monitor the PDCCH of the DCI format 1_1, the terminal device determines through the RRC signaling and the slot timing value set ⁇ 1, 2, 3, 4, 5, 6, 7, 8 ⁇ . Set of slot timing values K 1 .
  • both the terminal device and the network device may determine the subset of the slot timing value corresponding to the slot timing value according to the following pseudo code.
  • the set of indexes K 1,s :
  • K 1 is the set size of 1 K, i.e. K 1 comprises a number of sets of elements;
  • k is the index of the slot timing value K 1,k in the set K 1 , and k is initially 0;
  • K 1,k is the slot timing value of the index number k in the slot timing value set K 1 ;
  • b k is an index of a subset of slot timing values corresponding to the slot timing value K 1,k ;
  • j is an index of a subset of slot timing values corresponding to the slot timing value, and j is initially 0;
  • Th1 is the first threshold value, and the first threshold value is related to the aggregation factor F a .
  • the first threshold value is related to the aggregation factor F a .
  • Method 1 Start determining the set K 1, s from the slot timing value with the smallest value in the slot timing value set.
  • M is the slot timing set values of the set value of the minimum value of the index in slot timing set in K 1 1 K;
  • K 1,k -K 1,m ⁇ Th1 can also be written as K 1,k ⁇ K 1,m +Th1; or, it can also be written as
  • the union of j with the set K 1, s can be understood as the union of the set containing only the element j with the set K 1,s .
  • Method 2 Determine the set K 1, s from the slot timing value with the largest value in the slot timing value set.
  • M is the slot timing set values of the set value of the maximum value of the slot timing index K 1 K 1 in the set;
  • K 1,m -K 1,k ⁇ Th1 can also be written as K 1,k >K 1,m +Th1; or, it can also be written as
  • the slot timing values K 1, k1 and K 1, k2 in the slot timing value set K 1 if the corresponding b k1 and b k2 are equal, the slot timing values K 1, k1 and K 1 are illustrated .
  • k2 belongs to the same subset of time slot timing values.
  • the slot timing values 0, 1, 2 and 3 in FIG. 6 belong to With the same set of slot timing values, the slot timing values 1, 2, 3, and 4 in Figure 8 belong to the same subset of slot timing values.
  • the same reception timing can correspond to the same multiple reception timings. For example, for non-slot scheduling, there may be multiple reception timings in one slot.
  • the same receiving occasion corresponds to the same feedback position in the HARQ-ACK codebook, and one feedback position may correspond to at least one bit.
  • the receiving occasion corresponding to the transmission of the downlink information is further related to an index of the first slot timing value subset in the slot timing value set.
  • the index of the reception timing corresponding to the transmission of the downlink information is determined according to the index of the subset of the first slot timing values in the slot timing value set.
  • the index of the first slot timing value subset in the slot timing value set means that the slot timing value set includes at least one slot timing value subset, and each slot timing in the slot timing value set The subset of values has a unique index in the set of time slot timing values.
  • the index of the reception timing corresponding to the transmission of the downlink information is an index of the subset of the first slot timing value in the slot timing value set.
  • the index of the reception timing corresponding to the transmission of the downlink information is the first An index of a subset of slot timing values in a set of slot timing values. Another possibility is that when at least one of the following two conditions is satisfied, the subset index of the first slot timing value subset in the slot timing value set corresponds to an index of multiple receiving occasions: terminal device support The ability to receive more than one PDSCH in one slot; the terminal device is instructed to receive more than one PDSCH in one slot.
  • the index of the reception timing corresponding to the transmission of the downlink information is one of the indexes of the plurality of reception timings.
  • the index of the receiving occasion corresponding to the transmission of the downlink information needs to be further determined according to the downlink symbol configuration corresponding to the transmission of the downlink information.
  • the network device or the terminal device can be in the order of the index values of the slot timing value subset in the slot timing value set from small to large.
  • the index of the reception timing corresponding to the subset of the slot timing values is sequentially determined.
  • the subset of slot timing values ⁇ 0, 1, 2, 3 ⁇ , the subset of slot timing values ⁇ 4 ⁇ , and the subset of slot timing values can be determined sequentially ⁇ 8 ⁇
  • the corresponding receiving timing indexes are 0, 1, and 2.
  • Another possible implementation is that for the subset of slot timing values as shown in FIG.
  • the slot timing value subset ⁇ 8 ⁇ , the slot timing value subset ⁇ 1, 2, 3, 4 ⁇ can be determined sequentially.
  • the index of the reception timing corresponding to the slot timing value subset ⁇ 0 ⁇ is 0, 1, and 2. It can be understood that the network device or the terminal device may also sequentially determine the index of the receiving occasion corresponding to the subset of the slot timing value according to the index value of the slot timing value subset in the order of the slot timing value set from the largest to the smallest.
  • the aggregation factor indicates the number of times the downlink information is continuously transmitted repeatedly in the time domain. If the time-frequency resource used for the repeated transmission conflicts with the uplink symbol, that is, at least one uplink symbol is included in one of the time-frequency resources of the repeated transmission.
  • the first processing mode is that the downlink information is no longer sent in the time slot in which the conflicting symbol is located, and the number of repeated transmissions is reduced once; the second processing mode may be that the repeated transmission is delayed by one time slot to continue transmission.
  • the downlink information of the PDCCH scheduling is repeatedly transmitted four times on slots 0, 1, 2, and 3, but one of the slots 2 is used for uplink transmission, and the downlink information is changed to slot 0 at this time.
  • 1, 3 and 4 are repeatedly transmitted four times, that is, the downlink information is not transmitted on the time slot that conflicts with the uplink symbol, and one time slot is delayed for repeated transmission.
  • the receiving timing is related to the first slot timing value, the aggregation factor, and the configured position of the uplink symbol.
  • the network device and the terminal device can determine the reception timing by using the first slot timing value, the aggregation factor, and the configuration position of the uplink symbol.
  • a plurality of slot timing values having a difference within a certain threshold are corresponding to the same slot timing value subset or corresponding to the same receiving occasion. Further, the plurality of slot timing values whose difference values are within a certain threshold are corresponding to the same feedback position in the HARQ-ACK codebook, thereby reducing the redundant bits.
  • the network device and the terminal device may not perform the above pseudo code determination, but directly use the prior art half.
  • the definition of the static codebook is not limited in this application.
  • the transmission resources determined according to the slot timing values in the subset of slot timing values and the aggregation factor partially overlap in the time domain, thereby causing the terminal device to have the timing value in the slot. If downlink data is received at the receiving occasion corresponding to one of the slot timing values in the set, other downlink data cannot be received on the same time domain symbol corresponding to another slot timing value in the slot timing value subset. Therefore, the number of receiving occasions corresponding to any one of the slot timing values in the subset of slot timing values can be determined by the number of receiving occasions corresponding to the subset of slot timing values.
  • the number of receiving occasions corresponding to the first slot timing value is equal to the number of receiving occasions corresponding to the subset of the first slot timing values.
  • the receiving timing corresponding to the first slot timing value includes a receiving occasion corresponding to the transmission of the downlink information, that is, the receiving occasion corresponding to the first slot timing value includes at least one receiving occasion, and the receiving of the downlink information is correspondingly received.
  • the timing is one of the reception timings corresponding to the first slot timing value.
  • the terminal device or the network device separately determines the receiving timing for each slot timing value, and then accumulates the number of receiving occasions corresponding to each slot timing value, and further determines the HARQ-ACK code according to the accumulated receiving timings.
  • the number of bits in this is greatly reduced, thereby effectively reducing the number of bits in the HARQ-ACK codebook.
  • the following describes in detail how the network device and the terminal device determine the number of receiving occasions corresponding to the subset of the first slot timing values.
  • the number of receiving occasions corresponding to the first slot timing value subset is equal to the number of receiving occasions corresponding to the first downlink symbol configuration set G1, wherein G1 is determined according to the first slot timing value subset. Specifically, G1 may be determined according to all slot timing values in the first slot timing value subset, and G1 may also be determined according to a certain slot timing value in the first slot timing value subset, or G1 may also be according to the At least two slot timing values in a subset of slot timing values are determined. G1 is a subset or a complete set of the downlink symbol configuration list. For a more detailed description of the downlink symbol configuration list, refer to the related description in Table 1 above.
  • the number of receiving occasions corresponding to G1 is equal to one under the condition that the UE does not support receiving multiple physical downlink data channels in one time slot or the UE is instructed not to receive multiple physical downlink data channels in one time slot.
  • the number of receiving occasions corresponding to G1 is the maximum number of downlink symbol configurations in the G1 that do not overlap in the time domain. It can be understood that the UE here supports multiple physical downlink data channels in one time slot, which may include two situations: one is that the UE supports multiple physical downlink data channels in one time slot; the other is that the UE supports one. A plurality of physical downlink data channels are received within the time slot and the UE is instructed to receive a plurality of physical downlink data channels in one time slot.
  • the network device and the terminal device may group the downlink symbol configurations in the first downlink symbol configuration set G1 according to the following method to obtain a plurality of downlink symbol configuration subsets SDSA(j), where j is a downlink symbol configuration subset SDSA(j)
  • the index in G1, j is a non-negative integer.
  • the minimum value of the symbol index of the last downlink symbol corresponding to the downlink symbol configuration in G1 is n. It can be understood that the symbol index of the last downlink symbol corresponding to the downlink symbol configuration is determined by the index information of the start downlink symbol in the downlink symbol configuration and the persistent symbol number information of the downlink symbol, that is, the symbol of the last downlink symbol. The index is the sum of the index of the starting downlink symbol and the number of consecutive symbols of the downlink symbol minus one.
  • Update G1 Delete the downlink symbol configuration in SDSA(j) from G1;
  • the value of update j is j plus 1.
  • G1 may be assigned to a temporary variable G1_TEMP before the grouping, and the operation of G1 is replaced with the operation of G1_TEMP in the above process, thereby G1 remains unchanged during this grouping.
  • the downlink symbol configuration set G1 composed of the downlink symbol configurations with indexes 1 to 7 shown in Table 1 is taken as an example.
  • the symbol index of the last downlink symbol corresponding to the downlink symbol configuration #1 in G1 is 1, which is the minimum value of the symbol index of the last downlink symbol corresponding to the downlink symbol configuration in G1. Therefore, the first execution of step (2) can result in n being equal to 1.
  • the number following the symbol # in this application may indicate the value of the index.
  • the symbol indexes of the downlink symbols of the downlink symbol configuration #1, the downlink symbol configuration #2, and the downlink symbol configuration #3 are both equal to 0. Therefore, the first step (3) is performed, and the downlink symbol configuration #1 and the downlink symbol configuration can be configured. #2 and downlink symbol configuration #3 are assigned to the same downstream symbol configuration subset SDSA(0).
  • G1 further includes downlink symbol configuration #4, downlink symbol configuration #5, downlink symbol configuration #6, and downlink symbol configuration #7.
  • the symbol index of the last downlink symbol corresponding to the downlink symbol configuration #4 in the updated G1 is 7, which is the symbol index of the last downlink symbol corresponding to the downlink symbol configuration in G1.
  • the symbol index of the start downlink symbol of the downlink symbol configuration #4 is 4, and the symbol index of the start downlink symbol of the downlink symbol configuration #5 is 7, so the second step (3) is performed, and the downlink symbol configuration #4 and Downstream symbol configuration #5 is assigned to the same downstream symbol configuration subset SDSA(1).
  • the downlink symbol configuration #6 and the downlink symbol configuration #7 are further included in G1.
  • the third step (3) is performed, and the downlink symbol configuration #6 can be allocated to the downlink symbol configuration subset SDSA(2), and only the downlink symbol configuration is included in the subset of downlink symbol allocation (SDSA). 6.
  • the fourth step (3) is performed, and the downlink symbol configuration #7 can be allocated to the downlink symbol configuration subset SDSA (3), and the downlink symbol configuration subset includes only the downlink symbol configuration #7.
  • the first downlink symbol configuration set G1 is divided into four downlink symbol configuration subsets SDSA(0), SDSA(1), SDSA(2), and SDSA(3), and the corresponding four subsets are
  • the indexes in G1 are 0, 1, 2, and 3, respectively.
  • the downlink symbol configuration in the first downlink symbol configuration set G1 may be grouped to obtain at least one downlink symbol configuration subset.
  • the total number of downlink symbol configuration subsets is the maximum number of downlink symbol configurations in G1 that do not overlap in the time domain.
  • the downlink symbol configuration C1 can always be found in the second SDSA.
  • the downlink symbol configuration C2 is found in the third SDSA, so that the downlink symbols corresponding to the downlink symbol configuration C1 and the downlink symbol configuration C2 do not overlap in the time domain.
  • the two downlink symbols do not overlap in the time domain, and it can be understood that the symbol indexes of the two downlink symbols are different.
  • the downlink symbols corresponding to all downlink symbol configurations in the first SDSA determined according to the above method partially or completely overlap in the time domain.
  • the network device does not schedule more than one PDSCH data in one time slot using more than one downlink symbol configuration in the same downlink symbol configuration subset. Therefore, all downlink symbol configurations in the same downlink symbol configuration subset can correspond to the same receiving opportunity, thereby effectively reducing the number of receiving occasions, and correspondingly reducing the number of feedback bits in the HARQ-ACK codebook.
  • the downlink symbol corresponding to the transmission of the downlink information is configured as a first downlink symbol configuration, and the first downlink symbol is configured as a downlink symbol configuration in the first SDSA.
  • the reception timing corresponding to the transmission of the downlink information is further related to the subset index of the first SDSA in G1.
  • the factor A is related to the factor B, and it can be understood that the information A can be determined according to the factor B.
  • the information A is the reception timing, and the index of the reception timing can be determined according to the factor B.
  • the index of the reception timing corresponding to the transmission of the downlink information may be determined according to the subset index of the first SDSA in G1.
  • the network device and the terminal device may sequentially determine the index of the receiving occasion corresponding to the downlink symbol configuration subset in G1 according to the index of the downlink symbol configuration subset in G1.
  • the first slot timing value subset there are two types of methods for determining the first downlink symbol configuration set G1 corresponding to the first slot timing value subset.
  • the first type the downlink symbol configuration set corresponding to each slot timing value in the first slot timing value subset is a union, and the downlink symbol configuration set corresponding to the first slot timing value subset is obtained.
  • G1 is a union of a downlink symbol configuration set corresponding to each slot timing value in the first slot timing value subset, where the downlink symbol configuration set corresponding to each slot timing value is a subset of the downlink symbol configuration list. Or the complete works.
  • the first downlink symbol configuration set G1 corresponding to the first slot timing value subset is corresponding to the slot timing value 0.
  • Method 1A Determine the validity of the downlink symbol configuration in the downlink symbol configuration list according to a single downlink time slot corresponding to the slot timing value, thereby further determining the downlink symbol configuration corresponding to the slot timing value composed of the effective downlink symbol configuration. set.
  • the G2 does not include the second downlink symbol configuration in the downlink symbol configuration list that satisfies the following conditions:
  • the downlink symbol corresponding to the second downlink symbol configuration partially or completely overlaps with the uplink symbol in the first time slot T1, or the control channel monitoring timing is not included in the second time slot T2.
  • the downlink symbol corresponding to the second downlink symbol configuration is determined by the index information of the start downlink symbol and the persistent symbol number information of the downlink symbol in the second downlink symbol configuration.
  • the control channel monitoring occasion may be a physical downlink control channel monitoring occasion (PDCCH monitoring occasion).
  • the PDCCH monitoring occasion may be configured for a certain type of PDCCH, for example, a PDCCH monitoring occasion may be separately configured for the UE-specific PDCCH and the common PDCCH, respectively.
  • the not included control channel listening occasion herein may be a PDCCH monitoring occasion that does not include a certain type of PDCCH.
  • the configured PDCCH monitoring occasion may be unavailable. For example, after a bandwidth part (BWP) handover occurs, the PDCCH monitoring occasion configured before the BWP handover is unavailable.
  • BWP bandwidth part
  • a commonly configured PDCCH monitoring occasion is also unavailable for receiving a UE-specific PDCCH.
  • the PDCCH monitoring occasion overlaps with the configured uplink symbol time domain, the PDCCH monitoring occasion is considered to be unavailable.
  • the PDCCH monitoring occasion is not included.
  • the downlink symbol corresponding to the second downlink symbol configuration partially or completely overlaps with the uplink symbol in the first time slot T1, which means that at least one downlink symbol in the downlink symbol corresponding to the second downlink symbol configuration and the uplink in the first time slot T1 Symbols overlap in the time domain, ie include the same symbol index.
  • the slot index of T1 is 13, and T1 may also be referred to as time.
  • the slot 13 and the downlink symbol corresponding to the second downlink symbol configuration partially or completely overlap with the uplink symbol in the first time slot T1 means that at least one of the symbol corresponding to the symbol index 0 and the symbol index 1 in the slot 13 is uplink. symbol.
  • the network device does not use the second downlink symbol configuration for downlink data scheduling on the first time slot T1.
  • the terminal device does not perform data reception and processing even if the network device uses the second downlink symbol configuration for downlink data scheduling on the first time slot T1, so the second downlink symbol configuration is considered to be an invalid downlink symbol configuration.
  • the second downlink symbol configuration may be disregarded when calculating the number of downlink reception occasions.
  • the second downlink symbol configuration is also an invalid downlink symbol configuration, and the network device does not use the second downlink symbol configuration for downlink data scheduling.
  • T1 is a time slot determined according to the slot timing value ST1 and the slot in which the uplink channel of the bearer codebook is located.
  • the slot index of T1 may be equal to the index of the slot in which the uplink channel of the codebook is located minus the slot timing value ST1.
  • the index of the slot in which the uplink channel carrying the codebook is located is n
  • the value of the slot timing value ST1 is ST1
  • the slot index of T1 (n-ST1).
  • the difference is modulo the number of slots included in one radio frame as a slot index of T1.
  • the slot index of T1 (n - ST1) mod M
  • M is the number of slots included in one radio frame
  • mod represents the modulo operation.
  • M is 10; for a subcarrier spacing of 30 kHz, M is 20; for a subcarrier spacing of 60 kHz, M is 40; for a subcarrier spacing of 120 kHz, M Is 80; for a subcarrier spacing of 240 kHz, M is 160.
  • T2 is a time slot determined according to the slot timing value ST1, the slot offset value information in the second downlink symbol configuration, the aggregation factor, and the slot in which the uplink channel of the bearer codebook is located.
  • the slot index T2 may be equal to the carrier index is located upstream channel timeslots of the present minus the slot timing code value ST1, slot offset value information and a polymerization factor K0 F a three second downlink symbol configuration Add 1 to the sum.
  • the slot index of T2 (n - ST1 - K0 - F a +1).
  • the calculation result may be further modulo the number of slots included in one radio frame as a slot index of T2.
  • the slot index of T2 (n - ST1 - K0 - F a +1) mod M.
  • Method 1A has another possible implementation.
  • the G2 is composed of the seventh downlink symbol configuration in the downlink symbol configuration list that satisfies the following conditions:
  • the downlink symbol corresponding to the seventh downlink symbol configuration and the uplink symbol in the fifth time slot T5 do not overlap in the time domain, and the sixth time slot T6 includes at least one control channel monitoring opportunity.
  • the downlink symbol corresponding to the seventh downlink symbol configuration is determined by the index information of the start downlink symbol and the persistent symbol number information of the downlink symbol in the seventh downlink symbol configuration.
  • T5 is a time slot determined according to ST1 and the time slot in which the uplink channel of the bearer codebook is located.
  • T6 is a time slot determined according to the slot offset value information in the ST1 and seventh downlink symbol configurations, the aggregation factor, and the time slot in which the uplink channel of the bearer codebook is located.
  • the seventh downlink symbol configuration is different from the second downlink symbol configuration.
  • the downlink symbol configuration list is formed by the seventh downlink symbol configuration and the second downlink symbol configuration.
  • the determination process of the T5 can be directly obtained by referring to the determining process of the above T1, and the determining method of the T6 can be directly obtained by referring to the determining method of the above T2, and no further description is provided herein.
  • Method 1B Considering an aggregation factor, determining validity of a downlink symbol configuration in a downlink symbol configuration list according to consecutive consecutive downlink time slots corresponding to a slot timing value, thereby further determining the slot timing composed of a valid downlink symbol configuration.
  • the G3 does not include the third downlink symbol configuration in the downlink symbol configuration list that satisfies the following conditions:
  • the downlink symbols corresponding to the third downlink symbol configuration partially or completely overlap with the uplink symbols of each time slot in the first time slot set TG1, or the control channel monitoring timing is not included in the third time slot T3.
  • the downlink symbol corresponding to the third downlink symbol configuration is determined by the index information of the start downlink symbol in the third downlink symbol configuration and the persistent symbol number information of the downlink symbol.
  • the time slot corresponding to the slot in the first slot set TG1 is taken as an example.
  • the set of indexes is ⁇ 10, 11, 12, 13 ⁇ , and the downlink symbols corresponding to the third downlink symbol configuration partially overlap or overlap with the uplink symbols of each slot in the first slot set TG1, which means At least one of symbol 0 and symbol 1 of each slot of a slot set TG1 is an up symbol.
  • TG1 is a set consisting of time slots determined according to the ST2, the aggregation factor, and the time slot in which the uplink channel of the bearer codebook is located.
  • the first time slot is determined according to the time slot timing value ST2 and the time slot of the uplink channel of the bearer code book
  • TG1 is a consecutive multiple time slots forwarded based on the reference time slot, including This reference slot itself.
  • the number of slots included in TG1 is equal to the aggregation factor F a .
  • the slot index of the slot in which the uplink channel of the codebook is located is n
  • the value of the slot timing value ST1 is ST1.
  • the set of slot indexes corresponding to the slot in TG1 is: ⁇ n- ST1, n–ST1–1,...,n-ST1-F a +1 ⁇ .
  • the difference is modulo the number of slots included in one radio frame as a slot index corresponding to the slot in TG1. That is, the set of slot indices corresponding to the slots in TG1 is ⁇ (n-ST1) mod M, (n - ST1 - 1) mod M, ..., (n - ST1 - F a +1) mod M ⁇ .
  • T3 is a time slot determined according to the slot offset value information in the ST2, the third downlink symbol configuration, the aggregation factor, and the time slot in which the uplink channel of the bearer codebook is located.
  • the determination method of T3 can be directly obtained by referring to the determination method of T2 in the method 1A, and no further description is made here.
  • Method 1B has another possible implementation.
  • the G3 is composed of the eighth downlink symbol configuration in the downlink symbol configuration list that satisfies the following conditions:
  • the downlink symbol corresponding to the eighth downlink symbol configuration and the uplink symbol of at least one slot in the first slot set TG1 do not overlap in the time domain, and the seventh time slot T7 includes at least one control channel listening occasion.
  • the downlink symbol corresponding to the eighth downlink symbol configuration is determined by the index information of the start downlink symbol and the persistent symbol number information of the downlink symbol in the eighth downlink symbol configuration.
  • TG1 is a set consisting of time slots determined according to the ST2, the aggregation factor, and the time slot in which the uplink channel of the bearer codebook is located.
  • T7 is a time slot determined according to the slot offset value information in the ST2 and eighth downlink symbol configurations, the aggregation factor, and the time slot in which the uplink channel of the bearer codebook is located.
  • the eighth downlink symbol configuration is different from the third downlink symbol configuration.
  • the downlink symbol configuration list is composed of an eighth downlink symbol configuration and a third downlink symbol configuration.
  • the second type configuring each downlink symbol in the downlink symbol configuration list, and determining whether the downlink symbol configuration is valid by comparing the validity of the downlink symbol configuration in the multiple slots corresponding to the subset of the first slot timing value. And thereby determining a set of downlink symbol configurations corresponding to the subset of first slot timing values consisting of valid downlink symbol configurations.
  • Method 2A simultaneously determining a single downlink time slot corresponding to the slot timing value in the first slot timing value subset, determining the validity of the downlink symbol configuration in the downlink symbol configuration list, thereby further determining that the effective downlink symbol configuration is composed
  • G1 does not include the fourth downlink symbol configuration in the downlink symbol configuration list that satisfies the following conditions:
  • the downlink symbol corresponding to the fourth downlink symbol configuration For each time slot TG2_T in the second time slot set TG2, the downlink symbol corresponding to the fourth downlink symbol configuration partially or completely overlaps with the uplink symbol of the TG2_T, or the control channel monitor is not included in the fourth time slot T4 corresponding to the TG2_T. opportunity.
  • the downlink symbol corresponding to the fourth downlink symbol configuration is determined by the index information of the start downlink symbol in the fourth downlink symbol configuration and the persistent symbol number information of the downlink symbol.
  • the downlink symbol corresponding to the fourth downlink symbol configuration partially or completely overlaps with the uplink symbol of the TG2_T, which means that at least one downlink symbol in the downlink symbol corresponding to the fourth downlink symbol configuration overlaps with the uplink symbol in the time slot TG2_T in the time domain. That is, the same symbol index is included.
  • the control channel listening timing is not included in the fourth time slot T4 corresponding to the time slot TG2_T, and it can be understood that at least one control channel monitoring opportunity is not included in T4.
  • Each time slot in TG2 has a one-to-one correspondence with each time slot timing value in the first time slot timing value subset.
  • TG2_T may be a time slot determined according to the slot timing value in the subset of the first slot timing value and the slot in which the uplink channel of the bearer code is located.
  • the slot index of the TG2_T may be equal to the slot index of the slot in which the uplink channel of the codebook is located minus one slot timing value in the subset of the first slot timing value.
  • the number of time slots included in TG2 is equal to the number of time slot timing values included in the subset of the first time slot timing values.
  • the index of the time slot in which the uplink channel carrying the codebook is located is n
  • all the time slot timing values included in the subset of the first time slot timing value are ST1, ST2, ST3, and ST4, and then in the second time slot set TG2.
  • the set of slot indices corresponding to the slot is ⁇ (n-ST1), (n-ST2), (n-ST3), (n-ST4) ⁇ .
  • the difference value M may be further modulo as the slot index corresponding to the time slot in the TG2. That is, the set of slot indices corresponding to the slots in TG2 is ⁇ (n-ST1) mod M, (n-ST2) mod M, (n-ST3) mod M, (n-ST4) mod M ⁇ .
  • M refer to the related description of M in Method 1A, and no further description is given here.
  • T4 is a slot timing value according to a first slot timing value subset corresponding to TG2_T, a slot offset value information in a fourth downlink symbol configuration, an aggregation factor, and a slot determined by a slot in which the uplink channel of the bearer codebook is located.
  • the index of T4 may be equal to the index of the time slot of the uplink channel carrying the codebook minus the slot timing value, the slot offset value information K0 and the aggregation factor F a of the fourth downlink symbol configuration. plus 1.
  • the slot index of the slot in which the uplink channel carrying the codebook is located is n
  • all slot timing values included in the subset of the first slot timing value are ST1, ST2, ST3, and ST4
  • the slot index of T4 is respectively The values are (n-ST1-K0-F a +1), (n-ST2-K0-F a +1), (n-ST3-K0-F a +1), and (n-ST4-K0-F a +1).
  • the foregoing calculation result may be further modulo M as a slot index of T4.
  • the slot index of T4 takes values of (n-ST1-K0-F a +1) mod M, (n-ST2-K0-F a +1) mod M, (n-ST3-K0-F a, respectively). +1) mod M and (n-ST4-K0-F a +1) mod M.
  • G1 is composed of a ninth downlink symbol configuration in the downlink symbol configuration list that satisfies the following conditions:
  • the downlink symbol corresponding to the ninth downlink symbol configuration does not overlap with the uplink symbol time domain of at least one time slot TG2_T of the second time slot set TG2, and the eighth time slot T8 corresponding to the TG2_T includes at least one control channel monitoring opportunity. .
  • the downlink symbol corresponding to the ninth downlink symbol configuration is determined by the index information of the start downlink symbol and the persistent symbol number information of the downlink symbol in the ninth downlink symbol configuration.
  • Each time slot in TG2 has a one-to-one correspondence with each time slot timing value in the first time slot timing value subset.
  • TG2_T may be a time slot determined according to the slot timing value in the subset of the first slot timing value and the slot in which the uplink channel of the codebook is located.
  • T8 is a slot timing value according to a first slot timing value subset corresponding to TG2_T, a slot offset value information in a ninth downlink symbol configuration, an aggregation factor, and a slot determined by a slot in which an uplink channel of a bearer codebook is located.
  • the determination method of T8 can be directly obtained by referring to the determination method of T4, and no further description is made here.
  • the ninth downlink symbol configuration is different from the fourth downlink symbol configuration.
  • the downlink symbol configuration list is composed of a ninth downlink symbol configuration and a fourth downlink symbol configuration.
  • Method 2B1 Considering an aggregation factor, determining validity of a downlink symbol configuration in a downlink symbol configuration list according to a plurality of downlink time slots corresponding to the subset of the first slot timing value, thereby further determining a component consisting of a valid downlink symbol configuration A downlink symbol configuration set G1.
  • G1 does not include the fifth downlink symbol configuration in the downlink symbol configuration list that satisfies the following conditions:
  • the downlink symbols corresponding to the fifth downlink symbol configuration partially or completely overlap with the uplink symbols of each time slot in the third time slot set TG3, or each time slot in the fourth time slot set TG4 does not include the control channel monitoring opportunity.
  • the downlink symbol corresponding to the fifth downlink symbol configuration is determined by the index information of the start downlink symbol in the fifth downlink symbol configuration and the persistent symbol number information of the downlink symbol.
  • TG3 is a set consisting of time slots determined according to the slot timing value in the subset of the first slot timing value, the aggregation factor, and the slot in which the upstream channel of the bearer codebook is located.
  • TG4 is composed of a slot timing value according to a first slot timing value subset, a slot offset value information in a fifth downlink symbol configuration, an aggregation factor, and a slot determined by a slot in which the uplink channel of the bearer code is located. set.
  • the third time slot set TG3 may be determined according to the following method: (1) first referring to the first time slot set TG1 corresponding to each time slot timing value in the first time slot timing value subset determined in the foregoing method 1B; The first time slot set TG1 corresponding to each slot timing value in the first slot timing value subset is combined to obtain a third time slot set TG3.
  • the fourth slot set TG4 includes the number of slots equal to the number of slot timing values in the first slot timing value set.
  • the time slot in TG4 is in one-to-one correspondence with the time slot timing value in the first time slot timing value set.
  • the method for determining the time slot in the TG4 can be directly obtained by referring to the method for determining the second time slot T2 in the method 1A, and no further details are provided herein.
  • the fifth downlink symbol is configured as the downlink symbol configuration #1 in FIG. 11 (ie, the downlink symbol configuration with the row index 1 in Table 1), and the first slot timing value set is ⁇ 0, 1, 2 as shown in FIG. 6. , 3 ⁇ , the aggregation factor is equal to 4 as an example, the set of slot indices of the slots in the third slot set TG3 is ⁇ 7, 8, 9, 10, 11, 12, 13 ⁇ , and the fourth slot set TG4 The set of slot indices of the medium slot is ⁇ 7, 8, 9, 10 ⁇ .
  • G1 is composed of a tenth downlink symbol configuration in the downlink symbol configuration list that satisfies the following conditions:
  • the downlink symbol corresponding to the tenth downlink symbol configuration and the uplink symbol of at least one slot in the third slot set TG3 do not overlap in the time domain, and at least one slot in the sixth slot set TG6 includes at least one control. Channel monitoring opportunity.
  • the downlink symbol corresponding to the tenth downlink symbol configuration is determined by the index information of the start downlink symbol and the persistent symbol number information of the downlink symbol in the tenth downlink symbol configuration.
  • the TG6 is composed of a slot timing value according to a first slot timing value subset, a slot offset value information in a tenth downlink symbol configuration, an aggregation factor, and a slot determined by a time slot in which the uplink channel of the bearer code is located. set.
  • the number of slots included in the TG6 is equal to the number of slot timing values in the first slot timing value set.
  • the time slot in TG6 is in one-to-one correspondence with the time slot timing value in the first time slot timing value set.
  • the method for determining the time slot in the TG6 can be directly obtained by referring to the method for determining the second time slot T2 in the method 1A, and details are not described herein.
  • the tenth downlink symbol configuration is different from the fifth downlink symbol configuration.
  • the downlink symbol configuration list is composed of a tenth downlink symbol configuration and a fifth downlink symbol configuration.
  • Method 2B2 Considering the aggregation factor, determining the validity of the downlink symbol configuration in the downlink symbol configuration list according to the plurality of downlink time slots corresponding to the subset of the first slot timing value, thereby further determining the first component consisting of the effective downlink symbol configuration A downlink symbol configuration set G1.
  • the aggregation factor is considered, and a plurality of time slots corresponding to the subset of the timing value of the first time slot are determined, and whether the downlink symbol has a conflict with the uplink symbol and whether the control channel is monitored on the corresponding control channel time slot is combined. Judging, thereby determining the first downlink symbol configuration set G1.
  • G1 does not include the sixth downlink symbol configuration in the downlink symbol configuration list that satisfies the following conditions:
  • the downlink symbols corresponding to the sixth downlink symbol configuration For each time slot TG3_T in the third time slot set TG3, the downlink symbols corresponding to the sixth downlink symbol configuration partially or completely overlap with the uplink symbols of the TG3_T, or each time slot in the fifth time slot set TG5 corresponding to the TG3_T Does not include control channel monitoring opportunities.
  • the downlink symbol corresponding to the sixth downlink symbol configuration is determined by the index information of the start downlink symbol in the sixth downlink symbol configuration and the persistent symbol number information of the downlink symbol.
  • TG3 is a set consisting of time slots determined according to the slot timing value in the subset of the first slot timing value, the aggregation factor, and the slot in which the upstream channel of the bearer codebook is located.
  • determination method of TG3 reference may be made to the related description in Method 2B1, and no further description is made here.
  • the TG5 is determined by at least one slot timing value according to the first slot timing value subset corresponding to the TG3_T, the slot offset value information in the sixth downlink symbol configuration, the aggregation factor, and the time slot of the uplink channel where the bearer codebook is located.
  • TG3_T is a time slot in TG1
  • TG3_T is considered to correspond to ST2. In this way, at least one slot timing value ST2 corresponding to TG3_T can be determined.
  • the at least one third time slot T3 may be determined according to the at least one time slot timing value ST2 corresponding to the TG3_T, the time slot offset value information in the sixth downlink symbol configuration, the aggregation factor, and the time slot in which the uplink channel of the bearer codebook is located.
  • the determination method of T3 can be directly obtained by referring to the determination method of T2 in the method 1A, and no further description is made here.
  • These at least one third time slot T3 constitute a fifth time slot set TG5.
  • the number of slots included in the TG5 is equal to the number of slot timing values in the subset of the first slot timing values corresponding to the TG3_T.
  • the sixth downlink symbol is configured as the downlink symbol configuration #1 in FIG. 11 (ie, the downlink symbol configuration with index 1 in Table 1), and the first slot timing value set is ⁇ 0, 1, 2 as shown in FIG. 6. , 3 ⁇ , the aggregation factor is equal to 4, and the set of slot indices of the slots in the third slot set TG3 is ⁇ 7, 8, 9, 10, 11, 12, 13 ⁇ .
  • the set of slot indices of the slots in the fifth slot set TG5 corresponds to ⁇ 8, 9, 10 ⁇ .
  • G1 is composed of an eleventh downlink symbol configuration in the downlink symbol configuration list that satisfies the following conditions:
  • the downlink symbol corresponding to the eleventh downlink symbol configuration does not overlap with the uplink symbol time domain of at least one time slot TG3_T in the third time slot set TG3, and at least one time slot in the seventh time slot set TG7 corresponding to the TG3_T includes At least one control channel listens to the opportunity.
  • the downlink symbol corresponding to the eleventh downlink symbol configuration is determined by the index information of the start downlink symbol in the eleventh downlink symbol configuration and the persistent symbol number information of the downlink symbol.
  • TG3 is a set consisting of time slots determined according to the slot timing value in the subset of the first slot timing value, the aggregation factor, and the slot in which the upstream channel of the bearer codebook is located.
  • TG7 is an uplink channel according to at least one slot timing value according to the first slot timing value subset corresponding to the TG3_T, slot offset value information in an eleventh downlink symbol configuration, an aggregation factor, and a bearer codebook.
  • the determination method of TG7 can be directly obtained by referring to the determination method of the above TG5, and no further description is made here.
  • the eleventh downlink symbol configuration is different from the sixth downlink symbol configuration.
  • the downlink symbol configuration list is formed by the eleventh downlink symbol configuration and the sixth downlink symbol configuration.
  • the arrangement of the slot timing values in the subset of slot timing values may be arranged according to slot timing values, for example, from small to large ⁇ 0, 1, 2, 3 ⁇ or from large to small ⁇ 3 , 2, 1, 0 ⁇ , may also be arranged according to the index of the slot timing value, which is not limited in this application.
  • the method for determining the first downlink symbol configuration set G1 corresponding to the subset of the first slot timing values on the one hand, the invalid downlink symbol configuration may be removed from the downlink symbol configuration set, and the first slot timing value may be reduced.
  • the number of receiving occasions corresponding to the subset thereby reducing the number of feedback bits in the HARQ-ACK codebook; on the other hand, it can also ensure that each downlink scheduling has a corresponding feedback position in the HARQ-ACK codebook.
  • the present application further provides a method for transmitting feedback information, which is used to improve transmission reliability of an uplink HARQ-ACK semi-static codebook.
  • the network device sends downlink information to the terminal device, and correspondingly, the terminal device receives downlink information from the network device.
  • the downlink information here may be downlink control information or downlink data information.
  • the downlink control information may be carried on the downlink control channel, and the downlink data information may be carried on the downlink data channel.
  • the transmission of the downlink information corresponds to the first slot timing value in the subset of the first slot timing value, and the first slot timing value is used to indicate the slot where the downlink information is transmitted and the uplink channel of the bearer codebook.
  • the codebook includes feedback information corresponding to the downlink information, where the first slot timing value subset includes at least two different slot timing values.
  • the absolute value of the difference between any two different time slot timing values in the subset of the first time slot timing value is less than the first threshold, and the first threshold is related to the aggregation factor, and the aggregation factor is greater than 1.
  • the terminal device generates a codebook, and carries the feedback information corresponding to the downlink information in the codebook.
  • the feedback information may be determined according to the decoding result of the downlink information received by the terminal device, and if the decoding is successful, the ACK is fed back, and if the decoding fails, the NACK is fed back.
  • the terminal device sends a codebook to the network device, and correspondingly, the network device receives the codebook from the terminal device.
  • the network device demodulates and decodes the received codebook. Further, the network device may determine, according to the decoding result of the codebook, whether the downlink information is correctly received by the terminal device.
  • the demodulation and decoding of the received codebook can also be understood as demodulating and decoding the uplink PUCCH or PUSCH carrying the codebook.
  • the location of the feedback information corresponding to the downlink information in the codebook is related to the index of the reception timing corresponding to the transmission of the downlink information, and the index of the reception timing corresponding to the transmission of the downlink information is the corresponding value of the first slot timing value. At least one of the indexes of the receiving opportunity.
  • the number of receiving occasions corresponding to the first slot timing value is equal to the number of receiving occasions corresponding to the first downlink symbol configuration set G1, where G1 is determined according to the first slot timing value subset.
  • G1 is a subset or a complete set of the downlink symbol configuration list, where each downlink symbol configuration in the downlink symbol configuration list includes index information of the start downlink symbol, persistent symbol number information of the downlink symbol, and slot offset value information.
  • the time slot offset value information is used to indicate the number of time slots of the time slot between the time slot in which the control channel is located and the time slot in which the data channel corresponding to the control channel is located.
  • the index of the reception timing corresponding to the transmission of the downlink information is also related to the index of the subset of the first slot timing value in the slot timing value set.
  • the index of the receiving opportunity corresponding to the transmission of the downlink information is also related to the index of the first downlink symbol configuration subset SDSA in the G1, and the downlink symbol corresponding to the transmission of the downlink information is configured as the first downlink symbol.
  • the first downlink symbol is configured as a downlink symbol in the first SDSA, and the downlink symbols corresponding to all the downlink symbol configurations in the first SDSA are partially or completely overlapped in the time domain, and the downlink symbols corresponding to the downlink symbol configuration are configured by The index information of the start downlink symbol in the downlink symbol configuration and the persistent symbol number information of the downlink symbol are determined.
  • the repeated transmission of the PDSCH is taken as an example, but it can also be applied to the repeated transmission of the PDCCH.
  • the first threshold in the foregoing embodiment may be a smaller value of an aggregation factor of the PDCCH and an aggregation factor of the PDSCH. For example, when the aggregation factor of the PDCCH is 2 and the aggregation factor of the PDSCH is 4, the first threshold is 2.
  • the foregoing embodiment is described by taking a single carrier scenario as an example.
  • the technical solution of the present application can also be applied to a multi-carrier scenario or multiple bandwidth part (BWP) scenarios.
  • the bit length of the HARQ-ACK codebook is proportional to the number of carriers and the number of BWPs.
  • the order of the bit stream in the HARQ-ACK codebook described in the foregoing embodiment is for one carrier or one BWP.
  • the order of the bit stream between carriers or BWP is not limited in this application.
  • the functions performed by the network device in the foregoing method embodiments may also be implemented by a component applied to the network device, for example, by a chip applied to the network device; This is done by a component applied to the terminal device, for example, by a chip applied to the terminal device.
  • the terminal device and the network device include hardware structures and/or software modules corresponding to the execution of the respective functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in conjunction with the elements and method steps of the various examples described in the embodiments disclosed herein. Whether a function is executed by hardware or computer software to drive hardware depends on the specific application scenario and design constraints of the technical solution.
  • the communication device can be used to implement the functions of the terminal device or the network device in the foregoing method embodiments, and thus the beneficial effects of the foregoing method embodiments can also be achieved.
  • the communication device may be the terminal device 130 or the terminal device 140 as shown in FIG. 1 , or may be the radio access network device 120 as shown in FIG. 1 , or may be applied to the terminal device.
  • a component of the network device for example, may be a chip applied to the terminal device or the network device.
  • the communication device 900 includes a receiving unit 910, a processing unit 920, and a transmitting unit 930.
  • the communication device 1000 includes a processor 1010 and a transceiver 1020, wherein the processor 1010 is configured to perform the functions of the processing unit 920, and the transceiver 1020 is configured to perform the functions of the receiving unit 910 and the transmitting unit 930.
  • the processor 1010 and the transceiver 1020 are coupled to each other.
  • the transceiver 1020 can be a transceiver or transceiver circuit or an input and output interface.
  • the receiving unit 910 is configured to receive downlink information, where the transmission of the downlink information corresponds to the first slot timing in the set of slot timing values.
  • the first time slot timing value is used to indicate the number of time slots between the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located, and the codebook includes feedback information corresponding to the downlink information.
  • the processing unit 920 is configured to generate the codebook, where the location of the feedback information corresponding to the downlink information in the codebook is related to a receiving occasion corresponding to the transmission of the downlink information, the receiving timing and the first slot timing value and the aggregation factor Correlation, the aggregation factor is the number of times the downlink information is repeatedly transmitted.
  • the codebook here may be a HARQ-ACK semi-static codebook; and the sending unit 930 is configured to send the codebook.
  • the processing unit 920 is configured to update the slot timing value set, specifically, to: use an element from the slot timing value set that is greater than or equal to the first value and less than the second value of the slot timing value in the slot timing value set. Or removing the element of the slot timing value of the slot timing value set that is smaller than the second value from the slot timing value set, wherein the second value is equal to the sum of the first value and the aggregation factor, the first value Equal to the slot timing value with the smallest value in the slot timing value set.
  • the processing unit 920 is configured to update the slot timing value set, specifically, to: use an element from the slot timing value set that is greater than the second value and less than or equal to the first value of the slot timing value set in the slot timing value set. Or removing the elements of the slot timing value greater than the second value in the set of slot timing values from the set of slot timing values, wherein the first value is equal to the slot with the largest value in the set of slot timing values The timing value, the second value is equal to the difference between the first value and the aggregation factor.
  • the receiving unit 910 is configured to receive downlink information, where the transmission of the downlink information corresponds to the first subset of the first slot timing value subset.
  • a time slot timing value where the first time slot timing value is used to indicate a number of time slots between a time slot in which the downlink information is transmitted and a time slot in which the uplink channel of the codebook is located, where the codebook includes The feedback information corresponding to the downlink information, where the first slot timing value subset includes at least two different slot timing values;
  • the processing unit 920 is configured to generate the codebook, and the downlink information corresponding to the feedback information
  • the location in the codebook is related to the index of the reception timing corresponding to the transmission of the downlink information, and the index of the reception timing corresponding to the transmission of the downlink information is an index of at least one reception opportunity corresponding to the timing value of the first slot.
  • One of the receiving slots corresponding to the first slot timing value is determined according to the first
  • the terminal device chip When the communication device is a chip applied to a terminal device, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
  • the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or an antenna), and the information is sent by the network device to the terminal device; or the terminal device chip sends other modules in the terminal device (such as a radio frequency module or The antenna transmits information, which is sent by the terminal device to the network device.
  • the sending unit 930 is configured to send downlink information, where the transmission of the downlink information corresponds to the first slot timing in the set of slot timing values.
  • the first time slot timing value is used to indicate the number of time slots between the time slot in which the downlink information is transmitted and the time slot in which the uplink channel of the codebook is located, and the codebook includes feedback information corresponding to the downlink information.
  • the receiving unit 910 is configured to receive the codebook, where the location of the feedback information corresponding to the downlink information in the codebook is related to a receiving occasion corresponding to the transmission of the downlink information, the receiving timing and the first slot timing value and the aggregation factor Correlation, the aggregation factor is the number of times the downlink information is repeatedly transmitted, where the codebook can be a HARQ-ACK semi-static codebook; and the processing unit 920 is configured to demodulate and decode the codebook.
  • the processing unit 920 is configured to update the slot timing value set, specifically, to: use an element from the slot timing value set that is greater than or equal to the first value and less than the second value of the slot timing value in the slot timing value set. Or removing the element of the slot timing value of the slot timing value set that is smaller than the second value from the slot timing value set, wherein the second value is equal to the sum of the first value and the aggregation factor, the first value Equal to the slot timing value with the smallest value in the slot timing value set.
  • the processing unit 920 is configured to update the slot timing value set, specifically, to: use an element from the slot timing value set that is greater than the second value and less than or equal to the first value of the slot timing value set in the slot timing value set. Or removing the elements of the slot timing value greater than the second value in the set of slot timing values from the set of slot timing values, wherein the first value is equal to the slot with the largest value in the set of slot timing values The timing value, the second value is equal to the difference between the first value and the aggregation factor.
  • the method includes: a sending unit 930, configured to send downlink information, where the transmission of the downlink information corresponds to a first time slot timing value subset a first slot timing value, where the first slot timing value is used to indicate a number of slots of a distance between a slot in which the downlink information is transmitted and a slot in which the uplink channel of the codebook is located,
  • the codebook includes feedback information corresponding to the downlink information, where the first slot timing value subset includes at least two different slot timing values
  • the receiving unit 910 is configured to receive the codebook, the downlink
  • the location of the feedback information corresponding to the information in the codebook is related to the index of the reception timing corresponding to the transmission of the downlink information, and the index of the reception timing corresponding to the transmission of the downlink information is at least the timing corresponding to the first slot timing value.
  • a more detailed description of the foregoing receiving unit 910, the processing unit 920, and the sending unit 930 can be directly obtained by referring to the related description of the network device in the foregoing method embodiment, and details are not described herein.
  • the network device chip When the communication device is a chip applied to a network device, the network device chip implements the function of the network device in the foregoing method embodiment.
  • the network device chip receives information from other modules in the network device (such as a radio frequency module or an antenna), and the information is sent by the terminal device to the network device; or the network device chip sends other modules in the network device (such as a radio frequency module or The antenna transmits information, which is sent by the network device to the terminal device.
  • processors in the embodiment of the present application may be a central processing unit (CPU), and may be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof.
  • a general purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory (Programmable ROM). , PROM), Erasable PROM (EPROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Register, Hard Disk, Mobile Hard Disk, CD-ROM, or well known in the art Any other form of storage medium.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a network device or terminal device.
  • the processor and the storage medium can also exist as discrete components in the transmitting device or the receiving device.
  • the computer program product includes one or more computer programs or instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program or instructions may be stored in or transmitted by a computer readable storage medium.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server that integrates one or more available media.
  • the usable medium may be a magnetic medium such as a floppy disk, a hard disk, a magnetic tape, or an optical medium such as a DVD, or a semiconductor medium such as a solid state disk (SSD).
  • "at least one” means one or more, and "a plurality” means two or more.
  • the character “/” generally indicates that the contextual object is an “or” relationship; in the formula of the present application, the character "/" indicates that the contextual object is a "division". Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种反馈信息的传输方法和装置,涉及无线通信领域。该方法包括:根据时隙定时值和下行信息被重复传输的次数,确定该下行信息对应的反馈信息在HARQ-ACK码本中的位置,从而可以有效降低HARQ-ACK码本中的冗余比特,提高HARQ-ACK码本的传输可靠性。

Description

一种反馈信息的传输方法和装置
本申请要求于2018年04月04日提交中国国家知识产权局、申请号为201810302077.2、发明名称为“一种反馈信息的传输方法和装置”的中国专利申请,以及于2018年05月10日提交中国国家知识产权局、申请号为201810445299.X、发明名称为“一种反馈信息的传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请的实施例涉及无线通信领域,尤其涉及反馈信息的传输方法和装置。
背景技术
第五代(the fifth generation,5G)移动通信系统支持增强型移动宽带(enhanced mobile broadband,eMBB)业务、高可靠低时延通信(ultra reliable and low latency communications,URLLC)业务以及海量机器类通信(massive machine type communications,mMTC)业务。典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。
URLLC业务对时延和可靠性的要求都很高,为了提高URLLC业务数据传输的可靠性,可以采用时隙聚合的方式传输URLLC业务数据,即一个物理下行控制信道(physical downlink control channel,PDCCH)调度多个时隙资源用于传输物理下行共享信道(physical downlink shared channel,PDSCH)。
用户设备(user equipment,UE)接收到PDSCH后,根据PDSCH上承载的数据的译码结果,则在物理上行控制信道(physical uplink control channel,PUCCH)上或物理上行共享信道(physical uplink shared channel)上向网络设备反馈肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK)。这种数据传输机制也称为混合自动重传请求确认(hybrid automatic repeat request-acknowledgment,HARQ-ACK)机制。为了提高HARQ-ACK反馈的灵活性,5G新空口(new radio,NR)中引入了HARQ-ACK半静态码本反馈机制,即将不同接收时机接收到的PDSCH对应的HARQ-ACK反馈信息映射到同一个HARQ-ACK码本上同时反馈给网络设备。现有的HARQ-ACK半静态码本反馈机制中,一个下行接收时机至少对应HARQ-ACK码本中的一个比特位置,并没有考虑下行采用时隙聚合的传输方式,从而导致HARQ-ACK半静态码本中存在较多的冗余比特。
发明内容
本申请提供了一种反馈信息的传输方法和装置,可以有效降低HARQ-ACK码本中的冗余比特,提高HARQ-ACK码本的传输可靠性。
第一方面,提供了一种反馈信息的传输方法,包括:接收下行信息,所述下行信息的传输对应时隙定时值集合中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息;生成并发送所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机相关,所述接收时机与所述第一时隙定时值和聚合因子相关,所述聚合因子为所述下行信息被重复传输的次数。该反馈信息的传输方法的执行主体是通信装置,可以是终端设备也可以是应用于终端设备的组件,如应用于终端设备的芯片。以终端设备作为执行主体为例,终端设备根据时隙定时值和下行信息被重复传输的次数,确定该下行信息对应的反馈信息在HARQ-ACK码本中的位置,从而可以有效降低HARQ-ACK码本中的冗余比特,提高HARQ-ACK码本的传输可靠性。
第二方面,提供了一种反馈信息的传输方法,包括:发送下行信息,所述下行信息的传输对应时隙定时值集合中的第一时隙定时值,所述时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息;接收所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机相关,所述接收时机与所述第一时隙定时值和聚合因子相关,所述聚合因子为所述下行信息被重复传输的次数。该反馈信息的传输方法的执行主体是通信装置,可以是网络设备也可以是应用于网络设备的组件,如应用于网络设备的芯片。以网络设备作为执行主体为例,网络设备根据时隙定时值和下行信息被重复传输的次数,确定该下行信息对应的反馈信息在HARQ-ACK码本中的位置,从而可以有效降低HARQ-ACK码本中的冗余比特,提高HARQ-ACK码本的传输可靠性。通过本反馈信息的传输方法,可以使得网络设备与终端设备对HARQ-ACK码本的理解一致,使得终端设备和网络设备能够正常通信。
在第一方面或第二方面的一种可能的实现方式中,所述聚合因子大于1,所述时隙定时值集合还包括第二时隙定时值,所述第二时隙定时值与所述第一时隙定时值不同,当所述第一时隙定时值与所述第二时隙定时值的差值的绝对值小于第一门限值时,所述第一时隙定时值与所述第二时隙定时值对应的接收时机相同,所述第一门限值与所述聚合因子相关;或,当所述第一时隙定时值与所述第二时隙定时值的差值的绝对值大于或等于第一门限值时,所述第一时隙定时值与所述第二时隙定时值对应的接收时机不相同,所述第一门限值与所述聚合因子相关。通过将差值在一定范围内的时隙定时值对应的接收时机映射到相同的接收时机,进一步映射到HARQ-ACK码本中的相同的反馈位置,从而可以减少HARQ-ACK码本的比特长度,提高HARQ-ACK码本的传输可靠性。
在第一方面或第二方面的一种可能的实现方式中,所述下行信息为下行控制信息或下行数据信息,所述下行控制信息承载在下行控制信道上,所述下行数据信息承载在下行数据信道上,所述聚合因子为所述下行控制信道的聚合因子与所述下行数据信道的聚合因子中的较小值。通过本实现方式,使得本申请的实施例提供的反馈信息的传输方法可以适用于对PDCCH进行重复传输的场景。
在第一方面或第二方面的一种可能的实现方式中,所述第一时隙定时值为第一时隙定时值子集中的一个时隙定时值,所述第一时隙定时值子集中的每一个时隙定时值均为 所述时隙定时值集合中的时隙定时值;所述第一时隙定时值子集包括至少两个不同的时隙定时值,所述第一时隙定时值子集中的任意两个不同的时隙定时值之间的差值的绝对值小于第一门限值,所述第一门限值与所述聚合因子相关,所述聚合因子大于1。
在第一方面或第二方面的一种可能的实现方式中,所述第一时隙定时值对应的接收时机的数量等于所述第一时隙定时值子集对应的接收时机的数量,所述下行信息的传输对应的接收时机为所述第一时隙定时值对应的接收时机中的一个接收时机。
在第一方面或第二方面的一种可能的实现方式中,所述下行信息的传输对应的接收时机还与所述第一时隙定时值子集在所述时隙定时值集合中的索引相关。
在第一方面或第二方面的一种可能的实现方式中,所述第一时隙定时值子集对应的接收时机的数量等于第一下行符号配置集合G1对应的接收时机的数量,其中,所述第一下行符号配置集合G1是根据所述第一时隙定时值子集确定的;所述G1为下行符号配置列表的子集或全集,其中,所述下行符号配置列表中的每一个下行符号配置包括起始下行符号的索引信息、下行符号的持续符号数信息以及时隙偏移值信息,所述时隙偏移值信息用于指示控制信道所在的时隙和与所述控制信道对应的数据信道所在的时隙之间距离的时隙个数。
在第一方面或第二方面的一种可能的实现方式中,所述下行信息的传输对应的接收时机还与第一下行符号配置子集SDSA在所述G1中的索引相关,所述下行信息的传输所对应的下行符号配置为第一下行符号配置,所述第一下行符号配置为所述第一SDSA中的一个下行符号配置,所述第一SDSA中的所有下行符号配置对应的下行符号在时域上部分或全部重叠,所述下行符号配置对应的下行符号是由所述下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。
在第一方面或第二方面的一种可能的实现方式中,所述第一下行符号配置集合G1是根据所述第一时隙定时值子集确定的,具体包括:所述G1为所述第一时隙定时值子集中的每一个时隙定时值对应的下行符号配置集合的并集,其中,所述每一个时隙定时值对应的下行符号配置集合为所述下行符号配置列表的子集或全集。
在第一方面或第二方面的一种可能的实现方式中,第二下行符号配置集合G2为所述第一时隙定时值子集中的任意一个时隙定时值ST1对应的下行符号配置集合,所述G2不包括所述下行符号配置列表中满足以下条件的第二下行符号配置:所述第二下行符号配置对应的下行符号与第一时隙T1中的上行符号部分或全部重叠,或第二时隙T2中不包括控制信道监听时机;其中,所述第二下行符号配置对应的下行符号是由所述第二下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,所述T1为根据所述ST1和所述承载码本的上行信道所在时隙确定的时隙,所述T2为根据所述ST1、所述第二下行符号配置中的时隙偏移值信息、所述聚合因子和所述上行信道所在时隙确定的时隙。
在第一方面或第二方面的一种可能的实现方式中,第三下行符号配置集合G3为所述第一时隙定时值子集中的任意一个时隙定时值ST2对应的下行符号配置集合,所述G3不包括所述下行符号配置列表中满足以下条件的第三下行符号配置:所述第三下行符号配置对应的下行符号与第一时隙集合TG1中的每个时隙的上行符号均部分或全部重叠,或,第三时隙T3中不包括控制信道监听时机;其中,所述第三下行符号配置对应的下 行符号是由所述第三下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,所述TG1是由根据所述ST2、所述聚合因子和所述承载码本的上行信道所在时隙确定的时隙组成的集合,所述T3为根据所述ST2、所述第三下行符号配置中的时隙偏移值信息、所述聚合因子和所述上行信道所在时隙确定的时隙。
在第一方面或第二方面的一种可能的实现方式中,其特征在于,所述G1不包括所述下行符号配置列表中满足以下条件的第四下行符号配置:对于第二时隙集合TG2中的每个时隙TG2_T,所述第四下行符号配置对应的下行符号与所述TG2_T的上行符号部分或全部重叠,或,所述TG2_T对应的第四时隙T4中不包括控制信道监听时机;其中,所述第四下行符号配置对应的下行符号是由所述第四下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,所述TG2中的每个时隙与所述第一时隙定时值子集中的每个时隙定时值一一对应,所述TG2_T是根据所述第一时隙定时值子集中的时隙定时值和所述承载码本的上行信道所在时隙确定的时隙,所述T4为根据所述TG2_T对应的第一时隙定时值子集中的时隙定时值、所述第四下行符号配置中的时隙偏移值信息、所述聚合因子和所述上行信道所在时隙确定的时隙。
在第一方面或第二方面的一种可能的实现方式中,所述G1不包括所述下行符号配置列表中满足以下条件的第五下行符号配置:所述第五下行符号配置对应的下行符号与所述第三时隙集合TG3中每个时隙的上行符号均部分或全部重叠,或,所述第四时隙集合TG4中每个时隙都不包括控制信道监听时机;其中,所述第五下行符号配置对应的下行符号是由所述第五下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,所述TG3是由根据所述第一时隙定时值子集中的时隙定时值、所述聚合因子和所述承载码本的上行信道所在时隙确定的时隙组成的集合,所述TG4是由根据所述第一时隙定时值子集中的时隙定时值、所述第五下行符号配置中的时隙偏移值信息、所述聚合因子和所述上行信道所在时隙确定的时隙组成的集合。
在第一方面或第二方面的一种可能的实现方式中,所述G1不包括所述下行符号配置列表中满足以下条件的第六下行符号配置:对于第三时隙集合TG3中的每个时隙TG3_T,所述第六下行符号配置对应的下行符号与所述TG3_T的上行符号部分或全部重叠,或,所述TG3_T对应的第五时隙集合TG5中每个时隙都不包括控制信道监听时机;其中,所述第六下行符号配置对应的下行符号是由所述第六下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,所述TG3是由根据所述第一时隙定时值子集中的时隙定时值、所述聚合因子和所述承载码本的上行信道所在时隙确定的时隙组成的集合,所述TG5是由根据所述TG3_T对应的第一时隙定时值子集中的至少一个时隙定时值、所述第六下行符号配置中的时隙偏移值信息、所述聚合因子和所述上行信道所在时隙确定的时隙组成的集合。
第三方面,提供了一种反馈信息的传输方法,包括:接收下行信息,所述下行信息的传输对应第一时隙定时值子集中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息,其中,所述第一时隙定时值子集包括至少两个不同的时隙定时值;生成并发送所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机的索引相关,所述下行信息的传输对应的接 收时机的索引为所述第一时隙定时值对应的至少一个接收时机的索引中的一个;所述第一时隙定时值对应的接收时机的数量是根据所述第一时隙定时值子集确定的。该反馈信息的传输方法的执行主体是通信装置,可以是终端设备也可以是应用于终端设备的组件,如应用于终端设备的芯片。以终端设备作为执行主体为例,终端设备根据时隙定时值和下行信息被重复传输的次数,确定该下行信息对应的反馈信息在HARQ-ACK码本中的位置,从而可以有效降低HARQ-ACK码本中的冗余比特,提高HARQ-ACK码本的传输可靠性。
第四方面,提供了一种反馈信息的传输方法,包括:发送下行信息,所述下行信息的传输对应第一时隙定时值子集中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息,其中,所述第一时隙定时值子集包括至少两个不同的时隙定时值;接收所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机的索引相关,所述下行信息的传输对应的接收时机的索引为所述第一时隙定时值对应的至少一个接收时机的索引中的一个;所述第一时隙定时值对应的接收时机的数量是根据所述第一时隙定时值子集确定的。该反馈信息的传输方法的执行主体是通信装置,可以是网络设备也可以是应用于网络设备的组件,如应用于网络设备的芯片。以网络设备作为执行主体为例,网络设备根据时隙定时值和下行信息被重复传输的次数,确定该下行信息对应的反馈信息在HARQ-ACK码本中的位置,从而可以有效降低HARQ-ACK码本中的冗余比特,提高HARQ-ACK码本的传输可靠性。通过本反馈信息的传输方法,可以使得网络设备与终端设备对HARQ-ACK码本的理解一致,使得终端设备和网络设备能够正常通信。
在第三方面或第四方面的一种可能的实现方式中,所述第一时隙定时值对应的接收时机的数量是根据所述第一时隙定时值子集确定的,包括:所述第一时隙定时值对应的接收时机的数量等于第一下行符号配置集合G1对应的接收时机的数量,其中,所述G1是根据所述第一时隙定时值子集确定的;所述G1为下行符号配置列表的子集或全集,其中,所述下行符号配置列表中的每一个下行符号配置包括起始下行符号的索引信息、下行符号的持续符号数信息以及时隙偏移值信息,所述时隙偏移值信息用于指示控制信道所在的时隙和与所述控制信道对应的数据信道所在的时隙之间距离的时隙个数。
在第三方面或第四方面的一种可能的实现方式中,所述第一时隙定时值子集中的任意两个不同的时隙定时值之间的差值的绝对值小于第一门限值,所述第一门限值与所述聚合因子相关,所述聚合因子大于1。
在第三方面或第四方面的一种可能的实现方式中,所述下行信息的传输对应的接收时机的索引还与所述第一时隙定时值子集在所述时隙定时值集合中的索引相关。
在第三方面或第四方面的一种可能的实现方式中,所述下行信息的传输对应的接收时机的索引还与第一下行符号配置子集SDSA在所述G1中的索引相关,所述下行信息的传输所对应的下行符号配置为第一下行符号配置,所述第一下行符号配置为所述第一SDSA中的一个下行符号配置,所述第一SDSA中的所有下行符号配置对应的下行符号在时域上部分或全部重叠,所述下行符号配置对应的下行符号是由所述下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。
在第三方面或第四方面的一种可能的实现方式中,所述第一下行符号配置集合G1是根据所述第一时隙定时值子集确定的,具体包括:所述G1为所述第一时隙定时值子集中的每一个时隙定时值对应的下行符号配置集合的并集,其中,所述每一个时隙定时值对应的下行符号配置集合为所述下行符号配置列表的子集或全集。
在第三方面或第四方面的一种可能的实现方式中,第二下行符号配置集合G2为所述第一时隙定时值子集中的任意一个时隙定时值ST1对应的下行符号配置集合,所述G2不包括所述下行符号配置列表中满足以下条件的第二下行符号配置:所述第二下行符号配置对应的下行符号与第一时隙T1中的上行符号部分或全部重叠,或第二时隙T2中不包括控制信道监听时机;其中,所述第二下行符号配置对应的下行符号是由所述第二下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,所述T1为根据所述ST1和所述承载码本的上行信道所在时隙确定的时隙,所述T2为根据所述ST1、所述第二下行符号配置中的时隙偏移值信息、所述聚合因子和所述上行信道所在时隙确定的时隙。
在第三方面或第四方面的一种可能的实现方式中,第三下行符号配置集合G3为所述第一时隙定时值子集中的任意一个时隙定时值ST2对应的下行符号配置集合,所述G3不包括所述下行符号配置列表中满足以下条件的第三下行符号配置:所述第三下行符号配置对应的下行符号与第一时隙集合TG1中的每个时隙的上行符号均部分或全部重叠,或,第三时隙T3中不包括控制信道监听时机;其中,所述第三下行符号配置对应的下行符号是由所述第三下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,所述TG1是由根据所述ST2、所述聚合因子和所述承载码本的上行信道所在时隙确定的时隙组成的集合,所述T3为根据所述ST2、所述第三下行符号配置中的时隙偏移值信息、所述聚合因子和所述上行信道所在时隙确定的时隙。
在第三方面或第四方面的一种可能的实现方式中,所述G1不包括所述下行符号配置列表中满足以下条件的第四下行符号配置:对于第二时隙集合TG2中的每个时隙TG2_T,所述第四下行符号配置对应的下行符号与所述TG2_T的上行符号部分或全部重叠,或,所述TG2_T对应的第四时隙T4中不包括控制信道监听时机;其中,所述第四下行符号配置对应的下行符号是由所述第四下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,所述TG2中的每个时隙与所述第一时隙定时值子集中的每个时隙定时值一一对应,所述TG2_T是根据所述第一时隙定时值子集中的时隙定时值和所述承载码本的上行信道所在时隙确定的时隙,所述T4为根据所述TG2_T对应的第一时隙定时值子集中的时隙定时值、所述第四下行符号配置中的时隙偏移值信息、所述聚合因子和所述上行信道所在时隙确定的时隙。
在第三方面或第四方面的一种可能的实现方式中,所述G1不包括所述下行符号配置列表中满足以下条件的第五下行符号配置:所述第五下行符号配置对应的下行符号与所述第三时隙集合TG3中每个时隙的上行符号均部分或全部重叠,或,所述第四时隙集合TG4中每个时隙都不包括控制信道监听时机;其中,所述第五下行符号配置对应的下行符号是由所述第五下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,所述TG3是由根据所述第一时隙定时值子集中的时隙定时值、所述聚合因子和所述承载码本的上行信道所在时隙确定的时隙组成的集合,所述TG4是由根 据所述第一时隙定时值子集中的时隙定时值、所述第五下行符号配置中的时隙偏移值信息、所述聚合因子和所述上行信道所在时隙确定的时隙组成的集合。
在第三方面或第四方面的一种可能的实现方式中,所述G1不包括所述下行符号配置列表中满足以下条件的第六下行符号配置:对于第三时隙集合TG3中的每个时隙TG3_T,所述第六下行符号配置对应的下行符号与所述TG3_T的上行符号部分或全部重叠,或,所述TG3_T对应的第五时隙集合TG5中每个时隙都不包括控制信道监听时机;其中,所述第六下行符号配置对应的下行符号是由所述第六下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,所述TG3是由根据所述第一时隙定时值子集中的时隙定时值、所述聚合因子和所述承载码本的上行信道所在时隙确定的时隙组成的集合,所述TG5是由根据所述TG3_T对应的第一时隙定时值子集中的至少一个时隙定时值、所述第六下行符号配置中的时隙偏移值信息、所述聚合因子和所述上行信道所在时隙确定的时隙组成的集合。
第五方面,提供了一种通信装置,包括:接收单元,用于接收下行信息,所述下行信息的传输对应时隙定时值集合中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息;处理单元,用于生成所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机相关,所述接收时机与所述第一时隙定时值和聚合因子相关,所述聚合因子为所述下行信息被重复传输的次数;发送单元,用于发送所述码本。该通信装置可以是终端设备也可以是应用于终端设备的组件,如应用于终端设备的芯片。
在第五方面的一种可能的实现方式中,处理单元用于更新所述时隙定时值集合,具体用于:将所述时隙定时值集合中大于等于所述第一数值且小于所述第二数值的时隙定时值的元素从所述时隙定时值集合中去掉;或,将所述时隙定时值集合中小于所述第二数值的时隙定时值的元素从所述时隙定时值集合中去掉。其中,所述第二数值等于第一数值与所述聚合因子之和,所述第一数值等于所述时隙定时值集合中取值最小的时隙定时值。
在第五方面的一种可能的实现方式中,处理单元用于更新时隙定时值集合,具体用于:将时隙定时值集合中大于第二数值且小于等于第一数值的时隙定时值的元素从时隙定时值集合中去掉;或,将时隙定时值集合中大于第二数值的时隙定时值的元素从时隙定时值集合中去掉,其中,第一数值等于时隙定时值集合中取值最大的时隙定时值,第二数值等于第一数值与聚合因子之差。
第六方面,提供了一种通信装置,包括:发送单元,用于发送下行信息,所述下行信息的传输对应时隙定时值集合中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息;接收单元,用于接收所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机相关,所述接收时机与所述第一时隙定时值和聚合因子相关,所述聚合因子为所述下行信息被重复传输的次数;处理单元,用于对所述码本进行解调译码。该通信装置可以是网络设备也可以是应用于网络设备的组件,如应用于网络设备的芯片。
第七方面,提供了一种通信装置,包括:接收单元,用于接收下行信息,所述下行信息的传输对应第一时隙定时值子集中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息,其中,所述第一时隙定时值子集包括至少两个不同的时隙定时值;处理单元,用于生成该码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机的索引相关,所述下行信息的传输对应的接收时机的索引为所述第一时隙定时值对应的至少一个接收时机的索引中的一个,所述第一时隙定时值对应的接收时机的数量是根据所述第一时隙定时值子集确定的;发送单元,用于发送该码本。该通信装置可以是终端设备也可以是应用于终端设备的组件,如应用于终端设备的芯片。
第八方面,提供了一种通信装置,包括:发送单元,用于发送下行信息,所述下行信息的传输对应第一时隙定时值子集中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息,其中,所述第一时隙定时值子集包括至少两个不同的时隙定时值;接收单元,用于接收所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机的索引相关,所述下行信息的传输对应的接收时机的索引为所述第一时隙定时值对应的至少一个接收时机的索引中的一个,所述第一时隙定时值对应的接收时机的数量是根据所述第一时隙定时值子集确定的;处理单元用于对该码本进行解调译码。该通信装置可以是网络设备也可以是应用于网络设备的组件,如应用于网络设备的芯片。
第九方面,提供了一种通信装置,包括处理器和收发装置,该处理器与该收发单元耦合,该处理器用于执行计算机程序或指令,以控制收发装置进行信息的接收和发送;当该处理器执行所述计算机程序或指令时,该处理器还用于执行上述第一方面或第一方面的任意可能的实现方式中的方法;或执行上述第二方面或第二方面的任意可能的实现方式中的方法;或执行上述第三方面或第三方面的任意可能的实现方式中的方法;或执行上述第四方面或第四方面的任意可能的实现方式中的方法。上述收发装置可以为收发器也可以为收发电路或输入输出接口。
第十方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第一方面或第一方面的任意可能的实现方式中的方法;或实现上述第二方面或第二方面的任意可能的实现方式中的方法;或执行上述第三方面或第三方面的任意可能的实现方式中的方法;或执行上述第四方面或第四方面的任意可能的实现方式中的方法。
第十一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法;或执行第二方面或第二方面的任意可能的实现方式中的方法;或执行上述第三方面或第三方面的任意可能的实现方式中的方法;或执行上述第四方面或第四方面的任意可能的实现方式中的方法。
附图说明
图1为本申请的实施例应用的移动通信系统的架构示意图;
图2为本申请的实施例中时隙定时值与HARQ反馈之间的关系示意图;
图3为本申请的实施例中聚合因子为4时的时隙定时值与HARQ反馈之间的关系示意图;
图4为本申请的实施例提供的一种反馈信息的传输方法的流程示意图;
图5为本申请的实施例提供的一种确定时隙定时值对应的接收时机的流程示意图;
图6为本申请的实施例提供的一种时隙定时值对应的HARQ反馈信息在HARQ码本中的位置示意图;
图7为本申请的实施例提供的另一种确定时隙定时值对应的接收时机的流程示意图;
图8为本申请的实施例提供的另一种时隙定时值对应的HARQ反馈信息在HARQ码本中的位置示意图;
图9为本申请实施例提供的一种通信装置的结构示意图;
图10为本申请实施例提供的另一种通信装置的结构示意图;
图11为本申请实施例提供的下行符号配置示意图;
图12为本申请的实施例提供的另一种反馈信息的传输方法的流程示意图。
具体实施方式
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、 智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6吉兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
如背景技术中所述,NR中引入了HARQ-ACK半静态码本(semi-static codebook)反馈机制,在第三代合作伙伴计划(Third Generation Partnership Project,3GPP)协议中HARQ-ACK半静态码本也称为类型1(Type-1)HARQ-ACK码本。下面对当前协议中的HARQ-ACK半静态码本反馈机制的原理做一个简单的介绍。
网络设备通过无线资源控制(radio resource control,RRC)信令给终端设备配置一个时隙定时值(slot timing values)集合,或者协议预定义一个时隙定时值集合,该时隙定时值集合包括至少一个时隙定时值,其中,每个时隙定时值对应至少一个下行接收时机,每一个接收时机对应HARQ-ACK半静态码本中的一个HARQ反馈位置。这里的接收时机可以用于接收PDSCH中的数据,也可以用于接收PDCCH中的控制信令,如半静态调度(semi-persistent scheduling,SPS)的激活或去激活信令。例如,网络设备可以通过RRC信令给终端设备配置时隙定时值集合为{0,1,4,8,2,3},该时隙定时值集合中的时隙定时值对应的索引号分别为0,1,2,3,4和5。在本申请中,索引号和索引的含义是相同的,可以互换。
当网络设备和终端设备进行下行信息传输时,可以通过PDCCH在下行控制信息(downlink control information,DCI)中携带一个时隙定时值索引,该索引对应上述时隙定时值集合中的某一个时隙定时值,用于指示本次下行信息传输所在的时隙与承载HARQ-ACK半静态码本的上行信道所在时隙之间距离的时隙个数,具体的,这里的下行信息传输所在的时隙可以是下行信息传输的最后一个符号所在的时隙。例如,PDCCH的DCI中携带的时隙定时值索引可以为3,对应指示的时隙定时值为8。时隙定时值为p表示:如果终端设备检测到一个PDCCH,该PDCCH调度或指示一个下行信息传输,该下行信息传输的最后一个符号位于时隙
Figure PCTCN2019081237-appb-000001
那么终端设备应该在时隙n上反馈HARQ-ACK信息,其中,n和p为非负整数,mod表示取模操作,
Figure PCTCN2019081237-appb-000002
为μ所指示的子载波间隔对应的一个无线帧中的时隙总数。本申请中的符号也称为时域符号,可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号,其中SC-FDMA又称为带有转换预编码的正交频分复用(orthogonal frequency division multiplexing with transform precoding,OFDM with TP)。
如图2所示,当PDCCH指示的时隙5中的下行信息传输的时隙定时值为8的时候,表示该下行信息传输对应的HARQ反馈信息在时隙13上通过PUCCH或PUSCH反馈给网络设备,即HARQ反馈信息所在的时隙与下行信息传输所在的时隙之间的距离等于8个时隙。由于时隙定时值集合被配置为{0,1,4,8,2,3},因此,终端设备接收到一个时隙定时值为8的下行信息传输之后,可以根据时隙定时值集合中的其它元素{0,1,4,2,3}的取值确定另外的下行接收时机分别对应时隙9、时隙10、时隙11、时隙12和时隙13。终端设备将在这5个下行时隙上接收到的下行信息对应的HARQ反馈信息可以与时隙5中传输的下行信息对应的HARQ反馈信息一起组成一个HARQ-ACK码本、在时隙13上反馈给网络设备。在时隙9、时隙10、时隙11、时隙12和时隙13上是否有下行信息传输,以及这些下行信息传输中网络设备指示的时隙定时值是否与图2中所示的时隙定时值一致,与业务需求以及网络设备的调度算法相关。当在时隙9、时隙10、时隙11、时隙12和时隙13上没有下行信息传输,那么终端设备会在时隙9、时隙10、时隙11、时隙12和时隙13对应的接收时机对应HARQ-ACK码本中的位置上发送NACK。当在时隙9、时隙10、时隙11、时隙12和时隙13上至少一个有下行信息传输,那么终端设备会根据至少一个下行信息的译码结果,在所述至少一个下行信息所在的时隙对应的接收时机对应HARQ-ACK码本中的位置上发送HARQ反馈信息。如果译码正确,则反馈ACK。如果译码错误,则反馈NACK。
对于数据传输,NR系统支持两种HARQ反馈方式,一种是基于传输块(transport block,TB)的HARQ反馈,即一个TB反馈一比特ACK/NACK信息;另一种是基于码块组(code block group,CBG)的HARQ反馈,即一个TB反馈多个比特的ACK/NACK信息,具体需要反馈多少比特,取决于一个TB被分割成了多少个CBG。与长期演进(long term evolution,LTE)系统一样,NR系统也支持单码字(codeword)和双码字传输。单码字传输在一次数据传输过程中只传输一个TB;双码字传输在一次数据传输过程中传输两个TB。为了描述简洁起见,在本申请中,仅以单码字传输且基于TB的HARQ反馈为例进行描述,即一个HARQ反馈位置只反馈一比特ACK/NACK信息。但可以理解的是,本申请的实施例也可以应用于双码字传输场景以及基于CBG的HARQ反馈场景。
根据上面对HARQ-ACK半静态码本的原理介绍可知,HARQ-ACK半静态码本包括的比特数由时隙定时值集合中的时隙定时值的个数决定,也可以理解为是由时隙定时值集合中的时隙定时值对应的下行接收时机的个数决定。根据时隙定时值集合中的时隙定时值确定的下行接收时机所对应的HARQ反馈信息按照一定的顺序组合成的比特流,构成HARQ-ACK半静态码本,该码本承载在PUCCH或PUSCH上由终端设备发送给网络设备。此顺序为时隙定时值集合中的时隙定时值对应的索引从小到大的顺序。图2所示的HARQ-ACK半静态码本的长度为6比特。
NR中为了提高下行信息传输的可靠性,引入了时隙聚合的传输方式,即一个PDCCH调度多个时隙资源用于传输PDSCH。为了支持时隙聚合的传输方式,网络设备通过RRC信令给终端设备配置聚合因子。以聚合因子等于4为例,终端设备会在PDCCH所指示的4个时隙上接收PDSCH,传输块(transport block,TB)在这四个时隙上使用相同的时域资源重复传输四次。
如图3所示,假设在PDSCH4上,传输块TB4采用时隙聚合的传输方式,在时隙6 到时隙9的时频资源上重复传输了四次,调度TB4的PDCCH上指示的时隙定时值为4,那么在网络设备配置给该终端设备的时隙定时值集合{0,1,4,8,2,3}中的时隙定时值3、2和1对应的时隙上,该终端设备将不再会接收其它PDSCH,或不会再在与PDSCH4相同的时域资源上接收PDSCH,这里的PDSCH4对应时隙内的一组时域符号资源。对于基于时隙的调度,也称为类型A(type A)PDSCH,一个终端设备在一个时隙上只会接收一个PDSCH。对于基于非时隙的调度,也称为类型B(type B)PDSCH,调度的时域长度可以为一个或多个符号,一个终端设备在一个时隙内可以接收一个或多个PDSCH,但在一个时隙的一个符号上最多只能接收一个PDSCH。在这种场景下,时隙定时值3、2和1对应的HARQ-ACK码本中的反馈比特是冗余的。由于时隙聚合的传输方式的引入,导致了HARQ-ACK半静态码本存在冗余比特。如果能将这些冗余比特去掉,可以提升上行HARQ-ACK反馈信息的传输可靠性。
对于下行数据传输,包括Type A PDSCH和Type B PDSCH,由于数据传输所使用的时域符号的位置是灵活可变的,为了降低控制信道的开销,可以预先定义一个下行符号配置列表,调度数据传输的控制信道只需要指示下行符号配置索引就可以确定数据传输所使用的时域符号资源。该下行符号配置列表中的每一个下行符号配置包括起始下行符号的索引信息、下行符号的持续符号数信息以及时隙偏移值信息,时隙偏移值信息用于指示控制信道所在的时隙和与控制信道对应的数据信道所在的时隙之间距离的时隙个数。该下行符号配置列表可以是协议预定义的,也可以是网络设备确定后通过RRC信令配置给终端设备。可选的,该下行符号配置列表可以通过RRC信令中的PDSCH配置列表(pdsch-AllocationList)信元配置给终端设备的,该PDSCH配置列表中的一行是通过RRC信令中的PDSCH时域资源配置(PDSCH-TimeDomainResourceAllocation)信元配置的。在具体实现时,起始下行符号的索引信息和下行符号的持续符号数信息可以通过起始和长度指示(start and length indicator value,SLIV)信息确定。
表1和表2为下行符号配置列表的两个例子。本申请并不限定下行符号配置列表的实现方法,也不限定下行符号配置列表中包含的信息数量。在具体实现时,起始下行符号的索引信息和下行符号的持续符号数信息也可以通过SLIV字段指示,如表2所示。在本申请中,一个下行符号配置对应下行符号配置列表中的一行。可选的,SLIV字段的比特长度为7比特,在RRC信令中,SLIV字段也称为startSymbolAndLength字段。
可选的,SLIV与起始下行符号的索引信息S和下行符号的持续符号数信息L的具体对应关系为:
若(L-1)<=7,那么SLIV=14*(L-1)+S;否则,SLIV=14*(14-L+1)+14-1-S。这里0<L<14-S。
表1
下行符号配置索引 时隙偏移值K 0 起始下行符号索引S 下行符号持续符号数L
0 0 0 13
1 0 0 2
2 1 0 4
3 2 0 7
4 3 4 4
5 4 7 7
6 0 9 2
7 0 11 2
表2
下行符号配置索引 时隙偏移值K 0 起始和长度指示SLIV
0 0 41
1 0 14
2 1 42
3 2 84
4 3 46
5 4 91
6 0 23
7 0 25
如图4所示,本申请提供了一种反馈信息的传输方法,用于提升上行HARQ-ACK半静态码本的传输可靠性。
S410,网络设备向终端设备发送下行信息,对应的,终端设备接收来自网络设备的下行信息。这里的下行信息可以为下行控制信息也可以为下行数据信息。下行控制信息可以承载在下行控制信道上,下行数据信息可以承载在下行数据信道上。在本申请中,下行控制信道以PDCCH为例,下行数据信道以PDSCH为例。
下行信息的传输对应时隙定时值集合中的第一时隙定时值,第一时隙定时值用于指示该下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数。这里所说的码本可以为上述HARQ-ACK半静态码本,该码本中包括该下行信息对应的反馈信息。
需要说明的是,在本申请的实施例中的时隙定时值集合,可以是协议预定义的或网络设备确定后通过RRC信令配置的终端设备的时隙定时值集合K1,也可以是K1的子集,还可以是基于时隙定时值集合K1扩展得到的,例如,根据时隙定时值集合K1和聚合因子扩展得到的新的时隙定时值集合。
可选的,该下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数可以是以下中的一种:
a、下行信息的传输的最后一个符号所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数;
b、下行信息的传输的第一个符号所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数;
c、下行信息的传输对应的PDCCH的最后一个符号所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数;
b、下行信息的传输对应的PDCCH的第一个符号所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数。
S420,终端设备生成码本,在该码本中承载上述下行信息对应的反馈信息。该反馈信息可以根据终端设备接收到的下行信息的译码结果决定,如果译码成功则反馈ACK,如果译码失败则反馈NACK。
下行信息对应的反馈信息在码本中的位置与下行信息传输对应的接收时机相关,接收时机与第一时隙定时值和聚合因子相关,聚合因子为下行信息被重复传输的次数。换句话说,下行信息对应的反馈信息在码本中的位置与第一时隙定时值和聚合因子相关。
S430,终端设备向网络设备发送码本,对应的,网络设备接收来自终端设备的码本。网络设备对接收到的码本进行解调译码。进一步的,网络设备可以根据码本的译码结果确定上述下行信息是否被终端设备正确接收。这里的对接收到的码本进行解调译码,也可以理解为是对承载该码本的上行PUCCH或PUSCH进行解调译码。可以理解的是,解调译码在某些场景下可以只包括解调,而不包括译码。例如,某些场景下可以根据解调结果就直接判断出终端设备是否正确接收了上述下行信息。
在本申请中,聚合因子可以由网络设备通过高层信令或动态信令通知给终端设备的。高层信令,可以是指高层协议层发出的信令,高层协议层为物理层以上的至少一个协议层。其中,高层协议层具体可以包括以下协议层中的至少一个:媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据会聚协议(packet data convergence protocol,PDCP)层、无线资源控制(radio resource control,RRC)层和非接入层(non access stratum,NAS)。动态信令,可以是指物理层发出的信令,例如通过下行控制信息DCI发送的信令或信息。下行信息被重复传输的次数,可以理解为下行信息对应的下行信道被传输的最大次数,这些下行信道承载该下行信息。可选的,这些下行信道被同一个DCI指示的。例如,聚合因子为4,下行信息对应的下行信道为PDSCH,那么PDSCH信道被传输的最大次数为4次,这几个PDSCH均承载此下行信息,这几个PDSCH是被一个DCI调度的。例如,聚合因子为4,下行信息对应的下行信道为PDCCH,那么PDCCH信道被传输的最大次数为4次,这几个PDCCH均承载此下行信息。聚合因子可以是针对多个时隙间的下行信息被重复传输的次数。下行信息对应的多个下行信道,是分别在不同时隙上的下行信道。
如步骤S420所述,接收时机与时隙定时值和聚合因子相关。具体的,当时隙定时值集合还包括第二时隙定时值时,当第一时隙定时值和第二时隙定时值的差值的绝对值小于第一门限值时,第一时隙定时值和第二时隙定时值对应的接收时机相同。其中,第一门限值与聚合因子F a相关,例如,第一门限值等于聚合因子F a;或者,第一门限值等于F a+Δ,Δ取值可以为整数,例如为1或-1;或者,第一门限值等于μ·F a,μ取值可以为正实数;或者,第一门限值为以F a为变量的函数。上述接收时机与时隙定时值和聚合因子之间的关系还可以描述为:当第一时隙定时值和第二时隙定时值的差值的绝对值大于或等于第一门限值时,第一时隙定时值和第二时隙定时值对应的接收时机不相同。例如第一时隙定时值为0,第二时隙定时值为2,第一门限值为4,第一时隙定时值和第二时隙定时值的差值的绝对值为2,2小于第一门限值4,第一时隙定时值和第二时隙定 时值对应的接收时机相同。例如第一时隙定时值为0,第二时隙定时值为4,第一门限值为4,第一时隙定时值和第二时隙定时值的差值的绝对值为4,4等于第一门限值4,第一时隙定时值和第二时隙定时值对应的接收时机不同。
当第一门限取值不同,上述判断条件也可能不同,例如,当第一门限取值为F a-1时,上述接收时机与时隙定时值和聚合因子之间的关系可以描述为:当第一时隙定时值和第二时隙定时值的差值的绝对值小于或等于第一门限值时,第一时隙定时值和第二时隙定时值对应的接收时机相同。这时,接收时机与时隙定时值和聚合因子之间的关系还可以描述为:当第一时隙定时值和第二时隙定时值的差值的绝对值大于第一门限值时,第一时隙定时值和第二时隙定时值对应的接收时机不相同。
第一时隙定时值和第二时隙定时值的差值的绝对值,等于第一时隙定时值和第二时隙定时值中的较大值减去第一时隙定时值和第二时隙定时值中的较小值的值。可以理解的是,上述判断条件,可以有多种实现方式,第一时隙定时值和第二时隙定时值的差值可以取绝对值也可以不取绝对值。
上述第一时隙定时值和第二时隙定时值对应的接收时机相同,也可以理解为将满足条件的第一时隙定时值和第二时隙定时值划分到同一个时隙定时值子集中。
第一时隙定时值为第一时隙定时值子集中的一个时隙定时值,第一时隙定时值子集中的每一个时隙定时值均为上述时隙定时值集合中的时隙定时值;第一时隙定时值子集包括至少两个不同的时隙定时值,第一时隙定时值子集中的任意两个不同的时隙定时值之间的差值的绝对值小于第一门限值,第一门限值与聚合因子相关,聚合因子大于1。可选的,第一时隙定时值子集中包括的时隙定时值的个数小于等于聚合因子。通过将差值的绝对值小于一个门限的两个时隙定时值的下行接收时机映射到同一个接收时机或多个相同的接收时机,进一步映射到HARQ-ACK码本中的同一个或相同的多个反馈位置,从而可以有效地减少HARQ-ACK码本中的冗余比特,从而提高HARQ-ACK码本的传输可靠性。
下面对网络设备和终端设备的时隙定时值到接收时机的映射方法进行描述。
一种是从时隙定时值集合中取值最小的时隙定时值开始映射,如图5所示。
S510,根据时隙定时值集合中取值最小的时隙定时值和聚合因子确定时隙定时值对应的接收时机。
一种可选的映射方法:第一时隙定时值对应的接收时机为第一接收时机,第一时隙定时值为时隙定时值集合中大于等于第一数值且小于第二数值的时隙定时值。上述映射方法也可以理解为:当第一时隙定时值满足第一条件时,第一时隙定时值对应的接收时机为第一接收时机;和/或,当第一时隙定时值不满足第一条件时,第一时隙定时值对应的接收时机为不同于第一接收时机的其它接收时机。其中,第一条件为大于等于第一数值且小于第二数值,第一数值等于时隙定时值集合中取值最小的时隙定时值,第二数值等于第一数值与聚合因子之和。该映射方法也可以理解为,第一时隙定时值为第一时隙定时值子集中的一个时隙定时值,第一时隙定时值子集由时隙定时值集合中大于等于第一数值且小于第二数值的时隙定时值组成。
另一种可选的映射方法:第一时隙定时值对应的接收时机为第一接收时机,第一时隙定时值为时隙定时值集合中小于第二数值的时隙定时值。上述映射方法也可以理解 为:当第一时隙定时值小于第二数值时,第一时隙定时值对应的接收时机为第一接收时机;和/或,当第一时隙定时值大于或等于第二数值时,第一时隙定时值对应的接收时机为不同于第一接收时机的其它接收时机。该映射方法也可以理解为,第一时隙定时值为第一时隙定时值子集中的一个时隙定时值,第一时隙定时值子集由时隙定时值集合中小于第二数值的时隙定时值组成。
通过上述接收时机的映射方法,可以将时隙定时值集合K 1中大于等于K 1,m且小于K 1,m+F a的时隙定时值对应到同一个接收时机或多个相同的接收时机;或,可以将时隙定时值集合K 1中小于K 1,m+F a的时隙定时值对应到同一个接收时机或多个相同的接收时机,从而减少了HARQ-ACK码本中的比特数,提高了码本的传输可靠性,其中,m为时隙定时值集合K 1中取值最小的时隙定时值在集合K 1中的索引,F a为聚合因子。
第一接收时机可以是一个接收时机,也可以是多个接收时机。例如,如果是基于1个TB的HARQ反馈且在1个时隙中只能接收一个PDSCH时,那么第一接收时机是一个接收时机。如果是基于2个TB的HARQ反馈,或在一个时隙中接收多于一个PDSCH,或基于CBG的HARQ反馈时,那么第一接收时机可以是多于一个接收时机。
S520,更新时隙定时值集合。
具体的,网络设备和终端设备可以对时隙定时值集合K 1进行更新,将时隙定时值集合中大于等于第一数值且小于第二数值的时隙定时值的元素从时隙定时值集合中去掉;或,将时隙定时值集合中小于第二数值的时隙定时值的元素从时隙定时值集合中去掉。通过对时隙定时值集合K 1的更新,将时隙定时值集合K 1中大于等于K 1,m且小于K 1,m+F a的时隙定时值从时隙定时值集合K 1中去掉;或,将时隙定时值集合K 1中小于K 1,m+F a的时隙定时值从时隙定时值集合K 1中去掉。将时隙定时值集合更新后,可以再循环执行上述S510中的映射过程,直到更新后的时隙定时值集合为空集。可以理解的是,这样就将时隙定时值集合中包括的时隙定时值划分为至少一个时隙定时值子集,每个时隙定时值子集中的元素为时隙定时值集合中的时隙定时值,任意两个时隙定时值子集中的元素没有交集。
基于与S510相同的映射思路,可以得到:第一时隙定时值对应的接收时机为第二接收时机,第一时隙定时值为时隙定时值集合中大于等于第三数值且小于第四数值的时隙定时值;或,第一时隙定时值对应的接收时机为第二接收时机,第一时隙定时值为时隙定时值集合中小于第四数值的时隙定时值。上述映射方法等同于:当第一时隙定时值大于等于第三数值且小于第四数值时,第一时隙时值对应的接收时机为第二接收时机;或,第一时隙定时值小于第四数值时,第一时隙时值对应的接收时机为第二接收时机。其中,第三数值等于时隙定时值集合中大于等于第二数值且取值最小的时隙定时值,第四数值等于第三数值与聚合因子之和。该映射方法也可以理解为,第一时隙定时值为第一时隙定时值子集中的一个时隙定时值,第一时隙定时值子集由时隙定时值集合中大于等于第三数值且小于第四数值的时隙定时值组成,或,第一时隙定时值子集由时隙定时值集合中小于第四数值的时隙定时值组成。
对如图3所示的时隙定时值集合,应用如图5所示的映射方法,可以得到如图6所示的结果,即时隙定时值0、1、2和3对应同一个接收时机或多个相同的接收时机,对 应码本中的同一个反馈位置,即在码本的该反馈位置上只能反馈时隙定时值0、1、2和3中的一个对应的反馈信息。反馈信息包含至少一个比特。可以理解的是,当在时隙定时值0、1、2和3对应的时隙上没有下行信息传输,那么终端设备会在该反馈位置发送反馈信息,反馈信息包括至少一个NACK。当在时隙定时值0、1、2或3对应的时隙上有一个下行信息传输,那么终端设备会根据该下行信息的译码结果,在该反馈位置上发送反馈信息。反馈信息包含至少一个比特。如果译码正确,则在该反馈位置反馈ACK。如果译码错误,则在该反馈位置反馈NACK。
另一种是从时隙定时值集合中取值最大的时隙定时值开始映射,如图7所示。
S710,根据时隙定时值集合中取值最大的时隙定时值和聚合因子确定时隙定时值对应的接收时机。
一种可选的映射方法:第一时隙定时值对应的接收时机为第一接收时机,第一时隙定时值为时隙定时值集合中大于第二数值且小于等于第一数值的时隙定时值。上述映射方法也可以理解为:当第一时隙定时值满足第二条件时,第一时隙定时值对应的接收时机为第一接收时机;和/或,当第一时隙定时值不满足第二条件时,第一时隙定时值对应的接收时机为不同于第一接收时机的其它接收时机。其中,第二条件为大于第二数值且小于等于第一数值,第一数值等于时隙定时值集合中取值最大的时隙定时值,第二数值等于第一数值与聚合因子之差。该映射方法也可以理解为,第一时隙定时值为第一时隙定时值子集中的一个时隙定时值,第一时隙定时值子集由时隙定时值集合中大于第二数值且小于等于第一数值的时隙定时值组成。
另一种可选的映射方法:第一时隙定时值对应的接收时机为第一接收时机,第一时隙定时值为时隙定时值集合中大于第二数值的时隙定时值。上述映射方法也可以理解为:当第一时隙定时值大于第二数值时,第一时隙定时值对应的接收时机为第一接收时机;和/或,当第一时隙定时值小于或等于第二数值时,第一时隙定时值对应的接收时机为不同于第一接收时机的其它接收时机。该映射方法也可以理解为,第一时隙定时值为第一时隙定时值子集中的一个时隙定时值,第一时隙定时值子集由时隙定时值集合中大于第二数值的时隙定时值组成。
通过上述接收时机的映射方法,可以将时隙定时值集合K 1中大于K 1,m-F a且小于等于K 1,m的时隙定时值对应到同一个接收时机或多个相同的接收时机;或,可以将时隙定时值集合K 1中大于K 1,m-F a的时隙定时值对应到同一个接收时机或多个相同的接收时机从而减少了HARQ-ACK码本中的比特数,提高了码本的传输可靠性,其中,m为时隙定时值集合K 1中取值最大的时隙定时值在集合K 1中的索引,F a为聚合因子。
S720,更新时隙定时值集合。
具体的,网络设备和终端设备可以对时隙定时值集合K 1进行更新。例如,将时隙定时值集合中大于第二数值且小于等于第一数值的时隙定时值的元素从时隙定时值集合中去掉;或,将时隙定时值集合中大于第二数值的时隙定时值的元素从时隙定时值集合中去掉。通过对时隙定时值集合K 1的更新,将时隙定时值集合K 1中大于K 1,m-F a且小于等于K 1,m的时隙定时值从时隙定时值集合K 1中去掉;或,将时隙定时值集合K 1中大于K 1,m-F a的时隙定时值从时隙定时值集合K 1中去掉。将时隙定时值集合更新后,可 以再循环执行上述S710中的映射过程,直到更新后的时隙定时值集合为空集。可以理解的是,这样就将时隙定时值集合中包括的时隙定时值划分为至少一个时隙定时值子集,每个时隙定时值子集中的元素为时隙定时值集合中的时隙定时值,任意两个时隙定时值子集中的元素没有交集。
基于与S710相同的映射思路,可以得到:第一时隙定时值对应的接收时机为第二接收时机,第一时隙定时值为时隙定时值集合中大于第四数值且小于等于第三数值的时隙定时值;或,第一时隙定时值对应的接收时机为第二接收时机,第一时隙定时值为时隙定时值集合中大于第四数值的时隙定时值。上述映射方法等同于:当第一时隙定时值大于第四数值且小于等于第三数值时,第一时隙时值对应的接收时机为第二接收时机;或,第一时隙定时值大于第四数值时,第一时隙时值对应的接收时机为第二接收时机。其中,第三数值等于时隙定时值集合中小于等于第二数值且取值最大的时隙定时值,第四数值等于第三数值与聚合因子之差。该映射方法也可以理解为,第一时隙定时值为第一时隙定时值子集中的一个时隙定时值,第一时隙定时值子集由时隙定时值集合中大于第四数值且小于等于第三数值的时隙定时值组成,或,第一时隙定时值子集由时隙定时值集合中大于第四数值的时隙定时值组成。
对如图3所示的时隙定时值集合,应用如图7所示的映射方法,可以得到如图8所示的结果,即时隙定时值1、2、3和4对应同一个接收时机或多个相同的接收时机,对应码本中的同一个反馈位置,即在码本的该反馈位置上只能反馈时隙定时值1、2、3和4中的一个对应的反馈信息。反馈信息包含至少一个比特。可以理解的是,当在时隙定时值0、1、2和3对应的时隙上没有下行信息传输,那么终端设备会在该反馈位置发送反馈信息,反馈信息包括至少一个NACK。当在时隙定时值0、1、2或3对应的时隙上有一个下行信息传输,那么终端设备会根据该下行信息的译码结果,在该反馈位置上发送反馈信息。反馈信息包含至少一个比特。如果译码正确,则在该反馈位置反馈ACK。如果译码错误,则在该反馈位置反馈NACK。
下面描述终端设备如何确定下行接收时机,以便终端根据接收时机确定HARQ-ACK码本的长度以及下行信息对应的反馈信息在码本中的位置,从而减少HARQ-ACK码本的比特长度,提高HARQ-ACK码本的传输可靠性。可以理解的是,网络设备也可以采用相同的确定下行接收时机的过程,以便进一步确定下行信息对应的反馈信息在码本中的位置,从而使得网络设备对HARQ-ACK码本的理解与终端设备保持一致。
如果终端设备需要监测DCI格式1_0的PDCCH但不需要监测DCI格式1_1的PDCCH,则该终端设备的时隙定时值集合K 1固定为{1,2,3,4,5,6,7,8}。如果终端设备需要监测DCI格式1_1的PDCCH,则网络设备通过RRC信令将时隙定时值集合K 1配置给终端设备。如果终端设备需要监测DCI格式1_0的PDCCH和监测DCI格式1_1的PDCCH,则终端设备通过RRC信令和时隙定时值集合{1,2,3,4,5,6,7,8},确定时隙定时值集合K 1
对于时隙定时值集合K 1,如果网络设备给终端设备配置了大于1的聚合因子F a,终端设备和网络设备均可以按照如下伪代码确定时隙定时值对应的时隙定时值子集的索引的集合K 1,s
K 1,C为集合K 1的大小,即集合K 1包括的元素的个数;
k为时隙定时值K 1,k在集合K 1中的索引,将k初始为0;
K 1,k为时隙定时值集合K 1中索引号为k的时隙定时值;
b k为时隙定时值K 1,k对应的时隙定时值子集的索引;
j为时隙定时值对应的时隙定时值子集的索引,将j初始为0;
集合B1用于保存时隙定时值集合K 1中的时隙定时值对应的索引,集合B1中的元素b k和集合K 1中的时隙定时值K 1,k一一对应,将集合B1初始化为空集;
将集合K 1,s初始化为空集;
Th1为第一门限值,第一门限值与聚合因子F a相关,有关第一门限值的详细描述可以参见前面实施例中的相关描述;
方法一:从时隙定时值集合中取值最小的时隙定时值开始确定集合K 1,s
while集合K 1不为空集
设m为时隙定时值集合K 1中取值最小的时隙定时值在集合K 1中的索引;
Figure PCTCN2019081237-appb-000003
可以理解的是,上述判断条件K 1,k-K 1,m<Th1也可以写成K 1,k<K 1,m+Th1;或者,也可以写成|K 1,m-K 1,k|<Th1;或者,也可以写成(K 1,m-K 1,k)mod K 1,M<Th1,K 1,M为时隙定时值集合中的时隙定时值的最大值,|·|表示取绝对值操作,mod表示取模操作。在本申请中,将j与集合K 1,s取并集可以理解为将只包含元素j的集合与集合K 1,s取并集。
方法二:从时隙定时值集合中取值最大的时隙定时值开始确定集合K 1,s
while集合K 1不为空集
设m为时隙定时值集合K 1中取值最大的时隙定时值在集合K 1中的索引;
Figure PCTCN2019081237-appb-000004
Figure PCTCN2019081237-appb-000005
可以理解的是,上述判断条件K 1,m-K 1,k<Th1也可以写成K 1,k>K 1,m+Th1;或者,也可以写成|K 1,k-K 1,m|<Th1;或者,也可以写成(K 1,k-K 1,m)mod K 1,M<Th1,K 1,M为时隙定时值集合中的时隙定时值的最大值。
对于时隙定时值集合K 1中两个不同的时隙定时值K 1,k1和K 1,k2,如果对应的b k1和b k2相等,则说明时隙定时值K 1,k1和K 1,k2属于同一个时隙定时值子集。对于同一个时隙定时值子集中两个不同的时隙定时值K 1,k1和K 1,k2,对应相同的接收时机,如图6中的时隙定时值0、1、2和3属于同一个时隙定时值子集,图8中的时隙定时值1、2、3和4属于同一个时隙定时值子集。这里相同的接收时机,可以对应相同的多个接收时机,例如,对于非时隙调度,在一个时隙内可以有多个接收时机。进一步的,相同的接收时机对应HARQ-ACK码本中的相同的反馈位置,一个反馈位置可以对应至少一个比特。
可选的,下行信息的传输对应的接收时机还与第一时隙定时值子集在时隙定时值集合中的索引相关。例如,下行信息的传输对应的接收时机的索引是根据第一时隙定时值子集在时隙定时值集合中的索引确定。这里的第一时隙定时值子集在时隙定时值集合中的索引是指,该时隙定时值集合包括至少一个时隙定时值子集,时隙定时值集合中的每一个时隙定时值子集在该时隙定时值集合中有一个唯一的索引。进一步,一种实现的可能是,下行信息的传输对应的接收时机的索引为第一时隙定时值子集在时隙定时值集合中的索引。具体的,若终端设备不支持在一个时隙中接收多于一个PDSCH的能力或终端设备被指示在一个时隙中不接收多于一个PDSCH,那么下行信息的传输对应的接收时机的索引为第一时隙定时值子集在时隙定时值集合中的索引。另一种实现的可能是,当以下两个条件中的至少一个满足时,第一时隙定时值子集在时隙定时值集合中的子集索引对应多个接收时机的索引:终端设备支持在一个时隙中接收多于一个PDSCH的能力;终端设备被指示在一个时隙中接收多于一个PDSCH。下行信息的传输对应的接收时机的索引为该多个接收时机的索引中的一个。下行信息的传输对应的接收时机的索引还需要根据下行信息的传输对应的下行符号配置进一步确定。
为了确定时隙定时值子集对应的接收时机的索引,一种可能的实现是:网络设备或终端设备可以根据时隙定时值子集在时隙定时值集合中的索引值从小到大的顺序依次确定时隙定时值子集对应的接收时机的索引。对于如图6所示的时隙定时值子集,可以 依次确定时隙定时值子集{0,1,2,3}、时隙定时值子集{4}和时隙定时值子集{8}对应的接收时机的索引为0、1和2。另一种可能的实现是,对于如图8所示的时隙定时值子集,可以依次确定时隙定时值子集{8}、时隙定时值子集{1,2,3,4}和时隙定时值子集{0}对应的接收时机的索引为0、1和2。可以理解的是,网络设备或终端设备也可以根据时隙定时值子集在时隙定时值集合中的索引值从大到小的顺序依次确定时隙定时值子集对应的接收时机的索引。
对于下行重复传输,聚合因子指示的是在时域上连续重复发送下行信息的次数。如果用于重复传输的时频资源与上行符号冲突了,即在重复传输的时频资源中的某一个时隙上至少包括一个上行符号。第一种处理方式是在该冲突符号所在的时隙上不再发送该下行信息,重复传输次数减少一次;第二种处理方式可以是将重复传输延后一个时隙继续发送。例如,PDCCH调度的下行信息在时隙0,1,2和3上重复传输四次,但时隙2中有一个符号被用于上行传输了,则此时下行信息改为在时隙0,1,3和4上重复传输四次,即在与上行符号冲突的时隙上不传输该下行信息,而延后一个时隙进行重复传输。在这种场景下,也可以理解为,接收时机与第一时隙定时值、聚合因子和上行符号的配置位置相关。网络设备和终端设备可以通过第一时隙定时值、聚合因子和上行符号的配置位置,确定接收时机。
本申请的实施例,在下行信息重复传输的场景下,考虑聚合因子,将差值在一定门限内的多个时隙定时值对应为同一个时隙定时值子集或对应为相同的接收时机,进一步将差值在一定门限内的多个时隙定时值对应到HARQ-ACK码本中相同的反馈位置,从而起到减少冗余比特的目的。
可以理解是,对于时隙定时值集合K 1,如果聚合因子F a等于1或者没有配置聚合因子,网络设备和终端设备也可以不执行以上伪代码的判断,而是直接使用现有技术的半静态码本的定义方式,本申请对此不做限定。
可以理解的是,上述伪代码只是给出了本申请的实施例的可能的实现方式,并不作为对本申请实施例的限定,本申请的实施例还可以有其它的实现方式。
由于采用了时隙聚合的传输方式,根据时隙定时值子集内的各个时隙定时值和聚合因子确定的传输资源在时域上有部分重叠,从而导致终端设备在该时隙定时值子集中的某一个时隙定时值对应的接收时机上接收到了下行数据,就不能在该时隙定时值子集中的另一个时隙定时值对应的相同的时域符号上接收其它下行数据。因此,可以通过时隙定时值子集对应的接收时机的数量确定该时隙定时值子集中的任意一个时隙定时值对应的接收时机的数量。也就是说,第一时隙定时值对应的接收时机的数量等于第一时隙定时值子集对应的接收时机的数量。第一时隙定时值对应的接收时机中包括上述下行信息的传输对应的接收时机,也就是说,第一时隙定时值对应的接收时机包括至少一个接收时机,上述下行信息的传输对应的接收时机为第一时隙定时值对应的接收时机中的一个。
现有技术中,终端设备或网络设备对每个时隙定时值单独确定接收时机,然后对各个时隙定时值对应的接收时机数进行累加,进一步根据累加后的接收时机数确定HARQ-ACK码本中的比特数。与现有技术相比,根据上述方法确定的接收时机的数量大大降低,从而有效减少了HARQ-ACK码本中的比特数。
下面对网络设备和终端设备如何确定第一时隙定时值子集对应的接收时机的数量进行详细描述。
第一时隙定时值子集对应的接收时机的数量等于第一下行符号配置集合G1对应的接收时机的数量,其中,G1是根据第一时隙定时值子集确定的。具体的,G1可以根据第一时隙定时值子集中的所有时隙定时值确定,G1也可以根据第一时隙定时值子集中的某一个时隙定时值确定,或者,G1也可以根据第一时隙定时值子集中的至少两个时隙定时值确定。G1为下行符号配置列表的子集或全集,有关下行符号配置列表更详细的描述可以参见上述表1中的相关描述。
在UE不支持一个时隙内接收多个物理下行数据信道或该UE被指示不在一个时隙内接收多个物理下行数据信道的条件下,G1对应的接收时机的数量等于一。
在UE支持一个时隙内接收多个物理下行数据信道的条件下,G1对应的接收时机的数量为该G1中时域不重叠的下行符号配置的最大个数。可以理解的是,这里的UE支持一个时隙内接收多个物理下行数据信道可以包括两种情况:一种是UE支持一个时隙内接收多个物理下行数据信道;另一种是UE支持一个时隙内接收多个物理下行数据信道且该UE被指示可以在一个时隙内接收多个物理下行数据信道。
网络设备和终端设备可以按照如下方法对第一下行符号配置集合G1中的下行符号配置进行分组得到多个下行符号配置子集SDSA(j),j为下行符号配置子集SDSA(j)在G1中的索引,j为非负整数。
(1)设j的初始值等于0。
(2)确定G1中的下行符号配置对应的最后一个下行符号的符号索引的最小值为n。可以理解的是,下行符号配置对应的最后一个下行符号的符号索引由所述下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的,即最后一个下行符号的符号索引为起始下行符号的索引与下行符号的持续符号数之和再减一。
(3)将G1中起始下行符号的符号索引小于或等于n的下行符号配置分配到同一个下行符号配置子集SDSA(j);
更新G1:将SDSA(j)中的下行符号配置从G1中删除;
更新j的取值为j加1。
(4)重复执行步骤(2)和(3)直到G1为空集。
上述对第一下行符号配置集合G1中的下行符号配置进行分组的过程中,可以在分组之前将G1赋值给一个临时变量G1_TEMP,上述过程中对G1的操作替换为对G1_TEMP的操作,从而使得G1在这个分组的过程中保持不变。
以表1所示的索引为1至7的下行符号配置组成的下行符号配置集合G1为例。如图11所示,G1中的下行符号配置#1对应的最后一个下行符号的符号索引为1,是G1中下行符号配置对应的最后一个下行符号的符号索引的最小值。所以,第一次执行步骤(2)可以得到n等于1。在本申请中符号#后面跟的数字可以表示索引的取值。下行符号配置#1、下行符号配置#2和下行符号配置#3的起始下行符号的符号索引均等于0,所以第一次执行步骤(3),可以将下行符号配置#1、下行符号配置#2和下行符号配置#3分配到同一个下行符号配置子集SDSA(0)。第一次执行完步骤(3)之后,G1中还包括下行符号配置#4、下行符号配置#5、下行符号配置#6和下行符号配置#7。
第二次执行步骤(2)的时候,更新后的G1中的下行符号配置#4对应的最后一个下行符号的符号索引为7,是G1中下行符号配置对应的最后一个下行符号的符号索引的最小值。所以,第二次执行步骤(2)可以得到n等于7。下行符号配置#4的起始下行符号的符号索引为4,下行符号配置#5的起始下行符号的符号索引为7,所以第二次执行步骤(3),可以将下行符号配置#4和下行符号配置#5分配到同一个下行符号配置子集SDSA(1)。第二次执行完步骤(3)之后,G1中还包括下行符号配置#6和下行符号配置#7。
第三次执行步骤(3),可以将下行符号配置#6分配到下行符号配置子集SDSA(2),该下行符号配置子集(subset of downlink symbol allocation,SDSA)中只包括下行符号配置#6。
第四次执行步骤(3),可以将下行符号配置#7分配到下行符号配置子集SDSA(3),该下行符号配置子集中只包括下行符号配置#7。
通过采用上述方法,第一下行符号配置集合G1被分成了四个下行符号配置子集SDSA(0)、SDSA(1)、SDSA(2)和SDSA(3),对应的这四个子集在G1中的索引分别为0、1、2和3。
按照上述方法,可以对第一下行符号配置集合G1中的下行符号配置进行分组得到至少一个下行符号配置子集。下行符号配置子集的总个数即为G1中时域不重叠的下行符号配置的最大个数。当G1包括至少两个不同的下行符号配置子集时,对于G1中任意两个不同的下行符号配置子集第二SDSA和第三SDSA,总是可以在第二SDSA中找到下行符号配置C1,在第三SDSA中找到下行符号配置C2,使得下行符号配置C1和下行符号配置C2对应的下行符号在时域上不重叠。两个下行符号在时域上不重叠,可以理解为这两个下行符号的符号索引不同。
根据上述方法确定的第一SDSA中的所有下行符号配置对应的下行符号在时域上部分或全部重叠。网络设备不会一个时隙内,使用同一个下行符号配置子集中的多于一个下行符号配置调度多于一个PDSCH数据。所以对于同一个下行符号配置子集中的所有下行符号配置可以对应同一个接收时机,从而可以有效减少接收时机数,对应的也就减少了HARQ-ACK码本中的反馈比特数。
假设上述下行信息的传输所对应的下行符号配置为第一下行符号配置,第一下行符号配置为第一SDSA中的一个下行符号配置。则,上述下行信息的传输对应的接收时机还与第一SDSA在G1中的子集索引相关。可以理解的是,在本申请中,因素A与因素B相关,可以理解为信息A可以根据因素B确定,进一步的,信息A为接收时机,也可以理解为接收时机的索引可以根据因素B确定。例如,上述下行信息的传输对应的接收时机的索引可以根据第一SDSA在G1中的子集索引确定。网络设备和终端设备可以根据G1中的下行符号配置子集的索引,依次确定G1中的下行符号配置子集对应的接收时机的索引。
根据第一时隙定时值子集,有两类方法可以确定第一时隙定时值子集对应的第一下行符号配置集合G1。
第一类:对第一时隙定时值子集中的每一个时隙定时值对应的下行符号配置集合取并集,得到第一时隙定时值子集对应的下行符号配置集合。
G1为第一时隙定时值子集中的每一个时隙定时值对应的下行符号配置集合的并集,其中,每一个时隙定时值对应的下行符号配置集合为上述下行符号配置列表的子集或全集。
以时隙定时值0,1,2和3组成第一时隙定时值子集为例,第一时隙定时值子集对应的第一下行符号配置集合G1为时隙定时值0对应的下行符号配置集合、时隙定时值1对应的下行符号配置集合、时隙定时值2对应的下行符号配置集合和时隙定时值3对应的下行符号配置集合的并集。
有两种方法可以进一步确定第一时隙定时值子集中的每一个时隙定时值对应的下行符号配置集合。
方法1A:根据时隙定时值对应的单个下行时隙,确定下行符号配置列表中的下行符号配置的有效性,从而进一步确定由有效的下行符号配置组成的该时隙定时值对应的下行符号配置集合。
对于第一时隙定时值子集中的任意一个时隙定时值ST1对应的第二下行符号配置集合G2,该G2不包括上述下行符号配置列表中满足以下条件的第二下行符号配置:
第二下行符号配置对应的下行符号与第一时隙T1中的上行符号部分或全部重叠,或第二时隙T2中不包括控制信道监听时机。其中,所述第二下行符号配置对应的下行符号是由所述第二下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。
在本申请的实施例中,控制信道监听时机可以是物理下行控制信道监听时机(PDCCH monitoring occasion)。PDCCH monitoring occasion可以是针对某一类型的PDCCH配置的,例如,可以分别针对UE特定的PDCCH和公共PDCCH分别配置PDCCH monitoring occasion。这里的不包括控制信道监听时机可以是不包括某一特定类型的PDCCH的PDCCH monitoring occasion。另外,在某些场景下,配置的PDCCH monitoring occasion可能会不可用,例如,当发生带宽部分(bandwidth part,BWP)切换后,BWP切换之前配置的PDCCH monitoring occasion则不可用。又例如,公共配置的PDCCH monitoring occasion对于要接收UE特定的PDCCH来说也是不可用的。又例如,配置的PDCCH monitoring occasion与配置的上行符号时域上重叠了则认为该PDCCH monitoring occasion不可用。对于这些不可用的PDCCH monitoring occasion,也可以理解为不包括PDCCH monitoring occasion。
第二下行符号配置对应的下行符号与第一时隙T1中的上行符号部分或全部重叠,是指第二下行符号配置对应的下行符号中至少有一个下行符号与第一时隙T1中的上行符号在时域上重叠,即包括了相同的符号索引。以第二下行符号配置为图11中的下行符号配置#1、时隙定时值为图6所示的时隙定时值0为例,则T1的时隙索引为13,T1也可以称为时隙13,第二下行符号配置对应的下行符号与第一时隙T1中的上行符号部分或全部重叠是指在时隙13中的符号索引0和符号索引1对应的符号中至少有一个是上行符号。
如果第二下行符号配置对应的下行符号与第一时隙T1中的上行符号部分或全部重叠,则说明网络设备在第一时隙T1上不会使用该第二下行符号配置进行下行数据调度,或即使网络设备在第一时隙T1上使用该第二下行符号配置进行下行数据调度时终端设 备也不会进行数据接收和处理,因此该第二下行符号配置被认为是一个无效的下行符号配置,在计算下行接收时机的个数时候可以不考虑该第二下行符号配置。同样的,如果第二时隙T2中不包括控制信道监听时机,则说明该第二下行符号配置也是一个无效的下行符号配置,网络设备不会使用该第二下行符号配置进行下行数据调度。
T1为根据时隙定时值ST1和承载码本的上行信道所在时隙确定的时隙。具体的,T1的时隙索引可以等于承载码本的上行信道所在时隙的索引减去时隙定时值ST1。例如,承载码本的上行信道所在时隙的索引为n,时隙定时值ST1的取值即为ST1,T1的时隙索引=(n-ST1)。可选的,将上述差值对一个无线帧内包括的时隙个数取模作为T1的时隙索引。例如,T1的时隙索引=(n-ST1)mod M,M为一个无线帧内包括的时隙个数,mod表示取模操作。例如,对于15千赫兹(kilohertz,kHz)的子载波间隔,M为10;对于30kHz的子载波间隔,M为20;对于60kHz的子载波间隔,M为40;对于120kHz的子载波间隔,M为80;对于240kHz的子载波间隔,M为160。
T2为根据时隙定时值ST1、第二下行符号配置中的时隙偏移值信息、聚合因子和承载码本的上行信道所在时隙确定的时隙。具体的,T2的时隙索引可以等于承载码本的上行信道所在时隙的索引减去时隙定时值ST1、第二下行符号配置中的时隙偏移值信息K0和聚合因子F a三者之和再加1。例如,T2的时隙索引=(n–ST1-K0-F a+1)。可选的,可以进一步将上述计算结果对一个无线帧内包括的时隙个数取模作为T2的时隙索引。例如,T2的时隙索引=(n–ST1-K0-F a+1)mod M。
可选的,方法1A还有另一种可能的实现方式。对于第一时隙定时值子集中的任意一个时隙定时值ST1对应的第二下行符号配置集合G2,该G2由上述下行符号配置列表中满足以下条件的第七下行符号配置组成:
第七下行符号配置对应的下行符号与第五时隙T5中的上行符号在时域上不重叠,且第六时隙T6中包括至少一个控制信道监听时机。其中,第七下行符号配置对应的下行符号是由第七下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。T5为根据ST1和承载码本的上行信道所在时隙确定的时隙。T6为根据ST1、第七下行符号配置中的时隙偏移值信息、聚合因子和承载码本的上行信道所在时隙确定的时隙。
第七下行符号配置与第二下行符号配置不同。可选的,由第七下行符号配置与第二下行符号配置组成下行符号配置列表。
有关T5的确定过程可以参考上述T1的确定过程直接得到,T6的确定方法可以参考上述T2的确定方法直接得到,在此不加赘述。
方法1B:考虑聚合因子,根据时隙定时值对应的连续的多个下行时隙,确定下行符号配置列表中下行符号配置的有效性,从而进一步确定由有效的下行符号配置组成的该时隙定时值对应的下行符号配置集合。
对于第一时隙定时值子集中的任意一个时隙定时值ST2对应的第三下行符号配置集合G3,该G3不包括所述下行符号配置列表中满足以下条件的第三下行符号配置:
第三下行符号配置对应的下行符号与第一时隙集合TG1中的每个时隙的上行符号均部分或全部重叠,或,第三时隙T3中不包括控制信道监听时机。其中,第三下行符号配置对应的下行符号是由第三下行符号配置中的起始下行符号的索引信息以及下行符 号的持续符号数信息确定的。
以第三下行符号配置为图11中的下行符号配置#1、时隙定时值为图6所示的时隙定时值0为例,则第一时隙集合TG1中的时隙对应的时隙索引的集合为{10,11,12,13},第三下行符号配置对应的下行符号与第一时隙集合TG1中的每一个时隙的上行符号均部分重叠或全部重叠,是指在第一时隙集合TG1的每一个时隙的符号0和符号1中都至少有一个是上行符号。
TG1是由根据ST2、聚合因子和承载码本的上行信道所在时隙确定的时隙组成的集合。具体的,可以首先根据时隙定时值ST2和所述承载码本的上行信道所在时隙确定出一个参考时隙,则TG1为以该参考时隙为基准向前的连续多个时隙,包括该参考时隙自身。TG1包括的时隙的个数等于聚合因子F a。例如,承载码本的上行信道所在时隙的时隙索引为n,时隙定时值ST1的取值即为ST1,具体的,TG1中的时隙对应的时隙索引的集合为:{n-ST1,n–ST1–1,…,n-ST1-F a+1}。可选的,将上述差值对一个无线帧内包括的时隙个数取模作为TG1中的时隙对应的时隙索引。即TG1中的时隙对应的时隙索引的集合为{(n-ST1)mod M,(n–ST1–1)mod M,…,(n-ST1-F a+1)mod M}。
T3为根据ST2、第三下行符号配置中的时隙偏移值信息、聚合因子和承载码本的上行信道所在时隙确定的时隙。T3的确定方法可以参考方法1A中T2的确定方法直接得到,这里不加赘述。
可选的,方法1B还有另一种可能的实现方式。对于第一时隙定时值子集中的任意一个时隙定时值ST2对应的第三下行符号配置集合G3,该G3由上述下行符号配置列表中满足以下条件的第八下行符号配置组成:
第八下行符号配置对应的下行符号与第一时隙集合TG1中的至少一个时隙的上行符号在时域上不重叠,且第七时隙T7中包括至少一个控制信道监听时机。其中,第八下行符号配置对应的下行符号是由所述第八下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。TG1是由根据ST2、聚合因子和承载码本的上行信道所在时隙确定的时隙组成的集合。T7为根据ST2、第八下行符号配置中的时隙偏移值信息、聚合因子和承载码本的上行信道所在时隙确定的时隙。
第八下行符号配置与第三下行符号配置不同。可选的,由第八下行符号配置与第三下行符号配置组成所述下行符号配置列表。
有关TG1的确定过程可以参考上面的描述,T7的确定方法可以参考方法1A中的T2的确定方法直接得到,在此不加赘述。
第二类:对下行符号配置列表中的每一个下行符号配置,同时通过比较该下行符号配置在第一时隙定时值子集对应的多个时隙中的有效性确定该下行符号配置是否有效,从而进一步确定由有效的下行符号配置组成的第一时隙定时值子集对应的下行符号配置集合。
在第二类方法中,有三种方法可以用于确定第一下行符号配置集合G1。
方法2A:同时判断与第一时隙定时值子集中的时隙定时值对应的单个下行时隙,确定下行符号配置列表中的下行符号配置的有效性,从而进一步确定由有效的下行符号配 置组成的第一下行符号配置集合G1。
G1不包括所述下行符号配置列表中满足以下条件的第四下行符号配置:
对于第二时隙集合TG2中的每个时隙TG2_T,第四下行符号配置对应的下行符号与TG2_T的上行符号部分或全部重叠,或,TG2_T对应的第四时隙T4中不包括控制信道监听时机。第四下行符号配置对应的下行符号是由第四下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。第四下行符号配置对应的下行符号与TG2_T的上行符号部分或全部重叠,是指第四下行符号配置对应的下行符号中至少有一个下行符号与时隙TG2_T中的上行符号在时域上重叠,即包括了相同的符号索引。时隙TG2_T对应的第四时隙T4中不包括控制信道监听时机,可以理解为T4中不包括至少一个控制信道监听时机。
TG2中的每个时隙与第一时隙定时值子集中的每个时隙定时值一一对应。具体的,作为第二时隙集合TG2中的任意一个时隙TG2_T,TG2_T可以是根据第一时隙定时值子集中的时隙定时值和承载码本的上行信道所在时隙确定的时隙。具体的,TG2_T的时隙索引可以等于承载码本的上行信道所在时隙的时隙索引减去第一时隙定时值子集中的一个时隙定时值。TG2包括的时隙的个数等于第一时隙定时值子集包括的时隙定时值的个数。例如,设承载码本的上行信道所在时隙的索引为n,第一时隙定时值子集包括的所有时隙定时值为ST1,ST2,ST3和ST4,则第二时隙集合TG2中的时隙对应的时隙索引的集合为{(n-ST1),(n-ST2),(n-ST3),(n-ST4)}。可选的,可以进一步将上述差值对M取模作为TG2中的时隙对应的时隙索引。即TG2中的时隙对应的时隙索引的集合为{(n-ST1)mod M,(n-ST2)mod M,(n-ST3)mod M,(n-ST4)mod M}。有关M的描述可以参考方法1A中对M的相关描述,这里不加赘述。
T4为根据TG2_T对应的第一时隙定时值子集中的时隙定时值、第四下行符号配置中的时隙偏移值信息、聚合因子和承载码本的上行信道所在时隙确定的时隙。具体的,T4的索引可以等于承载码本的上行信道所在时隙的索引减去时隙定时值、第四下行符号配置中的时隙偏移值信息K0和聚合因子F a三者之和再加1。例如,设承载码本的上行信道所在时隙的时隙索引为n,第一时隙定时值子集包括的所有时隙定时值为ST1,ST2,ST3和ST4,则T4的时隙索引分别取值为(n-ST1-K0-F a+1)、(n-ST2-K0-F a+1)、(n-ST3-K0-F a+1)和(n-ST4-K0-F a+1)。可选的,可以进一步将上述计算结果对M取模作为T4的时隙索引。即,T4的时隙索引分别取值为(n-ST1-K0-F a+1)mod M、(n-ST2-K0-F a+1)mod M、(n-ST3-K0-F a+1)mod M和(n-ST4-K0-F a+1)mod M。
可选的,方法2A还有另一种可能的实现方式。G1由所述下行符号配置列表中满足以下条件的第九下行符号配置组成:
第九下行符号配置对应的下行符号与第二时隙集合TG2中的至少一个时隙TG2_T的上行符号时域上不重叠,且,TG2_T对应的第八时隙T8中包括至少一个控制信道监听时机。其中,第九下行符号配置对应的下行符号是由第九下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。
TG2中的每个时隙与第一时隙定时值子集中的每个时隙定时值一一对应。具体的, 作为第二时隙集合TG2中的任意一个时隙TG2_T,TG2_T可以是根据第一时隙定时值子集中的时隙定时值和承载码本的上行信道所在时隙确定的时隙。
T8为根据TG2_T对应的第一时隙定时值子集中的时隙定时值、第九下行符号配置中的时隙偏移值信息、聚合因子和承载码本的上行信道所在时隙确定的时隙。T8的确定方法可以参考T4的确定方法直接得到,这里不加赘述。
第九下行符号配置与第四下行符号配置不同。可选的,由第九下行符号配置与第四下行符号配置组成所述下行符号配置列表。
方法2B1:考虑聚合因子,根据第一时隙定时值子集对应的多个下行时隙,确定下行符号配置列表中的下行符号配置的有效性,从而进一步确定由有效的下行符号配置组成的第一下行符号配置集合G1。
具体的,考虑聚合因子,同时判断第一时隙定时值子集对应的多个时隙,分别对下行符号与上行符号是否有冲突以及是否有控制信道的监听时机进行独立判断,从而确定第一下行符号配置集合G1。
G1不包括所述下行符号配置列表中满足以下条件的第五下行符号配置:
第五下行符号配置对应的下行符号与第三时隙集合TG3中每个时隙的上行符号均部分或全部重叠,或,第四时隙集合TG4中每个时隙都不包括控制信道监听时机。其中,第五下行符号配置对应的下行符号是由第五下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。TG3是由根据第一时隙定时值子集中的时隙定时值、聚合因子和承载码本的上行信道所在时隙确定的时隙组成的集合。TG4是由根据第一时隙定时值子集中的时隙定时值、第五下行符号配置中的时隙偏移值信息、聚合因子和承载码本的上行信道所在时隙确定的时隙组成的集合。
可以按照如下方法确定第三时隙集合TG3:(1)首先参考上述方法1B中确定第一时隙定时值子集中的每一个时隙定时值对应的第一时隙集合TG1;(2)对第一时隙定时值子集中的每一个时隙定时值对应的第一时隙集合TG1取并集得到第三时隙集合TG3。
第四时隙集合TG4包括的时隙个数等于第一时隙定时值集合中的时隙定时值的个数。TG4中的时隙与第一时隙定时值集合中的时隙定时值一一对应。TG4中的时隙的确定方法可以参考方法1A中确定第二时隙T2的方法直接得到,在此不加赘述。
以第五下行符号配置为图11中的下行符号配置#1(即表1中行索引为1的下行符号配置)、第一时隙定时值集合为如图6所示的{0,1,2,3}、聚合因子等于4为例,则第三时隙集合TG3中时隙的时隙索引的集合为{7,8,9,10,11,12,13},第四时隙集合TG4中时隙的时隙索引的集合为{7,8,9,10}。
可选的,方法2B1还有另一种可能的实现方式。G1由所述下行符号配置列表中满足以下条件的第十下行符号配置组成:
所述第十下行符号配置对应的下行符号与第三时隙集合TG3中至少一个时隙的上行符号在时域上不重叠,且,第六时隙集合TG6中至少一个时隙包括至少一个控制信道监听时机。其中,第十下行符号配置对应的下行符号是由第十下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。
TG3的描述以及确定方法可以参考上述相关描述,在此不加赘述。
TG6是由根据第一时隙定时值子集中的时隙定时值、第十下行符号配置中的时隙偏 移值信息、聚合因子和承载码本的上行信道所在时隙确定的时隙组成的集合。TG6包括的时隙个数等于第一时隙定时值集合中的时隙定时值的个数。TG6中的时隙与第一时隙定时值集合中的时隙定时值一一对应。TG6中的时隙的确定方法可以参考方法1A中确定第二时隙T2的方法直接得到,在此不加赘述。
第十下行符号配置与第五下行符号配置不同。可选的,由第十下行符号配置与第五下行符号配置组成所述下行符号配置列表。
方法2B2:考虑聚合因子,根据第一时隙定时值子集对应的多个下行时隙,确定下行符号配置列表中的下行符号配置的有效性,从而进一步确定由有效的下行符号配置组成的第一下行符号配置集合G1。
具体的,考虑聚合因子,同时判断第一时隙定时值子集对应的多个时隙,对下行符号与上行符号是否有冲突以及是对应控制信道时隙上是否有控制信道的监听时机进行联合判断,从而确定第一下行符号配置集合G1。
G1不包括所述下行符号配置列表中满足以下条件的第六下行符号配置:
对于第三时隙集合TG3中的每个时隙TG3_T,第六下行符号配置对应的下行符号与TG3_T的上行符号部分或全部重叠,或,TG3_T对应的第五时隙集合TG5中每个时隙都不包括控制信道监听时机。其中,第六下行符号配置对应的下行符号是由第六下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。
TG3是由根据第一时隙定时值子集中的时隙定时值、聚合因子和承载码本的上行信道所在时隙确定的时隙组成的集合。TG3的确定方法可以参考方法2B1中的相关描述,这里不加赘述。
TG5是由根据TG3_T对应的第一时隙定时值子集中的至少一个时隙定时值、第六下行符号配置中的时隙偏移值信息、聚合因子和承载码本的上行信道所在时隙确定的时隙组成的集合。对于第一时隙定时值子集中的任意一个时隙定时值ST2,对应一个第一时隙集合TG1,TG1的确定方法可以参见方法1B中对TG1的相关描述。当TG3_T是TG1中的一个时隙时,则认为TG3_T与ST2相对应。通过这种方法,可以确定出TG3_T对应的至少一个时隙定时值ST2。根据TG3_T对应的至少一个时隙定时值ST2、第六下行符号配置中的时隙偏移值信息、聚合因子和承载码本的上行信道所在时隙可以确定出至少一个第三时隙T3。T3的确定方法可以参考方法1A中T2的确定方法直接得到,这里不加赘述。这些至少一个第三时隙T3组成第五时隙集合TG5。TG5中包括的时隙的个数等于TG3_T对应的第一时隙定时值子集中的时隙定时值的个数。
以第六下行符号配置为图11中的下行符号配置#1(即表1中索引为1的下行符号配置)、第一时隙定时值集合为如图6所示的{0,1,2,3}、聚合因子等于4为例,则第三时隙集合TG3中时隙的时隙索引的集合为{7,8,9,10,11,12,13}。对于第三时隙集合TG3中的时隙11,第五时隙集合TG5中时隙的时隙索引的集合对应{8,9,10}。
可选的,方法2B2还有另一种可能的实现方式。G1由所述下行符号配置列表中满足以下条件的第十一下行符号配置组成:
第十一下行符号配置对应的下行符号与第三时隙集合TG3中的至少一个时隙TG3_T的上行符号时域不重叠,且,TG3_T对应的第七时隙集合TG7中至少一个时隙包括至少一个控制信道监听时机。其中,第十一下行符号配置对应的下行符号是由第十一下行符 号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。
TG3是由根据第一时隙定时值子集中的时隙定时值、聚合因子和承载码本的上行信道所在时隙确定的时隙组成的集合。TG7是由根据所述TG3_T对应的第一时隙定时值子集中的至少一个时隙定时值、第十一下行符号配置中的时隙偏移值信息、聚合因子和承载码本的上行信道所在时隙确定的时隙组成的集合。TG7的确定方法可以参考上述TG5的确定方法直接得到,这里不加赘述。
第十一下行符号配置与第六下行符号配置不同。可选的,由第十一下行符号配置与第六下行符号配置组成所述下行符号配置列表。
需要理解的,本申请中确定时隙定时值子集中时隙定时值的排列可以为根据时隙定时值的排列,例如从小到大{0,1,2,3}或从大到小{3,2,1,0},也可以是根据时隙定时值的索引进行排列,本申请并不限定。
上述确定第一时隙定时值子集对应的第一下行符号配置集合G1的方法,一方面,可以将无效的下行符号配置从下行符号配置集合中剔除,从可以减少第一时隙定时值子集对应的接收时机的数量,进而减少HARQ-ACK码本中的反馈比特数;另一方面,还可以保证每一次下行调度在HARQ-ACK码本中有对应的反馈位置。
如图12所示,本申请还提供一种反馈信息的传输方法,用于提升上行HARQ-ACK半静态码本的传输可靠性。
S1210,网络设备向终端设备发送下行信息,对应的,终端设备接收来自网络设备的下行信息。这里的下行信息可以为下行控制信息也可以为下行数据信息。下行控制信息可以承载在下行控制信道上,下行数据信息可以承载在下行数据信道上。
所述下行信息的传输对应第一时隙定时值子集中的第一时隙定时值,第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数。所述码本包括所述下行信息对应的反馈信息,其中,第一时隙定时值子集包括至少两个不同的时隙定时值。
可选的,第一时隙定时值子集中的任意两个不同的时隙定时值之间的差值的绝对值小于第一门限值,第一门限值与聚合因子相关,聚合因子大于1。
S1220,终端设备生成码本,在该码本中承载上述下行信息对应的反馈信息。该反馈信息可以根据终端设备接收到的下行信息的译码结果决定,如果译码成功则反馈ACK,如果译码失败则反馈NACK。
S1230,终端设备向网络设备发送码本,对应的,网络设备接收来自终端设备的码本。网络设备对接收到的码本进行解调译码。进一步的,网络设备可以根据码本的译码结果确定上述下行信息是否被终端设备正确接收。这里的对接收到的码本进行解调译码,也可以理解为是对承载该码本的上行PUCCH或PUSCH进行解调译码。
所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机的索引相关,所述下行信息的传输对应的接收时机的索引为第一时隙定时值对应的至少一个接收时机的索引中的一个。
可选的,第一时隙定时值对应的接收时机的数量等于第一下行符号配置集合G1对应的接收时机的数量,其中,G1是根据第一时隙定时值子集确定的。G1为下行符号配置列表的子集或全集,其中,所述下行符号配置列表中的每一个下行符号配置包括起始 下行符号的索引信息、下行符号的持续符号数信息以及时隙偏移值信息。所述时隙偏移值信息用于指示控制信道所在的时隙和与所述控制信道对应的数据信道所在的时隙之间距离的时隙个数。
所述下行信息的传输对应的接收时机的索引还与第一时隙定时值子集在时隙定时值集合中的索引相关。
所述下行信息的传输对应的接收时机的索引还与第一下行符号配置子集SDSA在所述G1中的索引相关,所述下行信息的传输所对应的下行符号配置为第一下行符号配置,第一下行符号配置为第一SDSA中的一个下行符号配置,第一SDSA中的所有下行符号配置对应的下行符号在时域上部分或全部重叠,下行符号配置对应的下行符号是由下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。
有关第一下行符号配置集合G1的确定方法以及所述下行信息的传输对应的接收时机的索引的确定方法,可以参见前述如图4所示的实施例中的相关部分的描述,这里不加赘述。
在本申请中,是以PDSCH的重复传输为例进行描述,但也可以应用于PDCCH的重复传输。当PDCCH的聚合因子与PDSCH的聚合因子不同时,上述实施例中的第一门限可以为PDCCH的聚合因子与PDSCH的聚合因子中的较小值。例如,当PDCCH的聚合因子为2,PDSCH的聚合因子为4时,第一门限值为2。
可以理解的是,上述实施例虽然是以单载波场景为例进行描述的,但本申请的技术方案也可以应用于多载波场景或多个带宽部分(bandwidth part,BWP)的场景。对应的,HARQ-ACK码本的比特长度与载波个数和BWP的个数成正比。上述实施例中描述的HARQ-ACK码本中的比特流顺序是针对一个载波内或一个BWP内而言的,对于载波间或BWP间的比特流顺序,本申请不做限定。
可以理解的是,上述方法实施例中由网络设备完成的功能也可以由应用于网络设备的某一个部件来完成,例如,由应用于网络设备的芯片来完成;由终端设备完成的功能也可以由应用于终端设备的某一个部件来完成,例如,由应用于终端设备的芯片来完成。
可以理解的是,为了实现上述实施例中功能,终端设备和网络设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图9和图10为本申请的实施例提供的两种可能的通信装置的结构示意图。该通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备130或终端设备140,也可以是如图1所示的无线接入网设备120,还可以是应用于终端设备或网络设备的组件,例如,可以是应用于终端设备或网络设备的芯片。
如图9所示,通信装置900包括接收单元910、处理单元920和发送单元930。
如图10所示,通信装置1000包括处理器1010和收发装置1020,其中,处理器1010用于执行上述处理单元920的功能,收发装置1020用于执行上述接收单元910和发送单元930的功能。处理器1010和收发装置1020之间相互耦合。可以理解的是,收发装 置1020可以为收发器或收发电路或输入输出接口。
当通信装置900用于实现如图4所示的实施例中的终端设备的功能时,接收单元910用于接收下行信息,该下行信息的传输对应时隙定时值集合中的第一时隙定时值,第一时隙定时值用于指示该下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,该码本包括该下行信息对应的反馈信息;处理单元920用于生成该码本,该下行信息对应的反馈信息在该码本中的位置与该下行信息的传输对应的接收时机相关,该接收时机与第一时隙定时值和聚合因子相关,聚合因子为该下行信息被重复传输的次数,这里的码本可以为HARQ-ACK半静态码本;发送单元930用于发送该码本。
可选的,处理单元920用于更新时隙定时值集合,具体用于:将时隙定时值集合中大于等于第一数值且小于第二数值的时隙定时值的元素从时隙定时值集合中去掉;或,将时隙定时值集合中小于第二数值的时隙定时值的元素从时隙定时值集合中去掉,其中,第二数值等于第一数值与聚合因子之和,第一数值等于时隙定时值集合中取值最小的时隙定时值。
可选的,处理单元920用于更新时隙定时值集合,具体用于:将时隙定时值集合中大于第二数值且小于等于第一数值的时隙定时值的元素从时隙定时值集合中去掉;或,将时隙定时值集合中大于第二数值的时隙定时值的元素从时隙定时值集合中去掉,其中,第一数值等于时隙定时值集合中取值最大的时隙定时值,第二数值等于第一数值与聚合因子之差。
当通信装置900用于实现如图12所示的实施例中的终端设备的功能时,接收单元910用于接收下行信息,所述下行信息的传输对应第一时隙定时值子集中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息,其中,所述第一时隙定时值子集包括至少两个不同的时隙定时值;处理单元920用于生成该码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机的索引相关,所述下行信息的传输对应的接收时机的索引为所述第一时隙定时值对应的至少一个接收时机的索引中的一个,所述第一时隙定时值对应的接收时机的数量是根据所述第一时隙定时值子集确定的;发送单元930用于发送该码本。
有关上述接收单元910、处理单元920和发送单元930更详细的描述可以直接参考上述方法实施例中终端设备的相关描述直接得到,这里不加赘述。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当通信装置900用于实现如图4所示的实施例中的网络设备的功能时,发送单元930用于发送下行信息,该下行信息的传输对应时隙定时值集合中的第一时隙定时值,第一时隙定时值用于指示该下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,该码本包括该下行信息对应的反馈信息;接收单元910用于接收该码本,该下行信息对应的反馈信息在该码本中的位置与该下行信息的传输对应的接收时机相关,该接收时机与第一时隙定时值和聚合因子相关,聚合因子为该下行信息被重复 传输的次数,这里的码本可以为HARQ-ACK半静态码本;处理单元920用于对该码本进行解调译码。
可选的,处理单元920用于更新时隙定时值集合,具体用于:将时隙定时值集合中大于等于第一数值且小于第二数值的时隙定时值的元素从时隙定时值集合中去掉;或,将时隙定时值集合中小于第二数值的时隙定时值的元素从时隙定时值集合中去掉,其中,第二数值等于第一数值与聚合因子之和,第一数值等于时隙定时值集合中取值最小的时隙定时值。
可选的,处理单元920用于更新时隙定时值集合,具体用于:将时隙定时值集合中大于第二数值且小于等于第一数值的时隙定时值的元素从时隙定时值集合中去掉;或,将时隙定时值集合中大于第二数值的时隙定时值的元素从时隙定时值集合中去掉,其中,第一数值等于时隙定时值集合中取值最大的时隙定时值,第二数值等于第一数值与聚合因子之差。
当通信装置900用于实现如图12所示的实施例中的网络设备的功能时,包括:发送单元930,用于发送下行信息,所述下行信息的传输对应第一时隙定时值子集中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息,其中,所述第一时隙定时值子集包括至少两个不同的时隙定时值;接收单元910,用于接收所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机的索引相关,所述下行信息的传输对应的接收时机的索引为所述第一时隙定时值对应的至少一个接收时机的索引中的一个,所述第一时隙定时值对应的接收时机的数量是根据所述第一时隙定时值子集确定的;处理单元920用于对该码本进行解调译码。
有关上述接收单元910、处理单元920和发送单元930更详细的描述可以直接参考上述方法实施例中网络设备的相关描述直接得到,这里不加赘述。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、 硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于发送设备或接收设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (29)

  1. 一种反馈信息的传输方法,其特征在于,包括:
    接收下行信息,所述下行信息的传输对应时隙定时值集合中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息;
    生成并发送所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机相关,所述接收时机与所述第一时隙定时值和聚合因子相关,所述聚合因子为所述下行信息被重复传输的次数。
  2. 一种反馈信息的传输方法,其特征在于,包括:
    发送下行信息,所述下行信息的传输对应时隙定时值集合中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息;
    接收所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机相关,所述接收时机与所述第一时隙定时值和聚合因子相关,所述聚合因子为所述下行信息被重复传输的次数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述聚合因子大于1,所述时隙定时值集合还包括第二时隙定时值,所述第二时隙定时值与所述第一时隙定时值不同,
    当所述第一时隙定时值与所述第二时隙定时值的差值的绝对值小于第一门限值时,所述第一时隙定时值与所述第二时隙定时值对应的接收时机相同,所述第一门限值与所述聚合因子相关;或,
    当所述第一时隙定时值与所述第二时隙定时值的差值的绝对值大于或等于第一门限值时,所述第一时隙定时值与所述第二时隙定时值对应的接收时机不相同,所述第一门限值与所述聚合因子相关。
  4. 根据权利要求1至3任一项所述的方法,其特征在于:
    所述第一时隙定时值对应的接收时机为第一接收时机,所述第一时隙定时值为所述时隙定时值集合中大于等于第一数值且小于第二数值的时隙定时值,所述第一数值等于所述时隙定时值集合中取值最小的时隙定时值,所述第二数值等于所述第一数值与所述聚合因子之和;或,
    所述第一时隙定时值对应的接收时机为第一接收时机,所述第一时隙定时值为所述时隙定时值集合中小于第二数值的时隙定时值,所述第二数值等于第一数值与所述聚合因子之和,所述第一数值等于所述时隙定时值集合中取值最小的时隙定时值。
  5. 根据权利要求4所述的方法,其特征在于,更新所述时隙定时值集合,包括:
    将所述时隙定时值集合中大于等于所述第一数值且小于所述第二数值的时隙定时值的元素从所述时隙定时值集合中去掉;或,
    将所述时隙定时值集合中小于所述第二数值的时隙定时值的元素从所述时隙定时值集合中去掉。
  6. 根据权利要求1至3任一项所述的方法,其特征在于:
    所述第一时隙定时值对应的接收时机为第二接收时机,所述第一时隙定时值为所述 时隙定时值集合中大于等于第三数值且小于第四数值的时隙定时值,所述第三数值等于所述时隙定时值集合中大于等于第二数值且取值最小的时隙定时值,所述第二数值等于第一数值与所述聚合因子之和,所述第一数值等于所述时隙定时值集合中取值最小的时隙定时值,所述第四数值等于所述第三数值与聚合因子之和;或,
    所述第一时隙定时值对应的接收时机为第二接收时机,所述第一时隙定时值为所述时隙定时值集合中小于第四数值的时隙定时值,所述第四数值等于第三数值与聚合因子之和,所述第三数值等于所述时隙定时值集合中大于等于第二数值且取值最小的时隙定时值,所述第二数值等于第一数值与所述聚合因子之和,所述第一数值等于所述时隙定时值集合中取值最小的时隙定时值。
  7. 根据权利要求1至3任一项所述的方法,其特征在于:
    所述第一时隙定时值对应的接收时机为第一接收时机,所述第一时隙定时值为所述时隙定时值集合中大于第二数值且小于等于第一数值的时隙定时值,其中,所述第二数值等于所述第一数值与所述聚合因子之差,所述第一数值等于所述时隙定时值集合中取值最大的时隙定时值;或,
    所述第一时隙定时值对应的接收时机为第一接收时机,所述第一时隙定时值为所述时隙定时值集合中大于第二数值的时隙定时值,其中,所述第二数值等于第一数值与所述聚合因子之差,所述第一数值等于所述时隙定时值集合中取值最大的时隙定时值。
  8. 根据权利要求7所述的方法,其特征在于,更新所述时隙定时值集合,包括:
    将所述时隙定时值集合中大于所述第二数值且小于等于所述第一数值的时隙定时值的元素从所述时隙定时值集合中去掉;或,
    将所述时隙定时值集合中大于所述第二数值的时隙定时值的元素从所述时隙定时值集合中去掉。
  9. 根据权利要求1或2所述的方法,其特征在于,
    所述第一时隙定时值为第一时隙定时值子集中的一个时隙定时值,所述第一时隙定时值子集中的每一个时隙定时值均为所述时隙定时值集合中的时隙定时值;所述第一时隙定时值子集包括至少两个不同的时隙定时值,所述第一时隙定时值子集中的任意两个不同的时隙定时值之间的差值的绝对值小于第一门限值,所述第一门限值与所述聚合因子相关,所述聚合因子大于1。
  10. 根据权利要求9所述的方法,其特征在于,所述第一时隙定时值对应的接收时机的数量等于所述第一时隙定时值子集对应的接收时机的数量,所述下行信息的传输对应的接收时机为所述第一时隙定时值对应的接收时机中的一个接收时机。
  11. 根据权利要求9或10所述的方法,其特征在于,所述下行信息的传输对应的接收时机还与所述第一时隙定时值子集在所述时隙定时值集合中的索引相关。
  12. 根据权利要求9至11任一项所述的方法,其特征在于,
    所述第一时隙定时值子集对应的接收时机的数量等于第一下行符号配置集合G1对应的接收时机的数量,其中,所述第一下行符号配置集合G1是根据所述第一时隙定时值子集确定的;
    所述G1为下行符号配置列表的子集或全集,其中,所述下行符号配置列表中的每一个下行符号配置包括起始下行符号的索引信息、下行符号的持续符号数信息以及时隙 偏移值信息,所述时隙偏移值信息用于指示控制信道所在的时隙和与所述控制信道对应的数据信道所在的时隙之间距离的时隙个数。
  13. 根据权利要求12所述的方法,其特征在于,
    所述下行信息的传输对应的接收时机还与第一下行符号配置子集SDSA在所述G1中的索引相关,所述下行信息的传输所对应的下行符号配置为第一下行符号配置,所述第一下行符号配置为所述第一SDSA中的一个下行符号配置,所述第一SDSA中的所有下行符号配置对应的下行符号在时域上部分或全部重叠,所述下行符号配置对应的下行符号是由所述下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。
  14. 一种通信装置,其特征在于,包括:
    接收单元,用于接收下行信息,所述下行信息的传输对应时隙定时值集合中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息;
    处理单元,用于生成所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机相关,所述接收时机与所述第一时隙定时值和聚合因子相关,所述聚合因子为所述下行信息被重复传输的次数;
    发送单元,用于发送所述码本。
  15. 一种通信装置,其特征在于,包括:
    发送单元,用于发送下行信息,所述下行信息的传输对应时隙定时值集合中的第一时隙定时值,所述第一时隙定时值用于指示所述下行信息的传输所在的时隙与承载码本的上行信道所在时隙之间距离的时隙个数,所述码本包括所述下行信息对应的反馈信息;
    接收单元,用于接收所述码本,所述下行信息对应的反馈信息在码本中的位置与所述下行信息的传输对应的接收时机相关,所述接收时机与所述第一时隙定时值和聚合因子相关,所述聚合因子为所述下行信息被重复传输的次数;
    处理单元,用于对所述码本进行解调译码。
  16. 根据权利要求14或15所述的通信装置,其特征在于,其特征在于,所述聚合因子大于1,所述时隙定时值集合还包括第二时隙定时值,所述第二时隙定时值与所述第一时隙定时值不同,
    当所述第一时隙定时值与所述第二时隙定时值的差值的绝对值小于第一门限值时,所述第一时隙定时值与所述第二时隙定时值对应的接收时机相同,所述第一门限值与所述聚合因子相关;或,
    当所述第一时隙定时值与所述第二时隙定时值的差值的绝对值大于或等于第一门限值时,所述第一时隙定时值与所述第二时隙定时值对应的接收时机不相同,所述第一门限值与所述聚合因子相关。
  17. 根据权利要求14至16任一项所述的通信装置,其特征在于,:
    所述第一时隙定时值对应的接收时机为第一接收时机,所述第一时隙定时值为所述时隙定时值集合中大于等于第一数值且小于第二数值的时隙定时值,所述第一数值等于 所述时隙定时值集合中取值最小的时隙定时值,所述第二数值等于所述第一数值与所述聚合因子之和;或,
    所述第一时隙定时值对应的接收时机为第一接收时机,所述第一时隙定时值为所述时隙定时值集合中小于第二数值的时隙定时值,所述第二数值等于第一数值与所述聚合因子之和,所述第一数值等于所述时隙定时值集合中取值最小的时隙定时值。
  18. 根据权利要求17所述的通信装置,其特征在于,所述处理单元还用于更新所述时隙定时值集合,具体用于:
    将所述时隙定时值集合中大于等于所述第一数值且小于所述第二数值的时隙定时值的元素从所述时隙定时值集合中去掉;或,
    将所述时隙定时值集合中小于所述第二数值的时隙定时值的元素从所述时隙定时值集合中去掉。
  19. 根据权利要求14至16任一项所述的通信装置,其特征在于:
    所述第一时隙定时值对应的接收时机为第二接收时机,所述第一时隙定时值为所述时隙定时值集合中大于等于第三数值且小于第四数值的时隙定时值,所述第三数值等于所述时隙定时值集合中大于等于第二数值且取值最小的时隙定时值,所述第二数值等于第一数值与所述聚合因子之和,所述第一数值等于所述时隙定时值集合中取值最小的时隙定时值,所述第四数值等于所述第三数值与聚合因子之和;或,
    所述第一时隙定时值对应的接收时机为第二接收时机,所述第一时隙定时值为所述时隙定时值集合中小于第四数值的时隙定时值,所述第四数值等于第三数值与聚合因子之和,所述第三数值等于所述时隙定时值集合中大于等于第二数值且取值最小的时隙定时值,所述第二数值等于第一数值与所述聚合因子之和,所述第一数值等于所述时隙定时值集合中取值最小的时隙定时值。
  20. 根据权利要求14至16任一项所述的通信装置,其特征在于:
    所述第一时隙定时值对应的接收时机为第一接收时机,所述第一时隙定时值为所述时隙定时值集合中大于第二数值且小于等于第一数值的时隙定时值,其中,所述第二数值等于所述第一数值与所述聚合因子之差,所述第一数值等于所述时隙定时值集合中取值最大的时隙定时值;或,
    所述第一时隙定时值对应的接收时机为第一接收时机,所述第一时隙定时值为所述时隙定时值集合中大于第二数值的时隙定时值,其中,所述第二数值等于第一数值与所述聚合因子之差,所述第一数值等于所述时隙定时值集合中取值最大的时隙定时值。
  21. 根据权利要求20所述的通信装置,其特征在于,所述处理单元还用于更新所述时隙定时值集合,具体用于:
    将所述时隙定时值集合中大于所述第二数值且小于等于所述第一数值的时隙定时值的元素从所述时隙定时值集合中去掉;或,
    将所述时隙定时值集合中大于所述第二数值的时隙定时值的元素从所述时隙定时值集合中去掉。
  22. 根据权利要求14或15所述的通信装置,其特征在于,
    所述第一时隙定时值为第一时隙定时值子集中的一个时隙定时值,所述第一时隙定时值子集中的每一个时隙定时值均为所述时隙定时值集合中的时隙定时值;所述第一时 隙定时值子集包括至少两个不同的时隙定时值,所述第一时隙定时值子集中的任意两个不同的时隙定时值之间的差值的绝对值小于第一门限值,所述第一门限值与所述聚合因子相关,所述聚合因子大于1。
  23. 根据权利要求22所述的通信装置,其特征在于,所述第一时隙定时值对应的接收时机的数量等于所述第一时隙定时值子集对应的接收时机的数量,所述下行信息的传输对应的接收时机为所述第一时隙定时值对应的接收时机中的一个接收时机。
  24. 根据权利要求22或23所述的通信装置,其特征在于,所述下行信息的传输对应的接收时机还与所述第一时隙定时值子集在所述时隙定时值集合中的索引相关。
  25. 根据权利要求22至24任一项所述的通信装置,其特征在于,
    所述第一时隙定时值子集对应的接收时机的数量等于第一下行符号配置集合G1对应的接收时机的数量,其中,所述第一下行符号配置集合G1是根据所述第一时隙定时值子集确定的;
    所述G1为下行符号配置列表的子集或全集,其中,所述下行符号配置列表中的每一个下行符号配置包括起始下行符号的索引信息、下行符号的持续符号数信息以及时隙偏移值信息,所述时隙偏移值信息用于指示控制信道所在的时隙和与所述控制信道对应的数据信道所在的时隙之间距离的时隙个数。
  26. 根据权利要求25所述的通信装置,其特征在于,
    所述下行信息的传输对应的接收时机还与第一下行符号配置子集SDSA在所述G1中的索引相关,所述下行信息的传输所对应的下行符号配置为第一下行符号配置,所述第一下行符号配置为所述第一SDSA中的一个下行符号配置,所述第一SDSA中的所有下行符号配置对应的下行符号在时域上部分或全部重叠,所述下行符号配置对应的下行符号是由所述下行符号配置中的起始下行符号的索引信息以及下行符号的持续符号数信息确定的。
  27. 一种通信装置,其特征在于,包括处理器和收发装置,所述处理器与所述收发单元耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于实现如权利要求1至13任意一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被执行时,实现如权利要求1至13任一项所述的方法。
  29. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至13中任一项所述的方法。
PCT/CN2019/081237 2018-04-04 2019-04-03 一种反馈信息的传输方法和装置 WO2019192515A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810302077.2 2018-04-04
CN201810302077 2018-04-04
CN201810445299.X 2018-05-10
CN201810445299.XA CN110351027A (zh) 2018-04-04 2018-05-10 一种反馈信息的传输方法和装置

Publications (1)

Publication Number Publication Date
WO2019192515A1 true WO2019192515A1 (zh) 2019-10-10

Family

ID=68100001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081237 WO2019192515A1 (zh) 2018-04-04 2019-04-03 一种反馈信息的传输方法和装置

Country Status (1)

Country Link
WO (1) WO2019192515A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159237A1 (en) * 2020-02-10 2021-08-19 Qualcomm Incorporated Intra-slot pusch cbg repetition for harq retransmission
US11581922B2 (en) 2020-04-07 2023-02-14 Qualcomm Incorporated Type-1 codebook construction with multiple aggregation factors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684855A (zh) * 2011-03-11 2012-09-19 北京三星通信技术研究有限公司 一种混合自动重传定时关系的指示方法
CN107370570A (zh) * 2016-05-13 2017-11-21 电信科学技术研究院 一种反馈信息传输方法、ue、基站和系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684855A (zh) * 2011-03-11 2012-09-19 北京三星通信技术研究有限公司 一种混合自动重传定时关系的指示方法
CN107370570A (zh) * 2016-05-13 2017-11-21 电信科学技术研究院 一种反馈信息传输方法、ue、基站和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on HARQ Timing and Resource for NR", 3GPP TSG RAN WGI MEETING #87 RL-1611845, 5 November 2016 (2016-11-05), pages 2 - 5, XP051190192 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159237A1 (en) * 2020-02-10 2021-08-19 Qualcomm Incorporated Intra-slot pusch cbg repetition for harq retransmission
US11581922B2 (en) 2020-04-07 2023-02-14 Qualcomm Incorporated Type-1 codebook construction with multiple aggregation factors
US11863253B2 (en) 2020-04-07 2024-01-02 Qualcomm Incorporated Type-1 codebook construction with multiple aggregation factors

Similar Documents

Publication Publication Date Title
US10355819B2 (en) Apparatus and method for decoding data in mobile communication system
CN111727649B (zh) 用于无线通信系统中数据和控制信息的通信的方法和装置
WO2019129012A1 (zh) 控制信息的传输方法
US11310779B2 (en) Method and apparatus for transmitting/receiving control information in wireless communication system
CN111989963B (zh) 用于在无线通信系统中发送或接收同步信号的方法和装置
US11368273B2 (en) Method and apparatus for channel access in unlicensed band in wireless communication system
WO2019137213A1 (zh) 上行控制信息传输方法和通信装置
US20220255588A1 (en) Method for measurement and report of channel state information for network cooperative communication
CN111108716B (zh) 用于在无线通信系统中发送和接收控制信息的方法和装置
CN110351027A (zh) 一种反馈信息的传输方法和装置
US20230038936A1 (en) Control information transmission method
CN112119601A (zh) 用于在无线蜂窝通信系统中发送和接收控制信息的方法和设备
CN113692768A (zh) 无线通信系统中免许可数据传输的方法和装置
CN113966587A (zh) 无线通信系统中的下行数据接收和harq-ack传输的方法、装置和系统
US20190334675A1 (en) Data Transmission Method and Apparatus
WO2019184565A1 (zh) 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
WO2020048481A1 (zh) 通信方法及装置
US20220029737A1 (en) Method and apparatus for repetition-based data transmission for network cooperative communication
WO2020169063A1 (zh) 一种数据传输方法及通信装置
CN113424478A (zh) 用于在无线通信系统中发送和接收下行链路控制信息的方法和装置
CN110447271B (zh) 用于无线蜂窝通信系统中上行链路功率控制的方法和装置
WO2019024927A1 (zh) 一种上行控制信息传输方法和装置
CN114503635A (zh) 用于针对无线通信传输数据的方法和设备
WO2018233705A1 (zh) 数据传输方法、数据传输反馈方法和相关设备
WO2019192515A1 (zh) 一种反馈信息的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19780811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19780811

Country of ref document: EP

Kind code of ref document: A1