WO2021062687A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021062687A1
WO2021062687A1 PCT/CN2019/109573 CN2019109573W WO2021062687A1 WO 2021062687 A1 WO2021062687 A1 WO 2021062687A1 CN 2019109573 W CN2019109573 W CN 2019109573W WO 2021062687 A1 WO2021062687 A1 WO 2021062687A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
blind detection
detection capability
cell
scheduled
Prior art date
Application number
PCT/CN2019/109573
Other languages
English (en)
French (fr)
Inventor
马蕊香
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/109573 priority Critical patent/WO2021062687A1/zh
Priority to CN201980100568.1A priority patent/CN114424667B/zh
Publication of WO2021062687A1 publication Critical patent/WO2021062687A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method and device.
  • a network device sends downlink control information (downlink control information, DCI) to a terminal device through a physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • DCI downlink control information
  • PDCCH Physical Downlink Control Channel
  • One DCI is transmitted in one PDCCH, and one PDCCH occupies one or more control channel elements (CCE).
  • CCE control channel elements
  • the network equipment chooses to transmit the DCI on 1 CCE, 2 CCEs, 4 CCEs, or 8 CCEs according to the size of the DCI and the required control channel transmission reliability.
  • the terminal device receives the DCI carried in the PDCCH through blind detection. Different types of communication services require different blind detection capabilities of terminal devices.
  • the blind detection capabilities include the number of non-overlapping CCEs that the terminal device can perform channel estimation within a period of time or the maximum candidate physical downlink that can be blindly detected within a period of time.
  • the number of control channel PDCCHs are examples of the blind detection capabilities.
  • 5G New Radio 5G New Radio
  • This span can also be called a monitoring span.
  • the length of a span is less than the time of a slot.
  • it defines the number of non-overlapping CCEs that can be estimated by a terminal device in a span or the maximum number of candidate physical downlink control channel PDCCHs that can be blindly detected in a period of time.
  • CA carrier aggregation
  • the embodiments of the present application provide a communication method and device, which are used to determine the blind detection capability of a terminal device in each span in a CA scenario, so as to meet the requirements of low-latency and high-reliability services.
  • a communication method is provided.
  • the execution subject of the method may be a terminal device or a chip applied to the terminal device.
  • the execution subject is a terminal device as an example for description.
  • the method includes: receiving first indication information, the first indication information can be used to indicate the number of downlink cells, and according to the number of the downlink cells, the first blind detection capability of the scheduling cell can be determined, and the scheduling cell is In the cell in the downlink cell, the first blind detection capability is the maximum number of non-overlapping control channel element CCEs in each time window span or the maximum number of candidate physical downlink control channel PDCCHs in each time window span, The time domain length of the span is less than the time domain length of one time slot, and the PDCCH blind detection is performed in the scheduling cell according to the first blind detection capability.
  • a communication method is provided, and the execution subject of the method may be a network device or a chip applied to the network device.
  • the method includes: sending first indication information, where the first indication information indicates the number of downlink cells, and according to the number of downlink cells, determining a first blind detection capability of a terminal device in a scheduling cell, where the scheduling cell is In the cell in the downlink cell, the first blind detection capability is the maximum number of non-overlapping control channel element CCEs in each time window span or the maximum number of candidate physical downlink control channel PDCCHs in each time window span, The time domain length of the span is less than the time domain length of one time slot; and the PDCCH is sent in the scheduling cell according to the first blind detection capability.
  • the terminal device can determine the blind detection capability of the terminal device in each span of each scheduling cell according to the number of downlink cells. It can be seen that the implementation of this application In the method provided in the example, in the scenario of carrier aggregation, the first blind detection capability of the terminal device in each scheduling cell can be clarified. At the same time, since the first blind detection capability of each scheduling cell is determined according to the number of downlink cells, the greater the number of downlink cells, the greater the first blind detection capability of each scheduling cell determined.
  • the determined first blind detection capability of the scheduling cell is any one of the following:
  • the determined first blind detection capability of the scheduling cell is the first blind detection capability of each cell in all scheduled cells Sum.
  • the blind detection capability of the scheduling cell increases as the number of scheduled cells increases, so that the first blind detection capability of the scheduling cell can be increased.
  • it can ensure that the terminal equipment is There is sufficient first blind detection capability in the scheduling cell to perform blind detection on the PDCCH of the scheduled cell, thereby ensuring low latency and high reliability of services in the scheduled cell.
  • the determined first blind detection capability of the scheduling cell is the maximum value of the first blind detection capability in all scheduled cells and the total value.
  • the blind detection capability of the scheduling cell increases in proportion to the number of scheduled cells, that is, the first blind detection capability of the scheduling cell can be increased.
  • it can ensure that the terminal equipment is There is sufficient first blind detection capability in the scheduling cell to perform blind detection on the PDCCH of the scheduled cell, thereby ensuring low latency and high reliability of services in the scheduled cell.
  • the determined first blind detection capability of the scheduling cell is wherein, j represents the index of the subcarrier spacing, j corresponding to the subcarrier spacing of 2 j ⁇ 15kHz, K j denotes all cells are scheduled subcarriers in the first interval of 2 j is blind detection capability scheduling cell ⁇ 15kHz maximum Value, L j is the number of scheduled cells with sub-carrier spacing of 2 j ⁇ 15 kHz in all scheduled cells, and J is a positive integer.
  • the first blind detection capability for the scheduled cell with a subcarrier spacing of 2 j ⁇ 15 kHz is the maximum first blind detection capability of the scheduled cell with the subcarrier spacing among all scheduled cells.
  • the number of the downlink cells is less than or equal to a first value
  • the determined first blind detection capability of the scheduling cell is
  • j represents the index of the subcarrier spacing
  • K j denotes all cells are scheduled subcarriers at intervals of 2 j is the minimum of the first blind detection capability of scheduling cell ⁇ 15kHz Value
  • L j is the number of scheduled cells with subcarrier spacing of 2 j ⁇ 15 kHz in all scheduled cells
  • J is a positive integer.
  • the first blind detection capability of the scheduled cell with a subcarrier spacing of 2 j ⁇ 15 kHz is the minimum first blind detection capability of the scheduled cell with the subcarrier spacing and the subcarrier spacing
  • the first blind detection capability of the terminal equipment in the scheduling cell will not be too large (that is, the normal scheduling of the scheduled cell can be ensured), which reduces the power loss of the terminal equipment.
  • the number of the downlink cells is greater than a first value
  • the determined first blind detection capability of the scheduling cell is
  • j represents the index of the subcarrier spacing
  • K j denotes all cells are scheduled subcarriers in the first interval of 2 j is blind detection capability scheduling cell ⁇ 15kHz maximum Value
  • L j is the number of scheduled cells with subcarrier spacing of 2 j ⁇ 15 kHz in all scheduled cells
  • J is a positive integer
  • N is the number of scheduled cells
  • M is the number of downlink cells .
  • subcarrier interval are 2 j ⁇ 15kHz
  • K j denotes the maximum of a cell scheduled subcarriers at intervals of the first cell the maximum scheduled blind detection capability of 2 j ⁇ 15kHz
  • the subcarrier spacing for the A blind detection capability should be N ⁇ K j
  • the actual number of scheduling cells in the sub-carrier interval is L j , which only occupies L j /M in all downlink cells.
  • the total first blind detection capability of the cell is That is, calculate the maximum first blind detection capability of all scheduled cells with a smaller subcarrier spacing, and then use the same method for scheduled cells with some subcarrier spacing, so as to calculate that in the scheduling cell, for all scheduled cells
  • the blind detection capability of is the sum of the maximum first blind detection capability of all scheduled cells in all subcarrier intervals. Therefore, it can be ensured that the first blind detection capability of the scheduling cell is not increased in proportion to the increase in the number of downlink cells without limitation, but is limited by the number of blind detection cells that the terminal device can support.
  • the maximum blind detection capability supported is divided into the downlink cells actually scheduled by the terminal device, so as to ensure that the first blind detection capability of the final scheduled cell will not exceed the blind detection capability that the terminal device can support, thereby reducing the terminal device’s Power consumption and implementation complexity.
  • the number of the downlink cells is greater than a first value
  • the determined first blind detection capability of the scheduling cell is
  • j represents the index of the subcarrier spacing
  • K j represents all scheduled cells are spaced a minimum of 2 j subcarriers are first blind detection capability of the scheduling cell of ⁇ 15kHz Value
  • L j is the number of scheduled cells with subcarrier spacing of 2 j ⁇ 15 kHz in all scheduled cells
  • J is a positive integer
  • N is the number of scheduled cells
  • M is the number of downlink cells .
  • the number of downlink cells is greater than the first value at this time, that is, the number of configured downlink cells is more than the number of blind detection cells that the terminal device can support.
  • the carrier spacing is 2 j ⁇ 15 kHz
  • K j represents the minimum value of the first blind detection capability of the scheduled cell with a sub-carrier spacing of 2 j ⁇ 15 kHz in all scheduled cells.
  • the detection capability should be N ⁇ K j , but the actual number of scheduling cells in the sub-carrier interval is L j , which only occupies L j /M in all downlink cells.
  • the total first blind detection capability is That is, calculate the minimum first blind detection capability of all scheduled cells with a smaller subcarrier spacing, and then use the same method for scheduled cells with some subcarrier spacing, so as to calculate the blind detection capabilities of all scheduled cells as all The sum of the minimum first blind detection capabilities of all scheduled cells in the subcarrier interval. Therefore, it can be ensured that the first blind detection capability of the scheduling cell is not increased in proportion to the increase in the number of downlink cells without limitation, but is limited by the number of blind detection cells that the terminal device can support.
  • the supported blind detection capabilities are divided into the downlink cells actually scheduled by the terminal device, so as to ensure that the first blind detection capability of the final scheduled cell will not exceed the blind detection capability that the terminal device can support, thereby reducing the power consumption of the terminal device Quantity and implementation complexity.
  • the number of the downlink cells is greater than a first value
  • the determined first blind detection capability of the scheduling cell is Among them, j represents the index of the sub-carrier interval, the corresponding sub-carrier interval of j is 2 j ⁇ 15 kHz, J is a positive integer, and L j is the number of scheduled cells with a sub-carrier interval of 2 j ⁇ 15 kHz among all scheduled cells.
  • M is the number of the downlink cells;
  • Q j is equal to Wherein, i is an index pattern span interval of 2 j ⁇ 15kHz subcarrier, H is the subcarrier spacing pattern span of 2 j ⁇ 15kHz number, Represents the number of downlink cells corresponding to the span pattern with index i with a subcarrier interval of 2 j ⁇ 15 kHz, and C i represents the second blind detection capability corresponding to the span pattern with index i with a subcarrier interval of 2 j ⁇ 15 kHz.
  • the terminal device reports for each subcarrier spacing pattern 2 j ⁇ 15kHz span of each
  • the blind detection capability of span determines the first blind detection capability of the scheduling cell with a sub-carrier spacing of 2 j ⁇ 15 kHz, and then sums the blind detection capabilities of the scheduling cells with all sub-carrier spacings to obtain the blind detection capability of the scheduling cell.
  • the first blind detection capability of the scheduling cell is not unlimitedly increased in proportion to the increase in the number of downlink cells, but is based on the number of blind detection cells that can be supported by the terminal device.
  • the blind detection capability that the terminal device can support is divided into the downlink cells actually scheduled by the terminal device, so as to ensure that the first blind detection capability of the final scheduled cell does not exceed the blind detection capability that the terminal device can support, thereby reducing Power consumption and implementation complexity of small terminal equipment.
  • the second blind detection capability is the blind detection capability corresponding to each span pattern that is also reported when the terminal device reports the span pattern to the network device, and the second blind detection capability is each pattern corresponding to each pattern.
  • the method may further include: determining the first blind detection capability of each of the scheduled cells. Therefore, the first blind detection capability of the scheduling cell can be determined according to the first blind detection capability of each scheduled cell.
  • the method may further include: sending second indication information, where the second indication information is used to indicate the first value.
  • the first value may be actively reported by the terminal device, so that the network device can refer to the first value when indicating the number of downlink cells through the first indication information, and the first value indicates that the terminal device can perform blind The number of downlink cells where the PDCCH is detected.
  • the number of configured blind PDCCH detection times and the configured number of non-overlapping CCEs do not exceed the number of downlink cells in which the terminal device can blindly detect the PDCCH.
  • the method further includes: the first value may also be predefined by the protocol.
  • the network device indicates the number of downlink cells through the first indication information, it may refer to the first value predefined by the protocol.
  • the predefined first value is 4, and the first value represents the number of downlink cells where the terminal device can perform blind PDCCH detection. Therefore, it is ensured as far as possible that the number of configured blind detections of the PDCCH and the number of configured non-overlapping CCEs do not exceed the number of downlink cells in which the terminal device can blindly detect the PDCCH.
  • the method further includes: determining the first blind detection capability of each of the scheduled cells of the terminal equipment.
  • the method further includes: receiving second indication information, where the second indication information is used to indicate the first value.
  • a communication device is provided.
  • the communication device has the function of realizing the behavior in the method embodiment of the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit, configured to receive first indication information, where the first indication information indicates the number of downlink cells, and a processing unit, configured according to the first indication received by the transceiver unit
  • the number of the downlink cells indicated by an indication information determines the first blind detection capability of the scheduling cell, and performs blind PDCCH detection in the scheduling cell according to the first blind detection capability, wherein the scheduling cell Is a cell in the downlink cell, and the first blind detection capability is the maximum number of non-overlapping control channel element CCEs in each time window span or the maximum number of candidate physical downlink control channel PDCCHs in each time window span ,
  • the time domain length of the span is less than the time domain length of one time slot.
  • a communication device is provided, and the beneficial effects can be referred to the description of the second aspect and will not be repeated here.
  • the communication device has the function of realizing the behavior in the method example of the second aspect described above.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the communication device includes: a transceiver unit, configured to send first indication information, where the first indication information indicates the number of downlink cells.
  • the processing unit is configured to determine the first blind detection capability of the terminal equipment in the scheduling cell according to the number of the downlink cells, where the scheduling cell is a cell in the downlink cell, and the first blind detection capability is each The maximum number of non-overlapping control channel elements CCEs in a time window span or the maximum number of candidate physical downlink control channel PDCCHs in each time window span, the time domain length of the span is less than the time domain length of one time slot;
  • the transceiver unit is configured to send the PDCCH in the scheduling cell according to the first blind detection capability determined by the processing unit.
  • a communication device may be the terminal device in the foregoing method embodiment, or a chip set in the terminal device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the terminal device in the foregoing method embodiment.
  • a communication device may be the network device in the foregoing method embodiment, or a chip set in the network device.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store a computer program or instruction, and the processor is coupled with the memory and a communication interface.
  • the processor executes the computer program or instruction
  • the communication device executes the method executed by the network device in the foregoing method embodiment.
  • a computer program product includes: computer program code, which when the computer program code is running, causes the methods executed by the terminal device in the above aspects to be executed.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method executed by the network device in the above aspects is executed.
  • the present application provides a chip system, which includes a processor, configured to implement the functions of the terminal device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system, which includes a processor, and is configured to implement the functions of the network device in the methods of the foregoing aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the terminal device in the above aspects is implemented.
  • this application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, the method executed by the network device in the above aspects is implemented.
  • FIG. 1 is a schematic diagram of PDCCH blind detection timing provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of PDCCH blind detection timing provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a network architecture provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a communication method provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of blind detection capabilities of 5 cells provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of another structure of a communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of still another structure of a communication device provided by an embodiment of this application.
  • FIG. 10 is a schematic diagram of still another structure of another communication device provided by an embodiment of this application.
  • a terminal device which can be referred to as a terminal for short, is also called a user equipment (UE), and is a device with a wireless transceiver function.
  • Terminal devices can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on the water (such as ships, etc.); they can also be deployed in the air (such as airplanes, drones, balloons, and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality terminal device, an augmented reality terminal device, a wireless terminal device in industrial control, a wireless terminal device in unmanned driving, and a wireless terminal device in telemedicine.
  • the terminal device can also be fixed or mobile. The embodiment of the present application does not limit this.
  • the device used to implement the function of the terminal may be a terminal device; it may also be a device capable of supporting the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal device is a terminal device as an example to describe the technical solutions provided in the embodiments of the present application.
  • the network device may be an access network device, and the access network device may also be called a radio access network (RAN) device, which is a device that provides wireless communication functions for terminal devices.
  • the access network equipment includes, but is not limited to: next-generation base stations (generation nodeB, gNB) in 5G, evolved node B (evolved node B, eNB), baseband unit (BBU), and transmitting and receiving points. point, TRP), transmitting point (transmitting point, TP), the base station in the future mobile communication system or the access point in the WiFi system, etc.
  • the access network equipment can also be a wireless controller, a centralized unit (CU), and/or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario, or a network
  • the equipment can be a relay station, a vehicle-mounted device, and a network device in the future evolved PLMN network.
  • the terminal device can communicate with multiple access network devices of different technologies.
  • the terminal device can communicate with an access network device that supports long term evolution (LTE), or can communicate with an access network device that supports 5G. , It can also communicate with the access network equipment supporting LTE and the access network equipment supporting 5G at the same time.
  • LTE long term evolution
  • 5G 5th Generationан ⁇
  • the device used to implement the function of the network device may be a network device; it may also be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra Reliable and Low Latency Communications
  • mMTC Massive Machine Type Communications
  • typical eMBB services include: ultra-high-definition video, augmented reality (AR), virtual reality (VR), etc.
  • AR augmented reality
  • VR virtual reality
  • the main characteristics of these services are large transmission data volume and high transmission rate.
  • Typical URLLC businesses include wireless control in industrial manufacturing or production processes, motion control of unmanned vehicles and drones, and tactile interaction applications such as remote repairs and remote surgery. The main feature of these services is that they require ultra-high reliability.
  • Typical mMTC services include: smart grid distribution automation, smart cities, etc.
  • the main features are the huge number of networked devices, the small amount of transmitted data, and the data insensitive to transmission delay.
  • These mMTC terminals need to meet low cost and very long standby time. The need for time.
  • Different services have different requirements for mobile communication systems. How to better support the data transmission requirements of multiple different services at the same time is a technical problem that the current 5G communication system needs to solve. For example, how to support URLLC service and eMBB service at the same time is one of the hot topics of discussion in the current 5G mobile communication system.
  • the search space includes a common search space (CSS) and a terminal device specific search space (UE-specific Search Space, USS).
  • Multiple terminal devices can retrieve the DCI sent by the network device to the terminal device in the CSS, and the CSS is used to carry the common DCI.
  • the USS is configured by the network device for each terminal device separately, and the terminal device detects that the network device sends its own DCI in the USS according to the configuration information sent by the network device.
  • a CCE may include multiple resource element groups.
  • the number of resource element groups corresponding to one CCE may be fixed. For example, it can be 4 or 6.
  • a resource element group may occupy resources in the frequency domain as S consecutive subcarriers, and/or occupy resources in the time domain as consecutive T OFDM symbols. Where S is a natural number greater than 1.
  • CCE is the basic unit of resources occupied by PDCCH.
  • a PDCCH can occupy L CCEs.
  • L can be 1, 2, 4, 8, or 16, and the value of L is also called aggregation level (AL ), for example, if one PDCCH occupies 4 CCEs, the AL of the PDCCH is called 4. For the same DCI, the larger the AL value used during transmission, the higher the reliability.
  • AL aggregation level
  • Subcarrier is the smallest granularity in the frequency domain.
  • the sub-carrier width of one sub-carrier may also be called the sub-carrier interval as 15 kHz; in 5G, the sub-carrier interval may be 15 kHz, 30 kHz, 60 kHz, or 120 kHz.
  • Configuration refers to the network device sending configuration information to the terminal device, and the configuration information indicates a certain content.
  • the configuration information is carried in high-level signaling.
  • the high-level signaling may refer to signaling sent by a high-level protocol layer, and the high-level protocol layer is at least one protocol layer above the physical layer.
  • the high-level protocol layer may specifically include at least one of the following protocol layers: medium access control (MAC) layer, radio link control (RLC) layer, packet data convergence protocol (packet data convergence) protocol, PDCP) layer, radio resource control (RRC) layer, and non-access stratum (NAS).
  • MAC medium access control
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • NAS non-access stratum
  • Time slot refers to a basic unit of time.
  • a time slot can occupy 14 consecutive symbols (regular cyclic prefix) or 12 consecutive symbols (extended cyclic prefix) in the time domain.
  • the symbols in the embodiments of this application include, but are not limited to, Orthogonal Frequency Division Multiplexing (OFDM) symbols, Sparse Code Multiplexing Access (SCMA) symbols, and filtered orthogonal frequency division multiplexing.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SCMA Sparse Code Multiplexing Access
  • NOMA non-orthogonal Multiple Access
  • the time window (span) is a unit of time shorter than the slot.
  • a slot can include multiple spans. The length of each span is at least X consecutive OFDM symbols, and X is an integer greater than zero.
  • the scheduling cell that is, the cell where the terminal equipment receives the PDCCH is called the scheduling cell.
  • the PDCCH sent in the scheduling cell can schedule the Physical uplink shared channel (PUSCH), or physical downlink shared channel (physical downlink shared channel, PDSCH), in the scheduling cell, the PDCCH of other cells other than the cell can also be sent, and these PDCCHs schedule other cells Of the PDSCH and PUSCH.
  • the scheduled cell refers to the cell scheduled by the scheduled cell, that is, the scheduling information PDCCH of these cells may not be sent in this cell, but in other cells.
  • each scheduling cell and multiple scheduled cells scheduled by the scheduling cell are used as an example to describe the method of the present application.
  • the scheduling cell may correspond to the primary cell Pcell in all the downlink cells of CA
  • the scheduled cell may correspond to the secondary cell, Pcell and Scell in all the downlink cells of CA. Since it is possible to send not only the PDCCH of the current cell, but also the PDCCH of the scheduled cell on the scheduling cell, the blind detection capability of the PDCCH on the scheduling cell needs to be greater, or in other words, in the scheduling cell, different scheduling cells are There is blind detection capability, that is, on the scheduling cell, blind detection capability is required to blindly detect the PDCCH of the scheduled cell.
  • system and "network” in the embodiments of this application can be used interchangeably.
  • a plurality of may also be understood as “at least two”.
  • At least one can be understood as one or more, for example, one, two or more.
  • including at least one refers to including one, two or more, and does not limit which ones are included.
  • the included can be A, B, C, A and B, A and C, B and C, or A and B and C.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • first terminal device and the second terminal device are only used to distinguish different terminal devices, but not to limit the functions, priority, or importance of the two terminal devices.
  • the terminal device Since the terminal device does not know the specific time-frequency resource location of the PDCCH in advance, it needs to perform blind detection of the PDCCH. Before the terminal device performs blind detection, it needs to determine its own blind detection capability, and perform PDCCH blind detection based on the blind detection capability, so as to ensure that the terminal device does not exceed the blind detection capability when performing PDCCH. For different application scenarios, the blind detection capabilities determined by the terminal device are different, which are introduced separately below.
  • the current protocol defines the blind detection capability of terminal equipment in a slot in a cell, that is, the maximum number of candidate PDCCHs that can be monitored by terminal equipment and the maximum number of non-overlapping CCEs that can be monitored by terminal equipment in a slot.
  • the former is one How many candidate PDCCH blind detections can be performed by the terminal device in the slot at most.
  • the latter represents the maximum number of non-overlapping CCEs for which terminal equipment performs channel estimation in a slot.
  • Table 1 is the maximum number of candidate PDCCH candidates that can be monitored by a terminal device in a cell and a slot with different sub-carrier spacing defined by the current protocol, where ⁇ represents the index of the sub-carrier spacing. Indicate that the corresponding sub-carrier is 2 ⁇ ⁇ 15 kHz. Specifically, when the sub-carrier interval of the cell is 15 kHz, the maximum number of PDCCH candidates that can be monitored in a slot is 44. When the sub-carrier interval of the cell is 60 kHz, The maximum number of PDCCH candidates that can be monitored in a slot is 22.
  • Table 2 is the maximum number of non-overlapping CCEs that the terminal equipment can perform channel estimation in a slot with different sub-carrier intervals defined by the current protocol.
  • ⁇ in Table 2 represents the index of the sub-carrier spacing (Sub-carrier spacing), and the index indicates that the corresponding sub-carrier is 2 ⁇ ⁇ 15 kHz.
  • the terminal device blindly detects a PDCCH of a certain aggregation level, it performs channel estimation on the position of the CCE occupied by the PDCCH of the aggregation level, and then can perform PDCCH decoding. Assuming that the aggregation level is 2, channel estimation of 2 CCEs is required.
  • the maximum number of non-overlapping CCEs can also be considered as the maximum number of CCEs for channel estimation.
  • the blind detection range of the terminal equipment is limited. For example, according to Table 2, when the sub-carrier spacing of the cell is 15 kHz, the maximum number of non-overlapping CCEs that can be used for channel estimation in a slot is 56; when the sub-carrier spacing of the cell is 60 kHz, the maximum number of non-overlapping CCEs in a slot is The maximum number of non-overlapping CCEs for channel estimation is 32.
  • the terminal device can determine the blind detection capability in a slot according to Table 1 and/or Table 2, that is, determine the maximum number of candidate PDCCH candidates and/or the maximum number of non-overlapping CCEs in a slot.
  • the terminal equipment needs to ensure that the number of PDCCH candidates for blind detection does not exceed the maximum number of PDCCH candidates shown in Table 1 and/or that the number of non-overlapping CCEs for actual blind detection does not exceed those shown in Table 2. The number of non-overlapping CCEs shown.
  • the network device sends configuration information to the terminal device.
  • a downlink cell when Or if the terminal device reports the number of downlink cells that can be detected by the network device And the network device has configured the terminal device
  • a downlink cell when When the blind detection capability of a terminal device in a slot on the scheduling cell is the sum of the blind detection capabilities of each slot of all scheduled cells, that is, on the scheduling cell and within a slot, for each scheduled cell
  • the blind detection capability of a cell is equal to the actual blind detection capability of the scheduled cell in a slot.
  • the terminal device supports a maximum of 4 downlink cells, and the network device configures 3 downlink cells for the terminal device.
  • the subcarrier spacing of 2 downlink cells is 15kHz
  • the subcarrier spacing of one downlink cell is 30kHz
  • the blind detection capability of one slot of the terminal equipment in the scheduling cell is the two scheduled cells of the terminal equipment at 15kHz
  • the sum of the blind detection capability of a slot on the above and the blind detection capability of a slot at a 30kHz, that is, the blind detection capability of each scheduled cell in a slot is the scheduled cell's blind detection capability in a slot.
  • the scheduling cell For each 15kHz scheduled cell, the maximum number of non-overlapping CCEs in a slot is 56, and for the 30kHz scheduled cell, the maximum number of non-overlapping CCEs in a slot is 56, and the total number of non-overlapping CCEs in a slot is 56.
  • the maximum number of non-overlapping CCEs in a slot is 56*2+56.
  • the maximum number of candidate PDCCH candidates in a slot of a scheduled cell of 15 kHz is 44
  • the maximum number of candidate PDCCH candidates that can be monitored by a terminal device in a slot of a scheduled cell of 30 kHz is 36.
  • the maximum number of candidate PDCCH candidates that can be monitored by the terminal device in a slot for each 15kHz scheduled cell is 44
  • the maximum number of candidate PDCCH candidates that can be monitored by the terminal device in a slot for the 30kHz scheduled cell It is 36
  • the total number of non-overlapping CCEs in a slot on the scheduling cell is 44*2+36.
  • the terminal equipment reports to the network equipment the number of downlink cells that can detect the PDCCH And the network device is configured Downlink cells, and Therefore, the blind detection capability of the terminal equipment in a slot for all the scheduled cells with a subcarrier spacing of 2 ⁇ ⁇ 15 kHz on the scheduling cell Meet the following formula (1):
  • the blind detection capability of the terminal equipment is: That is, the blind detection capability of each scheduled cell will not exceed the blind detection capability of the scheduled cell itself.
  • the terminal device reports to the network device that the terminal device can support 5 downlink cells, and the network device configures the terminal device with 6 downlink cells.
  • 6 downlink cells one downlink cell has a subcarrier interval of 15kHz and two downlink cells.
  • the sub-carrier spacing of the cell is 60 kHz
  • the sub-carrier spacing of the three downlink cells is a cell of 30 kHz.
  • the 6 downlink cells are all scheduled cells, and the number of scheduled cells is greater than the number of cells that the terminal device can support.
  • the blind detection capability is the maximum number of non-overlapping CCEs, then according to the above formula (1) and Table 2, the blind detection capability on the primary tuning cell can be calculated:
  • the scheduling capability of each slot is: 46+140+93.
  • the blind detection capability on the primary tuning cell can be calculated:
  • the terminal device also needs to ensure that the blind detection capability of each slot in each scheduled cell is 48 during blind detection.
  • the scheduling capability of each slot is: 36+90+36.
  • the third case is in a single carrier scenario, and the terminal device determines the blind detection capability within a span.
  • the maximum number of non-overlapping CCEs supported in a slot is The number of CCEs has doubled, which is equivalent to increasing the ability of blind detection, so as to ensure that PDCCH can be sent with a larger aggregation level, that is, it can occupy more CCEs, so it can improve the reliability of PDCCH and ensure The reliability of the business.
  • the following is divided into several steps to introduce how the terminal device specifically determines the blind detection capability of each span of each cell in a single carrier scenario.
  • the following steps are applicable to each cell.
  • Step 1 The terminal device reports the span pattern and the blind detection capability corresponding to each span pattern.
  • Table 3 lists the pattern definition of span and the blind detection ability of each span pattern corresponding to each span.
  • Table 3 may contain multiple span patterns. Each row in Table 3 represents a span pattern. The i-th row represents the i-th span pattern. Each span pattern corresponds to a set of parameters (X, Y) and a first span pattern.
  • the second blind detection capability C i, ⁇ the maximum number of non-overlapping CCEs per span corresponding to the i-th span pattern with the second blind detection capability subcarrier spacing of 2 ⁇ ⁇ 15kHz or the largest candidate PDCCH for each span The number of.
  • the parameter (X, Y) corresponding to the i-th row means that the terminal device can support a maximum of one span for every Y symbols, and the minimum interval between two adjacent spans is X symbols, that is It is said that the span determined by the terminal device cannot be too dense, the interval cannot be less than X, and the length of the span cannot be too long, and the length cannot be greater than Y.
  • the second blind detection capability C i, ⁇ corresponding to the span pattern in the i-th row represents that if the span pattern determined by the terminal device matches the span pattern in the i-th row, the blind detection capability corresponding to each span of the terminal device is C i, ⁇ Specifically, when the span pattern and the subcarrier interval of the cell are determined, the second blind detection capability corresponding to a certain span pattern of the subcarrier interval is a fixed value.
  • the same blind detection capability may refer to the maximum number of non-overlapping CCEs and/or the maximum number of candidate PDCCHs.
  • the terminal device In order to ensure that the terminal device's actual PDCCH blind detection capability does not exceed the maximum blind detection capability of the terminal device, the terminal device will report one or more lines in the report 3 to the network device.
  • Table 3 only lists three types of span patterns, which can actually include multiple types of span patterns, and the value may be 0 or 1. In this embodiment, the value is 0, 1, 2, or 3.
  • Step 2 The terminal device determines the actual span pattern to be blindly detected.
  • the network device receives the span pattern reported by the terminal device in step 1, and the blind detection capability corresponding to each span pattern. In the future, some information will be configured for the terminal device for blind PDCCH detection, and the configuration information will be sent to the terminal device. Correspondingly, the terminal device will receive the configuration information.
  • the configuration information may include the blind detection period of the PDCCH, one or more control resource sets (CORESET), and/or multiple search spaces.
  • CORESET can specify the frequency domain location where the PDCCH is located and the number of time domain symbols.
  • Each search space can be associated with a CORESET, and each search space can specify the search space identifier, the search space type and/or aggregation level, the number of candidate PDCCHs at each aggregation level, the period and offset of the search space And the blind detection start symbol, etc., the offset refers to the specific slot in the search space period. Therefore, the terminal device can determine the blind detection opportunity of the PDCCH according to the configuration information, which can also be referred to as the PDCCH occasion.
  • the process of determining the PDCCH occurrence is as follows:
  • the number of CORESET symbols associated with the search space is 3 symbols
  • the period is the unit of time slot, such as 2 slots
  • the offset is, for example, the period in the search space.
  • the second slot in.
  • the number of symbols contained in a slot is fixed, such as 14.
  • the numbers "0-13" or "1-14" can be used to indicate the positions of 14 symbols in a time slot.
  • the number "0-13" is used in this application to indicate the positions of 14 symbols in a time slot.
  • the blind detection start symbol which is the specific position in the slot determined by the offset to perform PDCCH blind detection, that is, the start symbol position indicating the PDCCH blind detection opportunity, which can be indicated by a 14-bit bitmap, for example,
  • the 14-bit bitmap is 10101010101010, which means that PDCCH blind detection needs to be performed at the positions of the 1, 3, 5, 7, 9, 11, and 13 symbols in a slot.
  • the offset is the second slot
  • CORESET is 3 symbols
  • the 14-bit bitmap is 10001000100000
  • the PDCCH occurrence of slot0-slot4 is shown in Figure 1.
  • the first PDCCH occurrence in slot1 is symbol 0 to symbol 2
  • the second PDCCH occurrence is symbol 4 to symbol 6
  • the third PDCCH occurrence is symbol 8 to symbol. 10.
  • the shaded part in Figure 1 indicates the occurrence of the PDCCH.
  • the terminal device After the terminal device determines the PDCCH occurrence, it will determine the actual span pattern of the terminal device according to the PDCCH occurrence.
  • the specific process is:
  • the terminal device first determines a bitmap, which is assumed to be a 14-bit (bit) bitmap.
  • the position with a value of 1 indicates that there is a PDCCH occurrence, except for the position with a value of 1, the value of other positions is 0.
  • the determined 14-bit bitmap is 11101110111000. This bitmap starts from the first symbol of 1, which is the start of the first span.
  • the terminal device receives configuration information, and the configuration information configures two CORESETs as CORESET 1 and CORESET 2, where CORESET1 is 1 symbol, CORESET2 is 2 symbols, CORESET1 is associated with 2 search spaces, and the search is determined according to the aforementioned method
  • the corresponding PDCCH occurrence of space 1 is shaded part 1 in Figure 2, and the corresponding PDCCH occasion of search space 2 is determined to be shaded part 2 of Figure 2.
  • CORESET2 is associated with a search space, and the corresponding PDCCH occasion of search space 2 is determined according to the aforementioned method.
  • the PDCCH occurrence is shaded part 3 in FIG. 2, and the terminal device can determine that a 14-bit bitmap is 01100110010100, as shown in shaded part 4 in FIG. 2.
  • the corresponding parameters (X, Y) of the three span patterns reported by the terminal device are (2, 2), (4, 3) and (7, 3), respectively.
  • the first span is at symbol 1, then the first span starts from symbol 1, and the length is 2 symbols, that is, the first span is from symbol 1 to symbol 2, and the second span is from symbol 5, and the length is 2 symbols, that is, the second span is symbol 5 to symbol 6.
  • the third span is from symbol 9 to symbol 10
  • the fourth span is from symbol 11 to symbol 12.
  • Step 2 The terminal device determines the blind detection capability of each span.
  • the terminal device determines the actual span pattern, and can determine the blind detection capability of each span based on the actual span pattern.
  • the terminal device determines that among the parameters (X, Y) corresponding to the reported span pattern, the parameters (X, Y) corresponding to some of the span patterns are closest to the parameters (X', Y') corresponding to the determined actual span pattern , That is, to determine which of the reported span patterns is most consistent with the actual span pattern, then define the reported span pattern as a legal span pattern. Therefore, it is determined that the blind detection capability of each span is the second blind detection capability corresponding to the legal span pattern. If there are multiple legal span patterns, the maximum value of the second blind detection ability corresponding to these legal span patterns is defined as the blind detection ability of each span.
  • the maximum number of span symbols that can be supported in the actual span pattern is Y', and the minimum value of the interval between two adjacent spans is defined as X'. If the parameters (X, Y) corresponding to the reported span pattern satisfy that X is less than or equal to X', and Y is greater than or equal to Y', then this span pattern is a valid span pattern.
  • the above terminal device actually determines a span pattern.
  • This span pattern contains 4 spans.
  • These 4 spans are defined as the first span, the second span, the third span, and the fourth span in turn.
  • the interval between the second span and the first span is 4 symbols
  • the third span and The interval between the second span is 4 symbols
  • the parameters (X, Y) corresponding to the first span pattern (2, 2) in the reported span pattern satisfy that X is less than or equal to X', and Y is greater than or equal to Y', so the first span pattern is a legal span pattern.
  • the parameter (X, Y) corresponding to the second span pattern (4, 3) in the reported span pattern does not satisfy that X is less than or equal to X', and that Y is greater than or equal to Y', so the second span pattern is not a legal span pattern.
  • the parameter (X, Y) corresponding to the third span pattern (7, 3) in the reported span pattern does not satisfy that X is less than or equal to X', and that Y is greater than or equal to Y', so the third span pattern is not a legal span pattern.
  • the terminal device determines the actual span pattern, and determines according to the span pattern that the blind detection capability of each span is equal to the second blind detection capability corresponding to the span pattern whose parameter is (2, 2) in the reported span pattern.
  • the blind detection capability of each span is determined to be C 1,0 according to Table 3. For example, according to step 2, it is only determined that there is one span in the actual span pattern, and then it is determined that in the parameter corresponding to the span pattern, Y'is the number of symbols of the span, and X'is infinity.
  • the terminal equipment supports the blind detection capability of a single carrier and each span of each cell. If the terminal equipment supports multiple carriers, the terminal equipment needs to detect the PDCCH of multiple scheduling cells in the scheduling cell. This requires the terminal equipment to have greater blind detection capability in each span of the scheduling cell, that is, the terminal equipment needs to be in each span. There are more PDCCH candidates or more CCEs for channel estimation. For this, there is currently no clear solution.
  • the embodiment of the present application can clarify the blind detection capability of the terminal device in each span of each scheduling cell.
  • the embodiments of the present application increase the blind detection capability of each span of the scheduling cell, that is, the terminal device has a greater blind detection capability to ensure service delay and reliability.
  • it can also ensure that all downlink cells can be scheduled normally in the cross-carrier scheduling scenario.
  • the technical solutions provided by the embodiments of the present application can be used in wireless communication systems, such as 4.5G systems or 5G systems, and further evolution systems based on LTE or NR, as well as future wireless communication systems or other similar communication systems.
  • FIG. 3 is a network architecture applied in the embodiment of this application.
  • Figure 3 includes network equipment and 6 terminal devices.
  • These 6 terminal devices can be cellular phones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radio devices, global positioning systems, PDAs and/or Any other suitable devices that communicate on the wireless communication system can be connected to network devices.
  • These six terminal devices can all communicate with network devices.
  • the terminal device may be a narrowband terminal device, such as a mMTC terminal device; the terminal device may be a broadband terminal device, such as an existing release 15 NR terminal device.
  • the number of terminal devices in FIG. 3 is just an example, and it may be less or more.
  • the network device in Figure 3 may be a base station.
  • network devices correspond to different devices in different systems.
  • 4G mobile communication technology the fourth generation, 4G
  • they can correspond to the eNB
  • 5G system they correspond to the gNB.
  • the network architecture applied in the embodiments of this application may also be a public land mobile network (Public Land Mobile Network, PLMN) network, a device-to-device (D2D) network, and a machine-to-machine (M2M) network. , IoT network or other network.
  • PLMN Public Land Mobile Network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT IoT network or other network.
  • the embodiment of the present application provides a communication method.
  • the method is applied to the network architecture shown in FIG. 3 as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the first communication device may be a network device or a communication device capable of supporting the network device to realize the functions required by the method
  • the first communication device may be a terminal device or a communication device capable of supporting the terminal device to realize the functions required by the method (For example, chip system).
  • the second communication device may be a network device or a communication device capable of supporting the network device to realize the functions required by the method.
  • the second communication device may be a terminal device or a communication device capable of supporting the terminal device to realize the functions required by the method.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, or the second communication device may be a terminal device or capable of supporting the terminal device to implement the method.
  • Communication device with required functions such as chip system.
  • the first communication device and the second communication device are both terminal devices, or the first communication device is a terminal device, and the second communication device is capable of supporting A communication device for terminal equipment to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • FIG. 4 is a flowchart of a communication method provided by an embodiment of this application.
  • the method is executed by a network device and a terminal device as an example, that is, it is assumed that the first communication device is the terminal device and the first communication device is The second communication device is a network device as an example.
  • the first communication device may be any one of the six terminal devices shown in FIG. 3
  • the second communication device may be the one shown in FIG. 3. Internet equipment.
  • the embodiments of the present application only take execution through network equipment and terminal equipment as an example, and are not limited to this scenario.
  • the network device sends first indication information to the terminal device, and the terminal device receives the first indication information, where the first indication information is used to indicate the number of downlink cells.
  • the terminal device determines the first blind detection capability of the scheduling cell according to the number of downlink cells indicated by the first indication information.
  • the network device sends the PDCCH in the scheduling cell.
  • S404 The terminal device performs blind PDCCH detection in the scheduling cell according to the first blind detection capability.
  • the terminal equipment in the embodiments of the present application may support a single carrier or multiple carriers. Therefore, when the terminal device supports multiple carriers, that is, when there is carrier aggregation, the network device needs to notify the terminal device of the number of downlink cells configured for the terminal device. Specifically, the network device may indicate the number of downlink cells configured for the terminal device through the first indication information.
  • the first indication information may be carried in high-layer signaling or downlink control information (DCI) or the like.
  • DCI downlink control information
  • the terminal device determines the first blind detection capability of the scheduling cell according to the number of downlink cells indicated by the first indication information.
  • the terminal device In order to receive the DCI carried in the PDCCH, the terminal device needs to perform blind detection on the PDCCH. When the terminal device performs blind detection on the PDCCH, it needs to ensure that the blind detection capability of the terminal device is not exceeded.
  • the blind detection capability of the terminal device is defined to be strong, for example, the number of CCEs that the terminal device can detect in a period of time is defined to be large, so that the computational complexity of the terminal device is relatively high, and the cost of the relative terminal device is also relatively high.
  • the terminal equipment monitors more CCEs, which will also increase the power consumption of the terminal equipment to detect the PDCCH. Therefore, a lower blind detection capability can be defined for the terminal device to reduce the computational complexity and cost of the terminal device.
  • the network device may not be able to perform real-time service scheduling, or may not be able to schedule the PDCCH with a large aggregation level, and cannot guarantee low-latency and high-reliability service transmission.
  • the blind detection capability of the terminal equipment is defined in the three cases in the previous article, but how to determine the blind detection capability of the terminal device in each span in the CA scenario has not yet been defined.
  • the embodiment of the present application can clarify the blind detection capability of the terminal device in each span of each scheduling cell, for example, the first blind detection capability.
  • the first blind detection capability here is the maximum number of non-overlapping CCEs for each span or the maximum number of candidate PDCCHs for each span.
  • the terminal device may determine the first blind detection capability for scheduling according to the number of downlink cells, or it may be considered as determining the first blind detection capability of the terminal device in a certain downlink cell. Since it is for the CA scenario, at least two cells are involved, namely the scheduling cell and the scheduled cell. For ease of description, in the following, determining the first blind detection capability of the terminal device in the scheduling cell is taken as an example to introduce how to determine the first blind detection capability of the terminal device according to the number of downlink cells.
  • the determined first blind detection capability of the terminal device in the scheduling cell is also all different.
  • the first value may be actively reported by the terminal device, so that the network device can refer to the first value when indicating the number of downlink cells through the first indication information.
  • the first value indicates that the terminal device can perform blind PDCCH detection.
  • the network equipment ensures that the number of configured blind PDCCH detection times and the number of configured non-overlapping CCEs does not exceed the number of downlink cells where the terminal device can blindly detect the PDCCH.
  • the first value may also be a value predefined by the protocol. When the network device indicates the number of downlink cells through the first indication information, it may refer to the first value predefined by the protocol.
  • the predefined first value is 4, and the first value represents the number of downlink cells where the terminal device can perform blind PDCCH detection. Therefore, it is ensured as far as possible that the number of configured blind detections of the PDCCH and the number of configured non-overlapping CCEs do not exceed the number of downlink cells in which the terminal device can blindly detect the PDCCH.
  • the first blind detection capability of the terminal equipment in the scheduling cell is determined, which may specifically include the following:
  • the first case the number of downlink cells is less than or equal to the first value.
  • the maximum number of cells supported by the terminal device is greater than or equal to the number of downlink cells configured by the network device for the terminal device.
  • the first value is 4, that is, the terminal device supports a maximum of 4 cells or more than 4 cells, and the number of downlink cells configured by the network device for the terminal device is less than or equal to 4.
  • the first blind detection capability of the terminal device in the determined scheduling cell may be one of the following capabilities.
  • the first value is 6, which is specific:
  • the first type of capability that is, the first blind detection capability of the terminal equipment in the scheduling cell is the sum of the first blind detection capability of each cell in all the scheduled cells. Or in other words, the blind detection capability of the terminal equipment in the scheduling cell for each scheduling cell is the first blind detection capability of the scheduling cell.
  • FIG. 5 is a schematic diagram of the first blind detection capability of the terminal equipment in 5 downlink cells.
  • the 5 cells are cell 1, cell 2, cell 3, cell 4, and cell 5.
  • the sub-carrier spacing of cell 1, cell 2, and cell 3 is 15 kHz
  • the sub-carrier spacing of cell 4 and cell 5 is 30 kHz.
  • the span patterns reported by the terminal device are (4, 3) and (7, 3).
  • the corresponding blind detection capabilities at 15kHz are C 2,0 and C 2,1
  • the corresponding blind detection capabilities at 30kHz are C 3,0 and C 3,1 .
  • a slot includes three spans. According to step three in case three, it can be determined that cell 1 is in every The first blind detection capability of a span is C 2,0 ; in the same way, for cell 2, it can be determined that the actual span pattern is as shown in Figure 5.
  • a slot includes 1 span, and cell 2 is in each span. The first blind detection capability is C 2,1 ; for cell 3, it can be determined that the actual span pattern is shown in Figure 5.
  • a slot includes 2 spans, and the first blind detection capability of cell 3 in each span is C 2,1 ; For cell 4, it can be determined that the actual span pattern is shown in Figure 5.
  • a slot includes 1 span, and the first blind detection capability of cell 4 in each span is C 3,1 ;
  • the scheduling cell is cell 1, and the scheduled cells are cell 1 and cell 3, then all the scheduled cells are cell 1 and cell 3, and the first blind detection capability of the terminal device in the scheduling cell is C 2,0 +C 2 ,1 ;
  • the scheduling cell is cell 1, and the scheduled cells are cell 1 and cell 4, then all the scheduled cells are cell 1 and cell 4, and the first blind detection capability of the terminal equipment in the scheduling cell is C 2, 0 +C 3,1 . It can be seen that the blind detection capability of the terminal equipment in the scheduling cell increases as the number of scheduled cells increases, so that the first blind detection capability of the scheduling cell can be increased.
  • the scheduling cell is cell 1, and the scheduled cells are cell 1 and cell 3
  • the first blind detection capability of the terminal device for the scheduled cell 1 on the scheduling cell is the first blind detection capability of cell 1
  • the terminal device is in The first blind detection capability for the scheduled cell 3 on the scheduling cell is the first blind detection capability for cell 3.
  • the scheduling cell is cell 1, and the scheduled cells are cell 1 and cell 4, the terminal equipment will target the scheduled cell on the scheduling cell.
  • the first blind detection capability of cell 1 is the first blind detection capability of cell 1
  • the first blind detection capability of the terminal device for the scheduled cell 4 on the scheduling cell is the first blind detection capability of cell 4.
  • the terminal device can ensure that the terminal device has sufficient first blind detection capability in the scheduling cell to blindly detect the PDCCH of the scheduled cell, thereby ensuring low latency and high reliability of the service in the scheduled cell Sex.
  • the second capability that is, the first blind detection capability of the terminal equipment in the scheduling cell is the product of the maximum value of the first blind detection capability in all scheduled cells and the number of scheduled cells.
  • the first blind detection capability of the scheduling cell for each scheduling cell is the maximum value of the first blind detection capability in all scheduled cells.
  • the scheduling cell is cell 1, and the scheduled cells are cell 1 and cell 3, then all the scheduled cells are cell 1 and cell 3.
  • the blind detection capability of the terminal equipment in the scheduling cell increases in proportion to the number of scheduled cells, so that the first blind detection capability of the scheduling cell can be increased.
  • the terminal device has sufficient first blind detection capability in the scheduling cell to perform blind detection on the PDCCH of the scheduled cell, thereby ensuring low latency and high reliability of services in the scheduled cell.
  • the third capability that is, the first blind detection capability C of the terminal equipment in the scheduling cell is:
  • j represents the index of the subcarrier spacing
  • K j denotes all cells are scheduled subcarriers in the first interval of 2 j is blind detection capability scheduling cell ⁇ 15kHz maximum Value
  • L j is the number of scheduled cells with sub-carrier spacing of 2 j ⁇ 15 kHz in all scheduled cells
  • J is a positive integer.
  • 2 j is a first blind detection capability of the scheduling cell ⁇ 15kHz to 2 j is the maximum interval of the first blind detection capability of the scheduling cell ⁇ 15kHz subcarriers are .
  • the first blind detection capability for a scheduled cell with a subcarrier spacing of 2 j ⁇ 15 kHz is the maximum first blind detection capability of the scheduled cell with the subcarrier spacing among all scheduled cells and the subcarrier spacing.
  • the fourth capability, the first blind detection capability of the terminal equipment in the scheduling cell is:
  • j represents the index of the subcarrier spacing
  • K j represents all scheduled cells are spaced a minimum of 2 j subcarriers are first blind detection capability of the scheduling cell of ⁇ 15kHz Value
  • L j is the number of scheduled cells with sub-carrier spacing of 2 j ⁇ 15 kHz in all scheduled cells
  • J is a positive integer.
  • j 0 or 1. All scheduled cells are cell 1, cell 2, cell 3, cell 4, and cell 5.
  • the first blind detection capability of the scheduled cell with a subcarrier spacing of 2 j ⁇ 15 kHz is the minimum first blind detection capability of the scheduled cell with the subcarrier spacing and the scheduled cell with the subcarrier spacing
  • the first blind detection capability of the scheduling cell will not be too large (that is, the normal scheduling of the scheduled cell can be ensured), which reduces the power loss of the terminal equipment.
  • the second case the number of downlink cells is greater than the first value.
  • the first blind detection capability in the scheduling cell determined by the terminal device may be one of the following capabilities. In the following example, assume that the first value is 4.
  • the fifth capability, the first blind detection capability of the terminal equipment in the scheduling cell is:
  • j represents the index of the subcarrier spacing
  • K j denotes all cells are scheduled subcarriers in the first interval of 2 j is blind detection capability scheduling cell ⁇ 15kHz maximum Value
  • L j is the number of scheduled cells with subcarrier spacing of 2 j ⁇ 15 kHz in all scheduled cells
  • J is a positive integer
  • N is the number of scheduled cells
  • M is the number of downlink cells.
  • the first blind detection capability of the scheduling cell for the scheduling cell with a subcarrier spacing of 2 j ⁇ 15 kHz is It should be noted that the rounding down is taken as an example here, and rounding up or rounding up may also be used. The following is also applicable, and the embodiments of the present application are not limited thereto.
  • the number of downlink cells is greater than the first value, that is, the number of configured downlink cells is more than the number of blind detection cells that the terminal device can support.
  • K j represents the maximum value of the first blind detection capability of the scheduled cell with a subcarrier spacing of 2 j ⁇ 15kHz in all scheduled cells
  • the maximum first blind detection capability for this subcarrier spacing should be N ⁇ K j
  • the blind detection capability of is the sum of the maximum first blind detection capability of all scheduled
  • the first blind detection capability of the scheduling cell is not increased in proportion to the increase in the number of downlink cells, but is limited by the number of blind detection cells that the terminal device can support, so that the terminal device can
  • the maximum blind detection capability supported is divided into the downlink cells actually scheduled by the terminal device, so as to ensure that the first blind detection capability of the final scheduled cell will not exceed the blind detection capability that the terminal device can support, thereby reducing the terminal device’s Power consumption and implementation complexity.
  • the sixth capability, the first blind detection capability of the terminal equipment in the scheduling cell is:
  • j represents the index of the subcarrier spacing
  • K j represents all scheduled cells are spaced a minimum of 2 j subcarriers are first blind detection capability of the scheduling cell of ⁇ 15kHz Value
  • L j is the number of scheduled cells with subcarrier spacing of 2 j ⁇ 15 kHz in all scheduled cells
  • J is a positive integer
  • N is the first value
  • M is the number of downlink cells.
  • the number of downlink cells is greater than the first value, that is, the number of configured downlink cells is more than the number of blind detection cells that the terminal device can support.
  • the subcarrier spacing of all scheduled cells is 2 j ⁇ 15kHz
  • K j represents the minimum value of the first blind detection capability of the scheduled cell with a subcarrier spacing of 2 j ⁇ 15kHz in all scheduled cells
  • the minimum first blind detection capability for this subcarrier spacing should be N ⁇ K j
  • the actual number of scheduling cells in the subcarrier interval is L j , which only occupies all downlink cells Therefore, the total first blind detection capability for a scheduling cell with a subcarrier spacing of 2 j ⁇ 15 kHz is That is, calculate the minimum first blind detection capability of all scheduled cells under the subcarrier interval, and then use the same method for the scheduled cells with some subcarrier interval, so as to calculate the blind detection capability of all scheduled cells as all subcarriers.
  • the supported blind detection capabilities are divided into the downlink cells actually scheduled by the terminal device, so as to ensure that the first blind detection capability of the final scheduled cell will not exceed the blind detection capability that the terminal device can support, thereby reducing the power consumption of the terminal device Quantity and implementation complexity.
  • the seventh capability the first blind detection capability of the terminal equipment in the scheduling cell is
  • j represents the index of the sub-carrier interval
  • the corresponding sub-carrier interval of j is 2 j ⁇ 15 kHz
  • J is a positive integer
  • L j is the number of scheduled cells with a sub-carrier interval of 2 j ⁇ 15 kHz among all scheduled cells.
  • M is the number of downlink cells;
  • Q j is equal to Among them, i is the index of the span pattern, H is the number of span patterns, Represents the number of downlink cells corresponding to the span pattern with index i, and C i represents the second blind detection capability corresponding to the span pattern with index i.
  • the second blind detection capability is the blind detection capability corresponding to each span pattern that is also reported when the terminal device reports the span pattern to the network device, and the second blind detection capability is each span pattern corresponding to each span pattern.
  • the maximum number of non-overlapping CCEs or the second blind detection capability is the maximum number of candidate physical downlink control channels PDCCH for each span corresponding to each span pattern.
  • the span pattern reported by the terminal device is (4, 3), and (7, 3).
  • the corresponding blind detection capabilities at 15kHz are C 2,0 and C 2,1
  • the corresponding blind detection capabilities at 30kHz are C 3,0 and C 3,1 .
  • the number of downlink cells corresponding to the 15kHz span pattern (4,3) reported by the terminal equipment is 2, and the terminal reports the 15kHz span pattern (7, 3)
  • the number of corresponding downlink cells is one.
  • the number of downlink cells corresponding to the 30 kHz span pattern (4, 3) reported by the terminal equipment is one
  • the number of downlink cells corresponding to the 30 kHz span pattern (7, 3) reported by the terminal equipment is one.
  • the terminal device reports for each subcarrier spacing pattern 2 j ⁇ 15kHz span of each
  • the blind detection capability of span determines the first blind detection capability of the scheduling cell with a sub-carrier spacing of 2 j ⁇ 15 kHz, and then sums the blind detection capabilities of the scheduling cells with all sub-carrier spacings to obtain the blind detection capability of the scheduling cell.
  • the first blind detection capability of the scheduling cell is not unlimitedly increased in proportion to the increase in the number of downlink cells, but is based on the number of blind detection cells that can be supported by the terminal device.
  • the blind detection capability that the terminal device can support is divided into the downlink cells actually scheduled by the terminal device, so as to ensure that the first blind detection capability of the final scheduled cell does not exceed the blind detection capability that the terminal device can support, thereby reducing Power consumption and implementation complexity of small terminal equipment.
  • S403 The network device sends the PDCCH in the scheduling cell.
  • S404 The terminal device performs blind PDCCH detection in the scheduling cell according to the first blind detection capability.
  • the terminal device may perform blind PDCCH detection in the scheduling cell according to the determined first blind detection capability, and the network device transmits the PDCCH in the scheduling cell based on the first blind detection capability.
  • the network device to determine the first blind detection capability reference may be made to the method for the terminal device to determine the first blind detection, which will not be repeated here.
  • the first blind detection capability is determined by the terminal device according to the number of downlink cells configured by the network device, this application uses the above-mentioned solution to make it clear that the terminal device is in each span of each scheduling cell in the scenario of carrier aggregation. Blind detection capability.
  • this application uses the above method, in the scenario of carrier aggregation, the blind detection capability of the scheduling cell is increased in proportion to the number of scheduled cells, that is, the first solution can increase the blind detection capability of each span of the scheduling cell , That is, the terminal equipment has greater blind detection capability to ensure the delay and reliability of the service. At the same time, it can also ensure that all downlink cells can be scheduled normally in the cross-carrier scheduling scenario.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of interaction between a terminal device and a network device.
  • the terminal device and the network device may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. . Whether a certain function of the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 6 is a schematic block diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 can execute the behaviors and functions of the terminal device in the foregoing method embodiments, and in order to avoid repetition, details are not described herein again.
  • the communication device 600 may be a terminal device or a chip applied to the terminal device.
  • the communication device 600 includes: a processing unit 610 and a transceiver unit 620,
  • the transceiving unit 620 is configured to receive first indication information, where the first indication information indicates the number of downlink cells; the processing unit 620 is configured to receive the downlink cell indicated by the first indication information received by the transceiver unit The number of cells, determining the first blind detection capability of the scheduling cell, and performing blind PDCCH detection in the scheduling cell according to the first blind detection capability, where the scheduling cell is a cell in the downlink cell,
  • the first blind detection capability is the maximum number of non-overlapping CCEs in each time window span or the maximum number of candidate PDCCH candidates in each span, and the time domain length of the span is less than the time domain length of one time slot.
  • the processing unit 620 is specifically configured to determine that the first blind detection capability of the scheduling cell is any one of the following:
  • the determined first blind detection capability of the scheduling cell is the first blind detection capability of each cell in all scheduled cells Sum.
  • the determined first blind detection capability of the scheduling cell is the maximum value of the first blind detection capability in all scheduled cells and the total value. The product of the number of scheduled cells.
  • the determined first blind detection capability of the scheduling cell is wherein, j represents the index of the subcarrier spacing, j corresponding to the subcarrier spacing of 2 j ⁇ 15kHz, K j denotes all cells are scheduled subcarriers in the first interval of 2 j is blind detection capability scheduling cell ⁇ 15kHz maximum Value, L j is the number of scheduled cells with sub-carrier spacing of 2 j ⁇ 15 kHz in all scheduled cells, and J is a positive integer.
  • the number of the downlink cells is less than or equal to a first value
  • the determined first blind detection capability of the scheduling cell is
  • j represents the index of the subcarrier spacing
  • K j denotes all cells are scheduled subcarriers at intervals of 2 j is the minimum of the first blind detection capability of scheduling cell ⁇ 15kHz Value
  • L j is the number of scheduled cells with subcarrier spacing of 2 j ⁇ 15 kHz in all scheduled cells
  • J is a positive integer.
  • the number of the downlink cells is greater than a first value
  • the determined first blind detection capability of the scheduling cell is
  • j represents the index of the subcarrier spacing
  • K j denotes all cells are scheduled subcarriers in the first interval of 2 j is blind detection capability scheduling cell ⁇ 15kHz maximum Value
  • L j is the number of scheduled cells with subcarrier spacing of 2 j ⁇ 15 kHz in all scheduled cells
  • J is a positive integer
  • N is the number of scheduled cells
  • M is the number of downlink cells .
  • the number of the downlink cells is greater than a first value
  • the determined first blind detection capability of the scheduling cell is
  • j represents the index of the subcarrier spacing
  • K j represents all scheduled cells are spaced a minimum of 2 j subcarriers are first blind detection capability of the scheduling cell of ⁇ 15kHz Value
  • L j is the number of scheduled cells with subcarrier spacing of 2 j ⁇ 15 kHz in all scheduled cells
  • J is a positive integer
  • N is the number of scheduled cells
  • M is the number of downlink cells .
  • the number of the downlink cells is greater than a first value
  • the determined first blind detection capability of the scheduling cell is Among them, j represents the index of the sub-carrier interval, the corresponding sub-carrier interval of j is 2 j ⁇ 15 kHz, J is a positive integer, and L j is the number of scheduled cells with a sub-carrier interval of 2 j ⁇ 15 kHz among all scheduled cells.
  • M is the number of the downlink cells;
  • Q j is equal to Wherein, i is an index pattern span interval of 2 j ⁇ 15kHz subcarrier, H is the subcarrier spacing pattern span of 2 j ⁇ 15kHz number, Represents the number of downlink cells corresponding to the span pattern with index i with a subcarrier interval of 2 j ⁇ 15 kHz, and C i represents the second blind detection capability corresponding to the span pattern with index i with a subcarrier interval of 2 j ⁇ 15 kHz.
  • FIG. 7 is a schematic block diagram of a communication device 700 according to an embodiment of the present application.
  • the communication device 700 can execute the behavior function of the network device in the foregoing method embodiment, and in order to avoid repetition, it will not be described in detail here.
  • the communication device 700 may be a network device or a chip applied to the network device.
  • the communication device 700 includes a processing unit 710 and a transceiving unit 720, where:
  • the transceiving unit 720 is configured to send first indication information, where the first indication information indicates the number of downlink cells;
  • the processing unit 710 is configured to determine the first blind detection capability of the terminal equipment in a scheduling cell according to the number of the downlink cells, where the scheduling cell is a cell in the downlink cell, and the first blind detection capability Is the maximum number of non-overlapping control channel elements CCEs in each time window span or the maximum number of candidate physical downlink control channel PDCCHs in each time window span, and the time domain length of the span is less than the time domain length of one time slot , And control the transceiver unit 702 to send the PDCCH in the scheduling cell according to the first blind detection capability.
  • FIG. 8 is a schematic block diagram of a communication device 800 according to an embodiment of the present application.
  • the communication device 800 can execute each step executed by the terminal device in the foregoing method embodiment, and may also be used to execute each step executed by the network device in the foregoing method embodiment. In order to avoid repetition, details are not described herein again.
  • the communication device 800 may be a terminal device or a chip used in a terminal device.
  • the communication device 800 may also be a network device or a chip used in a network device.
  • the communication device 800 includes:
  • the memory 810 is used for storing programs
  • the communication interface 820 is used to communicate with other devices
  • the processor 830 is configured to execute a program in the memory 810. When the program is executed, the processor 830 is configured to receive first indication information through the communication interface 820, where the first indication information indicates the status of the downlink cell And used to determine the first blind detection capability of the scheduling cell according to the number of the downlink cells indicated by the first indication information received by the transceiver unit, and to determine the first blind detection capability of the scheduling cell according to the first blind detection capability PDCCH blind detection is performed in the scheduling cell, where the scheduling cell is a cell in the downlink cell, and the first blind detection capability is the maximum number of non-overlapping CCEs in each time window span or each span The maximum number of PDCCH candidates, the time domain length of the span is less than the time domain length of one time slot.
  • the processor 830 is configured to send first indication information to the terminal device through the communication interface 820, where the first indication information indicates the number of downlink cells, and determine the terminal device according to the number of downlink cells
  • the scheduling cell is a cell in the downlink cell
  • the first blind detection capability is the maximum number of non-overlapping CCEs in each time window span or the maximum number of each span
  • the number of candidate PDCCHs, the time domain length of the span is less than the time domain length of one time slot, and the PDCCH is sent in the scheduling cell through the communication interface 820 according to the determined first blind detection capability.
  • the communication device 800 shown in FIG. 8 may be a chip or a circuit.
  • a chip or circuit may be installed in a terminal device or a chip or circuit may be installed in a network device.
  • the aforementioned communication interface 820 may also be a transceiver.
  • the transceiver includes a receiver and a transmitter.
  • the communication device 800 may also include a bus system.
  • the processor 830, the memory 810, the receiver and the transmitter are connected by a bus system, and the processor 830 is used to execute the instructions stored in the memory 810 to control the receiver to receive signals and control the transmitter to send signals to complete the communication of this application.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the memory 810 may be integrated in the processor 830, or may be provided separately from the processor 830.
  • the functions of the receiver and transmitter may be implemented by a transceiver circuit or a dedicated transceiver chip.
  • the processor 830 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • connection medium between the aforementioned communication interface 820, the processor 830, and the memory 810 is not limited in the embodiment of the present application.
  • the memory 810, the processor 830, and the communication interface 820 are connected by a bus in FIG. 8.
  • the bus is represented by a thick line in FIG. 8.
  • the connection mode between other components is only for schematic illustration. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • the processor 830 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component. Or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 810 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory). For example, random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the communication device in the foregoing embodiment may be a terminal device or a circuit, and may also be a chip applied to a terminal device or other combination devices or components having the functions of the foregoing terminal device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing module may be a processor.
  • the transceiver unit may be an input/output interface of the chip system
  • the processing module may be a processor of the chip system.
  • FIG. 9 shows a simplified schematic diagram of a possible design structure of the terminal device involved in the foregoing embodiment.
  • the terminal device includes a transmitter 901, a receiver 902, a controller/processor 903, a memory 904, and a modem processor 905.
  • the transmitter 901 is used to transmit an uplink signal, and the uplink signal is transmitted to the network device described in the foregoing embodiment via an antenna.
  • the antenna receives the downlink signal (DCI) transmitted by the network device in the above embodiment.
  • the receiver 902 is used to receive a downlink signal (DCI) received from an antenna.
  • the encoder 906 receives service data and signaling messages to be transmitted on the uplink, and processes the service data and signaling messages.
  • the modulator 907 further processes (e.g., symbol mapping and modulation) the encoded service data and signaling messages and provides output samples.
  • the demodulator 909 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 908 processes (e.g., decodes) the symbol estimation and provides decoded data and signaling messages sent to the terminal device.
  • the encoder 906, the modulator 907, the demodulator 909, and the decoder 908 may be implemented by a synthesized modem processor 905. These units are processed according to the wireless access technology adopted by the wireless access network.
  • the controller/processor 903 controls and manages the actions of the terminal device, and is used to execute the processing performed by the terminal device in the foregoing embodiment. For example, it is used to control the terminal equipment to receive the first indication information from the network equipment, and determine the first blind detection capability of the scheduling cell according to the number of the downlink cells indicated by the received first indication information, and according to the first indication information.
  • a blind detection capability performs blind PDCCH detection in the scheduling cell, where the scheduling cell is a cell in the downlink cell, and the first blind detection capability is the maximum number of non-overlapping CCEs per span or The maximum number of PDCCH candidates for each span, the time domain length of the span is less than the time domain length of one time slot and/or other processes of the technology described in this application.
  • the controller/processor 903 is used to support the terminal device to execute the process S402 in FIG. 4.
  • Fig. 10 shows a schematic structural diagram of a simplified communication device. It is easy to understand and easy to illustrate.
  • the communication device uses a network device as an example.
  • the network device may be applied to the system shown in FIG. 3, and may be the network device in FIG. 3, which performs the functions of the network device in the foregoing method embodiment.
  • the network device 1000 may include one or more radio frequency units, such as a remote radio unit (RRU) 1010 and one or more baseband units (BBU) (also referred to as digital unit, digital unit, DU). ) 1020.
  • RRU 1010 may be called a communication module, which corresponds to the transceiver unit 720 in FIG. 7.
  • the communication module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1011 ⁇ RF unit 1012.
  • the RRU 1010 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to terminal equipment.
  • the 1020 part of the BBU is mainly used to perform baseband processing, control the base station, and so on.
  • the RRU 1010 and the BBU 1020 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1020 is the control center of the base station, and may also be called a processing module, which may correspond to the processing unit 710 in FIG. 7, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1020 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or can support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1020 also includes a memory 1021 and a processor 1022.
  • the memory 1021 is used to store necessary instructions and data.
  • the processor 1022 is used to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1021 and the processor 1022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the embodiments of the present application also provide a communication system.
  • the communication system includes a terminal device and a network device, or may also include more terminal devices and network devices.
  • the terminal equipment and the network equipment are respectively used to implement the functions of the above-mentioned related equipment in FIG. 4. For details, please refer to the relevant descriptions in the above method embodiments, which will not be repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method performed by the terminal device and the network device in FIG. 4.
  • the embodiment of the present application also provides a computer program product, including instructions, which when run on a computer, cause the computer to execute the method executed by the terminal device and the network device in FIG. 4.
  • the embodiment of the present application provides a chip system.
  • the chip system includes a processor and may also include a memory for realizing the functions of the terminal device and the network device in the foregoing method.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be Other division methods, for example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual communication connections may be indirect couplings or communication connections through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units in the device embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits. (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the methods in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instruction may be transmitted from a website, computer, server, or The data center transmits data to another website, computer, server, or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, Hard disk, magnetic tape), optical medium (for example, digital video disc (digital video disc, DVD for short)), or semiconductor medium (for example, SSD), etc.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC can be located in a network device or a terminal device.
  • the processor and the storage medium may also exist as discrete components in the sending device or the receiving device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,其中的通信方法包括:接收指示下行小区的个数的指示信息,根据所述下行小区的个数,确定调度小区的第一盲检测能力,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数,所述span的时域长度小于一个时隙的时域长度,根据所述第一盲检测能力在所述调度小区中进行PDCCH盲检测。通过该方法可以确定在CA场景下,终端设备在每个span的盲检测能力,从而满足业务低延时高可靠的需求。

Description

一种通信方法及装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在通信系统中,网络设备通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)向终端设备发送下行控制信息(downlink control information,DCI)。一个DCI在一个PDCCH中传输,一个PDCCH占用一个或多个控制信道元素(control channel element,CCE)。网络设备根据DCI的大小和需要的控制信道传输可靠性选择在1个CCE、2个CCE、4个CCE或8个CCE上进行传输该DCI。终端设备通过盲检测接收所述PDCCH中承载的DCI。不同类型的通信业务要求终端设备的盲检测能力不同,所述盲检测能力包括在一段时间内终端设备能够进行信道估计的不重叠的CCE个数或者在一段时间内能够盲检测的最大候选物理下行控制信道PDCCH的个数。
在5G新空口(5G New Radio,5G-NR)的技术研究中,引入时间窗(span)的概念,该span也可以称为监听时间窗(monitoring span),一个span的长度小于一个slot的时间长度,且在单载波的场景下,定义了在一个span内终端设备能够进行信道估计的不重叠的CCE个数或者在一段时间内能够盲检测的最大候选物理下行控制信道PDCCH的个数。
然而,在载波聚合(carrier aggregation,CA)的场景下,如何确定终端设备在每个span的盲检测能力,目前还没有明确的方案。
发明内容
本申请实施例提供一种通信方法及装置,用于在CA场景下,确定终端设备在每个span的盲检测能力,从而满足业务低延时高可靠的需求。
第一方面,提供一种通信方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。该方法包括:接收第一指示信息,所述第一指示信息可用于指示下行小区的个数,根据所述下行小区的个数,可确定调度小区的第一盲检测能力,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数,所述span的时域长度小于一个时隙的时域长度,以及根据所述第一盲检测能力在所述调度小区中进行PDCCH盲检测。
第二方面,提供了一种通信方法,该方法的执行主体可以是网络设备也可以是应用于网络设备中的芯片。下面以执行主体是网络设备为例进行描述。该方法包括:发送第一指示信息,所述第一指示信息指示下行小区的个数,根据所述下行小区的个数,确定终端设备在调度小区的第一盲检测能力,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数,所述span的时域长度小于一个时隙的时域长度;根据所述第一盲检测能力在所述调度小区中发送PDCCH。
在上述第一方面与第二方面的实施例中,终端设备可以根据下行小区的个数,来确定 在终端设备在每个调度小区的每个span中的盲检测能力,可见,通过本申请实施例提供的方法,在载波聚合的场景下,可以明确终端设备在每个调度小区的第一盲检测能力。同时,由于每个调度小区的第一盲检测能力是根据下行小区的个数确定的,在下行小区的个数越多时,确定的每个调度小区的第一盲检测能力也会相应的越大,保证终端设备在一个span中能够盲检测更多的候选PDCCH,或者能够保证终端设备在一个span中的进行信道估计的不重叠的CCE个数更多,从而保证业务的低时延和高可靠性。
在上述第一方面与第二方面在的实施例中,所述确定的所述调度小区的第一盲检测能力为下述任一种:
示例性的,在所述下行小区的个数小于或等于第一数值时,所述确定的所述调度小区的第一盲检测能力为全部被调度小区中的每个小区的第一盲检测能力之和。采用这种方案,调度小区的盲检测能力随着被调度小区的个数的增加而增加,从而可以增大调度小区的第一盲检测能力,在跨载波调度的场景下,能够保证终端设备在调度小区中有足够的第一盲检测能力对被调度小区的PDCCH进行盲检测,从而保证被调度小区中业务的低时延和高可靠性。
示例性的,在所述下行小区的个数小于或等于第一数值,所述确定的所述调度小区的第一盲检测能力为全部被调度小区中的第一盲检测能力的最大值与所述被调度小区个数的乘积。采用这种方案,调度小区的盲检测能力根据随着被调度小区的个数成比例增加,即可以增大调度小区的第一盲检测能力,在跨载波调度的场景下,能够保证终端设备在调度小区中有足够的第一盲检测能力对被调度小区的PDCCH进行盲检测,从而保证被调度小区中业务的低时延和高可靠性。
示例性的,在所述下行小区的个数小于或等于第一数值时,所述确定的所述调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000001
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数。采用这种方案,在调度小区中,针对子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力为全部被调度小区中该子载波间隔的被调度小区的最大第一盲检测能力与该子载波间隔的被调度小区的个数的乘积,从而保证针对每个子载波间隔的被调度小区中,终端设备具备最大的第一盲检测能力对被调度小区的PDCCH进行盲检测,保证被调度小区中业务的低时延和高可靠性。
示例性的,所述下行小区的个数小于或等于第一数值,所述确定的所述调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000002
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最小值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数。采用这种方案,在调度小区中,子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力为该子载波间隔的被调度小区的最小第一盲检测能力与该子载波间隔的被调度小区的个数的乘积,从而保证针对每个子载波间隔的被调度小区,终端设备都有最小的第一盲检测能力来盲检测被调度小区的PDCCH,从而保证在载波聚合的场景下,终端设备在调度小区的第一盲检测能力不会过大(即保证被调度小区的正常调度即可),减少终端设备的功率损耗。
示例性的,所述下行小区的个数大于第一数值,所述确定的所述调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000003
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测 能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数,N为所述调度小区的个数,M为所述下行小区的个数。采用这种方案,由于此时下行小区个数大于第一数值,也就是配置的下行小区个数多于终端设备能够支持的盲检测的小区个数,此时,如果仍然按照全部被调度小区的子载波间隔均为2 j×15kHz,由于K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,则针对这个子载波间隔的最大第一盲检测能力应该为N×K j,但是实际该子载波间隔的调度小区个数为L j,只占据所有下行小区中L j/M,因此,对于子载波间隔为2 j×15kHz的调度小区的总的第一盲检测能力为
Figure PCTCN2019109573-appb-000004
即计算该子载波间隔小下的全部被调度小区的最大第一盲检测能力,之后针对有的子载波间隔的被调度小区采用同样的方式,从而计算出在调度小区中,针对全部被调度小区的盲检测能力为全部子载波间隔的全部被调度小区的最大第一盲检测能力之和。从而可以保证调度小区的第一盲检测能力不是无限制的根据下行小区个数的增加而成比例的增加,而是受到终端设备能够支持的盲检测的小区的个数的限制,将终端设备能够支持的最大的盲检测能力划分到终端设备实际调度的下行小区中,从而保证最终确定的调度小区的第一盲检测能力不会超过终端设备的能够支持的盲检测能力,从而减小终端设备的耗电量和实现复杂度。
示例性的,所述下行小区的个数大于第一数值,所述确定的所述调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000005
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最小值,L j为所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数,N为所述调度小区的个数,M为所述下行小区的个数。采用这种方案,由于此时下行小区个数大于第一数值,也就是配置的下行小区个数多于终端设备能够支持的盲检测的小区个数,此时,假设按照全部被调度小区的子载波间隔均为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最小值,则针对这个子载波间隔的最小第一盲检测能力应该为N×K j,但是实际该子载波间隔的调度小区个数为L j,只占据全部下行小区中L j/M,因此,对于子载波间隔为2 j×15kHz的调度小区的总的第一盲检测能力为
Figure PCTCN2019109573-appb-000006
即计算该子载波间隔小下的全部被调度小区的最小第一盲检测能力,之后针对有的子载波间隔的被调度小区采用同样的方式,从而计算出全部被调度小区的盲检测能力为全部子载波间隔的全部被调度小区的最小第一盲检测能力之和。从而可以保证调度小区的第一盲检测能力不是无限制的根据下行小区个数的增加而成比例的增加,而是受到终端设备能够支持的盲检测的小区的个数的限制,将终端设备能够支持的盲检测能力划分到终端设备实际调度的下行小区中,从而保证最终确定的调度小区的第一盲检测能力不会超过终端设备的能够支持的盲检测能力,从而减小终端设备的耗电量和实现复杂度。
示例性的,所述下行小区的个数大于第一数值,所述确定的所述调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000007
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,J为正整数,L j为所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,M为所述下行小区的个数;Q j等于
Figure PCTCN2019109573-appb-000008
其中,i为子载波间隔为2 j×15kHz的span图样的索引,H为子载波间隔为2 j×15kHz的span图样的个数,
Figure PCTCN2019109573-appb-000009
表示子载波间隔为2 j×15kHz的索引为i的span图样对应的下行小区个数,C i表示子载波间隔为2 j×15kHz的索引为i的span图样对应的第二盲检测能力。采用这种方案,根据子载波间隔为2 j×15kHz的索引为i的span图样对应的第二盲检测能力,即终端设备上报的子载波间隔为2 j×15kHz的每个span图样的每个span的盲检测能力,确定子载波间隔为2 j×15kHz的调度小区的第一盲检测能力,之后将全部子载波间隔的调度小区的盲检测能力求和,得到调度小的盲检测能力。在载波聚合的场景下,可以保证调度小区的第一盲检 测能力不是无限制的根据下行小区个数的增加而成比例的增加,而是受到终端设备能够支持的盲检测的小区的个数的限制,将终端设备能够支持的盲检测能力划分到终端设备实际调度的下行小区中,从而保证最终确定的调度小区的第一盲检测能力不会超过终端设备的能够支持的盲检测能力,从而减小终端设备的耗电量和实现复杂度。
示例性的,该第二盲检测能力为终端设备在向网络设备上报span图样时,同时还上报的每个span图样对应的盲检测能力,所述第二盲检测能力为每个图样对应的每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数。
上述第一方面实施例中,终端设备在确定调度小区的第一盲检测能力之前,所述方法还可以包括:确定所述被调度小区中的每个小区的第一盲检测能力。从而可以根据每个被调度小区的第一盲检测能力确定调度小区的第一盲检测能力。
上述第一方面实施例中,所述方法还可以包括:发送第二指示信息,所述第二指示信息用于指示所述第一数值。具体的,该第一数值可以是终端设备主动上报的,从而使网络设备在通过第一指示信息指示下行小区的个数时,可以参考该第一数值,该第一数值表示终端设备能够进行盲检测PDCCH的下行小区的数目。尽可能的保证配置的PDCCH盲检测次数以及配置的不重叠的CCE的个数不超过终端设备能够盲检测PDCCH的下行小区的数目。
上述第一方面实施例中,所述方法还包括:所述第一数值还可以是协议预定义的。网络设备在通过第一指示信息指示下行小区的个数时,可以参考该协议预定义的第一数值。
例如,该预定义的第一数值为4,该第一数值表示终端设备能够进行盲检测PDCCH的下行小区的数目。从而尽可能的保证配置的PDCCH盲检测次数以及配置的不重叠的CCE的个数不超过终端设备能够盲检测PDCCH的下行小区的数目。
上述第二方面实施例中,所述方法还包括:确定所述终端设备的被调度小区的每个小区的第一盲检测能力。
上述第二方面实施例中,所述方法还包括:接收第二指示信息,所述第二指示信息用于指示所述第一数值。
第三方面,提供了一种通信装置,有益效果可以参见第一方面描述,在此不再赘述,该通信装置具有实现上述第一方面方法实施例中的行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发单元,用于接收第一指示信息,所述第一指示信息指示下行小区的个数,处理单元,用于根据所述收发单元接收的第一指示信息所指示的所述下行小区的个数,确定调度小区的第一盲检测能力,以及根据所述第一盲检测能力在所述调度小区中进行PDCCH盲检测,其中,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数,所述span的时域长度小于一个时隙的时域长度。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处事不再赘述。
第四方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:收发单元,用于发送第一指示信息, 所述第一指示信息指示下行小区的个数。处理单元,用于根据所述下行小区的个数,确定终端设备在调度小区的第一盲检测能力,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数,所述span的时域长度小于一个时隙的时域长度;所述收发单元用于根据所述处理单元确定的所述第一盲检测能力在所述调度小区中发送PDCCH。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第六方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方法。
附图说明
图1为本申请实施例提供的PDCCH盲检测时机的一种示意图;
图2为本申请实施例提供的PDCCH盲检测时机的一种示意图;
图3为本申请实施例提供的一种网络架构示意图;
图4为本申请实施例提供的通信方法的流程示意图;
图5为本申请实施例提供的5个小区的盲检测能力的一种示意图;
图6为本申请实施例提供的一种通信装置的一种结构示意图;
图7为本申请实施例提供的另一种通信装置的一种结构示意图;
图8为本申请实施例提供的通信装置的另一种结构示意图;
图9为本申请实施例提供的一种通信装置的再一种结构示意图;
图10为本申请实施例提供的另一种通信装置的再一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
在介绍本申请之前,首先对本申请实施例中的部分用语进行简单解释说明,以便于本领域技术人员理解。
1)终端设备,可以简称为终端,也称为用户设备(user equipment,UE),是一种具有无线收发功能的设备。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、无人机、气球和卫星上等)。所述终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端设备、无人驾驶中的无线终端设备、远程医疗中的无线终端设备、智能电网中的无线终端设备、运输安全中的无线终端设备、智慧城市中的无线终端设备、智慧家庭中的无线终端设备。终端设备也可以是固定的或者移动的。本申请实施例对此并不限定。
本申请实施例中,用于实现终端的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备可以是接入网设备,接入网设备也可以称为无线接入网(radio access network,RAN)设备,是一种为终端设备提供无线通信功能的设备。接入网设备例如包括但不限于:5G中的下一代基站(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、基带单元(baseband unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、未来移动通信系统中的基站或WiFi系统中的接入点等。接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU),或者网络设备可以为中继站、车载设备以及未来演进的PLMN网络中的网络设备等。
终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持长期演进(long term evolution,LTE)的接入网设备通信,也可以与支持5G的接入网设备通信,还可以同时与支持LTE的接入网设备以及支持5G的接入网设备进行通信。本申请实施例并不限定。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
3)第五代移动(the fifth generation,5G)通信系统的应用场景,国际电信联盟 (International Telecommunication Union,ITU)为5G以及未来的移动通信系统定义了三大类应用场景,这三大类应用场景分别是增强型移动宽带(Enhanced Mobile Broadband,eMBB)、高可靠低时延通信(Ultra Reliable and Low Latency Communications,URLLC)以及海量机器类通信(Massive Machine Type Communications,mMTC)。其中,典型的eMBB业务有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。典型的URLLC业务有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是要求超高可靠性、低延时,传输数据量较少以及具有突发性。典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。不同业务对移动通信系统的需求不同,如何更好地同时支持多种不同业务的数据传输需求,是当前5G通信系统所需要解决的技术问题。例如,如何同时支持URLLC业务和eMBB业务就是当前5G移动通信系统的讨论热点之一。
4)搜索空间包括公共搜索空间(common search space,CSS)和终端设备特定搜索空间(UE-specific Search Space,USS)。多个终端设备都可以在CSS中检索网络设备发送给终端设备的DCI,该CSS用于承载公共DCI。USS是网络设备为每个终端设备分别配置的,终端设备根据网络设备发送的配置信息在USS中检测网络设备发送自己的DCI。
5)CCE,一个CCE可以包括多个资源元素组。一个CCE对应的资源元素组的数量可以是固定的。例如可以为4个或6个。一个资源元素组,可在频域上占用资源为S个连续的子载波,和/或在时域上占用的资源为连续T个OFDM符号。其中S为大于1的自然数。例如,一个资源单元组在频域上可占用12个连续的子载波,在时域上可占用1个OFDM符号,其中,S=12,T=1。CCE是PDCCH所占的资源的基本单位,一个PDCCH可以占用L个CCE,L的取值可以为1、2、4、8或16等数值,L的值又称为聚合等级(aggregation level,AL),例如一个PDCCH的占用4个CCE,则称该PDCCH的AL为4。同一个DCI,传输时使用的AL值越大,可靠性越高。
6)子载波,一个子载波是频域上最小的粒度。例如,LTE中,1个子载波的子载波宽度也可以称子载波间隔为15kHz;在5G中,子载波间隔可能为15kHz、30kHz、60kHz或120kHz。
7)配置:是指网络设备给终端设备发送配置信息,该配置信息指示某个内容。该配置信息承载在高层信令中,该高层信令可以是指高层协议层发出的信令,高层协议层为物理层以上的至少一个协议层。其中,高层协议层具体可以包括以下协议层中的至少一个:媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、分组数据会聚协议(packet data convergence protocol,PDCP)层、无线资源控制(radio resource control,RRC)层和非接入层(non access stratum,NAS)。
8)时隙,是指一个基本的时间单元。本申请实施例中一个时隙可以在时域上占用连续的14个符号(常规循环前缀)或连续的12个符号(扩展循环前缀)。本申请实施例中的符号,包含但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号或非正交多址接 入(Non-Orthogonal Multiple Access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
9)时间窗(span),是比slot更短的一个时间单位。一个slot可以包括多个span。每个span的长度至少是X个连续的OFDM符号,X为大于0的整数。
10)调度小区和被调小区,本申请实施例将有调度能力的小区称为调度小区,也就是终端设备接收PDCCH的小区称为调度小区,该调度小区中发送的PDCCH能够调度本小区中的物理上行共享信道(physical uplink shared channel,PUSCH),或者物理下行共享信道(physical downlink shared channel,PDSCH),在调度小区中也可以发送其他非本小区之外的小区的PDCCH,这些PDCCH调度其他小区的中的PDSCH和PUSCH。被调度小区是指被调度小区所调度小区,也就是说,这些小区的调度信息PDCCH可以不是在本小区发送,而是在其他小区中发送。本申请实施例以每一个调度小区和该调度小区所调度的多个被调小区为例描述本申请的方法。调度小区可以对应于CA全部下行小区中的主小区Pcell,被调小区可以对应于CA的全部下行小区中的辅小区,Pcell和Scell。由于在调度小区上不仅可能发送本小区的PDCCH,还可能发送被调度小区的PDCCH,所以调度小区上的PDCCH盲检测能力需要更大,或者换句话说,在调度小区,针对不同的调度小区都有盲检测能力,也即在调度小区上,需要有盲检测能力盲检测被调度小区的PDCCH。
11)本申请实施例中的术语“系统”和“网络”可被互换使用。本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如第一终端设备和第二终端设备,只是为了区分不同的终端设备,而并不是限制两个终端设备的功能、优先级或重要程度等。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
由于终端设备预先不知道PDCCH的具体时频资源位置,所以需要进行PDCCH盲检测。在终端设备进行盲检测之前,需要确定自身的盲检测能力,并基于该盲检测能力进行PDCCH盲检测,以保证终端设备进行PDCCH时不会超过该盲检测能力。针对不同的应用场景,终端设备确定的盲检测能力有所不同,下面分别介绍。
第一种情况,在单载波场景下:
目前协议定义了一个小区中,一个slot内终端设备的盲检测能力,即终端设备能够监测的最大候选PDCCH个数和一个slot内终端设备能够监测的最大不重叠的CCE个数,前者也就是一个slot内终端设备最多能进行多少个候选PDCCH的盲检测。后者代表一个slot内终端设备最多进行信道估计的不重叠的CCE的个数。
例如,表1为目前协议定义的,不同的子载波间隔的一个小区、一个slot内终端设备能够监测的最大候选PDCCH个数,其中μ代表子载波间隔(Sub-carrier spacing)的索引,该索引指示对应的子载波为2 μ×15kHz,具体的,在小区的子载波间隔为15kHz时,在一 个slot内能够监测的最大候选PDCCH个数为44,在小区的子载波间隔为60kHz时,在一个slot内能够监测的最大候选PDCCH个数为22。
表1
μ 一个小区,一个slot内终端设备能够监测的最大候选PDCCH个数
0 44
1 36
2 22
3 20
表2为目前协议定义的,不同的子载波间隔,一个slot内终端设备最多进行信道估计的不重叠的CCE的最大数目。表2中的μ代表子载波间隔(Sub-carrier spacing)的索引,该索引指示对应的子载波为2 μ×15kHz。终端设备在盲检测某个聚合等级的PDCCH时,对该聚合等级的PDCCH所占的CCE的位置进行信道估计,然后才能进行PDCCH译码。假设聚合等级是2,则需要进行2个CCE的信道估计。从这个角度而言,不重叠的CCE的最大个数也可以认为是最大信道估计的CCE的个数。通过限制一个slot中最大信道估计的CCE的个数,从而限制终端设备进行盲检测范围。例如,根据表2,在小区的子载波间隔为15kHz时,在一个slot内能够进行信道估计的最大不重叠的CCE个数为56;在小区的子载波间隔为60kHz时,在一个slot内能够进行信道估计的最大不重叠的CCE个数为32。
表2
μ 一个slot内终端设备进行信道估计的最大不重叠的CCE个数
0 56
1 56
2 48
3 32
终端设备根据表1和/或表2可以确定在一个slot中的盲检测能力,即确定在一个slot中,能够盲检测最大候选PDCCH个数和/或最大不重叠的CCE个数。终端设备在盲检测时,需要保证实际盲检测的候选PDCCH的个数不超过表1所示的最大候选PDCCH个数和/或保证实际盲检测的不重叠的CCE个数不超过表2中所示的不重叠的CCE个数。
第二种情况,在载波聚合的场景下:
目前规定,如果终端设备支持的小区的最大个数为4,即终端设备最多支持4个小区,且网络设备给终端设备发送配置信息,配置了
Figure PCTCN2019109573-appb-000010
个下行小区,当
Figure PCTCN2019109573-appb-000011
时,或者,如果终端设备上报给网络设备能够检测的下行小区的个数
Figure PCTCN2019109573-appb-000012
且网络设备给终端设备配置了
Figure PCTCN2019109573-appb-000013
个下行小区,当
Figure PCTCN2019109573-appb-000014
时,终端设备在调度小区上的一个slot中的盲检测能力为全部被调度小区的每个slot的盲检测能力的和,也就是在调度小区上、且在一个slot内,针对每一个被调度小区的盲检测能力都等于该被调度小区的在一个slot内的实际的盲检测能力。这里,
Figure PCTCN2019109573-appb-000015
指的是网络设备给终端设备配置的子载波间隔为2 μ×15kHz下行小区的个数。
例如,终端设备最多支持4个下行小区,网络设备给终端设备配置了3个下行小区,所述3个下行小区中有2个下行小区的子载波间隔为15kHz,一个下行小区的子载波间隔 为30kHz,则终端设备在调度小区调度这个3个下行小区时,该3个下行小区均为被调度小区,那么终端设备在调度小区的一个slot盲检测能力为终端设备在15kHz的两个被调度小区上的一个slot的盲检测能力与在一个30kHz的一个slot的盲检测能力之和,也就是说,针对每一个被调度小区在一个slot内的盲检测能力即为该被调度小区的在一个slot内的盲检测能力。例如根据表2可以确定,15kHz的被调度小区在一个slot内的最大不重叠CCE个数为56,30kHz的被调度小区在一个slot内的最大不重叠CCE个数为56,则在调度小区上,针对该每个15kHz的被调度小区的在一个slot内最大不重叠CCE个数为56,针对该30kHz的被调度小区的在一个slot内最大不重叠CCE个数为56,该调度小区上总的在一个slot内最大不重叠的CCE个数为56*2+56。例如根据表1可以确定,15kHz的被调度小区在一个slot内的最大候选PDCCH个数为44,30kHz的被调度小区在一个slot内终端设备能够监测的最大候选PDCCH个数为36,则在调度小区上,针对该每个15kHz的被调度小区在一个slot内终端设备能够监测的最大候选PDCCH个数为44,针对该30kHz的被调度小区在一个slot内终端设备能够监测的最大候选PDCCH个数为36,该调度小区上总的在一个slot内最大不重叠的CCE个数为44*2+36。
而如果终端设备上报给网络设备能够检测PDCCH的下行小区的个数
Figure PCTCN2019109573-appb-000016
且网络设备配置了
Figure PCTCN2019109573-appb-000017
个下行小区,且
Figure PCTCN2019109573-appb-000018
则终端设备在调度小区上针对全部子载波间隔为2 μ×15kHz的被调度小区在一个slot的盲检测能力
Figure PCTCN2019109573-appb-000019
满足如下公式(1):
Figure PCTCN2019109573-appb-000020
在公式(1)中,
Figure PCTCN2019109573-appb-000021
表示向下取整,在下文中同样适用,
Figure PCTCN2019109573-appb-000022
表示子载波间隔为2 μ×15kHz的每个小区的每个slot的最大盲检测能力,具体可以取表1或者表2中的值,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15Khz,
Figure PCTCN2019109573-appb-000023
表示子载波间隔为2 j×15kHz的下行小区的个数。
终端设备在调度小区上针对每个子载波间隔为2 μ×15kHz的被调度小区,终端设备的盲检测能力为:
Figure PCTCN2019109573-appb-000024
也就是针对每个被调度小区的盲检测能力不会超过该被调度小区本身的盲检测能力。
例如,终端设备向网络设备上报终端设备可以支持5个下行小区,网络设备给终端设备配置了6个下行小区,这6个下行小区中有1个下行小区的子载波间隔为15kHz、2个下行小区的子载波间隔为60kHz,和3个下行小区的子载波间隔为30kHz的小区。假设终端设备在调度小区调度这6个下行小区时,该6个下行小区均为被调度小区,则调度小区个数大于终端设备可以支持的小区个数。假设所述盲检测能力为最大不重叠的CCE个数,那么根据如上的公式(1)以及表格2,可计算得到在主调小区上的盲检测能力:
针对全部15kHz的被调度小区的每个slot的盲检测能力为:5*56*1/6=46.67,下取整后,即为46。
针对全部30kHz的被调度小区的每个slot的能力为:5*56*3/6=140,这是全部30kHz的被调度小区的每个slot的总盲检测能力,终端设备在盲检测时还需要保证,在每个被调度小区的每个slot的盲检测能力为56。
针对全部60kHz的被调度小区的每个slot的能力为:5*48*2/6=93,这是全部60kHz 的被调度小区的每个slot的总盲检测能力,终端设备在盲检测时还需要保证,在每个被调度小区的每个slot的盲检测能力为48。
因此在主调小区上,每个slot的调度能力为:46+140+93。
假设所述盲检测能力为最大候选PDCCH个数,那么根据如上的公式(1)以及表格1,可计算得到在主调小区上的盲检测能力:
针对全部15kHz的被调度小区的每个slot的盲检测能力为:5*44*1/6=36.67,向下取整后,即为46。
针对全部30kHz的被调度小区的每个slot的能力为:5*36*3/6=90,这是全部30kHz的被调度小区的每个slot的总盲检测能力,终端设备在盲检测时还需要保证,在每个被调度小区的每个slot的盲检测能力为56。
针对全部60kHz的被调度小区的每个slot的能力为:5*22*2/6=36.67,向下取整后,即为36。这是全部60kHz的被调度小区的每个slot的总盲检测能力,终端设备在盲检测时还需要保证,在每个被调度小区的每个slot的盲检测能力为48。
因此在主调小区上,每个slot的调度能力为:36+90+36。
第三种情况,在单载波场景下,且终端设备确定一个span内的盲检测能力。
假设在一个小区的子载波间隔为15kHz时,若一个slot中有7个span,例如终端设备确定每个span的最大不重叠的CCE个数为16,则在一个slot中最大不重叠的CCE个数为16*7=112,相比于第一种情况中,在单载波场景下定义每个slot的中定义的最大不重叠CCE个数为56来说,在一个slot中支持的最大不重叠的CCE个数增加了一倍,相当于增大了盲检测的能力,从而能够保证PDCCH能够用更大的聚合等级发送,也就是能够占用更多的CCE,因此能够提高PDCCH的可靠性,保证业务的可靠性。
下面分为几个步骤介绍终端设备具体如何在单载波场景下,确定每个cell的每个span的盲检测能力。下面的步骤针对每个cell都是适用的。
步骤一:终端设备上报span图样,以及每个span图样对应的盲检测能力。
表3表示列出了span的图样定义,以及每个span图样在每个span对应的盲检测能力。
表3
Figure PCTCN2019109573-appb-000025
该表3中,可能包含多个span图样,表3中的每一行表示一种span图样,第i行代表第i个span图样,每个span图样对应一组参数(X,Y)以及一个第二盲检测能力C i,μ,该第二盲检测能力子载波间隔为2 μ×15kHz的第i个span图样对应的每个span的最大不重叠的CCE个数或者每个span的最大候选PDCCH的个数。
针对每一行,例如第i行对应的参数(X,Y)指的是:终端设备最大能够支持每Y个 符号划分一个span,且相邻两个span的最小间隔是为X个符号,也就是说终端设备确定的span不能过密,间隔不能小于X,并且span的长度也不能过长,长度不能大于Y。第i行的span图样对应的第二盲检测能力C i,μ,代表如果终端设备确定的span图样符合第i行的span图样,则终端设备每个span对应的盲检测能力为C i,μ,具体当确定了span图样及小区的子载波间隔后,则该子载波间隔的某个span图样对应的第二盲检测能力就为一个固定值。此处,同样盲检测能力可以指最大不重叠CCE的个数和/或最大候选PDCCH个数。
为了保证终端设备实际进行PDCCH盲检测能力不超过终端设备的最大盲检测能力,终端设备会上报表3中的一行或者多行给网络设备。表3仅列举了3种span图样,实际上可以包括多种span图样,并且的取值可能有0或1。本实施例以的取值为0、1、2或3,span图样有3种,对应参数分别(2,3),(4,3)或(7,3)为例,这仅是为了理解本发明的技术方案所举的例子,本发明包括并不限于上述方案。
步骤二:终端设备确定实际要盲检测的span图样(pattern)。
网络设备接收到前述步骤一终端设备上报span图样,以及每个span图样对应的盲检测能力。以后,会为终端设备进行PDCCH盲检测配置一些信息,并将该配置信息发送给终端设备。相应地,终端设备会接收该配置信息。
该配置信息可以包括PDCCH的盲检测周期、一个或多个控制资源集合(control resource set,CORESET)和/或多个搜索空间等。其中,CORESET可以指定PDCCH所在的频域位置以及时域符号个数。每个搜索空间可以和一个CORESET相关联,且每个搜索空间可以指定搜索空间标识、该搜索空间类型和/或聚合等级,以及每个聚合等级的候选PDCCH个数,搜索空间的周期、偏置及盲检测开始符号等,偏置是指在搜索空间周期中的具体slot。从而,终端设备可以根据配置信息确定PDCCH的盲检测时机,也可以称为PDCCH occasion。
确定PDCCH occasion的过程如下:上述配置信息中,假设搜索空间关联的CORESET的符号个数为3个符号,周期是以时隙slot为单位,如2个slot,偏置例如为在搜索空间的周期中的第2个slot。通常一个slot所包含的符号个数是固定的,如14个。为了便于确定符号的位置,可以采用编号“0-13”或者“1-14”表示一个时隙中的14个符号的位置。为了便于说明,本申请中采用编号“0-13”对一个时隙中的14个符号的位置进行示意。
盲检测开始符号,即在该偏置确定的slot中的具体哪些位置进行PDCCH盲检测,也就是指示了PDCCH盲检测时机的开始符号位置,可以用14bit的位图(bitmap)进行指示,例如,14bit的bitmap为10101010101010,即在一个slot中需要在第1、3、5、7、9、11、13个符号的位置进行PDCCH盲检测。假设周期为2个slot,偏置为第2个slot,CORESET为3个符号,14bit的bitmap为10001000100000,则slot0-slot4的PDCCH occasion如图1所示。在slot1和slot3中分别有3个PDCCH occasion,其中在slot1中第一个PDCCH occasion为符号0到符号2,第二个PDCCH occasion为符号4到符号6,第三个PDCCH occasion为符号8到符号10。图1中的阴影部分示意PDCCH occasion。
终端设备确定了PDCCH occasion之后,会根据该PDCCH occasion确定终端设备实际的span图样。具体过程为:
终端设备首先确定一个位图,假设是一个14比特(bit)的位图。这14bit的位图中,取值为1的位置表示有PDCCH occasion,除了取值为1的位置,其他位置的取值为0。如图1所示,假设终端设备确定的PDCCH occasion如图1的slot1中的PDCCH occasion,则 确定的14bit的位图为:11101110111000。这个位图从第一个为1的那个符号开始,为第一span的开始,确定span的长度也就是span所占用的符号个数为:max(max(CORESET符号个数),min(Y)),也就是span的符号个数为:CORESET符号个数与终端设备上报的全部的span图样对应的全部参数(X,Y)的最小Y值中的最大值,之后每个span的长度均为该长度。确定第一个span之后,再找下一个没有被第一个span所占的符号覆盖的位图中的第一个为1的位置,确定第二个span,也就是第二个span则是在第一个span之后,从第一个为1的符号开始,以此类推,确定终端设备实际的span pattern。
例如:终端设备接收配置信息,该配置信息配置了2个CORESET分别为CORESET 1和CORESET 2,其中CORESET1为1个符号,CORESET2为2个符号,CORESET1关联了2个搜索空间,根据前述方法确定搜索空间1的对应的PDCCH occasion为图2的阴影部分1,确定搜索空间2的对应的PDCCH occasion为图2的阴影部分2,CORESET2关联了1个搜索空间,根据前述方法确定搜索空间2的对应的PDCCH occasion为图2的阴影部分3,则终端设备可以确定一个14bit的位图为01100110010100,如图2所示的阴影部分4。
假设在步骤一中,终端设备上报的3个span图样,对应的参数(X,Y)分别为(2,2)、(4,3)和(7,3)。则根据上述步骤确定的每个span的符号个数为max(max(CORESET符号个数),min(Y))=max(2,2)=2,例如,14bit的位图01100110010100中确定第一个为1的是在符号1,则第一个span从符号1开始,长度为2个符号,也就是第一个span为符号1到符号2,第二个span是从符号5开始,长度为2个符号,即第二个span为符号5到符号6。依次类推,第三个span为符号9到符号10,第四个span为符号11到符号12。
步骤二:终端设备确定每个span的盲检测能力。
终端设备确定实际的span图样,可以根据该实际的span图样确定每个span的盲检测能力。
示例性的,终端设备确定上报span图样对应的参数(X,Y)中某些span图样对应的参数(X,Y)与确定的实际的span图样对应的参数(X’,Y’)最接近,也就是确定实际的span图样和哪个上报的span图样最符合,则定义这个上报的span图样为合法的span图样。从而确定每个span的盲检测能力为该合法的span图样对应的第二盲检测能力。如果有多个合法的span图样,则定义这些合法的span图样对应的第二个盲检测能力的最大值为每个span的盲检测能力。
下面介绍如何判断确定实际的span图样和哪个上报的span图样最符合,也就是如何确定合法的span图样。
实际的span图样中最大能够支持的span的符号个数为Y’,相邻2个span之间的间隔的最小值定义为X’。如果上报的span图样对应的参数(X,Y)满足X小于或者等于X’,且Y大于或者等于Y’,则这个span图样合法的span图样。
例如,图2中,上述终端设备实际确定了一个span图样,这个span图样包含了4个span,这4个span中的每个span的符号个数均为2,所以确定Y’=2。这4个span依次定义为第一个span、第二个span、第三个span和第四个span,其中,第二个span和第一个span的间隔为4个符号,第三个span和第二个span的间隔为4个符号,第四个span和第三个span的间隔为2个符号,则确定间隔的最小值为2,也就是X’=2。上报的span图样中第一个span图样(2,2)对应的参数(X,Y)满足X小于或者等于X’,Y大于或者等 于Y’,所以第一个span图样是合法的span图样。上报的span图样中第二个span图样(4,3)对应的参数(X,Y)不满足X小于或者等于X’,满足Y大于或者等于Y’,所以第二个span图样不是合法的span图样。上报的span图样中第三个span图样(7,3)对应的参数(X,Y)不满足X小于或者等于X’,满足Y大于或者等于Y’,所以第三个span图样不是合法的span图样。终端设备确定实际的span图样,根据该span图样确定每个span的盲检测能力等于上报的span图样中对应的参数为(2,2)的span图样对应的第二盲检测能力。
假设此时小区的子载波间隔为15kHz,则根据表3确定每个span的盲检测能力为C 1,0。例如,根据步骤二仅确定实际的span图样中就有一个span,则确定该span图样对应的参数中Y’为该span的符号个数,X’为无穷大。
上述的第三种情况,终端设备支持单载波以及每个小区的每个span的盲检测能力。如果终端设备支持多载波,那么终端设备需要在调度小区检测多个调度小区的PDCCH,这就需要终端设备在调度小区的每个span具有更大的盲检测能力,即需要终端设备在每个span可以检测更多的候选PDCCH或进行信道估计的CCE个数更多,对此,目前还没有明确的方案。
鉴于此,提供本申请实施例的技术方案。本申请实施例在载波聚合的场景下,可以明确终端设备在每个调度小区的每个span中的盲检测能力。同时,本申请实施例以增大调度小区的每个span的盲检测能力,也即终端设备具有更大的盲检测能力,以保证业务的时延和可靠性。同时,也可以保证在跨载波调度的场景下,所有下行小区都能够被正常调度。
本申请实施例提供的技术方案可以用于无线通信系统,例如4.5G系统或5G系统,以及基于LTE或者NR的进一步演进系统,以及未来的无线通信系统或其他类似的通信系统等。
请参考图3,为本申请实施例所应用的一种网络架构。图3中包括网络设备和6个终端设备,这6个终端设备可以是蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统上通信的任意其它适合设备,且均可以与网络设备连接。这六个终端设备均能够与网络设备通信。例如,终端设备可以为窄带终端设备,例如mMTC终端设备;终端设备可以为宽带终端设备,例如为现有版本(release)15的NR终端设备。当然图3中的终端设备的数量只是举例,还可以更少或更多。
图3中的网络设备可以是基站。其中,网络设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the fourth generation,4G)系统中可以对应eNB,在5G系统中对应gNB。
本申请实施例应用的网络架构还可以是公共陆地移动网(Public Land Mobile Network,PLMN)网络、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、IoT网络或者其他网络。
接下来结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种通信方法,在下文的介绍过程中,以该方法应用于图3所示的网络架构为例。另外,该方法可由两个通信设备执行,这两个通信设备例如为第一通信装置和第二通信装置。其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第一通信装置可以是终端设备或能够支持终端设备实现该方 法所需的功能的通信装置(例如芯片系统)。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者第二通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置(例如芯片系统)。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置和第二通信装置都是终端设备,或者第一通信装置是终端设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
请参考图4,为本申请实施例提供的通信方法的流程图,在下文的介绍中,以该方法由网络设备和终端设备执行为例,也就是,以第一通信装置是终端设备、第二通信装置是网络设备为例。例如,该方法应用于图3所示的网络架构,则该第一通信装置可以为图3所示的6个终端设备中的任意一个终端设备,该第二通信装置可以为图3所示的网络设备。需要说明的是,本申请实施例只是以通过网络设备和终端设备执行为例,并不限制于这种场景。
S401、网络设备向终端设备发送第一指示信息,终端设备接收该第一指示信息,该第一指示信息用于指示下行小区的个数。
S402、终端设备根据该第一指示信息所指示的下行小区的个数,确定调度小区的第一盲检测能力。
S403、网络设备在调度小区发送PDCCH。
S404、终端设备根据第一盲检测能力在调度小区中进行PDCCH盲检测。
本申请实施例中的终端设备可以支持单载波,也可以支持多载波。所以当终端设备支持多载波,也就是存在载波聚合的情况下,网络设备需要将为终端设备配置的下行小区的个数通知给终端设备。具体的,网络设备可以通过第一指示信息指示为终端设备配置的下行小区的个数。
示例性的,该第一指示信息可以承载在高层信令中或者是下行控制信息(downlink control information,DCI)等。
S402、所述终端设备根据所述第一指示信息所指示的下行小区的个数,确定调度小区的第一盲检测能力。
终端设备为了接收PDCCH中承载的DCI,需要对PDCCH进行盲检测。终端设备对PDCCH进行盲检测时,需要保证不超过终端设备的盲检测能力。
如果定义终端设备的盲检测能力较强,例如定义终端设备在一段时间内能够检测的CCE数目较大,这样终端设备的运算复杂度较高,相对终端设备的成本也较高。且终端设备监测更多的CCE数目,也会增加终端设备检测PDCCH的功耗开销。因此,可以为终端设备定义较低的盲检测能力,以降低终端设备的运算复杂度和成本。但是如果终端设备的盲检测能力较低,网络设备可能无法进行实时地业务调度,或者是无法用大的聚合等级调度PDCCH,无法保证低延迟高可靠的业务传输。
所以,需要合理地定义终端设备的盲检测能力,以满足业务低延时高可靠的需求。目前定义了前文中三种情况下,终端设备的盲检测能力,然而针对用于在CA场景下,如何确定终端设备在每个span的盲检测能力,还没有定义。
本申请实施例在载波聚合的场景下,可以明确终端设备在每个调度小区的每个span中的盲检测能力,例如第一盲检测能力。这里的第一盲检测能力为每个span的最大不重叠的CCE个数或者每个span的最大候选PDCCH的个数。终端设备可以根据下行小区的个数确 定调度第一盲检测能力,也可以认为是确定终端设备在某个下行小区的第一盲检测能力。由于针对的是在CA的场景下,那么会涉及至少两个小区,即调度小区和被调小区。为了便于描述,下文中以确定终端设备在调度小区的第一盲检测能力为例,介绍如何根据下行小区的个数,确定终端设备的第一盲检测能力。
在一些实施例中,根据终端设备能够支持的小区的个数的不同,以及网络设备为终端设备配置的下行小区的个数的不同,确定的终端设备在调度小区的第一盲检测能力也所有不同。
这里假设终端设备能够支持的载波个数为第一数值。该第一数值可以是终端设备主动上报的,从而使网络设备在通过第一指示信息指示下行小区的个数时,可以参考该第一数值,该第一数值表示终端设备能够进行盲检测PDCCH的下行小区的数目,网络设备尽可能的保证配置的PDCCH盲检测次数以及配置的不重叠的CCE的个数不超过终端设备能够盲检测PDCCH的下行小区的数目。该第一数值也可以是协议预定义的数值,网络设备在通过第一指示信息指示下行小区的个数时,可以参考该协议预定义的第一数值。例如该预定义的第一数值为4,该第一数值表示终端设备能够进行盲检测PDCCH的下行小区的数目。从而尽可能的保证配置的PDCCH盲检测次数以及配置的不重叠的CCE的个数不超过终端设备能够盲检测PDCCH的下行小区的数目。
下面分别从下行小区的个数与第一数值的相对大小的角度,确定终端设备在调度小区的第一盲检测能力,具体的可以包括以下几种:
第一种情况:下行小区的个数小于或等于第一数值。
例如终端设备最大支持的小区的个数大于或等于网络设备为终端设备配置的下行小区的个数。示例性的,第一数值是4,也就是终端设备最大支持4个小区或者4个以上的小区,网络设备为终端设备配置的下行小区的个数小于或等于4。
对于下行小区的个数小于或等于第一数值而言,终端设备在确定的调度小区的第一盲检测能力可以为以下的一种能力。以下示例中,假设第一数值为6,具体的:
第一种能力,即终端设备在调度小区的第一盲检测能力为全部被调度小区中的每个小区的第一盲检测能力之和。或者换句话说,终端设备在调度小区针对每个调度小区的盲检测能力均为该调度小区的第一盲检测能力。
示例性的,请参见图5,为终端设备在5个下行小区的第一盲检测能力的示意图。如图5所示,存在5个小区,这5个小区为小区1、小区2、小区3、小区4和小区5。小区1、小区2和小区3的子载波间隔为15kHz,小区4和小区5的子载波间隔为30kHz。假设终端设备上报的span图样为(4,3),以及(7,3)。根据表3,在15kHz时对应的盲检测能力为C 2,0和C 2,1,在30kHz时对应的盲检测能力为C 3,0和C 3,1。假设C 2,1>C 2,0,C 3,1>C 3,0
对于小区1而言,假设根据情况三中的步骤二,可以确定实际的span图样为图5所示,在一个slot包括3个span,根据情况三中的步骤三,可以确定,小区1在每个span的第一盲检测能力为C 2,0;同理,对于小区2而言,可以确定实际的span图样为图5所示,在一个slot包括1个span,小区2在每个span的第一盲检测能力为C 2,1;对于小区3而言,可以确定实际的span图样为图5所示,在一个slot包括2个span,小区3在每个span的第一盲检测能力为C 2,1;对于小区4而言,可以确定实际的span图样为图5所示,在一个slot包括1个span,小区4在每个span的第一盲检测能力为C 3,1;对于小区5而言,可以确定实际的span图样为图5所示,在一个slot包括2个span,小区5在每个span的第一盲检 测能力为C 3,0
例如,假设调度小区是小区1,被调小区是小区1和小区3,那么全部被调度小区为小区1和小区3,终端设备在调度小区的第一盲检测能力为C 2,0+C 2,1;又例如,假设调度小区是小区1,被调小区是小区1和小区4,那么全部被调度小区为小区1和小区4,终端设备在调度小区的第一盲检测能力为C 2,0+C 3,1。可见,终端设备在调度小区的盲检测能力随着被调度小区的个数的增加而增加,从而可以增大调度小区的第一盲检测能力。对应的,如果调度小区是小区1,被调小区是小区1和小区3,终端设备在调度小区上针对被调度小区1的第一盲检测能力为小区1的第一盲检测能力,终端设备在调度小区上针对被调度小区3的第一盲检测能力为小区3的第一盲检测能力;如果调度小区是小区1,被调小区是小区1和小区4,终端设备在调度小区上针对被调度小区1的第一盲检测能力为小区1的第一盲检测能力,终端设备在调度小区上针对被调度小区4的第一盲检测能力为小区4的第一盲检测能力。可见,在跨载波调度的场景下,能够保证终端设备在调度小区中有足够的第一盲检测能力对被调度小区的PDCCH进行盲检测,从而保证被调度小区中业务的低时延和高可靠性。
第二种能力,即终端设备在调度小区的第一盲检测能力为全部被调度小区中的第一盲检测能力的最大值与被调度小区个数的乘积。换句话说,调度小区针对每个调度小区的第一盲检测能力均为全部被调度小区中的第一盲检测能力的最大值。
示例性的,请继续参见图5,假设调度小区是小区1,被调小区是小区1和小区3,那么全部被调度小区为小区1和小区3。全部被调度小区中的第一盲检测能力的最大值为C2=max(C 2,0,C 3,1),那么终端设备在调度小区的第一盲检测能力C为C2×2。也就是,调度小区针对小区1和小区3的第一盲检测能力均为C2。可见,终端设备在调度小区的盲检测能力随着被调度小区的个数成比例增加,从而可以增大调度小区的第一盲检测能力。在跨载波调度的场景下,能够保证终端设备在调度小区中有足够的第一盲检测能力对被调度小区的PDCCH进行盲检测,从而保证被调度小区中业务的低时延和高可靠性。
第三种能力,即终端设备在调度小区的第一盲检测能力C为:
Figure PCTCN2019109573-appb-000026
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数。换句话说,在调度小区针对每个子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力均为子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值。
示例性的,请继续参见图5,j为0或1。全部被调度小区为小区1、小区2、小区3、小区4和小区5。假设调度小区是小区1,针对子载波间隔为15kHz的调度小区,即小区1到小区3,当即j=0时,K j为max(C 2,0,C 2,1,C 2,1)=C 2,1,L j=3,有3个小区,则针对每一个子载波间隔为15kHz的调度小区,调度小区的第一盲检测能力C 2,1;当j=1时,针对子载波间隔为30kHz的调度小区,即小区4和小区5,K j为max(C 3,0,C 3,1)=C 3,1,L j=2,有2个小区,则针对每一个子载波间隔为30kHz的调度小区,调度小区的第一盲检测能力C 3,1;也就是调度小区的第一盲检测能力为C=C 2,1×3+2×C 3,1。可见,在调度小区中,针对子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力为全部被调度小区中该子载波间隔的被调度小区的最大第一盲检测能力与该子载波间隔的被调度小区的个数的乘积,从而保证针对每个子载波间隔的被调度小区中,终端设备具备最大的第一盲检测能力对被调度小区的 PDCCH进行盲检测,保证被调度小区中业务的低时延和高可靠性。
第四种能力,终端设备在调度小区的第一盲检测能力为:
Figure PCTCN2019109573-appb-000027
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最小值,L j为所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数。
示例性的,请继续参见图5,j为0或1。全部被调度小区为小区1、小区2、小区3、小区4和小区5。假设调度小区是小区1,针对子载波间隔为15kHz的调度小区,即小区1到小区3,当即j=0时,K j为min(C 2,0,C 2,1,C 2,1)=C 2,0,L j=3,有3个小区,则针对每一个子载波间隔为15kHz的调度小区,调度小区的第一盲检测能力C 2,0;当j=1时,针对子载波间隔为30kHz的调度小区,即小区4和小区5,K j为min(C 3,1,C 3,0)=C 3,0,L j=2,有2个小区,则针对每一个子载波间隔为30kHz的调度小区,调度小区的第一盲检测能力C 3,0;也就是调度小区的第一盲检测能力为C=C 2,0×3+2×C 3,0。可见,在调度小区中,子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力为该子载波间隔的被调度小区的最小第一盲检测能力与该子载波间隔的被调度小区的个数的乘积,从而保证针对每个子载波间隔的被调度小区,终端设备都有最小的第一盲检测能力来盲检测被调度小区的PDCCH,从而保证在载波聚合的场景下,终端设备在调度小区的第一盲检测能力不会过大(即保证被调度小区的正常调度即可),减少终端设备的功率损耗。
第二种情况:下行小区的个数大于第一数值。
对于下行小区的个数大于第一数值而言,终端设备确定的在调度小区的第一盲检测能力可以为以下的一种能力。以下示例中,假设第一数值为4。
第五种能力,终端设备在调度小区的第一盲检测能力为:
Figure PCTCN2019109573-appb-000028
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数,N为调度小区的个数,M为下行小区的个数。换句话说,调度小区针对子载波间隔为2 j×15kHz的调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000029
需要说明的是,这里以向下取整为例,也可以向上取整或者四舍五入取整,下文同样适用,本申请实施例对此不限制。
示例性的,请继续参见图5,j为0或1。全部被调度小区为小区1、小区2、小区3、小区4和小区5。N=4,M=5。
当j=0时,针对子载波间隔为15kHz的调度小区,K j为max(C 2,0,C 2,1,C 2,1)=C 2,1,L j=3,有3个小区,则针对所有载波间隔为15kHz的调度小区,调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000030
当j=1时,针对子载波间隔为30kHz的调度小区,即小区4和小区5,K j为max(C 3,1,C 3,0)=C 3,1,L j=2,有3个小区,则针对全部载波间隔为30kHz的调度小区,调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000031
Figure PCTCN2019109573-appb-000032
即调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000033
由于下行小区个数大于第一数值,也就是配置的下行小区个数多于终端设备能够支持的盲检测的小区个数,此时,如果仍然按照全部被调度小区的子载波间隔均为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,则针对这个子载波间隔的最大第一盲检测能力应该为N×K j,但是实际该子载波间隔的调度小区个数为L j,只占据所有下行小区中
Figure PCTCN2019109573-appb-000034
因此,对于子载波间隔为2 j×15kHz 的调度小区的总的第一盲检测能力为
Figure PCTCN2019109573-appb-000035
即计算该子载波间隔小下的全部被调度小区的最大第一盲检测能力,之后针对有的子载波间隔的被调度小区采用同样的方式,从而计算出在调度小区中,针对全部被调度小区的盲检测能力为全部子载波间隔的全部被调度小区的最大第一盲检测能力之和。这样可以保证调度小区的第一盲检测能力不是无限制的根据下行小区个数的增加而成比例的增加,而是受到终端设备能够支持的盲检测的小区的个数的限制,将终端设备能够支持的最大的盲检测能力划分到终端设备实际调度的下行小区中,从而保证最终确定的调度小区的第一盲检测能力不会超过终端设备的能够支持的盲检测能力,从而减小终端设备的耗电量和实现复杂度。
第六种能力,终端设备在调度小区的第一盲检测能力为:
Figure PCTCN2019109573-appb-000036
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最小值,L j为所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数,N为第一数值,M为下行小区的个数。
示例性的,请继续参见图5,j为0或1。全部被调度小区为小区1、小区2、小区3、小区4和小区5。N=4,M=5。
当j=0时,针对子载波间隔为15kHz的调度小区,K j为min(C 2,0,C 2,1,C 2,1)=C 2,0,L j=3,有3个小区,则针对所有子载波间隔为15kHz的调度小区,调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000037
当j=1时,针对子载波间隔为30kHz的调度小区,即小区5和小区4,K j为min(C 3,0,C 3,1)=C 3,0,L j=2,有3个小区,则针对所有子载波间隔为30kHz的调度小区,调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000038
Figure PCTCN2019109573-appb-000039
也就是,调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000040
Figure PCTCN2019109573-appb-000041
由于下行小区个数大于第一数值,也就是配置的下行小区个数多于终端设备能够支持的盲检测的小区个数,此时,假设按照全部被调度小区的子载波间隔均为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最小值,则针对这个子载波间隔的最小第一盲检测能力应该为N×K j,但是实际该子载波间隔的调度小区个数为L j,只占据全部下行小区中
Figure PCTCN2019109573-appb-000042
因此,对于子载波间隔为2 j×15kHz的调度小区的总的第一盲检测能力为
Figure PCTCN2019109573-appb-000043
即计算该子载波间隔下的全部被调度小区的最小第一盲检测能力,之后针对有的子载波间隔的被调度小区采用同样的方式,从而计算出全部被调度小区的盲检测能力为全部子载波间隔的全部被调度小区的最小第一盲检测能力之和。从而可以保证调度小区的第一盲检测能力不是无限制的根据下行小区个数的增加而成比例的增加,而是受到终端设备能够支持的盲检测的小区的个数的限制,将终端设备能够支持的盲检测能力划分到终端设备实际调度的下行小区中,从而保证最终确定的调度小区的第一盲检测能力不会超过终端设备的能够支持的盲检测能力,从而减小终端设备的耗电量和实现复杂度。
第七种能力,终端设备在调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000044
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,J为正整数,L j为所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,M为下行小区的个数;Q j等于
Figure PCTCN2019109573-appb-000045
其中,i为span图样的索引,H为span图样的个数,
Figure PCTCN2019109573-appb-000046
表示索引为i的span图样对应的下行小区个数,C i表示索引为i的span图样对应的第二盲检测能力。
其中,该第二盲检测能力为终端设备在向网络设备上报span图样时,同时还上报的每个span图样对应的盲检测能力,该第二盲检测能力为每个span图样对应的每个span的最大不重叠的CCE个数,或者第二盲检测能力为每个span图样对应的每个span的最大候选物理下行控制信道PDCCH的个数。
示例性的,请继续参见图5,假设终端设备上报的span图样为(4,3),以及(7,3)。根据表3,在15kHz时对应的盲检测能力为C 2,0和C 2,1,在30kHz时对应的盲检测能力为C 3,0和C 3,1。假设C 2,1>C 2,0,C 3,1>C 3,0,且终端设备上报15kHz的span图样(4,3)对应的下行小区个数为2个,终端上报15kHz的span图样(7,3)对应的下行小区个数为1个。终端设备上报30kHz的span图样(4,3)对应的下行小区个数为1个,终端设备上报30kHz的span图样(7,3)对应的下行小区个数为1个。
当j=0时,Q j为C 2,0×2+C 2,1,L j=3,则针对所有子载波间隔为15kHz的调度小区,调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000047
当j=1时,针对子载波间隔为30kHz的调度小区,即小区4和小区5,Q j为C 3,0+C 3,1,L j=2,则针对所有子载波间隔为30kHz的调度小区,调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000048
也就是,调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000049
采用这种方案,根据子载波间隔为2 j×15kHz的索引为i的span图样对应的第二盲检测能力,即终端设备上报的子载波间隔为2 j×15kHz的每个span图样的每个span的盲检测能力,确定子载波间隔为2 j×15kHz的调度小区的第一盲检测能力,之后将全部子载波间隔的调度小区的盲检测能力求和,得到调度小的盲检测能力。在载波聚合的场景下,可以保证调度小区的第一盲检测能力不是无限制的根据下行小区个数的增加而成比例的增加,而是受到终端设备能够支持的盲检测的小区的个数的限制,将终端设备能够支持的盲检测能力划分到终端设备实际调度的下行小区中,从而保证最终确定的调度小区的第一盲检测能力不会超过终端设备的能够支持的盲检测能力,从而减小终端设备的耗电量和实现复杂度。
S403、所述网络设备在调度小区发送PDCCH。
S404、所述终端设备根据所述第一盲检测能力在调度小区中进行PDCCH盲检测。
终端设备可以根据确定的第一盲检测能力在调度小区进行PDCCH盲检测,而网络设备是基于第一盲检测能力在调度小区发送PDCCH。其中,网络设备确定第一盲检测能力可以参见终端设备确定第一盲检测的方法,这里不再赘述。
由于第一盲检测能力是终端设备根据网络设备配置的下行小区的个数确定的,本申请通过上述方案,在载波聚合的场景下,可以明确终端设备在每个调度小区的每个span中的盲检测能力。
另外,本申请通过上述方法,在载波聚合的场景下,调度小区的盲检测能力根据被调度小区的个数成比例增加,即第一种方案可以增大调度小区的每个span的盲检测能力,也即终端设备具有更大的盲检测能力,以保证业务的时延和可靠性。同时,也可以保证在跨载波调度的场景下,所有下行小区都能够被正常调度。
上述本申请提供的实施例中,分别从终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软 件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图6是本申请实施例的通信装置600的示意性框图。通信装置600能够执行上述方法实施例中终端设备的行为和功能,为了避免重复,此处不再详述。通信装置600可以为终端设备,也可以为应用于终端设备中的芯片。通信装置600包括:处理单元610和收发单元620,
所述收发单元620用于接收第一指示信息,所述第一指示信息指示下行小区的个数;所述处理单元620用于根据所述收发单元接收的第一指示信息所指示的所述下行小区的个数,确定调度小区的第一盲检测能力,以及根据所述第一盲检测能力在所述调度小区中进行PDCCH盲检测,其中,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的CCE个数或者每个span的最大候选PDCCH的个数,所述span的时域长度小于一个时隙的时域长度。
其中,所述处理单元620具体用于确定调度小区的第一盲检测能力为下述任一种:
示例性的,在所述下行小区的个数小于或等于第一数值时,所述确定的所述调度小区的第一盲检测能力为全部被调度小区中的每个小区的第一盲检测能力之和。
示例性的,在所述下行小区的个数小于或等于第一数值,所述确定的所述调度小区的第一盲检测能力为全部被调度小区中的第一盲检测能力的最大值与所述被调度小区个数的乘积。
示例性的,在所述下行小区的个数小于或等于第一数值时,所述确定的所述调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000050
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数。
示例性的,所述下行小区的个数小于或等于第一数值,所述确定的所述调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000051
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最小值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数。
示例性的,所述下行小区的个数大于第一数值,所述确定的所述调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000052
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数,N为所述调度小区的个数,M为所述下行小区的个数。
示例性的,所述下行小区的个数大于第一数值,所述确定的所述调度小区的第一盲检测能力为
Figure PCTCN2019109573-appb-000053
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最小值,L j为所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数,N为所述调度小区的个数,M为所述下行小区的个数。
示例性的,所述下行小区的个数大于第一数值,所述确定的所述调度小区的第一盲检 测能力为
Figure PCTCN2019109573-appb-000054
其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,J为正整数,L j为所有被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,M为所述下行小区的个数;Q j等于
Figure PCTCN2019109573-appb-000055
其中,i为子载波间隔为2 j×15kHz的span图样的索引,H为子载波间隔为2 j×15kHz的span图样的个数,
Figure PCTCN2019109573-appb-000056
表示子载波间隔为2 j×15kHz的索引为i的span图样对应的下行小区个数,C i表示子载波间隔为2 j×15kHz的索引为i的span图样对应的第二盲检测能力。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图7是本申请实施例的通信装置700的示意性框图。通信装置700能够执行上述方法实施例中网络设备的行为功能,为了避免重复,此处不再详述。通信装置700可以为网络设备,也可以为应用于网络设备中的芯片。通信装置700包括:处理单元710和收发单元720,其中,
所述收发单元720用于发送第一指示信息,所述第一指示信息指示下行小区的个数;
所述处理单元710,用于根据所述下行小区的个数,确定终端设备在调度小区的第一盲检测能力,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数,所述span的时域长度小于一个时隙的时域长度,并根据所述第一盲检测能力控制收发单元702在所述调度小区中发送PDCCH。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图8是本申请实施例的通信装置800的示意性框图。通信装置800能够执行上述方法实施例中终端设备执行的各个步骤,也可以用于执行上述方法实施例中网络设备的执行的各个步骤,为了避免重复,此处不再详述。通信装置800可以为终端设备,也可以为应用于终端设备中的芯片,该通信装置800还可以为网络设备,也可以为应用于网络设备中的芯片。通信装置800包括:
存储器810,用于存储程序;
通信接口820,用于和其他设备进行通信;
处理器830,用于执行存储器810中的程序,当所述程序被执行时,所述处理器830用于通过所述通信接口820接收第一指示信息,所述第一指示信息指示下行小区的个数;以及用于根据所述收发单元接收的所述第一指示信息所指示的所述下行小区的个数,确定调度小区的第一盲检测能力,以及根据所述第一盲检测能力在所述调度小区中进行PDCCH盲检测,其中,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的CCE个数或者每个span的最大候选PDCCH的个数,所述span的时域长度小于一个时隙的时域长度。
或者,所述处理器830用于通过所述通信接口820向终端设备发送第一指示信息,所述第一指示信息指示下行小区的个数,并根据所述下行小区的个数,确定终端设备在调度小区的第一盲检测能力,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的CCE个数或者每个span的最大候选PDCCH的个数,所述span的时域长度小于一个时隙的时域长度,以及根据确定的所述第一盲检测能力通过所述通信接口820在所述调度小区中发送PDCCH。
应理解,图8所示的通信装置800可以是芯片或电路。例如可设置在终端设备内的芯片或电路或者设置在网络设备内的芯片或电路。上述通信接口820也可以是收发器。收发器包括接收器和发送器。进一步地,该通信装置800还可以包括总线系统。
其中,处理器830、存储器810、接收器和发送器通过总线系统相连,处理器830用于执行该存储器810存储的指令,以控制接收器接收信号,并控制发送器发送信号,完成本申请通信方法中网络设备的步骤。其中,接收器和发送器可以为相同或不同的物理实体。为相同的物理实体时,可以统称为收发器。所述存储器810可以集成在所述处理器830中,也可以与所述处理器830分开设置。
作为一种实现方式,接收器和发送器的功能可以考虑通过收发电路或者收发专用芯片实现。处理器830可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
本申请实施例中不限定上述通信接口820、处理器830以及存储器810之间的具体连接介质。本申请实施例在图8中以存储器810、处理器830以及通信接口820之间通过总线连接,总线在图8中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器830可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器810可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端设备也可以是电路,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当通信装置是终端设备时收发单元可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理单元(central processing unit,CPU)。当通信装置是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理模块可以是芯片系统的处理器。
图9示出了上述实施例中所涉及的终端设备的一种可能的设计结构的简化示意图。所述终端设备包括发射器901,接收器902,控制器/处理器903,存储器904和调制解调处理器905。
发射器901用于发送上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的网络设备。在下行链路上,天线接收上述实施例中网络设备发射的下行链路信号(DCI)。接收器902用于接收从天线接收到的下行链路信号(DCI)。在调制解调处理器905中,编码器906接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理。调制器907进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提 供输出采样。解调器909处理(例如,解调)该输入采样并提供符号估计。解码器908处理(例如,解码)该符号估计并提供发送给终端设备的已解码的数据和信令消息。编码器906、调制器907、解调器909和解码器908可以由合成的调制解调处理器905来实现。这些单元根据无线接入网采用的无线接入技术来进行处理。
控制器/处理器903对终端设备的动作进行控制管理,用于执行上述实施例中由终端设备进行的处理。例如用于控制终端设备接收来自网络设备的第一指示信息,并根据接收的第一指示信息所指示的所述下行小区的个数,确定调度小区的第一盲检测能力,以及根据所述第一盲检测能力在所述调度小区中进行PDCCH盲检测,其中,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个span的最大不重叠的CCE个数或者每个span的最大候选PDCCH的个数,所述span的时域长度小于一个时隙的时域长度和/或本申请所描述的技术的其他过程。作为示例,控制器/处理器903用于支持终端设备执行图4中的过程S402。
图10示出了一种简化的通信装置的结构示意图。便于理解和图示方便,图10中,通信装置以网络设备作为例子。该网络设备可应用于如图3所示的系统中,可以为图3中的网络设备,执行上述方法实施例中网络设备的功能。网络设备1000可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1010和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1020。所述RRU 1010可以称为通信模块,与图7中的收发单元720对应,可选地,该通信模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1011和射频单元1012。所述RRU 1010部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU 1020部分主要用于进行基带处理,对基站进行控制等。所述RRU 1010与BBU 1020可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1020为基站的控制中心,也可以称为处理模块,可以与图7中的处理单元710对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1020可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1020还包括存储器1021和处理器1022。所述存储器1021用以存储必要的指令和数据。所述处理器1022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1021和处理器1022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本申请实施例还提供一种通信系统,具体的,通信系统包括终端设备和网络设备,或者还可以包括更多个终端设备和网络设备。
所述终端设备和网络设备分别用于实现上述图4相关设备的功能。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图4中终端设备和网络设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图4中终端设备和网络设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中终端设备和网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本申请装置实施例中的各单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和 存储介质也可以作为分立组件存在于发送设备或接收设备中。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息指示下行小区的个数;
    根据所述下行小区的个数,确定调度小区的第一盲检测能力,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数,所述span的时域长度小于一个时隙的时域长度;
    根据所述第一盲检测能力在所述调度小区中进行PDCCH盲检测。
  2. 如权利要求1所述的方法,其特征在于,所述下行小区的个数小于或等于第一数值,所述确定的所述调度小区的第一盲检测能力,包括:
    全部被调度小区中的每个小区的第一盲检测能力之和;或者,
    全部被调度小区中的第一盲检测能力的最大值与所述被调度小区个数的乘积。
  3. 如权利要求1所述的方法,其特征在于,所述下行小区的个数小于或等于第一数值,所述确定的所述调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100001
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数。
  4. 如权利要求1或2所述的方法,其特征在于,所述下行小区的个数大于第一数值,所述确定的所述调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100002
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数,N为所述调度小区的个数,M为所述下行小区的个数。
  5. 如权利要求1或2所述的方法,其特征在于,所述下行小区的个数大于第一数值,所述确定的所述调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100003
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,J为正整数,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,M为所述下行小区的个数,
    Figure PCTCN2019109573-appb-100004
    其中i为子载波间隔为2 j×15kHz的span图样的索引,H为子载波间隔为2 j×15kHz的span图样的个数,
    Figure PCTCN2019109573-appb-100005
    表示子载波间隔为2 j×15kHz的索引为i的span图样对应的下行小区个数,C i表示子载波间隔为2 j×15kHz的索引为i的span图样对应的第二盲检测能力。
  6. 如权利要求2-5任一项所述的方法,其特征在于,所述方法还包括:
    确定所述被调度小区中的每个小区的第一盲检测能力。
  7. 如权利要求2-6任一项所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述第一数值。
  8. 一种通信方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息指示下行小区的个数;
    根据所述下行小区的个数,确定终端设备在调度小区的第一盲检测能力,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数,所述span的时域长度小于一个时隙的时域长度;
    根据所述第一盲检测能力在所述调度小区中发送PDCCH。
  9. 如权利要求8所述的方法,其特征在于,所述下行小区的个数小于或等于第一数值,所述确定的所述终端设备在调度小区的第一盲检测能力,包括:
    全部被调度小区中的每个小区的第一盲检测能力之和;或者,
    全部被调度小区中的第一盲检测能力的最大值与所述被调度小区个数的乘积。
  10. 如权利要求8所述的方法,其特征在于,所述下行小区的个数小于或等于第一数值,所述确定的所述终端设备在调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100006
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数。
  11. 如权利要求8或9所述的方法,其特征在于,所述下行小区的个数大于第一数值,所述确定的所述终端设备在调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100007
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数,N为所述调度小区的个数,M为所述下行小区的个数。
  12. 如权利要求8或9所述的方法,其特征在于,所述下行小区的个数大于第一数值,所述确定的所述终端设备在调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100008
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,J为正整数,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,M为所述下行小区的个数,Q j
    Figure PCTCN2019109573-appb-100009
    其中,i为子载波间隔为2 j×15kHz的span图样的索引,H为子载波间隔为2 j×15kHz的span图样的个数,
    Figure PCTCN2019109573-appb-100010
    表示子载波间隔为2 j×15kHz的索引为i的span图样对应的下行小区个数,C i表示子载波间隔为2 j×15kHz的索引为i的span图样对应的第二盲检测能力。
  13. 如权利要求9-12任一项所述的方法,其特征在于,所述方法还包括:
    确定所述终端设备的被调度小区的每个小区的第一盲检测能力。
  14. 如权利要求9-13任一项所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述第一数值。
  15. 一种通信装置,其特征在于,包括:
    收发单元,用于接收第一指示信息,所述第一指示信息指示下行小区的个数;
    处理单元,用于根据所述收发单元接收的第一指示信息所指示的所述下行小区的个数,确定调度小区的第一盲检测能力,以及根据所述第一盲检测能力在所述调度小区中进行PDCCH盲检测,其中,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数,所述span的时域长度小于一个时隙的时域长度。
  16. 如权利要求15所述的通信装置,其特征在于,所述处理单元具体用于,在所述下行小区的个数小于或等于第一数值时,确定所述调度小区的第一盲检测能力为:
    全部被调度小区中的每个小区的第一盲检测能力之和;或者,
    全部被调度小区中的第一盲检测能力的最大值与所述被调度小区个数的乘积。
  17. 如权利要求15所述的通信装置,其特征在于,所述处理单元具体用于,在所述下行小区的个数小于或等于第一数值时,确定所述调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100011
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j 为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数。
  18. 如权利要求15或16所述的通信装置,其特征在于,所述处理单元具体用于,在所述下行小区的个数大于第一数值时,确定所述调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100012
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数,N为所述调度小区的个数,M为所述下行小区的个数。
  19. 如权利要求15或16所述的通信装置,其特征在于,所述处理单元具体用于,在下行小区的个数大于第一数值时,确定所述调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100013
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,J为正整数,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,M为所述下行小区的个数,Q j
    Figure PCTCN2019109573-appb-100014
    i为子载波间隔为2 j×15kHz的span图样的索引,H为子载波间隔为2 j×15kHz的span图样的个数,
    Figure PCTCN2019109573-appb-100015
    表示子载波间隔为2 j×15kHz的索引为i的span图样对应的下行小区个数,C i表示子载波间隔为2 j×15kHz的索引为i的span图样对应的第二盲检测能力。
  20. 如权利要求16-19任一所述的通信装置,其特征在于,所述处理单元还用于:
    确定所述被调度小区中的每个小区的第一盲检测能力。
  21. 如权利要求16-20任一所述的通信装置,其特征在于,所述收发单元还用于:
    发送第二指示信息,所述第二指示信息用于指示所述第一数值。
  22. 一种通信装置,其特征在于,包括:
    收发单元,用于发送第一指示信息,所述第一指示信息指示下行小区的个数。
    处理单元,用于根据所述下行小区的个数,确定终端设备在调度小区的第一盲检测能力,所述调度小区为所述下行小区中的小区,所述第一盲检测能力为每个时间窗span的最大不重叠的控制信道元素CCE个数或者每个时间窗span的最大候选物理下行控制信道PDCCH的个数,所述span的时域长度小于一个时隙的时域长度;
    所述收发单元用于根据所述处理单元确定的所述第一盲检测能力在所述调度小区中发送PDCCH。
  23. 如权利要求22所述的通信装置,其特征在于,所述处理单元具体用于,在所述下行小区的个数小于或等于第一数值时,确定所述终端设备在调度小区的第一盲检测能力为:
    全部被调度小区中的每个小区的第一盲检测能力之和;或者,
    全部被调度小区中的第一盲检测能力的最大值与所述被调度小区个数的乘积。
  24. 如权利要求22所述的通信装置,其特征在于,所述处理单元具体用于,在所述下行小区的个数小于或等于第一数值时,确定所述终端设备在调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100016
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数。
  25. 如权利要求22或23所述的通信装置,其特征在于,所述处理单元具体用于,在所述下行小区的个数大于第一数值时,确定所述终端设备在调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100017
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,K j表示全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的第一盲检测能力的最大值,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,J为正整数,N 为所述调度小区的个数,M为所述下行小区的个数。
  26. 如权利要求22或23所述的通信装置,其特征在于,所述处理单元具体用于,在所述下行小区的个数大于第一数值时,确定所述终端设备在调度小区的第一盲检测能力为
    Figure PCTCN2019109573-appb-100018
    其中,j表示子载波间隔的索引,j对应的子载波间隔为2 j×15kHz,J为正整数,L j为全部被调度小区中子载波间隔为2 j×15kHz的被调度小区的个数,M为所述下行小区的个数,Q j等于
    Figure PCTCN2019109573-appb-100019
    其中,i为子载波间隔为2 j×15kHz的span图样的索引,H为子载波间隔为2 j×15kHz的span图样的个数,
    Figure PCTCN2019109573-appb-100020
    表示子载波间隔为2 j×15kHz的索引为i的span图样对应的下行小区个数,C i表示子载波间隔为2 j×15kHz的索引为i的span图样对应的第二盲检测能力。
  27. 如权利要求23-26任一所述的通信装置,其特征在于,所述处理单元还用于:
    确定所述终端设备的被调度小区的每个小区的第一盲检测能力。
  28. 如权利要求23-27任一所述的通信装置,其特征在于,所述收发单元还用于:
    接收第二指示信息,所述第二指示信息用于指示所述第一数值。
  29. 一种通信装置,其特征在于,所述通信装置包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的所述计算机程序,使得所述装置实现如权利要求1~7或8~14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被计算机执行时,使所述计算机执行如权利要求1~7或8~14中任一项所述的方法。
PCT/CN2019/109573 2019-09-30 2019-09-30 一种通信方法及装置 WO2021062687A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/109573 WO2021062687A1 (zh) 2019-09-30 2019-09-30 一种通信方法及装置
CN201980100568.1A CN114424667B (zh) 2019-09-30 2019-09-30 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109573 WO2021062687A1 (zh) 2019-09-30 2019-09-30 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021062687A1 true WO2021062687A1 (zh) 2021-04-08

Family

ID=75337692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109573 WO2021062687A1 (zh) 2019-09-30 2019-09-30 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN114424667B (zh)
WO (1) WO2021062687A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4304267A4 (en) * 2021-04-14 2024-05-01 Guangdong Oppo Mobile Telecommunications Corp Ltd METHOD AND APPARATUS FOR DETERMINING DETECTION CAPACITY, DEVICE AND STORAGE MEDIUM

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115315918A (zh) * 2022-06-13 2022-11-08 北京小米移动软件有限公司 一种多小区调度的调度信息的检测方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160057776A1 (en) * 2014-08-21 2016-02-25 Collision Communications, Inc. Reduction Of False Alarms in PDCCH Detections
CN108964856A (zh) * 2017-05-27 2018-12-07 中兴通讯股份有限公司 一种参考信号配置信息的应用方法及装置
CN110167134A (zh) * 2018-02-13 2019-08-23 北京三星通信技术研究有限公司 同步信号发送和接收的方法及设备
CN110291833A (zh) * 2017-01-06 2019-09-27 松下电器(美国)知识产权公司 控制信息的传输

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017166217A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 数据传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160057776A1 (en) * 2014-08-21 2016-02-25 Collision Communications, Inc. Reduction Of False Alarms in PDCCH Detections
CN110291833A (zh) * 2017-01-06 2019-09-27 松下电器(美国)知识产权公司 控制信息的传输
CN108964856A (zh) * 2017-05-27 2018-12-07 中兴通讯股份有限公司 一种参考信号配置信息的应用方法及装置
CN110167134A (zh) * 2018-02-13 2019-08-23 北京三星通信技术研究有限公司 同步信号发送和接收的方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining issues of search space", 3GPP DRAFT; R1-1807247 REMAINING ISSUES OF SEARCH SPACE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051442443 *
NTT DOCOMO, INC.: "PDCCH enhancements for URLLC", 3GPP DRAFT; R1-1906211, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, US; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051727665 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4304267A4 (en) * 2021-04-14 2024-05-01 Guangdong Oppo Mobile Telecommunications Corp Ltd METHOD AND APPARATUS FOR DETERMINING DETECTION CAPACITY, DEVICE AND STORAGE MEDIUM

Also Published As

Publication number Publication date
CN114424667B (zh) 2023-11-17
CN114424667A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
CN111699721B (zh) 用于非许可无线电频带场景的临时浮动下行链路定时方法
JP7493094B2 (ja) 同期信号ブロック伝送方法及び通信装置
JP2024023656A (ja) 情報確定方法、情報調整方法、閾値使用方法、端末、及び基地局
CN109150463B (zh) 信息发送、接收方法及装置
WO2018202163A1 (zh) 一种资源指示方法及装置
CN112398604B (zh) 信息确定方法和装置
WO2020048481A1 (zh) 通信方法及装置
WO2021204107A1 (zh) 一种通信方法及装置
WO2021208673A1 (zh) 空间参数确定方法及装置
WO2020029955A1 (zh) 一种数据调度方法及装置
WO2021062687A1 (zh) 一种通信方法及装置
WO2019029588A1 (zh) 确定上行传输资源的方法、终端及网络设备
WO2021031948A1 (zh) 处理数据的方法和通信装置
WO2020030253A1 (en) Reducing dci payload
WO2021088026A1 (zh) 一种确定数据传输反馈时延的方法及装置
CN113473641A (zh) 一种通信方法和通信装置
WO2021228247A1 (zh) 一种通信方法和通信装置
WO2021219059A1 (zh) 通信方法和装置
WO2021134226A1 (zh) 一种数据传输方法及装置
CN108282315B (zh) 一种时隙类型指示方法、确定方法及装置
CN113812195A (zh) 物理下行控制信道的配置方法、装置、设备及存储介质
WO2023193277A1 (zh) 一种pdcch的传输方法及其装置
WO2022206901A1 (zh) 下行控制信息传输方法及相关装置
WO2024011483A1 (zh) 通信方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947990

Country of ref document: EP

Kind code of ref document: A1