WO2021208673A1 - 空间参数确定方法及装置 - Google Patents

空间参数确定方法及装置 Download PDF

Info

Publication number
WO2021208673A1
WO2021208673A1 PCT/CN2021/082153 CN2021082153W WO2021208673A1 WO 2021208673 A1 WO2021208673 A1 WO 2021208673A1 CN 2021082153 W CN2021082153 W CN 2021082153W WO 2021208673 A1 WO2021208673 A1 WO 2021208673A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission signal
information
priority
spatial
transmission
Prior art date
Application number
PCT/CN2021/082153
Other languages
English (en)
French (fr)
Inventor
肖华华
张淑娟
鲁照华
蒋创新
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2022560395A priority Critical patent/JP2023521676A/ja
Priority to US17/917,439 priority patent/US20230156772A1/en
Priority to EP21789281.9A priority patent/EP4138494A4/en
Priority to MX2022012751A priority patent/MX2022012751A/es
Publication of WO2021208673A1 publication Critical patent/WO2021208673A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a method and device for determining spatial parameters.
  • Multi-TRP Multiple Transmission and Reception Point
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • NR New Radio Access Technology
  • Multi-Panel multi-panel transmission is also introduced in the NR standard, which installs multiple antenna panels on the receiving end and/or the transmitting end to improve the spectrum efficiency of the wireless communication system.
  • the user terminal In related protocols, especially in the high-frequency transmission process, the user terminal (User Equipment, UE) needs to determine the spatial parameters for receiving the signal, and then determine the corresponding receiving or transmitting beam.
  • the spatial parameters of different transmission signals are different, it is not possible to effectively determine the spatial parameter corresponding to a symbol.
  • the embodiment of the present invention provides a method and device for determining a spatial parameter, so as to at least solve the problem of how to effectively determine the spatial parameter corresponding to the same symbol in the related art.
  • a method for determining spatial parameters including:
  • the spatial parameter information corresponding to the same symbol is determined according to the priority information; wherein the spatial parameter information is used to transmit at least one type of transmission signal among the N types of transmission signals.
  • a method for determining spatial parameters including:
  • the first transmission signal the predetermined transmission configuration indicator code point TCI code point, CORESET;
  • the time interval between the physical downlink control channel for scheduling the second transmission signal and the second transmission signal is less than a first predetermined threshold.
  • an apparatus for determining spatial parameters including:
  • the first determining module is configured to determine priority information of N types of transmission signals according to the first configuration information; wherein, the N is an integer greater than 1;
  • the second determining module is configured to determine the spatial parameter information corresponding to the same symbol according to the priority information; wherein the spatial parameter information is used to transmit at least one type of transmission signal among the N types of transmission signals.
  • an apparatus for determining spatial parameters including:
  • the third determining module is configured to determine the spatial parameter of the second transmission signal according to one of the following:
  • the first transmission signal the predetermined transmission configuration indicator code point TCI code point, CORESET;
  • the time interval between the physical downlink control channel for scheduling the second transmission signal and the second transmission signal is less than a first predetermined threshold.
  • a computer-readable storage medium and a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any one of the foregoing when running. The steps in the method embodiment.
  • an electronic device including a memory and a processor, the memory is stored with a computer program, and the processor is configured to run the computer program to execute any of the above Steps in the method embodiment.
  • Fig. 1 is a block diagram of the hardware structure implemented by a method for determining a spatial parameter according to an embodiment of the present invention
  • Fig. 2 is a flowchart (1) of a method for determining a spatial parameter according to an embodiment of the present invention
  • Fig. 3 is a flowchart (2) of a method for determining a spatial parameter according to an embodiment of the present invention
  • Fig. 4 is a working flowchart (1) for determining spatial parameters in Single DCI mode and Multi DCI mode according to an embodiment of the present invention
  • Fig. 5 is a working flowchart (2) for determining spatial parameters in Single DCI mode and Multi DCI mode according to an embodiment of the present invention
  • Fig. 6 is a structural block diagram (1) of a device for determining a spatial parameter according to an embodiment of the present invention
  • Fig. 7 is a structural block diagram (2) of a device for determining a spatial parameter according to an embodiment of the present invention.
  • the method and device for determining spatial parameters of the embodiments of the present invention can be applied to various communication systems, such as: Long Term Evolution (LTE) system, LTE Time Division Duplex (TDD), LTE Advance, general mobile communication System (Universal Mobile Telecommunication System, UMTS), 5G New Radio NR (New Radio NR) communication, and their evolution or evolution version corresponding systems, etc.
  • LTE Long Term Evolution
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • 5G New Radio NR New Radio NR
  • the method and device for determining spatial parameters in the embodiments of the present invention are used for interaction between at least one first communication node and at least one second communication node; wherein, the first communication node may be an evolutionary base station (Evolutional Node B in LTE). , ENB or eNodeB), base station equipment in a 5G network, or base station in a future communication system, etc.
  • Evolutional Node B in LTE may be an evolutionary base station (Evolutional Node B
  • the base station may include various macro base stations, micro base stations, home base stations, wireless remote, routers, and location servers. , Or various network-side devices such as primary cell and secondary cell, and location management function (LMF) equipment;
  • the second communication node can be a terminal device or an access terminal, User Equipment (UE), user unit, user station, mobile station, remote station, remote terminal, mobile equipment, user terminal, wireless communication equipment, user agent, or user device.
  • UE User Equipment
  • the terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), and a wireless Handheld devices with communication functions, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, or terminal devices in 5G networks, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the above application scenarios are only partial examples, and the present invention is not limited thereto, and the first communication node and the second communication node may be collectively referred to as communication nodes.
  • FIG. 1 is a block diagram of the hardware structure implemented by the method for determining spatial parameters according to an embodiment of the present invention.
  • the first communication node 10 such as a base station, may include one or A plurality of (only one is shown in FIG.
  • processor 102 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 configured to store data; the above-mentioned first
  • the communication node may also include a transmission device 106 configured to implement a communication function with the second communication node 20.
  • FIG. 2 is only for illustration, and it does not limit the structure of the above-mentioned first communication node.
  • the first communication node 10 may also include more or fewer components than shown in FIG. 1, or have a different configuration from that shown in FIG.
  • reference signal resources include but are not limited to channel state information-reference signal (Channel State Information-Reference Signal, CSI-RS) resources, synchronization signal block (Synchronization Signals Block, SSB) resources, physical broadcast channel (Physical Broadcast Channel, PBCH) ) Resources, synchronous broadcast block/physical broadcast channel (SSB/PBCH) resources, uplink sounding reference signal (Sounding reference signal, SRS) resources, and positioning reference signal (Positioning Reference Signals, PRS).
  • channel state information-reference Signal Channel State Information-Reference Signal
  • SSB synchronization signal block
  • Physical Broadcast Channel Physical Broadcast Channel
  • PBCH Physical Broadcast Channel
  • SSB/PBCH synchronous broadcast block/physical broadcast channel
  • SRS positioning reference signal
  • PRS Positioning Reference Signals
  • the aforementioned CSI-RS resources mainly refer to non-zero power channel state information-reference signal (Non Zero Power Channel State Information-Reference Signal, NZP-CSI-RS) resources.
  • Resources used for interference measurement include but are not limited to Channel State Information-Interference Measurement (CSI-IM), NZP-CSI-RS (NZP-CSI-RS for Interference Measurement), zero power Channel state information-reference signal (ZP-CSI-RS); in an interference measurement, the M1 interference measurement resources included in the interference measurement resource may include at least one of NZP-CSI-RS, CSI-IM, and ZP-CSI-RS
  • One, for these reference signals according to the configured time-domain characteristics, they include periodic (Periodic) reference signals, semi-persistent (Semi-persistent) reference signals, and aperiodic (Aperiodic) reference signals.
  • the periodic reference signal includes at least one of periodic NZP CSI-RS, CSI-IM, ZP CSI-RS, SSB, and SRS.
  • the aperiodic reference signal includes at least one of aperiodic NZP CSI-RS, CSI-IM, ZP CSI-RS, SSB, and SRS.
  • the semi-persistent reference signal includes at least one of the semi-persistent NZP CSI-RS, CSI-IM, ZP CSI-RS, SSB, and SRS.
  • SSB may be used to represent SSB and/or PBCH.
  • the physical channel can be divided into a physical downlink control channel (PDCCH), a physical uplink control channel (PUCCH), and a physical downlink shared channel (PDSCH) , Physical uplink shared channel (PUSCH), where PUSCH and PDSCH can be called physical shared channels, PDCCH and PUCCH can be called physical control channels or control channels, PDCCH and PDSCH are physical downlink channels, and PUSCH and PUCCH It is the physical uplink channel.
  • PDCCH and PUCCH Physical downlink shared channel
  • PDCCH and PUCCH Physical downlink channels
  • PDCCH and PDSCH are physical downlink channels
  • the transmission signal described in the embodiment of the present invention includes reference signals and/or physical channels, such as various reference signals and various physical channels, such as NZP CSI-RS, ZP CSI-RS, SSB, SRS, PDSCH, PDCCH, PUSCH , PUCCH, CSI--IM, etc.
  • reference signals and/or physical channels such as various reference signals and various physical channels, such as NZP CSI-RS, ZP CSI-RS, SSB, SRS, PDSCH, PDCCH, PUSCH , PUCCH, CSI--IM, etc.
  • the reference signal can be periodic, aperiodic, and semi-continuous.
  • transmission signals with the same spatial parameters can be received or transmitted by beams corresponding to the same spatial parameters
  • the transmission signals with the same spatial parameters are classified as transmission signals of the same kind. For example, multiple transmission signals are divided into N types of transmission signals, the same type of transmission signals have the same spatial parameters, and different types of transmission signals have different spatial parameters, and N is an integer greater than 1.
  • the spatial parameters described in the embodiments of the present invention include at least one of the following parameters: a quasi-co-location reference signal, a quasi-co-location reference signal associated with a spatial reception parameter, a spatial transmission filter, a spatial relationship reference signal, and a quasi-co-location parameter.
  • the quasi-co-location parameter includes at least one of the following: quasi-co-located (QCL), transmission configuration indicator (Transmission Configuration Indicator, TCI), transmission configuration indicator state (TCI state), TCI State group, QCL Type D (QCL Type D), receive beam group, transmit beam group, receive beam, transmit beam, and spatial receive parameter (Spatial Rx Parameter).
  • the beam information may include at least one of the following: Angle Of Arrival (AOA), Angle Of Departure (AOD), ZOD (Zenith Angle Of Departure), ZOA (Zenith Angle Of Arrival), Discrete Fourier Transform (Discrete Fourier Transformation, DFT) vector, codewords in the codebook, transmit beam, receive beam, transmit beam group, receive beam group, transmit beam index, receive beam index, transmit beam group index, and receive beam group index.
  • AOA Angle Of Arrival
  • AOD Angle Of Departure
  • ZOD Zero Angle Of Departure
  • ZOA Zenith Angle Of Arrival
  • DFT Discrete Fourier Transform
  • the aforementioned quasi-co-location QCL may include QCL type A, QCL type B, QCL type C, and QCL Type D; two ports satisfying the quasi-co-location relationship means that large-scale information of one port can be derived from large-scale information of another port.
  • the foregoing large-scale information includes, but is not limited to, Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameter (Spatial Rx parameter).
  • the classification of one of the QCL Types is as follows:
  • the unit of the time domain in the embodiment of the present invention is a time unit including at least one of the following: slot, symbol, time slot group, symbol group, X milliseconds, Y microseconds; wherein, the symbol
  • the group includes at least one symbol (for example, a mini-slot), and the time slot group includes at least one time slot; wherein, X and Y are positive real numbers.
  • the symbol in the embodiment of the present invention refers to a time unit in a subframe or frame or time slot. For example, it may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol, or single-carrier frequency division multiplexing multiple access.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single-Carrier Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the symbols and time domain symbols in the embodiment of the present invention may be Replace each other, including but not limited to OFDM, OFDMA, SC-FDMA, the deformation of these symbols, and the symbols after filtering in the time domain and frequency domain of these symbols.
  • index and indicator described in the embodiment of the present invention are concepts that can be replaced with each other.
  • high-level signaling includes radio resource control (Radio Resource Control, RRC) signaling and/or media access control layer control element (Media Access Control control element, MAC CE) signaling.
  • the physical layer signaling includes downlink control information (Downlink Control Information, DCI) in the physical downlink control channel, or signaling fed back on the physical uplink control channel or the physical uplink shared channel.
  • DCI Downlink Control Information
  • one panel in the scenario of multiple transmission receiving nodes or multi-panel (Multi-Panel) transmission, one panel can correspond to one port group (such as antenna port group, antenna group), and the two are in a one-to-one correspondence. They can also be substituted for each other.
  • the panel refers to an antenna panel.
  • a transmission reception point (TRP) or communication node may include at least one antenna panel.
  • TRP transmission reception point
  • the antenna ports on a panel can be divided into a port group.
  • a panel can be divided into multiple sub-panels, and the multiple antenna ports included in each sub-panel can be divided into a port group.
  • an antenna with a positive 45° polarization is a sub-panel
  • an antenna with a negative 45° polarization is a sub-panel.
  • the panel and the sub-panel are collectively referred to as a panel, which is represented by a panel, and the panel here can be replaced by a port group.
  • the PDCCH needs to be mapped to a set of resource elements (resource elements, RE), such as one or more control channel elements (CCE), where one RE includes One subcarrier includes one symbol in the time domain, and one CCE includes multiple REs.
  • RE resource elements
  • CCE control channel elements
  • the set of one or more CCEs used to transmit PDCCH is sometimes called control resource set (CORESET), which includes multiple physical resource blocks in the frequency domain and K symbols in the time domain.
  • K is a natural number.
  • K can be an integer of 1, 2, or 3.
  • the candidate PDCCHs of a certain aggregation level are configured into a set.
  • the set of candidate PDCCHs under this level is the search space (Search Space, SS), and the set of multiple search spaces forms a search space set (SS). set, SSSET, or SSS), each terminal can be configured with at least one search space set. And in order to detect PDCCH.
  • the PDCCH detection time (i.e. occurrence) of the current terminal and the detected PDCCH candidate (i.e. candidate) or PDCCH candidate will be configured in the search space.
  • the PDCCH includes multiple formats, each format corresponds to a downlink control information DCI in a corresponding format, and each DCI includes multiple specific signaling indication fields. Among them, detection can also be called monitoring or blind detection, which is mainly used to determine which of the multiple candidate PDCCHs is the PDCCH used to transmit downlink control information to the terminal.
  • the transmission described in the embodiments of the present invention may refer to transmission or reception.
  • the transmission of data or signals may refer to the transmission of data or signals, or the reception of data or signals.
  • the signals here include various reference signals, and the data includes Data transmitted on the physical uplink shared channel or the physical downlink shared channel.
  • one RE includes one symbol and one subcarrier corresponding to the smallest resource unit used to carry one modulation signal.
  • the value of the wireless channel on the RE needs to be estimated, and this value is generally determined by the demodulation reference signal (Demodulation Reference Signal, DMRS) is estimated, and the channel on the physical channel is obtained by channel interpolation on the RE corresponding to the DMRS.
  • DMRS Demodulation Reference Signal
  • the Radio Network Temporary Identifier is used in the signal information between the first communication node and the second communication node as the identifier of the second communication node. It mainly includes at least one of the following: SI-RNTI used to identify system messages, P-RNTI used to identify paging information, RA-RNTI used to identify the resource block used by the user to send random access preambles, and used to identify user services C-RNTI, TPC-PUCCH-RNTI for identifying PUCCH uplink power control information, and TPC-PUSCH-RNTI for identifying PUSCH uplink power control information.
  • SI-RNTI used to identify system messages
  • P-RNTI used to identify paging information
  • RA-RNTI used to identify the resource block used by the user to send random access preambles
  • C-RNTI C-RNTI
  • TPC-PUCCH-RNTI for identifying PUCCH uplink power control information
  • TPC-PUSCH-RNTI for identifying PUSCH uplink power control information.
  • multiple transmission signals may come from multiple communication nodes (such as transmission nodes, base stations, etc.), and M transmission signals may come from M different TRPs, or from M different antenna panels, or M different bandwidths Part (Bandwidth Part, BWP), or M different carrier components (Carrier Component, CC), where the M panels or M BWPs or M CCs may belong to the same TRP or multiple TRPs.
  • the candidate CORESETs are grouped. Each group includes at least one CORESET, and each CORESET has a high-level parameter index, such as the CORESET group index coresetPoolIndex-r16.
  • one DCI can be used to notify physical downlink control information. This method is called joint transmission based on single physical downlink control information (Single DCI). DCI notifies the physical downlink control channel. This method is called joint transmission based on multiple physical downlink control information (Multi DCI).
  • Single DCI single physical downlink control information
  • Multi DCI multiple physical downlink control information
  • hybrid automatic repeat request that is, after the terminal or base station receives the transmission block, if it detects that the reception is correct, it feeds back a confirmation message (Acknowledgement, ACK). ), otherwise, a negative information (Negative Acknowledgement, NACK) is fed back, and ACK and NACK information can be collectively referred to as HARQ response, of course, it can also be referred to as one of the following: HARQ response information, HARQ-ACK information, HARQ-ACK, HARQ-ACK Response, ACK/NACK information, ACK/NACK codebook, if not specifically stated, ACK/NACK in the embodiment of the present invention may also be called HARQ-ACK.
  • HARQ-ACK hybrid automatic repeat request
  • a set of HARQ HARQ-ACK bits such as HARQ-ACK code, is generated for all serving cells (or carrier component, CC) corresponding to at least one TRP and the high-level configuration of the PUCCH detection timing Occasion that meets the requirements.
  • This is the HARQ-ACK subcodebook, and the HARQ-ACK codebook is fed back in the PUCCH resource or PUSCH resource.
  • the priority of different ACK information can be determined by at least one of high-level signaling, physical layer signaling, or an agreed method, and the priority of the ACK information corresponding to the transmission signal meets at least one of the following characteristics: ACKs of the same priority can be combined To the same HARQ-ACK codebook; ACKs with different priorities cannot be combined into the same HARQ-ACK codebook; ACKs with the same priority can be combined into the physical uplink channel for transmission; ACKs with different priorities cannot be combined into the physical uplink Transmission in the channel.
  • the number of TCI states N0 configured by RRC is greater than a configured threshold number N1
  • the value of the TCI state or TCI state group indicated by the TCI field in the DCI is a code point or TCI codepoint, and each code point is associated with a TCI state or TCI state group.
  • the TCI state group includes at least 2 TCI states.
  • Table 1 is a TCI state mapping table in related technologies, and an association manner is shown in Table 1.
  • TCI state 8 Code point TCI state 000 TCI state2 001 TCI state1, TCI state5 010 TCI state3 011 TCI state6 100 TCI state4 101 TCI state1, TCI state 18 110 TCI state18 111 TCI state 4, TCI state 8
  • the predetermined transmission configuration indication code point TCI code point in the embodiment of the present invention is a TCI code point whose first TCI state number is greater than or equal to 2 in the TCI state mapping table corresponding to the transmission signal. That is, the predetermined TCI codepoint is the first TCI codepoint in the TCI codepoint that includes more than 1 TCI state.
  • the TCI codepoint set is defined based on each BWP or CC.
  • a TCI code point is a value of the TCI field in DCI. This value is used to indicate one or a group of TCI states, and one or a group of TCI states come from the TCI state set determined by RRC or MAC CE.
  • the spatial parameter associated with the transmission signal refers to one of the following: the spatial parameter corresponding to the transmission signal, the spatial parameter used to send the transmission signal, the spatial parameter used to receive the transmission signal, and the transmission signal quasi-share The reference signal of the address.
  • FIG. 2 is a flowchart (1) of the method for determining spatial parameters according to an embodiment of the present invention. As shown in FIG. 2, the method for determining spatial parameters in this embodiment includes:
  • S102 Determine priority information of N types of transmission signals according to the first configuration information; where N is an integer greater than 1.
  • S104 Determine spatial parameter information corresponding to the same symbol according to the priority information; where the spatial parameter information is used to transmit at least one type of transmission signal among the N types of transmission signals.
  • the transmission signal may be a reference signal, a physical control channel, a physical shared channel, etc., which is not limited in the embodiment of the present invention; the above symbol may usually be a time domain symbol; the above priority information It is used to indicate the priority of the transmission signal.
  • the foregoing embodiment may determine the spatial parameter information corresponding to the same symbol according to the priority information of the transmission signal, and transmit the at least one transmission signal according to the beam corresponding to the determined spatial parameter of the transmission signal, such as A receiving beam for receiving the at least one transmission signal.
  • the at least one transmission signal which may be all transmission signals of the N-type transmission signal, or K transmission signals with high priority among the transmission signals.
  • the priority information of N types of transmission signals can be determined according to the first configuration information; where N is an integer greater than 1; the spatial parameter information corresponding to the same symbol is determined according to the priority information; Wherein, the spatial parameter information is used to transmit at least one type of transmission signal among the N types of transmission signals. Therefore, the embodiment of the present invention can solve the problem of how to effectively determine the spatial parameter corresponding to the same symbol in the related art, so as to achieve the effect of using the spatial parameter to effectively transmit the at least one type of transmission signal on the same symbol. .
  • the spatial parameter determination method in this embodiment can effectively determine the corresponding spatial parameter when N transmission signals are involved in the same symbol in the scenario of Multi-TRP transmission or Multi-Panel or high frequency transmission.
  • the spatial parameter determination method in this embodiment is used to enable the UE to determine the reception beams corresponding to the transmission signals with higher priority as the reception of PDSCH1 and PDSCH2 Beam.
  • the same type of transmission signals are associated with the same spatial parameter information, and different types of transmission signals are associated with different spatial parameter information.
  • determining the spatial parameter information corresponding to the same symbol according to the priority information includes:
  • T the number of spatial parameters corresponding to the same symbol
  • the maximum value of T is configured by higher layers or determined according to the capabilities of the user terminal UE.
  • the type K transmission signal is a multi-type transmission signal with a high priority among the type N transmission signals.
  • N when there are N types of transmission signals (for example, N is 5) in this embodiment, there are two different priority levels (high priority and low priority) for the above N types of transmission signals, which can be selected
  • the multi-type transmission signal with the highest priority is regarded as the K-type transmission signal.
  • the maximum value T of the number of spatial parameters corresponding to the same symbol can be determined by high-level configuration or according to UE capabilities, that is, the maximum number of spatial parameters.
  • the number of K must meet the limit of T .
  • the number of spatial parameters of the same symbol is the maximum number of spatial parameters that the communication node can transmit with the same time domain symbol; therefore, according to the technical solution in the above embodiment, The determined spatial parameters can be made to correspond to the number of spatial parameters that can be used by the communication node in the same time domain symbol.
  • the UE can determine the spatial parameters corresponding to multiple transmission signals sent by a TRP (for example, transmission signals sent by different CCs or BWPs), or perform spatial parameters for transmission signals sent by different TRPs. Determination of parameters.
  • determining the spatial parameter information corresponding to the same symbol according to the priority information includes:
  • the N types of transmission signals are divided into C transmission signal groups, where one or more types of transmission signals in each transmission signal group are associated with the same second configuration information; C is a positive integer, and C is less than Or equal to N.
  • the second configuration information can be divided into C groups according to high-level signaling or according to a predetermined manner, and each group of the second configuration information group includes at least one second configuration information, and one or more transmission signals are associated
  • the transmission signals of the same second configuration information group are divided into a transmission signal group.
  • the second configuration information is the CORESET group, and the transmission signals corresponding to the transmission signal with the same index of the COSRESET group are a group.
  • the transmission signals corresponding to the second configuration information X group index of the same transmission signal is a group, here, X can use CORESET to index the information; the priority of the confirmation ACK information corresponding to the transmission signal Information; Priority indicator (PI) information in the physical downlink control information; virtual cell number information; physical cell identification PCI information; wireless network temporary identification RNTI type information; downlink control information DCI parameter information; scheduling time interval information ; Channel type information; Replacement of one of the carrier component CC index information.
  • PI Priority indicator
  • the N types of transmission signals are divided into C transmission signal groups according to the second configuration information, that is, the N types of transmission signals are grouped according to the second configuration information to obtain C transmission signal groups .
  • the priority of the multiple types of transmission signals in the transmission signal group and their spatial parameters are also determined according to the method for determining the priority of transmission signals in this embodiment. .
  • the spatial parameters of the corresponding transmission signal group are used respectively, other preset methods can also be used.
  • the embodiment of the present invention There is no restriction on this.
  • the foregoing second configuration information includes at least one of the following:
  • Control resource set CORESET group information CORESET index information; priority information of the ACK information corresponding to the transmission signal; priority indicator PI (Priority indicator) information in the physical downlink control information; virtual cell number information; physical cell identification PCI information; Wireless network temporary identification RNTI type information; downlink control information DCI parameter information; scheduling time interval information; channel type information; carrier component CC index information.
  • priority indicator PI Primary indicator
  • determining the spatial parameter information corresponding to the same symbol according to the priority information includes:
  • the spatial parameter information associated with the K i transmission signal with a higher priority in the i-th transmission signal group as a type in the i-th transmission signal group Or the spatial parameter information corresponding to the same symbol of multiple types of transmission signals; i is a positive integer, and i is less than or equal to C;
  • K i is a positive integer, and K i is less than or equal to T i ;
  • T i is the maximum value of the number of spatial parameters corresponding to the i-th transmission signal group in the same symbol, and T i is configured by higher layers or determined according to UE capabilities .
  • the K i transmission signal in the i-th transmission signal group is the transmission signal with higher priority in the i-th transmission signal group; for the i-th transmission signal group, the determination method of the K i transmission signal
  • the first type K i transmission signal with higher level or directly select the multi-type transmission signal with the highest priority in the N type transmission signal as the type K transmission signal; the specific method can refer to the selection of the type K transmission signal mentioned above, here No longer.
  • the maximum value of the number of spatial parameters corresponding to the i-th transmission signal group in the same symbol can be configured by higher layers or determined according to UE capabilities, that is, the maximum spatial parameter The number of K i must meet the limit of T i.
  • the set formed by the type K i transmission signals corresponding to each transmission signal group is the type K transmission signal; the sum of multiple K i is K;
  • K is a positive integer and less than or equal to T
  • K-type transmission signals are one or more types of transmission signals with high priority determined by a preset method among N-type transmission signals
  • T is the number of spatial parameters corresponding to the same symbol The maximum value of the number, T is configured by higher layers or determined according to the capabilities of the user terminal UE.
  • the number K i corresponding to the type K i transmission signals in each transmission signal group is superimposed to be the number K corresponding to the type K transmission signals, that is, the sum of the multiple Ki is K.
  • the spatial parameter determination method in this embodiment further includes:
  • the spatial parameter associated with the T-type transmission signal with the higher priority in the M-type transmission signal is the spatial parameter information corresponding to the same symbol.
  • the foregoing first configuration information includes at least one of the following:
  • CORESET group information CORESET index information; priority information of the ACK information corresponding to the transmission signal; priority indication PI information in the physical downlink control information; virtual cell number information; PCI information; RNTI type information; DCI parameter information; scheduling Time interval information; channel type information; CC index information.
  • determining the priority information of the N types of transmission signals according to the first configuration information includes:
  • the first configuration information is priority information of the ACK information corresponding to the transmission signal
  • the higher the priority information of the ACK information corresponding to the transmission signal the higher the priority indicated by the priority information of the determined transmission signal
  • the priority information of the ACK information corresponding to the transmission signal is determined by higher layer signaling or determined by a preset method; or,
  • the priority information of the priority indicating PI information in the physical downlink control information corresponding to the transmission signal is higher, and the priority information of the transmission signal is determined The higher the indicated priority, where the priority indication PI information in the physical downlink control information is determined by higher layer signaling or determined by a preset method; or,
  • the first configuration information is a physical cell identifier
  • the priority of the RNTI type is Level information is determined by high-level signaling or determined by a preset method; or,
  • the priority information of is determined by higher-layer signaling or determined by a preset method; or,
  • the information is determined by high-level signaling or determined by a preset method; or,
  • the spatial parameter determination method in this embodiment further includes:
  • the associated CORESET group or CORESET is determined for the transmission signal. For example, the transmission signal does not have a corresponding CORESET group, then the default index of the CORESET group corresponding to the transmission signal is 0; if the transmission signal does not have a corresponding CORESET, then the default index of the CORESET corresponding to the transmission signal is 0 .
  • the above-mentioned spatial parameter information includes at least one of the following:
  • Quasi-co-location parameters Quasi-co-location parameters; quasi-co-location reference signals; quasi-co-location reference signals associated with spatial reception parameters; spatial transmission filters; spatial relationship reference signals.
  • the transmission signal for example, determines the transmission beam used to transmit the transmission signal.
  • the second communication node may use the spatial parameters determined by the method in the embodiment of the present invention to receive the transmission signal, for example, determine the receiving beam used to receive the transmission signal.
  • At least one first communication node is included, and N CORESET groups are configured, and each CORESET group includes at least one CORESET.
  • the CORESET high-level parameter index coresetPoolIndex-r16 in the same CORESET group has the same value.
  • the value of coresetPoolIndex-r16 in the CORESET group determines the priority of the transmission signal. For example, the smaller the value of coresetPoolIndex-r16 of the CORESET corresponding to the scheduled transmission signal, the higher the priority of the corresponding transmission signal.
  • the CORESET group can be used to group transmission signals.
  • N is an integer greater than 1, without loss of generality.
  • CORESET group 1 includes CORESET1 and CORESET2
  • the coresetPoolIndex-r16 corresponding to each CORESET is 0,
  • CORESET group 2 includes CORESET3 and CORESET4, each The value of coresetPoolIndex-r16 corresponding to CORESET is 1; the transmission signal 1 and transmission signal 2 use the DCI1 in CORESET1 in CORESET group 1 and the DCI3 in CORESET3 in CORESET group 2 respectively.
  • the index coresetPoolIndex-r16 takes a value of 0, and the COREST group index coresetPoolIndex-r16 of the CORESET corresponding to DCI3 takes a value of 1, so the priority of the transmission signal 1 is higher than the priority of the transmission signal 2.
  • transmission signal 1 and transmission signal 2 use DCI1 in CORESET1 in CORESET group 1 and DCI2 in CORESET2 in CORESET group 1 respectively, since DCI1 and DCI2 have the same value of CORESET group index, then transmission signal 1 and The transmission signal 2 can be divided into the same transmission signal group. And it needs to be based on at least one of CORESET index, virtual cell number information, physical cell identification PCI information, wireless network temporary identification RNTI type information, downlink control information DCI parameter information, scheduling time interval information, channel type information, CC index information, etc.
  • the priority of its spatial parameters is determined, and the spatial parameters used for transmitting the transmission signals in the transmission signal group are determined according to the priority.
  • the spatial parameter corresponding to the transmission signal 1 is determined to be the preferred spatial parameter, that is, if the transmission signal 1 and the transmission signal 2 are in the same symbol
  • the spatial parameter associated with the transmission signal 1 is preferentially used as the spatial parameter corresponding to this symbol, and the beam determined by this spatial parameter is used to receive the transmission signal 1 and the transmission signal 2.
  • the spatial parameter of the final received transmission signal may be greater than 1, then yes, that is, the final spatial parameter is the spatial parameter corresponding to the K transmission signals with high priority of the transmission signal, or for each transmission signal group
  • At least one first communication node is included, and N CORESETs are configured, and each CORESET has an index controlResourceSetId related to the CORESET for identifying the CORESET. Then the priority of the transmission signal can be determined according to the value of the index controlResourceSetId of the CORESET. For example, the smaller the value of the controlResourceSetId of the CORESET corresponding to the DCI of the scheduled transmission signal, the higher the priority of the corresponding transmission signal.
  • the controlResourceSetId index may be divided into multiple controlResourceSetId sets.
  • the controlResourceSetId set may be configured through high-level signaling or formed in an agreed manner.
  • a controlResourceSetId set smaller than A1 is a controlResourceSetId set
  • a controlResourceSetId set larger than A1 is a controlResourceSetId set
  • the CORESET index corresponding to the DCI of multiple scheduled transmission signals is in the same controlResourceSetId set, then they can be divided into the same transmission signal group.
  • N is an integer greater than 1, without loss of generality.
  • transmission signal scheduled using the DCI corresponding to CORESET1 and CORESET2 is a transmission signal group
  • the transmission signal scheduled using the DCI corresponding to CORESET3 and CORESET4 is a transmission signal group.
  • transmission signal 1 and transmission signal 2 use DCI1 in CORESET1 and DCI3 in CORESET3 respectively, because the COREST index of CORESET corresponding to DCI1 is 0, and the COREST index of CORESET corresponding to DCI3 is 0 2. Then the priority of transmission signal 1 is higher than the priority of transmission signal 2.
  • transmission signal 1 and transmission signal 2 are respectively scheduled using DCI1 in CORESET1 and DCI2 in CORESET2, since DCI1 and DCI2 are in the same CORESET index set, transmission signal 1 and transmission signal 2 can be divided into the same transmission signal group, And the CORESET index corresponding to DCI1 is smaller than the CORESET index corresponding to DCI2, so the priority of the spatial parameter of transmission signal 1 is higher than that of transmission signal 2.
  • the second configuration information can also be used in addition to CORESET Other information outside the index determines the priority of the transmission signal.
  • the spatial parameter corresponding to transmission signal 1 is determined to be the preferred spatial parameter, that is, if transmission signal 1 and transmission signal 2 are transmitted in the same symbol . Then, the spatial parameter associated with transmission signal 1 is preferentially used as the spatial parameter corresponding to this symbol, and the beam determined by this spatial parameter is used to receive transmission signal 1 and transmission signal 2.
  • the spatial parameter of the final received transmission signal may be greater than 1, then yes, that is, the final spatial parameter is the spatial parameter corresponding to the K transmission signals with high priority of the transmission signal, or for each transmission signal group
  • At least one first communication node is included.
  • the first communication node may transmit multiple types of services at the same time, including Ultra-reliable and Low Latency Communications (URLLC) services and enhancements Mobile Broadband (Enhanced Mobile Broadband, eMBB) business.
  • URLLC Ultra-reliable and Low Latency Communications
  • eMBB Enhanced Mobile Broadband
  • the priority of URLLC and eMBB is mainly indicated by the priority indicator PI (Priority indicator) information in the physical downlink control information, that is, the downlink control format 0-1, 0-2, 1-1 or 1-2 (DCI0_1 or DCI0_2).
  • DCI0_1 or DCI0_2 the downlink control format 0-1, 0-2, 1-1 or 1-2
  • DCI0_1 or DCI0_2 the downlink control format 0-1, 0-2, 1-1 or 1-2
  • DCI0_1 or DCI0_2 the downlink control format 0-1, 0-2, 1-1 or 1-2
  • DCI0_1 or DCI0_2
  • the terminal can determine the priority of eMBB and URLLC according to the received PI indication, and determine the spatial parameters of the transmission signal according to the priority of eMBB and URLLC. For example, if the PI indicates that the priority of eMBB is high, then the priority of the transmission signal related to eMBB The priority is higher than that of the transmission signal related to URLLC, otherwise the priority of the transmission signal related to eMBB is lower than the priority of the transmission signal related to URLLC.
  • the transmission signals can be grouped according to the PI indication.
  • the transmission signal corresponding to the transmission signal with a PI value of 1 is a group
  • the transmission signal corresponding to the transmission signal with a PI value of 0 is a group.
  • the transmission signal in the same group through CORESET group index, CORESET index, virtual cell number information, physical cell identification PCI information, wireless network temporary identification RNTI type information, downlink control information DCI parameter information, scheduling time interval information, channel At least one of type information, CC index information, etc.
  • Ki is a positive integer, which is the maximum number of spatial parameters of the i-th transmission signal group,
  • At least one first communication node is included, and the first communication node may transmit multiple transmission signals at the same time, such as transmission signal 1, transmission signal 2, transmission signal 3, and transmission signal 4.
  • the high-level or physical layer signaling configures virtual cell information vPCI for the transmission signal, and the virtual cell information is used to generate a sequence or scrambling code for the transmission signal.
  • the terminal can determine the priority of the transmission signal according to the size of the received vPCI. For example, the smaller the virtual cell number corresponding to the transmission signal, the higher the priority of the transmission signal.
  • the transmission signal can be grouped according to the virtual cell number, for example, the virtual cell number can be divided into multiple virtual cell number groups according to a configured or agreed manner.
  • the transmission signal of the virtual cell number corresponding to the transmission signal in the same virtual cell number group is a group.
  • the priority of the transmission signal can be further determined according to the size of the virtual cell number corresponding to the transmission signal. For example, the transmission signal corresponding to the transmission signal with a small virtual cell number has a higher priority.
  • the transmission signal may also use other information except the virtual cell number in the second configuration information to determine the priority of the transmission signal.
  • the spatial parameter is the spatial parameter corresponding to the K transmission signals with the higher priority of the transmission signal, or is the Ki with the higher priority in each transmission signal group.
  • the number of groups, the K is an integer greater than or equal to 1 and less than N, and K and Ki are determined by high-level signaling configuration or UE capabilities.
  • At least one first communication node is included, and the first communication node may transmit multiple transmission signals at the same time, such as transmission signal 1, transmission signal 2, transmission signal 3, and transmission signal 4.
  • the high-level or physical layer signaling configures the physical cell identification PCI information PCI for the transmission signal, and the PCI is used to generate a sequence or scrambling code of the transmission signal, or to identify the physical cell corresponding to the transmission signal.
  • the terminal can determine the priority of the transmission signal according to the size of the received PCI, for example, the smaller the PCI corresponding to the transmission signal, the higher the priority of the transmission signal.
  • the transmission signals can be grouped according to PCI, for example, the PCI is divided into multiple PCI groups according to a configured or agreed manner.
  • the transmission signal of the PCI corresponding to the transmission signal in the same PCI group is a group.
  • the priority of the transmission signal can be further determined according to the PCI size corresponding to the transmission signal. For example, the transmission signal corresponding to a small PCI transmission signal has a higher priority.
  • the transmission signal of the same group is also Other information other than the physical cell number in the second configuration information may be used to determine the priority of the transmission signal. And determine the spatial parameters used to transmit the transmission signal according to the priority of the transmission signal.
  • the spatial parameter is the spatial parameter corresponding to the K transmission signals with high transmission signal priority, or is the high priority in each transmission signal group.
  • K is an integer greater than or equal to 1 and less than N, and K and Ki are determined by high-level signaling configuration or UE capabilities.
  • At least one first communication node is included, and the first communication node may transmit multiple transmission signals at the same time, such as transmission signal 1, transmission signal 2, transmission signal 3, and transmission signal 4.
  • the high-level or physical layer signaling configures multiple carrier components CC for the transmission signal, and the CC is used to transmit at least one of the transmission signal 1 to the transmission signal 4.
  • the terminal can determine the priority of the transmission signal according to the size of the received CC index. For example, the smaller the CC index corresponding to the transmission signal, the higher the priority of the transmission signal.
  • the transmission signals can be grouped according to the CC index, for example, the CC index is divided into multiple CC index groups according to a configured or agreed manner.
  • the CC index corresponding to the transmission signal is a group of transmission signals in the same CC index group.
  • the priority of the transmission signal in the transmission signal group can be further determined according to the size of the CC index corresponding to the transmission signal. For example, a transmission signal with a small CC index corresponds to a higher priority.
  • the signal may also use other information in the second configuration information except the CC index to determine the priority of the transmission signal.
  • the spatial parameter is the spatial parameter corresponding to the K transmission signals with the higher priority of the transmission signal, or is the Ki with the higher priority in each transmission signal group.
  • the number of groups, the K is an integer greater than or equal to 1 and less than N, and K and Ki are determined by high-level signaling configuration or UE capabilities.
  • At least one first communication node is included, and the first communication node may transmit multiple transmission signals at the same time, such as transmission signal 1, transmission signal 2, transmission signal 3, and transmission signal 4.
  • the transmission signal includes at least one of various reference pilots, PDSCH, and PUSCH, wherein the scheduling time interval information corresponding to the transmission signal 1 to the transmission signal 4 is T1-T4.
  • the scheduling time interval information is: the interval between the last symbol occupied by the RE resource corresponding to the DCI associated with the transmission signal and the first symbol of the RE resource corresponding to the transmission signal is the scheduling time interval information.
  • the DCI associated with the transmission signal refers to the DCI that schedules the PDSCH or the PUSCH, or the DCI that triggers an aperiodic reference signal, or the DCI that activates the semi-persistent reference signal. Therefore, the terminal can determine the priority of the transmission signal according to the size of the scheduling time interval information. For example, the greater the scheduling time interval information corresponding to the transmission signal, the higher the priority of the transmission signal.
  • the transmission signals can be grouped according to the scheduling time interval information, for example, the scheduling time interval information can be divided into multiple scheduling time interval information groups according to a configured or agreed manner.
  • the scheduling time interval information corresponding to the transmission signal is a group of transmission signals in the same scheduling time interval information group.
  • the priority of the transmission signal can be further determined according to the size of the scheduling time interval information corresponding to the transmission signal. For example, the transmission signal corresponding to the transmission signal with large scheduling time interval information has a higher priority.
  • the transmission signal of the group may also use other information except the scheduling time interval information in the second configuration information to determine the priority of the transmission signal.
  • the spatial parameters are the spatial parameters corresponding to the K transmission signals with high priority of the transmission signal, or the Ki transmissions with the high priority in each transmission signal group.
  • K is an integer greater than or equal to 1 and less than N, and K and Ki are determined by high-level signaling configuration or UE capabilities.
  • At least one first communication node is included, and the first communication node may transmit multiple transmission signals at the same time, such as transmission signal 1, transmission signal 2, transmission signal 3, and transmission signal 4.
  • Each transmission signal can be scrambled with a different RNTI.
  • the RNTIs corresponding to transmission signal 1 to transmission signal 4 are RNTI1 to RNTI4, respectively. Therefore, the terminal can determine the priority of the transmission signal according to the received RNTI information.
  • the priority of the transmission signal scrambled with the system information type S-RNTI or the paging type P-RNTI is higher, and the control signaling type such as The priority of the transmission signal scrambled by TPC-PUCCH-RNTI and TPC-PUSCH-RNTI is the second, followed by the SPS C-RNTI of the transmission data type, and the transmission signal scrambled by C-RNTI has the lowest priority.
  • the priorities of different RNTIs are not limited to the examples here, and their priorities can be determined according to an agreed way or a way of high-level signaling configuration.
  • the priority of the transmission signal is determined according to the priority of the RNTI associated with the transmission signal.
  • the transmission signal can be grouped according to the RNTI associated with the transmission signal.
  • the RNTI can be divided into multiple RNTI groups according to a configured or agreed manner.
  • the transmission signal of the RNTI corresponding to the transmission signal in the same RNTI group is a group.
  • the priority of the transmission signal in the transmission signal group can be further determined according to the priority of the RNTI corresponding to the transmission signal, such as the priority of the transmission signal corresponding to the transmission signal with a higher RNTI priority associated with the transmission signal. High, of course, for the same group of transmission signals, other information except RNTI in the second configuration information can also be used to determine the priority of the transmission signal.
  • the spatial parameter is the spatial parameter corresponding to the K transmission signals with the higher priority of the transmission signal, or is the Ki with the higher priority in each transmission signal group.
  • the number of groups, the K is an integer greater than or equal to 1 and less than N, and K and Ki are determined by high-level signaling configuration or UE capabilities.
  • At least one first communication node is included, and the first communication node may transmit multiple transmission signals at the same time, such as transmission signal 1, transmission signal 2, transmission signal 3, and transmission signal 4.
  • Each transmission signal corresponds to different parameter information of downlink control information.
  • the parameter information of the downlink control information DCI includes at least one of the following: the format of the DCI, the scrambling sequence of the DCI, the index of the search space where the DCI is located, the index of the CORESET where the DCI is located, and the index of the CORESET group where the DCI is located.
  • transmission signal 1-transmission signal 4 corresponds to DCI parameter information 1-DCI parameter information 4. Therefore, the terminal can determine the priority of the transmission signal according to the received DCI parameter information.
  • the search space index where the DCI is located is small and the transmission signal has a high priority.
  • the format corresponding to the DCI corresponding to the transmission signal is formt0-0, format1-0, format2
  • the order priority of -0, format0-1, format1-1, format2-1, format2-3, and format2-4 is gradually reduced, or the priority of the DCI format agreed in other ways determines the priority of the transmission signal.
  • the transmission signals can be grouped according to the DCI parameter information associated with the transmission signal, for example, the DCI parameters are grouped according to a configured or agreed manner, and the transmission signals of the DCI parameters corresponding to the transmission signal in the same DCI group are a group.
  • the transmission signal in the same group can be further based on the transmission signal and needs to be based on the CORESET index, virtual cell number information, physical cell identification PCI information, wireless network temporary identification RNTI type information, scheduling time interval information, and CC index information. Wait for at least one to determine the priority of the transmission signal in the transmission signal group, and determine the spatial parameter used for transmitting the transmission signal according to the priority, determine the spatial parameter used for receiving the transmission signal, and the spatial parameter is that the priority of the transmission signal is high.
  • Ki is a positive integer, which is the maximum number of spatial parameters of the i-th transmission signal group,
  • At least one first communication node is included.
  • the first communication node may transmit multiple transmission signals at the same time, such as transmission signal 1, transmission signal 2, transmission signal 3, and transmission signal 4.
  • the transmission signal here mainly refers to Various physical channels.
  • Each transmission signal is transmitted by a different channel type, which includes but is not limited to PDCCH, PDSCH, PUCCH, and PUSCH.
  • transmission signal 1-transmission signal 4 corresponds to PDCCH1, PDCCH2, PDSCH1, and PDSCH2. Therefore, the terminal can determine the priority of the transmission signal according to the received channel type. For example, the priority of the physical control channel is higher than the priority of the physical shared channel, and the priority of the downlink physical channel is higher than the priority of the physical uplink channel.
  • the transmission signals can be grouped according to the channel type associated with the transmission signal. For example, according to a configured or agreed method, the transmission signals with the channel type as the control channel are grouped into one group, and the transmission signals with the channel type as the physical shared channel are grouped into one group.
  • the transmission signal in the same group can be further based on the CORESET index, virtual cell number information, physical cell identification PCI information, wireless network temporary identification RNTI type information, downlink control information DCI parameter information, and scheduling time interval corresponding to the transmission signal. At least one of information, CC index information, etc.
  • Ki is a positive integer, which is the maximum number of spatial parameters in the i-th transmission signal group .
  • At least one first communication node is included.
  • the first communication node may transmit multiple service types at the same time, including the first transmission signal and the second transmission signal.
  • the first transmission signal may also be PUSCH1, One of PUCCH1, PDSCH1, and the second transmission signal may be one of PUSCH2, PUCCH2, PDSCH2.
  • This is mainly based on the priority indicator PI (Priority indicator) in the physical downlink control information, that is, the downlink control format 0-1, 0-2, 1-1 or 1-2 (DCI0_1 or DCI0_2, DCI1_1 or DCI1_2) The value in the Priority indicator field.
  • PI Priority indicator
  • the terminal can determine the priority of the first transmission signal and the second transmission signal according to the received PI indication, and determine the spatial parameter of the transmission signal according to the priority.
  • the transmission signals can be grouped according to the PI indication.
  • the transmission signal corresponding to the transmission signal with a PI value of 1 is a group
  • the transmission signal corresponding to the transmission signal with a PI value of 0 is a group.
  • the transmission signals in the same group use CORESET group index, CORESET index, virtual cell number information; physical cell identification PCI information; wireless network temporary identification RNTI type information; downlink control information DCI parameter information; scheduling time interval information; channel At least one of type information, CC index information, etc. determines the priority of the transmission signal in the transmission signal group, and determines the spatial parameter used for transmitting the transmission signal according to the priority of the transmission signal.
  • the transmission signal can also be grouped by the CORESET group first, and the transmission signal corresponding to the CORESET group index of 0 is higher than the transmission signal of the CORESET group index of 1.
  • the transmission signals in the same CORESET group can be further based on The size of the PI value determines the priority of the transmission signal, for example, a transmission signal with a larger PI value has a higher priority.
  • the spatial parameter is the spatial parameter corresponding to the K transmission signals with high priority of the transmission signal, or the spatial parameter corresponding to the Ki transmission signals with the high priority in each transmission signal group, and Ki is a positive integer, which is the i-th
  • Ki is a positive integer, which is the i-th
  • the base station transmits the transmission signal through the spatial parameter corresponding to the transmission signal, or transmits the transmission signal according to the determined spatial parameter, and the terminal receives the transmission signal according to the determined spatial parameter.
  • the received transmission signal may be all transmission signals sent by the base station, or may be K transmission signals with higher priority.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • FIG. 3 is a flowchart (2) of the method for determining spatial parameters according to an embodiment of the present invention. As shown in FIG. 3, the method for determining spatial parameters in this embodiment includes:
  • S202 Determine the spatial parameter of the second transmission signal according to one of the following:
  • the first transmission signal the predetermined transmission configuration indicator code point TCI code point, CORESET;
  • the time interval between the physical downlink control channel for scheduling the second transmission signal and the second transmission signal is less than the first predetermined threshold.
  • the first transmission signal is a transmission signal whose scheduling time is greater than or equal to the time-domain interval threshold timeDurationForQCL.
  • the above-mentioned TCI code point is the lowest code point in the TCI code point where the number of corresponding TCI states is equal to 2.
  • each code point includes one or two TCI states; in the case where the code point includes two TCI states, in this embodiment, the second TCI state can be determined according to any one of the two TCI states in the code point.
  • the spatial parameter of the transmission signal is selected to determine the spatial parameter of the second transmission signal.
  • determining the spatial parameter of the second transmission signal includes:
  • the spatial parameter of the second transmission signal is determined according to the spatial parameter of the first transmission signal or the spatial parameter of the TCI code point; or,
  • the spatial parameter of the second transmission signal is determined according to the spatial parameter corresponding to the TCI code point.
  • determining the spatial parameter of the second transmission signal according to the spatial parameter of the first transmission signal or the spatial parameter of the TCI code point includes:
  • the spatial parameter of the second transmission signal is determined according to one of the spatial parameters corresponding to the first transmission signal;
  • the spatial parameter of the second transmission signal is determined according to the signaling information or a predetermined method, or the second transmission signal is determined according to the spatial parameter of the TCI code point. 2.
  • the spatial parameters of the transmission signal is determined according to the signaling information or a predetermined method, or the second transmission signal is determined according to the spatial parameter of the TCI code point.
  • FIG. 4 is a working flow chart (1) for determining spatial parameters in Single DCI mode and Multi DCI mode according to an embodiment of the present invention. In the above embodiment, the process of determining spatial parameters in Single DCI mode and Multi DCI mode is shown in the figure 4 shown.
  • TCI code point there is at least one TCI code point corresponding to the number of TCI states that is greater than or equal to the second predetermined value
  • the above-mentioned TCI code point is defined based on the frequency domain bandwidth of the second transmission signal, that is, each BWP or CC corresponding to the second transmission signal corresponds to an independent TCI code point definition; the TCI code point is used to indicate the TCI indication field in the PDCCH Correspondence between and TCI state.
  • determining the spatial parameter of the second transmission signal includes:
  • the spatial parameter of the second transmission signal is determined according to the spatial parameter of the first transmission signal or the spatial parameter of CORESET satisfying the predetermined characteristic in the CORESET group; or,
  • the spatial parameter of the second transmission signal is determined according to the spatial parameter of the CORESET in the CORESET group that meets the predetermined characteristics.
  • determining the spatial parameter of the second transmission signal according to the spatial parameter of the first transmission signal or the spatial parameter of CORESET in the CORESET group that meets the predetermined characteristics includes:
  • the spatial parameters of the second transmission signal or the spatial parameters of CORESET satisfying the predetermined characteristics in the CORESET group are determined according to the signaling information or predetermined rules. Determine the spatial parameters of the second transmission signal.
  • FIG. 5 It is a working flow chart (2) for determining spatial parameters in Single DCI mode and Multi DCI mode according to an embodiment of the present invention.
  • the process of determining spatial parameters in Single DCI mode and Multi DCI mode is shown in Figure 5. Show.
  • the spatial parameter determination method in this embodiment further includes at least one of the following conditions:
  • the CORESET where the downlink control channel for scheduling the second transmission signal is located belongs to a CORESET group
  • the number of CORESET groups corresponding to the frequency domain bandwidth where the second transmission signal is located is greater than the third predetermined value; where the frequency domain bandwidth where the second transmission signal is located refers to the BWP or CC, or the CC where the second transmission signal is transmitted.
  • a BWP the frequency domain bandwidth where the second transmission signal is located.
  • the CORESET in the CORESET group that meets the predetermined characteristics includes: among the time units closest to the second transmission signal and including the CORESET in the CORESET group, the CORESET with the lowest CORESET index among the CORESETs in the associated detection search space in the CORESET group.
  • the COREST group corresponding to the frequency domain bandwidth includes the CORESET group included in the scheduling frequency domain bandwidth for scheduling the transmission signal in the frequency domain bandwidth.
  • the above-mentioned first transmission signal includes a channel and/or signal
  • the second transmission signal includes a channel and/or signal
  • the above-mentioned first transmission signal includes at least one of the following:
  • the above-mentioned second transmission signal includes at least one of the following: an aperiodic reference signal, a physical downlink shared channel, and a physical uplink shared channel.
  • the aperiodic reference signal, the physical downlink shared channel, and the physical uplink shared channel are only the preferred signals for the second transmission signal.
  • the above-mentioned spatial parameter includes at least one of the following:
  • Quasi-co-location parameters quasi-co-location reference signals, quasi-co-location reference signals associated with spatial reception parameters, spatial transmission filters, and spatial relationship reference signals.
  • the quasi co-location parameters include at least one of the following: spatial reception parameters, average delay, delay spread, Doppler shift, and Doppler spread.
  • the spatial parameter determination method in this embodiment further includes:
  • the first judgment result is used to indicate whether there is at least one TCI code point in the TCI code point.
  • the number of TCI states corresponding to the TCI code point is greater than or equal to the second predetermined value; where the TCI code point corresponds to the frequency domain bandwidth of the second transmission signal , TCI code point is the corresponding relationship between the TCI indicator field in the PDCCH and the TCI state;
  • the second judgment result is used to indicate whether the number of CORESET groups corresponding to the frequency domain bandwidth where the second transmission signal is located is greater than the third predetermined value.
  • the COREST group corresponding to the frequency domain bandwidth includes the CORESET group included in the scheduling frequency domain bandwidth for scheduling the transmission signal in the frequency domain bandwidth.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solutions of the embodiments of the present invention can be embodied in the form of a software product in essence or a part that contributes to the prior art.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic Disk, optical disk) includes several instructions to make a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • Fig. 6 is a structural block diagram (1) of a device for determining a spatial parameter according to an embodiment of the present invention. As shown in Fig. 6, the device for determining a spatial parameter in this embodiment includes:
  • the first determining module 302 is configured to determine priority information of N types of transmission signals according to the first configuration information; where N is an integer greater than 1;
  • the second determining module 304 is configured to determine the spatial parameter information corresponding to the same symbol according to the priority information; wherein the spatial parameter information is used to transmit at least one type of transmission signal among the N types of transmission signals.
  • the same type of transmission signals are associated with the same spatial parameter information, and different types of transmission signals are associated with different spatial parameter information.
  • the foregoing determining the spatial parameter information corresponding to the same symbol according to the priority information includes:
  • T the number of spatial parameters corresponding to the same symbol
  • the maximum value of T is configured by higher layers or determined according to the capabilities of the user terminal UE.
  • the foregoing determining the spatial parameter information corresponding to the same symbol according to the priority information includes:
  • the N types of transmission signals are divided into C transmission signal groups, where each transmission signal group includes one or more types of transmission signals, and one or more types of transmission signals in each transmission signal group are associated
  • C is a positive integer, and C is less than or equal to N.
  • the foregoing second configuration information includes at least one of the following:
  • determining the spatial parameter information corresponding to the same symbol according to the priority information includes:
  • the spatial parameter information associated with the K i transmission signal with a higher priority in the i-th transmission signal group as a type in the i-th transmission signal group Or the spatial parameter information corresponding to the same symbol of multiple types of transmission signals; i is a positive integer, and i is less than or equal to C;
  • K i is a positive integer, and T i K i less; maximum number of spatial parameters T i corresponding to the same i-th symbol transmitted signal groups, T i or configured by higher layers is determined according to the UE capabilities .
  • the set formed by the type Ki transmission signals corresponding to each transmission signal group is a type K transmission signal; the sum of a plurality of the K i is K;
  • K is a positive integer and less than or equal to T
  • K-type transmission signals are one or more types of transmission signals with high priority among N-type transmission signals
  • T is the maximum value of the number of spatial parameters corresponding to the same symbol, T is configured by higher layers or determined according to the capabilities of the user terminal UE.
  • the above-mentioned first determining module is further configured as:
  • the spatial parameter associated with the T-type transmission signal with the higher priority in the M-type transmission signal is the spatial parameter information corresponding to the same symbol.
  • the foregoing first configuration information includes at least one of the following:
  • CORESET group information CORESET index information; priority information of the ACK information corresponding to the transmission signal; priority indication PI information in the physical downlink control information; virtual cell number information; PCI information; RNTI type information; DCI parameter information; scheduling Time interval information; channel type information; CC index information.
  • the foregoing determining priority information of N types of transmission signals according to the first configuration information includes:
  • the first configuration information is priority information of the ACK information corresponding to the transmission signal
  • the higher the priority information of the ACK information corresponding to the transmission signal the higher the priority indicated by the priority information of the determined transmission signal
  • the priority information of the ACK information corresponding to the transmission signal is determined by higher layer signaling or determined by a preset method; or,
  • the priority information of the priority indicating PI information in the physical downlink control information corresponding to the transmission signal is higher, and the priority information of the transmission signal is determined The higher the indicated priority, where the priority indication PI information in the physical downlink control information is determined by higher layer signaling or determined by a preset method; or,
  • the first configuration information is a physical cell identifier
  • the priority of the RNTI type is Level information is determined by high-level signaling or determined by a preset method; or,
  • the priority information of is determined by higher-layer signaling or determined by a preset method; or,
  • the information is determined by high-level signaling or determined by a preset method; or,
  • the above-mentioned first determining module is further configured to:
  • the associated CORESET group or CORESET is determined for the transmission signal.
  • the above-mentioned spatial parameter information includes at least one of the following:
  • Quasi-co-location parameters Quasi-co-location parameters; quasi-co-location reference signals; quasi-co-location reference signals associated with spatial reception parameters; spatial transmission filters; spatial relationship reference signals.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination.
  • the forms are located in different processors.
  • Fig. 7 is a structural block diagram (2) of a device for determining a spatial parameter according to an embodiment of the present invention. As shown in Fig. 7, the device for determining a spatial parameter in this embodiment includes:
  • the third determining module is configured to determine the spatial parameter of the second transmission signal according to one of the following:
  • the first transmission signal the predetermined transmission configuration indicator code point TCI code point, CORESET;
  • the time interval between the physical downlink control channel for scheduling the second transmission signal and the second transmission signal is less than the first predetermined threshold.
  • the foregoing determining the spatial parameter of the second transmission signal includes:
  • the spatial parameter of the second transmission signal is determined according to the spatial parameter of the first transmission signal or the spatial parameter of the TCI code point; or,
  • the spatial parameter of the second transmission signal is determined according to the spatial parameter corresponding to the TCI code point.
  • the foregoing determining the spatial parameter of the second transmission signal according to the spatial parameter of the first transmission signal or the spatial parameter of the TCI code point includes:
  • the spatial parameter of the second transmission signal is determined according to one of the spatial parameters corresponding to the first transmission signal;
  • the spatial parameter of the second transmission signal is determined according to the signaling information or a predetermined method, or the second transmission signal is determined according to the spatial parameter of the TCI code point. 2.
  • the spatial parameters of the transmission signal is determined according to the signaling information or a predetermined method, or the second transmission signal is determined according to the spatial parameter of the TCI code point.
  • TCI code point there is at least one TCI code point corresponding to the number of TCI states that is greater than or equal to the second predetermined value
  • the above-mentioned TCI code point is defined based on the frequency domain bandwidth of the second transmission signal, that is, each BWP or CC corresponding to the second transmission signal corresponds to an independent TCI code point definition; the TCI code point is used to indicate the TCI indication field in the PDCCH Correspondence between and TCI state.
  • the foregoing determining the spatial parameter of the second transmission signal includes:
  • the spatial parameter of the second transmission signal is determined according to the spatial parameter of the first transmission signal or the spatial parameter of CORESET satisfying the predetermined characteristic in the CORESET group; or,
  • the spatial parameters of the second transmission signal are determined according to the spatial parameters of the CORESET in the CORESET group that meet the predetermined characteristics.
  • the foregoing determining the spatial parameter of the second transmission signal according to the spatial parameter of the first transmission signal or the spatial parameter of the CORESET meeting the predetermined characteristics in the CORESET group includes:
  • the spatial parameters of the second transmission signal or the spatial parameters of CORESET satisfying the predetermined characteristics in the CORESET group are determined according to the signaling information or predetermined rules. Determine the spatial parameters of the second transmission signal.
  • the third determining device further includes at least one of the following conditions:
  • the CORESET where the downlink control channel for scheduling the second transmission signal is located belongs to a CORESET group
  • the number of CORESET groups corresponding to the frequency domain bandwidth where the second transmission signal is located is greater than the third predetermined value; where the frequency domain bandwidth where the second transmission signal is located refers to the BWP or CC, or the CC where the second transmission signal is transmitted.
  • a BWP the frequency domain bandwidth where the second transmission signal is located.
  • the CORESET in the CORESET group that meets the predetermined characteristics includes: among the time units closest to the second transmission signal and including the CORESET in the CORESET group, the CORESET with the lowest CORESET index among the CORESETs in the associated detection search space in the CORESET group.
  • the above-mentioned first transmission signal includes a channel and/or signal
  • the second transmission signal includes a channel and/or signal
  • the first transmission signal includes at least one of the following:
  • the above-mentioned first transmission signal includes at least one of the following:
  • the above-mentioned second transmission signal includes at least one of the following: an aperiodic reference signal, a physical downlink shared channel, and a physical uplink shared channel.
  • the above-mentioned spatial parameter includes at least one of the following:
  • Quasi-co-location parameters quasi-co-location reference signals, quasi-co-location reference signals associated with spatial reception parameters, spatial transmission filters, and spatial relationship reference signals.
  • the above-mentioned third determining device is further configured to:
  • the first judgment result is used to indicate whether there is at least one TCI code point in the TCI code point.
  • the number of TCI states corresponding to the TCI code point is greater than or equal to the second predetermined value;
  • the second judgment result is used to indicate whether the number of CORESET groups corresponding to the frequency domain bandwidth where the second transmission signal is located is greater than the third predetermined value.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination.
  • the forms are located in different processors.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any of the foregoing method embodiments when running. step.
  • the above-mentioned computer-readable storage medium may be configured to store the computer program for executing the above-mentioned embodiment.
  • the above-mentioned computer-readable storage medium may include, but is not limited to: U disk, read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory) , Abbreviated as RAM), portable hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • An embodiment of the present invention also provides an electronic device, including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute the steps in any one of the foregoing method embodiments.
  • the aforementioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the aforementioned processor, and the input-output device is connected to the aforementioned processor.
  • the above-mentioned processor may be configured to execute the steps in the above-mentioned embodiment through a computer program.
  • modules or steps of the above-mentioned embodiments of the present invention can be implemented by a general computing device, and they can be concentrated on a single computing device, or distributed among multiple computing devices.
  • they can be implemented with program codes executable by a computing device, so that they can be stored in a storage device for execution by the computing device, and in some cases, they can be different from
  • the steps shown or described are executed in order, or they are respectively fabricated into individual integrated circuit modules, or multiple modules or steps of them are fabricated into a single integrated circuit module for implementation. In this way, the present invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本发明实施例提供了一种空间参数确定方法及装置,其中,空间参数确定方法包括:根据第一配置信息确定N类传输信号的优先级信息;其中,N为大于1的整数;根据优先级信息确定同一符号对应的空间参数信息;其中,空间参数信息用于传输N类传输信号中至少一类传输信号。

Description

空间参数确定方法及装置 技术领域
本发明实施例涉及通信领域,具体而言,涉及一种空间参数确定方法及装置。
背景技术
多个传输接收节点(Multiple Transmission and Reception Point,Multi-TRP)联合传输或接收是目前无线通信中的重要技术,其在增加无线通信的吞吐量上有较显著的作用,因此,在长期演进(Long Term Evolution,LTE),长期演进增强(Long Term Evolution-Advanced,LTE-A),新无线接入技术(New Radio Access Technology,NR)等标准中均引入了多传输接收节点传输。同时,在NR标准中还引入了多面板(Multi-Panel)传输,其在接收端和/或发送端上安装多个天线面板,以提高无线通信系统的频谱效率。
在相关协议中,尤其是高频传输过程中,用户终端(User Equipment,UE)需要确定用于接收信号的空间参数,进而确定相应的接收或者发送波束。相关技术中,由于工程实现或者技术、成本等因素,通常而言,对于同一个端口,一个符号内只能有一个空间参数以及对应的波束来传输传输信号。而目前的相关技术传输中,当不同传输信号的空间参数不同时并无法有效的确定一个符号所对应的空间参数。
针对上述相关技术中,如何有效确定同一个符号对应的空间参数的问题,相关技术中尚未提出有效的解决方案。
发明内容
本发明实施例提供一种空间参数确定方法及装置,以至少解决相关技术中,如何有效确定同一个符号对应的空间参数的问题。
根据本发明的一个实施例,提供了一种空间参数确定方法,包括:
根据第一配置信息确定N类传输信号的优先级信息;其中,所述N为大于1的整数;
根据所述优先级信息确定同一符号对应的空间参数信息;其中,所述空间参数信息用于传输所述N类传输信号中至少一类传输信号。
根据本发明的另一个实施例,还提供了一种空间参数确定方法,包括:
根据以下之一确定第二传输信号的空间参数:
第一传输信号、预定的传输配置指示码点TCI code point、CORESET;
其中,调度所述第二传输信号的物理下行控制信道和所述第二传输信号之间时间间隔小于第一预定阈值。
根据本发明的另一个实施例,还提供了一种空间参数确定装置,包括:
第一确定模块,设置为根据第一配置信息确定N类传输信号的优先级信息;其中,所述N为大于1的整数;
第二确定模块,设置为根据所述优先级信息确定同一符号对应的空间参数信息;其中,所述空间参数信息用于传输所述N类传输信号中至少一类传输信号。
根据本发明的另一个实施例,还提供了一种空间参数确定装置,包括:
第三确定模块,设置为根据以下之一确定第二传输信号的空间参数:
第一传输信号、预定的传输配置指示码点TCI code point、CORESET;
其中调度所述第二传输信号的物理下行控制信道和所述第二传输信号之间时间间隔小于第一预定阈值。
根据本发明的另一个实施例,还提供了一种计算机可读的存储介质,所述计算机可读的存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本发明的另一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
附图说明
图1是根据本发明实施例提供的空间参数确定方法实施的硬件结构框图;
图2是根据本发明实施例提供的空间参数确定方法的流程图(一);
图3是根据本发明实施例提供的空间参数确定方法的流程图(二);
图4是根据本发明实施例提供的Single DCI模式与Multi DCI模式进行空间参数确定的工作流程图(一);
图5是根据本发明实施例提供的Single DCI模式与Multi DCI模式进行空间参数确定的工作流程图(二);
图6是根据本发明实施例提供的空间参数确定装置的结构框图(一);
图7是根据本发明实施例提供的空间参数确定装置的结构框图(二)。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
为进一步描述本发明中的空间参数确定方法及装置,以下对本发明中的空间参数确定方法及装置的适用场景进行进一步阐述:
本发明实施例的空间参数确定方法及装置可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE时分双工(Time Division Duplex,TDD)、LTE Advance、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、5G新空口(New Radio NR)通信以及它们的演化或演进版本对应的系统等。本发明实施例中的空间参数确定方法及装置用于至少一个第一通信节点和至少一个第二通信节点之间的交互;其中,第一通信节点可以是LTE中的演进型基站(Evolutional Node  B,eNB或eNodeB)、5G网络中的基站设备、或者未来通信系统中的基站等,所述基站可以包括各种宏基站、微基站、家庭基站、无线拉远、路由器、位置服务器(location server)、或者主小区(primary cell)和协作小区(secondary cell)等各种网络侧设备,定位管理功能(location management function,LMF)设备;第二通信节点可以为终端设备,也可为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。例如,终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、或者5G网络中的终端设备等。上述应用场景仅为部分实例,本发明对此并不限定,第一通信节点和第二通信节点可以统称为通信节点。
本发明实施例提供的空间参数确定方法可以在上述第一通信节点和/或第二通信节点上执行。以运行在第一通信节点上为例,图1是根据本发明实施例提供的空间参数确定方法实施的硬件结构框图;如图1所示,第一通信节点10,如基站,可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和设置为存储数据的存储器104;上述第一通信节点还可以包括设置为与第二通信节点20之间实现通信功能的传输设备106。本领域普通技术人员可以理解,图2所示的结构仅为示意,其并不对上述第一通信节点的结构造成限定。例如,第一通信节点10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
在本发明的实施例中,为了测量信道状态信息(Channel State Information,CSI),或者获得信道的一些其它功能的参数,比如时频偏, 移动性管理,位置信息,波束管理等的参数,需要配置一些参考信号资源。其中,参考信号资源包括但不限于信道状态信息-参考信号(Channel State Information-Reference Signal,CSI-RS)资源、同步信号块(Synchronization Signals Block,SSB)资源、物理广播信道(Physical Broadcast Channel,PBCH)资源、同步广播块/物理广播信道(SSB/PBCH)资源、上行探测参考信号(Sounding reference signal,SRS)资源、定位参考信号(Positioning Reference Signals,PRS)。上述CSI-RS资源主要指非零功率信道状态信息-参考信号(Non Zero Power Channel State Information-Reference Signal,NZP-CSI-RS)资源。用于干扰测量资源包括但不限于信道状态信息干扰测量(Channel State Information-Interference Measurement,CSI-IM)、用于干扰测量的NZP-CSI-RS(NZP-CSI-RS for Interference Measurement)、零功率信道状态信息-参考信号(ZP-CSI-RS);在一次干扰测量中,干扰测量资源包括的M1个干扰测量资源可以包括NZP-CSI-RS、CSI-IM,ZP-CSI-RS中的至少一个,对于这些参考信号,根据配置的时域特性又包括周期(Periodic)的参考信号,半持续(Semi-persistent)的参考信号,非周期(Aperiodic)的参考信号,其中周期的参考信号每隔一个周期传输一次,而半持续的参考信号会在激活到去激活的时间区间内周期地传输,而非周期参考信号在信令触发后只传输一次。比如,周期的参考信号有:周期的NZP CSI-RS,CSI-IM,ZP CSI-RS,SSB,SRS至少之一。非周期参考信号包括非周期的NZP CSI-RS,CSI-IM,ZP CSI-RS,SSB,SRS至少之一。而半持续的参考信号有半持续的NZP CSI-RS,CSI-IM,ZP CSI-RS,SSB,SRS至少之一。本发明实施例中可以用SSB表示SSB和/或PBCH。
为了传输数据或者信令,可将物理信道分成物理下行控制信道(Physical downlink control channel,PDCCH),物理上行控制信道(Physical uplink control channel,PUCCH),物理下行共享信道(Physical downlink shared channel,PDSCH),物理上行共享信道(Physical uplink shared channel, PUSCH),其中PUSCH和PDSCH可以称为物理共享信道,PDCCH和PUCCH可以称为物理控制信道或控制信道,PDCCH和PDSCH为物理下行信道,而PUSCH和PUCCH为物理上行信道。
本发明实施例中所述的传输信号包括参考信号和/或物理信道,比如各种参考信号以及各种物理信道,比如NZP CSI-RS,ZP CSI-RS,SSB,SRS,PDSCH,PDCCH,PUSCH,PUCCH,CSI--IM等至少一个,而对于参考信号可以是周期的,非周期的,半持续的。
由于有相同空间参数的传输信号,可以用相同的空间参数对应的波束接收或发送,所以将具有相同空间参数的传输信号归为同类的传输信号。比如把多个传输信号分成N类传输信号,同一类传输信号有相同的空间参数,不同类传输信号有不同的空间参数,N为大于1的整数。
本发明的实施例中所述的空间参数包括以下至少之一参数:准共址参考信号,关联空间接收参数的准共址参考信号,空间发送滤波器,空间关系参考信号,准共位置参数。其中,准共位置参数包括以下至少之一:准共位置(Quasi-co-located,QCL)、传输配置指示(Transmission Configuration Indicator,TCI)、传输配置状态(transmission configuration Indicator state,TCI state)、TCI state组,QCL类型D(QCL Type D)、接收波束组、发送波束组、接收波束、发送波束、空间接收参数(Spatial Rx Parameter)。波束信息可以包括以下至少之一:到达角(angle Of Arrival,AOA)、离开角(angle Of Departure,AOD)、ZOD(Zenith angle Of Departure)、ZOA(Zenith angle Of Arrival)、离散傅里叶变化(Discrete Fourier Transformation,DFT)矢量、码本中的码字、发送波束、接收波束、发送波束组、接收波束组、发送波束索引、接收波束索引、发送波束组索引、接收波束组索引。
上述准共位置QCL可以包括QCL type A、QCL type B、QCL type C和QCL Type D;两个端口满足准共位置关系表示一个端口的大尺度信息 可以通过另外一个端口的大尺度信息推导出来,上述大尺度信息包括但不限于多普勒平移(Doppler shift)、多普勒扩展(Doppler spread)、平均延迟(average delay)、延迟扩展(delay spread)、空间接收参数(Spatial Rx parameter)。其中一种QCL Type的分类如下:
-'QCL-TypeA':{Doppler shift,Doppler spread,average delay,delay spread}
-'QCL-TypeB':{Doppler shift,Doppler spread}
-'QCL-TypeC':{Doppler shift,average delay}
-'QCL-TypeD':{Spatial Rx parameter}
本发明实施例中的时域的单位以包括以下至少之一的时间单位:时隙(slot)、符号(symbol)、时隙组、符号组、X毫秒、Y微秒;其中,所述符号组包括至少一个符号(比如,迷你时隙(mini-slot)),而所述时隙组包括至少一个时隙;其中,X、Y为正实数。本发明实施例中的符号是指一个子帧或帧或时隙中的时间单位,比如可以为一个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、单载波频分复用多址接入(Single-Carrier Frequency Division Multiple Access,SC-FDMA)符号、正交多址频分复用接入(Orthogonal Frequency Division Multiple Access,OFDMA)符号,本发明实施例中的符号和时域符号可以相互代替,包括但不限于OFDM,OFDMA,SC-FDMA,这些符号的变形,这些符号的时域频域滤波后的符号。
另外,本发明实施例中所述的索引(index)和指示(indicator)是可以相互替换的概念。
在本发明实施例中,高层信令包括无线资源控制(Radio Resource Control,RRC)信令和/或媒体接入控制层控制单元(Media Access Control control element,MAC CE)信令。物理层信令包括物理下行控制信道中的下行控制信息(Downlink Control Information,DCI),或者在物理上行控 制信道或者物理上行共享信道反馈的信令。
在本发明实施例中,在多传输接收节点或多面板(Multi-Panel)传输的场景下,一个面板可以对应一个端口组(如天线端口组,天线组),两者是一一对应的,也可以相互替换。面板是指天线面板,一个传输接收点(Transmission Reception Point,TRP)或者通信节点(包括但不限于终端,基站等)都可以包括至少一个天线面板。每个面板上有一个或者多个天线阵子,多个阵子可以虚拟成一个天线端口。一个面板上的天线端口可以分成一个端口组。一个面板又可以分成多个子面板,每个子面板包括的多个天线端口可以分成一个端口组。比如双极化的天线,正45°极化的天线为一个子面板,而负45°极化的天线为一个子面板。本申请实施例中把面板和子面板都统称为面板,用panel表示,这里的面板可以用端口组代替。
在NR等标准中,PDCCH是需要映射到一组资源单元(resource element,RE)上的,比如包括一个或者多个控制信道单元(Control Channel Element,CCE),其中,一个RE在频域上包括一个子载波,而在时域上包括一个符号,一个CCE包括多个RE。而用于传输PDCCH的一个或者多个CCE的集合,有时也叫控制资源集合(Control resource set,CORESET),其在频域上包括多个物理资源块,而在时域上包括K个符号,K为自然数,比如K可以取1、2、3的整数。而为了检测PDCCH,将某个聚合等级的候选PDCCH配置成一个集合,这个等级的下的候选PDCCH集合就是搜索空间(Search Space,SS),而多个搜索空间的集合形成一个搜索空间集合(SS set,SSSET,或SSS),每个终端可以配置至少一个搜索空间集合。而为了检测PDCCH。会在搜索空间里配置当前终端的PDCCH检测的时机(即occasion),以及检测的PDCCH候选(即candidate),或PDCCH候选。另外,PDCCH包括多种格式format,每种格式都对应一个相对应格式下的下行控制信息DCI,每个DCI中又包括多个具体的信令指示域。其中,检测也可以称为监测,盲检,主要是用来确 定候选的多个PDCCH哪个是用于给终端传输下行控制信息的PDCCH。
本发明实施例中所述的传输可以指发送或接收,比如数据或信号的传输可以是指数据或信号的发送,也可以是数据或信号的接收,这里的信号包括各种参考信号,数据包括物理上行共享信道或物理下行共享信道传输的数据。
本发明实施例中,为了更好地传输PUSCH或者PDSCH,将连续K1个符号和L1个频域子载波的一组资源单元(Resource Element,RE)形成一个资源块(Resource block,RB,有时也叫物理资源块,Physical Resource block,PRB,或RB),K1和L1为正整数,比如K1=12或者14,L1=12。这里,一个RE包括一个符号和一个子载波对应的用于承载一个调制信号的最小资源单位。
为了解调或者获取RE上调制的物理信道上的携带的信息(包括数据或者信号),需要估计所述RE上的无线信道的值,而这个值一般是由解调参考信号(Demodulation Reference Signal,DMRS)估计的,并用DMRS对应的RE上的信道插值获得物理信道上的信道。
在本发明实施例中,无线网络临时标识(Radio Network Temporary Identifier,RNTI)用于第一通信节点和第二通信节点之间的信号信息内部作为第二通信节点的标识。主要包括以下至少之一:用于标识系统消息的SI-RNTI、用于标识寻呼信息的P-RNTI、标示用户发随机接入前导所使用的资源块的RA-RNTI、用于标识用户业务的C-RNTI、用于标识PUCCH上行功控信息的TPC-PUCCH-RNTI、用于标识PUSCH上行功控信息的TPC-PUSCH-RNTI。
相关技术中,多个传输信号可能来自多个通信节点(比如传输节点,基站等),M个传输信号可以来自M个不同的TRP,或者来自M个不同的天线面板,或者M个不同的带宽部分(Bandwidth Part,BWP),或者M个不同的载波组件(Carrier Component,CC),其中所述的M个面板 或者M个BWP或者M个CC可以属于同一个TRP,也可以属于多个TRP。而为了区别来自不同TRP的控制信道,会对候选的CORESET进行分组,每个组包括至少一个CORESET,每个CORESET有一个高层参数索引,比如CORESET组索引coresetPoolIndex-r16。当多个传输信号来自不同的传输节点时,可以通过一个DCI通知物理下行控制信息,这种方式叫基于单物理下行控制信息(Single DCI)的联合传输,而如果通过2个或者两个以上的DCI通知物理下行控制信道,这种方式叫基于多个物理下行控制信息(Multi DCI)的联合传输。
为了提高可靠性,一种技术是用混合自动重复传输(Hybrid automatic repeat request,HARQ),即终端或者基站在接收到传输块后,如果检测发现接收是正确的,反馈一个确定信息(Acknowledgement,ACK),否则反馈一个否定信息(Negative Acknowledgement,NACK),而ACK和NACK信息可以统称为HARQ应答,当然也可以称为如下之一:HARQ应答信息,HARQ-ACK信息,HARQ-ACK,HARQ-ACK应答,ACK/NACK信息,ACK/NACK码本,如果没有特别说明,本发明实施例中的ACK/NACK也可以称为HARQ-ACK。
相关技术中,会对至少一个TRP所对应的所有服务小区(或者载波组件Carrier Component,CC)和高层配置的符合要求的PUCCH检测时机Occasion生成一个HARQ的HARQ-ACK比特集合,比如HARQ-ACK码本,HARQ-ACK子码本,并在PUCCH资源或者PUSCH资源中反馈所述的HARQ-ACK码本。
可以通过高层信令、物理层信令或者约定的方式至少之一确定不同ACK信息的优先级,并且,传输信号对应的ACK信息的优先级满足如下特征至少之一:相同优先级的ACK可以合并到同一HARQ-ACK码本中;不同优先级的ACK不能合并到同一HARQ-ACK码本中;相同优先级的ACK可以合并到物理上行信道中传输中;不同优先级的ACK不能合并到物理上行信道中传输中。
当RRC配置的TCI state数目N0大于一个配置的门限个数N1时,需要根据MAC CE从N0个TCI state中选择N1个TCI state或者TCI state组形成一个集合,然后用DCI的TCI域从这个TCI state集合里选择其中一个TCI state或者TCI state组以指示终端需要使用的QCL取值。其中,DCI里的TCI域用于指示的所述一个TCI state或者TCI state组的值就是一个码点(code point)或者称为TCI codepoint,每个码点和一个TCI state或者TCI state组关联,这里TCI state组包括至少2个TCI state。表1是相关技术中的TCI state映射表格,一种关联方式如表1所示。
表1 TCI state映射表格
Code point TCI state
000 TCI state2
001 TCI state1,TCI state5
010 TCI state3
011 TCI state6
100 TCI state4
101 TCI state1,TCI state 18
110 TCI state18
111 TCI state 4,TCI state 8
本发明实施例中所述的预定的传输配置指示码点TCI code point为,传输信号对应的TCI state映射表格中第一个TCI state个数大于等于2的TCI code point。即预定的TCI code point为TCI codepoint中第一个包括大于1个TCI state的TCI codepoint。所述的TCI codepoint集合是基于每个BWP或者CC定义的。一个TCI code point是DCI中TCI域的一个值,这个值用于指示一个或者一组TCI state,一个或者一组TCI state来自RRC或者MAC CE确定的TCI state集合。
传输信号关联的空间参数是指以下之一:传输信号对应的空间参数,所述用于发送所述传输信号的空间参数,用于接收所述传输信号的空间参数,与所述传输信号准共址的参考信号。
以下对于本发明实施例中的空间参数确定方法及装置的工作方式进行阐述。
实施例1
本实施例提供了一种空间参数确定方法,图2是根据本发明实施例提供的空间参数确定方法的流程图(一),如图2所示,本实施例中的空间参数确定方法包括:
S102,根据第一配置信息确定N类传输信号的优先级信息;其中,N为大于1的整数;
S104,根据优先级信息确定同一符号对应的空间参数信息;其中,空间参数信息用于传输N类传输信号中至少一类传输信号。
需要进一步说明的是,上述实施例中,传输信号可以为参考信号,物理控制信道,物理共享信道等等,本发明实施例对此不作限定;上述符号通常可为时域符号;上述优先级信息即用于指示传输信号的优先级。
需要进一步说明的是,上述实施例可以根据传输信号的优先级信息确定同一符号对应的空间参数信息,并根据所述确定的传输信号的空间参数对应的波束传输所述的至少一个传输信号,比如用于接收所述至少一个传输信号的接收波束。这里只是至少一个传输信号,可以是所述N类传输信号的所有传输信号,也可以是所述传输信号中优先级为高的K个传输信号。
通过本实施例中的空间参数确定方法,由于可以根据第一配置信息确定N类传输信号的优先级信息;其中,N为大于1的整数;根据优先级信息确定同一符号对应的空间参数信息;其中,空间参数信息用于传输N类传输信号中至少一类传输信号。因此,通过本发明实施例可以解决相关技术中如何有效确定同一个符号对应的空间参数的问题,以达到用所述空间参数在所述同一个符号上有效传输所述至少一类传输信号的效果。
可选地,本实施例中的空间参数确定方法,可在Multi-TRP传输或Multi-Panel或高频传输的场景下,在同一符号内涉及N个传输信号时,可有效确定对应的空间参数;例如,在UE接收到多个PDSCH,如PDSCH1 和PDSCH2的过程中,通过本实施例中的空间参数确定方法以令UE确定优先级较高的传输信号对应的接收波束为PDSCH1和PDSCH2的接收波束。
在一实施例中,上述N类传输信号中,同一类传输信号关联相同的空间参数信息,不同类传输信号关联不同的空间参数信息。
在一实施例中,上述步骤S104中,根据优先级信息确定同一符号对应的空间参数信息,包括:
确定N类传输信号中优先级为高的K类传输信号关联的空间参数为同一符号对应的空间参数信息;其中,K为正整数且小于等于T;T为同一个符号对应的空间参数个数的极大值,T由高层配置或根据用户终端UE能力确定。
需要进一步说明的是,上述实施例中,K类传输信号即为N类传输信号中优先级为高的多类传输信号,K类传输信号的确定方式可以有多种,如在N类传输信号选取优先级较高的多类传输信号作为K类传输信号,例如,在本实施例中存在N类传输信号(比如N为5)时,可将N类传输信号按照优先级从高到底进行排序,选取其中优先级较高的前K类传输信号作为上述实施例中的K类传输信号(比如K为3);或者,可直接在N类传输信号选取优先级最高的多类传输信号作为K类传输信号,例如,在本实施例中存在N类传输信号(比如N为5)时,上述N类传输信号存在两个不同的优先级级别(高优先级与低优先级),即可选取优先级最高的多类传输信号作为K类传输信号。
另一方面,对于同一符号而言,可由高层配置或根据UE能力确定该同一符号对应的的空间参数个数的极大值T,即最大空间参数个数,K的个数需满足T的限制。
需要进一步说明的是,上述实施例中,同一个符号的空间参数个数即为通信节点同一个时域符号所能传输的最大空间参数个数;以此,根据上述实施例中的技术方案,可令确定的空间参数与通信节点在同一个时域符 号所能使用的空间参数的个数相对应。通过上述实施例中记载的技术方案,可实现UE对应一个TRP发送的多个传输信号(比如不同CC或者BWP发送的传输信号)进行空间参数的确定,或对不同的TRP发送的传输信号进行空间参数的确定。
在一实施例中,上述步骤S104中,根据优先级信息确定同一符号对应的空间参数信息,包括:
根据第二配置信息将N类传输信号区分为C个传输信号组,其中,每个传输信号组中的一类或多类传输信号关联相同的第二配置信息;C为正整数,且C小于或等于N。在另一个实施例中,可根据高层信令或者根据预定方式将第二配置信息分成C个组,每个组第二配置信息组包括至少一个第二配置信息,将一个或者多个传输信号关联相同第二配置信息组的传输信号分成一个传输信号组。比如所述的第二配置信息为CORESET组,那么传输信号对应的COSRESET组索引相同的传输信号为一组。比如将第二配置信息X分成C组,那么传输信号对应的第二配置信息X组索引相同的传输信号为一组,这里,X可以用CORESET索引信息;传输信号对应的确认ACK信息的优先级信息;物理下行控制信息中的优先级指示PI(Priority indicator)信息;虚拟小区号信息;物理小区标识PCI信息;无线网络临时标识RNTI的类型信息;下行控制信息DCI的参数信息;调度时间间隔信息;信道类型信息;载波组件CC索引信息之一替换。
需要进一步说明的是,上述实施例中,根据第二配置信息将N类传输信号区分为C个传输信号组,即根据第二配置信息对N类传输信号进行分组,以得到C个传输信号组。
需要进一步说明的是,对于位于同一组中的多类传输信号也按照本实施例中的传输信号的优先级的确定方法确定传输信号组内的多类传输信号的优先级,以及它们的空间参数。对于位于不同组的传输信号,由于它们可以同时接收,可以不用进一步确定它们之间的优先级,只要分别使用对应传输信号组的空间参数就可以,也可以采用其它预设方式,本发明实 施例对此不作限定。
在一实施例中,上述第二配置信息包括以下至少之一:
控制资源集CORESET组信息;CORESET索引信息;传输信号对应的确认ACK信息的优先级信息;物理下行控制信息中的优先级指示PI(Priority indicator)信息;虚拟小区号信息;物理小区标识PCI信息;无线网络临时标识RNTI的类型信息;下行控制信息DCI的参数信息;调度时间间隔信息;信道类型信息;载波组件CC索引信息。
在一实施例中,上述步骤S104中,根据优先级信息确定同一符号对应的空间参数信息,包括:
对于C个传输信号组中的第i个传输信号组,将第i个传输信号组中优先级为高的K i类传输信号关联的空间参数信息确定为第i个传输信号组中的一类或多类传输信号在同一符号对应的空间参数信息;i为正整数,且i小于等于C;
其中,K i为正整数,且K i小于等于T i;T i为同一符号中第i个传输信号组对应的的空间参数个数的极大值,T i由高层配置或根据UE能力确定。
需要进一步说明的是,上述第i个传输信号组为C个传输信号组中的任意一个传输信号组,即i=1、2、3……C-1、C。第i个传输信号组中的K i类传输信号,即为该第i个传输信号组中优先级较高的传输信号;对于第i个传输信号组而言,K i类传输信号的确定方式可以有多种,如在第i个传输信号组的多类传输信号中,选取优先级较高的多类传输信号作为K i类传输信号(比如按传输信号优先级从高到底排序,选取优先级较高的前K i类传输信号),或者,可直接在N类传输信号选取优先级最高的多类传输信号作为K类传输信号;具体方式可参见前述K类传输信号的选取,在此不再赘述。
另一方面,对于每一个第i个传输信号组而言,可由高层配置或根据UE能力确定该同一符号中第i个传输信号组对应的的空间参数个数的极大值,即最大空间参数个数,K i的个数需满足T i的限制。
在一实施例中,C个传输信号组中,每一个传输信号组对应的K i类传输信号所构成的集合为K类传输信号;多个K i的和为K;
其中,K为正整数且小于等于T;K类传输信号为N类传输信号中通过预设方式确定的优先级为高的一类或多类传输信号;T为同一个符号对应的空间参数个数的极大值,T由高层配置或根据用户终端UE能力确定。
需要进一步说明的是,上述C个传输信号组中,每一个传输信号组中K i类传输信号对应的数量K i叠加后即为K类传输信号对应的数量K,即多个Ki之和为K。
在一实施例中,本实施例中的空间参数确定方法还包括:
在C个传输信号组中确定优先级为高的M类传输信号,其中,M为正整数且大于T;
根据传输信号的优先级,确定M类传输信号中优先级为高的T类传输信号关联的空间参数为同一符号对应的空间参数信息。
在一实施例中,上述第一配置信息包括以下至少之一:
CORESET组信息;CORESET索引信息;传输信号对应的ACK信息的优先级信息;物理下行控制信息中的优先级指示PI信息;虚拟小区号信息;PCI信息;RNTI的类型信息;DCI的参数信息;调度时间间隔信息;信道类型信息;CC索引信息。
在一实施例中,上述步骤S102中,根据第一配置信息确定N类传输信号的优先级信息,包括:
在第一配置信息为CORESET组信息的情形下,传输信号对应的CORESET组信息的CORESET组索引越小,确定传输信号的优先级信息所指示的优先级越高;或者,
在第一配置信息为CORESET索引信息的情形下,传输信号对应的CORESET索引越小,确定传输信号的优先级信息所指示的优先级越高;或者,
在第一配置信息为传输信号对应的ACK信息的优先级信息的情形下,传输信号对应的ACK信息的优先级信息越高,确定传输信号的优先级信息所指示的优先级越高,其中,传输信号对应的ACK信息的优先级信息由高层信令确定或由预设方式确定;或者,
在第一配置信息为物理下行控制信息中的优先级指示PI信息的情形下,传输信号对应的物理下行控制信息中的优先级指示PI信息的优先级信息越高,确定传输信号的优先级信息所指示的优先级越高,其中,物理下行控制信息中的优先级指示PI信息由高层信令确定或由预设方式确定;或者,
在第一配置信息为虚拟小区号的情形下,传输信号对应的虚拟小区号越小,确定传输信号的优先级信息所指示的优先级越高;或者,
在第一配置信息为物理小区标识的情形下,传输信号对应的物理小区标识越小,确定传输信号的优先级信息所指示的优先级越高;或者,
在第一配置信息为RNTI的类型信息的情形下,传输信号对应的RNTI的类型的优先级信息越高,确定传输信号的优先级信息所指示的优先级越高,其中,RNTI的类型的优先级信息由高层信令确定或由预设方式确定;或者,
在第一配置信息为DCI的参数信息的情形下,传输信号对应的DCI的参数信息的优先级信息越高,确定传输信号的优先级信息所指示的优先级越高,其中,DCI的参数信息的优先级信息由高层信令确定或由预设方式确定;或者,
在第一配置信息为信道类型信息的情形下,传输信号对应的信道类型信息的优先级信息越高,确定传输信号的优先级信息所指示的优先级越高,其中,信道类型信息的优先级信息由高层信令确定或由预设方式确定;或者,
在第一配置信息为调度时间间隔信息的情形下,传输信号对应的调度时间间隔越大,确定传输信号的优先级信息所指示的优先级越高;或者,
在第一配置信息为CC索引信息的情形下,传输信号对应的CC索引越小,确定传输信号的优先级信息所指示的优先级越高。
在一实施例中,本实施例中的空间参数确定方法还包括:
在传输信号没有关联的CORESET组或者CORESET的情形下,为传输信号确定关联的CORESET组或者CORESET。比如所述传输信号没有对应的CORESET组,那么默认所述的传输信号对应的CORESET组的索引为0;所述传输信号没有对应的CORESET,那么默认所述的传输信号对应的CORESET的索引为0。
在一实施例中,上述空间参数信息包括以下至少之一:
准共址参数;准共址参考信号;关联空间接收参数的准共址参考信号;空间发送滤波器;空间关系参考信号。
需要进一步说明的是,本发明实施例所述的空间参数确定方法,适用于前述第一通信节点和第二通信节点,第一通信节点通过本发明实施例中的方法确定的空间参数来发送所述的传输信号,比如确定发送所述传输信号所使用的发送波束。而第二通信节点可以用本发明实施例中的方法确定的空间参数来接收所述的传输信号,比如确定接收所述传输信号所使用的接收波束。
以下通过多个示例性实施例的方式进一步阐述本实施例中的空间参数确定方法:
示例实施例1
在一示例实施例中,包括至少一个第一通信节点,配置了N个CORESET组,每个CORESET组包括至少一个CORESET,相同CORESET组内的CORESET高层参数索引coresetPoolIndex-r16取值相同,那么可以根据CORESET组里的coresetPoolIndex-r16取值确定传输信号的优先级,比如调度传输信号对应的CORESET的coresetPoolIndex-r16取值越小,其对应的传输信号的优先级越高。另外一方面,可用CORESET组对传输信号进行分组,比如当调度传输信号对应的CORESET具有相同 coresetPoolIndex-r16取值,那么可以把它们分成同一个传输信号组。N为大于1的整数,不失一般性,这里假设N=2,其中CORESET组1包括CORESET1和CORESET2,每个CORESET对应的coresetPoolIndex-r16取值为0,CORESET组2包括CORESET3和CORESET4,每个CORESET对应的coresetPoolIndex-r16取值为1;其中传输信号1和传输信号2分别使用CORESET组1里的CORESET1中的DCI1和CORESET组2里的CORESET3中的DCI3调度,如果DCI1对应的CORESET的COREST组索引coresetPoolIndex-r16取值为0,而DCI3对应的CORESET的COREST组索引coresetPoolIndex-r16取值为1,那么传输信号1的优先级比传输信号2的优先级高。
如果传输信号1和传输信号2分别使用CORESET组1里的CORESET1中的DCI1和CORESET组1里的CORESET2中的DCI2调度,由于DCI1和DCI2有相同的CORESET组索引的取值,那么传输信号1和传输信号2可以被分为同一个传输信号组。并需要根据CORESET索引、虚拟小区号信息、物理小区标识PCI信息、无线网络临时标识RNTI的类型信息、下行控制信息DCI的参数信息、调度时间间隔信息、信道类型信息、CC索引信息等至少之一确定其空间参数的优先级,并根据优先级确定传输所述传输信号组里的传输信号使用的空间参数。
根据上面的讨论,由于传输信号1的优先级高于传输信号2的优先级,所以确定传输信号1对应的空间参数为优选的空间参数,即如果传输信号1和传输信号2在相同的符号里传输,那么,优先使用传输信号1关联的空间参数为这个符对应的空间参数,用这个空间参数确定的波束来接收传输信号1和传输信号2。需要说明的是,最终接收传输信号的空间参数可能大于1个,那么是,即最终的所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等于1小于N的整数,K和Ki由高层信令配置 或UE能力确定。
示例实施例2
在一示例实施例中,包括至少一个第一通信节点,配置了N个CORESET,每个CORESET都有一个关于CORESET的索引controlResourceSetId用于标识所述的CORESET。那么可以根据CORESET的索引controlResourceSetId取值确定传输信号的优先级,比如调度的传输信号的DCI所对应的CORESET的controlResourceSetId取值越小,其对应的传输信号的优先级越高。另外,可以将controlResourceSetId索引分成多个controlResourceSetId集合,所述controlResourceSetId集合可以通过高层信令配置,或者按约定的方式形成,比如controlResourceSetId小于A1的为一个controlResourceSetId集合,而大于A1的为一个controlResourceSetId集合。而被调度的多个传输信号的DCI对应的CORESET索引在相同的controlResourceSetId集合,那么可以把它们分成同一个传输信号组。N为大于1的整数,不失一般性,这里假设N=4,其中,即配置了CORESET1、CORESET2、CORESET3和CORESET4,其对应的CORESET索引取值分别为0-3。另外,当设置A1=2时,使用CORESET1和CORESET2对应的DCI调度的传输信号为一个传输信号组,而使用CORESET3和CORESET4对应的DCI调度的传输信号为一个传输信号组。一个具体传输过程中,传输信号1和传输信号2分别使用CORESET1中的DCI1和CORESET3中的DCI3调度,因为DCI1对应的CORESET的COREST索引取值为0,而DCI3对应的CORESET的COREST索引取值为2,那么传输信号1的优先级比传输信号2的优先级高。
如果传输信号1和传输信号2分别使用CORESET1中的DCI1和CORESET2中的DCI2调度,由于DCI1和DCI2在相同的CORESET索引集合,那么传输信号1和传输信号2可以被分为同一个传输信号组,并且DCI1对应的CORESET索引小于DCI2对应的CORESET索引,所以传输信号1的空间参数优先级高于传输信号2的空间参数优先级,当然对 于同一组的传输信号也可以用第二配置信息中除了CORESET索引外的其它信息确定传输信号的优先级。
基于上述阐述,由于传输信号1的优先级高于传输信号2的优先级,所以确定传输信号1对应的空间参数为优选的空间参数,即如果传输信号1和传输信号2在相同的符号里传输,那么,优先使用传输信号1关联的空间参数为这个符对应的空间参数,用这个空间参数确定的波束来接收传输信号1和传输信号2。需要说明的是,最终接收传输信号的空间参数可能大于1个,那么是,即最终的所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等于1小于N的整数,K和Ki由高层信令配置或UE能力确定。
示例实施例3
在一示例实施例中,包括至少一个第一通信节点,第一通信节点可能同时传输多种业务类型,包括超高可靠与低时延通信(Ultra-reliable and Low Latency Communications,URLLC)业务与增强移动宽带(Enhanced Mobile Broadband,eMBB)业务。其中,URLLC和eMBB的优先级主要根据物理下行控制信息中的优先级指示PI(Priority indicator)信息指示,即下行控制格式0-1,0-2,1-1或1-2(DCI0_1或DCI0_2,DCI1_1或DCI1_2)中的Priority indicator域中的取值,DCI中PI值越大,表示所述DCI对应的传输信号的优先级越高,可以优先传输。比如,第一个传输信号对应的DCI的所述PI值为1时,而第二个传输信号对应的DCI的所述PI值为0时,第二个传输信号的优先级低于第一个传输信号的优先级。从而终端可以根据接收的PI指示确定eMBB和URLLC的优先级,并根据eMBB和URLLC的优先级确定传输信号的空间参数,比如如果PI指示eMBB的优先级高,那么跟eMBB相关的传输信号的优先级比跟URLLC相关的传输信号优先级高,否则跟eMBB相关的传输信号的优先级比跟URLLC相关 的传输信号优先级低。另外可以根据PI指示对传输信号进行分组,比如传输信号对应的PI值为1的传输信号为一组,传输信号对应的PI值为0的传输信号为一组。而相同组内的传输信号,通过CORESET组索引、CORESET索引、虚拟小区号信息、物理小区标识PCI信息、无线网络临时标识RNTI的类型信息、下行控制信息DCI的参数信息、调度时间间隔信息、信道类型信息、CC索引信息等至少之一确定传输信号组内的传输信号的优先级,并根据传输信号的优先级确定传输所述传输信号使用的空间参数,所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等于1小于N的整数,K和Ki由高层信令配置或UE能力确定。
示例实施例4
在一示例实施例中,包括至少一个第一通信节点,第一通信节点可能同时传输多个传输信号,比如传输信号1,传输信号2,传输信号3,传输信号4。高层或者物理层信令为所述的传输信号配置了虚拟小区信息vPCI,所述虚拟小区信息用于生成传输信号的序列或者扰码等。假设传输信号1至传输信号4的虚拟小区vPCI分别为1-4。从而终端可以根据接收的vPCI的大小确定传输信号的优先级,比如,传输信号对应的虚拟小区号越小的传输信号优先级越高。另外一方面,可以根据虚拟小区号对传输信号进行分组,比如根据配置的或者约定的方式,将虚拟小区号分成多个虚拟小区号组。传输信号对应的虚拟小区号在相同虚拟小区号组的传输信号为一组。而相同传输信号组内的传输信号,通过可以进一步根据传输信号对应的虚拟小区号大小确定传输信号的优先级,比如虚拟小区号小的传输信号对应的传输信号优先级高,当然对于同一组的传输信号也可以用第二配置信息中除了虚拟小区号外的其它信息确定传输信号的优先级。并根据传输信号优先级确定传输所述传输信号使用的空间参数,所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先 级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等于1小于N的整数,K和Ki由高层信令配置或UE能力确定。
示例实施例5
在一示例实施例中,包括至少一个第一通信节点,第一通信节点可能同时传输多个传输信号,比如传输信号1,传输信号2,传输信号3,传输信号4。高层或者物理层信令为所述的传输信号配置了物理小区标识PCI信息PCI,所述PCI用于生成传输信号的序列或者扰码,或者用于标识所述传输信号对应的物理小区。假设传输信号1至传输信号4的PCI分别为1-4。从而终端可以根据接收的PCI的大小确定传输信号的优先级,比如,传输信号对应的PCI越小的传输信号优先级越高。另外一方面,可以根据PCI对传输信号进行分组,比如根据配置的或者约定的方式,将PCI分成多个PCI组。传输信号对应的PCI在相同PCI组的传输信号为一组。而相同传输信号组内的传输信号,通过可以进一步根据传输信号对应的PCI大小确定传输信号的优先级,比如PCI小的传输信号对应的传输信号优先级高,,当然对于同一组的传输信号也可以用第二配置信息中除了物理小区号外的其它信息确定传输信号的优先级。并根据传输信号的优先级确定传输所述传输信号使用的空间参数,所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等于1小于N的整数,K和Ki由高层信令配置或UE能力确定。
示例实施例6
在一示例实施例中,包括至少一个第一通信节点,第一通信节点可能同时传输多个传输信号,比如传输信号1,传输信号2,传输信号3,传输 信号4。高层或者物理层信令为所述的传输信号配置了多个载波组件CC,所述CC用于传输所述的传输信号1至传输信号4中的至少一个。假设传输信号1至传输信号4的对应的CC索引分别为0-3。从而终端可以根据接收的CC索引的大小确定传输信号的优先级,比如,传输信号对应的CC索引越小的传输信号优先级越高。另外一方面,可以根据CC索引对传输信号进行分组,比如根据配置的或者约定的方式,将CC索引分成多个CC索引组。传输信号对应的CC索引在相同CC索引组的传输信号为一组。而相同组内的传输信号,通过可以进一步根据传输信号对应的CC索引大小确定传输信号组内的传输信号的优先级,比如CC索引小的传输信号对应的优先级高,当然对于同一组的传输信号也可以用第二配置信息中除了CC索引外的其它信息确定传输信号的优先级。并根据传输信号优先级确定传输所述传输信号使用的空间参数,所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等于1小于N的整数,K和Ki由高层信令配置或UE能力确定。
示例实施例7
在一示例实施例中,包括至少一个第一通信节点,第一通信节点可能同时传输多个传输信号,比如传输信号1,传输信号2,传输信号3,传输信号4。所述传输信号包括各种参考导频、PDSCH、PUSCH至少之一,其中传输信号1至传输信号4对应的调度时间间隔信息为T1-T4。所述调度时间间隔信息为:所述传输信号关联的DCI对应的RE资源所占的最后一个符号与发送传输信号对应的RE资源的第一个符号的间隔为调度时间间隔信息。传输信号关联的DCI是指调度PDSCH或者PUSCH的DCI,或者触发非周期参考信号的DCI,或者激活半持续参考信号的DCI。从而终端可以根据调度时间间隔信息的大小确定传输信号的优先级,比如,传输信号对应的调度时间间隔信息越大的传输信号优先级越高。另外一方面, 可以根据调度时间间隔信息对传输信号进行分组,比如根据配置的或者约定的方式,将调度时间间隔信息分成多个调度时间间隔信息组。传输信号对应的调度时间间隔信息在相同调度时间间隔信息组的传输信号为一组。而相同传输信号组内的传输信号,通过可以进一步根据传输信号对应的调度时间间隔信息大小确定传输信号的优先级,比如调度时间间隔信息大的传输信号对应的传输信号优先级高,当然对于同一组的传输信号也可以用第二配置信息中除了调度时间间隔信息外的其它信息确定传输信号的优先级。并根据优先级确定传输所述传输信号使用的空间参数,所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等于1小于N的整数,K和Ki由高层信令配置或UE能力确定。
示例实施例8
在一示例实施例中,包括至少一个第一通信节点,第一通信节点可能同时传输多传输信号,比如比如传输信号1,传输信号2,传输信号3,传输信号4。每个传输信号可以用不同RNTI加扰。假设传输信号1-传输信号4对应的RNTI分别为RNTI1-RNTI4。从而终端可以根据接收的RNTI信息来确定传输信号的优先级,比如用系统信息类的S-RNTI或者寻呼类的P-RNTI加扰的传输信号优先级高,而用控制信令类的比如TPC-PUCCH-RNTI,TPC-PUSCH-RNTI加扰的传输信号优先级次之,用跟传输数据类的SPS C-RNTI,C-RNTI加扰的传输信号优先级最低。当然,不同RNTI的优先级并不局限于这里的示例,可以根据约定的方式或者高层信令配置的方式确定它们的优先级。并根据传输信号关联的RNTI的优先级确定传输信号的优先级。另外可以根据传输信号关联的RNTI对传输信号进行分组,比如根据配置的或者约定的方式,将RNTI分成多个RNTI组。传输信号对应的RNTI在相同RNTI组的传输信号为一组。而相同组内的传输信号,可以进一步根据传输信号对应的RNTI的优先级确定传输 信号组内的传输信号的优先级,比如传输信号关联的RNTI优先级高的传输信号对应的传输信号的优先级高,当然对于同一组的传输信号也可以用第二配置信息中除了RNTI外的其它信息确定传输信号的优先级。并根据传输信号优先级确定传输所述传输信号使用的空间参数,所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等于1小于N的整数,K和Ki由高层信令配置或UE能力确定。
示例实施例9
在一示例实施例中,包括至少一个第一通信节点,第一通信节点可能同时传输多传输信号,比如比如传输信号1,传输信号2,传输信号3,传输信号4。每个传输信号对应不同的下行控制信息的参数信息。下行控制信息DCI的参数信息包括如下至少之一:DCI的格式,DCI的加扰序列,DCI所在的搜索空间索引,所述DCI所在的CORESET索引,所述DCI所在的CORESET组索引。假设传输信号1-传输信号4对应的DCI参数信息1-DCI参数信息4。从而终端可以根据接收的DCI参数信息确定传输信号的优先级,比如DCI所在的搜索空间索引小的传输信号优先级高,比如传输信号对应的DCI对应的格式按formt0-0、format1-0,format2-0,format0-1,format1-1,format2-1,format2-3,format2-4的顺序优先级逐步降低,或者其它的方式约定的DCI格式优先级确定传输信号的优先级。并根据传输信号关联的DCI参数信息确定传输信号的优先级。另外可以根据传输信号关联的DCI参数信息对传输信号进行分组,比如根据配置的或者约定的方式,将DCI参数进行分组,而传输信号对应的DCI参数在相同DCI组的传输信号为一组。而相同组内的传输信号,通过可以进一步根据传输信号对应的并需要根据CORESET索引、虚拟小区号信息、物理小区标识PCI信息、无线网络临时标识RNTI的类型信息、调度时间间隔信息、CC索引信息等至少之一确定传输信号组内传输信号的优先级,并根据优 先级确定传输所述传输信号使用的空间参数确定接收所述传输信号使用的空间参数,所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等于1小于N的整数,K和Ki由高层信令配置或UE能力确定。
示例实施例10
在一示例实施例中,包括至少一个第一通信节点,第一通信节点可能同时传输多传输信号,比如比如传输信号1,传输信号2,传输信号3,传输信号4,这里的传输信号主要指各种物理信道。每个传输信号用不同的信道类型进行传输,信道类型包括但不限于PDCCH,PDSCH,PUCCH,PUSCH。假设传输信号1-传输信号4对应的PDCCH1、PDCCH2,PDSCH1,PDSCH2。从而终端可以根据接收的信道类型来确定传输信号的优先级,比如物理控制信道的优先级比物理共享类的信道优先级高级,下行物理信道的优先级比物理上行信道的优先级高。并根据传输信号关联的信道类型确定传输信号的优先级。另外可以根据传输信号关联的信道类型对传输信号进行分组,比如根据配置的或者约定的方式,将信道类型为控制信道的传输信号分成一组,信道类型为物理共享信道的传输信号分成一组。而相同组内的传输信号,通过可以进一步根据传输信号对应的CORESET索引、虚拟小区号信息、物理小区标识PCI信息、无线网络临时标识RNTI的类型信息、下行控制信息DCI的参数信息、调度时间间隔信息、CC索引信息等至少之一确定传输信号的优先级,并根据优先级确定传输所述传输信号使用的空间参数确定接收所述传输信号使用的空间参数,所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等于1小于N的整数,K和Ki由高层信令配置或UE能力确定。
示例实施例11
在一示例实施例中,包括至少一个第一通信节点,第一通信节点可能同时传输多种业务类型,包括第一传输信号和第二传输信号,其中,第一个传输信号也可以是PUSCH1,PUCCH1,PDSCH1之一,而第二传输信号可以是PUSCH2,PUCCH2,PDSCH2之一。这里主要根据物理下行控制信息中的优先级指示PI(Priority indicator)信息指示,即下行控制格式0-1,0-2,1-1或1-2(DCI0_1或DCI0_2,DCI1_1或DCI1_2)中的Priority indicator域中的取值,DCI中PI值越大,表示所述DCI对应的传输信号的优先级越高,可以优先传输。比如,第一个传输信号对应的DCI的所述PI值为1,而第二个传输信号对应的DCI的所述PI值为0,第二个传输信号的优先级低于第一个传输信号的优先级,反之第二个传输信号的优先级高。从而终端可以根据接收的PI指示确定第一传输信号和第二传输信号的优先级,并根据所述优先级确定传输信号的空间参数。另外可以根据PI指示对传输信号进行分组,比如传输信号对应的PI值为1的传输信号为一组,传输信号对应的PI值为0的传输信号为一组。而相同组内的传输信号,通过CORESET组索引、CORESET索引,虚拟小区号信息;物理小区标识PCI信息;无线网络临时标识RNTI的类型信息;下行控制信息DCI的参数信息;调度时间间隔信息;信道类型信息;CC索引信息等至少之一确定传输信号组内的传输信号的优先级,并根据传输信号的优先级确定传输所述传输信号使用的空间参数。另外,也可以先用CORESET组对传输信号进行分组,并且传输信号对应的CORESET组索引为0的传输信号比CORESET组索引为1的传输信号,在同一个CORESET组内的传输信号,可以进一步根据PI值的大小确定传输信号的优先级,比如PI值大的传输信号优先级大。
所述空间参数为传输信号优先级高的K个传输信号对应的空间参数,或者为每个传输信号组里优先级高的Ki个传输信号对应的空间参数,Ki为正整数,为第i个传输信号组最大的空间参数个数,所有传输信号组的Ki之和小于K,i=1,…,C,C为传输信号组的个数,所述K为大于等 于1小于N的整数,K和Ki由高层信令配置或UE能力确定。
在示例实施例1至示例实施例10中,其中基站通过传输信号对应的空间参数传输所述传输信号,或者根据所述确定的空间参数传输所述的传输信号,而终端根据确定的空间参数接收所述的传输信号之一,接收的传输信号可以是基站发送的所有传输信号,也可以是优先级较高的K个传输信号。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
本实施例提供了一种空间参数确定方法,图3是根据本发明实施例提供的空间参数确定方法的流程图(二),如图3所示,本实施例中的空间参数确定方法包括:
S202,根据以下之一确定第二传输信号的空间参数:
第一传输信号、预定的传输配置指示码点TCI code point、CORESET;
其中调度第二传输信号的物理下行控制信道和第二传输信号之间时间间隔小于第一预定阈值。
需要进一步说明的是,上述实施例中,第一传输信号为调度时间大于等于时域区间阈值timeDurationForQCL的传输信号。上述TCI code point为,对应的TCI state个数等于2的TCI code point中的最低码点。通常而言,每个code point包括1个或者2个TCI state;在code point包括2个TCI state的情形下,本实施例中可以根据code point中的2个TCI state中 的任意一个确定第二传输信号的空间参数,可选地,选择2个TCI state中的第一个TCI state确定第二传输信号的空间参数。
在一实施例中,上述步骤S202中,根据以下之一确定第二传输信号的空间参数,包括:
在第二传输信号所在的时域符号上存在第一传输信号的情形下,根据第一传输信号的空间参数或者TCI code point的空间参数确定第二传输信号的空间参数;或者,
在第二传输信号所在的时域符号上不存在第一传输信号的情形下,根据TCI code point对应的空间参数确定第二传输信号的空间参数。
在一实施例中,上述步骤S202中,根据第一传输信号的空间参数或者TCI code point的空间参数确定第二传输信号的空间参数,包括:
在第一传输信号对应的空间参数的个数大于或等于第一预定值的情形下,根据第一传输信号对应的空间参数中的其中之一确定第二传输信号的空间参数;或者,
在第一传输信号对应的空间参数的个数小于第一预定值的的情形下,根据信令信息或预定方式确定根据第二传输信号的空间参数,或者,根据TCI code point的空间参数确定第二传输信号的空间参数。
需要进一步说明的是,上述实施例中可适用于Single DCI模式与Multi DCI模式,Single DCI模式用于指示一个基站发送控制信道,但调度两个基站的数据的模式,Multi DCI模式是指多个协作的基站分别发送控制信息,分别调度自己的数据的模式。图4是根据本发明实施例提供的Single DCI模式与Multi DCI模式进行空间参数确定的工作流程图(一),上述实施例中,Single DCI模式与Multi DCI模式下进行空间参数确定的流程如图4所示。
在一实施例中,上述TCI code point中,至少存在一个TCI code point对应的TCI state的个数大于或者等于第二预定值;
上述TCI code point基于第二传输信号所在的频域带宽定义,即第二 传输信号对应的每个BWP或者CC都对应一个独立的TCI code point定义;TCI code point用于指示PDCCH中的TCI指示域和TCI state之间的对应关系。
在一实施例中,上述步骤S202中,根据以下之一确定第二传输信号的空间参数,包括:
在第二传输信号所在的时域符号上存在第一传输信号的情形下,根据第一传输信号的空间参数或CORESET组中的满足预定特征的CORESET的空间参数确定第二传输信号的空间参数;或者,
在第二传输信号所在的时域符号上不存在第一传输信号的情形下,根据CORESET组中的满足预定特征的CORESET的空间参数确定第二传输信号的空间参数。
在一实施例中,上述步骤S202中,根据第一传输信号的空间参数或CORESET组中的满足预定特征的CORESET的空间参数确定第二传输信号的空间参数,包括:
在第一传输信号对应的空间参数的个数大于或等于第一预定值的情形下,根据第一传输信号对应的空间参数中的其中之一确定第二传输信号的空间参数;
在第一传输信号对应的空间参数的个数小于第一预定值的情形下,根据信令信息或预定规则确定根据第二传输信号的空间参数或CORESET组中的满足预定特征的CORESET的空间参数确定第二传输信号的空间参数。
需要进一步说明的是,上述实施例中,对于Single DCI模式与Multi DCI模式中的第一传输信号中TCI state信息为一个或多个(通常为两个)的情形进行了进一步的区分,图5是根据本发明实施例提供的Single DCI模式与Multi DCI模式进行空间参数确定的工作流程图(二),上述实施例中,Single DCI模式与Multi DCI模式下进行空间参数确定的流程如图5所示。
在一实施例中,本实施例中的空间参数确定方法还包括如下条件中的 至少之一:
调度第二传输信号的下行控制信道所在的CORESET属于一个CORESET组;
第二传输信号所在的频域带宽对应的CORESET组的个数大于第三预定值;其中,第二传输信号所在的频域带宽是指传输所述第二传输信号的BWP或者CC,或者CC中的一个BWP。
CORESET组中满足预定特征的CORESET包括:距离第二传输信号最近的且包括CORESET组中的CORESET的时间单元中,CORESET组中关联检测搜索空间的CORESET中具有最低CORESET索引的CORESET。
需要进一步说明的是,上述实施例中,频域带宽对应的COREST组,包括调度所述频域带宽中传输信号的调度频域带宽中包括的CORESET组。
在一实施例中,上述第一传输信号包括信道和/或信号,第二传输信号包括信道和/或信号;
上述第一传输信号包括至少以下之一:
调度间隔大于或等于第二预定阈值的传输信号,其中,调度间隔包括调度第一传输信号的物理下行控制信道和第一传输信号之间时间间隔;周期参考信号;半持续参考信号;物理上行共享信道,物理下行共享信道,物理下行控制信道,物理上行控制信道;CORESET;和/或,
上述第二传输信号包括至少以下之一:非周期参考信号,物理下行共享信道,物理上行共享信道。
需要进一步说明的是,上述实施例中,非周期参考信号,物理下行共享信道,物理上行共享信道仅为第二传输信号的优选信号,在第一传输信号包括上述实施例中任一信号的前提下,第二传输信号也可为非周期参考信号,物理下行共享信道,物理上行共享信道以外的其它信号。
在一实施例中,上述空间参数包括如下至少之一:
准共址参数,准共址参考信号,关联空间接收参数的准共址参考信号,空间发送滤波器,空间关系参考信号。
需要进一步说明的是,上述实施例中,准共址参数包括如下至少之一:空间接收参数,平均延迟,延迟扩展,多普勒频移,多普勒扩展。
在一实施例中,本实施例中的空间参数确定方法还包括:
根据以下之一确定第二传输信号的空间参数:
第一判断结果、第二判断结果;
第一判断结果用于指示,判断TCI code point中是否存在至少一个TCI code point对应的TCI state的个数大于或者等于第二预定值;其中,TCI code point对应第二传输信号所在的频域带宽,TCI code point是PDCCH中的TCI指示域和TCI state之间的对应关系;
第二判断结果用于指示,判断第二传输信号所在的频域带宽对应的CORESET组的个数是否大于第三预定值。
需要进一步说明的是,上述实施例中,频域带宽对应的COREST组,包括调度所述频域带宽中传输信号的调度频域带宽中包括的CORESET组。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例3
本实施例提供了一种空间参数确定装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模 块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。图6是根据本发明实施例提供的空间参数确定装置的结构框图(一),如图6所示,本实施例中的空间参数确定装置包括:
第一确定模块302,设置为根据第一配置信息确定N类传输信号的优先级信息;其中,N为大于1的整数;
第二确定模块304,设置为根据优先级信息确定同一符号对应的空间参数信息;其中,空间参数信息用于传输N类传输信号中至少一类传输信号。
需要进一步说明的是,本实施例中的空间参数确定装置的其余实施例即技术效果均与实施例1中所记载的空间参数确定方法相对应,故在此不再赘述。
在一实施例中,上述N类传输信号中,同一类传输信号关联相同的空间参数信息,不同类传输信号关联不同的空间参数信息。
在一实施例中,上述根据优先级信息确定同一符号对应的空间参数信息,包括:
确定N类传输信号中优先级为高的K类传输信号关联的空间参数为同一符号对应的空间参数信息;其中,K为正整数且小于等于T;T为同一个符号对应的空间参数个数的极大值,T由高层配置或根据用户终端UE能力确定。
在一实施例中,上述根据优先级信息确定同一符号对应的空间参数信息,包括:
根据第二配置信息将N类传输信号区分为C个传输信号组,其中,每个传输信号组中包括一类或多类传输信号,每个传输信号组中的一类或多类传输信号关联相同的第二配置信息;C为正整数,且C小于或等于N。
在一实施例中,上述第二配置信息包括以下至少之一:
控制资源集CORESET组信息;CORESET索引信息;传输信号对应的确认ACK信息的优先级信息;物理下行控制信息中的优先级指示PI信息;虚拟小区号信息;物理小区标识PCI信息;无线网络临时标识RNTI的类型信息;下行控制信息DCI的参数信息;调度时间间隔信息;信道类型信息;载波组件CC索引信息。
在一实施例中,上述根据优先级信息确定同一符号对应的空间参数信息,包括:
对于C个传输信号组中的第i个传输信号组,将第i个传输信号组中优先级为高的K i类传输信号关联的空间参数信息确定为第i个传输信号组中的一类或多类传输信号在同一符号对应的空间参数信息;i为正整数,且i小于等于C;
其中,K i为正整数,且K i小于等于T i;T i为同一符号中第i个传输信号组对应的的空间参数个数的极大值,T i由高层配置或根据UE能力确定。
在一实施例中,上述C个传输信号组中,每一个传输信号组对应的Ki类传输信号所构成的集合为K类传输信号;多个所述K i的和为K;
其中,K为正整数且小于等于T;K类传输信号为N类传输信号中优先级为高的一类或多类传输信号;T为同一个符号对应的空间参数个数的极大值,T由高层配置或根据用户终端UE能力确定。
在一实施例中,上述第一确定模块还设置为:
在C个传输信号组中确定优先级为高的M类传输信号,其中,M为正整数且大于T;
根据传输信号的优先级,确定M类传输信号中优先级为高的T类传输信号关联的空间参数为同一符号对应的空间参数信息。
在一实施例中,上述第一配置信息包括以下至少之一:
CORESET组信息;CORESET索引信息;传输信号对应的ACK信息的优先级信息;物理下行控制信息中的优先级指示PI信息;虚拟小区号 信息;PCI信息;RNTI的类型信息;DCI的参数信息;调度时间间隔信息;信道类型信息;CC索引信息。
在一实施例中,上述根据第一配置信息确定N类传输信号的优先级信息,包括:
在第一配置信息为CORESET组信息的情形下,传输信号对应的CORESET组信息的CORESET索引越小,确定传输信号的优先级信息所指示的优先级越高;或者,
在第一配置信息为CORESET索引信息的情形下,传输信号对应的CORESET索引越小,确定传输信号的优先级信息所指示的优先级越高;或者,
在第一配置信息为传输信号对应的ACK信息的优先级信息的情形下,传输信号对应的ACK信息的优先级信息越高,确定传输信号的优先级信息所指示的优先级越高,其中,传输信号对应的ACK信息的优先级信息由高层信令确定或由预设方式确定;或者,
在第一配置信息为物理下行控制信息中的优先级指示PI信息的情形下,传输信号对应的物理下行控制信息中的优先级指示PI信息的优先级信息越高,确定传输信号的优先级信息所指示的优先级越高,其中,物理下行控制信息中的优先级指示PI信息由高层信令确定或由预设方式确定;或者,
在第一配置信息为虚拟小区号的情形下,传输信号对应的虚拟小区号越小,确定传输信号的优先级信息所指示的优先级越高;或者,
在第一配置信息为物理小区标识的情形下,传输信号对应的物理小区标识越小,确定传输信号的优先级信息所指示的优先级越高;或者,
在第一配置信息为RNTI的类型信息的情形下,传输信号对应的RNTI的类型的优先级信息越高,确定传输信号的优先级信息所指示的优先级越高,其中,RNTI的类型的优先级信息由高层信令确定或由预设方式确定;或者,
在第一配置信息为DCI的参数信息的情形下,传输信号对应的DCI的参数信息的优先级信息越高,确定传输信号的优先级信息所指示的优先级越高,其中,DCI的参数信息的优先级信息由高层信令确定或由预设方式确定;或者,
在第一配置信息为信道类型信息的情形下,传输信号对应的信道类型信息的优先级信息越高,确定传输信号的优先级信息所指示的优先级越高,其中,信道类型信息的优先级信息由高层信令确定或由预设方式确定;或者,
在第一配置信息为调度时间间隔信息的情形下,传输信号对应的调度时间间隔越大,确定传输信号的优先级信息所指示的优先级越高;或者,
在第一配置信息为CC索引信息的情形下,传输信号对应的CC索引越小,确定传输信号的优先级信息所指示的优先级越高。
在一实施例中,上述第一确定模块还设置为:
在传输信号没有关联的CORESET组或者CORESET的情形下,为传输信号确定关联的CORESET组或者CORESET。
在一实施例中,上述空间参数信息包括以下至少之一:
准共址参数;准共址参考信号;关联空间接收参数的准共址参考信号;空间发送滤波器;空间关系参考信号。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例4
本实施例提供了一种空间参数确定装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是 可能并被构想的。图7是根据本发明实施例提供的空间参数确定装置的结构框图(二),如图7所示,本实施例中的空间参数确定装置包括:
第三确定模块,设置为根据以下之一确定第二传输信号的空间参数:
第一传输信号、预定的传输配置指示码点TCI code point、CORESET;
其中,调度第二传输信号的物理下行控制信道和第二传输信号之间时间间隔小于第一预定阈值。
需要进一步说明的是,本实施例中的空间参数确定装置的其余实施例及技术效果均与实施例2中记载的空间参数确定方法对应,故在此不再赘述。
在一实施例中,上述根据以下之一确定第二传输信号的空间参数,包括:
在第二传输信号所在的时域符号上存在第一传输信号的情形下,根据第一传输信号的空间参数或者TCI code point的空间参数确定第二传输信号的空间参数;或者,
在第二传输信号所在的时域符号上不存在第一传输信号的情形下,根据TCI code point对应的空间参数确定第二传输信号的空间参数。
在一实施例中,上述根据第一传输信号的空间参数或者TCI code point的空间参数确定第二传输信号的空间参数,包括:
在第一传输信号对应的空间参数的个数大于或等于第一预定值的情形下,根据第一传输信号对应的空间参数中的其中之一确定第二传输信号的空间参数;或者,
在第一传输信号对应的空间参数的个数小于第一预定值的的情形下,根据信令信息或预定方式确定根据第二传输信号的空间参数,或者,根据TCI code point的空间参数确定第二传输信号的空间参数。
在一实施例中,上述TCI code point中,至少存在一个TCI code point对应的TCI state的个数大于或者等于第二预定值;
上述TCI code point基于第二传输信号所在的频域带宽定义,即第二传输信号对应的每个BWP或者CC都对应一个独立的TCI code point定义;TCI code point用于指示PDCCH中的TCI指示域和TCI state之间的对应关系。
在一实施例中,上述根据以下之一确定第二传输信号的空间参数,包括:
在第二传输信号所在的时域符号上存在第一传输信号的情形下,根据第一传输信号的空间参数或CORESET组中的满足预定特征的CORESET的空间参数确定第二传输信号的空间参数;或者,
在第二传输信号所在的时域符号上不存在第一传输信号的情形下,根据CORESET组中的满足预定特征的CORESET的空间参数确定第二传输信号的空间参数。
在一实施例中,上述根据第一传输信号的空间参数或CORESET组中的满足预定特征的CORESET的空间参数确定第二传输信号的空间参数,包括:
在第一传输信号对应的空间参数的个数大于或等于第一预定值的情形下,根据第一传输信号对应的空间参数中的其中之一确定第二传输信号的空间参数;
在第一传输信号对应的空间参数的个数小于第一预定值的情形下,根据信令信息或预定规则确定根据第二传输信号的空间参数或CORESET组中的满足预定特征的CORESET的空间参数确定第二传输信号的空间参数。
在一实施例中,上述第三确定装置中还包括以下条件中的至少之一:
调度第二传输信号的下行控制信道所在的CORESET属于一个CORESET组;
第二传输信号所在的频域带宽对应的CORESET组的个数大于第三预定值;其中,第二传输信号所在的频域带宽是指传输所述第二传输信号的BWP或者CC,或者CC中的一个BWP。
CORESET组中满足预定特征的CORESET包括:距离第二传输信号最近的且包括CORESET组中的CORESET的时间单元中,CORESET组中关联检测搜索空间的CORESET中具有最低CORESET索引的CORESET。
在一实施例中,上述第一传输信号包括信道和/或信号,第二传输信号包括信道和/或信号;
第一传输信号包括至少以下之一:
上述第一传输信号包括至少以下之一:
调度间隔大于或等于第二预定阈值的传输信号,其中,调度间隔包括调度第一传输信号的物理下行控制信道和第一传输信号之间时间间隔;周期参考信号;半持续参考信号;物理上行共享信道,物理下行共享信道,物理下行控制信道,物理上行控制信道;CORESET;和/或,
上述第二传输信号包括至少以下之一:非周期参考信号,物理下行共享信道,物理上行共享信道。
在一实施例中,上述空间参数包括如下至少之一:
准共址参数,准共址参考信号,关联空间接收参数的准共址参考信号,空间发送滤波器,空间关系参考信号。
在一实施例中,上述第三确定装置还设置为:
根据以下之一确定第二传输信号的空间参数:
第一判断结果、第二判断结果;
第一判断结果用于指示,判断TCI code point中是否存在至少一个TCI code point对应的TCI state的个数大于或者等于第二预定值;
第二判断结果用于指示,判断第二传输信号所在的频域带宽对应的CORESET组的个数是否大于第三预定值。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器 中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例5
本发明的实施例还提供了一种计算机可读的存储介质,该计算机可读的存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一实施例中,在本实施例中,上述计算机可读的存储介质可以被设置为存储用于执行上述实施例中的计算机程序。
在一实施例中,在本实施例中,上述计算机可读的存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
实施例6
本发明的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
在一实施例中,在本实施例中,上述处理器可以被设置为通过计算机程序执行上述实施例中的步骤。
在一实施例中,本实施例中的具体示例可以参考上述实施例及示例实施例中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示 出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (26)

  1. 一种空间参数确定方法,包括:
    根据第一配置信息确定N类传输信号的优先级信息;其中,所述N为大于1的整数;
    根据所述优先级信息确定同一符号对应的空间参数信息;其中,所述空间参数信息用于传输所述N类传输信号中至少一类传输信号。
  2. 根据权利要求1所述的方法,其中,所述N类传输信号中,同一类所述传输信号关联相同的空间参数信息,不同类传输信号所述关联不同的空间参数信息。
  3. 根据权利要求1所述的方法,其中,所述根据所述优先级信息确定同一符号对应的空间参数信息,包括:
    确定所述N类传输信号中优先级为高的K类传输信号关联的空间参数为所述同一符号对应的所述空间参数信息;其中,所述K为正整数且小于等于T;所述T为同一个符号对应的空间参数个数的极大值,所述T由高层配置或根据用户终端UE能力确定。
  4. 根据权利要求1所述的方法,其中,所述根据所述优先级信息确定同一符号对应的空间参数信息,包括:
    根据第二配置信息将所述N类传输信号区分为C个传输信号组,其中,每个所述传输信号组中的一类或多类所述传输信号关联相同的所述第二配置信息;所述C为正整数,且所述C小于或等于N。
  5. 根据权利要求4所述的方法,其中,所述第二配置信息包括以下至少之一:
    控制资源集CORESET组信息;CORESET索引信息;传输信号对应的确认ACK信息的优先级信息;物理下行控制信息中的优先级 指示PI信息;虚拟小区号信息;物理小区标识PCI信息;无线网络临时标识RNTI的类型信息;下行控制信息DCI的参数信息;调度时间间隔信息;信道类型信息;载波组件CC索引信息。
  6. 根据权利要求4所述的方法,其中,所述根据所述优先级信息确定同一符号对应的空间参数信息,包括:
    对于所述C个传输信号组中的第i个传输信号组,将所述第i个传输信号组中优先级为高的K i类传输信号关联的空间参数信息确定为第i个传输信号组中的一类或多类所述传输信号在同一符号对应的所述空间参数信息;所述i为正整数,且所述i小于等于C;
    其中,所述K i为正整数,且所述K i小于等于T i;所述T i为同一符号中所述第i个传输信号组对应的的空间参数个数的极大值,所述T i由高层配置或根据UE能力确定。
  7. 根据权利要求6所述的方法,其中,所述C个传输信号组中,每一个所述传输信号组对应的K i类传输信号所构成的集合为K类传输信号,多个所述K i的和为K;
    其中,所述K为正整数且小于等于T;所述K类传输信号为所述N类传输信号中优先级为高的一类或多类所述传输信号;所述T为同一个符号对应的空间参数个数的极大值,所述T由高层配置或根据用户终端UE能力确定。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    在所述C个传输信号组中确定优先级为高的M类传输信号,其中,所述M为正整数且大于所述T;
    根据所述传输信号的优先级,确定所述M类传输信号中优先级为高的T类传输信号关联的空间参数为所述同一符号对应的所述空 间参数信息。
  9. 根据权利要求1所述的方法,其中,所述第一配置信息包括以下至少之一:
    CORESET组信息;CORESET索引信息;传输信号对应的ACK信息的优先级信息;物理下行控制信息中的优先级指示PI信息;虚拟小区号信息;PCI信息;RNTI的类型信息;DCI的参数信息;调度时间间隔信息;信道类型信息;CC索引信息。
  10. 根据权利要求9所述的方法,其中,所述根据第一配置信息确定N类传输信号的优先级信息,包括:
    在所述第一配置信息为所述CORESET组信息的情形下,所述传输信号对应的所述CORESET组信息的CORESET组索引越小,确定所述传输信号的所述优先级信息所指示的优先级越高;或者,
    在所述第一配置信息为所述CORESET索引信息的情形下,所述传输信号对应的CORESET索引越小,确定所述传输信号的所述优先级信息所指示的优先级越高;或者,
    在所述第一配置信息为所述传输信号对应的所述ACK信息的优先级信息的情形下,所述传输信号对应的所述ACK信息的优先级信息越高,确定所述传输信号的所述优先级信息所指示的优先级越高,其中,所述传输信号对应的所述ACK信息的优先级信息由高层信令确定或由预设方式确定;或者,
    在所述第一配置信息为所述物理下行控制信息中的优先级指示PI信息的情形下,所述传输信号对应的所述物理下行控制信息中的优先级指示PI信息的优先级信息越高,确定所述传输信号的所述优先级信息所指示的优先级越高,其中,所述物理下行控制信息中的优先 级指示PI信息由高层信令确定或由预设方式确定;或者,
    在所述第一配置信息为所述虚拟小区号的情形下,所述传输信号对应的所述虚拟小区号越小,确定所述传输信号的所述优先级信息所指示的优先级越高;或者,
    在所述第一配置信息为所述物理小区标识的情形下,所述传输信号对应的所述物理小区标识越小,确定所述传输信号的所述优先级信息所指示的优先级越高;或者,
    在所述第一配置信息为所述RNTI的类型信息的情形下,所述传输信号对应的RNTI的类型的优先级信息越高,确定所述传输信号的所述优先级信息所指示的优先级越高,其中,所述RNTI的类型的优先级信息由高层信令确定或由预设方式确定;或者,
    在所述第一配置信息为所述DCI的参数信息的情形下,所述传输信号对应的所述DCI的参数信息的优先级信息越高,确定所述传输信号的所述优先级信息所指示的优先级越高,其中,所述DCI的参数信息的优先级信息由高层信令确定或由预设方式确定;或者,
    在所述第一配置信息为信道类型信息的情形下,所述传输信号对应的所述信道类型信息的优先级信息越高,确定所述传输信号的所述优先级信息所指示的优先级越高,其中,所述信道类型信息的优先级信息由高层信令确定或由预设方式确定;或者,
    在所述第一配置信息为所述调度时间间隔信息的情形下,所述传输信号对应的调度时间间隔越大,确定所述传输信号的所述优先级信息所指示的优先级越高;或者,
    在所述第一配置信息为所述CC索引信息的情形下,所述传输信号对应的CC索引越小,确定所述传输信号的所述优先级信息所指示 的优先级越高。
  11. 根据权利要求1至10任一项中所述的方法,其中,所述方法还包括:
    在所述传输信号没有关联的CORESET组或者CORESET的情形下,为所述传输信号确定关联的CORESET组或者CORESET。
  12. 根据权利要求1至10任一项中所述的方法,其中,所述空间参数信息包括以下至少之一:
    准共址参数;准共址参考信号;关联空间接收参数的准共址参考信号;空间发送滤波器;空间关系参考信号。
  13. 一种空间参数确定方法,包括:
    根据以下之一确定第二传输信号的空间参数:
    第一传输信号、预定的传输配置指示码点TCI code point、CORESET;
    其中,调度所述第二传输信号的物理下行控制信道和所述第二传输信号之间时间间隔小于第一预定阈值。
  14. 根据权利要求13所述的方法,其中,所述根据以下之一确定第二传输信号的空间参数,包括:
    在所述第二传输信号所在的时域符号上存在所述第一传输信号的情形下,根据所述第一传输信号的空间参数或者所述TCI code point的空间参数确定所述第二传输信号的空间参数;或者,
    在所述第二传输信号所在的时域符号上不存在所述第一传输信号的情形下,根据所述TCI code point对应的空间参数确定所述第二 传输信号的空间参数。
  15. 根据权利要求14所述的方法,其中,所述根据所述第一传输信号的空间参数或者所述TCI code point的空间参数确定所述第二传输信号的空间参数,包括:
    在所述第一传输信号对应的空间参数的个数大于或等于第一预定值的情形下,根据所述第一传输信号对应的空间参数中的其中之一确定所述第二传输信号的空间参数;或者,
    在所述第一传输信号对应的空间参数的个数小于第一预定值的的情形下,根据信令信息或预定方式确定根据所述第二传输信号的空间参数,或者,根据所述TCI code point的空间参数确定所述第二传输信号的空间参数。
  16. 根据权利要求14所述的方法,其中,所述TCI code point中,至少存在一个所述TCI code point对应的TCI state的个数大于或者等于第二预定值。
  17. 根据权利要求13所述的方法,其中,所述根据以下之一确定第二传输信号的空间参数,包括:
    在所述第二传输信号所在的时域符号上存在所述第一传输信号的情形下,根据所述第一传输信号的空间参数或所述CORESET组中的满足预定特征的CORESET的空间参数确定所述第二传输信号的空间参数;或者,
    在所述第二传输信号所在的时域符号上不存在所述第一传输信号的情形下,根据所述CORESET组中的满足预定特征的CORESET的空间参数确定所述第二传输信号的空间参数。
  18. 根据权利要求17所述的方法,其中,所述根据所述第一传 输信号的空间参数或所述CORESET组中的满足预定特征的CORESET的空间参数确定所述第二传输信号的空间参数,包括:
    在所述第一传输信号对应的空间参数的个数大于或等于第一预定值的情形下,根据所述第一传输信号对应的空间参数中的其中之一确定所述第二传输信号的空间参数;
    在所述第一传输信号对应的空间参数的个数小于第一预定值的情形下,根据信令信息或预定规则确定根据第二传输信号的空间参数或所述CORESET组中的满足预定特征的CORESET的空间参数确定所述第二传输信号的空间参数。
  19. 根据权利要求17所述的方法,其中,所述方法还包括以下至少之一:
    调度所述第二传输信号的下行控制信道所在的CORESET属于一个所述CORESET组;
    所述第二传输信号所在的频域带宽对应的CORESET组的个数大于第三预定值;
    所述CORESET组中满足预定特征的CORESET包括:距离所述第二传输信号最近的且包括所述CORESET组中的CORESET的时间单元中,所述CORESET组中关联检测搜索空间的CORESET中具有最低CORESET索引的CORESET。
  20. 根据权利要求13至19任一项中所述的方法,其中,所述第一传输信号包括至少以下之一:
    调度间隔大于或等于第二预定阈值的传输信号;周期参考信号;半持续参考信号;物理下行共享信道,物理上行共享信道,物理上行控制信道,物理下行控制信道;CORESET;和/或,
    所述第二传输信号包括至少以下之一:非周期参考信号,物理下行共享信道,物理上行共享信道。
  21. 根据权利要求13至19任一项中所述的方法,其中,所述空间参数包括如下至少之一:
    准共址参数,准共址参考信号,关联空间接收参数的准共址参考信号,空间发送滤波器,空间关系参考信号。
  22. 根据权利要求13至19任一项中所述的方法,其中,所述方法还包括:
    根据以下之一确定所述第二传输信号的空间参数:
    第一判断结果、第二判断结果;
    所述第一判断结果用于指示,判断所述TCI code point中是否存在至少一个TCI code point对应的TCI state的个数大于或者等于第二预定值;
    所述第二判断结果用于指示,判断所述第二传输信号所在的频域带宽对应的CORESET组的个数是否大于第三预定值。
  23. 一种空间参数确定装置,包括:
    第一确定模块,设置为根据第一配置信息确定N类传输信号的优先级信息;其中,所述N为大于1的整数;
    第二确定模块,设置为根据所述优先级信息确定同一符号对应的空间参数信息;其中,所述空间参数信息用于传输所述N类传输信号中至少一类传输信号。
  24. 一种空间参数确定装置,包括:
    第三确定模块,设置为根据以下之一确定第二传输信号的空间参数:
    第一传输信号、预定的传输配置指示码点TCI code point、CORESET;
    其中,调度所述第二传输信号的物理下行控制信道和所述第二传输信号之间时间间隔小于第一预定阈值。
  25. 一种计算机可读的存储介质,所述计算机可读的存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至12、权利要求13至22任一项中所述的方法。
  26. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至12、权利要求13至22任一项中所述的方法。
PCT/CN2021/082153 2020-04-15 2021-03-22 空间参数确定方法及装置 WO2021208673A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022560395A JP2023521676A (ja) 2020-04-15 2021-03-22 空間パラメータの決定方法及び装置
US17/917,439 US20230156772A1 (en) 2020-04-15 2021-03-22 Spatial parameter determination method and device
EP21789281.9A EP4138494A4 (en) 2020-04-15 2021-03-22 METHOD AND DEVICE FOR DETERMINING SPATIAL PARAMETERS
MX2022012751A MX2022012751A (es) 2020-04-15 2021-03-22 Procedimiento y dispositivo de determinacion de parametros espaciales.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010297300.6 2020-04-15
CN202010297300.6A CN111867109A (zh) 2020-04-15 2020-04-15 空间参数确定方法及装置

Publications (1)

Publication Number Publication Date
WO2021208673A1 true WO2021208673A1 (zh) 2021-10-21

Family

ID=72985096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082153 WO2021208673A1 (zh) 2020-04-15 2021-03-22 空间参数确定方法及装置

Country Status (6)

Country Link
US (1) US20230156772A1 (zh)
EP (1) EP4138494A4 (zh)
JP (1) JP2023521676A (zh)
CN (1) CN111867109A (zh)
MX (1) MX2022012751A (zh)
WO (1) WO2021208673A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867109A (zh) * 2020-04-15 2020-10-30 中兴通讯股份有限公司 空间参数确定方法及装置
CN114826510B (zh) * 2021-01-18 2023-08-18 大唐移动通信设备有限公司 一种信息处理方法、装置、终端及网络设备
US11632750B2 (en) 2021-04-02 2023-04-18 Nokia Technologies Oy Inter-cell multi-TRP operation for wireless networks
US11800322B2 (en) 2021-04-15 2023-10-24 Nokia Solutions And Networks Oy Signalling for positioning latency control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093480A (zh) * 2017-09-30 2018-05-29 中兴通讯股份有限公司 一种信号传输的方法及装置
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
CN110351058A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种信号传输方法及通信设备
CN110831173A (zh) * 2018-08-09 2020-02-21 中兴通讯股份有限公司 信息元素的传输方法及装置
CN110859008A (zh) * 2018-08-24 2020-03-03 维沃移动通信有限公司 一种上行信息的发送方法及终端
CN111867109A (zh) * 2020-04-15 2020-10-30 中兴通讯股份有限公司 空间参数确定方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093480A (zh) * 2017-09-30 2018-05-29 中兴通讯股份有限公司 一种信号传输的方法及装置
CN108199819A (zh) * 2018-02-26 2018-06-22 中兴通讯股份有限公司 控制信令的发送、接收以及信息的确定方法及装置
CN110351058A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种信号传输方法及通信设备
CN110831173A (zh) * 2018-08-09 2020-02-21 中兴通讯股份有限公司 信息元素的传输方法及装置
CN110859008A (zh) * 2018-08-24 2020-03-03 维沃移动通信有限公司 一种上行信息的发送方法及终端
CN111867109A (zh) * 2020-04-15 2020-10-30 中兴通讯股份有限公司 空间参数确定方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4138494A4 *

Also Published As

Publication number Publication date
MX2022012751A (es) 2022-10-31
JP2023521676A (ja) 2023-05-25
CN111867109A (zh) 2020-10-30
US20230156772A1 (en) 2023-05-18
EP4138494A1 (en) 2023-02-22
EP4138494A4 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
US11737081B2 (en) Method for transmitting and receiving signals for ultra reliable low latency communication
RU2690695C1 (ru) Управление слепыми поисками канала управления между пространствами поиска в системе новых технологий радиодоступа
CN111492703B (zh) 用于ss/pbch块频率位置指示的方法和装置
CN111742510B (zh) 无线通信系统中发送上行链路控制信息的方法及使用其的装置
CN107852313B (zh) 下行链路控制信息接收方法和用户设备以及下行链路控制信息发送方法和基站
US10735170B2 (en) ACK/NACK feedback method and user equipment
US20210298072A1 (en) Method and device for channel access in wireless communication system
WO2021208673A1 (zh) 空间参数确定方法及装置
CN111989963B (zh) 用于在无线通信系统中发送或接收同步信号的方法和装置
CN111699721B (zh) 用于非许可无线电频带场景的临时浮动下行链路定时方法
CN111567081A (zh) 用于下一代无线系统中的波束报告的方法和装置
US20200022119A1 (en) Channel Transmission Method And Network Device
CN113519137A (zh) 用于多波束操作的方法和装置
CN113302869B (zh) 用于多传输点(trp)的物理下行链路共享信道(pdsch)资源映射
WO2020228589A1 (zh) 通信方法和通信装置
WO2018210243A1 (zh) 一种通信方法和装置
US11516801B2 (en) Method and apparatus for sharing frequency resources between mobile communication providers in wireless communication system
CN113273295A (zh) 用于物理侧链路(sl)控制信道监听的用户设备、基站和方法
WO2019122518A1 (en) Managing pdcch blind searches in new radio unlicensed band scenario
CN113966587A (zh) 无线通信系统中的下行数据接收和harq-ack传输的方法、装置和系统
US11382090B2 (en) Method and device for transmitting or receiving PDCCH in wireless communication system
US11723042B2 (en) Method and apparatus for uplink data channel with dropping operation in wireless communication system
CN114731688A (zh) 在无线通信系统中取消上行链路传输的方法、装置和系统
JP2023526813A (ja) 複数のtrpにわたる単一のcoresetに基づいたpdcchのダイバーシティ
JP2023175870A (ja) コンポーネントキャリア上の制御チャネルを取り扱うための技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21789281

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022560395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021789281

Country of ref document: EP

Effective date: 20221115