WO2024011483A1 - 通信方法、终端设备及网络设备 - Google Patents

通信方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2024011483A1
WO2024011483A1 PCT/CN2022/105629 CN2022105629W WO2024011483A1 WO 2024011483 A1 WO2024011483 A1 WO 2024011483A1 CN 2022105629 W CN2022105629 W CN 2022105629W WO 2024011483 A1 WO2024011483 A1 WO 2024011483A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
parameter
data
transmission
waveform
Prior art date
Application number
PCT/CN2022/105629
Other languages
English (en)
French (fr)
Inventor
左志松
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/105629 priority Critical patent/WO2024011483A1/zh
Publication of WO2024011483A1 publication Critical patent/WO2024011483A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a communication method, terminal equipment and network equipment.
  • the transmission waveform used for uplink data is configured through the physical uplink shared channel (PUSCH) configuration (PUSCH-Config).
  • PUSCH-Config physical uplink shared channel
  • the PUSCH configuration is configured in a semi-static manner. This semi-static configuration method results in During the semi-static configuration period, the transmission beam for uplink data can only be the transmission beam configured by PUSCH, and other transmission waveforms cannot be used. If you need to adjust the transmission waveform, you can only wait until the next semi-static configuration cycle and adjust the transmission waveform based on the new PUSCH configuration.
  • This semi-static transmission waveform configuration method is not flexible enough and cannot meet the transmission needs of terminal equipment.
  • This application provides a communication method, terminal equipment and network equipment. Each aspect involved in this application is introduced below.
  • a communication method including: a terminal device receiving a first signaling sent by a network device, the first signaling being used to dynamically schedule first uplink data, and the first signaling being used to indicate the The transmission waveform of the first uplink data.
  • a communication method including: a network device sends a first signaling to a terminal device, the first signaling is used to dynamically schedule first uplink data, and the first signaling is used to indicate that the The transmission waveform of the first uplink data.
  • a terminal device including: a receiving unit, configured to receive first signaling sent by a network device, where the first signaling is used to dynamically schedule first uplink data, where the first signaling is Indicates the transmission waveform of the first uplink data.
  • a network device including: a sending unit, configured to send a first signaling to a terminal device, the first signaling being used to dynamically schedule first uplink data, and the first signaling being used to dynamically schedule first uplink data. Indicates the transmission waveform of the first uplink data.
  • a terminal device including a transceiver, a memory and a processor, the memory is used to store a program, the processor is used to call the program in the memory, and control the transceiver to send the first uplink Data enables the terminal device to perform some or all of the steps in the method of the first aspect.
  • a sixth aspect provides a network device, a transceiver, a memory and a processor, the memory is used to store a program, the processor is used to call the program in the memory, and control the transceiver to receive the first uplink data , causing the network device to perform some or all of the steps in the method of the second aspect.
  • embodiments of the present application provide a communication system, which includes the above-mentioned terminal and/or network device.
  • the system may also include other devices that interact with the terminal device or network device in the solution provided by the embodiments of the present application.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program.
  • the computer program causes a communication device (for example, a terminal device or a network device) to perform the above aspects. some or all of the steps in the method.
  • embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a communication device (such as , terminal equipment or network equipment) performs some or all of the steps in the methods of the above aspects.
  • the computer program product can be a software installation package.
  • embodiments of the present application provide a chip, which includes a memory and a processor.
  • the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects.
  • the network device may indicate the transmission beam of the first uplink data by sending the first signaling for dynamically scheduling the first uplink data to the terminal device. That is to say, the network device can dynamically indicate the transmission beam of the first uplink data to the terminal device. Compared with the traditional semi-static method of configuring the transmission waveform of the first uplink data, it helps to improve the flexibility of configuring the transmission waveform.
  • Figure 1 is a wireless communication system 100 applied in the embodiment of the present application.
  • Figure 2 shows a schematic diagram of uplink data transmission based on data channel aggregation.
  • Figure 3 is a flow chart of the communication method according to the embodiment of the present application.
  • Figure 4 is the corresponding relationship between different states of the conversion precoder and the transmission waveform according to the embodiment of the present application.
  • Figure 5 is a schematic diagram of a DCI indication transmission waveform in an embodiment of the present application.
  • Figure 6 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of a network device according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in the embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the terminal equipment in the embodiment of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in the power grid (smart grid), wireless terminals in transportation safety (transportation safety), wireless terminals in smart cities (smart city), wireless terminals in smart homes (smart home), etc.
  • the UE may be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a device that undertakes base station functions in device-to-device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communications, and in 6G networks.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • network equipment can schedule uplink data to be transmitted by terminal equipment through downlink control information (DCI).
  • DCI downlink control information
  • the communication system supports DCI in multiple formats, such as format 0_0, format 0_1, and format 0_2.
  • DCI in format 0_0 can be used to schedule PUSCH within the cell.
  • the indication domain in DCI of format 0_0 can include: DCI format identifier (identifier for DCI formats), frequency domain resource assignment (frequency domain resource assignment), time domain resource assignment (time domain resource assignment), frequency domain frequency hopping identifier (frequency hopping flag), modulation and coding scheme (MCS), new data indicator (NDI), redundancy version (redundancy version), hybrid automatic repeat request (HARQ) Process number, transmit power command (TPC) used to schedule PUSCH, uplink (UL)/supplementary uplink (SUL) identification.
  • DCI format identifier identifier for DCI formats
  • frequency domain resource assignment frequency domain resource assignment
  • time domain resource assignment time domain resource assignment
  • frequency domain frequency hopping identifier frequency domain frequency hopping flag
  • MCS modulation and coding scheme
  • NDI new data indicator
  • redundancy version redundancy version
  • HARQ hybrid automatic repeat request
  • the parameters in the above frequency domain resource allocation indication field are used to indicate the frequency domain resources for transmitting PUSCH, which may include the number of resource blocks (RBs) in the uplink bandwidth part (BWP) occupied by PUSCH.
  • the frequency domain resource allocation indication field includes 4 bits.
  • the parameters in the above time domain resource allocation indication field are used to indicate the time domain resources for transmitting PUSCH. It is usually the indication information of the time domain resource allocation item in the time domain resource allocation list (for example, the index of the time domain resource allocation item).
  • the time domain resource allocation list can be configured through PUSCH configuration. For the specific configuration method, please refer to the following about PUSCH. Introduction to configuration.
  • the parameters in the above MCS indication field are used to indicate the MCS of PUSCH.
  • NDI indication field The parameters in the above NDI indication field are used to indicate that PUSCH is initial transmission data or retransmission data. Generally, when the value of NDI is 1, it indicates that PUSCH is initial transmission data, and when the value of NDI is 0, it indicates that PUSCH is retransmission data.
  • the above-mentioned parameters in the TPC indication field for scheduling PUSCH are used to indicate increasing or decreasing the uplink transmit power of PUSCH.
  • the parameters in the above HARQ process number indication field are used to indicate the HARQ process of PUSCH.
  • Msg3PUSCH can be scheduled through random access response (random access response, RAR) uplink authorization.
  • RAR uplink authorization may include a time domain resource allocation indication field.
  • the parameters in the time domain resource allocation indication field are used to indicate the default time domain resource allocation list (or, in other words, the default time domain resource allocation list).
  • Indication information of the time domain resource allocation item (for example, the index of the time domain resource allocation item).
  • the default time domain resource allocation list can include 16 default time domain resource allocation items.
  • the default time domain resource allocation list has a similar function to the time domain resource allocation list in the PUSCH configuration.
  • the default time domain resource allocation item has a similar function to the time domain resource allocation item in the PUSCH configuration. Please refer to the following Introduction, for the sake of brevity, will not be repeated here.
  • a data channel aggregation solution has been introduced in NR.
  • multiple time slots can be aggregated through the uplink and downlink aggregation factors, and PUSCH data transmission can be performed on the aggregated multiple time slots.
  • PUSCH data transmission can be performed on the aggregated multiple time slots.
  • the above-mentioned number of repetitions can be carried in the PUSCH configuration (PUSCH-Config) through the aggregation factor indication, and configured to the terminal device in a semi-static manner.
  • PUSCH-Config can include one or more of the following: resource allocation type (represented by "resourceAllocation”), PUSCH time domain resource allocation list (represented by “pusch-TimeDomainAllocationList”), PUSCH Aggregation factor (represented by “pusch-AggregationFactor”), modulation and coding scheme (MCS) (represented by "mcs-Table”), etc.
  • resource allocation type represented by "resourceAllocation”
  • PUSCH time domain resource allocation list represented by "pusch-TimeDomainAllocationList”
  • PUSCH Aggregation factor represented by "pusch-AggregationFactor”
  • MCS modulation and coding scheme
  • the resource allocation types may include type 0 (represented by "resourceAllocationType0”), type 1 (represented by “esourceAllocationType1”), and dynamic switching (represented by "dynamicSwitch”).
  • a certain method when multi-slot aggregation transmission is combined with flexible time slots, in addition to indicating the number of repetitions, a certain method also needs to be used to determine which symbols or time slots can be used for repeated transmission of uplink data.
  • repeated transmission of PUSCH can cover consecutive time slots. When the available symbols in a time slot do not meet the requirements, the repeated transmission corresponding to the time slot can be ignored.
  • the repeated transmission of PUSCH is introduced below in conjunction with Figure 2.
  • Figure 2 shows a schematic diagram of uplink data transmission based on data channel aggregation. It is assumed that data channel aggregation is performed on time slots 1 to 4 to transmit PUSCH1. Among them, all symbols in time slot 0 and time slot 3 are uplink symbols. All symbols in slot 1 are downlink symbols. The last two symbols in slot 2 are uplink symbols, and the two symbols before the uplink symbols are used as guard intervals or are undecided symbols, and the remaining symbols in slot 2 are downlink symbols.
  • a data frequency-picking transmission mechanism is introduced in the communication system, or in other words, diversity gain can be obtained through frequency hopping transmission.
  • frequency hopping frequency hopping
  • frequency hopping technology is used to obtain additional frequency diversity gain.
  • frequency hopping (frequency hopping) technology is used to transmit uplink data and is widely used in OFDM systems (such as LTE systems).
  • OFDM systems such as LTE systems.
  • the 5G NR standard also supports the use of frequency hopping technology during uplink signal transmission.
  • BWP is also introduced in 5G NR, for a terminal device, the frequency domain resources involved in the above frequency hopping usually need to be within the uplink BWP activated by the terminal device.
  • both the data channel aggregation mechanism and the data frequency hopping transmission mechanism may consume too many wireless resources. Therefore, in known communication systems, it is also considered that the uplink coverage can be improved by adjusting the transmission waveform.
  • the following describes the uplink data transmission waveform and the configuration process of the uplink data transmission waveform.
  • the design goals of the new waveform can include one or more of the following: higher frequency efficiency, good ability to resist frequency offset and time synchronization deviation between carriers, lower out-of-band radiation interference, excellent peak-to-average ratio (peak to average power ratio, PAPR) indicator, which meets asynchronous transmission and non-orthogonal transmission between users.
  • the goal of new air interface waveform design is to flexibly select and configure suitable waveform parameters according to business scenarios and service types. For example, the system bandwidth is divided into several sub-bands to carry different service types, and different waveform parameters are selected. There is only a very low guard band in the sub-bands or no guard bands are needed at all. Each sub-band can be filtered using a digital filter. To cancel the relevant interference between sub-bands, realize waveform decoupling of different sub-bands, and meet the flexible coexistence between different services.
  • the main waveforms used in the NR uplink process include DFT-s-OFDM waveform and CP-OFDM waveform.
  • the DFT-s-OFDM waveform can be complementary to the CP-OFDM waveform to a certain extent.
  • the peak-to-average ratio of the DFT-s-OFDM waveform can be as low as 3dB, allowing the DFT-s-OFDM waveform to have better uplink coverage.
  • the transmission waveform of uplink data (eg, PUSCH) is configured in a semi-static manner.
  • the PUSCH transmission waveform is configured through PUSCH configuration (PUSCH-Config).
  • PUSCH-Config PUSCH configuration
  • the data structure of the PUSCH configuration information element can be found as shown below. It should be noted that, for the sake of simplicity, only the parameters relevant to understanding the solution of this application are introduced below.
  • the PUSCH configuration includes a PUSCH time domain resource allocation list (represented by "pusch-TimeDomainAllocationList”) and transformation precoding parameters (represented by "transformPrecoder”).
  • the above PUSCH time domain resource allocation list may include one or more PUSCH time domain resource allocation items, and one PUSCH time domain resource allocation item may be used to indicate the time domain resource for transmitting PUSCH.
  • the existing PUSCH time domain resource allocation list can include 16 PUSCH time domain resource allocation items. Among them, the data structure of the PUSCH time domain resource allocation list can be as follows.
  • the PUSCH time domain resource allocation list may include a PUSCH time domain resource allocation item (represented by "PUSCH-TimeDomainResourceAllocation").
  • a PUSCH time domain resource allocation item represented by "PUSCH-TimeDomainResourceAllocation”
  • the parameter "k2" mapping type (expressed by “mappingType"), start symbol and length (expressed by "startSymbolAndLength”) can be included.
  • the parameter "k2" is used to determine the relative position in the time domain between PUSCH and the physical downlink control channel (PDCCH).
  • the mapping type is used to indicate the resource mapping mode of PUSCH in the time domain.
  • the starting symbol and length are used to indicate the starting time domain position of PUSCH in the time domain and the length of the occupied time domain resources.
  • the above conversion precoding parameters are used to indicate whether the conversion precoder is enabled or disabled. Among them, different states of the conversion precoder can correspond to one transmission beam.
  • the transmission waveform used for uplink data is configured through PUSCH configuration (PUSCH-Config).
  • PUSCH-Config PUSCH configuration
  • the PUSCH configuration is configured in a semi-static manner.
  • This semi-static configuration method results in the semi-static configuration period.
  • the transmission beam of uplink data can only be the transmission beam configured by PUSCH, and other transmission waveforms cannot be used. If you need to adjust the transmission waveform, you can only wait until the next semi-static configuration cycle and adjust the transmission waveform based on the new PUSCH configuration.
  • This semi-static transmission waveform configuration method is not flexible enough and cannot meet the transmission needs of terminal equipment.
  • the terminal device when the terminal device is located at the edge of a cell, the channel conditions of the channel change rapidly, and the terminal device may need to adjust the transmission waveform of uplink data based on changes in channel conditions.
  • the transmission waveform of uplink data needs to be switched from the CP-OFDM waveform to the DFT-s-OFDM waveform, which helps to improve the uplink coverage of terminal equipment.
  • the current method based on semi-static configuration of transmission waveforms when the channel conditions deteriorate, may not be a new semi-static configuration period. At this time, the transmission waveform of uplink data cannot be adjusted, causing terminal equipment failure. Therefore, the above-mentioned semi-static configuration of transmission waveforms cannot meet the transmission needs of terminal equipment.
  • embodiments of the present application provide a communication method.
  • the network device can dynamically indicate the transmission beam of the uplink data to the terminal device.
  • the communication method according to the embodiment of the present application will be introduced below with reference to Figure 3.
  • the method shown in Figure 3 includes step S310.
  • step S310 the network device sends the first signaling to the terminal device.
  • the first signaling is used to dynamically schedule the first uplink data, and the first signaling is used to indicate the transmission waveform of the first uplink data.
  • the above-mentioned first uplink data may be PUSCH, for example.
  • the above-mentioned first signaling may be different signaling in the existing communication system.
  • the above-mentioned first signaling may be DCI.
  • the DCI format may be one or more of format 0_0, format 0_1, and format 0_2.
  • the above-mentioned first signaling may be RAR uplink authorization.
  • the above-mentioned first signaling can also be other signaling with similar functions, which is not specifically limited in the embodiments of this application.
  • the transmission waveform of the first uplink data may include a discrete fourier transform-spread OFDM (discrete fourier transform-spread OFDM, DFT-s-OFDM) waveform, and/or a cyclic prefix-orthogonal Frequency division multiplexing (cyclic prefix-orthogonal frequency division multiplexing, CP-OFDM) waveform.
  • a discrete fourier transform-spread OFDM discrete fourier transform-spread OFDM
  • DFT-s-OFDM discrete fourier transform-spread OFDM
  • CP-OFDM cyclic prefix-orthogonal Frequency division multiplexing
  • the CP-OFDM waveform has some advantages, such as good resistance to inter-symbol interference and frequency selective fading, simple frequency or equalization receivers, and easy integration with MIMO technology to support flexible resource allocation.
  • the CP-OFDM waveform also has disadvantages.
  • the DFT-s-OFDM waveform can be complementary to the CP-OFDM waveform.
  • the peak-to-average ratio of the DFT-s-OFDM waveform can be as low as 3dB, allowing the DFT-s-OFDM waveform to have better uplink coverage. Therefore, in this embodiment of the present application, the transmission waveforms that can be used in the uplink transmission process may include DFT-s-OFDM waveforms and CP-OFDM waveforms.
  • the above-mentioned transmission waveform of the first uplink data may also include a variety of optimized or brand-new waveform schemes based on the CP-OFDM waveform, such as DFT-OFDM with zero-tail spread spectrum.
  • the above-mentioned transmission waveform of the first uplink data may also include new waveforms in future communication systems, which is not limited in the embodiments of the present application.
  • the first signaling may indicate the transmission of the first uplink data by indicating a conversion precoding parameter (for example, enabling a conversion precoder or disabling a conversion precoder). beam.
  • a conversion precoding parameter for example, enabling a conversion precoder or disabling a conversion precoder.
  • Figure 4 is the corresponding relationship between different states of the conversion precoder and the transmission waveform according to the embodiment of the present application.
  • the conversion precoding parameter is to disable the conversion precoder, then the conversion precoder (for example, DFT encoder) does not work, and the uplink signal can be transformed by inverse fast fourier transform, IFFT) encoder. At this time, the transmission waveform of the uplink signal is the CP-OFDM waveform.
  • the conversion precoding parameter is enabled (enabled) conversion precoder
  • the conversion precoder for example, DFT encoder
  • the uplink signal can be processed in the DFT encoder first and then sent to the IFFT encoder. being processed.
  • the transmission waveform of the uplink signal is the DFT-s-OFDM waveform.
  • the transmission beam of the first uplink data may include a DFT-s-OFDM waveform.
  • the transmission beam of the first uplink data includes a CP-OFDM waveform.
  • parameters indicating the transmission waveform of the first uplink data may also be used to indicate the transmission waveform through other parameters in addition to the above-mentioned conversion precoding parameters.
  • the identifier of the waveform may be transmitted, which is not limited in the embodiments of the present application.
  • the first signaling may indicate the transmission waveform of the first uplink data.
  • instruction can be understood as direct instruction or indirect instruction. If the first signaling directly indicates the transmission waveform of the first uplink data, it can be understood that the first signaling directly carries parameters for indicating the transmission waveform of the first uplink data.
  • the first signaling includes a dedicated indication field for converting precoding parameters.
  • the direct indication method introduced above which can directly carry the parameters used to indicate the transmission waveform in the first signaling, it can also be implemented in other ways. The following will be combined with the implementation method 1.
  • the direct instruction method of introduction is introduced in detail and will not be repeated here for the sake of brevity.
  • the indication field also known as the "first indication domain” indicating other parameters (also known as the "first parameter”) is multiplexed in the first signaling. ”), to indirectly indicate the transmission waveform of the first uplink data. That is, the first signaling includes a first indication field, the first indication field is used to indicate the first parameter, and the first parameter corresponds to the transmission waveform of the first uplink data.
  • the indirect instruction method in Implementation Mode 1 and Implementation Modes 2 to 7 will be introduced in detail below. For the sake of simplicity, they will not be described again.
  • the first signal in the first signaling may correspond to a parameter indicating the transmission waveform of the first uplink data. That is to say, the first parameter may indicate the transmission waveform of the first uplink data through the corresponding indicated transmission waveform parameter.
  • the conversion precoding parameter corresponding to the first parameter is to disable the conversion precoder
  • the transmission waveform of the first uplink data corresponding to the first parameter is a CP-OFDM waveform.
  • the conversion precoding parameter corresponding to the first parameter is to enable the conversion precoder
  • the transmission waveform of the first uplink data corresponding to the first parameter is a DFT-s-OFDM waveform.
  • different first parameter values in the first indication field may correspond to one or more transmission waveforms.
  • the transmission waveforms corresponding to different first parameter values may be the same or different, which is not limited in the embodiments of the present application.
  • the method of multiplexing different parameter indication transmission waveforms in the first signaling is introduced below in conjunction with Implementation Mode 1 to Implementation Mode 7.
  • the first signaling may include parameters used to determine the time domain resource of the first uplink data.
  • the parameter indicating the time domain resource may correspond to the transmission waveform.
  • the first parameter is used to determine the time domain resource of the first uplink data, and the time domain resource of the first uplink data corresponds to the transmission waveform of the first uplink data.
  • the time domain resource of the first uplink data corresponds to the transmission waveform of the first uplink data. It can be understood that in the time domain resource allocation item indicating the time domain resource of the first uplink data, a function for Parameters indicating the transmission waveform of the first uplink data (for example, conversion precoding parameters).
  • DCI can include a time domain resource allocation indication field.
  • the parameter in the time domain resource allocation indication field may be used as the first parameter to indicate the transmission waveform of the first uplink data.
  • the following uses the indirect instruction method and the direct instruction method as examples to introduce the instruction methods in the embodiments of the present application respectively.
  • parameters indicating the transmission waveform can be added to the time domain resource allocation item in advance.
  • the parameters indicating the transmission waveform included in the resource allocation item are also sent to the terminal device.
  • the network device indicates the time domain resource allocation item through the first parameter, it may also directly indicate the transmission waveform included in the time domain resource allocation item through the first parameter.
  • the following uses converting precoding parameters as parameters indicating transmission waveforms as an example to introduce the data structure of the PUSCH time domain resource allocation list.
  • the time domain resource allocation list can be expressed as "PUSCH-TimeDomainResourceAllocationlist”
  • the time domain resource allocation item can be expressed as "PUSCH-TimeDomainResourceAllocation”
  • the transformation precoding parameter can be expressed as "transformPrecoder-r18”. Comparing the data structure of the PUSCH time domain resource allocation list introduced previously, it can be seen that the transformation precoding parameter "transformPrecoder-r18" is added to the time domain resource allocation item in the embodiment of this application to indicate the transmission waveform.
  • Figure 5 is a schematic diagram of a DCI indication transmission waveform in an embodiment of the present application. It is assumed that the conversion precoding parameter included in the Nth time domain resource configuration item is to disable the conversion precoder, and the conversion precoding parameter included in the N+1 time domain resource configuration item is to enable the conversion precoder. Referring to Figure 5, if the DCI indicates that the time domain resource configuration item of the first uplink data is the Nth item, then the transmission waveform of the first uplink data is a CP-OFDM waveform. If the DCI indicates that the time domain resource configuration item of the first uplink data is the N+1 item, then the transmission waveform of the first uplink data is a DFT-s-OFDM waveform.
  • the time domain resource of the first uplink data corresponds to the transmission waveform of the first uplink data. It can be understood that there is an independent relationship between the time domain resource of the first uplink data and the transmission waveform of the first uplink data.
  • the corresponding relationship for example, can be represented by a mapping table between the time domain resource of the first uplink data and the transmission waveform of the first uplink data.
  • the corresponding relationship between the time domain resource allocation item and the transmission waveform can be established in advance.
  • the terminal device can determine the time domain resource allocation item corresponding to the indicated time domain resource allocation item based on the time domain resource allocation item of the first uplink data and the above corresponding relationship.
  • the corresponding transmission waveform can be established in advance.
  • the correspondence between the above time domain resource allocation item and the transmission waveform can be understood as the correspondence between the time domain resource allocation item and the conversion precoding parameter.
  • the terminal device can determine the time domain resource allocation item of the first uplink data based on the time domain resource allocation item of the first uplink data and the above corresponding relationship. Convert the precoding parameters corresponding to the resource allocation item, and determine the transmission waveform of the first uplink data by converting the precoding parameters.
  • the data structure of the traditional PUSCH time domain resource allocation list can be used. That is to say, the indication transmission waveform does not need to be added to the data structure of the traditional PUSCH time domain resource allocation list. parameters to reduce changes to existing communication protocols.
  • time domain resource allocation items can be configured through pre-configuration, pre-definition, etc., which is not limited in the embodiments of the present application.
  • the RAR uplink grant may include parameters indicating the time domain resources of Msg3PUSCH.
  • this parameter may be used as the first parameter to indicate the transmission waveform of the first uplink data.
  • the following uses the indirect instruction method and the direct instruction method as examples to introduce the instruction methods in the embodiments of the present application respectively.
  • the time domain resource of the first uplink data corresponds to the transmission waveform of the first uplink data. It can be understood that in the default time domain resource allocation item indicating the time domain resource of the first uplink data, add Parameters used to indicate the transmission waveform of the first uplink data (for example, conversion precoding parameters).
  • parameters indicating the transmission waveform can be added to the default time domain resource allocation items in advance.
  • the parameters indicating the transmission waveform included in the default resource allocation item are also sent to the terminal device.
  • the network device indicates the default time domain resource allocation item through the first parameter, since the time domain resource allocation item includes a parameter indicating the transmission waveform, the first parameter also directly indicates the default time domain resource allocation item. Included in are parameters indicating the transmission waveform.
  • the current default time domain resource allocation list usually contains 16 default time domain resource allocation items.
  • the default time domain resource allocation list can be Conversion precoding parameters are added to some or all of the default time domain resource allocation items in the list to establish a correspondence between the default time domain resource allocation items and the conversion precoding parameters.
  • the network device may also directly indicate the conversion precoding parameters included in the default time domain resource allocation item through the first parameter.
  • the default time domain resource of the first uplink data corresponds to the transmission waveform of the first uplink data. It can be understood that the default time domain resource of the first uplink data corresponds to the transmission waveform of the first uplink data. There is an independent correspondence between the waveforms. For example, the correspondence between the default time domain resource of the first uplink data and the transmission waveform of the first uplink data can be expressed through a mapping table.
  • the corresponding relationship between the default time domain resource allocation items and the transmission waveform can be established in advance.
  • the terminal device can determine the default time domain resource allocation item based on the first uplink data and the above corresponding relationship.
  • the transmission waveform corresponding to the time domain resource allocation item indicated by the province can be established in advance.
  • the above-mentioned correspondence between the default time domain resource allocation item and the transmission waveform can be understood as the correspondence between the default time domain resource allocation item and the conversion precoding parameter.
  • the terminal device can determine the default time domain resource allocation item of the first uplink data and the above corresponding relationship. Convert a precoding parameter corresponding to a default time domain resource allocation item of uplink data, and determine the transmission waveform of the first uplink data by converting the precoding parameter.
  • the data structure of the traditional default time domain resource allocation item can be used, that is to say, it does not need to be included in the data structure of the existing default time domain resource allocation item.
  • New parameters indicating the transmission waveform help reduce changes to existing communication protocols.
  • the corresponding relationship between the above-mentioned default time domain resource allocation items and transmission waveforms may be configured through pre-configuration, pre-definition, etc., which is not limited in the embodiments of the present application.
  • the first signaling may include a parameter indicating the resource allocation type of the first uplink data.
  • the parameter indicating the resource allocation type may correspond to the transmission waveform.
  • the first parameter is used to indicate the resource allocation type of the first uplink data, and the resource allocation type of the first uplink data corresponds to the transmission waveform of the first uplink data.
  • the resource allocation type of the first uplink data corresponds to the transmission waveform of the first uplink data. It can be understood that there is an independent correspondence between the resource allocation type of the first uplink data and the transmission waveform of the first uplink data. For example, the corresponding relationship between the resource allocation type of the first uplink data and the transmission waveform of the first uplink data may be represented by a mapping table.
  • DCI can include a resource allocation type indication field.
  • the parameter in the resource allocation type indication field may be used as the first parameter to indicate the transmission waveform of the first uplink data.
  • the corresponding relationship between the resource allocation type and the transmission waveform can be established in advance.
  • the terminal device can determine the transmission waveform corresponding to the indicated resource allocation type based on the first parameter and the above-mentioned corresponding relationship.
  • the correspondence between the resource allocation type and the transmission waveform can be understood as the correspondence between the resource allocation type and the conversion precoding parameter.
  • the terminal device can determine the conversion corresponding to the resource allocation type of the first uplink data based on the resource allocation type of the first uplink data and the above-mentioned corresponding relationship. Precoding parameters, and determining the transmission waveform of the first uplink data by converting the precoding parameters.
  • the DFT-s-OFDM waveform can be corresponded to the resource allocation type indicating the occupation of continuous frequency domain resources, where, indicating the occupation of continuous frequency domain resources,
  • the resource allocation type of the domain resource may be type 1, for example.
  • the CP-OFDM waveform may correspond to type 0.
  • the DFT-s-OFDM waveform may correspond to type 0, and correspondingly, the CP-OFDM waveform may correspond to type 1.
  • the corresponding relationship between the above resource allocation types and conversion precoding parameters may include: the conversion precoding parameters corresponding to type 1 are to disable the conversion precoder; and/or the conversion precoding parameters corresponding to type 0 are Enable conversion precoder.
  • the corresponding relationship between the above resource allocation types and conversion precoding parameters may also include: the conversion precoding parameters corresponding to type 0 are to disable the conversion precoder; and/or the conversion precoding parameters corresponding to type 1 are to enable Conversion precoder.
  • the first signaling may include parameters used to indicate frequency domain resources of the first uplink data.
  • the parameter indicating the frequency domain resource may correspond to the transmission waveform.
  • the first parameter is used to indicate the frequency domain resource of the first uplink data, and the frequency domain resource of the first uplink data corresponds to the transmission waveform of the first uplink data.
  • the frequency domain resource of the first uplink data corresponds to the transmission waveform of the first uplink data. It can be understood that there is an independent correspondence between the frequency domain resource of the first uplink data and the transmission waveform of the first uplink data. For example, the corresponding relationship between the frequency domain resource of the first uplink data and the transmission waveform of the first uplink data may be represented by a mapping table.
  • DCI may include a frequency domain resource allocation indication field.
  • the parameter in the frequency domain resource allocation indication field may be used as the first parameter to indicate the transmission waveform of the first uplink data.
  • the corresponding relationship between frequency domain resources and transmission waveforms can be established in advance.
  • the terminal device can determine the transmission corresponding to the frequency domain resource of the first uplink data based on the frequency domain resource of the first uplink data and the above corresponding relationship. waveform.
  • the above-mentioned correspondence between frequency domain resources and transmission waveforms may include a correspondence between the number of frequency domain resources and transmission waveforms.
  • the number of frequency domain resources may be, for example, the number of RBs.
  • the above-mentioned correspondence between frequency domain resources and transmission waveforms can also be a correspondence between the BWP where the frequency domain resources are located and the transmission waveform, which is not limited in the embodiments of the present application.
  • the correspondence between the number of frequency domain resources and the transmission waveform can be understood as the correspondence between the number of frequency domain resources and the conversion precoding parameter.
  • the terminal device can determine the number of frequency domain resources of the first uplink data based on the number of frequency domain resources of the first uplink data and the above corresponding relationship.
  • the number of resources corresponds to the converted precoding parameter, and the transmission waveform of the first uplink data is determined by converting the precoding parameter.
  • the following uses the DFT-s-OFDM waveform and the CP-OFDM waveform as examples to introduce the corresponding relationship between the number of frequency domain resources and the transmission waveform in the embodiment of the present application.
  • the uplink coverage of the terminal equipment may be limited.
  • using the DFT-s-OFDM waveform to send the first uplink data can help improve the uplink coverage.
  • the above correspondence relationship can include the corresponding DFT when there are fewer frequency domain resources.
  • -s-OFDM waveform, and/or, more frequency domain resources correspond to CP-OFDM waveform.
  • the number of frequency domain resources can be determined based on a quantity threshold. For example, when the number of frequency domain resources is greater than the quantity threshold, it can be understood that the number of frequency domain resources is greater, corresponding to the DFT-s-OFDM waveform. . Correspondingly, when the number of frequency domain resources is less than the quantity threshold, it can be understood that the number of frequency domain resources is small, corresponding to the CP-OFDM waveform. It should be noted that in this embodiment of the present application, other methods can be used to determine the number of frequency domain resources. For example, when the frequency domain resources have fixed values, it can be determined that the number of frequency domain resources is larger. On the contrary, when the frequency domain resource is not the above fixed value, it can be determined that the number of frequency domain resources is small. The embodiments of the present application do not limit this.
  • the corresponding relationship between the number of frequency domain resources and the conversion precoding parameters may include: if the number of frequency domain resources is less than the quantity threshold, the frequency domain resource is determined based on the quantity threshold.
  • the conversion precoding parameter corresponding to the number of domain resources is to enable the precoding converter; and/or, if the number of frequency domain resources is greater than or equal to the quantity threshold, the conversion precoding parameter corresponding to the number of frequency domain resources is to disable Precoding converter.
  • the first signaling may include parameters used to indicate the modulation and coding strategy of the first uplink data.
  • the parameters indicating the modulation and coding strategy may correspond to the transmission waveform.
  • the first parameter is used to indicate the modulation and coding strategy of the first uplink data, and the modulation and coding strategy of the first uplink data corresponds to the transmission waveform of the first uplink data.
  • the modulation and coding strategy of the first uplink data corresponds to the transmission waveform of the first uplink data. It can be understood that there is an independent relationship between the modulation and coding strategy of the first uplink data and the transmission waveform of the first uplink data. For example, the corresponding relationship between the modulation and coding strategy of the first uplink data and the transmission waveform of the first uplink data can be represented by a mapping table.
  • DCI can include modulation and coding strategy indication fields.
  • the parameters in the modulation and coding strategy indication field may be used as the first parameter to indicate the transmission waveform of the first uplink data.
  • the corresponding relationship between the modulation and coding strategy and the transmission waveform can be established in advance.
  • the terminal device can determine the transmission corresponding to the indicated modulation and coding strategy based on the modulation and coding strategy of the first uplink data and the above corresponding relationship. waveform.
  • the correspondence between the code rate of the above modulation and coding strategy and the transmission waveform can be understood as the correspondence between the modulation and coding strategy and the conversion precoding parameter.
  • the terminal device can determine the modulation and coding strategy of the first uplink data based on the modulation and coding strategy of the first uplink data and the above corresponding relationship.
  • the precoding parameters and determine the transmission waveform of the first uplink data by converting the precoding parameters.
  • the correspondence between the modulation and coding strategy and the transmission waveform may include the correspondence between the code rate of the modulation and coding strategy and the transmission waveform.
  • the following uses DFT-s-OFDM waveforms and CP-OFDM waveforms as examples to introduce the corresponding relationship between the code rate and the transmission waveform of the modulation and coding strategy in the embodiment of the present application.
  • the code rate of the modulation and coding strategy is low, the uplink coverage of the terminal device may be limited.
  • using the DFT-s-OFDM waveform to send the first uplink data can help improve the uplink coverage.
  • the CP-OFDM waveform can be used to send the first uplink data.
  • the above corresponding relationship may include that the modulation and coding strategy with a lower code rate corresponds to the DFT-s-OFDM waveform, and/or the modulation and coding strategy with a higher code rate corresponds to the CP-OFDM waveform.
  • the code rate of the modulation and coding strategy can be determined based on the code rate threshold. For example, when the code rate of the modulation and coding strategy is greater than the code rate threshold, it can be understood that the code rate of the modulation and coding strategy is higher. , corresponding to the CP-OFDM waveform. Correspondingly, when the code rate of the modulation and coding strategy is less than the code rate threshold, it can be understood that the code rate of the modulation and coding strategy is low, corresponding to the DFT-s-OFDM waveform. It should be noted that in the embodiments of the present application, other methods can also be used to determine the code rate of the modulation and coding strategy.
  • the code rate of the modulation and coding strategy when the code rate of the modulation and coding strategy is fixed to some value, the code rate of the modulation and coding strategy can be determined. The code rate is higher. On the contrary, when the code rate of the modulation and coding strategy is not the above fixed value, it can be determined that the code rate of the modulation and coding strategy is lower.
  • the embodiments of the present application do not limit this.
  • the corresponding relationship between the code rate of the modulation and coding strategy and the conversion precoding parameter may include: If the code rate of the modulation and coding strategy If the rate is less than the code rate threshold, the conversion precoding parameter corresponding to the code rate of the modulation and coding strategy is to enable the precoding converter; and/or, if the code rate of the modulation and coding strategy is greater than or equal to the code rate threshold, the modulation and coding strategy The conversion precoding parameter corresponding to the code rate of the encoding strategy is to disable the precoding converter.
  • the correspondence between the modulation and coding strategy and the transmission waveform may include the correspondence between the order of the modulation and coding strategy and the transmission waveform.
  • the following uses DFT-s-OFDM waveforms and CP-OFDM waveforms as examples to introduce the corresponding relationship between the order of the modulation and coding strategy and the transmission waveform in the embodiment of the present application.
  • the uplink coverage of the terminal equipment may be limited.
  • using the DFT-s-OFDM waveform to send the first uplink data can help improve the uplink coverage.
  • the CP-OFDM waveform can be used to send the first uplink data. Therefore, the above-mentioned corresponding relationship may include lower-order modulation and coding strategies corresponding to DFT-s-OFDM waveforms, and/or higher-order modulation and coding strategies corresponding to CP-OFDM waveforms.
  • the order of the modulation and coding strategy can be determined based on the order threshold. For example, when the order of the modulation and coding strategy is greater than the order threshold, it can be understood that the order of the modulation and coding strategy is higher. , corresponding to the DFT-s-OFDM waveform. Correspondingly, when the order of the modulation and coding strategy is less than the order threshold, it can be understood that the order of the modulation and coding strategy is lower, corresponding to the CP-OFDM waveform. It should be noted that in the embodiments of the present application, other methods can be used to determine the order of the modulation and coding strategies.
  • the order of the modulation and coding strategies can be determined. The order is higher.
  • the order of the modulation and coding strategy is not the above-mentioned fixed value, it can be determined that the order of the modulation and coding strategy is lower.
  • the embodiments of the present application do not limit this.
  • the corresponding relationship between the order of the modulation and coding strategy and the conversion precoding parameter may include: If the order of the modulation and coding strategy The number is less than the order threshold, the conversion precoding parameter corresponding to the order of the modulation and coding strategy is to enable the precoding converter; and/or, if the order of the modulation and coding strategy is greater than or equal to the order threshold, the modulation and coding strategy The conversion precoding parameter corresponding to the order of the coding strategy is to disable the precoding converter.
  • the first signaling may include a parameter indicating the transmission power of the first uplink data.
  • the parameter indicating the transmission power may correspond to the transmission waveform.
  • the first parameter is used to indicate the transmission power of the first uplink data, and the transmission power of the first uplink data corresponds to the transmission waveform of the first uplink data.
  • the transmission power of the first uplink data corresponds to the transmission waveform of the first uplink data. It can be understood that there is an independent correspondence between the transmission power of the first uplink data and the transmission waveform of the first uplink data. For example, the corresponding relationship between the transmission power of the first uplink data and the transmission waveform of the first uplink data may be represented by a mapping table.
  • the DCI may include an indication field for scheduling the TPC of PUSCH.
  • the parameter in the indication field of the TPC may be used as the first parameter to indicate the transmission waveform of the first uplink data.
  • the corresponding relationship between transmit power and transmission waveform can be established in advance.
  • the terminal device can determine the transmission waveform corresponding to the transmission power based on the transmission power of the first uplink data and the above-mentioned corresponding relationship.
  • the above-mentioned correspondence between the transmission power and the transmission waveform can be understood as the correspondence between the transmission power and the conversion precoding parameter.
  • the terminal device can determine the conversion precoding parameter corresponding to the transmission power of the first uplink data based on the transmission power of the first uplink data and the above-mentioned corresponding relationship. , and determine the transmission waveform of the first uplink data by converting the precoding parameters.
  • the above-mentioned corresponding relationship between the transmission power and the transmission waveform can be configured through pre-configuration, pre-definition, etc., which is not limited in the embodiments of the present application.
  • the DFT-s-OFDM waveform and the CP-OFDM waveform are used as examples to introduce the corresponding relationship between the transmit power and the transmission waveform in the embodiment of the present application.
  • the DFT-s-OFDM waveform has a higher transmit power amount than the CP-OFDM waveform. Therefore, when the transmission power of the first uplink data is relatively large, the DFT-s-OFDM waveform can be used to transmit the first uplink data.
  • the CP-OFDM waveform may be used to transmit the first uplink data. Therefore, the above corresponding relationship may include that higher transmission power corresponds to the DFT-s-OFDM waveform, and/or lower transmission power corresponds to the CP-OFDM waveform.
  • the level of the transmission power can be determined based on the transmission power threshold. For example, when the transmission power of the first uplink data is greater than or equal to the transmission power threshold, it can be understood that the transmission power of the first uplink data is higher, corresponding to the DFT -s-OFDM waveform. Correspondingly, when the transmission power of the first uplink data is less than the transmission power threshold, it can be understood that the transmission power of the first uplink data is low, corresponding to the CP-OFDM waveform. It should be noted that in this embodiment of the present application, other methods may be used to determine the level of the transmission power. For example, when the transmission power is a fixed value, it may be determined that the transmission power is relatively high. On the contrary, when the transmission power is not the above-mentioned fixed value, it can be determined that the transmission power is low. The embodiments of the present application do not limit this.
  • the corresponding relationship between the above transmit power and the conversion precoding parameter may include: if the transmit power is higher than or equal to the transmit power threshold, the corresponding transmit power The conversion precoding parameter is to enable the precoding converter; and/or, if the transmission power is less than the transmission power threshold, the conversion precoding parameter corresponding to the transmission power is to disable the precoding converter.
  • the first signaling may include parameters used to indicate the HARQ process of the first uplink data.
  • the parameters indicating the HARQ process may correspond to the transmission waveform.
  • the first parameter is used to indicate the HARQ process of the first uplink data, and the HARQ process of the first uplink data corresponds to the transmission waveform of the first uplink data.
  • the HARQ process of the first uplink data corresponds to the transmission waveform of the first uplink data. It can be understood that there is an independent correspondence between the HARQ process of the first uplink data and the transmission waveform of the first uplink data. For example, the corresponding relationship between the HARQ process of the first uplink data and the transmission waveform of the first uplink data may be represented by a mapping table.
  • DCI can include a HARQ process number indication field.
  • the parameter in the HARQ process number indication field may be used as the first parameter to indicate the transmission waveform of the first uplink data.
  • the corresponding relationship between the HARQ process number and the transmission waveform can be established in advance.
  • the terminal device can determine the transmission waveform corresponding to the HARQ process number based on the HARQ process of the first uplink data and the above corresponding relationship.
  • the above-mentioned correspondence between the HARQ process and the transmission waveform can be understood as the correspondence between the HARQ process and the conversion precoding parameter.
  • the terminal device can determine the conversion precoding parameter corresponding to the HARQ process of the first uplink data based on the HARQ process of the first uplink data and the above corresponding relationship. , and determine the transmission waveform of the first uplink data by converting the precoding parameters.
  • the following uses DFT-s-OFDM waveforms and CP-OFDM waveforms as examples to introduce the corresponding relationship between the HARQ process number and the transmission waveform in the embodiment of the present application.
  • the fixed HARQ process number can correspond to the DFT-s-OFDM waveform.
  • the HARQ process number is not the above-mentioned fixed value
  • the HARQ process number that is not a fixed value may correspond to the CP-OFDM waveform.
  • the embodiments of the present application do not limit this.
  • the corresponding relationship between the above-mentioned HARQ process and the conversion precoding parameter may include: if the HARQ process number is some fixed value, the conversion precoding parameter corresponding to the HARQ process number is enable precoding. Code converter; and/or, if the HARQ process number is not a fixed value, the conversion precoding parameter corresponding to the HARQ process number is to disable the precoding converter.
  • the first signaling may include parameters used to indicate that the first uplink data is retransmission data or initial transmission data.
  • parameters used to indicate retransmission of data or initial transmission of data may correspond to the transmission waveform.
  • the first parameter is used to indicate that the first uplink data is retransmission data or initial transmission data, and the first uplink data is retransmission data or initial transmission data and corresponds to the transmission waveform of the first uplink data.
  • the first uplink data is retransmission data or initial transmission data corresponding to the transmission waveform of the first uplink data. It can be understood that the first uplink data is the retransmission data or initial transmission data and the transmission waveform of the first uplink data. There is an independent correspondence between the transmission waveforms. For example, a mapping table can be used to indicate that the first uplink data is a transmission waveform corresponding to the retransmission data, and the first uplink data is a transmission waveform corresponding to the initial transmission data.
  • DCI can include an NDI indication field.
  • the parameter in the NDI indication field may be used as the first parameter to indicate the transmission waveform of the first uplink data.
  • the corresponding relationship between retransmission data or initial transmission data and transmission waveforms can be established in advance.
  • the terminal device can determine the retransmission data based on whether the first uplink data is retransmission data or initial transmission data and the above corresponding relationship. Or the transmission waveform corresponding to the initial transmission data.
  • the above-mentioned correspondence between the retransmission data or the initial transmission data and the transmission waveform can be understood as the correspondence between the retransmission data or the initial transmission data and the conversion precoding parameters.
  • the terminal device can determine whether the first uplink data is retransmission data or initial transmission data and the above corresponding relationship with the initial transmission data. Or retransmit the conversion precoding parameter corresponding to the data, and determine the transmission waveform of the first uplink data through the conversion precoding parameter.
  • the following uses DFT-s-OFDM waveforms and CP-OFDM waveforms as examples to introduce the corresponding relationship between retransmission data or initial transmission data numbers and transmission waveforms in this embodiment.
  • the NDI indicates that the first uplink data is initial transmission data (for example, the NDI value is 1), it can correspond to the CP-OFDM waveform.
  • the NDI indicates that the first uplink data is retransmission data (for example, the NDI value is 1) 0), it can correspond to DFT-s-OFDM waveform.
  • the NDI indicates that the first uplink data is initial transmission data (for example, the NDI value is 1), it can correspond to the DFT-s-OFDM waveform.
  • the NDI indicates the first uplink data When retransmitting data (for example, the NDI value is 0), it can correspond to the CP-OFDM waveform.
  • the embodiments of the present application do not limit this.
  • the corresponding relationship between the above-mentioned initial transmission data, retransmission data and conversion precoding parameters may include: if the first uplink data is initial transmission data, the conversion precoding parameter corresponding to the initial transmission data is enable precoding. Code converter; and/or, if the first uplink data is retransmitted data, the conversion precoding parameter corresponding to the retransmitted data is to disable the precoding converter.
  • the above-mentioned corresponding relationship between the initial transmission data, the retransmission data and the conversion precoding parameters may also include: if the first uplink data is the initial transmission data, the conversion precoding parameters corresponding to the initial transmission data are: Disable the precoding converter; and/or, if the first uplink data is retransmitted data, the conversion precoding parameter corresponding to the retransmitted data is to enable the precoding converter.
  • the method of multiplexing different parameter indication transmission waveforms in the first signaling is introduced above in conjunction with Implementation Modes 1 to 7.
  • the parameters that can be reused in the embodiments of this application are not limited to the several parameters introduced above. Other parameters in the first signaling can also be reused.
  • the multiplexing method is similar to the multiplexing method introduced above. For example It’s concise and I won’t go into details below.
  • the multiplexing methods introduced in the above implementation modes 1 to 7 can be used alone or in combination, and the embodiments of the present application are not limited to this. If the above implementation methods 1 to 7 are used in combination, you can avoid the conflict of transmission waveforms indicated by different implementation methods by setting the priorities corresponding to different implementation methods.
  • the original parameters in the first signaling are reused to indicate the transmission waveform of the first uplink data, which helps avoid increasing the overhead of transmitting the first signaling.
  • the transmission waveform of the first uplink data can also be indicated by the format of DCI.
  • different formats of DCI can correspond to one or more transmission waveforms.
  • the method of transmitting waveforms through DCI instructions is not limited in the embodiments of this application.
  • a parameter indicating the transmission waveform of the first uplink data may be added to the indication field of the first signaling.
  • the first signaling includes a first indication field, wherein the first indication field carries parameters indicating the transmission waveform of the first uplink data.
  • the first indication field may include one or more of the following: frequency domain resource allocation indication field; time domain resource allocation indication field; resource allocation type indication field, modulation and coding strategy indication field; new data identification indication field; HARQ process Number indication field; and TPC indication field for scheduling PUSCH.
  • the above-mentioned first indication field may also be other indication fields.
  • the transmission waveform of the uplink data for the terminal device will be carried in the configuration information (for example, PUSCH configuration or public configuration information of the random access channel (RACH-ConfigCommon)) Parameters for unified configuration (also called "second parameters").
  • the configuration information for example, PUSCH configuration or public configuration information of the random access channel (RACH-ConfigCommon)
  • Parameters for unified configuration also called "second parameters"
  • the terminal device can send the first uplink data using the transmission waveform indicated by the first signaling.
  • the terminal equipment can send the PUSCH using the transmission waveform indicated by the first signaling.
  • the terminal device can send Msg3PUSCH using the transmission waveform indicated by the first signaling.
  • the configuration information of the semi-static configuration may no longer carry the third two parameters to avoid conflict with the transmission waveform indicated by the first signaling.
  • the first uplink data can also be considered as initial transmission data or retransmission data and combined with the first signaling to determine the transmission waveform of the first uplink data.
  • the transmission waveform of the first uplink data may be determined based on the first signaling.
  • the transmission waveform of the first uplink data may be determined based on the transmission waveform of the initially transmitted data of the first uplink data.
  • the transmission waveform of the first uplink data may be determined based on the transmission waveform of the initially transmitted data of the first uplink data, which may include the transmission waveform of the retransmitted data being the same as the transmission waveform of the initially transmitted data, or the retransmitted data.
  • the transmission waveform is different from the transmission waveform of the initial data transmission. The embodiments of the present application do not limit this.
  • the above two implementation methods can be used alone or in combination, which is not limited in the embodiments of the present application.
  • whether the first uplink data is initial transmission data or retransmission data can be used to indicate whether the transmission waveform indicated by the first signaling is valid.
  • the transmission waveform of the first uplink data can be determined based on the first signaling. That is, if the first uplink data is initial transmission data (for example, NDI is 1), indicating that the transmission waveform indicated by the first signaling is effective.
  • the transmission waveform of the retransmitted data can be determined based on the transmission waveform of the initially transmitted data, that is, if the first uplink data is retransmitted data (for example, , NDI is 0), indicating that the transmission waveform indicated by the first signaling is not effective.
  • the transmission failure of the initial transmission data may be related to the transmission waveform of the initial transmission data. Therefore, in order to improve the reliability of data transmission, a different waveform from the initial transmission data can be used when transmitting the retransmission data.
  • the transmission waveform of the initially transmitted data can be the same as the transmission waveform of the retransmitted data.
  • initial transmission data and retransmission data mentioned above may belong to the same data transmission process scheduled by DCI.
  • FIG. 6 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 600 shown in FIG. 6 includes: a receiving unit 610.
  • the receiving unit 610 is configured to receive the first signaling sent by the network device, the first signaling is used to dynamically schedule the first uplink data, and the first signaling is used to indicate the transmission waveform of the first uplink data.
  • the first signaling includes a first indication field, the first indication field is used to indicate a first parameter, and the first parameter is consistent with the transmission waveform of the first uplink data. correspond.
  • the first parameter corresponds to a transmission waveform of the first uplink data, including the first parameter corresponding to a parameter used to indicate the transmission waveform of the first uplink data.
  • the first parameter is used to determine the time domain resource of the first uplink data, and the time domain resource of the first uplink data corresponds to the transmission waveform of the first uplink data.
  • the first parameter indicates a time domain resource allocation item used to determine the time domain resource of the first uplink data
  • the time domain resource allocation item includes a time domain resource allocation item used to indicate the first Parameters of the transmission waveform of uplink data
  • the terminal device is also configured with a second parameter, the second parameter is used to uniformly configure the transmission waveform of the uplink data of the terminal device, and the terminal device configures the In the case of the first parameter, the second parameter becomes invalid.
  • the second parameter is a parameter in the PUSCH configuration, or the second parameter is a parameter in the public configuration information of the random access channel.
  • the first parameter is used to indicate a resource allocation type of the first uplink data
  • the resource allocation type of the first uplink data corresponds to a transmission waveform of the first uplink data
  • the resource allocation type of the first uplink data includes type 0 and type 1, where the type 0 and type 1 correspond to the DFT-s-OFDM waveform and the CP-OFDM waveform respectively; Alternatively, the type 0 and type 1 correspond to the CP-OFDM waveform and the DFT-s-OFDM waveform respectively.
  • the first parameter includes one or more of the following: a parameter used to indicate a frequency domain resource occupied by the first uplink data; a parameter used to indicate a modulation of the first uplink data Parameters related to the coding strategy; parameters used to indicate the transmit power of the first uplink data; parameters used to indicate the HARQ process of the first uplink data; and parameters used to indicate that the first uplink data is retransmission data Or the parameters of the initial data transmission.
  • the first indication field includes one or more of the following: frequency domain resource allocation indication field; time domain resource allocation indication field; resource allocation type indication field, modulation and coding strategy indication field; New data identification indication field; HARQ process number indication field; and TPC indication field for scheduling PUSCH.
  • the parameters used to indicate the transmission waveform of the first uplink data include conversion precoding parameters.
  • the transmission waveform of the first uplink data is determined based on the first signaling; and/or, if the first uplink data To retransmit data, the transmission waveform of the first uplink data is determined based on the transmission waveform of the initially transmitted data of the first uplink data.
  • the initial transmission data and the retransmission data of the first uplink data correspond to the same transmission waveform; or, the initial transmission data and the retransmission data of the first uplink data correspond to different transmission waveforms. .
  • the first signaling is used to indicate switching precoding parameters, and different transmission waveforms of the first uplink data are determined based on the switching precoding parameters.
  • the transmission beam of the first uplink data includes a DFT-s-OFDM waveform; and/or, if the conversion When the precoding parameter indicates that the conversion precoder is disabled, the transmission beam of the first uplink data includes a CP-OFDM waveform.
  • the first signaling is DCI or RAR uplink authorization.
  • the first uplink data is PUSCH.
  • FIG. 7 is a schematic diagram of a network device according to an embodiment of the present application.
  • the network device 700 shown in FIG. 7 includes: a sending unit 710.
  • the sending unit 710 is configured to send first signaling to the terminal device, where the first signaling is used to dynamically schedule the first uplink data, and the first signaling is used to indicate the transmission waveform of the first uplink data.
  • the first signaling includes a first indication field, the first indication field is used to indicate a first parameter, and the first parameter is consistent with the transmission waveform of the first uplink data. correspond.
  • the first parameter corresponds to a transmission waveform of the first uplink data, including the first parameter corresponding to a parameter used to indicate the transmission waveform of the first uplink data.
  • the first parameter is used to determine the time domain resource of the first uplink data, and the time domain resource of the first uplink data corresponds to the transmission waveform of the first uplink data.
  • the first parameter indicates a time domain resource allocation item used to determine the time domain resource of the first uplink data
  • the time domain resource allocation item includes a time domain resource allocation item used to indicate the first Parameters of the transmission waveform of uplink data
  • the terminal device is also configured with a second parameter, the second parameter is used to uniformly configure the transmission waveform of the uplink data of the terminal device, and the terminal device configures the In the case of the first parameter, the second parameter becomes invalid.
  • the second parameter is a parameter in the PUSCH configuration, or the second parameter is a parameter in the public configuration information of the random access channel.
  • the first parameter is used to indicate a resource allocation type of the first uplink data
  • the resource allocation type of the first uplink data corresponds to a transmission waveform of the first uplink data
  • the resource allocation type of the first uplink data includes type 0 and type 1, where the type 0 and type 1 correspond to the DFT-s-OFDM waveform and the CP-OFDM waveform respectively; Alternatively, the type 0 and type 1 correspond to the CP-OFDM waveform and the DFT-s-OFDM waveform respectively.
  • the first parameter includes one or more of the following: a parameter used to indicate a frequency domain resource occupied by the first uplink data; a parameter used to indicate a modulation of the first uplink data Parameters related to the coding strategy; parameters used to indicate the transmit power of the first uplink data; parameters used to indicate the HARQ process of the first uplink data; and parameters used to indicate that the first uplink data is a retransmission Data or parameters for initial data transmission.
  • the first indication field includes one or more of the following: frequency domain resource allocation indication field; time domain resource allocation indication field; resource allocation type indication field, modulation and coding strategy indication field; New data identification indication field; HARQ process number indication field; and TPC indication field for scheduling PUSCH.
  • the parameters used to indicate the transmission waveform of the first uplink data include conversion precoding parameters.
  • the transmission waveform of the first uplink data is determined based on the first signaling; and/or, if the first uplink data To retransmit data, the transmission waveform of the first uplink data is determined based on the transmission waveform of the initially transmitted data of the first uplink data.
  • the initial transmission data and the retransmission data of the first uplink data correspond to the same transmission waveform; or, the initial transmission data and the retransmission data of the first uplink data correspond to different transmission waveforms. .
  • the first signaling is used to indicate switching precoding parameters, and different transmission waveforms of the first uplink data are determined based on the switching precoding parameters.
  • the transmission beam of the first uplink data includes a DFT-s-OFDM waveform; and/or, if the conversion When the precoding parameter indicates that the conversion precoder is disabled, the transmission beam of the first uplink data includes a CP-OFDM waveform.
  • the first signaling is DCI or RAR uplink authorization.
  • the first uplink data is PUSCH.
  • the sending unit 610 may be a transceiver 840.
  • the terminal device 600 may also include a processor 810 and a memory 820, as specifically shown in FIG. 8 .
  • the receiving unit 710 may be a transceiver 840.
  • the network device 700 may also include a processor 810 and a memory 820, as specifically shown in FIG. 8 .
  • Figure 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dashed line in Figure 8 indicates that the unit or module is optional.
  • the device 800 can be used to implement the method described in the above method embodiment.
  • Device 800 may be a chip, terminal device or network device.
  • Apparatus 800 may include one or more processors 810.
  • the processor 810 can support the device 800 to implement the method described in the foregoing method embodiments.
  • the processor 810 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 800 may also include one or more memories 820.
  • the memory 820 stores a program, which can be executed by the processor 810, so that the processor 810 executes the method described in the foregoing method embodiment.
  • the memory 820 may be independent of the processor 810 or integrated in the processor 810 .
  • Apparatus 800 may also include a transceiver 830.
  • Processor 810 may communicate with other devices or chips through transceiver 830.
  • the processor 810 can transmit and receive data with other devices or chips through the transceiver 830 .
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • the "instruction" mentioned may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the term "correspondence” can mean that there is a direct correspondence or indirect correspondence between the two, or it can also mean that there is an association between the two, or it can also mean indicating and being instructed, configuring and being configured, etc. relation.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium can be any available media that can be read by a computer or a data storage device such as a server, data center, or other integrated media that includes one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种通信方法、终端设备和网络设备。该方法包括终端设备接收网络设备发送的第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。在本申请实施例中,网络设备可以通过向终端设备发送用于动态调度第一上行数据的第一信令,以指示第一上行数据的传输波束。也就是说,网络设备可以动态地向终端设备指示第一上行数据的传输波束。相比于传统的以半静态的方式配置第一上行数据的传输波形,有助于提高配置传输波形的灵活性。

Description

通信方法、终端设备及网络设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种通信方法、终端设备及网络设备。
背景技术
上行数据使用的传输波形是通过物理上行共享信道(physical uplink shared channel,PUSCH)配置(PUSCH-Config)配置的,然而,PUSCH配置是以半静态的方式配置,这种半静态的配置方式导致在半静态配置周期内,上行数据的传输波束只能是PUSCH配置的传输波束,不能使用其他传输波形。如果需要调整传输波形,只能等到下一个半静态配置周期,基于新的PUSCH配置来调整传输波形。这种半静态的传输波形配置方式不够灵活,无法满足终端设备的传输需求。
发明内容
本申请提供一种通信方法、终端设备和网络设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供了一种通信方法,包括:终端设备接收网络设备发送的第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。
第二方面,提供了一种通信方法,包括:网络设备向终端设备发送第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。
第三方面,提供了一种终端设备,包括:接收单元,用于接收网络设备发送的第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。
第四方面,提供了一种网络设备,包括:发送单元,用于向终端设备发送第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。
第五方面,提供一种终端设备,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,并控制所述收发器发送第一上行数据,使得所述终端设备执行第一方面的方法中的部分或全部步骤。
第六方面,提供一种网络设备,收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,并控制所述收发器接收第一上行数据,使得所述网络设备执行第二方面的方法中的部分或全部步骤。
第七方面,本申请实施例提供了一种通信系统,该系统包括上述的终端和/或网络设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与该终端设备或网络设备进行交互的其他设备。
第八方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得通信设备(例如,终端设备或网络设备)执行上述各个方面的方法中的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使通信设备(例如,终端设备或网络设备)执行上述各个方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述各个方面的方法中所描述的部分或全部步骤。
在本申请实施例中,网络设备可以通过向终端设备发送用于动态调度第一上行数据的第一信令,以指示第一上行数据的传输波束。也就是说,网络设备可以动态地向终端设备指示第一上行数据的传输波束。相比于传统的以半静态的方式配置第一上行数据的传输波形,有助于提高配置传输波形的灵活性。
附图说明
图1是本申请实施例应用的无线通信系统100。
图2示出了基于数据信道聚合进行上行数据传输的示意图。
图3是本申请实施例的通信方法的流程图。
图4是本申请实施例的转换预编码器的不同状态与传输波形的对应关系。
图5是本申请实施例中通过DCI指示传输波形的示意图。
图6是本申请实施例的终端设备的示意图。
图7是本申请实施例的网络设备的示意图。
图8是本申请实施例的通信装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
上行数据的调度方式
在通信系统中,网络设备可以通过下行控制信息(downlink control information,DCI)对终端设备待传输的上行数据进行调度。目前,通信系统中支持多种格式的DCI,例如,格式0_0、格式0_1、格式0_2。
下文以格式0_0的DCI为例,介绍DCI中的指示域。格式0_0的DCI可以用于在小区内调度PUSCH。
通常,格式0_0的DCI中的指示域可以包括:DCI格式标识(identifier for DCI formats)、频域资源分配(frequency domain resource assignment)、时域资源分配(time domain resource assignment)、频域跳频标识(frequency hopping flag)、调制与编码策略(modulation and coding scheme,MCS)、新数据标识(new data indicator,NDI)、冗余版本(redundancy version)、混合自动重传(hybrid automatic repeat request,HARQ)进程编号、用于调度PUSCH的发射功率命令(transmit power command,TPC)、上行链路(uplink,UL)/补充上行链路(supplementary uplink,SUL)标识。
上述频域资源分配指示域中的参数用于指示传输PUSCH的频域资源,可以包括PUSCH占用的上行带宽部分(bandwidth part,BWP)中的资源块(resource block,RB)的数量。通常,频域资源分配指示域包括4bit。
上述时域资源分配指示域中的参数用于指示传输PUSCH的时域资源。通常为时域资源分配列表中时域资源分配项的指示信息(例如,时域资源分配项的索引),其中,时域资源分配列表可以通过PUSCH配置配置,具体的配置方式可以参见下文关于PUSCH配置的介绍。
上述MCS指示域中的参数用于指示PUSCH的MCS。
上述NDI指示域中的参数用于指示PUSCH为初传数据或重传数据。通常,当NDI的取值为1时,指示PUSCH为初传数据,当NDI的取值为0时,指示PUSCH为重传数据。
上述用于调度PUSCH的TPC指示域中的参数用于指示提升或降低PUSCH的上行发射功率。
上述HARQ进程编号指示域中的参数用于指示PUSCH的HARQ进程。
在另一些场景中(例如,随机接入过程中),上行数据为消息3PUSCH(Msg3PUSCH)时,可以通过随机接入响应(random access response,RAR)上行授权调度Msg3PUSCH。通常,RAR上行授权中可以包括时域资源分配指示域,时域资源分配指示域中的参数用于指示缺省的时域资源分配列表(或者说,默认的时域资源分配列表)中缺省的时域资源分配项的指示信息(例如,时域资源分配项的索引)。目前,缺省的时域资源分配列表中可以包括16个缺省的时域资源分配项。
需要说明的是,缺省的时域资源分配列表与PUSCH配置中时域资源分配列表作用相似,缺省的时域资源分配项与PUSCH配置中时域资源分配项的作用相似,可以参见下文的介绍,为了简洁,在此不再赘述。
为了便于理解本申请,下文基于图1介绍的通信系统,先结合数据信道聚合以及数据调频,来介绍提高上行覆盖的方案。
数据信道聚合机制
目前,为了提高上行覆盖,在NR中引入了数据信道聚合的方案。在数据信道聚合机制中,可以通过上行和下行的聚合因子(aggregation factor),来聚合多个时隙(slot),并在聚合的多个时隙上进行PUSCH数据传输。这种,通过聚合多时隙传输数据的方式,可以提高单次传输的上行覆盖。
在一些实现方式中,在进行数据信道聚合传输之前,需要指示上行数据的重复传输的重复次数。在一些实现方式中,上述重复次数可以携带在PUSCH配置(PUSCH-Config)中通过聚合因子指示,以半静态的方式配置给终端设备。
PUSCH-Config的数据结构如下所示。参见下文所示的数据结构,PUSCH-Config可以包括以下中的一种或多种:资源分配类型(用“resourceAllocation”表示),PUSCH时域资源分配列表(用“pusch-TimeDomainAllocationList”表示),PUSCH聚合因子(用“pusch-AggregationFactor”表示),调制与编码策略(modulation and coding scheme,MCS)(用“mcs-Table”表示)等等。
其中,资源分配类型可以包括类型0(用“resourceAllocationType0”表示)、类型1(用“esourceAllocationType1”表示)以及动态切换(用“dynamicSwitch”表示)。
Figure PCTCN2022105629-appb-000001
Figure PCTCN2022105629-appb-000002
在另一些实现方式中,当多时隙聚合传输和灵活时隙结合时,除了需要指示重复次数之外,还需要按照一定的方法来确定哪些符号或时隙能够用于上行数据的重复传输。目前,可以规定PUSCH的重复传输可以覆盖连续的时隙。当遇到时隙中可用符号不满足要求时,可以忽略该时隙对应的重复传输。为了便于理解,下文结合图2介绍PUSCH的重复传输。
图2示出了基于数据信道聚合进行上行数据传输的示意图。假设在时隙1~4上进行数据信道聚合,以传输PUSCH1。其中,时隙0和时隙3中的全部符号为上行符号。时隙1中的全部符号为下行符号。时隙2中的最后两个符号为上行符号,并且在上行符号之前的两个符号用作保护间隔或为未定符号,时隙2中剩余的符号为下行符号。
因此,参见图2,如果在时隙1~4上进行数据信道聚合,以传输PUSCH1。只有时隙0以及时隙3中的全部符号,以及时隙2中的最后两个上行符号可以用于聚合,来传输PUSCH。也即是说,在时隙0上可以进行PUSCH1的第0次重复传输(repetition 0)。在时隙2以及时隙3的上行符号上可以进行PUSCH1的第3次重复传输(repetition3)。由于PUSCH1的第1次重复传输(repetition 1)以及第2次重复传输(repetition 2)对应的时隙1和时隙2中的下行符号,因此无法进行PUSCH1的重复传输。
数据跳频传输机制
为了提高上行覆盖,在通信系统中引入了数据挑频传输的机制,或者说,可以通过跳频传输,来获得分集增益。对于上行信道传输而言,由于上行信道的传输带宽相对较小,频率分集增益往往不足,因此,可以采用跳频(frequency hopping)技术获得额外的频率分集增益。目前,利用跳频(frequency hopping)技术来传输上行数据,在OFDM系统(例如,LTE系统)中得到广泛应用。目前,在5G NR标准中,也支持在上行信号传输过程中使用跳频技术。但是,由于5G NR中同时也引入了BWP,因此,对于一个终端设备而言,上述跳频涉及频域资源通常需要在该终端设备所激活的上行BWP内。
基于上文的介绍可知,无论是数据信道聚合机制还是数据跳频传输机制,都可能消耗过多的无线资源。因此,已知的通信系统中又考虑可以通过调整传输波形,来提高上行覆盖。为了便于理解,下文介绍上行数据的传输波形以及上行数据的传输波形的配置过程。
上行数据的传输波形
由于在NR中需要支持多样化的业务需求,需要引入新波形来匹配多样化业务的传输需求。当不同的业务在空口通过不同的参数集(子载波间隔、符号长度、CP长度等)进行传输时,需要能良好共存,互不干扰。因此,新波形的设计目标可以包括以下一种或多种:具有更高的频率效率,良好的载波间抵抗频偏和时间同步偏差的能力,更低的带外辐射干扰,优良的峰均比(peak to average power ratio,PAPR)指标,满足用户之间异步传输和非正交传输等。
基于NR需要满足支持多种新业务的需求,空口新波形设计的目标是需要根据业务场景和业务类型灵活地选择和配置适合的波形参数。例如,将系统带宽划分若干子带承载不同的业务类型,选择不同的波形参数,子带之只存在极低的保护带或完全不需要保护带,各子带可以采用数字滤波器进行滤波处理,来消余各子带之间的相关干扰,实现不同子带的波形解耦,满足不同业务之间的灵活共存。
目前,标准的讨论结果为在NR上行过程中主要采用的波形包括DFT-s-OFDM波形以及CP-OFDM波形。其中,DFT-s-OFDM波形,在一定程度上可以与CP-OFDM波形互补。例如,相对于CP-OFDM波形而言,DFT-s-OFDM波形的峰均比可以低达3dB,从而使得DFT-s-OFDM波形具有较好的上行覆盖。
传输波形的配置方式
目前,上行数据(例如,PUSCH)的传输波形是以半静态的方式配置的。在一些场景中,PUSCH的传输波形是通过PUSCH配置(PUSCH-Config)配置的。其中,PUSCH配置信元(information element)的数据结构可以参见下文所示。需要说明的是,为了简洁,下文仅介绍与理解本申请方案相关的参数。
Figure PCTCN2022105629-appb-000003
Figure PCTCN2022105629-appb-000004
基于上文所示的数据结构可知,PUSCH配置中包括PUSCH时域资源分配列表(用“pusch-TimeDomainAllocationList”表示)以及转换预编码参数(用“transformPrecoder”表示)。
上述PUSCH时域资源分配列表可以包括一项或多项PUSCH时域资源分配项,一个PUSCH时域资源分配项可以用于指示传输PUSCH的时域资源。目前已有的PUSCH时域资源分配列表中可以包括16个PUSCH时域资源分配项。其中,PUSCH时域资源分配列表的数据结构可以如下所示。
Figure PCTCN2022105629-appb-000005
参见上述数据结构,PUSCH时域资源分配列表中可以包括PUSCH时域资源分配项(用“PUSCH-TimeDomainResourceAllocation”表示)。在一个PUSCH时域资源分配项中,可以包括参数“k2”、映射类型(用“mappingType”表示)、起始符号和长度(用“startSymbolAndLength”表示)。其中,参数“k2”用于确定PUSCH与物理下行控制信道(physical downlink control channel,PDCCH)之间在时域上的相对位置。映射类型用于指示PUSCH在时域上的资源映射方式。起始符号和长度用于指示PUSCH在时域上的起始时域位置以及占用的时域资源的长度。
上述转换预编码参数,用于指示使能(enabled)转换预编码器或去使能(disabled)转换预编码器。其中,转换预编码器不同的状态可以对应一个传输波束。
基于上文介绍可知,上行数据使用的传输波形是通过PUSCH配置(PUSCH-Config)配置的,然而,PUSCH配置是以半静态的方式配置,这种半静态的配置方式导致在半静态配置周期内,上行数据的传输波束只能是PUSCH配置的传输波束,不能使用其他传输波形。如果需要调整传输波形,只能等到下一个半静态配置周期,基于新的PUSCH配置来调整传输波形。这种半静态的传输波形配置方式不够灵活,无法满足终端设备的传输需求。
例如,当终端设备位于小区边缘时,信道的信道条件变化较快,终端设备可能需要基于信道条件的变化,调整上行数据的传输波形。通常,当信道条件变差时,上行数据的传输波形需要从CP-OFDM波形切换成DFT-s-OFDM波形,有助于提高终端设备的上行覆盖。然而,目前基于半静态配置传输波形的方式,当信道条件变差时,可能还不到一个新的半静态配置周期,此时,无法调整上行数据的传输波形,导致终端设备的。因此,上述半静态配置传输波形的方式,无法满足终端设备的传输需求。
因此,为了避免上述问题,本申请实施例提供了一种通信方法。在本申请实施例中,网络设备可以动态地向终端设备指示上行数据的传输波束。下文结合图3介绍本申请实施例的通信方法,图3所示的方法包括步骤S310。
在步骤S310中,网络设备向终端设备发送第一信令。
其中,第一信令用于动态调度第一上行数据,第一信令用于指示第一上行数据的传输波形。
上述第一上行数据例如可以是PUSCH。在不同的PUSCH传输场景中,上述第一信令可以是现有通信系统中不同的信令,例如,在PUSCH的传输场景中,上述第一信令可以为DCI。其中,DCI的格式可以是格式0_0、格式0_1、格式0_2中的一种或多种。又例如,在消息3PUSCH的传输场景中,上述第一信令可以为RAR上行授权。当然,上述第一信令还可以是其他功能相似的信令,本申请实施例对此不作具体限定。
在一些实施例中,上述第一上行数据的传输波形可以包括离散傅里叶变换序列扩频的OFDM(discrete fourier transform-spread OFDM,DFT-s-OFDM)波形,和/或循环前缀-正交频分复用(cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)波形。其中,CP-OFDM波形具有一些优势,如抵抗符号间干扰和频率选择性衰落效果好,频或均衡接收机简单、易与MIMO技术相结合持灵活的资源分配。但CP-OFDM波形也有劣势,如有较高的信号峰均比,CP的存在会有一定的频谱效率开销,对时间同步和频率高差比较敏感,带外辐射较大,载波间干扰会导致性能下降。在一定程度上,DFT-s-OFDM波形可以与CP-OFDM波形互补。例如,相对于CP-OFDM波形而言,DFT-s-OFDM波形的峰均比可以低达3dB,从而使得DFT-s-OFDM波形具有较好的上行覆盖。因此,在本申请实施例中,在上行传输过程中可以使用的传输波形可以包括DFT-s-OFDM波形以及CP-OFDM波形。
应理解,本申请实施例中,上述第一上行数据的传输波形还可以包括以CP-OFDM波形为基础,提出的多种优化的或全新的波形方案,例如,零尾扩频的DFT-OFDM(zero-tail spread DFT-OFDM,ZT-s-OFDM)波形、单字DFT-s-OFDM(unique word DFT-s-OFDM,UW DFT-s-OFDM)波形、保护间隔DFT-s-OFDM(guard interval DFT-s-OFDM,GI DFT-s-OFDM)波形、正交时频空间(orthogonal time frequency space,OTFS)波形、滤波的-正交频分复用(filtered-orthogonal frequency division multiplexing,F-OFDM)波形、通用滤波正交频分复用(universal filtered-orthogonal frequency division multiplexing,F-OFDM)波形、灵活的循环前缀-正交频分复用(flexible cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)波形等等。当然,上述第一上行数据的传输波形还可以包括未来通信系统中的新的波形,本申请实施例对此不作限定。
在一些实现方式中,第一信令可以通过指示转换预编码参数(例如,使能(enabled)转换预编码器或去使能(disabled)转换预编码器),来指示第一上行数据的传输波束。下文结合图4介绍转换预编码参数指示传输波形的方案。
图4是本申请实施例的转换预编码器的不同状态与传输波形的对应关系。参见图4,若转换预编码参数为去使能(disabled)转换预编码器,那么转换预编码器(例如,DFT编码器)不工作,上行信号可以在快速傅里叶逆变换(inverse fast fourier transform,IFFT)编码器中被处理。此时,上行信号的传输波形为CP-OFDM波形。相反地,若转换预编码参数为使能(enabled)转换预编码器,那么转换预编码器(例如,DFT编码器)工作,上行信号可以先在DFT编码器被处理,再发送到IFFT编码器中被处理。此时,上行信号的传输波形为DFT-s-OFDM波形。
因此,在本申请实施例中,若转换预编码参数为使能DFT预编码器时,第一上行数据的传输波束可以包括DFT-s-OFDM波形。在另一些实现方式中,若转换预编码参数为去使能DFT预编码器时,第一上行数据的传输波束包括CP-OFDM波形。
当然,在本申请实施例中,还可以通过除上述转换预编码参数之外的其他参数,来指示第一上行数据的传输波形的参数指示传输波形。例如,可以传输波形的标识,本申请实施例对此不作限定。
如上文所述,第一信令可以指示第一上行数据的传输波形。其中,指示可以理解为直接指示或间接指示。若第一信令直接指示第一上行数据的传输波形,可以理解为,在第一信令中直接携带用于指示第一上行数据的传输波形的参数。例如,第一信令包括转换预编码参数的专用指示域。另外,本申请实施例中,关于直接指示方式除了上文介绍的可以直接在第一信令中携带用于指示传输波形的参数之外,还可以通过其他方式实现,下文将结合实现方式1中介绍的直接指示方式详细介绍,为了简洁在此不再赘述。
若第一信令间接指示第一上行数据的传输波形,可以理解为,在第一信令中复用指示其他参数(又称“第一参数”)的指示域(又称“第一指示域”),来间接指示第一上行数据的传输波形。即,第一信令包括第一指示域,第一指示域用于指示第一参数,且第一参数与第一上行数据的传输波形对应。为了便于理解,下文结合实现方式1中的间接指示方式以及实现方式2~7详细介绍,为了简洁,在此不再赘述。
在本申请实施例中,若基于用于指示第一上行数据的传输波形的参数(例如,转换预编码参数),来指示第一上行数据的传输波形,那么,第一信令中的第一参数可以与指示第一上行数据的传输波形的参数对应,也就是说,第一参数可以通过对应的指示的传输波形参数,来指示第一上行数据的传输波形。例如,第一参数对应的转换预编码参数为去使能转换预编码器,那么,第一参数对应的第一上行数据的传输波形为CP-OFDM波形。又例如,第一参数对应的转换预编码参数为使能转换预编码器,那么,第一参数对应的第一上行数据的传输波形为DFT-s-OFDM波形。
需要说明的是,在本申请实施例中,第一指示域中不同的第一参数取值可以对应一个或多个传输波形。另外,不同的第一参数取值对应的传输波形可以相同也可以不同,本申请实施例对此不作限定。为了便于理解,下文结合实现方式1至实现方式7,介绍复用第一信令中不同的参数指示传输波形的方式。
实现方式1
通常,第一信令中可以包括用于确定第一上行数据的时域资源的参数。在本申请实施例中,指示时域资源的参数可以与传输波形对应。或者说,第一参数用于确定第一上行数据的时域资源,且第一上行数据的时域资源与第一上行数据的传输波形对应。
在一些实现方式中,第一上行数据的时域资源与第一上行数据的传输波形对应,可以理解为,在指示第一上行数据的时域资源的时域资源分配项中,添加了用于指示第一上行数据的传输波形的参数(例如,转换预编码参数)。
下文以DCI作为第一信令为例,介绍本申请实施例的方案。基于上文关于DCI的介绍可知,DCI中可以包括时域资源分配指示域。在本申请实施例中,可以将时域资源分配指示域中的参数作为第一参数,来指示第一上行数据的传输波形。下文以间接指示方式和直接指示方式为例,分别介绍本申请实施例的指示方式。
在直接指示的方式中,可以预先在时域资源分配项中,新增指示传输波形的参数。如此,当PUSCH配置发送给终端设备后,资源分配项中包括的指示传输波形的参数也发送给了终端设备。之后,网络设备在通过第一参数指示时域资源分配项的同时,也可以通过第一参数直接指示时域资源分配项中包括的传输波形。
下文以转换预编码参数作为指示传输波形的参数为例,介绍PUSCH时域资源分配列表的数据结构。其中,时域资源分配列表可以表示为“PUSCH-TimeDomainResourceAllocationlist”,时域资源分配项可以表示为“PUSCH-TimeDomainResourceAllocation”,转换预编码参数可以表示为“transformPrecoder-r18”。对比前文介绍的PUSCH时域资源分配列表的数据结构可知,本申请实施例的时域资源分配项中新增了转换预编码参数“transformPrecoder-r18”,来指示传输波形。
Figure PCTCN2022105629-appb-000006
为了便于理解,下文结合图5基于上文介绍的时域资源分配项与传输波形的对应关系,介绍指示第一上行数据的传输波形的方法。
图5是本申请实施例中通过DCI指示传输波形的示意图。假设第N项时域资源配置项中包含的转换预编码参数为去使能转换预编码器,第N+1项时域资源配置项中包含的转换预编码参数为使能转换预编码器。参见图5,若DCI指示第一上行数据的时域资源配置项为第N项,那么,第一上行数据的传输波形为CP-OFDM波形。若DCI指示第一上行数据的时域资源配置项为第N+1项,那么,第一上行数据的传输波形为DFT-s-OFDM波形。
在另一些实现方式中,第一上行数据的时域资源与第一上行数据的传输波形对应,可以理解为,第一上行数据的时域资源与第一上行数据的传输波形之间有独立的对应关系,例如,可以通过映射表来表示第一上行数据的时域资源与第一上行数据的传输波形之间的对应关系。
在间接指示的方式中,可以预先建立时域资源分配项与传输波形的对应关系。如此,网络设备在通过第一参数指示第一上行数据的时域资源分配项时,终端设备可以基于第一上行数据的时域资源分配项以及上述对应关系,确定与指示的时域资源分配项对应的传输波形。
以转换预编码参数作为指示传输波形的参数为例,上述时域资源分配项与传输波形的对应关系,可以理解为时域资源分配项与转换预编码参数的对应关系。如此,网络设备在通过第一参数指示第一上行数据的时域资源分配项时,终端设备可以基于第一上行数据的时域资源分配项以及上述对应关系,确定与第一上行数据的时域资源分配项对应的转换预编码参数,并通过转换预编码参数确定第一上行数据的传输波形。
需要说明的是,在上述间接指示的方式中,可以沿用传统的PUSCH时域资源分配列表的数据结构,也就是说,可以不在传统的PUSCH时域资源分配列表的数据结构中新增指示传输波形的参数,以减少对已有通信协议的改动。
另外,上述时域资源分配项与传输波形的对应关系可以是通过预配置、预定义等方式配置的,本申请实施例对此不作限定。
下文以RAR上行授权作为第一信令为例,介绍本申请实施例的方案。通常,RAR上行授权中可以包括指示Msg3PUSCH的时域资源的参数。在本申请实施例中,可以将该参数作为第一参数,来指示第一上行数据的传输波形。下文以间接指示方式和直接指示方式为例,分别介绍本申请实施例的指示方式。
在一些实现方式中,第一上行数据的时域资源与第一上行数据的传输波形对应,可以理解为,在指示第一上行数据的时域资源的缺省的时域资源分配项中,添加了用于指示第一上行数据的传输波形的参数(例如,转换预编码参数)。
在直接指示的方式中,可以预先在缺省的时域资源分配项中,新增指示传输波形的参数。如此,当PUSCH配置发送给终端设备后,缺省的资源分配项中包括的指示传输波形的参数也发送给了终端设备。之后,网络设备在通过第一参数指示缺省的时域资源分配项时,由于时域资源分配项中包含指示传输波形的参数,因此,第一参数也直接指示缺省的时域资源分配项中包括的指示传输波形的参数。
以转换预编码参数作为指示传输波形的参数为例,目前缺省的时域资源分配列表中通常可以包含16项缺省的时域资源分配项,此时,可以在缺省的时域资源分配列表中的部分或全部缺省的时域资源分配项中,添加转换预编码参数,以建立缺省的时域资源分配项与转换预编码参数之间的对应关系。之后,网络设备在通过第一参数指示缺省的时域资源分配项的同时,也可以通过第一参数直接指示缺省的时域资源分配项中包括的转换预编码参数。
在另一些实现方式中,第一上行数据的缺省的时域资源与第一上行数据的传输波形对应,可以理解为,第一上行数据的缺省的时域资源与第一上行数据的传输波形之间有独立的对应关系,例如,可以通过映射表来表示第一上行数据的缺省的时域资源与第一上行数据的传输波形之间的对应关系。
在间接指示的方式中,可以预先建立缺省的时域资源分配项与传输波形的对应关系。如此,网络设备在通过第一参数指示第一上行数据的缺省的时域资源分配项时,终端设备可以基于第一上行数据的缺省的时域资源分配项以及上述对应关系,确定与缺省的指示的时域资源分配项对应的传输波形。
以转换预编码参数作为指示传输波形的参数为例,上述缺省的时域资源分配项与传输波形的对应关系,可以理解为缺省的时域资源分配项与转换预编码参数的对应关系。如此,网络设备在通过第一参数指示第一上行数据的缺省的时域资源分配项时,终端设备可以基于第一上行数据的缺省的时域资源分配项以及上述对应关系,确定与第一上行数据的缺省的时域资源分配项对应的转换预编码参数,并通过转换预编码参数确定第一上行数据的传输波形。
需要说明的是,在上述间接指示的方式中,可以沿用传统的缺省的时域资源分配项的数据结构,也就是说,可以不在已有的缺省的时域资源分配项的数据结构中新增指示传输波形的参数,有助于减少对已有通信协议的改动。
另外,上述缺省的时域资源分配项与传输波形的对应关系可以是通过预配置、预定义等方式配置的, 本申请实施例对此不作限定。
实现方式2
通常,第一信令中可以包括用于指示第一上行数据的资源分配类型的参数。在本申请实施例中,指示资源分配类型的参数可以与传输波形对应。或者说,第一参数用于指示第一上行数据的资源分配类型,且第一上行数据的资源分配类型与第一上行数据的传输波形对应。
在一些实现方式中,第一上行数据的资源分配类型与第一上行数据的传输波形对应,可以理解为,第一上行数据的资源分配类型与第一上行数据的传输波形之间有独立的对应关系,例如,可以通过映射表来表示第一上行数据的资源分配类型与第一上行数据的传输波形之间的对应关系。
下文以DCI作为第一信令为例,介绍本申请实施例的方案。基于上文关于DCI的介绍可知,DCI中可以包括资源分配类型指示域。在本申请实施例中,可以将资源分配类型指示域中的参数作为第一参数,来指示第一上行数据的传输波形。
可以预先建立资源分配类型与传输波形的对应关系。如此,网络设备在通过第一参数指示第一上行数据的资源分配类型时,终端设备可以基于第一参数以及上述对应关系,确定与指示的资源分配类型对应的传输波形。
以转换预编码参数作为指示传输波形的参数为例,上述资源分配类型与传输波形的对应关系,可以理解为资源分配类型与转换预编码参数的对应关系。如此,网络设备在通过第一参数指示第一上行数据的资源分配类型时,终端设备可以基于第一上行数据的资源分配类型以及上述对应关系,确定与第一上行数据的资源分配类型对应的转换预编码参数,并通过转换预编码参数确定第一上行数据的传输波形。
需要说明的是,上述资源分配类型分配项与传输波形的对应关系可以是通过预配置、预定义等方式配置的,本申请实施例对此不作限定。
下文以DFT-s-OFDM波形和CP-OFDM波形为例,介绍本申请实施例的资源分配类型与传输波形的对应关系。由于以DFT-s-OFDM波形传输的上行数据通常需要占用连续的频域资源,因此,可以将DFT-s-OFDM波形与指示占用连续频域资源的资源分配类型对应,其中,指示占用连续频域资源的资源分配类型例如可以是类型1。相应地,CP-OFDM波形可以对应类型0。当然,在本申请实施例中,DFT-s-OFDM波形可以对应类型0,相应地,CP-OFDM波形可以对应类型1。
也即是说,上述资源分配类型与转换预编码参数的对应关系可以包括:类型1对应的转换预编码参数为去使能转换预编码器;和/或,类型0对应的转换预编码参数为使能转换预编码器。当然,上述资源分配类型与转换预编码参数的对应关系也可以包括:类型0对应的转换预编码参数为去使能转换预编码器;和/或,类型1对应的转换预编码参数为使能转换预编码器。
实现方式3
通常,第一信令中可以包括用于指示第一上行数据的频域资源的参数。在本申请实施例中,指示频域资源的参数可以与传输波形对应。或者说,第一参数用于指示第一上行数据的频域资源,且第一上行数据的频域资源与第一上行数据的传输波形对应。
在一些实现方式中,第一上行数据的频域资源与第一上行数据的传输波形对应,可以理解为,第一上行数据的频域资源与第一上行数据的传输波形之间有独立的对应关系,例如,可以通过映射表来表示第一上行数据的频域资源与第一上行数据的传输波形之间的对应关系。
下文以DCI作为第一信令为例,介绍本申请实施例的方案。基于上文关于DCI的介绍可知,DCI中可以包括频域资源分配指示域。在本申请实施例中,可以将频域资源分配指示域中的参数作为第一参数,来指示第一上行数据的传输波形。
可以预先建立频域资源与传输波形的对应关系。如此,网络设备在通过第一参数指示第一上行数据的频域资源时,终端设备可以基于第一上行数据的频域资源以及上述对应关系,确定与第一上行数据的频域资源对应的传输波形。
在一些实现方式中,上述频域资源与传输波形的对应关系,可以包括频域资源的数量与传输波形的对应关系。其中,频域资源的数量例如可以是RB的数量。当然,上述频域资源与传输波形的对应关系还可以是频域资源所在的BWP与传输波形的对应关系,本申请实施例对此不作限定。
以转换预编码参数作为指示传输波形的参数为例,上述频域资源的数量与传输波形的对应关系,可以理解为频域资源的数量与转换预编码参数的对应关系。如此,网络设备在通过第一参数指示第一上行数据的频域资源的数量时,终端设备可以基于第一上行数据的频域资源的数量以及上述对应关系,确定与第一上行数据的频域资源的数量对应的转换预编码参数,并通过转换预编码参数确定第一上行数据的传输波形。
需要说明的是,上述频域资源与传输波形的对应关系可以是通过预配置、预定义等方式配置的,本申请实施例对此不作限定。
下文以DFT-s-OFDM波形和CP-OFDM波形为例,介绍本申请实施例的频域资源的数量与传输波形的对应关系。通常,当频域资源的数量较小时,终端设备的上行覆盖可能受限,此时,采用DFT-s-OFDM波形发送第一上行数据,可有助于提高上行覆盖。另外,当频域资源的数量较多时,传输第一上行数据的可用资源较多,可以容忍传输CP所带来的频谱效率开销,因此,上述对应关系可以包括较少的频域资源时对应DFT-s-OFDM波形,和/或,较多的频域资源对应CP-OFDM波形。
在一些实现方式中,频域资源的数量的多少可以基于数量阈值确定,例如,当频域资源的数量大于数量阈值时,可以理解为频域资源的数量较多,对应DFT-s-OFDM波形。相应地,当频域资源的数量小于数量阈值时,可以理解为频域资源的数量较少,对应CP-OFDM波形。需要说明的是,在本申请实施例中还可以采用其他方式确定频域资源的数量的多少,例如,当频域资源为固定的一些值时,可以确定频域资源的数量较多。相反地,当频域资源不为上述固定的值时,可以确定频域资源的数量较少。本申请实施例对此不作限定。
以频域资源的数量的多少基于数量阈值确定为例,在本申请实施例中,频域资源的数量与转换预编码参数的对应关系可以包括:若频域资源的数量小于数量阈值,该频域资源的数量对应的转换预编码参数为使能预编码转换器;和/或,若频域资源的数量大于或等于数量阈值,该频域资源的数量对应的转换预编码参数为去使能预编码转换器。
实现方式4
通常,第一信令中可以包括用于指示第一上行数据的调制与编码策略的参数。在本申请实施例中,指示调制与编码策略的参数可以与传输波形对应。或者说,第一参数用于指示第一上行数据的调制与编码策略,且第一上行数据的调制与编码策略与第一上行数据的传输波形对应。
在一些实现方式中,第一上行数据的调制与编码策略与第一上行数据的传输波形对应,可以理解为,第一上行数据的调制与编码策略与第一上行数据的传输波形之间有独立的对应关系,例如,可以通过映射表来表示第一上行数据的调制与编码策略与第一上行数据的传输波形之间的对应关系。
下文以DCI作为第一信令为例,介绍本申请实施例的方案。基于上文关于DCI的介绍可知,DCI中可以包括调制与编码策略指示域。在本申请实施例中,可以将调制与编码策略指示域中的参数作为第一参数,来指示第一上行数据的传输波形。
可以预先建立调制与编码策略与传输波形的对应关系。如此,网络设备在通过第一参数指示第一上行数据的调制与编码策略时,终端设备可以基于第一上行数据的调制与编码策略以及上述对应关系,确定与指示的调制与编码策略对应的传输波形。
以转换预编码参数作为指示传输波形的参数为例,上述调制与编码策略的码率与传输波形的对应关系,可以理解为调制与编码策略与转换预编码参数的对应关系。如此,网络设备在通过第一参数指示第一上行数据的调制与编码策略时,终端设备可以基于第一上行数据的调制与编码策略以及上述对应关系,确定与第一上行数据的调制与编码策略对应的转换预编码参数,并通过转换预编码参数确定第一上行数据的传输波形。
需要说明的是,上述调制与编码策略与传输波形的对应关系可以是通过预配置、预定义等方式配置的,本申请实施例对此不作限定。
在一些实现方式中,调制与编码策略与传输波形的对应关系,可以包括调制与编码策略的码率与传输波形的对应关系。
下文以DFT-s-OFDM波形和CP-OFDM波形为例,介绍本申请实施例的调制与编码策略的码率与传输波形的对应关系。通常,当调制与编码策略的码率较低时,终端设备的上行覆盖可能受限,此时,采用DFT-s-OFDM波形发送第一上行数据,可有助于提高上行覆盖。相反地,当调制与编码策略的码率较高时,可以采用CP-OFDM波形发送第一上行数据。因此,上述对应关系可以包括较低码率的调制与编码策略对应DFT-s-OFDM波形,和/或,较高码率的调制与编码策略对应CP-OFDM波形。
在一些实现方式中,调制与编码策略的码率的高低可以基于码率阈值确定,例如,当调制与编码策略的码率大于码率阈值时,可以理解为调制与编码策略的码率较高,对应CP-OFDM波形。相应地,当调制与编码策略的码率小于码率阈值时,可以理解为调制与编码策略的码率较低,对应DFT-s-OFDM波形。需要说明的是,在本申请实施例中还可以采用其他方式确定调制与编码策略的码率高低,例如,当调制与编码策略的码率为固定的一些值时,可以确定调制与编码策略的码率较高。相反地,当调制与编码策略的码率不为上述固定的值时,可以确定调制与编码策略的码率较低。本申请实施例对此不作限定。
以调制与编码策略的码率的高低基于码率阈值确定为例,在本申请实施例中,调制与编码策略的码率与转换预编码参数的对应关系可以包括:若调制与编码策略的码率小于码率阈值,该调制与编码策略的码率对应的转换预编码参数为使能预编码转换器;和/或,若调制与编码策略的码率大于或等于码率 阈值,该调制与编码策略的码率对应的转换预编码参数为去使能预编码转换器。
在另一些实现方式中,调制与编码策略与传输波形的对应关系,可以包括调制与编码策略的阶数与传输波形的对应关系。
下文以DFT-s-OFDM波形和CP-OFDM波形为例,介绍本申请实施例的调制与编码策略的阶数与传输波形的对应关系。通常,当调制与编码策略的阶数较低时,终端设备的上行覆盖可能受限,此时,采用DFT-s-OFDM波形发送第一上行数据,可有助于提高上行覆盖。相反地,当调制与编码策略的阶数较高时,可以采用CP-OFDM波形发送第一上行数据。因此,上述对应关系可以包括较低阶数的调制与编码策略对应DFT-s-OFDM波形,和/或,较高阶数的调制与编码策略对应CP-OFDM波形。
在一些实现方式中,调制与编码策略的阶数的高低可以基于阶数阈值确定,例如,当调制与编码策略的阶数大于阶数阈值时,可以理解为调制与编码策略的阶数较高,对应DFT-s-OFDM波形。相应地,当调制与编码策略的阶数小于阶数阈值时,可以理解为调制与编码策略的阶数较低,对应CP-OFDM波形。需要说明的是,在本申请实施例中还可以采用其他方式确定调制与编码策略的阶数高低,例如,当调制与编码策略的阶数为固定的一些值时,可以确定调制与编码策略的阶数较高。相反地,当调制与编码策略的阶数不为上述固定的值时,可以确定调制与编码策略的阶数较低。本申请实施例对此不作限定。
以调制与编码策略的阶数的高低基于阶数阈值确定为例,在本申请实施例中,调制与编码策略的阶数与转换预编码参数的对应关系可以包括:若调制与编码策略的阶数小于阶数阈值,该调制与编码策略的阶数对应的转换预编码参数为使能预编码转换器;和/或,若调制与编码策略的阶数大于或等于阶数阈值,该调制与编码策略的阶数对应的转换预编码参数为去使能预编码转换器。
实现方式5
通常,第一信令中可以包括用于指示第一上行数据的发射功率的参数。在本申请实施例中,指示发射功率的参数可以与传输波形对应。或者说,第一参数用于指示第一上行数据的发射功率,且第一上行数据的发射功率与第一上行数据的传输波形对应。
在一些实现方式中,第一上行数据的发射功率与第一上行数据的传输波形对应,可以理解为,第一上行数据的发射功率与第一上行数据的传输波形之间有独立的对应关系,例如,可以通过映射表来表示第一上行数据的发射功率与第一上行数据的传输波形之间的对应关系。
下文以DCI作为第一信令为例,介绍本申请实施例的方案。基于上文关于DCI的介绍可知,DCI中可以包括用于调度PUSCH的TPC的指示域。在本申请实施例中,可以将TPC的指示域中的参数作为第一参数,来指示第一上行数据的传输波形。
可以预先建立发射功率与传输波形的对应关系。如此,网络设备在通过第一参数指示第一上行数据的发射功率时,终端设备可以基于第一上行数据的发射功率以及上述对应关系,确定与发射功率对应的传输波形。
以转换预编码参数作为指示传输波形的参数为例,上述发射功率与传输波形的对应关系,可以理解为发射功率与转换预编码参数的对应关系。如此,网络设备在通过第一参数指示第一上行数据的发射功率时,终端设备可以基于第一上行数据的发射功率以及上述对应关系,确定与第一上行数据的发射功率对应的转换预编码参数,并通过转换预编码参数确定第一上行数据的传输波形。
需要说明的是,上述发射功率与传输波形的对应关系可以是通过预配置、预定义等方式配置的,本申请实施例对此不作限定。
下文以DFT-s-OFDM波形和CP-OFDM波形为例,介绍本申请实施例的发射功率与传输波形的对应关系。通常,DFT-s-OFDM波形相对于CP-OFDM波形具有更高的发射功率额度。因此,当第一上行数据的发射功率较大时,可以采用DFT-s-OFDM波形发送第一上行数据。相反地,当第一上行数据的发射功率较小时,可以采用CP-OFDM波形发送第一上行数据。因此,上述对应关系可以包括较高的发射功率对应DFT-s-OFDM波形,和/或,较低的发射功率对应CP-OFDM波形。
在一些实现方式中,发射功率的高低可以基于发射功率阈值确定,例如,当第一上行数据的发射功率大于或等于发射功率阈值时,可以理解为第一上行数据的发射功率较高,对应DFT-s-OFDM波形。相应地,当第一上行数据的发射功率小于发射功率阈值时,可以理解为第一上行数据的发射功率较低,对应CP-OFDM波形。需要说明的是,在本申请实施例中还可以采用其他方式确定发射功率的高低,例如,当发射功率为固定的一些值时,可以确定发射功率较高。相反地,当发射功率不为上述固定的值时,可以确定发射功率较低。本申请实施例对此不作限定。
以发射功率的高低基于发射功率阈值确定为例,在本申请实施例中,上述发射功率与转换预编码参数的对应关系可以包括:若发射功率的高于或等于发射功率阈值,该发射功率对应的转换预编码参数为使能预编码转换器;和/或,若发射功率的小于发射功率阈值,该发射功率对应的转换预编码参数为去使能预编码转换器。
实现方式6
通常,第一信令中可以包括用于指示第一上行数据的HARQ进程的参数。在本申请实施例中,指示HARQ进程的参数可以与传输波形对应。或者说,第一参数用于指示第一上行数据的HARQ进程,且第一上行数据的HARQ进程与第一上行数据的传输波形对应。
在一些实现方式中,第一上行数据的HARQ进程与第一上行数据的传输波形对应,可以理解为,第一上行数据的HARQ进程与第一上行数据的传输波形之间有独立的对应关系,例如,可以通过映射表来表示第一上行数据的HARQ进程与第一上行数据的传输波形之间的对应关系。
下文以DCI作为第一信令为例,介绍本申请实施例的方案。基于上文关于DCI的介绍可知,DCI中可以包括HARQ进程编号指示域。在本申请实施例中,可以将HARQ进程编号指示域中的参数作为第一参数,来指示第一上行数据的传输波形。
可以预先建立HARQ进程编号与传输波形的对应关系。如此,网络设备在通过第一参数指示第一上行数据的HARQ进程时,终端设备可以基于第一上行数据的HARQ进程以及上述对应关系,确定与HARQ进程编号对应的传输波形。
以转换预编码参数作为指示传输波形的参数为例,上述HARQ进程与传输波形的对应关系,可以理解为HARQ进程与转换预编码参数的对应关系。如此,网络设备在通过第一参数指示第一上行数据的HARQ进程时,终端设备可以基于第一上行数据的HARQ进程以及上述对应关系,确定与第一上行数据的HARQ进程对应的转换预编码参数,并通过转换预编码参数确定第一上行数据的传输波形。
需要说明的是,上述HARQ进程编号与传输波形的对应关系可以是通过预配置、预定义等方式配置的,本申请实施例对此不作限定。
下文以DFT-s-OFDM波形和CP-OFDM波形为例,介绍本申请实施例的HARQ进程编号与传输波形的对应关系。当HARQ进程编号为固定的一些值时,为固定值的HARQ进程编号可以对应DFT-s-OFDM波形。相反地,当HARQ进程编号不为上述固定的值时,不为固定值的HARQ进程编号可以对应CP-OFDM波形。本申请实施例对此不作限定。
也即是说,在本申请实施例中,上述HARQ进程与转换预编码参数的对应关系可以包括:若HARQ进程编号为固定的一些值,该HARQ进程编号对应的转换预编码参数为使能预编码转换器;和/或,若HARQ进程编号不为固定的一些值,该HARQ进程编号对应的转换预编码参数为去使能预编码转换器。
实现方式7
通常,第一信令中可以包括用于指示第一上行数据为重传数据或初传数据的参数。在本申请实施例中,用于指示重传数据或初传数据的参数可以与传输波形对应。或者说,第一参数用于指示第一上行数据为重传数据或初传数据,且第一上行数据为重传数据或初传数据与第一上行数据的传输波形对应。
在一些实现方式中,第一上行数据为重传数据或初传数据与第一上行数据的传输波形对应,可以理解为,第一上行数据为重传数据或初传数据与第一上行数据的传输波形之间有独立的对应关系,例如,可以通过映射表来表示第一上行数据为重传数据对应的传输波形,以及第一上行数据为初传数据对应的传输波形。
下文以DCI作为第一信令为例,介绍本申请实施例的方案。基于上文关于DCI的介绍可知,DCI中可以包括NDI指示域。在本申请实施例中,可以将NDI指示域中的参数作为第一参数,来指示第一上行数据的传输波形。
可以预先建立重传数据或初传数据与传输波形的对应关系。如此,网络设备在通过第一参数指示第一上行数据为重传数据或初传数据时,终端设备可以基于第一上行数据为重传数据或初传数据以及上述对应关系,确定与重传数据或初传数据对应的传输波形。
以转换预编码参数作为指示传输波形的参数为例,上述重传数据或初传数据与传输波形的对应关系,可以理解为重传数据或初传数据与转换预编码参数的对应关系。如此,网络设备在通过第一参数指示第一上行数据为重传数据或初传数据时,终端设备可以基于第一上行数据为重传数据或初传数据以及上述对应关系,确定与初传数据或重传数据对应的转换预编码参数,并通过转换预编码参数确定第一上行数据的传输波形。
需要说明的是,上述重传数据或初传数据与传输波形的对应关系可以是通过预配置、预定义等方式配置的,本申请实施例对此不作限定。
下文以DFT-s-OFDM波形和CP-OFDM波形为例,介绍本申请实施例为重传数据或初传数据编号与传输波形的对应关系。若NDI指示第一上行数据为初传数据(例如,NDI取值为1)时,可以对应CP-OFDM波形,相反地,若NDI指示第一上行数据为重传数据(例如,NDI取值为0)时,可以对应DFT-s-OFDM波形。
当然,在本申请实施例中,若NDI指示第一上行数据为初传数据(例如,NDI取值为1)时,可以 对应DFT-s-OFDM波形,相反地,若NDI指示第一上行数据为重传数据(例如,NDI取值为0)时,可以对应CP-OFDM波形。本申请实施例对此不作限定。
在本申请实施例中,上述初传数据、重传数据与转换预编码参数的对应关系可以包括:若第一上行数据为初传数据,该初传数据对应的转换预编码参数为使能预编码转换器;和/或,若第一上行数据为重传数据,该重传数据对应的转换预编码参数为去使能预编码转换器。
当然,在本申请实施例中,上述初传数据、重传数据与转换预编码参数的对应关系还可以包括:若第一上行数据为初传数据,该初传数据对应的转换预编码参数为去使能预编码转换器;和/或,若第一上行数据为重传数据,该重传数据对应的转换预编码参数为使能预编码转换器。
需要说明的是,上文结合实现方式1~7介绍了复用第一信令中不同的参数指示传输波形的方式。本申请实施例的中可以复用的参数并不限于上文介绍的几种参数,还可以复用第一信令中的其他参数,复用方式与上文介绍的复用方式相似,为例简洁,下文不再一一赘述。
另外,上述实现方式1~7介绍的复用方式可以单独使用,也可以结合使用,本申请实施例对此不作限定。若上述实现方式1~7结合使用时,可以通过设置不同实现方式对应的优先级,来避免不同实现方式指示的传输波形发生冲突的情况。
在本申请实施例中,通过复用第一信令中原有参数来指示第一上行数据的传输波形,有助于避免增加传输第一信令的开销。
需要说明的是,在本申请实施例中,还可以通过DCI的格式来指示第一上行数据的传输波形,例如,DCI的不同的格式可以对应一个或多个传输波形。本申请实施例通过DCI指示传输波形的方式不作限定。
当然,在本申请实施例中,如果不考虑增加第一信令的开销,可以在第一信令的指示域中新添加指示第一上行数据的传输波形的参数(例如,预编码转换参数),即,第一信令包含第一指示域,其中,第一指示域中承载指示第一上行数据的传输波形的参数。
其中,第一指示域可以包括以下一种或多种:频域资源分配指示域;时域资源分配指示域;资源分配类型指示域、调制与编码策略指示域;新数据标识指示域;HARQ进程编号指示域;以及用于调度PUSCH的TPC指示域。当然,本申请实施例中,上述第一指示域还可以是其他指示域。
如上文介绍,在半静态的传输波形配置过程中,会在配置信息(例如,PUSCH配置或随机接入信道的公共配置信息(RACH-ConfigCommon))中,携带对终端设备的上行数据的传输波形进行统一配置的参数(又称为“第二参数”)。此时,如果使用本申请实施例的方法,再通过第一信令指示第一上行数据的传输波形,那么,第一信令指示的传输波形与第二参数指示的传输波形可能发生冲突。因此,在本申请实施例中可以规定在上述情况下,第二参数失效。也即是说,终端设备可以使用第一信令指示的传输波形发送第一上行数据。
以PUSCH配置与实现方式1结合为例介绍。若PUSCH配置中携带第二参数,并且,通过DCI指示时域资源分配项的同时,也指示了PUSCH的传输波形,此时,第二参数失效。也即是说,终端设备可以使用第一信令指示的传输波形发送PUSCH。
以RACH-ConfigCommon与实现方式1结合为例介绍。若RACH-ConfigCommon中携带第二参数,并且,通过RAR上行授权指示缺省的时域资源分配项的同时,也指示了Msg3PUSCH的传输波形,此时,第二参数失效。也即是说,终端设备可以使用第一信令指示的传输波形发送Msg3PUSCH。
当然,在本申请实施例中,如果通过第一信令指示第一上行数据的传输波形,那么,在半静态配置的配置信息(例如,PUSCH配置或RACH-ConfigCommon)中,可以不再携带第二参数,以避免与第一信令指示的传输波形发生冲突。
在本申请实施例中,还可以将第一上行数据为初传数据或者重传数据,与第一信令结合,来确定第一上行数据的传输波形。在实现方式1中,若第一上行数据为初传数据,第一上行数据的传输波形可以基于第一信令确定。在实现方式2中,若第一上行数据为重传数据,那么,第一上行数据的传输波形可以基于第一上行数据的初传数据的传输波形确定。
需要说明的是,上述第一上行数据的传输波形可以基于第一上行数据的初传数据的传输波形确定,可以包括重传数据的传输波形与初传数据的传输波形相同,或者,重传数据的传输波形与初传数据的传输波形不同。本申请实施例对此不作限定。
另外,上述两种实现方式可以单独使用也可以结合使用,本申请实施例对此不作限定。当上述两种实现方式结合使用时,可以理解为,第一上行数据为初传数据还是重传数据,可以用于指示第一信令指示的传输波形是否生效。例如,在实现方式1中,若第一上行数据为初传数据,第一上行数据的传输波形可以基于第一信令确定,也就是说,若第一上行数据为初传数据(例如,NDI为1),指示第一信令指示的传输波形生效。相应地,在实现方式2中,若第一上行数据为重传数据,重传数据的传输波形可 以基于初传数据的传输波形确定,也就是说,若第一上行数据为重传数据(例如,NDI为0),指示第一信令指示的传输波形不生效。
通常,在初传数据传输失败后,会开始传输重传数据。初传数据的传输失败可能会与初传数据的传输波形有关,因此,为了提高数据传输的可靠性,再传输重传数据时可以采用与初传数据不同的波形。当然,如果为了简化重传数据与初传数据的数据合并过程的复杂度,初传数据的传输波形可以与重传数据的传输波形相同。
需要说明的是,上文中提及的初传数据以及重传数据,可以属于DCI调度的同一数据传输进程。
上文结合图1至图5,详细描述了本申请的方法实施例,下面结合图6至图8,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图6是本申请实施例的终端设备的示意图,图6所示的终端设备600包括:接收单元610。
接收单元610,用于接收网络设备发送的第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。
在一种可能的实现方式中,所述第一信令包括第一指示域,所述第一指示域用于指示第一参数,且所述第一参数与所述第一上行数据的传输波形对应。
在一种可能的实现方式中,所述第一参数与所述第一上行数据的传输波形对应,包括所述第一参数与用于指示所述第一上行数据的传输波形的参数对应。
在一种可能的实现方式中,所述第一参数用于确定所述第一上行数据的时域资源,且所述第一上行数据的时域资源与所述第一上行数据的传输波形对应。
在一种可能的实现方式中,所述第一参数指示用于确定所述第一上行数据的时域资源的时域资源分配项,所述时域资源分配项包括用于指示所述第一上行数据的传输波形的参数。
在一种可能的实现方式中,所述终端设备还配置有第二参数,所述第二参数用于对所述终端设备的上行数据的传输波形进行统一配置,且在所述终端设备配置所述第一参数的情况下,所述第二参数失效。
在一种可能的实现方式中,所述第二参数为PUSCH配置中的参数,或,所述第二参数为随机接入信道的公共配置信息中的参数。
在一种可能的实现方式中,所述第一参数用于指示所述第一上行数据的资源分配类型,所述第一上行数据的资源分配类型与所述第一上行数据的传输波形对应。
在一种可能的实现方式中,所述第一上行数据的资源分配类型包括类型0和类型1,其中,所述类型0和类型1分别与DFT-s-OFDM波形和CP-OFDM波形对应;或者,所述类型0和类型1分别与CP-OFDM波形和DFT-s-OFDM波形对应。
在一种可能的实现方式中,所述第一参数包括以下一种或多种:用于指示所述第一上行数据占用的频域资源的参数;用于指示所述第一上行数据的调制与编码策略的参数;用于指示所述第一上行数据的发射功率的参数;用于指示所述第一上行数据的HARQ进程的参数;以及用于指示所述第一上行数据为重传数据或初传数据的参数。
在一种可能的实现方式中,所述第一指示域包括以下一种或多种:频域资源分配指示域;时域资源分配指示域;资源分配类型指示域、调制与编码策略指示域;新数据标识指示域;HARQ进程编号指示域;以及用于调度PUSCH的TPC指示域。
在一种可能的实现方式中,所述用于指示所述第一上行数据的传输波形的参数包括转换预编码参数。
在一种可能的实现方式中,若所述第一上行数据为初传数据,所述第一上行数据的传输波形基于所述第一信令确定;和/或,若所述第一上行数据为重传数据,所述第一上行数据的传输波形基于所述第一上行数据的初传数据的传输波形确定。
在一种可能的实现方式中,所述第一上行数据的初传数据和重传数据对应相同的传输波形;或者,所述第一上行数据的初传数据和重传数据对应不同的传输波形。
在一种可能的实现方式中,所述第一信令用于指示转换预编码参数,且所述第一上行数据的不同传输波形基于所述转换预编码参数确定。
在一种可能的实现方式中,若所述转换预编码参数指示使能转换预编码器时,所述第一上行数据的传输波束包括DFT-s-OFDM波形;和/或,若所述转换预编码参数指示去使能转换预编码器时,所述第一上行数据的传输波束包括CP-OFDM波形。
在一种可能的实现方式中,所述第一信令为DCI或RAR上行授权。
在一种可能的实现方式中,所述第一上行数据为PUSCH。
图7是本申请实施例的网络设备的示意图。图7所示的网络设备700包括:发送单元710。
发送单元710,用于向终端设备发送第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。
在一种可能的实现方式中,所述第一信令包括第一指示域,所述第一指示域用于指示第一参数,且所述第一参数与所述第一上行数据的传输波形对应。
在一种可能的实现方式中,所述第一参数与所述第一上行数据的传输波形对应,包括所述第一参数与用于指示所述第一上行数据的传输波形的参数对应。
在一种可能的实现方式中,所述第一参数用于确定所述第一上行数据的时域资源,且所述第一上行数据的时域资源与所述第一上行数据的传输波形对应。
在一种可能的实现方式中,所述第一参数指示用于确定所述第一上行数据的时域资源的时域资源分配项,所述时域资源分配项包括用于指示所述第一上行数据的传输波形的参数。
在一种可能的实现方式中,所述终端设备还配置有第二参数,所述第二参数用于对所述终端设备的上行数据的传输波形进行统一配置,且在所述终端设备配置所述第一参数的情况下,所述第二参数失效。
在一种可能的实现方式中,所述第二参数为PUSCH配置中的参数,或,所述第二参数为随机接入信道的公共配置信息中的参数。
在一种可能的实现方式中,所述第一参数用于指示所述第一上行数据的资源分配类型,所述第一上行数据的资源分配类型与所述第一上行数据的传输波形对应。
在一种可能的实现方式中,所述第一上行数据的资源分配类型包括类型0和类型1,其中,所述类型0和类型1分别与DFT-s-OFDM波形和CP-OFDM波形对应;或者,所述类型0和类型1分别与CP-OFDM波形和DFT-s-OFDM波形对应。
在一种可能的实现方式中,所述第一参数包括以下一种或多种:用于指示所述第一上行数据占用的频域资源的参数;用于指示所述第一上行数据的调制与编码策略的参数;用于指示所述第一上行数据的发射功率的参数;用于指示所述第一上行数据的HARQ进程的参数;以及,用于指示所述第一上行数据为重传数据或初传数据的参数。
在一种可能的实现方式中,所述第一指示域包括以下一种或多种:频域资源分配指示域;时域资源分配指示域;资源分配类型指示域、调制与编码策略指示域;新数据标识指示域;HARQ进程编号指示域;以及用于调度PUSCH的TPC指示域。
在一种可能的实现方式中,所述用于指示所述第一上行数据的传输波形的参数包括转换预编码参数。
在一种可能的实现方式中,若所述第一上行数据为初传数据,所述第一上行数据的传输波形基于所述第一信令确定;和/或,若所述第一上行数据为重传数据,所述第一上行数据的传输波形基于所述第一上行数据的初传数据的传输波形确定。
在一种可能的实现方式中,所述第一上行数据的初传数据和重传数据对应相同的传输波形;或者,所述第一上行数据的初传数据和重传数据对应不同的传输波形。
在一种可能的实现方式中,所述第一信令用于指示转换预编码参数,且所述第一上行数据的不同传输波形基于所述转换预编码参数确定。
在一种可能的实现方式中,若所述转换预编码参数指示使能转换预编码器时,所述第一上行数据的传输波束包括DFT-s-OFDM波形;和/或,若所述转换预编码参数指示去使能转换预编码器时,所述第一上行数据的传输波束包括CP-OFDM波形。
在一种可能的实现方式中,所述第一信令为DCI或RAR上行授权。
在一种可能的实现方式中,所述第一上行数据为PUSCH。
在可选的实施例中,所述发送单元610可以为收发机840。终端设备600还可以包括处理器810和存储器820,具体如图8所示。
在可选的实施例中,所述接收单元710可以为收发机840。网络设备700还可以包括处理器810和存储器820,具体如图8所示。
图8是本申请实施例的通信装置的示意性结构图。图8中的虚线表示该单元或模块为可选的。该装置800可用于实现上述方法实施例中描述的方法。装置800可以是芯片、终端设备或网络设备。
装置800可以包括一个或多个处理器810。该处理器810可支持装置800实现前文方法实施例所描述的方法。该处理器810可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置800还可以包括一个或多个存储器820。存储器820上存储有程序,该程序可以被处理器810执行,使得处理器810执行前文方法实施例所描述的方法。存储器820可以独立于处理器810也可以集成在处理器810中。
装置800还可以包括收发器830。处理器810可以通过收发器830与其他设备或芯片进行通信。例如,处理器810可以通过收发器830与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包括。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取 的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (79)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收网络设备发送的第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。
  2. 如权利要求1所述的方法,其特征在于,所述第一信令包括第一指示域,所述第一指示域用于指示第一参数,且所述第一参数与所述第一上行数据的传输波形对应。
  3. 如权利要求2所述的方法,其特征在于,所述第一参数与所述第一上行数据的传输波形对应,包括所述第一参数与用于指示所述第一上行数据的传输波形的参数对应。
  4. 如权利要求2或3所述的方法,其特征在于,所述第一参数用于确定所述第一上行数据的时域资源,且所述第一上行数据的时域资源与所述第一上行数据的传输波形对应。
  5. 如权利要求4所述的方法,其特征在于,所述第一参数指示用于确定所述第一上行数据的时域资源的时域资源分配项,所述时域资源分配项包括用于指示所述第一上行数据的传输波形的参数。
  6. 如权利要求2-5中任一项所述的方法,其特征在于,所述终端设备还配置有第二参数,所述第二参数用于对所述终端设备的上行数据的传输波形进行统一配置,且在所述终端设备配置所述第一参数的情况下,所述第二参数失效。
  7. 如权利要求6所述的方法,其特征在于,所述第二参数为PUSCH配置中的参数,或,所述第二参数为随机接入信道的公共配置信息中的参数。
  8. 如权利要求2或3所述的方法,其特征在于,所述第一参数用于指示所述第一上行数据的资源分配类型,所述第一上行数据的资源分配类型与所述第一上行数据的传输波形对应。
  9. 如权利要求8所述的方法,其特征在于,所述第一上行数据的资源分配类型包括类型0和类型1,其中,所述类型0和类型1分别与DFT-s-OFDM波形和CP-OFDM波形对应;或者,所述类型0和类型1分别与CP-OFDM波形和DFT-s-OFDM波形对应。
  10. 如权利要求2或3所述的方法,其特征在于,所述第一参数包括以下一种或多种:
    用于指示所述第一上行数据占用的频域资源的参数;
    用于指示所述第一上行数据的调制与编码策略的参数;
    用于指示所述第一上行数据的发射功率的参数;
    用于指示所述第一上行数据的HARQ进程的参数;以及
    用于指示所述第一上行数据为重传数据或初传数据的参数。
  11. 如权利要求2或3所述的方法,其特征在于,所述第一指示域包括以下一种或多种:
    频域资源分配指示域;时域资源分配指示域;资源分配类型指示域、调制与编码策略指示域;新数据标识指示域;HARQ进程编号指示域;以及用于调度PUSCH的TPC指示域。
  12. 如权利要求3或5所述的方法,其特征在于,所述用于指示所述第一上行数据的传输波形的参数包括转换预编码参数。
  13. 如权利要求1-12中任一项所述的方法,其特征在于,若所述第一上行数据为初传数据,所述第一上行数据的传输波形基于所述第一信令确定;和/或
    若所述第一上行数据为重传数据,所述第一上行数据的传输波形基于所述第一上行数据的初传数据的传输波形确定。
  14. 如权利要求1-13中任一项所述的方法,其特征在于,所述第一上行数据的初传数据和重传数据对应相同的传输波形;或者,所述第一上行数据的初传数据和重传数据对应不同的传输波形。
  15. 如权利要求1所述的方法,其特征在于,所述第一信令用于指示转换预编码参数,且所述第一上行数据的不同传输波形基于所述转换预编码参数确定。
  16. 如权利要求15所述的方法,其特征在于,若所述转换预编码参数指示使能转换预编码器时,所述第一上行数据的传输波束包括DFT-s-OFDM波形;和/或
    若所述转换预编码参数指示去使能转换预编码器时,所述第一上行数据的传输波束包括CP-OFDM波形。
  17. 如权利要求1-16中任一项所述的方法,其特征在于,所述第一信令为DCI或RAR上行授权。
  18. 如权利要求1-17中任一项所述的方法,其特征在于,所述第一上行数据为PUSCH。
  19. 一种通信方法,其特征在于,包括:
    网络设备向终端设备发送第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。
  20. 如权利要求19所述的方法,其特征在于,所述第一信令包括第一指示域,所述第一指示域用 于指示第一参数,且所述第一参数与所述第一上行数据的传输波形对应。
  21. 如权利要求20所述的方法,其特征在于,所述第一参数与所述第一上行数据的传输波形对应,包括所述第一参数与用于指示所述第一上行数据的传输波形的参数对应。
  22. 如权利要求20或21所述的方法,其特征在于,所述第一参数用于确定所述第一上行数据的时域资源,且所述第一上行数据的时域资源与所述第一上行数据的传输波形对应。
  23. 如权利要求22所述的方法,其特征在于,所述第一参数指示用于确定所述第一上行数据的时域资源的时域资源分配项,所述时域资源分配项包括用于指示所述第一上行数据的传输波形的参数。
  24. 如权利要求20-23中任一项所述的方法,其特征在于,所述终端设备还配置有第二参数,所述第二参数用于对所述终端设备的上行数据的传输波形进行统一配置,且在所述终端设备配置所述第一参数的情况下,所述第二参数失效。
  25. 如权利要求24所述的方法,其特征在于,所述第二参数为PUSCH配置中的参数,或,所述第二参数为随机接入信道的公共配置信息中的参数。
  26. 如权利要求20或21所述的方法,其特征在于,所述第一参数用于指示所述第一上行数据的资源分配类型,所述第一上行数据的资源分配类型与所述第一上行数据的传输波形对应。
  27. 如权利要求26所述的方法,其特征在于,所述第一上行数据的资源分配类型包括类型0和类型1,其中,所述类型0和类型1分别与DFT-s-OFDM波形和CP-OFDM波形对应;或者,所述类型0和类型1分别与CP-OFDM波形和DFT-s-OFDM波形对应。
  28. 如权利要求20或21所述的方法,其特征在于,所述第一参数包括以下一种或多种:
    用于指示所述第一上行数据占用的频域资源的参数;
    用于指示所述第一上行数据的调制与编码策略的参数;
    用于指示所述第一上行数据的发射功率的参数;
    用于指示所述第一上行数据的HARQ进程的参数;以及
    用于指示所述第一上行数据为重传数据或初传数据的参数。
  29. 如权利要求20或21所述的方法,其特征在于,所述第一指示域包括以下一种或多种:
    频域资源分配指示域;时域资源分配指示域;资源分配类型指示域、调制与编码策略指示域;新数据标识指示域;HARQ进程编号指示域;以及用于调度PUSCH的TPC指示域。
  30. 如权利要求21或23所述的方法,其特征在于,所述用于指示所述第一上行数据的传输波形的参数包括转换预编码参数。
  31. 如权利要求19-30中任一项所述的方法,其特征在于,若所述第一上行数据为初传数据,所述第一上行数据的传输波形基于所述第一信令确定;和/或
    若所述第一上行数据为重传数据,所述第一上行数据的传输波形基于所述第一上行数据的初传数据的传输波形确定。
  32. 如权利要求19-31中任一项所述的方法,其特征在于,所述第一上行数据的初传数据和重传数据对应相同的传输波形;或者,所述第一上行数据的初传数据和重传数据对应不同的传输波形。
  33. 如权利要求19所述的方法,其特征在于,所述第一信令用于指示转换预编码参数,且所述第一上行数据的不同传输波形基于所述转换预编码参数确定。
  34. 如权利要求33所述的方法,其特征在于,若所述转换预编码参数指示使能转换预编码器时,所述第一上行数据的传输波束包括DFT-s-OFDM波形;和/或
    若所述转换预编码参数指示去使能转换预编码器时,所述第一上行数据的传输波束包括CP-OFDM波形。
  35. 如权利要求19-34中任一项所述的方法,其特征在于,所述第一信令为DCI或RAR上行授权。
  36. 如权利要求19-35中任一项所述的方法,其特征在于,所述第一上行数据为PUSCH。
  37. 一种终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。
  38. 如权利要求37所述的终端设备,其特征在于,所述第一信令包括第一指示域,所述第一指示域用于指示第一参数,且所述第一参数与所述第一上行数据的传输波形对应。
  39. 如权利要求38所述的终端设备,其特征在于,所述第一参数与所述第一上行数据的传输波形对应,包括所述第一参数与用于指示所述第一上行数据的传输波形的参数对应。
  40. 如权利要求38或39所述的终端设备,其特征在于,所述第一参数用于确定所述第一上行数据的时域资源,且所述第一上行数据的时域资源与所述第一上行数据的传输波形对应。
  41. 如权利要求40所述的终端设备,其特征在于,所述第一参数指示用于确定所述第一上行数据 的时域资源的时域资源分配项,所述时域资源分配项包括用于指示所述第一上行数据的传输波形的参数。
  42. 如权利要求38-41中任一项所述的终端设备,其特征在于,所述终端设备还配置有第二参数,所述第二参数用于对所述终端设备的上行数据的传输波形进行统一配置,且在所述终端设备配置所述第一参数的情况下,所述第二参数失效。
  43. 如权利要求42所述的终端设备,其特征在于,所述第二参数为PUSCH配置中的参数,或,所述第二参数为随机接入信道的公共配置信息中的参数。
  44. 如权利要求38或39所述的终端设备,其特征在于,所述第一参数用于指示所述第一上行数据的资源分配类型,所述第一上行数据的资源分配类型与所述第一上行数据的传输波形对应。
  45. 如权利要求44所述的终端设备,其特征在于,所述第一上行数据的资源分配类型包括类型0和类型1,其中,所述类型0和类型1分别与DFT-s-OFDM波形和CP-OFDM波形对应;或者,所述类型0和类型1分别与CP-OFDM波形和DFT-s-OFDM波形对应。
  46. 如权利要求38或39所述的终端设备,其特征在于,所述第一参数包括以下一种或多种:
    用于指示所述第一上行数据占用的频域资源的参数;
    用于指示所述第一上行数据的调制与编码策略的参数;
    用于指示所述第一上行数据的发射功率的参数;
    用于指示所述第一上行数据的HARQ进程的参数;以及
    用于指示所述第一上行数据为重传数据或初传数据的参数。
  47. 如权利要求38或39所述的终端设备,其特征在于,所述第一指示域包括以下一种或多种:
    频域资源分配指示域;时域资源分配指示域;资源分配类型指示域、调制与编码策略指示域;新数据标识指示域;HARQ进程编号指示域;以及用于调度PUSCH的TPC指示域。
  48. 如权利要求39或41所述的终端设备,其特征在于,所述用于指示所述第一上行数据的传输波形的参数包括转换预编码参数。
  49. 如权利要求37-48中任一项所述的终端设备,其特征在于,若所述第一上行数据为初传数据,所述第一上行数据的传输波形基于所述第一信令确定;和/或
    若所述第一上行数据为重传数据,所述第一上行数据的传输波形基于所述第一上行数据的初传数据的传输波形确定。
  50. 如权利要求37-49中任一项所述的终端设备,其特征在于,所述第一上行数据的初传数据和重传数据对应相同的传输波形;或者,所述第一上行数据的初传数据和重传数据对应不同的传输波形。
  51. 如权利要求37所述的终端设备,其特征在于,所述第一信令用于指示转换预编码参数,且所述第一上行数据的不同传输波形基于所述转换预编码参数确定。
  52. 如权利要求51所述的终端设备,其特征在于,若所述转换预编码参数指示使能转换预编码器时,所述第一上行数据的传输波束包括DFT-s-OFDM波形;和/或
    若所述转换预编码参数指示去使能转换预编码器时,所述第一上行数据的传输波束包括CP-OFDM波形。
  53. 如权利要求37-52中任一项所述的终端设备,其特征在于,所述第一信令为DCI或RAR上行授权。
  54. 如权利要求37-53中任一项所述的终端设备,其特征在于,所述第一上行数据为PUSCH。
  55. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送第一信令,所述第一信令用于动态调度第一上行数据,所述第一信令用于指示所述第一上行数据的传输波形。
  56. 如权利要求55所述的网络设备,其特征在于,所述第一信令包括第一指示域,所述第一指示域用于指示第一参数,且所述第一参数与所述第一上行数据的传输波形对应。
  57. 如权利要求56所述的网络设备,其特征在于,所述第一参数与所述第一上行数据的传输波形对应,包括所述第一参数与用于指示所述第一上行数据的传输波形的参数对应。
  58. 如权利要求56或57所述的网络设备,其特征在于,所述第一参数用于确定所述第一上行数据的时域资源,且所述第一上行数据的时域资源与所述第一上行数据的传输波形对应。
  59. 如权利要求58所述的网络设备,其特征在于,所述第一参数指示用于确定所述第一上行数据的时域资源的时域资源分配项,所述时域资源分配项包括用于指示所述第一上行数据的传输波形的参数。
  60. 如权利要求56-59中任一项所述的网络设备,其特征在于,所述终端设备还配置有第二参数,所述第二参数用于对所述终端设备的上行数据的传输波形进行统一配置,且在所述终端设备配置所述 第一参数的情况下,所述第二参数失效。
  61. 如权利要求60所述的网络设备,其特征在于,所述第二参数为PUSCH配置中的参数,或,所述第二参数为随机接入信道的公共配置信息中的参数。
  62. 如权利要求56或57所述的网络设备,其特征在于,所述第一参数用于指示所述第一上行数据的资源分配类型,所述第一上行数据的资源分配类型与所述第一上行数据的传输波形对应。
  63. 如权利要求62所述的网络设备,其特征在于,所述第一上行数据的资源分配类型包括类型0和类型1,其中,所述类型0和类型1分别与DFT-s-OFDM波形和CP-OFDM波形对应;或者,所述类型0和类型1分别与CP-OFDM波形和DFT-s-OFDM波形对应。
  64. 如权利要求56或57所述的网络设备,其特征在于,所述第一参数包括以下一种或多种:
    用于指示所述第一上行数据占用的频域资源的参数;
    用于指示所述第一上行数据的调制与编码策略的参数;
    用于指示所述第一上行数据的发射功率的参数;
    用于指示所述第一上行数据的HARQ进程的参数;以及
    用于指示所述第一上行数据为重传数据或初传数据的参数。
  65. 如权利要求56或57所述的网络设备,其特征在于,所述第一指示域包括以下一种或多种:
    频域资源分配指示域;时域资源分配指示域;资源分配类型指示域、调制与编码策略指示域;新数据标识指示域;HARQ进程编号指示域;以及用于调度PUSCH的TPC指示域。
  66. 如权利要求57或59所述的网络设备,其特征在于,所述用于指示所述第一上行数据的传输波形的参数包括转换预编码参数。
  67. 如权利要求55-66中任一项所述的网络设备,其特征在于,若所述第一上行数据为初传数据,所述第一上行数据的传输波形基于所述第一信令确定;和/或
    若所述第一上行数据为重传数据,所述第一上行数据的传输波形基于所述第一上行数据的初传数据的传输波形确定。
  68. 如权利要求55-67中任一项所述的网络设备,其特征在于,所述第一上行数据的初传数据和重传数据对应相同的传输波形;或者,所述第一上行数据的初传数据和重传数据对应不同的传输波形。
  69. 如权利要求55所述的网络设备,其特征在于,所述第一信令用于指示转换预编码参数,且所述第一上行数据的不同传输波形基于所述转换预编码参数确定。
  70. 如权利要求69所述的网络设备,其特征在于,若所述转换预编码参数指示使能转换预编码器时,所述第一上行数据的传输波束包括DFT-s-OFDM波形;和/或
    若所述转换预编码参数指示去使能转换预编码器时,所述第一上行数据的传输波束包括CP-OFDM波形。
  71. 如权利要求55-70中任一项所述的网络设备,其特征在于,所述第一信令为DCI或RAR上行授权。
  72. 如权利要求55-71中任一项所述的网络设备,其特征在于,所述第一上行数据为PUSCH。
  73. 一种终端设备,其特征在于,包括收发器、存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,并控制所述收发器发送第一上行数据,使所述终端执行如权利要求1-18中任一项所述的方法。
  74. 一种网络设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,并控制所述收发器接收第一上行数据,使所述网络设备执行如权利要求19-36中任一项所述的方法。
  75. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-36中任一项所述的方法。
  76. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-36中任一项所述的方法。
  77. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-36中任一项所述的方法。
  78. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-36中任一项所述的方法。
  79. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-36中任一项所述的方法。
PCT/CN2022/105629 2022-07-14 2022-07-14 通信方法、终端设备及网络设备 WO2024011483A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105629 WO2024011483A1 (zh) 2022-07-14 2022-07-14 通信方法、终端设备及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105629 WO2024011483A1 (zh) 2022-07-14 2022-07-14 通信方法、终端设备及网络设备

Publications (1)

Publication Number Publication Date
WO2024011483A1 true WO2024011483A1 (zh) 2024-01-18

Family

ID=89535190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105629 WO2024011483A1 (zh) 2022-07-14 2022-07-14 通信方法、终端设备及网络设备

Country Status (1)

Country Link
WO (1) WO2024011483A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108811149A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种获取控制信息的方法及装置
CN113574924A (zh) * 2019-03-26 2021-10-29 高通股份有限公司 用于上行链路传输的波形配置和指示
WO2022042247A1 (zh) * 2020-08-28 2022-03-03 华为技术有限公司 一种波形指示方法及芯片、系统
JP2022043164A (ja) * 2016-11-03 2022-03-15 オッポ広東移動通信有限公司 データ伝送の方法、ユーザ装置及びネットワークデバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022043164A (ja) * 2016-11-03 2022-03-15 オッポ広東移動通信有限公司 データ伝送の方法、ユーザ装置及びネットワークデバイス
CN108811149A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 一种获取控制信息的方法及装置
CN113574924A (zh) * 2019-03-26 2021-10-29 高通股份有限公司 用于上行链路传输的波形配置和指示
WO2022042247A1 (zh) * 2020-08-28 2022-03-03 华为技术有限公司 一种波形指示方法及芯片、系统

Similar Documents

Publication Publication Date Title
WO2019242776A1 (zh) 无线通信方法及装置
WO2020029973A1 (zh) 一种信息的处理方法和通信装置
WO2020164445A1 (zh) 一种通信方法及装置
WO2017092632A1 (zh) 无线通信的方法和装置
US10911978B2 (en) Data transmission method, device, and communications system
WO2020052573A1 (zh) 通信方法、装置及计算机存储介质
WO2020199846A1 (zh) 一种通信方法及装置
WO2022068177A1 (zh) 用于资源调度的通信方法及装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2019228511A1 (zh) 资源配置方法、网络设备和终端
KR20210066663A (ko) 무선 통신 시스템에서 슬롯 구조 지시 방법 및 장치
TW201836393A (zh) 上行傳輸方法、裝置、終端設備、接入網設備及系統
CN115004617A (zh) 一种终端设备调度方法及其装置
WO2022061622A1 (zh) 通信方法、通信设备、电子设备及计算机可读存储介质
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2019192589A1 (zh) 通信方法、通信装置以及计算机可读存储介质
CN113767684A (zh) 无线通信系统中频域资源分配的方法和装置
WO2024011483A1 (zh) 通信方法、终端设备及网络设备
WO2020143713A1 (zh) 通信方法、装置和存储介质
KR20220101473A (ko) 무선 통신 시스템에서 제어 채널 전송을 위한 장치 및 방법
WO2023197309A1 (zh) 侧行通信的方法及装置
WO2024031540A1 (zh) 通信方法及通信装置
WO2023133740A1 (zh) 通信方法、终端设备以及网络设备
WO2023035251A1 (zh) 无线通信的方法和通信设备
WO2024092670A1 (zh) 侧行传输方法及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950609

Country of ref document: EP

Kind code of ref document: A1